xref: /illumos-gate/usr/src/uts/common/fs/zfs/space_map.c (revision 80ab886d233f514d54c2a6bdeb9fdfd951bd6881)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/space_map.h>
32 
33 /*
34  * Space map routines.
35  * NOTE: caller is responsible for all locking.
36  */
37 static int
38 space_map_seg_compare(const void *x1, const void *x2)
39 {
40 	const space_seg_t *s1 = x1;
41 	const space_seg_t *s2 = x2;
42 
43 	if (s1->ss_start < s2->ss_start) {
44 		if (s1->ss_end > s2->ss_start)
45 			return (0);
46 		return (-1);
47 	}
48 	if (s1->ss_start > s2->ss_start) {
49 		if (s1->ss_start < s2->ss_end)
50 			return (0);
51 		return (1);
52 	}
53 	return (0);
54 }
55 
56 void
57 space_map_create(space_map_t *sm, uint64_t start, uint64_t size, uint64_t shift,
58 	kmutex_t *lp)
59 {
60 	avl_create(&sm->sm_root, space_map_seg_compare,
61 	    sizeof (space_seg_t), offsetof(struct space_seg, ss_node));
62 	sm->sm_start = start;
63 	sm->sm_end = start + size;
64 	sm->sm_size = size;
65 	sm->sm_shift = shift;
66 	sm->sm_space = 0;
67 	sm->sm_lock = lp;
68 }
69 
70 void
71 space_map_destroy(space_map_t *sm)
72 {
73 	VERIFY3U(sm->sm_space, ==, 0);
74 	avl_destroy(&sm->sm_root);
75 }
76 
77 void
78 space_map_add(space_map_t *sm, uint64_t start, uint64_t size)
79 {
80 	avl_index_t where;
81 	space_seg_t ssearch, *ss_before, *ss_after, *ss;
82 	uint64_t end = start + size;
83 	int merge_before, merge_after;
84 
85 	ASSERT(MUTEX_HELD(sm->sm_lock));
86 	VERIFY(size != 0);
87 	VERIFY3U(start, >=, sm->sm_start);
88 	VERIFY3U(end, <=, sm->sm_end);
89 	VERIFY(sm->sm_space + size <= sm->sm_size);
90 	VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
91 	VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
92 
93 	ssearch.ss_start = start;
94 	ssearch.ss_end = end;
95 	ss = avl_find(&sm->sm_root, &ssearch, &where);
96 
97 	/* Make sure we don't overlap with either of our neighbors */
98 	VERIFY(ss == NULL);
99 
100 	ss_before = avl_nearest(&sm->sm_root, where, AVL_BEFORE);
101 	ss_after = avl_nearest(&sm->sm_root, where, AVL_AFTER);
102 
103 	merge_before = (ss_before != NULL && ss_before->ss_end == start);
104 	merge_after = (ss_after != NULL && ss_after->ss_start == end);
105 
106 	if (merge_before && merge_after) {
107 		avl_remove(&sm->sm_root, ss_before);
108 		ss_after->ss_start = ss_before->ss_start;
109 		kmem_free(ss_before, sizeof (*ss_before));
110 	} else if (merge_before) {
111 		ss_before->ss_end = end;
112 	} else if (merge_after) {
113 		ss_after->ss_start = start;
114 	} else {
115 		ss = kmem_alloc(sizeof (*ss), KM_SLEEP);
116 		ss->ss_start = start;
117 		ss->ss_end = end;
118 		avl_insert(&sm->sm_root, ss, where);
119 	}
120 
121 	sm->sm_space += size;
122 }
123 
124 void
125 space_map_remove(space_map_t *sm, uint64_t start, uint64_t size)
126 {
127 	avl_index_t where;
128 	space_seg_t ssearch, *ss, *newseg;
129 	uint64_t end = start + size;
130 	int left_over, right_over;
131 
132 	ASSERT(MUTEX_HELD(sm->sm_lock));
133 	VERIFY(size != 0);
134 	VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
135 	VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
136 
137 	ssearch.ss_start = start;
138 	ssearch.ss_end = end;
139 	ss = avl_find(&sm->sm_root, &ssearch, &where);
140 
141 	/* Make sure we completely overlap with someone */
142 	VERIFY(ss != NULL);
143 	VERIFY3U(ss->ss_start, <=, start);
144 	VERIFY3U(ss->ss_end, >=, end);
145 	VERIFY(sm->sm_space - size <= sm->sm_size);
146 
147 	left_over = (ss->ss_start != start);
148 	right_over = (ss->ss_end != end);
149 
150 	if (left_over && right_over) {
151 		newseg = kmem_alloc(sizeof (*newseg), KM_SLEEP);
152 		newseg->ss_start = end;
153 		newseg->ss_end = ss->ss_end;
154 		ss->ss_end = start;
155 		avl_insert_here(&sm->sm_root, newseg, ss, AVL_AFTER);
156 	} else if (left_over) {
157 		ss->ss_end = start;
158 	} else if (right_over) {
159 		ss->ss_start = end;
160 	} else {
161 		avl_remove(&sm->sm_root, ss);
162 		kmem_free(ss, sizeof (*ss));
