1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa_impl.h> 28 #include <sys/zio.h> 29 #include <sys/zio_checksum.h> 30 #include <sys/zio_compress.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/zap.h> 34 #include <sys/zil.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/txg.h> 39 #include <sys/avl.h> 40 #include <sys/unique.h> 41 #include <sys/dsl_pool.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/dsl_prop.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/metaslab_impl.h> 46 #include <sys/arc.h> 47 #include <sys/ddt.h> 48 #include "zfs_prop.h" 49 50 /* 51 * SPA locking 52 * 53 * There are four basic locks for managing spa_t structures: 54 * 55 * spa_namespace_lock (global mutex) 56 * 57 * This lock must be acquired to do any of the following: 58 * 59 * - Lookup a spa_t by name 60 * - Add or remove a spa_t from the namespace 61 * - Increase spa_refcount from non-zero 62 * - Check if spa_refcount is zero 63 * - Rename a spa_t 64 * - add/remove/attach/detach devices 65 * - Held for the duration of create/destroy/import/export 66 * 67 * It does not need to handle recursion. A create or destroy may 68 * reference objects (files or zvols) in other pools, but by 69 * definition they must have an existing reference, and will never need 70 * to lookup a spa_t by name. 71 * 72 * spa_refcount (per-spa refcount_t protected by mutex) 73 * 74 * This reference count keep track of any active users of the spa_t. The 75 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 76 * the refcount is never really 'zero' - opening a pool implicitly keeps 77 * some references in the DMU. Internally we check against spa_minref, but 78 * present the image of a zero/non-zero value to consumers. 79 * 80 * spa_config_lock[] (per-spa array of rwlocks) 81 * 82 * This protects the spa_t from config changes, and must be held in 83 * the following circumstances: 84 * 85 * - RW_READER to perform I/O to the spa 86 * - RW_WRITER to change the vdev config 87 * 88 * The locking order is fairly straightforward: 89 * 90 * spa_namespace_lock -> spa_refcount 91 * 92 * The namespace lock must be acquired to increase the refcount from 0 93 * or to check if it is zero. 94 * 95 * spa_refcount -> spa_config_lock[] 96 * 97 * There must be at least one valid reference on the spa_t to acquire 98 * the config lock. 99 * 100 * spa_namespace_lock -> spa_config_lock[] 101 * 102 * The namespace lock must always be taken before the config lock. 103 * 104 * 105 * The spa_namespace_lock can be acquired directly and is globally visible. 106 * 107 * The namespace is manipulated using the following functions, all of which 108 * require the spa_namespace_lock to be held. 109 * 110 * spa_lookup() Lookup a spa_t by name. 111 * 112 * spa_add() Create a new spa_t in the namespace. 113 * 114 * spa_remove() Remove a spa_t from the namespace. This also 115 * frees up any memory associated with the spa_t. 116 * 117 * spa_next() Returns the next spa_t in the system, or the 118 * first if NULL is passed. 119 * 120 * spa_evict_all() Shutdown and remove all spa_t structures in 121 * the system. 122 * 123 * spa_guid_exists() Determine whether a pool/device guid exists. 124 * 125 * The spa_refcount is manipulated using the following functions: 126 * 127 * spa_open_ref() Adds a reference to the given spa_t. Must be 128 * called with spa_namespace_lock held if the 129 * refcount is currently zero. 130 * 131 * spa_close() Remove a reference from the spa_t. This will 132 * not free the spa_t or remove it from the 133 * namespace. No locking is required. 134 * 135 * spa_refcount_zero() Returns true if the refcount is currently 136 * zero. Must be called with spa_namespace_lock 137 * held. 138 * 139 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 140 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 141 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 142 * 143 * To read the configuration, it suffices to hold one of these locks as reader. 144 * To modify the configuration, you must hold all locks as writer. To modify 145 * vdev state without altering the vdev tree's topology (e.g. online/offline), 146 * you must hold SCL_STATE and SCL_ZIO as writer. 147 * 148 * We use these distinct config locks to avoid recursive lock entry. 149 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 150 * block allocations (SCL_ALLOC), which may require reading space maps 151 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 152 * 153 * The spa config locks cannot be normal rwlocks because we need the 154 * ability to hand off ownership. For example, SCL_ZIO is acquired 155 * by the issuing thread and later released by an interrupt thread. 156 * They do, however, obey the usual write-wanted semantics to prevent 157 * writer (i.e. system administrator) starvation. 158 * 159 * The lock acquisition rules are as follows: 160 * 161 * SCL_CONFIG 162 * Protects changes to the vdev tree topology, such as vdev 163 * add/remove/attach/detach. Protects the dirty config list 164 * (spa_config_dirty_list) and the set of spares and l2arc devices. 165 * 166 * SCL_STATE 167 * Protects changes to pool state and vdev state, such as vdev 168 * online/offline/fault/degrade/clear. Protects the dirty state list 169 * (spa_state_dirty_list) and global pool state (spa_state). 