xref: /illumos-gate/usr/src/uts/common/fs/zfs/space_map.c (revision 7c80a9608efb5c2bb78fb923e352a01088239788)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dnode.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zio.h>
36 #include <sys/space_map.h>
37 #include <sys/refcount.h>
38 #include <sys/zfeature.h>
39 
40 /*
41  * The data for a given space map can be kept on blocks of any size.
42  * Larger blocks entail fewer i/o operations, but they also cause the
43  * DMU to keep more data in-core, and also to waste more i/o bandwidth
44  * when only a few blocks have changed since the last transaction group.
45  */
46 int space_map_blksz = (1 << 12);
47 
48 /*
49  * Iterate through the space map, invoking the callback on each (non-debug)
50  * space map entry.
51  */
52 int
53 space_map_iterate(space_map_t *sm, sm_cb_t callback, void *arg)
54 {
55 	uint64_t *entry, *entry_map, *entry_map_end;
56 	uint64_t bufsize, size, offset, end;
57 	int error = 0;
58 
59 	end = space_map_length(sm);
60 
61 	bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
62 	entry_map = zio_buf_alloc(bufsize);
63 
64 	if (end > bufsize) {
65 		dmu_prefetch(sm->sm_os, space_map_object(sm), 0, bufsize,
66 		    end - bufsize, ZIO_PRIORITY_SYNC_READ);
67 	}
68 
69 	for (offset = 0; offset < end && error == 0; offset += bufsize) {
70 		size = MIN(end - offset, bufsize);
71 		VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
72 		VERIFY(size != 0);
73 		ASSERT3U(sm->sm_blksz, !=, 0);
74 
75 		dprintf("object=%llu  offset=%llx  size=%llx\n",
76 		    space_map_object(sm), offset, size);
77 
78 		error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
79 		    entry_map, DMU_READ_PREFETCH);
80 		if (error != 0)
81 			break;
82 
83 		entry_map_end = entry_map + (size / sizeof (uint64_t));
84 		for (entry = entry_map; entry < entry_map_end && error == 0;
85 		    entry++) {
86 			uint64_t e = *entry;
87 			uint64_t offset, size;
88 
89 			if (SM_DEBUG_DECODE(e))	/* Skip debug entries */
90 				continue;
91 
92 			offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
93 			    sm->sm_start;
94 			size = SM_RUN_DECODE(e) << sm->sm_shift;
95 
96 			VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
97 			VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
98 			VERIFY3U(offset, >=, sm->sm_start);
99 			VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
100 			error = callback(SM_TYPE_DECODE(e), offset, size, arg);
101 		}
102 	}
103 
104 	zio_buf_free(entry_map, bufsize);
105 	return (error);
106 }
107 
108 typedef struct space_map_load_arg {
109 	space_map_t	*smla_sm;
110 	range_tree_t	*smla_rt;
111 	maptype_t	smla_type;
112 } space_map_load_arg_t;
113 
114 static int
115 space_map_load_callback(maptype_t type, uint64_t offset, uint64_t size,
116     void *arg)
117 {
118 	space_map_load_arg_t *smla = arg;
119 	if (type == smla->smla_type) {
120 		VERIFY3U(range_tree_space(smla->smla_rt) + size, <=,
121 		    smla->smla_sm->sm_size);
122 		range_tree_add(smla->smla_rt, offset, size);
123 	} else {
124 		range_tree_remove(smla->smla_rt, offset, size);
125 	}
126 
127 	return (0);
128 }
129 
130 /*
131  * Load the space map disk into the specified range tree. Segments of maptype
132  * are added to the range tree, other segment types are removed.