163 	}
164 
165 	sm->sm_space -= size;
166 }
167 
168 int
169 space_map_contains(space_map_t *sm, uint64_t start, uint64_t size)
170 {
171 	avl_index_t where;
172 	space_seg_t ssearch, *ss;
173 	uint64_t end = start + size;
174 
175 	ASSERT(MUTEX_HELD(sm->sm_lock));
176 	VERIFY(size != 0);
177 	VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
178 	VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
179 
180 	ssearch.ss_start = start;
181 	ssearch.ss_end = end;
182 	ss = avl_find(&sm->sm_root, &ssearch, &where);
183 
184 	return (ss != NULL && ss->ss_start <= start && ss->ss_end >= end);
185 }
186 
187 void
188 space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
189 {
190 	space_seg_t *ss;
191 	void *cookie = NULL;
192 
193 	ASSERT(MUTEX_HELD(sm->sm_lock));
194 
195 	while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
196 		if (func != NULL)
197 			func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
198 		kmem_free(ss, sizeof (*ss));
199 	}
200 	sm->sm_space = 0;
201 }
202 
203 void
204 space_map_iterate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
205 {
206 	space_seg_t *ss;
207 
208 	for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
209 		func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
210 }
211 
212 void
213 space_map_merge(space_map_t *src, space_map_t *dest)
214 {
215 	space_map_vacate(src, space_map_add, dest);
216 }
217 
218 void
219 space_map_excise(space_map_t *sm, uint64_t start, uint64_t size)
220 {
221 	avl_tree_t *t = &sm->sm_root;
222 	avl_index_t where;
223 	space_seg_t *ss, search;
224 	uint64_t end = start + size;
225 	uint64_t rm_start, rm_end;
226 
227 	ASSERT(MUTEX_HELD(sm->sm_lock));
228 
229 	search.ss_start = start;
230 	search.ss_end = start;
231 
232 	for (;;) {
233 		ss = avl_find(t, &search, &where);
234 
235 		if (ss == NULL)
236 			ss = avl_nearest(t, where, AVL_AFTER);
237 
238 		if (ss == NULL || ss->ss_start >= end)
239 			break;
240 
241 		rm_start = MAX(ss->ss_start, start);
242 		rm_end = MIN(ss->ss_end, end);
243 
244 		space_map_remove(sm, rm_start, rm_end - rm_start);
245 	}
246 }
247 
248 /*
249  * Replace smd with the union of smd and sms.
250  */
251 void
252 space_map_union(space_map_t *smd, space_map_t *sms)
253 {
254 	avl_tree_t *t = &sms->sm_root;
255 	space_seg_t *ss;
256 
257 	ASSERT(MUTEX_HELD(smd->sm_lock));
258 
259 	/*
260 	 * For each source segment, remove any intersections with the
261 	 * destination, then add the source segment to the destination.
262 	 */
263 	for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss)) {
264 		space_map_excise(smd, ss->ss_start, ss->ss_end - ss->ss_start);
265 		space_map_add(smd, ss->ss_start, ss->ss_end - ss->ss_start);
266 	}
267 }
268 
269 int
270 space_map_load(space_map_t *sm, space_map_obj_t *smo, uint8_t maptype,
271 	objset_t *os, uint64_t end, uint64_t space)
272 {
273 	uint64_t *entry, *entry_map, *entry_map_end;
274 	uint64_t bufsize, size, offset;
275 	uint64_t mapstart = sm->sm_start;
276 
277 	ASSERT(MUTEX_HELD(sm->sm_lock));
278 	VERIFY3U(sm->sm_space, ==, 0);
279 
280 	bufsize = MIN(end, SPACE_MAP_CHUNKSIZE);
281 	entry_map = kmem_alloc(bufsize, KM_SLEEP);
282 
283 	if (maptype == SM_FREE) {
284 		space_map_add(sm, sm->sm_start, sm->sm_size);
285 		space = sm->sm_size - space;
286 	}
287 
288 	for (offset = 0; offset < end; offset += bufsize) {
289 		size = MIN(end - offset, bufsize);
290 		VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
291 		VERIFY(size != 0);
292 
293 		dprintf("object=%llu  offset=%llx  size=%llx\n",
294 		    smo->smo_object, offset, size);
295 		VERIFY(0 == dmu_read(os, smo->smo_object, offset, size,
296 		    entry_map));
297 
298 		entry_map_end = entry_map + (size / sizeof (uint64_t));
299 		for (entry = entry_map; entry < entry_map_end; entry++) {
300 			uint64_t e = *entry;
301 
302 			if (SM_DEBUG_DECODE(e))		/* Skip debug entries */
303 				continue;
304 
305 			(SM_TYPE_DECODE(e) == maptype ?
