1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dnode.h> 34 #include <sys/dsl_pool.h> 35 #include <sys/zio.h> 36 #include <sys/space_map.h> 37 #include <sys/refcount.h> 38 #include <sys/zfeature.h> 39 40 /* 41 * Note on space map block size: 42 * 43 * The data for a given space map can be kept on blocks of any size. 44 * Larger blocks entail fewer i/o operations, but they also cause the 45 * DMU to keep more data in-core, and also to waste more i/o bandwidth 46 * when only a few blocks have changed since the last transaction group. 47 */ 48 49 /* 50 * Iterate through the space map, invoking the callback on each (non-debug) 51 * space map entry. 52 */ 53 int 54 space_map_iterate(space_map_t *sm, sm_cb_t callback, void *arg) 55 { 56 uint64_t *entry, *entry_map, *entry_map_end; 57 uint64_t bufsize, size, offset, end; 58 int error = 0; 59 60 end = space_map_length(sm); 61 62 bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE); 63 entry_map = zio_buf_alloc(bufsize); 64 65 if (end > bufsize) { 66 dmu_prefetch(sm->sm_os, space_map_object(sm), 0, bufsize, 67 end - bufsize, ZIO_PRIORITY_SYNC_READ); 68 } 69 70 for (offset = 0; offset < end && error == 0; offset += bufsize) { 71 size = MIN(end - offset, bufsize); 72 VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0); 73 VERIFY(size != 0); 74 ASSERT3U(sm->sm_blksz, !=, 0); 75 76 dprintf("object=%llu offset=%llx size=%llx\n", 77 space_map_object(sm), offset, size); 78 79 error = dmu_read(sm->sm_os, space_map_object(sm), offset, size, 80 entry_map, DMU_READ_PREFETCH); 81 if (error != 0) 82 break; 83 84 entry_map_end = entry_map + (size / sizeof (uint64_t)); 85 for (entry = entry_map; entry < entry_map_end && error == 0; 86 entry++) { 87 uint64_t e = *entry; 88 uint64_t offset, size; 89 90 if (SM_DEBUG_DECODE(e)) /* Skip debug entries */ 91 continue; 92 93 offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) + 94 sm->sm_start; 95 size = SM_RUN_DECODE(e) << sm->sm_shift; 96 97 VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift)); 98 VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift)); 99 VERIFY3U(offset, >=, sm->sm_start); 100 VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size); 101 error = callback(SM_TYPE_DECODE(e), offset, size, arg); 102 } 103 } 104 105 zio_buf_free(entry_map, bufsize); 106 return (error); 107 } 108 109 /* 110 * Note: This function performs destructive actions - specifically 111 * it deletes entries from the end of the space map. Thus, callers 112 * should ensure that they are holding the appropriate locks for 113 * the space map that they provide. 114 */ 115 int 116 space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg, 117 dmu_tx_t *tx) 118 { 119 uint64_t bufsize, len; 120 uint64_t *entry_map; 121 int error = 0; 122 123 len = space_map_length(sm); 124 bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE); 125 entry_map = zio_buf_alloc(bufsize); 126 127 dmu_buf_will_dirty(sm->sm_dbuf, tx); 128 129 /* 130 * Since we can't move the starting offset of the space map 131 * (e.g there are reference on-disk pointing to it), we destroy 132 * its entries incrementally starting from the end. 133 * 134 * The logic that follows is basically the same as the one used 135 * in space_map_iterate() but it traverses the space map 136 * backwards: 137 * 138 * 1] We figure out the size of the buffer that we want to use 139 * to read the on-disk space map entries. 140 * 2] We figure out the offset at the end of the space map where 141 * we will start reading entries into our buffer. 142 * 3] We read the on-disk entries into the buffer. 143 * 4] We iterate over the entries from end to beginning calling 144 * the callback function on each one. As we move from entry 145 * to entry we decrease the size of the space map, deleting 146 * effectively each entry. 