133  */
134 int
135 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
136 {
137 	uint64_t space;
138 	int err;
139 	space_map_load_arg_t smla;
140 
141 	VERIFY0(range_tree_space(rt));
142 	space = space_map_allocated(sm);
143 
144 	if (maptype == SM_FREE) {
145 		range_tree_add(rt, sm->sm_start, sm->sm_size);
146 		space = sm->sm_size - space;
147 	}
148 
149 	smla.smla_rt = rt;
150 	smla.smla_sm = sm;
151 	smla.smla_type = maptype;
152 	err = space_map_iterate(sm, space_map_load_callback, &smla);
153 
154 	if (err == 0) {
155 		VERIFY3U(range_tree_space(rt), ==, space);
156 	} else {
157 		range_tree_vacate(rt, NULL, NULL);
158 	}
159 
160 	return (err);
161 }
162 
163 void
164 space_map_histogram_clear(space_map_t *sm)
165 {
166 	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
167 		return;
168 
169 	bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
170 }
171 
172 boolean_t
173 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
174 {
175 	/*
176 	 * Verify that the in-core range tree does not have any
177 	 * ranges smaller than our sm_shift size.
178 	 */
179 	for (int i = 0; i < sm->sm_shift; i++) {
180 		if (rt->rt_histogram[i] != 0)
181 			return (B_FALSE);
182 	}
183 	return (B_TRUE);
184 }
185 
186 void
187 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
188 {
189 	int idx = 0;
190 
191 	ASSERT(dmu_tx_is_syncing(tx));
192 	VERIFY3U(space_map_object(sm), !=, 0);
193 
194 	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
195 		return;
196 
197 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
198 
199 	ASSERT(space_map_histogram_verify(sm, rt));
200 	/*
201 	 * Transfer the content of the range tree histogram to the space
202 	 * map histogram. The space map histogram contains 32 buckets ranging
203 	 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
204 	 * however, can represent ranges from 2^0 to 2^63. Since the space
205 	 * map only cares about allocatable blocks (minimum of sm_shift) we
206 	 * can safely ignore all ranges in the range tree smaller than sm_shift.
207 	 */
208 	for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
209 
210 		/*
211 		 * Since the largest histogram bucket in the space map is
212 		 * 2^(32+sm_shift-1), we need to normalize the values in
213 		 * the range tree for any bucket larger than that size. For
214 		 * example given an sm_shift of 9, ranges larger than 2^40
215 		 * would get normalized as if they were 1TB ranges. Assume
216 		 * the range tree had a count of 5 in the 2^44 (16TB) bucket,
217 		 * the calculation below would normalize this to 5 * 2^4 (16).
218 		 */
219 		ASSERT3U(i, >=, idx + sm->sm_shift);
220 		sm->sm_phys->smp_histogram[idx] +=
221 		    rt->rt_histogram[i] << (i - idx - sm->sm_shift);
222 
223 		/*
224 		 * Increment the space map's index as long as we haven't
225 		 * reached the maximum bucket size. Accumulate all ranges
226 		 * larger than the max bucket size into the last bucket.
227 		 */
228 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
229 			ASSERT3U(idx + sm->sm_shift, ==, i);
230 			idx++;
231 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
232 		}
233 	}
234 }
235 
236 uint64_t
237 space_map_entries(space_map_t *sm, range_tree_t *rt)
238 {
239 	avl_tree_t *t = &rt->rt_root;
240 	range_seg_t *rs;
241 	uint64_t size, entries;
242 
243 	/*
244 	 * All space_maps always have a debug entry so account for it here.
245 	 */
246 	entries = 1;
247 
248 	/*
249 	 * Traverse the range tree and calculate the number of space map
250 	 * entries that would be required to write out the range tree.
251 	 */
252 	for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
253 		size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
254 		entries += howmany(size, SM_RUN_MAX);
255 	}
256 	return (entries);
257 }
258 
259 void
260 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
261     dmu_tx_t *tx)
262 {
263 	objset_t *os = sm->sm_os;
264 	spa_t *spa = dmu_objset_spa(os);
265 	avl_tree_t *t = &rt->rt_root;
266 	range_seg_t *rs;
267 	uint64_t size, total, rt_space, nodes;
268 	uint64_t *entry, *entry_map, *entry_map_end;
269 	uint64_t expected_entries, actual_entries = 1;
270 
271 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
272 	VERIFY3U(space_map_object(sm), !=, 0);
273 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
274 
275 	/*
276 	 * This field is no longer necessary since the in-core space map
277 	 * now contains the object number but is maintained for backwards
278 	 * compatibility.
