1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 27 * Copyright 2019 Joyent, Inc. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dnode.h> 35 #include <sys/dsl_pool.h> 36 #include <sys/zio.h> 37 #include <sys/space_map.h> 38 #include <sys/spa_log_spacemap.h> 39 #include <sys/refcount.h> 40 #include <sys/zfeature.h> 41 42 /* 43 * Note on space map block size: 44 * 45 * The data for a given space map can be kept on blocks of any size. 46 * Larger blocks entail fewer I/O operations, but they also cause the 47 * DMU to keep more data in-core, and also to waste more I/O bandwidth 48 * when only a few blocks have changed since the last transaction group. 49 */ 50 51 /* 52 * Enabled whenever we want to stress test the use of double-word 53 * space map entries. 54 */ 55 boolean_t zfs_force_some_double_word_sm_entries = B_FALSE; 56 57 /* 58 * Override the default indirect block size of 128K, instead using 16K for 59 * spacemaps (2^14 bytes). This dramatically reduces write inflation since 60 * appending to a spacemap typically has to write one data block (4KB) and one 61 * or two indirect blocks (16K-32K, rather than 128K). 62 */ 63 int space_map_ibs = 14; 64 65 boolean_t 66 sm_entry_is_debug(uint64_t e) 67 { 68 return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX); 69 } 70 71 boolean_t 72 sm_entry_is_single_word(uint64_t e) 73 { 74 uint8_t prefix = SM_PREFIX_DECODE(e); 75 return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX); 76 } 77 78 boolean_t 79 sm_entry_is_double_word(uint64_t e) 80 { 81 return (SM_PREFIX_DECODE(e) == SM2_PREFIX); 82 } 83 84 /* 85 * Iterate through the space map, invoking the callback on each (non-debug) 86 * space map entry. Stop after reading 'end' bytes of the space map. 87 */ 88 int 89 space_map_iterate(space_map_t *sm, uint64_t end, sm_cb_t callback, void *arg) 90 { 91 uint64_t blksz = sm->sm_blksz; 92 93 ASSERT3U(blksz, !=, 0); 94 ASSERT3U(end, <=, space_map_length(sm)); 95 ASSERT0(P2PHASE(end, sizeof (uint64_t))); 96 97 dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, end, 98 ZIO_PRIORITY_SYNC_READ); 99 100 int error = 0; 101 for (uint64_t block_base = 0; block_base < end && error == 0; 102 block_base += blksz) { 103 dmu_buf_t *db; 104 error = dmu_buf_hold(sm->sm_os, space_map_object(sm), 105 block_base, FTAG, &db, DMU_READ_PREFETCH); 106 if (error != 0) 107 return (error); 108 109 uint64_t *block_start = db->db_data; 110 uint64_t block_length = MIN(end - block_base, blksz); 111 uint64_t *block_end = block_start + 112 (block_length / sizeof (uint64_t)); 113 114 VERIFY0(P2PHASE(block_length, sizeof (uint64_t))); 115 VERIFY3U(block_length, !=, 0); 116 ASSERT3U(blksz, ==, db->db_size); 117 118 for (uint64_t *block_cursor = block_start; 119 block_cursor < block_end && error == 0; block_cursor++) { 120 uint64_t e = *block_cursor; 121 122 if (sm_entry_is_debug(e)) /* Skip debug entries */ 123 continue; 124 125 uint64_t raw_offset, raw_run, vdev_id; 126 maptype_t type; 127 if (sm_entry_is_single_word(e)) { 128 type = SM_TYPE_DECODE(e); 129 vdev_id = SM_NO_VDEVID; 130 raw_offset = SM_OFFSET_DECODE(e); 131 raw_run = SM_RUN_DECODE(e); 132 } else { 133 /* it is a two-word entry */ 134 ASSERT(sm_entry_is_double_word(e)); 135 raw_run = SM2_RUN_DECODE(e); 136 vdev_id = SM2_VDEV_DECODE(e); 137 138 /* move on to the second word */ 139 block_cursor++; 140 e = *block_cursor; 141 VERIFY3P(block_cursor, <=, block_end); 142 143 type = SM2_TYPE_DECODE(e); 144 raw_offset = SM2_OFFSET_DECODE(e); 145 } 146 147 uint64_t entry_offset = (raw_offset << sm->sm_shift) + 148 sm->sm_start; 149 uint64_t entry_run = raw_run << sm->sm_shift; 150 151 VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift)); 152 VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift)); 153 ASSERT3U(entry_offset, >=, sm->sm_start); 154 ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size); 155 ASSERT3U(entry_run, <=, sm->sm_size); 156 ASSERT3U(entry_offset + entry_run, <=, 157 sm->sm_start + sm->sm_size); 158 159 space_map_entry_t sme = { 160 .sme_type = type, 161 .sme_vdev = vdev_id, 162 .sme_offset = entry_offset, 163 .sme_run = entry_run 164 }; 165 error = callback(&sme, arg); 166 } 167 dmu_buf_rele(db, FTAG); 168 } 169 return (error); 170 } 171 172 /* 173 * Reads the entries from the last block of the space map into 174 * buf in reverse order. Populates nwords with number of words 175 * in the last block. 