147 * 5] If there are no more entries in the space map or the 148 * callback returns a value other than 0, we stop iterating 149 * over the space map. If there are entries remaining and 150 * the callback returned zero we go back to step [1]. 151 */ 152 uint64_t offset = 0, size = 0; 153 while (len > 0 && error == 0) { 154 size = MIN(bufsize, len); 155 156 VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0); 157 VERIFY3U(size, >, 0); 158 ASSERT3U(sm->sm_blksz, !=, 0); 159 160 offset = len - size; 161 162 IMPLY(bufsize > len, offset == 0); 163 IMPLY(bufsize == len, offset == 0); 164 IMPLY(bufsize < len, offset > 0); 165 166 167 EQUIV(size == len, offset == 0); 168 IMPLY(size < len, bufsize < len); 169 170 dprintf("object=%llu offset=%llx size=%llx\n", 171 space_map_object(sm), offset, size); 172 173 error = dmu_read(sm->sm_os, space_map_object(sm), 174 offset, size, entry_map, DMU_READ_PREFETCH); 175 if (error != 0) 176 break; 177 178 uint64_t num_entries = size / sizeof (uint64_t); 179 180 ASSERT3U(num_entries, >, 0); 181 182 while (num_entries > 0) { 183 uint64_t e, entry_offset, entry_size; 184 maptype_t type; 185 186 e = entry_map[num_entries - 1]; 187 188 ASSERT3U(num_entries, >, 0); 189 ASSERT0(error); 190 191 if (SM_DEBUG_DECODE(e)) { 192 sm->sm_phys->smp_objsize -= sizeof (uint64_t); 193 space_map_update(sm); 194 len -= sizeof (uint64_t); 195 num_entries--; 196 continue; 197 } 198 199 type = SM_TYPE_DECODE(e); 200 entry_offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) + 201 sm->sm_start; 202 entry_size = SM_RUN_DECODE(e) << sm->sm_shift; 203 204 VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift)); 205 VERIFY0(P2PHASE(entry_size, 1ULL << sm->sm_shift)); 206 VERIFY3U(entry_offset, >=, sm->sm_start); 207 VERIFY3U(entry_offset + entry_size, <=, 208 sm->sm_start + sm->sm_size); 209 210 error = callback(type, entry_offset, entry_size, arg); 211 if (error != 0) 212 break; 213 214 if (type == SM_ALLOC) 215 sm->sm_phys->smp_alloc -= entry_size; 216 else 217 sm->sm_phys->smp_alloc += entry_size; 218 219 sm->sm_phys->smp_objsize -= sizeof (uint64_t); 220 space_map_update(sm); 221 len -= sizeof (uint64_t); 222 num_entries--; 223 } 224 IMPLY(error == 0, num_entries == 0); 225 EQUIV(offset == 0 && error == 0, len == 0 && num_entries == 0); 226 } 227 228 if (len == 0) { 229 ASSERT0(error); 230 ASSERT0(offset); 231 ASSERT0(sm->sm_length); 232 ASSERT0(sm->sm_phys->smp_objsize); 233 ASSERT0(sm->sm_alloc); 234 } 235 236 zio_buf_free(entry_map, bufsize); 237 return (error); 238 } 239 240 typedef struct space_map_load_arg { 241 space_map_t *smla_sm; 242 range_tree_t *smla_rt; 243 maptype_t smla_type; 244 } space_map_load_arg_t; 245 246 static int 247 space_map_load_callback(maptype_t type, uint64_t offset, uint64_t size, 248 void *arg) 249 { 250 space_map_load_arg_t *smla = arg; 251 if (type == smla->smla_type) { 252 VERIFY3U(range_tree_space(smla->smla_rt) + size, <=, 253 smla->smla_sm->sm_size); 254 range_tree_add(smla->smla_rt, offset, size); 255 } else { 256 range_tree_remove(smla->smla_rt, offset, size); 257 } 258 259 return (0); 260 } 261 262 /* 263 * Load the space map disk into the specified range tree. Segments of maptype 264 * are added to the range tree, other segment types are removed. 