xref: /illumos-gate/usr/src/uts/common/fs/zfs/space_map.c (revision 8b713775314bbbf24edd503b4869342d8711ce95)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2012 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zio.h>
33 #include <sys/space_map.h>
34 
35 static kmem_cache_t *space_seg_cache;
36 
37 void
38 space_map_init(void)
39 {
40 	ASSERT(space_seg_cache == NULL);
41 	space_seg_cache = kmem_cache_create("space_seg_cache",
42 	    sizeof (space_seg_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
43 }
44 
45 void
46 space_map_fini(void)
47 {
48 	kmem_cache_destroy(space_seg_cache);
49 	space_seg_cache = NULL;
50 }
51 
52 /*
53  * Space map routines.
54  * NOTE: caller is responsible for all locking.
55  */
56 static int
57 space_map_seg_compare(const void *x1, const void *x2)
58 {
59 	const space_seg_t *s1 = x1;
60 	const space_seg_t *s2 = x2;
61 
62 	if (s1->ss_start < s2->ss_start) {
63 		if (s1->ss_end > s2->ss_start)
64 			return (0);
65 		return (-1);
66 	}
67 	if (s1->ss_start > s2->ss_start) {
68 		if (s1->ss_start < s2->ss_end)
69 			return (0);
70 		return (1);
71 	}
72 	return (0);
73 }
74 
75 void
76 space_map_create(space_map_t *sm, uint64_t start, uint64_t size, uint8_t shift,
77 	kmutex_t *lp)
78 {
79 	bzero(sm, sizeof (*sm));
80 
81 	cv_init(&sm->sm_load_cv, NULL, CV_DEFAULT, NULL);
82 
83 	avl_create(&sm->sm_root, space_map_seg_compare,
84 	    sizeof (space_seg_t), offsetof(struct space_seg, ss_node));
85 
86 	sm->sm_start = start;
87 	sm->sm_size = size;
88 	sm->sm_shift = shift;
89 	sm->sm_lock = lp;
90 }
91 
92 void
93 space_map_destroy(space_map_t *sm)
94 {
95 	ASSERT(!sm->sm_loaded && !sm->sm_loading);
96 	VERIFY0(sm->sm_space);
97 	avl_destroy(&sm->sm_root);
98 	cv_destroy(&sm->sm_load_cv);
99 }
100 
101 void
102 space_map_add(space_map_t *sm, uint64_t start, uint64_t size)
103 {
104 	avl_index_t where;
105 	space_seg_t *ss_before, *ss_after, *ss;
106 	uint64_t end = start + size;
107 	int merge_before, merge_after;
108 
109 	ASSERT(MUTEX_HELD(sm->sm_lock));
110 	VERIFY(!sm->sm_condensing);
111 	VERIFY(size != 0);
112 	VERIFY3U(start, >=, sm->sm_start);
113 	VERIFY3U(end, <=, sm->sm_start + sm->sm_size);
114 	VERIFY(sm->sm_space + size <= sm->sm_size);
115 	VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
116 	VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
117 
118 	ss = space_map_find(sm, start, size, &where);
119 	if (ss != NULL) {
120 		zfs_panic_recover("zfs: allocating allocated segment"
121 		    "(offset=%llu size=%llu)\n",
122 		    (longlong_t)start, (longlong_t)size);
123 		return;
124 	}
125 
126 	/* Make sure we don't overlap with either of our neighbors */
127 	VERIFY(ss == NULL);
128 
129 	ss_before = avl_nearest(&sm->sm_root, where, AVL_BEFORE);
130 	ss_after = avl_nearest(&sm->sm_root, where, AVL_AFTER);
131 
132 	merge_before = (ss_before != NULL && ss_before->ss_end == start);
133 	merge_after = (ss_after != NULL && ss_after->ss_start == end);
134 
135 	if (merge_before && merge_after) {
136 		avl_remove(&sm->sm_root, ss_before);
137 		if (sm->sm_pp_root) {
138 			avl_remove(sm->sm_pp_root, ss_before);
139 			avl_remove(sm->sm_pp_root, ss_after);
140 		}
141 		ss_after->ss_start = ss_before->ss_start;
142 		kmem_cache_free(space_seg_cache, ss_before);
143 		ss = ss_after;
144 	} else if (merge_before) {
145 		ss_before->ss_end = end;
146 		if (sm->sm_pp_root)
147 			avl_remove(sm->sm_pp_root, ss_before);
148 		ss = ss_before;
149 	} else if (merge_after) {
150 		ss_after->ss_start = start;
151 		if (sm->sm_pp_root)
152 			avl_remove(sm->sm_pp_root, ss_after);
153 		ss = ss_after;