176 * 177 * Refer to block comment within space_map_incremental_destroy() 178 * to understand why this function is needed. 179 */ 180 static int 181 space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf, 182 uint64_t bufsz, uint64_t *nwords) 183 { 184 int error = 0; 185 dmu_buf_t *db; 186 187 /* 188 * Find the offset of the last word in the space map and use 189 * that to read the last block of the space map with 190 * dmu_buf_hold(). 191 */ 192 uint64_t last_word_offset = 193 sm->sm_phys->smp_length - sizeof (uint64_t); 194 error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset, 195 FTAG, &db, DMU_READ_NO_PREFETCH); 196 if (error != 0) 197 return (error); 198 199 ASSERT3U(sm->sm_object, ==, db->db_object); 200 ASSERT3U(sm->sm_blksz, ==, db->db_size); 201 ASSERT3U(bufsz, >=, db->db_size); 202 ASSERT(nwords != NULL); 203 204 uint64_t *words = db->db_data; 205 *nwords = 206 (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t); 207 208 ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t)); 209 210 uint64_t n = *nwords; 211 uint64_t j = n - 1; 212 for (uint64_t i = 0; i < n; i++) { 213 uint64_t entry = words[i]; 214 if (sm_entry_is_double_word(entry)) { 215 /* 216 * Since we are populating the buffer backwards 217 * we have to be extra careful and add the two 218 * words of the double-word entry in the right 219 * order. 220 */ 221 ASSERT3U(j, >, 0); 222 buf[j - 1] = entry; 223 224 i++; 225 ASSERT3U(i, <, n); 226 entry = words[i]; 227 buf[j] = entry; 228 j -= 2; 229 } else { 230 ASSERT(sm_entry_is_debug(entry) || 231 sm_entry_is_single_word(entry)); 232 buf[j] = entry; 233 j--; 234 } 235 } 236 237 /* 238 * Assert that we wrote backwards all the 239 * way to the beginning of the buffer. 240 */ 241 ASSERT3S(j, ==, -1); 242 243 dmu_buf_rele(db, FTAG); 244 return (error); 245 } 246 247 /* 248 * Note: This function performs destructive actions - specifically 249 * it deletes entries from the end of the space map. Thus, callers 250 * should ensure that they are holding the appropriate locks for 251 * the space map that they provide. 252 */ 253 int 254 space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg, 255 dmu_tx_t *tx) 256 { 257 uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE); 258 uint64_t *buf = zio_buf_alloc(bufsz); 259 260 dmu_buf_will_dirty(sm->sm_dbuf, tx); 261 262 /* 263 * Ideally we would want to iterate from the beginning of the 264 * space map to the end in incremental steps. The issue with this 265 * approach is that we don't have any field on-disk that points 266 * us where to start between each step. We could try zeroing out 267 * entries that we've destroyed, but this doesn't work either as 268 * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]). 269 * 270 * As a result, we destroy its entries incrementally starting from 271 * the end after applying the callback to each of them. 272 * 273 * The problem with this approach is that we cannot literally 274 * iterate through the words in the space map backwards as we 275 * can't distinguish two-word space map entries from their second 276 * word. Thus we do the following: 277 * 278 * 1] We get all the entries from the last block of the space map 279 * and put them into a buffer in reverse order. This way the 280 * last entry comes first in the buffer, the second to last is 281 * second, etc. 282 * 2] We iterate through the entries in the buffer and we apply 283 * the callback to each one. As we move from entry to entry we 284 * we decrease the size of the space map, deleting effectively 285 * each entry. 286 * 3] If there are no more entries in the space map or the callback 287 * returns a value other than 0, we stop iterating over the 288 * space map. If there are entries remaining and the callback 289 * returned 0, we go back to step [1]. 