265 */ 266 int 267 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype) 268 { 269 uint64_t space; 270 int err; 271 space_map_load_arg_t smla; 272 273 VERIFY0(range_tree_space(rt)); 274 space = space_map_allocated(sm); 275 276 if (maptype == SM_FREE) { 277 range_tree_add(rt, sm->sm_start, sm->sm_size); 278 space = sm->sm_size - space; 279 } 280 281 smla.smla_rt = rt; 282 smla.smla_sm = sm; 283 smla.smla_type = maptype; 284 err = space_map_iterate(sm, space_map_load_callback, &smla); 285 286 if (err == 0) { 287 VERIFY3U(range_tree_space(rt), ==, space); 288 } else { 289 range_tree_vacate(rt, NULL, NULL); 290 } 291 292 return (err); 293 } 294 295 void 296 space_map_histogram_clear(space_map_t *sm) 297 { 298 if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) 299 return; 300 301 bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram)); 302 } 303 304 boolean_t 305 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt) 306 { 307 /* 308 * Verify that the in-core range tree does not have any 309 * ranges smaller than our sm_shift size. 310 */ 311 for (int i = 0; i < sm->sm_shift; i++) { 312 if (rt->rt_histogram[i] != 0) 313 return (B_FALSE); 314 } 315 return (B_TRUE); 316 } 317 318 void 319 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx) 320 { 321 int idx = 0; 322 323 ASSERT(dmu_tx_is_syncing(tx)); 324 VERIFY3U(space_map_object(sm), !=, 0); 325 326 if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) 327 return; 328 329 dmu_buf_will_dirty(sm->sm_dbuf, tx); 330 331 ASSERT(space_map_histogram_verify(sm, rt)); 332 /* 333 * Transfer the content of the range tree histogram to the space 334 * map histogram. The space map histogram contains 32 buckets ranging 335 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree, 336 * however, can represent ranges from 2^0 to 2^63. Since the space 337 * map only cares about allocatable blocks (minimum of sm_shift) we 338 * can safely ignore all ranges in the range tree smaller than sm_shift. 339 */ 340 for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 341 342 /* 343 * Since the largest histogram bucket in the space map is 344 * 2^(32+sm_shift-1), we need to normalize the values in 345 * the range tree for any bucket larger than that size. For 346 * example given an sm_shift of 9, ranges larger than 2^40 347 * would get normalized as if they were 1TB ranges. Assume 348 * the range tree had a count of 5 in the 2^44 (16TB) bucket, 349 * the calculation below would normalize this to 5 * 2^4 (16). 350 */ 351 ASSERT3U(i, >=, idx + sm->sm_shift); 352 sm->sm_phys->smp_histogram[idx] += 353 rt->rt_histogram[i] << (i - idx - sm->sm_shift); 354 355 /* 356 * Increment the space map's index as long as we haven't 357 * reached the maximum bucket size. Accumulate all ranges 358 * larger than the max bucket size into the last bucket. 359 */ 360 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 361 ASSERT3U(idx + sm->sm_shift, ==, i); 362 idx++; 363 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 364 } 365 } 366 } 367 368 uint64_t 369 space_map_entries(space_map_t *sm, range_tree_t *rt) 370 { 371 avl_tree_t *t = &rt->rt_root; 372 range_seg_t *rs; 373 uint64_t size, entries; 374 375 /* 376 * All space_maps always have a debug entry so account for it here. 377 */ 378 entries = 1; 379 380 /* 381 * Traverse the range tree and calculate the number of space map 382 * entries that would be required to write out the range tree. 383 */ 384 for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) { 385 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift; 386 entries += howmany(size, SM_RUN_MAX); 387 } 388 return (entries); 389 } 390 391 void 392 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype, 393 dmu_tx_t *tx) 394 { 395 objset_t *os = sm->sm_os; 396 spa_t *spa = dmu_objset_spa(os); 397 avl_tree_t *t = &rt->rt_root; 398 range_seg_t *rs; 399 uint64_t size, total, rt_space, nodes; 400 uint64_t *entry, *entry_map, *entry_map_end; 401 uint64_t expected_entries, actual_entries = 1; 402 403 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 404 VERIFY3U(space_map_object(sm), !