154 	} else {
155 		ss = kmem_cache_alloc(space_seg_cache, KM_SLEEP);
156 		ss->ss_start = start;
157 		ss->ss_end = end;
158 		avl_insert(&sm->sm_root, ss, where);
159 	}
160 
161 	if (sm->sm_pp_root)
162 		avl_add(sm->sm_pp_root, ss);
163 
164 	sm->sm_space += size;
165 }
166 
167 void
168 space_map_remove(space_map_t *sm, uint64_t start, uint64_t size)
169 {
170 	avl_index_t where;
171 	space_seg_t *ss, *newseg;
172 	uint64_t end = start + size;
173 	int left_over, right_over;
174 
175 	VERIFY(!sm->sm_condensing);
176 	ss = space_map_find(sm, start, size, &where);
177 
178 	/* Make sure we completely overlap with someone */
179 	if (ss == NULL) {
180 		zfs_panic_recover("zfs: freeing free segment "
181 		    "(offset=%llu size=%llu)",
182 		    (longlong_t)start, (longlong_t)size);
183 		return;
184 	}
185 	VERIFY3U(ss->ss_start, <=, start);
186 	VERIFY3U(ss->ss_end, >=, end);
187 	VERIFY(sm->sm_space - size <= sm->sm_size);
188 
189 	left_over = (ss->ss_start != start);
190 	right_over = (ss->ss_end != end);
191 
192 	if (sm->sm_pp_root)
193 		avl_remove(sm->sm_pp_root, ss);
194 
195 	if (left_over && right_over) {
196 		newseg = kmem_cache_alloc(space_seg_cache, KM_SLEEP);
197 		newseg->ss_start = end;
198 		newseg->ss_end = ss->ss_end;
199 		ss->ss_end = start;
200 		avl_insert_here(&sm->sm_root, newseg, ss, AVL_AFTER);
201 		if (sm->sm_pp_root)
202 			avl_add(sm->sm_pp_root, newseg);
203 	} else if (left_over) {
204 		ss->ss_end = start;
205 	} else if (right_over) {
206 		ss->ss_start = end;
207 	} else {
208 		avl_remove(&sm->sm_root, ss);
209 		kmem_cache_free(space_seg_cache, ss);
210 		ss = NULL;
211 	}
212 
213 	if (sm->sm_pp_root && ss != NULL)
214 		avl_add(sm->sm_pp_root, ss);
215 
216 	sm->sm_space -= size;
217 }
218 
219 space_seg_t *
220 space_map_find(space_map_t *sm, uint64_t start, uint64_t size,
221     avl_index_t *wherep)
222 {
223 	space_seg_t ssearch, *ss;
224 
225 	ASSERT(MUTEX_HELD(sm->sm_lock));
226 	VERIFY(size != 0);
227 	VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
228 	VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
229 
230 	ssearch.ss_start = start;
231 	ssearch.ss_end = start + size;
232 	ss = avl_find(&sm->sm_root, &ssearch, wherep);
233 
234 	if (ss != NULL && ss->ss_start <= start && ss->ss_end >= start + size)
235 		return (ss);
236 	return (NULL);
237 }
238 
239 boolean_t
240 space_map_contains(space_map_t *sm, uint64_t start, uint64_t size)
241 {
242 	avl_index_t where;
243 
244 	return (space_map_find(sm, start, size, &where) != 0);
245 }
246 
247 void
248 space_map_swap(space_map_t **msrc, space_map_t **mdst)
249 {
250 	space_map_t *sm;
251 
252 	ASSERT(MUTEX_HELD((*msrc)->sm_lock));
253 	ASSERT0((*mdst)->sm_space);
254 	ASSERT0(avl_numnodes(&(*mdst)->sm_root));
255 
256 	sm = *msrc;
257 	*msrc = *mdst;
258 	*mdst = sm;
259 }
260 
261 void
262 space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
263 {
264 	space_seg_t *ss;
265 	void *cookie = NULL;
266 
267 	ASSERT(MUTEX_HELD(sm->sm_lock));
268 
269 	while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
270 		if (func != NULL)
271 			func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
272 		kmem_cache_free(space_seg_cache, ss);
273 	}
274 	sm->sm_space = 0;
275 }
276 
277 void
278 space_map_walk(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
279 {
280 	space_seg_t *ss;
281 
282 	ASSERT(MUTEX_HELD(sm->sm_lock));
283 
284 	for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
285 		func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
286 }
287 
288 /*
289  * Wait for any in-progress space_map_load() to complete.