279 	 */
280 	sm->sm_phys->smp_object = sm->sm_object;
281 
282 	if (range_tree_space(rt) == 0) {
283 		VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
284 		return;
285 	}
286 
287 	if (maptype == SM_ALLOC)
288 		sm->sm_phys->smp_alloc += range_tree_space(rt);
289 	else
290 		sm->sm_phys->smp_alloc -= range_tree_space(rt);
291 
292 	expected_entries = space_map_entries(sm, rt);
293 
294 	entry_map = zio_buf_alloc(sm->sm_blksz);
295 	entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
296 	entry = entry_map;
297 
298 	*entry++ = SM_DEBUG_ENCODE(1) |
299 	    SM_DEBUG_ACTION_ENCODE(maptype) |
300 	    SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
301 	    SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
302 
303 	total = 0;
304 	nodes = avl_numnodes(&rt->rt_root);
305 	rt_space = range_tree_space(rt);
306 	for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
307 		uint64_t start;
308 
309 		size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
310 		start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
311 
312 		total += size << sm->sm_shift;
313 
314 		while (size != 0) {
315 			uint64_t run_len;
316 
317 			run_len = MIN(size, SM_RUN_MAX);
318 
319 			if (entry == entry_map_end) {
320 				dmu_write(os, space_map_object(sm),
321 				    sm->sm_phys->smp_objsize, sm->sm_blksz,
322 				    entry_map, tx);
323 				sm->sm_phys->smp_objsize += sm->sm_blksz;
324 				entry = entry_map;
325 			}
326 
327 			*entry++ = SM_OFFSET_ENCODE(start) |
328 			    SM_TYPE_ENCODE(maptype) |
329 			    SM_RUN_ENCODE(run_len);
330 
331 			start += run_len;
332 			size -= run_len;
333 			actual_entries++;
334 		}
335 	}
336 
337 	if (entry != entry_map) {
338 		size = (entry - entry_map) * sizeof (uint64_t);
339 		dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
340 		    size, entry_map, tx);
341 		sm->sm_phys->smp_objsize += size;
342 	}
343 	ASSERT3U(expected_entries, ==, actual_entries);
344 
345 	/*
346 	 * Ensure that the space_map's accounting wasn't changed
347 	 * while we were in the middle of writing it out.
348 	 */
349 	VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
350 	VERIFY3U(range_tree_space(rt), ==, rt_space);
351 	VERIFY3U(range_tree_space(rt), ==, total);
352 
353 	zio_buf_free(entry_map, sm->sm_blksz);
354 }
355 
356 static int
357 space_map_open_impl(space_map_t *sm)
358 {
359 	int error;
360 	u_longlong_t blocks;
361 
362 	error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
363 	if (error)
364 		return (error);
365 
366 	dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
367 	sm->sm_phys = sm->sm_dbuf->db_data;
368 	return (0);
369 }
370 
371 int
372 space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
373     uint64_t start, uint64_t size, uint8_t shift)
374 {
375 	space_map_t *sm;
376 	int error;
377 
378 	ASSERT(*smp == NULL);
379 	ASSERT(os != NULL);
380 	ASSERT(object != 0);
381 
382 	sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP);
383 
384 	sm->sm_start = start;
385 	sm->sm_size = size;
386 	sm->sm_shift = shift;
387 	sm->sm_os = os;
388 	sm->sm_object = object;
389 
390 	error = space_map_open_impl(sm);
391 	if (error != 0) {
392 		space_map_close(sm);
393 		return (error);
394 	}
395 
396 	*smp = sm;
397 
398 	return (0);
399 }
400 
401 void
402 space_map_close(space_map_t *sm)
403 {
404 	if (sm == NULL)
405 		return;
406 
407 	if (sm->sm_dbuf != NULL)
408 		dmu_buf_rele(sm->sm_dbuf, sm);
409 	sm->sm_dbuf = NULL;
410 	sm->sm_phys = NULL;
411 
412 	kmem_free(sm, sizeof (*sm));
413 }
414 
415 void
416 space_map_truncate(space_map_t *sm, dmu_tx_t *tx)
417 {
418 	objset_t *os = sm->sm_os;
419 	spa_t *spa = dmu_objset_spa(os);
420 	dmu_object_info_t doi;
421 
422 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
423 	ASSERT(dmu_tx_is_syncing(tx));
424 	VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
425 
426 	dmu_object_info_from_db(sm->sm_dbuf, &doi);
427 
428 	/*
429 	 * If the space map has the wrong bonus size (because
430 	 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
431 	 * the wrong block size (because space_map_blksz has changed),
432 	 * free and re-allocate its object with the updated sizes.
