xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision dc7739930da754fee6930428942636e4857201e7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright (c) 2017 Datto Inc.
29  * Copyright 2019 Joyent, Inc.
30  * Copyright (c) 2017, Intel Corporation.
31  * Copyright 2020 Joyent, Inc.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/spa_impl.h>
36 #include <sys/spa_boot.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/zio_compress.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/zap.h>
43 #include <sys/zil.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_initialize.h>
46 #include <sys/vdev_trim.h>
47 #include <sys/vdev_raidz.h>
48 #include <sys/metaslab.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/metaslab_impl.h>
59 #include <sys/arc.h>
60 #include <sys/ddt.h>
61 #include "zfs_prop.h"
62 #include <sys/btree.h>
63 #include <sys/zfeature.h>
64 
65 /*
66  * SPA locking
67  *
68  * There are three basic locks for managing spa_t structures:
69  *
70  * spa_namespace_lock (global mutex)
71  *
72  *	This lock must be acquired to do any of the following:
73  *
74  *		- Lookup a spa_t by name
75  *		- Add or remove a spa_t from the namespace
76  *		- Increase spa_refcount from non-zero
77  *		- Check if spa_refcount is zero
78  *		- Rename a spa_t
79  *		- add/remove/attach/detach devices
80  *		- Held for the duration of create/destroy/import/export
81  *
82  *	It does not need to handle recursion.  A create or destroy may
83  *	reference objects (files or zvols) in other pools, but by
84  *	definition they must have an existing reference, and will never need
85  *	to lookup a spa_t by name.
86  *
87  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
88  *
89  *	This reference count keep track of any active users of the spa_t.  The
90  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
91  *	the refcount is never really 'zero' - opening a pool implicitly keeps
92  *	some references in the DMU.  Internally we check against spa_minref, but
93  *	present the image of a zero/non-zero value to consumers.
94  *
95  * spa_config_lock[] (per-spa array of rwlocks)
96  *
97  *	This protects the spa_t from config changes, and must be held in
98  *	the following circumstances:
99  *
100  *		- RW_READER to perform I/O to the spa
101  *		- RW_WRITER to change the vdev config
102  *
103  * The locking order is fairly straightforward:
104  *
105  *		spa_namespace_lock	->	spa_refcount
106  *
107  *	The namespace lock must be acquired to increase the refcount from 0
108  *	or to check if it is zero.
109  *
110  *		spa_refcount		->	spa_config_lock[]
111  *
112  *	There must be at least one valid reference on the spa_t to acquire
113  *	the config lock.
114  *
115  *		spa_namespace_lock	->	spa_config_lock[]
116  *
117  *	The namespace lock must always be taken before the config lock.
118  *
119  *
120  * The spa_namespace_lock can be acquired directly and is globally visible.
121  *
122  * The namespace is manipulated using the following functions, all of which
123  * require the spa_namespace_lock to be held.
124  *
125  *	spa_lookup()		Lookup a spa_t by name.
126  *
127  *	spa_add()		Create a new spa_t in the namespace.
128  *
129  *	spa_remove()		Remove a spa_t from the namespace.  This also
130  *				frees up any memory associated with the spa_t.
131  *
132  *	spa_next()		Returns the next spa_t in the system, or the
133  *				first if NULL is passed.
134  *
135  *	spa_evict_all()		Shutdown and remove all spa_t structures in
136  *				the system.
137  *
138  *	spa_guid_exists()	Determine whether a pool/device guid exists.
139  *
140  * The spa_refcount is manipulated using the following functions:
141  *
142  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
143  *				called with spa_namespace_lock held if the
144  *				refcount is currently zero.
145  *
146  *	spa_close()		Remove a reference from the spa_t.  This will
147  *				not free the spa_t or remove it from the
148  *				namespace.  No locking is required.
149  *
150  *	spa_refcount_zero()	Returns true if the refcount is currently
151  *				zero.  Must be called with spa_namespace_lock
152  *				held.
153  *
154  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
155  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
156  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
157  *
158  * To read the configuration, it suffices to hold one of these locks as reader.
159  * To modify the configuration, you must hold all locks as writer.  To modify
160  * vdev state without altering the vdev tree's topology (e.g. online/offline),
161  * you must hold SCL_STATE and SCL_ZIO as writer.
162  *
163  * We use these distinct config locks to avoid recursive lock entry.
164  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
165  * block allocations (SCL_ALLOC), which may require reading space maps
166  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
167  *
168  * The spa config locks cannot be normal rwlocks because we need the
169  * ability to hand off ownership.  For example, SCL_ZIO is acquired
170  * by the issuing thread and later released by an interrupt thread.
171  * They do, however, obey the usual write-wanted semantics to prevent
172  * writer (i.e. system administrator) starvation.
173  *
174  * The lock acquisition rules are as follows:
175  *
176  * SCL_CONFIG
177  *	Protects changes to the vdev tree topology, such as vdev
178  *	add/remove/attach/detach.  Protects the dirty config list
179  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
180  *
181  * SCL_STATE
182  *	Protects changes to pool state and vdev state, such as vdev
183  *	online/offline/fault/degrade/clear.  Protects the dirty state list
184  *	(spa_state_dirty_list) and global pool state (spa_state).
185  *
186  * SCL_ALLOC
187  *	Protects changes to metaslab groups and classes.
188  *	Held as reader by metaslab_alloc() and metaslab_claim().
189  *
190  * SCL_ZIO
191  *	Held by bp-level zios (those which have no io_vd upon entry)
192  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
193  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
194  *
195  * SCL_FREE
196  *	Protects changes to metaslab groups and classes.
197  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
198  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
199  *	blocks in zio_done() while another i/o that holds either
200  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
201  *
202  * SCL_VDEV
203  *	Held as reader to prevent changes to the vdev tree during trivial
204  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
205  *	other locks, and lower than all of them, to ensure that it's safe
206  *	to acquire regardless of caller context.
207  *
208  * In addition, the following rules apply:
209  *
210  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
211  *	The lock ordering is SCL_CONFIG > spa_props_lock.
212  *
213  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
214  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
215  *	or zio_write_phys() -- the caller must ensure that the config cannot
216  *	cannot change in the interim, and that the vdev cannot be reopened.
217  *	SCL_STATE as reader suffices for both.
218  *
219  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
220  *
221  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
222  *				for writing.
223  *
224  *	spa_vdev_exit()		Release the config lock, wait for all I/O
225  *				to complete, sync the updated configs to the
226  *				cache, and release the namespace lock.
227  *
228  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
229  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
230  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
231  */
232 
233 static avl_tree_t spa_namespace_avl;
234 kmutex_t spa_namespace_lock;
235 static kcondvar_t spa_namespace_cv;
236 static int spa_active_count;
237 int spa_max_replication_override = SPA_DVAS_PER_BP;
238 
239 static kmutex_t spa_spare_lock;
240 static avl_tree_t spa_spare_avl;
241 static kmutex_t spa_l2cache_lock;
242 static avl_tree_t spa_l2cache_avl;
243 
244 kmem_cache_t *spa_buffer_pool;
245 int spa_mode_global;
246 
247 #ifdef ZFS_DEBUG
248 /*
249  * Everything except dprintf, spa, and indirect_remap is on by default
250  * in debug builds.
251  */
252 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP);
253 #else
254 int zfs_flags = 0;
255 #endif
256 
257 /*
258  * zfs_recover can be set to nonzero to attempt to recover from
259  * otherwise-fatal errors, typically caused by on-disk corruption.  When
260  * set, calls to zfs_panic_recover() will turn into warning messages.
261  * This should only be used as a last resort, as it typically results
262  * in leaked space, or worse.
263  */
264 boolean_t zfs_recover = B_FALSE;
265 
266 /*
267  * If destroy encounters an EIO while reading metadata (e.g. indirect
268  * blocks), space referenced by the missing metadata can not be freed.
269  * Normally this causes the background destroy to become "stalled", as
270  * it is unable to make forward progress.  While in this stalled state,
271  * all remaining space to free from the error-encountering filesystem is
272  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
273  * permanently leak the space from indirect blocks that can not be read,
274  * and continue to free everything else that it can.
275  *
276  * The default, "stalling" behavior is useful if the storage partially
277  * fails (i.e. some but not all i/os fail), and then later recovers.  In
278  * this case, we will be able to continue pool operations while it is
279  * partially failed, and when it recovers, we can continue to free the
280  * space, with no leaks.  However, note that this case is actually
281  * fairly rare.
282  *
283  * Typically pools either (a) fail completely (but perhaps temporarily,
284  * e.g. a top-level vdev going offline), or (b) have localized,
285  * permanent errors (e.g. disk returns the wrong data due to bit flip or
286  * firmware bug).  In case (a), this setting does not matter because the
287  * pool will be suspended and the sync thread will not be able to make
288  * forward progress regardless.  In case (b), because the error is
289  * permanent, the best we can do is leak the minimum amount of space,
290  * which is what setting this flag will do.  Therefore, it is reasonable
291  * for this flag to normally be set, but we chose the more conservative
292  * approach of not setting it, so that there is no possibility of
293  * leaking space in the "partial temporary" failure case.
294  */
295 boolean_t zfs_free_leak_on_eio = B_FALSE;
296 
297 /*
298  * Expiration time in milliseconds. This value has two meanings. First it is
299  * used to determine when the spa_deadman() logic should fire. By default the
300  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
301  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
302  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
303  * in a system panic.
304  */
305 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
306 
307 /*
308  * Check time in milliseconds. This defines the frequency at which we check
309  * for hung I/O.
310  */
311 uint64_t zfs_deadman_checktime_ms = 5000ULL;
312 
313 /*
314  * Override the zfs deadman behavior via /etc/system. By default the
315  * deadman is enabled except on VMware and sparc deployments.