290 */ 291 int error = 0; 292 while (space_map_length(sm) > 0 && error == 0) { 293 uint64_t nwords = 0; 294 error = space_map_reversed_last_block_entries(sm, buf, bufsz, 295 &nwords); 296 if (error != 0) 297 break; 298 299 ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t)); 300 301 for (uint64_t i = 0; i < nwords; i++) { 302 uint64_t e = buf[i]; 303 304 if (sm_entry_is_debug(e)) { 305 sm->sm_phys->smp_length -= sizeof (uint64_t); 306 continue; 307 } 308 309 int words = 1; 310 uint64_t raw_offset, raw_run, vdev_id; 311 maptype_t type; 312 if (sm_entry_is_single_word(e)) { 313 type = SM_TYPE_DECODE(e); 314 vdev_id = SM_NO_VDEVID; 315 raw_offset = SM_OFFSET_DECODE(e); 316 raw_run = SM_RUN_DECODE(e); 317 } else { 318 ASSERT(sm_entry_is_double_word(e)); 319 words = 2; 320 321 raw_run = SM2_RUN_DECODE(e); 322 vdev_id = SM2_VDEV_DECODE(e); 323 324 /* move to the second word */ 325 i++; 326 e = buf[i]; 327 328 ASSERT3P(i, <=, nwords); 329 330 type = SM2_TYPE_DECODE(e); 331 raw_offset = SM2_OFFSET_DECODE(e); 332 } 333 334 uint64_t entry_offset = 335 (raw_offset << sm->sm_shift) + sm->sm_start; 336 uint64_t entry_run = raw_run << sm->sm_shift; 337 338 VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift)); 339 VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift)); 340 VERIFY3U(entry_offset, >=, sm->sm_start); 341 VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size); 342 VERIFY3U(entry_run, <=, sm->sm_size); 343 VERIFY3U(entry_offset + entry_run, <=, 344 sm->sm_start + sm->sm_size); 345 346 space_map_entry_t sme = { 347 .sme_type = type, 348 .sme_vdev = vdev_id, 349 .sme_offset = entry_offset, 350 .sme_run = entry_run 351 }; 352 error = callback(&sme, arg); 353 if (error != 0) 354 break; 355 356 if (type == SM_ALLOC) 357 sm->sm_phys->smp_alloc -= entry_run; 358 else 359 sm->sm_phys->smp_alloc += entry_run; 360 sm->sm_phys->smp_length -= words * sizeof (uint64_t); 361 } 362 } 363 364 if (space_map_length(sm) == 0) { 365 ASSERT0(error); 366 ASSERT0(space_map_allocated(sm)); 367 } 368 369 zio_buf_free(buf, bufsz); 370 return (error); 371 } 372 373 typedef struct space_map_load_arg { 374 space_map_t *smla_sm; 375 range_tree_t *smla_rt; 376 maptype_t smla_type; 377 } space_map_load_arg_t; 378 379 static int 380 space_map_load_callback(space_map_entry_t *sme, void *arg) 381 { 382 space_map_load_arg_t *smla = arg; 383 if (sme->sme_type == smla->smla_type) { 384 VERIFY3U(range_tree_space(smla->smla_rt) + sme->sme_run, <=, 385 smla->smla_sm->sm_size); 386 range_tree_add(smla->smla_rt, sme->sme_offset, sme->sme_run); 387 } else { 388 range_tree_remove(smla->smla_rt, sme->sme_offset, sme->sme_run); 389 } 390 391 return (0); 392 } 393 394 /* 395 * Load the spacemap into the rangetree, like space_map_load. But only 396 * read the first 'length' bytes of the spacemap. 397 */ 398 int 399 space_map_load_length(space_map_t *sm, range_tree_t *rt, maptype_t maptype, 400 uint64_t length) 401 { 402 space_map_load_arg_t smla; 403 404 VERIFY0(range_tree_space(rt)); 405 406 if (maptype == SM_FREE) 407 range_tree_add(rt, sm->sm_start, sm->sm_size); 408 409 smla.smla_rt = rt; 410 smla.smla_sm = sm; 411 smla.smla_type = maptype; 412 int err = space_map_iterate(sm, length, 413 space_map_load_callback, &smla); 414 415 if (err != 0) 416 range_tree_vacate(rt, NULL, NULL); 417 418 return (err); 419 } 420 421 /* 422 * Load the space map disk into the specified range tree. Segments of maptype 423 * are added to the range tree, other segment types are removed. 424 */ 425 int 426 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype) 427 { 428 return (space_map_load_length(sm, rt, maptype, space_map_length(sm))); 429 } 430 431 void 432 space_map_histogram_clear(space_map_t *sm) 433 { 434 if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) 435 return; 436 437 bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram)); 438 } 439 440 boolean_t 441 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt) 442 { 443 /* 444 * Verify that the in-core range tree does not have any 445 * ranges smaller than our sm_shift size. 446 */ 447 for (int i = 0; i < sm->sm_shift; i++) { 448 if (rt->rt_histogram[i] != 0) 449 return (B_FALSE); 450 } 451 return (B_TRUE); 452 } 453 454 void 455 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx) 456 { 457 int idx = 0; 458 459 ASSERT(dmu_tx_is_syncing(tx)); 460 VERIFY3U(space_map_object(sm), !