170 * 171 * SCL_ALLOC 172 * Protects changes to metaslab groups and classes. 173 * Held as reader by metaslab_alloc() and metaslab_claim(). 174 * 175 * SCL_ZIO 176 * Held by bp-level zios (those which have no io_vd upon entry) 177 * to prevent changes to the vdev tree. The bp-level zio implicitly 178 * protects all of its vdev child zios, which do not hold SCL_ZIO. 179 * 180 * SCL_FREE 181 * Protects changes to metaslab groups and classes. 182 * Held as reader by metaslab_free(). SCL_FREE is distinct from 183 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 184 * blocks in zio_done() while another i/o that holds either 185 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 186 * 187 * SCL_VDEV 188 * Held as reader to prevent changes to the vdev tree during trivial 189 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 190 * other locks, and lower than all of them, to ensure that it's safe 191 * to acquire regardless of caller context. 192 * 193 * In addition, the following rules apply: 194 * 195 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 196 * The lock ordering is SCL_CONFIG > spa_props_lock. 197 * 198 * (b) I/O operations on leaf vdevs. For any zio operation that takes 199 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 200 * or zio_write_phys() -- the caller must ensure that the config cannot 201 * cannot change in the interim, and that the vdev cannot be reopened. 202 * SCL_STATE as reader suffices for both. 203 * 204 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 205 * 206 * spa_vdev_enter() Acquire the namespace lock and the config lock 207 * for writing. 208 * 209 * spa_vdev_exit() Release the config lock, wait for all I/O 210 * to complete, sync the updated configs to the 211 * cache, and release the namespace lock. 212 * 213 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 214 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 215 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 216 * 217 * spa_rename() is also implemented within this file since is requires 218 * manipulation of the namespace. 219 */ 220 221 static avl_tree_t spa_namespace_avl; 222 kmutex_t spa_namespace_lock; 223 static kcondvar_t spa_namespace_cv; 224 static int spa_active_count; 225 int spa_max_replication_override = SPA_DVAS_PER_BP; 226 227 static kmutex_t spa_spare_lock; 228 static avl_tree_t spa_spare_avl; 229 static kmutex_t spa_l2cache_lock; 230 static avl_tree_t spa_l2cache_avl; 231 232 kmem_cache_t *spa_buffer_pool; 233 int spa_mode_global; 234 235 #ifdef ZFS_DEBUG 236 /* Everything except dprintf is on by default in debug builds */ 237 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 238 #else 239 int zfs_flags = 0; 240 #endif 241 242 /* 243 * zfs_recover can be set to nonzero to attempt to recover from 244 * otherwise-fatal errors, typically caused by on-disk corruption. When 245 * set, calls to zfs_panic_recover() will turn into warning messages. 246 */ 247 int zfs_recover = 0; 248 249 250 /* 251 * ========================================================================== 252 * SPA config locking 253 * ========================================================================== 254 */ 255 static void 256 spa_config_lock_init(spa_t *spa) 257 { 258 for (int i = 0; i < SCL_LOCKS; i++) { 259 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 260 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 261 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 262 refcount_create(&scl->scl_count); 263 scl->scl_writer = NULL; 264 scl->scl_write_wanted = 0; 265 } 266 } 267 268 static void 269 spa_config_lock_destroy(spa_t *spa) 270 { 271 for (int i = 0; i < SCL_LOCKS; i++) { 272 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 273 mutex_destroy(&scl->scl_lock); 274 cv_destroy(&scl->scl_cv); 275 refcount_destroy(&scl->scl_count); 276 ASSERT(scl->scl_writer == NULL); 277 ASSERT(scl->scl_write_wanted == 0); 278 } 279 } 280 281 int 282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 283 { 284 for (int i = 0; i < SCL_LOCKS; i++) { 285 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 286 if (!(locks & (1 << i))) 287 continue; 288 mutex_enter(&scl->scl_lock); 289 if (rw == RW_READER) { 290 if (scl->scl_writer || scl->scl_write_wanted) { 291 mutex_exit(&scl->scl_lock); 292 spa_config_exit(spa, locks ^ (1 << i), tag); 293 return (0); 294 } 295 } else { 296 ASSERT(scl->scl_writer != curthread); 297 if (!refcount_is_zero(&scl->scl_count)) { 298 mutex_exit(&scl->scl_lock); 299 spa_config_exit(spa, locks ^ (1 << i), tag); 300 return (0); 301 } 302 scl->scl_writer = curthread; 303 } 304 (void) refcount_add(&scl->scl_count, tag); 305 mutex_exit(&scl->scl_lock); 306 } 307 return (1); 308 } 309 310 void 311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 312 { 313 int wlocks_held = 0; 314 315 for (int i = 0; i < SCL_LOCKS; i++) { 316 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 317 if (scl->scl_writer == curthread) 318 wlocks_held |= (1 << i); 319 if (!