316  */
317 int zfs_deadman_enabled = -1;
318 
319 #if defined(__amd64__) || defined(__i386__)
320 /*
321  * Should we allow the use of mechanisms that depend on saving and restoring
322  * the FPU state?  This was disabled initially due to stability issues in
323  * the kernel FPU routines; see bug 13717. As of the fixes for 13902 and
324  * 13915, it has once again been enabled.
325  */
326 int zfs_fpu_enabled = 1;
327 #endif
328 
329 /*
330  * The worst case is single-sector max-parity RAID-Z blocks, in which
331  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
332  * times the size; so just assume that.  Add to this the fact that
333  * we can have up to 3 DVAs per bp, and one more factor of 2 because
334  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
335  * the worst case is:
336  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
337  */
338 int spa_asize_inflation = 24;
339 
340 /*
341  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
342  * the pool to be consumed.  This ensures that we don't run the pool
343  * completely out of space, due to unaccounted changes (e.g. to the MOS).
344  * It also limits the worst-case time to allocate space.  If we have
345  * less than this amount of free space, most ZPL operations (e.g. write,
346  * create) will return ENOSPC.
347  *
348  * Certain operations (e.g. file removal, most administrative actions) can
349  * use half the slop space.  They will only return ENOSPC if less than half
350  * the slop space is free.  Typically, once the pool has less than the slop
351  * space free, the user will use these operations to free up space in the pool.
352  * These are the operations that call dsl_pool_adjustedsize() with the netfree
353  * argument set to TRUE.
354  *
355  * Operations that are almost guaranteed to free up space in the absence of
356  * a pool checkpoint can use up to three quarters of the slop space
357  * (e.g zfs destroy).
358  *
359  * A very restricted set of operations are always permitted, regardless of
360  * the amount of free space.  These are the operations that call
361  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
362  * increase in the amount of space used, it is possible to run the pool
363  * completely out of space, causing it to be permanently read-only.
364  *
365  * Note that on very small pools, the slop space will be larger than
366  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
367  * but we never allow it to be more than half the pool size.
368  *
369  * See also the comments in zfs_space_check_t.
370  */
371 int spa_slop_shift = 5;
372 uint64_t spa_min_slop = 128 * 1024 * 1024;
373 
374 int spa_allocators = 4;
375 
376 /*PRINTFLIKE2*/
377 void
378 spa_load_failed(spa_t *spa, const char *fmt, ...)
379 {
380 	va_list adx;
381 	char buf[256];
382 
383 	va_start(adx, fmt);
384 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
385 	va_end(adx);
386 
387 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
388 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
389 }
390 
391 /*PRINTFLIKE2*/
392 void
393 spa_load_note(spa_t *spa, const char *fmt, ...)
394 {
395 	va_list adx;
396 	char buf[256];
397 
398 	va_start(adx, fmt);
399 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
400 	va_end(adx);
401 
402 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
403 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
404 }
405 
406 /*
407  * By default dedup and user data indirects land in the special class
408  */
409 int zfs_ddt_data_is_special = B_TRUE;
410 int zfs_user_indirect_is_special = B_TRUE;
411 
412 /*
413  * The percentage of special class final space reserved for metadata only.
414  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
415  * let metadata into the class.
416  */
417 int zfs_special_class_metadata_reserve_pct = 25;
418 
419 /*
420  * ==========================================================================
421  * SPA config locking
422  * ==========================================================================
423  */
424 static void
425 spa_config_lock_init(spa_t *spa)
426 {
427 	for (int i = 0; i < SCL_LOCKS; i++) {
428 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
429 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
430 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
431 		zfs_refcount_create_untracked(&scl->scl_count);
432 		scl->scl_writer = NULL;
433 		scl->scl_write_wanted = 0;
434 	}
435 }
436 
437 static void
438 spa_config_lock_destroy(spa_t *spa)
439 {
440 	for (int i = 0; i < SCL_LOCKS; i++) {
441 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
442 		mutex_destroy(&scl->scl_lock);
443 		cv_destroy(&scl->scl_cv);
444 		zfs_refcount_destroy(&scl->scl_count);
445 		ASSERT(scl->scl_writer == NULL);
446 		ASSERT(scl->scl_write_wanted == 0);
447 	}
448 }
449 
450 int
451 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
452 {
453 	for (int i = 0; i < SCL_LOCKS; i++) {
454 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
455 		if (!(locks & (1 << i)))
456 			continue;
457 		mutex_enter(&scl->scl_lock);
458 		if (rw == RW_READER) {
459 			if (scl->scl_writer || scl->scl_write_wanted) {
460 				mutex_exit(&scl->scl_lock);
461 				spa_config_exit(spa, locks & ((1 << i) - 1),
462 				    tag);
463 				return (0);
464 			}
465 		} else {
466 			ASSERT(scl->scl_writer != curthread);
467 			if (!zfs_refcount_is_zero(&scl->scl_count)) {
468 				mutex_exit(&scl->scl_lock);
469 				spa_config_exit(spa, locks & ((1 << i) - 1),
470 				    tag);
471 				return (0);
472 			}
473 			scl->scl_writer = curthread;
474 		}
475 		(void) zfs_refcount_add(&scl->scl_count, tag);
476 		mutex_exit(&scl->scl_lock);
477 	}
478 	return (1);
479 }
480 
481 void
482 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
483 {
484 	int wlocks_held = 0;
485 
486 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
487 
488 	for (int i = 0; i < SCL_LOCKS; i++) {
489 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
490 		if (scl->scl_writer == curthread)
491 			wlocks_held |= (1 << i);
492 		if (!(locks & (1 << i)))
493 			continue;
494 		mutex_enter(&scl->scl_lock);
495 		if (rw == RW_READER) {
496 			while (scl->scl_writer || scl->scl_write_wanted) {
497 				cv_wait(&scl->scl_cv, &scl->scl_lock);
498 			}
499 		} else {
500 			ASSERT(scl->scl_writer != curthread);
501 			while (!zfs_refcount_is_zero(&scl->scl_count)) {
502 				scl->scl_write_wanted++;
503 				cv_wait(&scl->scl_cv, &scl->scl_lock);
504 				scl->scl_write_wanted--;
505 			}
506 			scl->scl_writer = curthread;
507 		}
508 		(void) zfs_refcount_add(&scl->scl_count, tag);
509 		mutex_exit(&scl->scl_lock);
510 	}
511 	ASSERT3U(wlocks_held, <=, locks);
512 }
513 
514 void
515 spa_config_exit(spa_t *spa, int locks, void *tag)
516 {
517 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
518 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
519 		if (!(locks & (1 << i)))
520 			continue;
521 		mutex_enter(&scl->scl_lock);
522 		ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
523 		if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
524 			ASSERT(scl->scl_writer == NULL ||
525 			    scl->scl_writer == curthread);
526 			scl->scl_writer = NULL;	/* OK in either case */
527 			cv_broadcast(&scl->scl_cv);
528 		}
529 		mutex_exit(&scl->scl_lock);
530 	}
531 }
532 
533 int
534 spa_config_held(spa_t *spa, int locks, krw_t rw)
535 {
536 	int locks_held = 0;
537 
538 	for (int i = 0; i < SCL_LOCKS; i++) {
539 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
540 		if (!(locks & (1 << i)))
541 			continue;
542 		if ((rw == RW_READER &&
543 		    !zfs_refcount_is_zero(&scl->scl_count)) ||
544 		    (rw == RW_WRITER && scl->scl_writer == curthread))
545 			locks_held |= 1 << i;
546 	}
547 
548 	return (locks_held);
549 }
550 
551 /*
552  * ==========================================================================
553  * SPA namespace functions
554  * ==========================================================================
555  */
556 
557 /*
558  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
559  * Returns NULL if no matching spa_t is found.
560  */
561 spa_t *
562 spa_lookup(const char *name)
563 {
564 	static spa_t search;	/* spa_t is large; don't allocate on stack */
565 	spa_t *spa;
566 	avl_index_t where;
567 	char *cp;
568 
569 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
570 
571 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
572 
573 	/*
574 	 * If it's a full dataset name, figure out the pool name and
575 	 * just use that.
576 	 */
577 	cp = strpbrk(search.spa_name, "/@#");
578 	if (cp != NULL)
579 		*cp = '\0';
580 
581 	spa = avl_find(&spa_namespace_avl, &search, &where);
582 
583 	return (spa);
584 }
585 
586 /*
587  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
588  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
589  * looking for potentially hung I/Os.
590  */
591 void
592 spa_deadman(void *arg)
593 {
594 	spa_t *spa = arg;
595 
596 	/*
597 	 * Disable the deadman timer if the pool is suspended.
598 	 */
599 	if (spa_suspended(spa)) {
600 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
601 		return;
602 	}
603 
604 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
605 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
606 	    ++spa->spa_deadman_calls);
607 	if (zfs_deadman_enabled)
608 		vdev_deadman(spa->spa_root_vdev);
609 }
610 
611 int
612 spa_log_sm_sort_by_txg(const void *va, const void *vb)
613 {
614 	const spa_log_sm_t *a = va;
615 	const spa_log_sm_t *b = vb;
616 
617 	return (TREE_CMP(a->sls_txg, b->sls_txg));
618 }
619 
620 /*
621  * Create an uninitialized spa_t with the given name.  Requires
622  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
623  * exist by calling spa_lookup() first.