=, 0); 461 462 if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) 463 return; 464 465 dmu_buf_will_dirty(sm->sm_dbuf, tx); 466 467 ASSERT(space_map_histogram_verify(sm, rt)); 468 /* 469 * Transfer the content of the range tree histogram to the space 470 * map histogram. The space map histogram contains 32 buckets ranging 471 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree, 472 * however, can represent ranges from 2^0 to 2^63. Since the space 473 * map only cares about allocatable blocks (minimum of sm_shift) we 474 * can safely ignore all ranges in the range tree smaller than sm_shift. 475 */ 476 for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 477 478 /* 479 * Since the largest histogram bucket in the space map is 480 * 2^(32+sm_shift-1), we need to normalize the values in 481 * the range tree for any bucket larger than that size. For 482 * example given an sm_shift of 9, ranges larger than 2^40 483 * would get normalized as if they were 1TB ranges. Assume 484 * the range tree had a count of 5 in the 2^44 (16TB) bucket, 485 * the calculation below would normalize this to 5 * 2^4 (16). 486 */ 487 ASSERT3U(i, >=, idx + sm->sm_shift); 488 sm->sm_phys->smp_histogram[idx] += 489 rt->rt_histogram[i] << (i - idx - sm->sm_shift); 490 491 /* 492 * Increment the space map's index as long as we haven't 493 * reached the maximum bucket size. Accumulate all ranges 494 * larger than the max bucket size into the last bucket. 495 */ 496 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 497 ASSERT3U(idx + sm->sm_shift, ==, i); 498 idx++; 499 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 500 } 501 } 502 } 503 504 static void 505 space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx) 506 { 507 dmu_buf_will_dirty(sm->sm_dbuf, tx); 508 509 uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) | 510 SM_DEBUG_ACTION_ENCODE(maptype) | 511 SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) | 512 SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx)); 513 514 dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_length, 515 sizeof (dentry), &dentry, tx); 516 517 sm->sm_phys->smp_length += sizeof (dentry); 518 } 519 520 /* 521 * Writes one or more entries given a segment. 522 * 523 * Note: The function may release the dbuf from the pointer initially 524 * passed to it, and return a different dbuf. Also, the space map's 525 * dbuf must be dirty for the changes in sm_phys to take effect. 526 */ 527 static void 528 space_map_write_seg(space_map_t *sm, uint64_t rstart, uint64_t rend, 529 maptype_t maptype, uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp, 530 void *tag, dmu_tx_t *tx) 531 { 532 ASSERT3U(words, !=, 0); 533 ASSERT3U(words, <=, 2); 534 535 /* ensure the vdev_id can be represented by the space map */ 536 ASSERT3U(vdev_id, <=, SM_NO_VDEVID); 537 538 /* 539 * if this is a single word entry, ensure that no vdev was 540 * specified. 541 */ 542 IMPLY(words == 1, vdev_id == SM_NO_VDEVID); 543 544 dmu_buf_t *db = *dbp; 545 ASSERT3U(db->db_size, ==, sm->sm_blksz); 546 547 uint64_t *block_base = db->db_data; 548 uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t)); 549 uint64_t *block_cursor = block_base + 550 (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t); 551 552 ASSERT3P(block_cursor, <=, block_end); 553 554 uint64_t size = (rend - rstart) >> sm->sm_shift; 555 uint64_t start = (rstart - sm->sm_start) >> sm->sm_shift; 556 uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX; 557 558 ASSERT3U(rstart, >=, sm->sm_start); 559 ASSERT3U(rstart, <, sm->sm_start + sm->sm_size); 560 ASSERT3U(rend - rstart, <=, sm->sm_size); 561 ASSERT3U(rend, <=, sm->sm_start + sm->sm_size); 562 563 while (size != 0) { 564 ASSERT3P(block_cursor, <=, block_end); 565 566 /* 567 * If we are at the end of this block, flush it and start 568 * writing again from the beginning. 