290  */
291 void
292 space_map_load_wait(space_map_t *sm)
293 {
294 	ASSERT(MUTEX_HELD(sm->sm_lock));
295 
296 	while (sm->sm_loading) {
297 		ASSERT(!sm->sm_loaded);
298 		cv_wait(&sm->sm_load_cv, sm->sm_lock);
299 	}
300 }
301 
302 /*
303  * Note: space_map_load() will drop sm_lock across dmu_read() calls.
304  * The caller must be OK with this.
305  */
306 int
307 space_map_load(space_map_t *sm, space_map_ops_t *ops, uint8_t maptype,
308 	space_map_obj_t *smo, objset_t *os)
309 {
310 	uint64_t *entry, *entry_map, *entry_map_end;
311 	uint64_t bufsize, size, offset, end, space;
312 	uint64_t mapstart = sm->sm_start;
313 	int error = 0;
314 
315 	ASSERT(MUTEX_HELD(sm->sm_lock));
316 	ASSERT(!sm->sm_loaded);
317 	ASSERT(!sm->sm_loading);
318 
319 	sm->sm_loading = B_TRUE;
320 	end = smo->smo_objsize;
321 	space = smo->smo_alloc;
322 
323 	ASSERT(sm->sm_ops == NULL);
324 	VERIFY0(sm->sm_space);
325 
326 	if (maptype == SM_FREE) {
327 		space_map_add(sm, sm->sm_start, sm->sm_size);
328 		space = sm->sm_size - space;
329 	}
330 
331 	bufsize = 1ULL << SPACE_MAP_BLOCKSHIFT;
332 	entry_map = zio_buf_alloc(bufsize);
333 
334 	mutex_exit(sm->sm_lock);
335 	if (end > bufsize)
336 		dmu_prefetch(os, smo->smo_object, bufsize, end - bufsize);
337 	mutex_enter(sm->sm_lock);
338 
339 	for (offset = 0; offset < end; offset += bufsize) {
340 		size = MIN(end - offset, bufsize);
341 		VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
342 		VERIFY(size != 0);
343 
344 		dprintf("object=%llu  offset=%llx  size=%llx\n",
345 		    smo->smo_object, offset, size);
346 
347 		mutex_exit(sm->sm_lock);
348 		error = dmu_read(os, smo->smo_object, offset, size, entry_map,
349 		    DMU_READ_PREFETCH);
350 		mutex_enter(sm->sm_lock);
351 		if (error != 0)
352 			break;
353 
354 		entry_map_end = entry_map + (size / sizeof (uint64_t));
355 		for (entry = entry_map; entry < entry_map_end; entry++) {
356 			uint64_t e = *entry;
357 
358 			if (SM_DEBUG_DECODE(e))		/* Skip debug entries */
359 				continue;
360 
361 			(SM_TYPE_DECODE(e) == maptype ?
362 			    space_map_add : space_map_remove)(sm,
363 			    (SM_OFFSET_DECODE(e) << sm->sm_shift) + mapstart,
364 			    SM_RUN_DECODE(e) << sm->sm_shift);
365 		}
366 	}
367 
368 	if (error == 0) {
369 		VERIFY3U(sm->sm_space, ==, space);
370 
371 		sm->sm_loaded = B_TRUE;
372 		sm->sm_ops = ops;
373 		if (ops != NULL)
374 			ops->smop_load(sm);
375 	} else {
376 		space_map_vacate(sm, NULL, NULL);
377 	}
378 
379 	zio_buf_free(entry_map, bufsize);
380 
381 	sm->sm_loading = B_FALSE;
382 
383 	cv_broadcast(&sm->sm_load_cv);
384 
385 	return (error);
386 }
387 
388 void
389 space_map_unload(space_map_t *sm)
390 {
391 	ASSERT(MUTEX_HELD(sm->sm_lock));
392 
393 	if (sm->sm_loaded && sm->sm_ops != NULL)
394 		sm->sm_ops->smop_unload(sm);
395 
396 	sm->sm_loaded = B_FALSE;
397 	sm->sm_ops = NULL;
398 
399 	space_map_vacate(sm, NULL, NULL);
400 }
401 
402 uint64_t
403 space_map_maxsize(space_map_t *sm)
404 {
405 	ASSERT(sm->sm_ops != NULL);
406 	return (sm->sm_ops->smop_max(sm));
407 }
408 
409 uint64_t
410 space_map_alloc(space_map_t *sm, uint64_t size)
411 {
412 	uint64_t start;
413 
414 	start = sm->sm_ops->smop_alloc(sm, size);
415 	if (start != -1ULL)
416 		space_map_remove(sm, start, size);
417 	return (start);
418 }
419 
420 void
421 space_map_claim(space_map_t *sm, uint64_t start, uint64_t size)
422 {
423 	sm->sm_ops->smop_claim(sm, start, size);
424 	space_map_remove(sm, start, size);
425 }
426 
427 void
428 space_map_free(space_map_t *sm, uint64_t start, uint64_t size)
429 {
430 	space_map_add(sm, start, size);
431 	sm->sm_ops->smop_free(sm, start, size);
432 }
433 
434 /*
435  * Note: space_map_sync() will drop sm_lock across dmu_write() calls.