624  */
625 spa_t *
626 spa_add(const char *name, nvlist_t *config, const char *altroot)
627 {
628 	spa_t *spa;
629 	spa_config_dirent_t *dp;
630 	cyc_handler_t hdlr;
631 	cyc_time_t when;
632 
633 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
634 
635 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
636 
637 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
638 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
639 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
640 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
641 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
642 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
643 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
644 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
645 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
646 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
647 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
648 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
649 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
650 	mutex_init(&spa->spa_imp_kstat_lock, NULL, MUTEX_DEFAULT, NULL);
651 
652 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
653 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
654 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
655 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
656 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
657 
658 	for (int t = 0; t < TXG_SIZE; t++)
659 		bplist_create(&spa->spa_free_bplist[t]);
660 
661 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
662 	spa->spa_state = POOL_STATE_UNINITIALIZED;
663 	spa->spa_freeze_txg = UINT64_MAX;
664 	spa->spa_final_txg = UINT64_MAX;
665 	spa->spa_load_max_txg = UINT64_MAX;
666 	spa->spa_proc = &p0;
667 	spa->spa_proc_state = SPA_PROC_NONE;
668 	spa->spa_trust_config = B_TRUE;
669 
670 	hdlr.cyh_func = spa_deadman;
671 	hdlr.cyh_arg = spa;
672 	hdlr.cyh_level = CY_LOW_LEVEL;
673 
674 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
675 
676 	/*
677 	 * This determines how often we need to check for hung I/Os after
678 	 * the cyclic has already fired. Since checking for hung I/Os is
679 	 * an expensive operation we don't want to check too frequently.
680 	 * Instead wait for 5 seconds before checking again.
681 	 */
682 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
683 	when.cyt_when = CY_INFINITY;
684 	mutex_enter(&cpu_lock);
685 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
686 	mutex_exit(&cpu_lock);
687 
688 	zfs_refcount_create(&spa->spa_refcount);
689 	spa_config_lock_init(spa);
690 
691 	avl_add(&spa_namespace_avl, spa);
692 
693 	/*
694 	 * Set the alternate root, if there is one.
695 	 */
696 	if (altroot) {
697 		spa->spa_root = spa_strdup(altroot);
698 		spa_active_count++;
699 	}
700 
701 	spa->spa_alloc_count = spa_allocators;
702 	spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
703 	    sizeof (kmutex_t), KM_SLEEP);
704 	spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
705 	    sizeof (avl_tree_t), KM_SLEEP);
706 	for (int i = 0; i < spa->spa_alloc_count; i++) {
707 		mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
708 		avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
709 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
710 	}
711 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
712 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
713 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
714 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
715 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
716 	    offsetof(log_summary_entry_t, lse_node));
717 
718 	/*
719 	 * Every pool starts with the default cachefile
720 	 */
721 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
722 	    offsetof(spa_config_dirent_t, scd_link));
723 
724 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
725 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
726 	list_insert_head(&spa->spa_config_list, dp);
727 
728 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
729 	    KM_SLEEP) == 0);
730 
731 	if (config != NULL) {
732 		nvlist_t *features;
733 
734 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
735 		    &features) == 0) {
736 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
737 			    0) == 0);
738 		}
739 
740 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
741 	}
742 
743 	if (spa->spa_label_features == NULL) {
744 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
745 		    KM_SLEEP) == 0);
746 	}
747 
748 	spa->spa_iokstat = kstat_create("zfs", 0, name,
749 	    "disk", KSTAT_TYPE_IO, 1, 0);
750 	if (spa->spa_iokstat) {
751 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
752 		kstat_install(spa->spa_iokstat);
753 	}
754 
755 	spa->spa_min_ashift = INT_MAX;
756 	spa->spa_max_ashift = 0;
757 
758 	/*
759 	 * As a pool is being created, treat all features as disabled by
760 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
761 	 * refcount cache.
762 	 */
763 	for (int i = 0; i < SPA_FEATURES; i++) {
764 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
765 	}
766 
767 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
768 	    offsetof(vdev_t, vdev_leaf_node));
769 
770 	return (spa);
771 }
772 
773 /*
774  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
775  * spa_namespace_lock.  This is called only after the spa_t has been closed and
776  * deactivated.
777  */
778 void
779 spa_remove(spa_t *spa)
780 {
781 	spa_config_dirent_t *dp;
782 
783 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
784 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
785 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
786 
787 	nvlist_free(spa->spa_config_splitting);
788 
789 	avl_remove(&spa_namespace_avl, spa);
790 	cv_broadcast(&spa_namespace_cv);
791 
792 	if (spa->spa_root) {
793 		spa_strfree(spa->spa_root);
794 		spa_active_count--;
795 	}
796 
797 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
798 		list_remove(&spa->spa_config_list, dp);
799 		if (dp->scd_path != NULL)
800 			spa_strfree(dp->scd_path);
801 		kmem_free(dp, sizeof (spa_config_dirent_t));
802 	}
803 
804 	for (int i = 0; i < spa->spa_alloc_count; i++) {
805 		avl_destroy(&spa->spa_alloc_trees[i]);
806 		mutex_destroy(&spa->spa_alloc_locks[i]);
807 	}
808 	kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
809 	    sizeof (kmutex_t));
810 	kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
811 	    sizeof (avl_tree_t));
812 
813 	avl_destroy(&spa->spa_metaslabs_by_flushed);
814 	avl_destroy(&spa->spa_sm_logs_by_txg);
815 	list_destroy(&spa->spa_log_summary);
816 	list_destroy(&spa->spa_config_list);
817 	list_destroy(&spa->spa_leaf_list);
818 
819 	nvlist_free(spa->spa_label_features);
820 	nvlist_free(spa->spa_load_info);
821 	spa_config_set(spa, NULL);
822 
823 	mutex_enter(&cpu_lock);
824 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
825 		cyclic_remove(spa->spa_deadman_cycid);
826 	mutex_exit(&cpu_lock);
827 	spa->spa_deadman_cycid = CYCLIC_NONE;
828 
829 	zfs_refcount_destroy(&spa->spa_refcount);
830 
831 	spa_config_lock_destroy(spa);
832 
833 	kstat_delete(spa->spa_iokstat);
834 	spa->spa_iokstat = NULL;
835 
836 	for (int t = 0; t < TXG_SIZE; t++)
837 		bplist_destroy(&spa->spa_free_bplist[t]);
838 
839 	zio_checksum_templates_free(spa);
840 
841 	cv_destroy(&spa->spa_async_cv);
842 	cv_destroy(&spa->spa_evicting_os_cv);
843 	cv_destroy(&spa->spa_proc_cv);
844 	cv_destroy(&spa->spa_scrub_io_cv);
845 	cv_destroy(&spa->spa_suspend_cv);
846 
847 	mutex_destroy(&spa->spa_flushed_ms_lock);
848 	mutex_destroy(&spa->spa_async_lock);
849 	mutex_destroy(&spa->spa_errlist_lock);
850 	mutex_destroy(&spa->spa_errlog_lock);
851 	mutex_destroy(&spa->spa_evicting_os_lock);
852 	mutex_destroy(&spa->spa_history_lock);
853 	mutex_destroy(&spa->spa_proc_lock);
854 	mutex_destroy(&spa->spa_props_lock);
855 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
856 	mutex_destroy(&spa->spa_scrub_lock);
857 	mutex_destroy(&spa->spa_suspend_lock);
858 	mutex_destroy(&spa->spa_vdev_top_lock);
859 	mutex_destroy(&spa->spa_iokstat_lock);
860 	mutex_destroy(&spa->spa_imp_kstat_lock);
861 
862 	kmem_free(spa, sizeof (spa_t));
863 }
864 
865 /*
866  * Given a pool, return the next pool in the namespace, or NULL if there is
867  * none.  If 'prev' is NULL, return the first pool.
868  */
869 spa_t *
870 spa_next(spa_t *prev)
871 {
872 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
873 
874 	if (prev)
875 		return (AVL_NEXT(&spa_namespace_avl, prev));
876 	else
877 		return (avl_first(&spa_namespace_avl));
878 }
879 
880 /*
881  * ==========================================================================
882  * SPA refcount functions
883  * ==========================================================================
884  */
885 
886 /*
887  * Add a reference to the given spa_t.  Must have at least one reference, or
888  * have the namespace lock held.
889  */
890 void
891 spa_open_ref(spa_t *spa, void *tag)
892 {
893 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
894 	    MUTEX_HELD(&spa_namespace_lock));
895 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
896 }
897 
898 /*
899  * Remove a reference to the given spa_t.  Must have at least one reference, or
900  * have the namespace lock held.
901  */
902 void
903 spa_close(spa_t *spa, void *tag)
904 {
905 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
906 	    MUTEX_HELD(&spa_namespace_lock));
907 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
908 }
909 
910 /*
911  * Remove a reference to the given spa_t held by a dsl dir that is
912  * being asynchronously released.  Async releases occur from a taskq
913  * performing eviction of dsl datasets and dirs.  The namespace lock
914  * isn't held and the hold by the object being evicted may contribute to
915  * spa_minref (e.g. dataset or directory released during pool export),
916  * so the asserts in spa_close() do not apply.
917  */
918 void
919 spa_async_close(spa_t *spa, void *tag)
920 {
921 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
922 }
923 
924 /*
925  * Check to see if the spa refcount is zero.  Must be called with
926  * spa_namespace_lock held.  We really compare against spa_minref, which is the
927  * number of references acquired when opening a pool
928  */
929 boolean_t
930 spa_refcount_zero(spa_t *spa)
931 {
932 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
933 
934 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
935 }
936 
937 /*
938  * ==========================================================================
939  * SPA spare and l2cache tracking
940  * ==========================================================================
941  */
942 
943 /*
944  * Hot spares and cache devices are tracked using the same code below,
945  * for 'auxiliary' devices.