569 */ 570 if (block_cursor == block_end) { 571 dmu_buf_rele(db, tag); 572 573 uint64_t next_word_offset = sm->sm_phys->smp_length; 574 VERIFY0(dmu_buf_hold(sm->sm_os, 575 space_map_object(sm), next_word_offset, 576 tag, &db, DMU_READ_PREFETCH)); 577 dmu_buf_will_dirty(db, tx); 578 579 /* update caller's dbuf */ 580 *dbp = db; 581 582 ASSERT3U(db->db_size, ==, sm->sm_blksz); 583 584 block_base = db->db_data; 585 block_cursor = block_base; 586 block_end = block_base + 587 (db->db_size / sizeof (uint64_t)); 588 } 589 590 /* 591 * If we are writing a two-word entry and we only have one 592 * word left on this block, just pad it with an empty debug 593 * entry and write the two-word entry in the next block. 594 */ 595 uint64_t *next_entry = block_cursor + 1; 596 if (next_entry == block_end && words > 1) { 597 ASSERT3U(words, ==, 2); 598 *block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) | 599 SM_DEBUG_ACTION_ENCODE(0) | 600 SM_DEBUG_SYNCPASS_ENCODE(0) | 601 SM_DEBUG_TXG_ENCODE(0); 602 block_cursor++; 603 sm->sm_phys->smp_length += sizeof (uint64_t); 604 ASSERT3P(block_cursor, ==, block_end); 605 continue; 606 } 607 608 uint64_t run_len = MIN(size, run_max); 609 switch (words) { 610 case 1: 611 *block_cursor = SM_OFFSET_ENCODE(start) | 612 SM_TYPE_ENCODE(maptype) | 613 SM_RUN_ENCODE(run_len); 614 block_cursor++; 615 break; 616 case 2: 617 /* write the first word of the entry */ 618 *block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) | 619 SM2_RUN_ENCODE(run_len) | 620 SM2_VDEV_ENCODE(vdev_id); 621 block_cursor++; 622 623 /* move on to the second word of the entry */ 624 ASSERT3P(block_cursor, <, block_end); 625 *block_cursor = SM2_TYPE_ENCODE(maptype) | 626 SM2_OFFSET_ENCODE(start); 627 block_cursor++; 628 break; 629 default: 630 panic("%d-word space map entries are not supported", 631 words); 632 break; 633 } 634 sm->sm_phys->smp_length += words * sizeof (uint64_t); 635 636 start += run_len; 637 size -= run_len; 638 } 639 ASSERT0(size); 640 641 } 642 643 /* 644 * Note: The space map's dbuf must be dirty for the changes in sm_phys to 645 * take effect. 646 */ 647 static void 648 space_map_write_impl(space_map_t *sm, range_tree_t *rt, maptype_t maptype, 649 uint64_t vdev_id, dmu_tx_t *tx) 650 { 651 spa_t *spa = tx->tx_pool->dp_spa; 652 dmu_buf_t *db; 653 654 space_map_write_intro_debug(sm, maptype, tx); 655 656 #ifdef DEBUG 657 /* 658 * We do this right after we write the intro debug entry 659 * because the estimate does not take it into account. 660 */ 661 uint64_t initial_objsize = sm->sm_phys->smp_length; 662 uint64_t estimated_growth = 663 space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID); 664 uint64_t estimated_final_objsize = initial_objsize + estimated_growth; 665 #endif 666 667 /* 668 * Find the offset right after the last word in the space map 669 * and use that to get a hold of the last block, so we can 670 * start appending to it. 671 */ 672 uint64_t next_word_offset = sm->sm_phys->smp_length; 673 VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm), 674 next_word_offset, FTAG, &db, DMU_READ_PREFETCH)); 675 ASSERT3U(db->db_size, ==, sm->sm_blksz); 676 677 dmu_buf_will_dirty(db, tx); 678 679 zfs_btree_t *t = &rt->rt_root; 680 zfs_btree_index_t where; 681 for (range_seg_t *rs = zfs_btree_first(t, &where); rs != NULL; 682 rs = zfs_btree_next(t, &where, &where)) { 683 uint64_t offset = (rs_get_start(rs, rt) - sm->sm_start) >> 684 sm->sm_shift; 685 uint64_t length = (rs_get_end(rs, rt) - rs_get_start(rs, rt)) >> 686 sm->sm_shift; 687 uint8_t words = 1; 688 689 /* 690 * We only write two-word entries when both of the following 691 * are true: 692 * 693 * [1] The feature is enabled. 694 * [2] The offset or run is too big for a single-word entry, 695 * or the vdev_id is set (meaning not equal to 696 * SM_NO_VDEVID). 