436  */
437 void
438 space_map_sync(space_map_t *sm, uint8_t maptype,
439 	space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
440 {
441 	spa_t *spa = dmu_objset_spa(os);
442 	avl_tree_t *t = &sm->sm_root;
443 	space_seg_t *ss;
444 	uint64_t bufsize, start, size, run_len, total, sm_space, nodes;
445 	uint64_t *entry, *entry_map, *entry_map_end;
446 
447 	ASSERT(MUTEX_HELD(sm->sm_lock));
448 
449 	if (sm->sm_space == 0)
450 		return;
451 
452 	dprintf("object %4llu, txg %llu, pass %d, %c, count %lu, space %llx\n",
453 	    smo->smo_object, dmu_tx_get_txg(tx), spa_sync_pass(spa),
454 	    maptype == SM_ALLOC ? 'A' : 'F', avl_numnodes(&sm->sm_root),
455 	    sm->sm_space);
456 
457 	if (maptype == SM_ALLOC)
458 		smo->smo_alloc += sm->sm_space;
459 	else
460 		smo->smo_alloc -= sm->sm_space;
461 
462 	bufsize = (8 + avl_numnodes(&sm->sm_root)) * sizeof (uint64_t);
463 	bufsize = MIN(bufsize, 1ULL << SPACE_MAP_BLOCKSHIFT);
464 	entry_map = zio_buf_alloc(bufsize);
465 	entry_map_end = entry_map + (bufsize / sizeof (uint64_t));
466 	entry = entry_map;
467 
468 	*entry++ = SM_DEBUG_ENCODE(1) |
469 	    SM_DEBUG_ACTION_ENCODE(maptype) |
470 	    SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
471 	    SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
472 
473 	total = 0;
474 	nodes = avl_numnodes(&sm->sm_root);
475 	sm_space = sm->sm_space;
476 	for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss)) {
477 		size = ss->ss_end - ss->ss_start;
478 		start = (ss->ss_start - sm->sm_start) >> sm->sm_shift;
479 
480 		total += size;
481 		size >>= sm->sm_shift;
482 
483 		while (size) {
484 			run_len = MIN(size, SM_RUN_MAX);
485 
486 			if (entry == entry_map_end) {
487 				mutex_exit(sm->sm_lock);
488 				dmu_write(os, smo->smo_object, smo->smo_objsize,
489 				    bufsize, entry_map, tx);
490 				mutex_enter(sm->sm_lock);
491 				smo->smo_objsize += bufsize;
492 				entry = entry_map;
493 			}
494 
495 			*entry++ = SM_OFFSET_ENCODE(start) |
496 			    SM_TYPE_ENCODE(maptype) |
497 			    SM_RUN_ENCODE(run_len);
498 
499 			start += run_len;
500 			size -= run_len;
501 		}
502 	}
503 
504 	if (entry != entry_map) {
505 		size = (entry - entry_map) * sizeof (uint64_t);
506 		mutex_exit(sm->sm_lock);
507 		dmu_write(os, smo->smo_object, smo->smo_objsize,
508 		    size, entry_map, tx);
509 		mutex_enter(sm->sm_lock);
510 		smo->smo_objsize += size;
511 	}
512 
513 	/*
514 	 * Ensure that the space_map's accounting wasn't changed
515 	 * while we were in the middle of writing it out.
516 	 */
517 	VERIFY3U(nodes, ==, avl_numnodes(&sm->sm_root));
518 	VERIFY3U(sm->sm_space, ==, sm_space);
519 	VERIFY3U(sm->sm_space, ==, total);
520 
521 	zio_buf_free(entry_map, bufsize);
522 }
523 
524 void
525 space_map_truncate(space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
526 {
527 	VERIFY(dmu_free_range(os, smo->smo_object, 0, -1ULL, tx) == 0);
528 
529 	smo->smo_objsize = 0;
530 	smo->smo_alloc = 0;
531 }
532 
533 /*
534  * Space map reference trees.