946  */
947 
948 typedef struct spa_aux {
949 	uint64_t	aux_guid;
950 	uint64_t	aux_pool;
951 	avl_node_t	aux_avl;
952 	int		aux_count;
953 } spa_aux_t;
954 
955 static inline int
956 spa_aux_compare(const void *a, const void *b)
957 {
958 	const spa_aux_t *sa = (const spa_aux_t *)a;
959 	const spa_aux_t *sb = (const spa_aux_t *)b;
960 
961 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
962 }
963 
964 void
965 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
966 {
967 	avl_index_t where;
968 	spa_aux_t search;
969 	spa_aux_t *aux;
970 
971 	search.aux_guid = vd->vdev_guid;
972 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
973 		aux->aux_count++;
974 	} else {
975 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
976 		aux->aux_guid = vd->vdev_guid;
977 		aux->aux_count = 1;
978 		avl_insert(avl, aux, where);
979 	}
980 }
981 
982 void
983 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
984 {
985 	spa_aux_t search;
986 	spa_aux_t *aux;
987 	avl_index_t where;
988 
989 	search.aux_guid = vd->vdev_guid;
990 	aux = avl_find(avl, &search, &where);
991 
992 	ASSERT(aux != NULL);
993 
994 	if (--aux->aux_count == 0) {
995 		avl_remove(avl, aux);
996 		kmem_free(aux, sizeof (spa_aux_t));
997 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
998 		aux->aux_pool = 0ULL;
999 	}
1000 }
1001 
1002 boolean_t
1003 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1004 {
1005 	spa_aux_t search, *found;
1006 
1007 	search.aux_guid = guid;
1008 	found = avl_find(avl, &search, NULL);
1009 
1010 	if (pool) {
1011 		if (found)
1012 			*pool = found->aux_pool;
1013 		else
1014 			*pool = 0ULL;
1015 	}
1016 
1017 	if (refcnt) {
1018 		if (found)
1019 			*refcnt = found->aux_count;
1020 		else
1021 			*refcnt = 0;
1022 	}
1023 
1024 	return (found != NULL);
1025 }
1026 
1027 void
1028 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1029 {
1030 	spa_aux_t search, *found;
1031 	avl_index_t where;
1032 
1033 	search.aux_guid = vd->vdev_guid;
1034 	found = avl_find(avl, &search, &where);
1035 	ASSERT(found != NULL);
1036 	ASSERT(found->aux_pool == 0ULL);
1037 
1038 	found->aux_pool = spa_guid(vd->vdev_spa);
1039 }
1040 
1041 /*
1042  * Spares are tracked globally due to the following constraints:
1043  *
1044  *	- A spare may be part of multiple pools.
1045  *	- A spare may be added to a pool even if it's actively in use within
1046  *	  another pool.
1047  *	- A spare in use in any pool can only be the source of a replacement if
1048  *	  the target is a spare in the same pool.
1049  *
1050  * We keep track of all spares on the system through the use of a reference
1051  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1052  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1053  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1054  * inactive).  When a spare is made active (used to replace a device in the
1055  * pool), we also keep track of which pool its been made a part of.
1056  *
1057  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1058  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1059  * separate spare lock exists for the status query path, which does not need to
1060  * be completely consistent with respect to other vdev configuration changes.
1061  */
1062 
1063 /*
1064  * Poll the spare vdevs to make sure they are not faulty.
1065  *
1066  * The probe operation will raise an ENXIO error and create an FM ereport if the
1067  * probe fails.
1068  */
1069 void
1070 spa_spare_poll(spa_t *spa)
1071 {
1072 	boolean_t async_request = B_FALSE;
1073 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1074 	for (int i = 0; i < spa->spa_spares.sav_count; i++) {
1075 		spa_aux_t search, *found;
1076 		vdev_t *vd = spa->spa_spares.sav_vdevs[i];
1077 
1078 		search.aux_guid = vd->vdev_guid;
1079 
1080 		mutex_enter(&spa_spare_lock);
1081 		found = avl_find(&spa_spare_avl, &search, NULL);
1082 		/* This spare is in use by a pool. */
1083 		if (found != NULL && found->aux_pool != 0) {
1084 			mutex_exit(&spa_spare_lock);
1085 			continue;
1086 		}
1087 		mutex_exit(&spa_spare_lock);
1088 
1089 		vd->vdev_probe_wanted = B_TRUE;
1090 		async_request = B_TRUE;
1091 	}
1092 	if (async_request)
1093 		spa_async_request(spa, SPA_ASYNC_PROBE);
1094 
1095 	spa_config_exit(spa, SCL_STATE, FTAG);
1096 }
1097 
1098 static int
1099 spa_spare_compare(const void *a, const void *b)
1100 {
1101 	return (spa_aux_compare(a, b));
1102 }
1103 
1104 void
1105 spa_spare_add(vdev_t *vd)
1106 {
1107 	mutex_enter(&spa_spare_lock);
1108 	ASSERT(!vd->vdev_isspare);
1109 	spa_aux_add(vd, &spa_spare_avl);
1110 	vd->vdev_isspare = B_TRUE;
1111 	mutex_exit(&spa_spare_lock);
1112 }
1113 
1114 void
1115 spa_spare_remove(vdev_t *vd)
1116 {
1117 	mutex_enter(&spa_spare_lock);
1118 	ASSERT(vd->vdev_isspare);
1119 	spa_aux_remove(vd, &spa_spare_avl);
1120 	vd->vdev_isspare = B_FALSE;
1121 	mutex_exit(&spa_spare_lock);
1122 }
1123 
1124 boolean_t
1125 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1126 {
1127 	boolean_t found;
1128 
1129 	mutex_enter(&spa_spare_lock);
1130 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1131 	mutex_exit(&spa_spare_lock);
1132 
1133 	return (found);
1134 }
1135 
1136 void
1137 spa_spare_activate(vdev_t *vd)
1138 {
1139 	mutex_enter(&spa_spare_lock);
1140 	ASSERT(vd->vdev_isspare);
1141 	spa_aux_activate(vd, &spa_spare_avl);
1142 	mutex_exit(&spa_spare_lock);
1143 }
1144 
1145 /*
1146  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1147  * Cache devices currently only support one pool per cache device, and so
1148  * for these devices the aux reference count is currently unused beyond 1.
1149  */
1150 
1151 static int
1152 spa_l2cache_compare(const void *a, const void *b)
1153 {
1154 	return (spa_aux_compare(a, b));
1155 }
1156 
1157 void
1158 spa_l2cache_add(vdev_t *vd)
1159 {
1160 	mutex_enter(&spa_l2cache_lock);
1161 	ASSERT(!vd->vdev_isl2cache);
1162 	spa_aux_add(vd, &spa_l2cache_avl);
1163 	vd->vdev_isl2cache = B_TRUE;
1164 	mutex_exit(&spa_l2cache_lock);
1165 }
1166 
1167 void
1168 spa_l2cache_remove(vdev_t *vd)
1169 {
1170 	mutex_enter(&spa_l2cache_lock);
1171 	ASSERT(vd->vdev_isl2cache);
1172 	spa_aux_remove(vd, &spa_l2cache_avl);
1173 	vd->vdev_isl2cache = B_FALSE;
1174 	mutex_exit(&spa_l2cache_lock);
1175 }
1176 
1177 boolean_t
1178 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1179 {
1180 	boolean_t found;
1181 
1182 	mutex_enter(&spa_l2cache_lock);
1183 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1184 	mutex_exit(&spa_l2cache_lock);
1185 
1186 	return (found);
1187 }
1188 
1189 void
1190 spa_l2cache_activate(vdev_t *vd)
1191 {
1192 	mutex_enter(&spa_l2cache_lock);
1193 	ASSERT(vd->vdev_isl2cache);
1194 	spa_aux_activate(vd, &spa_l2cache_avl);
1195 	mutex_exit(&spa_l2cache_lock);
1196 }
1197 
1198 /*
1199  * ==========================================================================
1200  * SPA vdev locking
1201  * ==========================================================================
1202  */
1203 
1204 /*
1205  * Lock the given spa_t for the purpose of adding or removing a vdev.
1206  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1207  * It returns the next transaction group for the spa_t.
1208  */
1209 uint64_t
1210 spa_vdev_enter(spa_t *spa)
1211 {
1212 	mutex_enter(&spa->spa_vdev_top_lock);
1213 	mutex_enter(&spa_namespace_lock);
1214 
1215 	vdev_autotrim_stop_all(spa);
1216 
1217 	return (spa_vdev_config_enter(spa));
1218 }
1219 
1220 /*
1221  * Internal implementation for spa_vdev_enter().  Used when a vdev
1222  * operation requires multiple syncs (i.e. removing a device) while
1223  * keeping the spa_namespace_lock held.
1224  */
1225 uint64_t
1226 spa_vdev_config_enter(spa_t *spa)
1227 {
1228 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1229 
1230 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1231 
1232 	return (spa_last_synced_txg(spa) + 1);
1233 }
1234 
1235 /*
1236  * Used in combination with spa_vdev_config_enter() to allow the syncing
1237  * of multiple transactions without releasing the spa_namespace_lock.
1238  */
1239 void
1240 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1241 {
1242 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1243 
1244 	int config_changed = B_FALSE;
1245 
1246 	ASSERT(txg > spa_last_synced_txg(spa));
1247 
1248 	spa->spa_pending_vdev = NULL;
1249 
1250 	/*
1251 	 * Reassess the DTLs.
1252 	 */
1253 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1254 
1255 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1256 		config_changed = B_TRUE;
1257 		spa->spa_config_generation++;
1258 	}
1259 
1260 	/*
1261 	 * Verify the metaslab classes.