697 * 698 * Note that for purposes of testing we've added the case that 699 * we write two-word entries occasionally when the feature is 700 * enabled and zfs_force_some_double_word_sm_entries has been 701 * set. 702 */ 703 if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) && 704 (offset >= (1ULL << SM_OFFSET_BITS) || 705 length > SM_RUN_MAX || 706 vdev_id != SM_NO_VDEVID || 707 (zfs_force_some_double_word_sm_entries && 708 spa_get_random(100) == 0))) 709 words = 2; 710 711 space_map_write_seg(sm, rs_get_start(rs, rt), rs_get_end(rs, 712 rt), maptype, vdev_id, words, &db, FTAG, tx); 713 } 714 715 dmu_buf_rele(db, FTAG); 716 717 #ifdef DEBUG 718 /* 719 * We expect our estimation to be based on the worst case 720 * scenario [see comment in space_map_estimate_optimal_size()]. 721 * Therefore we expect the actual objsize to be equal or less 722 * than whatever we estimated it to be. 723 */ 724 ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_length); 725 #endif 726 } 727 728 /* 729 * Note: This function manipulates the state of the given space map but 730 * does not hold any locks implicitly. Thus the caller is responsible 731 * for synchronizing writes to the space map. 732 */ 733 void 734 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype, 735 uint64_t vdev_id, dmu_tx_t *tx) 736 { 737 objset_t *os = sm->sm_os; 738 739 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 740 VERIFY3U(space_map_object(sm), !=, 0); 741 742 dmu_buf_will_dirty(sm->sm_dbuf, tx); 743 744 /* 745 * This field is no longer necessary since the in-core space map 746 * now contains the object number but is maintained for backwards 747 * compatibility. 748 */ 749 sm->sm_phys->smp_object = sm->sm_object; 750 751 if (range_tree_is_empty(rt)) { 752 VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object); 753 return; 754 } 755 756 if (maptype == SM_ALLOC) 757 sm->sm_phys->smp_alloc += range_tree_space(rt); 758 else 759 sm->sm_phys->smp_alloc -= range_tree_space(rt); 760 761 uint64_t nodes = zfs_btree_numnodes(&rt->rt_root); 762 uint64_t rt_space = range_tree_space(rt); 763 764 space_map_write_impl(sm, rt, maptype, vdev_id, tx); 765 766 /* 767 * Ensure that the space_map's accounting wasn't changed 768 * while we were in the middle of writing it out. 769 */ 770 VERIFY3U(nodes, ==, zfs_btree_numnodes(&rt->rt_root)); 771 VERIFY3U(range_tree_space(rt), ==, rt_space); 772 } 773 774 static int 775 space_map_open_impl(space_map_t *sm) 776 { 777 int error; 778 u_longlong_t blocks; 779 780 error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf); 781 if (error) 782 return (error); 783 784 dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks); 785 sm->sm_phys = sm->sm_dbuf->db_data; 786 return (0); 787 } 788 789 int 790 space_map_open(space_map_t **smp, objset_t *os, uint64_t object, 791 uint64_t start, uint64_t size, uint8_t shift) 792 { 793 space_map_t *sm; 794 int error; 795 796 ASSERT(*smp == NULL); 797 ASSERT(os != NULL); 798 ASSERT(object != 0); 799 800 sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP); 801 802 sm->sm_start = start; 803 sm->sm_size = size; 804 sm->sm_shift = shift; 805 sm->sm_os = os; 806 sm->sm_object = object; 807 808 error = space_map_open_impl(sm); 809 if (error != 0) { 810 space_map_close(sm); 811 return (error); 812 } 813 *smp = sm; 814 815 return (0); 816 } 817 818 void 819 space_map_close(space_map_t *sm) 820 { 821 if (sm == NULL) 822 return; 823 824 if (sm->sm_dbuf != NULL) 825 dmu_buf_rele(sm->sm_dbuf, sm); 826 sm->sm_dbuf = NULL; 827 sm->sm_phys = NULL; 828 829 kmem_free(sm, sizeof (*sm)); 830 } 831 832 void 833 space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx) 834 { 835 objset_t *os = sm->sm_os; 836 spa_t *spa = dmu_objset_spa(os); 837 dmu_object_info_t doi; 838 839 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 840 ASSERT(dmu_tx_is_syncing(tx)); 841 VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa)); 842 843 dmu_object_info_from_db(sm->sm_dbuf, &doi); 844 845 /* 846 * If the space map has the wrong bonus size (because 847 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or 848 * the wrong block size (because space_map_blksz has changed), 849 * free and re-allocate its object with the updated sizes. 850 * 851 * Otherwise, just truncate the current object. 