306 			    space_map_add : space_map_remove)(sm,
307 			    (SM_OFFSET_DECODE(e) << sm->sm_shift) + mapstart,
308 			    SM_RUN_DECODE(e) << sm->sm_shift);
309 		}
310 	}
311 	VERIFY3U(sm->sm_space, ==, space);
312 
313 	kmem_free(entry_map, bufsize);
314 
315 	return (0);
316 }
317 
318 void
319 space_map_sync(space_map_t *sm, space_map_t *dest, space_map_obj_t *smo,
320     uint8_t maptype, objset_t *os, dmu_tx_t *tx)
321 {
322 	spa_t *spa = dmu_objset_spa(os);
323 	void *cookie = NULL;
324 	space_seg_t *ss;
325 	uint64_t bufsize, start, size, run_len;
326 	uint64_t *entry, *entry_map, *entry_map_end;
327 
328 	ASSERT(MUTEX_HELD(sm->sm_lock));
329 
330 	if (sm->sm_space == 0)
331 		return;
332 
333 	dprintf("object %4llu, txg %llu, pass %d, %c, count %lu, space %llx\n",
334 	    smo->smo_object, dmu_tx_get_txg(tx), spa_sync_pass(spa),
335 	    maptype == SM_ALLOC ? 'A' : 'F', avl_numnodes(&sm->sm_root),
336 	    sm->sm_space);
337 
338 	bufsize = (8 + avl_numnodes(&sm->sm_root)) * sizeof (uint64_t);
339 	bufsize = MIN(bufsize, SPACE_MAP_CHUNKSIZE);
340 	entry_map = kmem_alloc(bufsize, KM_SLEEP);
341 	entry_map_end = entry_map + (bufsize / sizeof (uint64_t));
342 	entry = entry_map;
343 
344 	*entry++ = SM_DEBUG_ENCODE(1) |
345 	    SM_DEBUG_ACTION_ENCODE(maptype) |
346 	    SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
347 	    SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
348 
349 	while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
350 		size = ss->ss_end - ss->ss_start;
351 		start = (ss->ss_start - sm->sm_start) >> sm->sm_shift;
352 
353 		if (dest)
354 			space_map_add(dest, ss->ss_start, size);
355 
356 		sm->sm_space -= size;
357 		size >>= sm->sm_shift;
358 
359 		while (size) {
360 			run_len = MIN(size, SM_RUN_MAX);
361 
362 			if (entry == entry_map_end) {
363 				dmu_write(os, smo->smo_object, smo->smo_objsize,
364 				    bufsize, entry_map, tx);
365 				smo->smo_objsize += bufsize;
366 				entry = entry_map;
367 			}
368 
369 			*entry++ = SM_OFFSET_ENCODE(start) |
370 			    SM_TYPE_ENCODE(maptype) |
371 			    SM_RUN_ENCODE(run_len);
372 
373 			start += run_len;
374 			size -= run_len;
375 		}
376 		kmem_free(ss, sizeof (*ss));
377 	}
378 
379 	if (entry != entry_map) {
380 		size = (entry - entry_map) * sizeof (uint64_t);
381 		dmu_write(os, smo->smo_object, smo->smo_objsize,
382 		    size, entry_map, tx);
383 		smo->smo_objsize += size;
384 	}
385 
386 	kmem_free(entry_map, bufsize);
387 
388 	VERIFY3U(sm->sm_space, ==, 0);
389 }
390 
391 void
392 space_map_write(space_map_t *sm, space_map_obj_t *smo, objset_t *os,
393     dmu_tx_t *tx)
394 {
395 	uint64_t oldsize = smo->smo_objsize;
396 
397 	VERIFY(0 == dmu_free_range(os, smo->smo_object, 0,
398 	    smo->smo_objsize, tx));
399 
400 	smo->smo_objsize = 0;
401 
402 	VERIFY3U(sm->sm_space, ==, smo->smo_alloc);
403 	space_map_sync(sm, NULL, smo, SM_ALLOC, os, tx);
404 
405 	dprintf("write sm object %llu from %llu to %llu bytes in txg %llu\n",
406 	    smo->smo_object, oldsize, smo->smo_objsize, dmu_tx_get_txg(tx));
407 }
408