1262 	 */
1263 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1264 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1265 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1266 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1267 
1268 	spa_config_exit(spa, SCL_ALL, spa);
1269 
1270 	/*
1271 	 * Panic the system if the specified tag requires it.  This
1272 	 * is useful for ensuring that configurations are updated
1273 	 * transactionally.
1274 	 */
1275 	if (zio_injection_enabled)
1276 		zio_handle_panic_injection(spa, tag, 0);
1277 
1278 	/*
1279 	 * Note: this txg_wait_synced() is important because it ensures
1280 	 * that there won't be more than one config change per txg.
1281 	 * This allows us to use the txg as the generation number.
1282 	 */
1283 	if (error == 0)
1284 		txg_wait_synced(spa->spa_dsl_pool, txg);
1285 
1286 	if (vd != NULL) {
1287 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1288 		if (vd->vdev_ops->vdev_op_leaf) {
1289 			mutex_enter(&vd->vdev_initialize_lock);
1290 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1291 			    NULL);
1292 			mutex_exit(&vd->vdev_initialize_lock);
1293 
1294 			mutex_enter(&vd->vdev_trim_lock);
1295 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1296 			mutex_exit(&vd->vdev_trim_lock);
1297 		}
1298 
1299 		/*
1300 		 * The vdev may be both a leaf and top-level device.
1301 		 */
1302 		vdev_autotrim_stop_wait(vd);
1303 
1304 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1305 		vdev_free(vd);
1306 		spa_config_exit(spa, SCL_ALL, spa);
1307 	}
1308 
1309 	/*
1310 	 * If the config changed, update the config cache.
1311 	 */
1312 	if (config_changed)
1313 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1314 }
1315 
1316 /*
1317  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1318  * locking of spa_vdev_enter(), we also want make sure the transactions have
1319  * synced to disk, and then update the global configuration cache with the new
1320  * information.
1321  */
1322 int
1323 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1324 {
1325 	vdev_autotrim_restart(spa);
1326 
1327 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1328 	mutex_exit(&spa_namespace_lock);
1329 	mutex_exit(&spa->spa_vdev_top_lock);
1330 
1331 	return (error);
1332 }
1333 
1334 /*
1335  * Lock the given spa_t for the purpose of changing vdev state.
1336  */
1337 void
1338 spa_vdev_state_enter(spa_t *spa, int oplocks)
1339 {
1340 	int locks = SCL_STATE_ALL | oplocks;
1341 
1342 	/*
1343 	 * Root pools may need to read of the underlying devfs filesystem
1344 	 * when opening up a vdev.  Unfortunately if we're holding the
1345 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1346 	 * the read from the root filesystem.  Instead we "prefetch"
1347 	 * the associated vnodes that we need prior to opening the
1348 	 * underlying devices and cache them so that we can prevent
1349 	 * any I/O when we are doing the actual open.
1350 	 */
1351 	if (spa_is_root(spa)) {
1352 		int low = locks & ~(SCL_ZIO - 1);
1353 		int high = locks & ~low;
1354 
1355 		spa_config_enter(spa, high, spa, RW_WRITER);
1356 		vdev_hold(spa->spa_root_vdev);
1357 		spa_config_enter(spa, low, spa, RW_WRITER);
1358 	} else {
1359 		spa_config_enter(spa, locks, spa, RW_WRITER);
1360 	}
1361 	spa->spa_vdev_locks = locks;
1362 }
1363 
1364 int
1365 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1366 {
1367 	boolean_t config_changed = B_FALSE;
1368 
1369 	if (vd != NULL || error == 0)
1370 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1371 		    0, 0, B_FALSE);
1372 
1373 	if (vd != NULL) {
1374 		vdev_state_dirty(vd->vdev_top);
1375 		config_changed = B_TRUE;
1376 		spa->spa_config_generation++;
1377 	}
1378 
1379 	if (spa_is_root(spa))
1380 		vdev_rele(spa->spa_root_vdev);
1381 
1382 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1383 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1384 
1385 	/*
1386 	 * If anything changed, wait for it to sync.  This ensures that,
1387 	 * from the system administrator's perspective, zpool(1M) commands
1388 	 * are synchronous.  This is important for things like zpool offline:
1389 	 * when the command completes, you expect no further I/O from ZFS.
1390 	 */
1391 	if (vd != NULL)
1392 		txg_wait_synced(spa->spa_dsl_pool, 0);
1393 
1394 	/*
1395 	 * If the config changed, update the config cache.
1396 	 */
1397 	if (config_changed) {
1398 		mutex_enter(&spa_namespace_lock);
1399 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1400 		mutex_exit(&spa_namespace_lock);
1401 	}
1402 
1403 	return (error);
1404 }
1405 
1406 /*
1407  * ==========================================================================
1408  * Miscellaneous functions
1409  * ==========================================================================
1410  */
1411 
1412 void
1413 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1414 {
1415 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1416 		fnvlist_add_boolean(spa->spa_label_features, feature);
1417 		/*
1418 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1419 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1420 		 * Thankfully, in this case we don't need to dirty the config
1421 		 * because it will be written out anyway when we finish
1422 		 * creating the pool.
1423 		 */
1424 		if (tx->tx_txg != TXG_INITIAL)
1425 			vdev_config_dirty(spa->spa_root_vdev);
1426 	}
1427 }
1428 
1429 void
1430 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1431 {
1432 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1433 		vdev_config_dirty(spa->spa_root_vdev);
1434 }
1435 
1436 /*
1437  * Return the spa_t associated with given pool_guid, if it exists.  If
1438  * device_guid is non-zero, determine whether the pool exists *and* contains
1439  * a device with the specified device_guid.
1440  */
1441 spa_t *
1442 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1443 {
1444 	spa_t *spa;
1445 	avl_tree_t *t = &spa_namespace_avl;
1446 
1447 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1448 
1449 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1450 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1451 			continue;
1452 		if (spa->spa_root_vdev == NULL)
1453 			continue;
1454 		if (spa_guid(spa) == pool_guid) {
1455 			if (device_guid == 0)
1456 				break;
1457 
1458 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1459 			    device_guid) != NULL)
1460 				break;
1461 
1462 			/*
1463 			 * Check any devices we may be in the process of adding.
1464 			 */
1465 			if (spa->spa_pending_vdev) {
1466 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1467 				    device_guid) != NULL)
1468 					break;
1469 			}
1470 		}
1471 	}
1472 
1473 	return (spa);
1474 }
1475 
1476 /*
1477  * Determine whether a pool with the given pool_guid exists.
1478  */
1479 boolean_t
1480 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1481 {
1482 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1483 }
1484 
1485 char *
1486 spa_strdup(const char *s)
1487 {
1488 	size_t len;
1489 	char *new;
1490 
1491 	len = strlen(s);
1492 	new = kmem_alloc(len + 1, KM_SLEEP);
1493 	bcopy(s, new, len);
1494 	new[len] = '\0';
1495 
1496 	return (new);
1497 }
1498 
1499 void
1500 spa_strfree(char *s)
1501 {
1502 	kmem_free(s, strlen(s) + 1);
1503 }
1504 
1505 uint64_t
1506 spa_get_random(uint64_t range)
1507 {
1508 	uint64_t r;
1509 
1510 	ASSERT(range != 0);
1511 
1512 	if (range == 1)
1513 		return (0);
1514 
1515 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1516 
1517 	return (r % range);
1518 }
1519 
1520 uint64_t
1521 spa_generate_guid(spa_t *spa)
1522 {
1523 	uint64_t guid = spa_get_random(-1ULL);
1524 
1525 	if (spa != NULL) {
1526 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1527 			guid = spa_get_random(-1ULL);
1528 	} else {
1529 		while (guid == 0 || spa_guid_exists(guid, 0))
1530 			guid = spa_get_random(-1ULL);
1531 	}
1532 
1533 	return (guid);
1534 }
1535 
1536 void
1537 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1538 {
1539 	char type[256];
1540 	char *checksum = NULL;
1541 	char *compress = NULL;
1542 
1543 	if (bp != NULL) {
1544 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1545 			dmu_object_byteswap_t bswap =
1546 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1547 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1548 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1549 			    "metadata" : "data",
1550 			    dmu_ot_byteswap[bswap].ob_name);
1551 		} else {
1552 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1553 			    sizeof (type));
1554 		}
1555 		if (!BP_IS_EMBEDDED(bp)) {
1556 			checksum =
1557 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1558 		}
1559 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1560 	}
1561 
1562 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1563 	    compress);
1564 }
1565 
1566 void
1567 spa_freeze(spa_t *spa)
1568 {
1569 	uint64_t freeze_txg = 0;
1570 
1571 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1572 	if (spa->spa_freeze_txg == UINT64_MAX) {
1573 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1574 		spa->spa_freeze_txg = freeze_txg;
1575 	}
1576 	spa_config_exit(spa, SCL_ALL, FTAG);
1577 	if (freeze_txg != 0)
1578 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1579 }
1580 
1581 void
1582 zfs_panic_recover(const char *fmt, ...)
1583 {
1584 	va_list adx;
1585 
1586 	va_start(adx, fmt);
1587 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1588 	va_end(adx);
1589 }
1590 
1591 /*
1592  * This is a stripped-down version of strtoull, suitable only for converting
1593  * lowercase hexadecimal numbers that don't overflow.