852 */ 853 if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 854 doi.doi_bonus_size != sizeof (space_map_phys_t)) || 855 doi.doi_data_block_size != blocksize || 856 doi.doi_metadata_block_size != 1 << space_map_ibs) { 857 zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating " 858 "object[%llu]: old bonus %u, old blocksz %u", 859 dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object, 860 doi.doi_bonus_size, doi.doi_data_block_size); 861 862 space_map_free(sm, tx); 863 dmu_buf_rele(sm->sm_dbuf, sm); 864 865 sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx); 866 VERIFY0(space_map_open_impl(sm)); 867 } else { 868 VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx)); 869 870 /* 871 * If the spacemap is reallocated, its histogram 872 * will be reset. Do the same in the common case so that 873 * bugs related to the uncommon case do not go unnoticed. 874 */ 875 bzero(sm->sm_phys->smp_histogram, 876 sizeof (sm->sm_phys->smp_histogram)); 877 } 878 879 dmu_buf_will_dirty(sm->sm_dbuf, tx); 880 sm->sm_phys->smp_length = 0; 881 sm->sm_phys->smp_alloc = 0; 882 } 883 884 uint64_t 885 space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx) 886 { 887 spa_t *spa = dmu_objset_spa(os); 888 uint64_t object; 889 int bonuslen; 890 891 if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 892 spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx); 893 bonuslen = sizeof (space_map_phys_t); 894 ASSERT3U(bonuslen, <=, dmu_bonus_max()); 895 } else { 896 bonuslen = SPACE_MAP_SIZE_V0; 897 } 898 899 object = dmu_object_alloc_ibs(os, DMU_OT_SPACE_MAP, blocksize, 900 space_map_ibs, DMU_OT_SPACE_MAP_HEADER, bonuslen, tx); 901 902 return (object); 903 } 904 905 void 906 space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx) 907 { 908 spa_t *spa = dmu_objset_spa(os); 909 if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 910 dmu_object_info_t doi; 911 912 VERIFY0(dmu_object_info(os, smobj, &doi)); 913 if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) { 914 spa_feature_decr(spa, 915 SPA_FEATURE_SPACEMAP_HISTOGRAM, tx); 916 } 917 } 918 919 VERIFY0(dmu_object_free(os, smobj, tx)); 920 } 921 922 void 923 space_map_free(space_map_t *sm, dmu_tx_t *tx) 924 { 925 if (sm == NULL) 926 return; 927 928 space_map_free_obj(sm->sm_os, space_map_object(sm), tx); 929 sm->sm_object = 0; 930 } 931 932 /* 933 * Given a range tree, it makes a worst-case estimate of how much 934 * space would the tree's segments take if they were written to 935 * the given space map. 936 */ 937 uint64_t 938 space_map_estimate_optimal_size(space_map_t *sm, range_tree_t *rt, 939 uint64_t vdev_id) 940 { 941 spa_t *spa = dmu_objset_spa(sm->sm_os); 942 uint64_t shift = sm->sm_shift; 943 uint64_t *histogram = rt->rt_histogram; 944 uint64_t entries_for_seg = 0; 945 946 /* 947 * In order to get a quick estimate of the optimal size that this 948 * range tree would have on-disk as a space map, we iterate through 949 * its histogram buckets instead of iterating through its nodes. 950 * 951 * Note that this is a highest-bound/worst-case estimate for the 952 * following reasons: 953 * 954 * 1] We assume that we always add a debug padding for each block 955 * we write and we also assume that we start at the last word 956 * of a block attempting to write a two-word entry. 957 * 2] Rounding up errors due to the way segments are distributed 958 * in the buckets of the range tree's histogram. 959 * 3] The activation of zfs_force_some_double_word_sm_entries 960 * (tunable) when testing. 961 * 962 * = Math and Rounding Errors = 963 * 964 * rt_histogram[i] bucket of a range tree represents the number 965 * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given 966 * that, we want to divide the buckets into groups: Buckets that 967 * can be represented using a single-word entry, ones that can 968 * be represented with a double-word entry, and ones that can 969 * only be represented with multiple two-word entries. 