=, 0); 405 dmu_buf_will_dirty(sm->sm_dbuf, tx); 406 407 /* 408 * This field is no longer necessary since the in-core space map 409 * now contains the object number but is maintained for backwards 410 * compatibility. 411 */ 412 sm->sm_phys->smp_object = sm->sm_object; 413 414 if (range_tree_is_empty(rt)) { 415 VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object); 416 return; 417 } 418 419 if (maptype == SM_ALLOC) 420 sm->sm_phys->smp_alloc += range_tree_space(rt); 421 else 422 sm->sm_phys->smp_alloc -= range_tree_space(rt); 423 424 expected_entries = space_map_entries(sm, rt); 425 426 entry_map = zio_buf_alloc(sm->sm_blksz); 427 entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t)); 428 entry = entry_map; 429 430 *entry++ = SM_DEBUG_ENCODE(1) | 431 SM_DEBUG_ACTION_ENCODE(maptype) | 432 SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) | 433 SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx)); 434 435 total = 0; 436 nodes = avl_numnodes(&rt->rt_root); 437 rt_space = range_tree_space(rt); 438 for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) { 439 uint64_t start; 440 441 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift; 442 start = (rs->rs_start - sm->sm_start) >> sm->sm_shift; 443 444 total += size << sm->sm_shift; 445 446 while (size != 0) { 447 uint64_t run_len; 448 449 run_len = MIN(size, SM_RUN_MAX); 450 451 if (entry == entry_map_end) { 452 dmu_write(os, space_map_object(sm), 453 sm->sm_phys->smp_objsize, sm->sm_blksz, 454 entry_map, tx); 455 sm->sm_phys->smp_objsize += sm->sm_blksz; 456 entry = entry_map; 457 } 458 459 *entry++ = SM_OFFSET_ENCODE(start) | 460 SM_TYPE_ENCODE(maptype) | 461 SM_RUN_ENCODE(run_len); 462 463 start += run_len; 464 size -= run_len; 465 actual_entries++; 466 } 467 } 468 469 if (entry != entry_map) { 470 size = (entry - entry_map) * sizeof (uint64_t); 471 dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize, 472 size, entry_map, tx); 473 sm->sm_phys->smp_objsize += size; 474 } 475 ASSERT3U(expected_entries, ==, actual_entries); 476 477 /* 478 * Ensure that the space_map's accounting wasn't changed 479 * while we were in the middle of writing it out. 480 */ 481 VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root)); 482 VERIFY3U(range_tree_space(rt), ==, rt_space); 483 VERIFY3U(range_tree_space(rt), ==, total); 484 485 zio_buf_free(entry_map, sm->sm_blksz); 486 } 487 488 static int 489 space_map_open_impl(space_map_t *sm) 490 { 491 int error; 492 u_longlong_t blocks; 493 494 error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf); 495 if (error) 496 return (error); 497 498 dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks); 499 sm->sm_phys = sm->sm_dbuf->db_data; 500 return (0); 501 } 502 503 int 504 space_map_open(space_map_t **smp, objset_t *os, uint64_t object, 505 uint64_t start, uint64_t size, uint8_t shift) 506 { 507 space_map_t *sm; 508 int error; 509 510 ASSERT(*smp == NULL); 511 ASSERT(os != NULL); 512 ASSERT(object != 0); 513 514 sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP); 515 516 sm->sm_start = start; 517 sm->sm_size = size; 518 sm->sm_shift = shift; 519 sm->sm_os = os; 520 sm->sm_object = object; 521 522 error = space_map_open_impl(sm); 523 if (error != 0) { 524 space_map_close(sm); 525 return (error); 526 } 527 528 *smp = sm; 529 530 return (0); 531 } 532 533 void 534 space_map_close(space_map_t *sm) 535 { 536 if (sm == NULL) 537 return; 538 539 if (sm->sm_dbuf != NULL) 540 dmu_buf_rele(sm->sm_dbuf, sm); 541 sm->sm_dbuf = NULL; 542 sm->sm_phys = NULL; 543 544 kmem_free(sm, sizeof (*sm)); 545 } 546 547 void 548 space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx) 549 { 550 objset_t *os = sm->sm_os; 551 spa_t *spa = dmu_objset_spa(os); 552 dmu_object_info_t doi; 553 554 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 555 ASSERT(dmu_tx_is_syncing(tx)); 556 VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa)); 557 558 dmu_object_info_from_db(sm->sm_dbuf, &doi); 559 560 /* 561 * If the space map has the wrong bonus size (because 562 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or 563 * the wrong block size (because space_map_blksz has changed), 564 * free and re-allocate its object with the updated sizes. 