1594  */
1595 uint64_t
1596 zfs_strtonum(const char *str, char **nptr)
1597 {
1598 	uint64_t val = 0;
1599 	char c;
1600 	int digit;
1601 
1602 	while ((c = *str) != '\0') {
1603 		if (c >= '0' && c <= '9')
1604 			digit = c - '0';
1605 		else if (c >= 'a' && c <= 'f')
1606 			digit = 10 + c - 'a';
1607 		else
1608 			break;
1609 
1610 		val *= 16;
1611 		val += digit;
1612 
1613 		str++;
1614 	}
1615 
1616 	if (nptr)
1617 		*nptr = (char *)str;
1618 
1619 	return (val);
1620 }
1621 
1622 void
1623 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1624 {
1625 	/*
1626 	 * We bump the feature refcount for each special vdev added to the pool
1627 	 */
1628 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1629 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1630 }
1631 
1632 /*
1633  * ==========================================================================
1634  * Accessor functions
1635  * ==========================================================================
1636  */
1637 
1638 boolean_t
1639 spa_shutting_down(spa_t *spa)
1640 {
1641 	return (spa->spa_async_suspended);
1642 }
1643 
1644 dsl_pool_t *
1645 spa_get_dsl(spa_t *spa)
1646 {
1647 	return (spa->spa_dsl_pool);
1648 }
1649 
1650 boolean_t
1651 spa_is_initializing(spa_t *spa)
1652 {
1653 	return (spa->spa_is_initializing);
1654 }
1655 
1656 boolean_t
1657 spa_indirect_vdevs_loaded(spa_t *spa)
1658 {
1659 	return (spa->spa_indirect_vdevs_loaded);
1660 }
1661 
1662 blkptr_t *
1663 spa_get_rootblkptr(spa_t *spa)
1664 {
1665 	return (&spa->spa_ubsync.ub_rootbp);
1666 }
1667 
1668 void
1669 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1670 {
1671 	spa->spa_uberblock.ub_rootbp = *bp;
1672 }
1673 
1674 void
1675 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1676 {
1677 	if (spa->spa_root == NULL)
1678 		buf[0] = '\0';
1679 	else
1680 		(void) strncpy(buf, spa->spa_root, buflen);
1681 }
1682 
1683 int
1684 spa_sync_pass(spa_t *spa)
1685 {
1686 	return (spa->spa_sync_pass);
1687 }
1688 
1689 char *
1690 spa_name(spa_t *spa)
1691 {
1692 	return (spa->spa_name);
1693 }
1694 
1695 uint64_t
1696 spa_guid(spa_t *spa)
1697 {
1698 	dsl_pool_t *dp = spa_get_dsl(spa);
1699 	uint64_t guid;
1700 
1701 	/*
1702 	 * If we fail to parse the config during spa_load(), we can go through
1703 	 * the error path (which posts an ereport) and end up here with no root
1704 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1705 	 * this case.
1706 	 */
1707 	if (spa->spa_root_vdev == NULL)
1708 		return (spa->spa_config_guid);
1709 
1710 	guid = spa->spa_last_synced_guid != 0 ?
1711 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1712 
1713 	/*
1714 	 * Return the most recently synced out guid unless we're
1715 	 * in syncing context.
1716 	 */
1717 	if (dp && dsl_pool_sync_context(dp))
1718 		return (spa->spa_root_vdev->vdev_guid);
1719 	else
1720 		return (guid);
1721 }
1722 
1723 uint64_t
1724 spa_load_guid(spa_t *spa)
1725 {
1726 	/*
1727 	 * This is a GUID that exists solely as a reference for the
1728 	 * purposes of the arc.  It is generated at load time, and
1729 	 * is never written to persistent storage.
1730 	 */
1731 	return (spa->spa_load_guid);
1732 }
1733 
1734 uint64_t
1735 spa_last_synced_txg(spa_t *spa)
1736 {
1737 	return (spa->spa_ubsync.ub_txg);
1738 }
1739 
1740 uint64_t
1741 spa_first_txg(spa_t *spa)
1742 {
1743 	return (spa->spa_first_txg);
1744 }
1745 
1746 uint64_t
1747 spa_syncing_txg(spa_t *spa)
1748 {
1749 	return (spa->spa_syncing_txg);
1750 }
1751 
1752 /*
1753  * Return the last txg where data can be dirtied. The final txgs
1754  * will be used to just clear out any deferred frees that remain.
1755  */
1756 uint64_t
1757 spa_final_dirty_txg(spa_t *spa)
1758 {
1759 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1760 }
1761 
1762 pool_state_t
1763 spa_state(spa_t *spa)
1764 {
1765 	return (spa->spa_state);
1766 }
1767 
1768 spa_load_state_t
1769 spa_load_state(spa_t *spa)
1770 {
1771 	return (spa->spa_load_state);
1772 }
1773 
1774 uint64_t
1775 spa_freeze_txg(spa_t *spa)
1776 {
1777 	return (spa->spa_freeze_txg);
1778 }
1779 
1780 /* ARGSUSED */
1781 uint64_t
1782 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1783 {
1784 	return (lsize * spa_asize_inflation);
1785 }
1786 
1787 /*
1788  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1789  * or at least 128MB, unless that would cause it to be more than half the
1790  * pool size.
1791  *
1792  * See the comment above spa_slop_shift for details.
1793  */
1794 uint64_t
1795 spa_get_slop_space(spa_t *spa)
1796 {
1797 	uint64_t space = spa_get_dspace(spa);
1798 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1799 }
1800 
1801 uint64_t
1802 spa_get_dspace(spa_t *spa)
1803 {
1804 	return (spa->spa_dspace);
1805 }
1806 
1807 uint64_t
1808 spa_get_checkpoint_space(spa_t *spa)
1809 {
1810 	return (spa->spa_checkpoint_info.sci_dspace);
1811 }
1812 
1813 void
1814 spa_update_dspace(spa_t *spa)
1815 {
1816 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1817 	    ddt_get_dedup_dspace(spa);
1818 	if (spa->spa_vdev_removal != NULL) {
1819 		/*
1820 		 * We can't allocate from the removing device, so
1821 		 * subtract its size.  This prevents the DMU/DSL from
1822 		 * filling up the (now smaller) pool while we are in the
1823 		 * middle of removing the device.
1824 		 *
1825 		 * Note that the DMU/DSL doesn't actually know or care
1826 		 * how much space is allocated (it does its own tracking
1827 		 * of how much space has been logically used).  So it
1828 		 * doesn't matter that the data we are moving may be
1829 		 * allocated twice (on the old device and the new
1830 		 * device).
1831 		 */
1832 		spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1833 		vdev_t *vd =
1834 		    vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1835 		spa->spa_dspace -= spa_deflate(spa) ?
1836 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1837 		spa_config_exit(spa, SCL_VDEV, FTAG);
1838 	}
1839 }
1840 
1841 /*
1842  * Return the failure mode that has been set to this pool. The default
1843  * behavior will be to block all I/Os when a complete failure occurs.
1844  */
1845 uint8_t
1846 spa_get_failmode(spa_t *spa)
1847 {
1848 	return (spa->spa_failmode);
1849 }
1850 
1851 boolean_t
1852 spa_suspended(spa_t *spa)
1853 {
1854 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1855 }
1856 
1857 uint64_t
1858 spa_version(spa_t *spa)
1859 {
1860 	return (spa->spa_ubsync.ub_version);
1861 }
1862 
1863 boolean_t
1864 spa_deflate(spa_t *spa)
1865 {
1866 	return (spa->spa_deflate);
1867 }
1868 
1869 metaslab_class_t *
1870 spa_normal_class(spa_t *spa)
1871 {
1872 	return (spa->spa_normal_class);
1873 }
1874 
1875 metaslab_class_t *
1876 spa_log_class(spa_t *spa)
1877 {
1878 	return (spa->spa_log_class);
1879 }
1880 
1881 metaslab_class_t *
1882 spa_special_class(spa_t *spa)
1883 {
1884 	return (spa->spa_special_class);
1885 }
1886 
1887 metaslab_class_t *
1888 spa_dedup_class(spa_t *spa)
1889 {
1890 	return (spa->spa_dedup_class);
1891 }
1892 
1893 /*
1894  * Locate an appropriate allocation class
1895  */
1896 metaslab_class_t *
1897 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1898     uint_t level, uint_t special_smallblk)
1899 {
1900 	if (DMU_OT_IS_ZIL(objtype)) {
1901 		if (spa->spa_log_class->mc_groups != 0)
1902 			return (spa_log_class(spa));
1903 		else
1904 			return (spa_normal_class(spa));
1905 	}
1906 
1907 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1908 
1909 	if (DMU_OT_IS_DDT(objtype)) {
1910 		if (spa->spa_dedup_class->mc_groups != 0)
1911 			return (spa_dedup_class(spa));
1912 		else if (has_special_class && zfs_ddt_data_is_special)
1913 			return (spa_special_class(spa));
1914 		else
1915 			return (spa_normal_class(spa));
1916 	}
1917 
1918 	/* Indirect blocks for user data can land in special if allowed */
1919 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1920 		if (has_special_class && zfs_user_indirect_is_special)
1921 			return (spa_special_class(spa));
1922 		else
1923 			return (spa_normal_class(spa));
1924 	}
1925 
1926 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1927 		if (has_special_class)
1928 			return (spa_special_class(spa));
1929 		else
1930 			return (spa_normal_class(spa));
1931 	}
1932 
1933 	/*
1934 	 * Allow small file blocks in special class in some cases (like
1935 	 * for the dRAID vdev feature). But always leave a reserve of
1936 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1937 	 */
1938 	if (DMU_OT_IS_FILE(objtype) &&
1939 	    has_special_class && size <= special_smallblk) {
1940 		metaslab_class_t *special = spa_special_class(spa);
1941 		uint64_t alloc = metaslab_class_get_alloc(special);
1942 		uint64_t space = metaslab_class_get_space(special);
1943 		uint64_t limit =
1944 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
1945 		    / 100;
1946 
1947 		if (alloc < limit)
1948 			return (special);
1949 	}
1950 
1951 	return (spa_normal_class(spa));
1952 }
1953 
1954 void
1955 spa_evicting_os_register(spa_t *spa, objset_t *os)
1956 {
1957 	mutex_enter(&spa->spa_evicting_os_lock);
1958 	list_insert_head(&spa->spa_evicting_os_list, os);
1959 	mutex_exit(&spa->spa_evicting_os_lock);
1960 }
1961 
1962 void
1963 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1964 {
1965 	mutex_enter(&spa->spa_evicting_os_lock);
1966 	list_remove(&spa->spa_evicting_os_list, os);
1967 	cv_broadcast(&spa->spa_evicting_os_cv);
1968 	mutex_exit(&spa->spa_evicting_os_lock);
1969 }
1970 
1971 void
1972 spa_evicting_os_wait(spa_t *spa)
1973 {
1974 	mutex_enter(&spa->spa_evicting_os_lock);
1975 	while (!list_is_empty(&spa->spa_evicting_os_list))
1976 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1977 	mutex_exit(&spa->spa_evicting_os_lock);
1978 
1979 	dmu_buf_user_evict_wait();
1980 }
1981 
1982 int
1983 spa_max_replication(spa_t *spa)
1984 {
1985 	/*
1986 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1987 	 * handle BPs with more than one DVA allocated.  Set our max
1988 	 * replication level accordingly.