970 * 971 * [Note that if the new encoding feature is not enabled there 972 * are only two groups: single-word entry buckets and multiple 973 * single-word entry buckets. The information below assumes 974 * two-word entries enabled, but it can easily applied when 975 * the feature is not enabled] 976 * 977 * To find the highest bucket that can be represented with a 978 * single-word entry we look at the maximum run that such entry 979 * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that 980 * the run of a space map entry is shifted by sm_shift, thus we 981 * add it to the exponent]. This way, excluding the value of the 982 * maximum run that can be represented by a single-word entry, 983 * all runs that are smaller exist in buckets 0 to 984 * SM_RUN_BITS + shift - 1. 985 * 986 * To find the highest bucket that can be represented with a 987 * double-word entry, we follow the same approach. Finally, any 988 * bucket higher than that are represented with multiple two-word 989 * entries. To be more specific, if the highest bucket whose 990 * segments can be represented with a single two-word entry is X, 991 * then bucket X+1 will need 2 two-word entries for each of its 992 * segments, X+2 will need 4, X+3 will need 8, ...etc. 993 * 994 * With all of the above we make our estimation based on bucket 995 * groups. There is a rounding error though. As we mentioned in 996 * the example with the one-word entry, the maximum run that can 997 * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is 998 * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of 999 * that length fall into the next bucket (and bucket group) where 1000 * we start counting two-word entries and this is one more reason 1001 * why the estimated size may end up being bigger than the actual 1002 * size written. 1003 */ 1004 uint64_t size = 0; 1005 uint64_t idx = 0; 1006 1007 if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) || 1008 (vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) { 1009 1010 /* 1011 * If we are trying to force some double word entries just 1012 * assume the worst-case of every single word entry being 1013 * written as a double word entry. 1014 */ 1015 uint64_t entry_size = 1016 (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) && 1017 zfs_force_some_double_word_sm_entries) ? 1018 (2 * sizeof (uint64_t)) : sizeof (uint64_t); 1019 1020 uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1; 1021 for (; idx <= single_entry_max_bucket; idx++) 1022 size += histogram[idx] * entry_size; 1023 1024 if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) { 1025 for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) { 1026 ASSERT3U(idx, >=, single_entry_max_bucket); 1027 entries_for_seg = 1028 1ULL << (idx - single_entry_max_bucket); 1029 size += histogram[idx] * 1030 entries_for_seg * entry_size; 1031 } 1032 return (size); 1033 } 1034 } 1035 1036 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)); 1037 1038 uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1; 1039 for (; idx <= double_entry_max_bucket; idx++) 1040 size += histogram[idx] * 2 * sizeof (uint64_t); 1041 1042 for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) { 1043 ASSERT3U(idx, >=, double_entry_max_bucket); 1044 entries_for_seg = 1ULL << (idx - double_entry_max_bucket); 1045 size += histogram[idx] * 1046 entries_for_seg * 2 * sizeof (uint64_t); 1047 } 1048 1049 /* 1050 * Assume the worst case where we start with the padding at the end 1051 * of the current block and we add an extra padding entry at the end 1052 * of all subsequent blocks. 1053 */ 1054 size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t); 1055 1056 return (size); 1057 } 1058 1059 uint64_t 1060 space_map_object(space_map_t *sm) 1061 { 1062 return (sm != NULL ? sm->sm_object : 0); 1063 } 1064 1065 int64_t 1066 space_map_allocated(space_map_t *sm) 1067 { 1068 return (sm != NULL ? sm->sm_phys->smp_alloc : 0); 1069 } 1070 1071 uint64_t 1072 space_map_length(space_map_t *sm) 1073 { 1074 return (sm != NULL ? sm->sm_phys->smp_length : 0); 1075 } 1076 1077 uint64_t 1078 space_map_nblocks(space_map_t *sm) 1079 { 1080 if (sm == NULL) 1081 return (0); 1082 return (DIV_ROUND_UP(space_map_length(sm), sm->sm_blksz)); 1083 } 1084