565 * 566 * Otherwise, just truncate the current object. 567 */ 568 if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 569 doi.doi_bonus_size != sizeof (space_map_phys_t)) || 570 doi.doi_data_block_size != blocksize) { 571 zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating " 572 "object[%llu]: old bonus %u, old blocksz %u", 573 dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object, 574 doi.doi_bonus_size, doi.doi_data_block_size); 575 576 space_map_free(sm, tx); 577 dmu_buf_rele(sm->sm_dbuf, sm); 578 579 sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx); 580 VERIFY0(space_map_open_impl(sm)); 581 } else { 582 VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx)); 583 584 /* 585 * If the spacemap is reallocated, its histogram 586 * will be reset. Do the same in the common case so that 587 * bugs related to the uncommon case do not go unnoticed. 588 */ 589 bzero(sm->sm_phys->smp_histogram, 590 sizeof (sm->sm_phys->smp_histogram)); 591 } 592 593 dmu_buf_will_dirty(sm->sm_dbuf, tx); 594 sm->sm_phys->smp_objsize = 0; 595 sm->sm_phys->smp_alloc = 0; 596 } 597 598 /* 599 * Update the in-core space_map allocation and length values. 600 */ 601 void 602 space_map_update(space_map_t *sm) 603 { 604 if (sm == NULL) 605 return; 606 607 sm->sm_alloc = sm->sm_phys->smp_alloc; 608 sm->sm_length = sm->sm_phys->smp_objsize; 609 } 610 611 uint64_t 612 space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx) 613 { 614 spa_t *spa = dmu_objset_spa(os); 615 uint64_t object; 616 int bonuslen; 617 618 if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 619 spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx); 620 bonuslen = sizeof (space_map_phys_t); 621 ASSERT3U(bonuslen, <=, dmu_bonus_max()); 622 } else { 623 bonuslen = SPACE_MAP_SIZE_V0; 624 } 625 626 object = dmu_object_alloc(os, DMU_OT_SPACE_MAP, blocksize, 627 DMU_OT_SPACE_MAP_HEADER, bonuslen, tx); 628 629 return (object); 630 } 631 632 void 633 space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx) 634 { 635 spa_t *spa = dmu_objset_spa(os); 636 if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 637 dmu_object_info_t doi; 638 639 VERIFY0(dmu_object_info(os, smobj, &doi)); 640 if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) { 641 spa_feature_decr(spa, 642 SPA_FEATURE_SPACEMAP_HISTOGRAM, tx); 643 } 644 } 645 646 VERIFY0(dmu_object_free(os, smobj, tx)); 647 } 648 649 void 650 space_map_free(space_map_t *sm, dmu_tx_t *tx) 651 { 652 if (sm == NULL) 653 return; 654 655 space_map_free_obj(sm->sm_os, space_map_object(sm), tx); 656 sm->sm_object = 0; 657 } 658 659 uint64_t 660 space_map_object(space_map_t *sm) 661 { 662 return (sm != NULL ? sm->sm_object : 0); 663 } 664 665 /* 666 * Returns the already synced, on-disk allocated space. 667 */ 668 uint64_t 669 space_map_allocated(space_map_t *sm) 670 { 671 return (sm != NULL ? sm->sm_alloc : 0); 672 } 673 674 /* 675 * Returns the already synced, on-disk length; 676 */ 677 uint64_t 678 space_map_length(space_map_t *sm) 679 { 680 return (sm != NULL ? sm->sm_length : 0); 681 } 682 683 /* 684 * Returns the allocated space that is currently syncing. 685 */ 686 int64_t 687 space_map_alloc_delta(space_map_t *sm) 688 { 689 if (sm == NULL) 690 return (0); 691 ASSERT(sm->sm_dbuf != NULL); 692 return (sm->sm_phys->smp_alloc - space_map_allocated(sm)); 693 } 694