1989 	 */
1990 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1991 		return (1);
1992 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1993 }
1994 
1995 int
1996 spa_prev_software_version(spa_t *spa)
1997 {
1998 	return (spa->spa_prev_software_version);
1999 }
2000 
2001 uint64_t
2002 spa_deadman_synctime(spa_t *spa)
2003 {
2004 	return (spa->spa_deadman_synctime);
2005 }
2006 
2007 spa_autotrim_t
2008 spa_get_autotrim(spa_t *spa)
2009 {
2010 	return (spa->spa_autotrim);
2011 }
2012 
2013 uint64_t
2014 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2015 {
2016 	uint64_t asize = DVA_GET_ASIZE(dva);
2017 	uint64_t dsize = asize;
2018 
2019 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2020 
2021 	if (asize != 0 && spa->spa_deflate) {
2022 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2023 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
2024 	}
2025 
2026 	return (dsize);
2027 }
2028 
2029 uint64_t
2030 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2031 {
2032 	uint64_t dsize = 0;
2033 
2034 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2035 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2036 
2037 	return (dsize);
2038 }
2039 
2040 uint64_t
2041 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2042 {
2043 	uint64_t dsize = 0;
2044 
2045 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2046 
2047 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2048 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2049 
2050 	spa_config_exit(spa, SCL_VDEV, FTAG);
2051 
2052 	return (dsize);
2053 }
2054 
2055 uint64_t
2056 spa_dirty_data(spa_t *spa)
2057 {
2058 	return (spa->spa_dsl_pool->dp_dirty_total);
2059 }
2060 
2061 /*
2062  * ==========================================================================
2063  * SPA Import Progress Routines
2064  * The illumos implementation of these are different from OpenZFS. OpenZFS
2065  * uses the Linux /proc fs, whereas we use a kstat on the spa.
2066  * ==========================================================================
2067  */
2068 
2069 typedef struct spa_import_progress {
2070 	kstat_named_t sip_load_state;
2071 	kstat_named_t sip_mmp_sec_remaining;	/* MMP activity check */
2072 	kstat_named_t sip_load_max_txg;		/* rewind txg */
2073 } spa_import_progress_t;
2074 
2075 static void
2076 spa_import_progress_init(void)
2077 {
2078 }
2079 
2080 static void
2081 spa_import_progress_destroy(void)
2082 {
2083 }
2084 
2085 void spa_import_progress_add(spa_t *);
2086 
2087 int
2088 spa_import_progress_set_state(spa_t *spa, spa_load_state_t load_state)
2089 {
2090 	if (spa->spa_imp_kstat == NULL)
2091 		spa_import_progress_add(spa);
2092 
2093 	mutex_enter(&spa->spa_imp_kstat_lock);
2094 	if (spa->spa_imp_kstat != NULL) {
2095 		spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data;
2096 		if (sip != NULL)
2097 			sip->sip_load_state.value.ui64 = (uint64_t)load_state;
2098 	}
2099 	mutex_exit(&spa->spa_imp_kstat_lock);
2100 
2101 	return (0);
2102 }
2103 
2104 int
2105 spa_import_progress_set_max_txg(spa_t *spa, uint64_t load_max_txg)
2106 {
2107 	if (spa->spa_imp_kstat == NULL)
2108 		spa_import_progress_add(spa);
2109 
2110 	mutex_enter(&spa->spa_imp_kstat_lock);
2111 	if (spa->spa_imp_kstat != NULL) {
2112 		spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data;
2113 		if (sip != NULL)
2114 			sip->sip_load_max_txg.value.ui64 = load_max_txg;
2115 	}
2116 	mutex_exit(&spa->spa_imp_kstat_lock);
2117 
2118 	return (0);
2119 }
2120 
2121 int
2122 spa_import_progress_set_mmp_check(spa_t *spa, uint64_t mmp_sec_remaining)
2123 {
2124 	if (spa->spa_imp_kstat == NULL)
2125 		spa_import_progress_add(spa);
2126 
2127 	mutex_enter(&spa->spa_imp_kstat_lock);
2128 	if (spa->spa_imp_kstat != NULL) {
2129 		spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data;
2130 		if (sip != NULL)
2131 			sip->sip_mmp_sec_remaining.value.ui64 =
2132 			    mmp_sec_remaining;
2133 	}
2134 	mutex_exit(&spa->spa_imp_kstat_lock);
2135 
2136 	return (0);
2137 }
2138 
2139 /*
2140  * A new import is in progress. Add an entry.
2141  */
2142 void
2143 spa_import_progress_add(spa_t *spa)
2144 {
2145 	char *poolname = NULL;
2146 	spa_import_progress_t *sip;
2147 
2148 	mutex_enter(&spa->spa_imp_kstat_lock);
2149 	if (spa->spa_imp_kstat != NULL) {
2150 		sip = spa->spa_imp_kstat->ks_data;
2151 		sip->sip_load_state.value.ui64 = (uint64_t)spa_load_state(spa);
2152 		mutex_exit(&spa->spa_imp_kstat_lock);
2153 		return;
2154 	}
2155 
2156 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2157 	    &poolname);
2158 	if (poolname == NULL)
2159 		poolname = spa_name(spa);
2160 
2161 	spa->spa_imp_kstat = kstat_create("zfs_import", 0, poolname,
2162 	    "zfs_misc", KSTAT_TYPE_NAMED,
2163 	    sizeof (spa_import_progress_t) / sizeof (kstat_named_t),
2164 	    KSTAT_FLAG_VIRTUAL);
2165 	if (spa->spa_imp_kstat != NULL) {
2166 		sip = kmem_alloc(sizeof (spa_import_progress_t), KM_SLEEP);
2167 		spa->spa_imp_kstat->ks_data = sip;
2168 
2169 		sip->sip_load_state.value.ui64 = (uint64_t)spa_load_state(spa);
2170 
2171 		kstat_named_init(&sip->sip_load_state,
2172 		    "spa_load_state", KSTAT_DATA_UINT64);
2173 		kstat_named_init(&sip->sip_mmp_sec_remaining,
2174 		    "mmp_sec_remaining", KSTAT_DATA_UINT64);
2175 		kstat_named_init(&sip->sip_load_max_txg,
2176 		    "spa_load_max_txg", KSTAT_DATA_UINT64);
2177 		spa->spa_imp_kstat->ks_lock = &spa->spa_imp_kstat_lock;
2178 		kstat_install(spa->spa_imp_kstat);
2179 	}
2180 	mutex_exit(&spa->spa_imp_kstat_lock);
2181 }
2182 
2183 void
2184 spa_import_progress_remove(spa_t *spa)
2185 {
2186 	if (spa->spa_imp_kstat != NULL) {
2187 		void *data = spa->spa_imp_kstat->ks_data;
2188 
2189 		kstat_delete(spa->spa_imp_kstat);
2190 		spa->spa_imp_kstat = NULL;
2191 		kmem_free(data, sizeof (spa_import_progress_t));
2192 	}
2193 }
2194 
2195 /*
2196  * ==========================================================================
2197  * Initialization and Termination
2198  * ==========================================================================
2199  */
2200 
2201 static int
2202 spa_name_compare(const void *a1, const void *a2)
2203 {
2204 	const spa_t *s1 = a1;
2205 	const spa_t *s2 = a2;
2206 	int s;
2207 
2208 	s = strcmp(s1->spa_name, s2->spa_name);
2209 
2210 	return (TREE_ISIGN(s));
2211 }
2212 
2213 int
2214 spa_busy(void)
2215 {
2216 	return (spa_active_count);
2217 }
2218 
2219 void
2220 spa_boot_init()
2221 {
2222 	spa_config_load();
2223 }
2224 
2225 void
2226 spa_init(int mode)
2227 {
2228 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2229 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2230 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2231 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2232 
2233 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2234 	    offsetof(spa_t, spa_avl));
2235 
2236 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2237 	    offsetof(spa_aux_t, aux_avl));
2238 
2239 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2240 	    offsetof(spa_aux_t, aux_avl));
2241 
2242 	spa_mode_global = mode;
2243 
2244 #ifdef _KERNEL
2245 	spa_arch_init();
2246 #else
2247 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
2248 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
2249 		if (arc_procfd == -1) {
2250 			perror("could not enable watchpoints: "
2251 			    "opening /proc/self/ctl failed: ");
2252 		} else {
2253 			arc_watch = B_TRUE;
2254 		}
2255 	}
2256 #endif
2257 
2258 	zfs_refcount_init();
2259 	unique_init();
2260 	zfs_btree_init();
2261 	metaslab_stat_init();
2262 	zio_init();
2263 	dmu_init();
2264 	zil_init();
2265 	vdev_cache_stat_init();
2266 	vdev_mirror_stat_init();
2267 	vdev_raidz_math_init();
2268 	zfs_prop_init();
2269 	zpool_prop_init();
2270 	zpool_feature_init();
2271 	spa_config_load();
2272 	l2arc_start();
2273 	scan_init();
2274 	spa_import_progress_init();
2275 }
2276 
2277 void
2278 spa_fini(void)
2279 {
2280 	l2arc_stop();
2281 
2282 	spa_evict_all();
2283 
2284 	vdev_cache_stat_fini();
2285 	vdev_mirror_stat_fini();
2286 	vdev_raidz_math_fini();
2287 	zil_fini();
2288 	dmu_fini();
2289 	zio_fini();
2290 	metaslab_stat_fini();
2291 	zfs_btree_fini();
2292 	unique_fini();
2293 	zfs_refcount_fini();
2294 	scan_fini();
2295 	spa_import_progress_destroy();
2296 
2297 	avl_destroy(&spa_namespace_avl);
2298 	avl_destroy(&spa_spare_avl);
2299 	avl_destroy(&spa_l2cache_avl);
2300 
2301 	cv_destroy(&spa_namespace_cv);
2302 	mutex_destroy(&spa_namespace_lock);
2303 	mutex_destroy(&spa_spare_lock);
2304 	mutex_destroy(&spa_l2cache_lock);
2305 }
2306 
2307 /*
2308  * Return whether this pool has slogs. No locking needed.