535  *
536  * A space map is a collection of integers.  Every integer is either
537  * in the map, or it's not.  A space map reference tree generalizes
538  * the idea: it allows its members to have arbitrary reference counts,
539  * as opposed to the implicit reference count of 0 or 1 in a space map.
540  * This representation comes in handy when computing the union or
541  * intersection of multiple space maps.  For example, the union of
542  * N space maps is the subset of the reference tree with refcnt >= 1.
543  * The intersection of N space maps is the subset with refcnt >= N.
544  *
545  * [It's very much like a Fourier transform.  Unions and intersections
546  * are hard to perform in the 'space map domain', so we convert the maps
547  * into the 'reference count domain', where it's trivial, then invert.]
548  *
549  * vdev_dtl_reassess() uses computations of this form to determine
550  * DTL_MISSING and DTL_OUTAGE for interior vdevs -- e.g. a RAID-Z vdev
551  * has an outage wherever refcnt >= vdev_nparity + 1, and a mirror vdev
552  * has an outage wherever refcnt >= vdev_children.
553  */
554 static int
555 space_map_ref_compare(const void *x1, const void *x2)
556 {
557 	const space_ref_t *sr1 = x1;
558 	const space_ref_t *sr2 = x2;
559 
560 	if (sr1->sr_offset < sr2->sr_offset)
561 		return (-1);
562 	if (sr1->sr_offset > sr2->sr_offset)
563 		return (1);
564 
565 	if (sr1 < sr2)
566 		return (-1);
567 	if (sr1 > sr2)
568 		return (1);
569 
570 	return (0);
571 }
572 
573 void
574 space_map_ref_create(avl_tree_t *t)
575 {
576 	avl_create(t, space_map_ref_compare,
577 	    sizeof (space_ref_t), offsetof(space_ref_t, sr_node));
578 }
579 
580 void
581 space_map_ref_destroy(avl_tree_t *t)
582 {
583 	space_ref_t *sr;
584 	void *cookie = NULL;
585 
586 	while ((sr = avl_destroy_nodes(t, &cookie)) != NULL)
587 		kmem_free(sr, sizeof (*sr));
588 
589 	avl_destroy(t);
590 }
591 
592 static void
593 space_map_ref_add_node(avl_tree_t *t, uint64_t offset, int64_t refcnt)
594 {
595 	space_ref_t *sr;
596 
597 	sr = kmem_alloc(sizeof (*sr), KM_SLEEP);
598 	sr->sr_offset = offset;
599 	sr->sr_refcnt = refcnt;
600 
601 	avl_add(t, sr);
602 }
603 
604 void
605 space_map_ref_add_seg(avl_tree_t *t, uint64_t start, uint64_t end,
606 	int64_t refcnt)
607 {
608 	space_map_ref_add_node(t, start, refcnt);
609 	space_map_ref_add_node(t, end, -refcnt);
610 }
611 
612 /*
613  * Convert (or add) a space map into a reference tree.
614  */
615 void
616 space_map_ref_add_map(avl_tree_t *t, space_map_t *sm, int64_t refcnt)
617 {
618 	space_seg_t *ss;
619 
620 	ASSERT(MUTEX_HELD(sm->sm_lock));
621 
622 	for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
623 		space_map_ref_add_seg(t, ss->ss_start, ss->ss_end, refcnt);
624 }
625 
626 /*
627  * Convert a reference tree into a space map.  The space map will contain
628  * all members of the reference tree for which refcnt >= minref.
629  */
630 void
631 space_map_ref_generate_map(avl_tree_t *t, space_map_t *sm, int64_t minref)
632 {
633 	uint64_t start = -1ULL;
634 	int64_t refcnt = 0;
635 	space_ref_t *sr;
636 
637 	ASSERT(MUTEX_HELD(sm->sm_lock));
638 
639 	space_map_vacate(sm, NULL, NULL);
640 
641 	for (sr = avl_first(t); sr != NULL; sr = AVL_NEXT(t, sr)) {
642 		refcnt += sr->sr_refcnt;
643 		if (refcnt >= minref) {
644 			if (start == -1ULL) {
645 				start = sr->sr_offset;
646 			}
647 		} else {
648 			if (start != -1ULL) {
649 				uint64_t end = sr->sr_offset;
650 				ASSERT(start <= end);
651 				if (end > start)
652 					space_map_add(sm, start, end - start);
653 				start = -1ULL;
654 			}
655 		}
656 	}
657 	ASSERT(refcnt == 0);
658 	ASSERT(start == -1ULL);
659 }
660