433 	 *
434 	 * Otherwise, just truncate the current object.
435 	 */
436 	if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
437 	    doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
438 	    doi.doi_data_block_size != space_map_blksz) {
439 		zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating "
440 		    "object[%llu]: old bonus %u, old blocksz %u",
441 		    dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
442 		    doi.doi_bonus_size, doi.doi_data_block_size);
443 
444 		space_map_free(sm, tx);
445 		dmu_buf_rele(sm->sm_dbuf, sm);
446 
447 		sm->sm_object = space_map_alloc(sm->sm_os, tx);
448 		VERIFY0(space_map_open_impl(sm));
449 	} else {
450 		VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
451 
452 		/*
453 		 * If the spacemap is reallocated, its histogram
454 		 * will be reset.  Do the same in the common case so that
455 		 * bugs related to the uncommon case do not go unnoticed.
456 		 */
457 		bzero(sm->sm_phys->smp_histogram,
458 		    sizeof (sm->sm_phys->smp_histogram));
459 	}
460 
461 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
462 	sm->sm_phys->smp_objsize = 0;
463 	sm->sm_phys->smp_alloc = 0;
464 }
465 
466 /*
467  * Update the in-core space_map allocation and length values.
468  */
469 void
470 space_map_update(space_map_t *sm)
471 {
472 	if (sm == NULL)
473 		return;
474 
475 	sm->sm_alloc = sm->sm_phys->smp_alloc;
476 	sm->sm_length = sm->sm_phys->smp_objsize;
477 }
478 
479 uint64_t
480 space_map_alloc(objset_t *os, dmu_tx_t *tx)
481 {
482 	spa_t *spa = dmu_objset_spa(os);
483 	uint64_t object;
484 	int bonuslen;
485 
486 	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
487 		spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
488 		bonuslen = sizeof (space_map_phys_t);
489 		ASSERT3U(bonuslen, <=, dmu_bonus_max());
490 	} else {
491 		bonuslen = SPACE_MAP_SIZE_V0;
492 	}
493 
494 	object = dmu_object_alloc(os,
495 	    DMU_OT_SPACE_MAP, space_map_blksz,
496 	    DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
497 
498 	return (object);
499 }
500 
501 void
502 space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
503 {
504 	spa_t *spa = dmu_objset_spa(os);
505 	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
506 		dmu_object_info_t doi;
507 
508 		VERIFY0(dmu_object_info(os, smobj, &doi));
509 		if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
510 			spa_feature_decr(spa,
511 			    SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
512 		}
513 	}
514 
515 	VERIFY0(dmu_object_free(os, smobj, tx));
516 }
517 
518 void
519 space_map_free(space_map_t *sm, dmu_tx_t *tx)
520 {
521 	if (sm == NULL)
522 		return;
523 
524 	space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
525 	sm->sm_object = 0;
526 }
527 
528 uint64_t
529 space_map_object(space_map_t *sm)
530 {
531 	return (sm != NULL ? sm->sm_object : 0);
532 }
533 
534 /*
535  * Returns the already synced, on-disk allocated space.
536  */
537 uint64_t
538 space_map_allocated(space_map_t *sm)
539 {
540 	return (sm != NULL ? sm->sm_alloc : 0);
541 }
542 
543 /*
544  * Returns the already synced, on-disk length;
545  */
546 uint64_t
547 space_map_length(space_map_t *sm)
548 {
549 	return (sm != NULL ? sm->sm_length : 0);
550 }
551 
552 /*
553  * Returns the allocated space that is currently syncing.
554  */
555 int64_t
556 space_map_alloc_delta(space_map_t *sm)
557 {
558 	if (sm == NULL)
559 		return (0);
560 	ASSERT(sm->sm_dbuf != NULL);
561 	return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
562 }
563