2309  * It's not a problem if the wrong answer is returned as it's only for
2310  * performance and not correctness
2311  */
2312 boolean_t
2313 spa_has_slogs(spa_t *spa)
2314 {
2315 	return (spa->spa_log_class->mc_rotor != NULL);
2316 }
2317 
2318 spa_log_state_t
2319 spa_get_log_state(spa_t *spa)
2320 {
2321 	return (spa->spa_log_state);
2322 }
2323 
2324 void
2325 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2326 {
2327 	spa->spa_log_state = state;
2328 }
2329 
2330 boolean_t
2331 spa_is_root(spa_t *spa)
2332 {
2333 	return (spa->spa_is_root);
2334 }
2335 
2336 boolean_t
2337 spa_writeable(spa_t *spa)
2338 {
2339 	return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2340 }
2341 
2342 /*
2343  * Returns true if there is a pending sync task in any of the current
2344  * syncing txg, the current quiescing txg, or the current open txg.
2345  */
2346 boolean_t
2347 spa_has_pending_synctask(spa_t *spa)
2348 {
2349 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2350 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2351 }
2352 
2353 int
2354 spa_mode(spa_t *spa)
2355 {
2356 	return (spa->spa_mode);
2357 }
2358 
2359 uint64_t
2360 spa_bootfs(spa_t *spa)
2361 {
2362 	return (spa->spa_bootfs);
2363 }
2364 
2365 uint64_t
2366 spa_delegation(spa_t *spa)
2367 {
2368 	return (spa->spa_delegation);
2369 }
2370 
2371 objset_t *
2372 spa_meta_objset(spa_t *spa)
2373 {
2374 	return (spa->spa_meta_objset);
2375 }
2376 
2377 enum zio_checksum
2378 spa_dedup_checksum(spa_t *spa)
2379 {
2380 	return (spa->spa_dedup_checksum);
2381 }
2382 
2383 /*
2384  * Reset pool scan stat per scan pass (or reboot).
2385  */
2386 void
2387 spa_scan_stat_init(spa_t *spa)
2388 {
2389 	/* data not stored on disk */
2390 	spa->spa_scan_pass_start = gethrestime_sec();
2391 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2392 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2393 	else
2394 		spa->spa_scan_pass_scrub_pause = 0;
2395 	spa->spa_scan_pass_scrub_spent_paused = 0;
2396 	spa->spa_scan_pass_exam = 0;
2397 	spa->spa_scan_pass_issued = 0;
2398 	vdev_scan_stat_init(spa->spa_root_vdev);
2399 }
2400 
2401 /*
2402  * Get scan stats for zpool status reports
2403  */
2404 int
2405 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2406 {
2407 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2408 
2409 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2410 		return (SET_ERROR(ENOENT));
2411 	bzero(ps, sizeof (pool_scan_stat_t));
2412 
2413 	/* data stored on disk */
2414 	ps->pss_func = scn->scn_phys.scn_func;
2415 	ps->pss_state = scn->scn_phys.scn_state;
2416 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2417 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2418 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2419 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2420 	ps->pss_processed = scn->scn_phys.scn_processed;
2421 	ps->pss_errors = scn->scn_phys.scn_errors;
2422 	ps->pss_examined = scn->scn_phys.scn_examined;
2423 	ps->pss_issued =
2424 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2425 	ps->pss_state = scn->scn_phys.scn_state;
2426 
2427 	/* data not stored on disk */
2428 	ps->pss_pass_start = spa->spa_scan_pass_start;
2429 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2430 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2431 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2432 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2433 
2434 	return (0);
2435 }
2436 
2437 int
2438 spa_maxblocksize(spa_t *spa)
2439 {
2440 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2441 		return (SPA_MAXBLOCKSIZE);
2442 	else
2443 		return (SPA_OLD_MAXBLOCKSIZE);
2444 }
2445 
2446 int
2447 spa_maxdnodesize(spa_t *spa)
2448 {
2449 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2450 		return (DNODE_MAX_SIZE);
2451 	else
2452 		return (DNODE_MIN_SIZE);
2453 }
2454 
2455 boolean_t
2456 spa_multihost(spa_t *spa)
2457 {
2458 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2459 }
2460 
2461 unsigned long
2462 spa_get_hostid(void)
2463 {
2464 	unsigned long myhostid;
2465 
2466 #ifdef	_KERNEL
2467 	myhostid = zone_get_hostid(NULL);
2468 #else	/* _KERNEL */
2469 	/*
2470 	 * We're emulating the system's hostid in userland, so
2471 	 * we can't use zone_get_hostid().
2472 	 */
2473 	(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2474 #endif	/* _KERNEL */
2475 
2476 	return (myhostid);
2477 }
2478 
2479 /*
2480  * Returns the txg that the last device removal completed. No indirect mappings
2481  * have been added since this txg.
2482  */
2483 uint64_t
2484 spa_get_last_removal_txg(spa_t *spa)
2485 {
2486 	uint64_t vdevid;
2487 	uint64_t ret = -1ULL;
2488 
2489 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2490 	/*
2491 	 * sr_prev_indirect_vdev is only modified while holding all the
2492 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2493 	 * examining it.
2494 	 */
2495 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2496 
2497 	while (vdevid != -1ULL) {
2498 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2499 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2500 
2501 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2502 
2503 		/*
2504 		 * If the removal did not remap any data, we don't care.
2505 		 */
2506 		if (vdev_indirect_births_count(vib) != 0) {
2507 			ret = vdev_indirect_births_last_entry_txg(vib);
2508 			break;
2509 		}
2510 
2511 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2512 	}
2513 	spa_config_exit(spa, SCL_VDEV, FTAG);
2514 
2515 	IMPLY(ret != -1ULL,
2516 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2517 
2518 	return (ret);
2519 }
2520 
2521 boolean_t
2522 spa_trust_config(spa_t *spa)
2523 {
2524 	return (spa->spa_trust_config);
2525 }
2526 
2527 uint64_t
2528 spa_missing_tvds_allowed(spa_t *spa)
2529 {
2530 	return (spa->spa_missing_tvds_allowed);
2531 }
2532 
2533 space_map_t *
2534 spa_syncing_log_sm(spa_t *spa)
2535 {
2536 	return (spa->spa_syncing_log_sm);
2537 }
2538 
2539 void
2540 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2541 {
2542 	spa->spa_missing_tvds = missing;
2543 }
2544 
2545 boolean_t
2546 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2547 {
2548 	vdev_t *rvd = spa->spa_root_vdev;
2549 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2550 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2551 			return (B_FALSE);
2552 	}
2553 	return (B_TRUE);
2554 }
2555 
2556 boolean_t
2557 spa_has_checkpoint(spa_t *spa)
2558 {
2559 	return (spa->spa_checkpoint_txg != 0);
2560 }
2561 
2562 boolean_t
2563 spa_importing_readonly_checkpoint(spa_t *spa)
2564 {
2565 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2566 	    spa->spa_mode == FREAD);
2567 }
2568 
2569 uint64_t
2570 spa_min_claim_txg(spa_t *spa)
2571 {
2572 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2573 
2574 	if (checkpoint_txg != 0)
2575 		return (checkpoint_txg + 1);
2576 
2577 	return (spa->spa_first_txg);
2578 }
2579 
2580 /*
2581  * If there is a checkpoint, async destroys may consume more space from
2582  * the pool instead of freeing it. In an attempt to save the pool from
2583  * getting suspended when it is about to run out of space, we stop
2584  * processing async destroys.
2585  */
2586 boolean_t
2587 spa_suspend_async_destroy(spa_t *spa)
2588 {
2589 	dsl_pool_t *dp = spa_get_dsl(spa);
2590 
2591 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2592 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2593 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2594 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2595 
2596 	if (spa_has_checkpoint(spa) && avail == 0)
2597 		return (B_TRUE);
2598 
2599 	return (B_FALSE);
2600 }
2601