(locks & (1 << i))) 320 continue; 321 mutex_enter(&scl->scl_lock); 322 if (rw == RW_READER) { 323 while (scl->scl_writer || scl->scl_write_wanted) { 324 cv_wait(&scl->scl_cv, &scl->scl_lock); 325 } 326 } else { 327 ASSERT(scl->scl_writer != curthread); 328 while (!refcount_is_zero(&scl->scl_count)) { 329 scl->scl_write_wanted++; 330 cv_wait(&scl->scl_cv, &scl->scl_lock); 331 scl->scl_write_wanted--; 332 } 333 scl->scl_writer = curthread; 334 } 335 (void) refcount_add(&scl->scl_count, tag); 336 mutex_exit(&scl->scl_lock); 337 } 338 ASSERT(wlocks_held <= locks); 339 } 340 341 void 342 spa_config_exit(spa_t *spa, int locks, void *tag) 343 { 344 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 345 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 346 if (!(locks & (1 << i))) 347 continue; 348 mutex_enter(&scl->scl_lock); 349 ASSERT(!refcount_is_zero(&scl->scl_count)); 350 if (refcount_remove(&scl->scl_count, tag) == 0) { 351 ASSERT(scl->scl_writer == NULL || 352 scl->scl_writer == curthread); 353 scl->scl_writer = NULL; /* OK in either case */ 354 cv_broadcast(&scl->scl_cv); 355 } 356 mutex_exit(&scl->scl_lock); 357 } 358 } 359 360 int 361 spa_config_held(spa_t *spa, int locks, krw_t rw) 362 { 363 int locks_held = 0; 364 365 for (int i = 0; i < SCL_LOCKS; i++) { 366 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 367 if (!(locks & (1 << i))) 368 continue; 369 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 370 (rw == RW_WRITER && scl->scl_writer == curthread)) 371 locks_held |= 1 << i; 372 } 373 374 return (locks_held); 375 } 376 377 /* 378 * ========================================================================== 379 * SPA namespace functions 380 * ========================================================================== 381 */ 382 383 /* 384 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 385 * Returns NULL if no matching spa_t is found. 386 */ 387 spa_t * 388 spa_lookup(const char *name) 389 { 390 static spa_t search; /* spa_t is large; don't allocate on stack */ 391 spa_t *spa; 392 avl_index_t where; 393 char c; 394 char *cp; 395 396 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 397 398 /* 399 * If it's a full dataset name, figure out the pool name and 400 * just use that. 401 */ 402 cp = strpbrk(name, "/@"); 403 if (cp) { 404 c = *cp; 405 *cp = '\0'; 406 } 407 408 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 409 spa = avl_find(&spa_namespace_avl, &search, &where); 410 411 if (cp) 412 *cp = c; 413 414 return (spa); 415 } 416 417 /* 418 * Create an uninitialized spa_t with the given name. Requires 419 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 420 * exist by calling spa_lookup() first. 421 */ 422 spa_t * 423 spa_add(const char *name, nvlist_t *config, const char *altroot) 424 { 425 spa_t *spa; 426 spa_config_dirent_t *dp; 427 428 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 429 430 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 431 432 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 433 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 434 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 435 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 436 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 437 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 438 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 439 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 440 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 441 442 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 443 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 444 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 445 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 446 447 for (int t = 0; t < TXG_SIZE; t++) 448 bplist_init(&spa->spa_free_bplist[t]); 449 bplist_init(&spa->spa_deferred_bplist); 450 451 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 452 spa->spa_state = POOL_STATE_UNINITIALIZED; 453 spa->spa_freeze_txg = UINT64_MAX; 454 spa->spa_final_txg = UINT64_MAX; 455 spa->spa_load_max_txg = UINT64_MAX; 456 spa->spa_proc = &p0; 457 spa->spa_proc_state = SPA_PROC_NONE; 458 459 refcount_create(&spa->spa_refcount); 460 spa_config_lock_init(spa); 461 462 avl_add(&spa_namespace_avl, spa); 463 464 /* 465 * Set the alternate root, if there is one. 466 */ 467 if (altroot) { 468 spa->spa_root = spa_strdup(altroot); 469 spa_active_count++; 470 } 471 472 /* 473 * Every pool starts with the default cachefile 474 */ 475 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 476 offsetof(spa_config_dirent_t, scd_link)); 477 478 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 479 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 480 list_insert_head(&spa->spa_config_list, dp); 481 482 if (config != NULL) 483 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 484 485 return (spa); 486 } 487 488 /* 489 * Removes a spa_t from the namespace, freeing up any memory used. Requires 490 * spa_namespace_lock. This is called only after the spa_t has been closed and 491 * deactivated. 492 */ 493 void 494 spa_remove(spa_t *spa) 495 { 496 spa_config_dirent_t *dp; 497 498 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 499 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 500 501 nvlist_free(spa->spa_config_splitting); 502 503 avl_remove(&spa_namespace_avl, spa); 504 cv_broadcast(&spa_namespace_cv); 505 506 if (spa->spa_root) { 507 spa_strfree(spa->spa_root); 508 spa_active_count--; 509 } 510 511 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 512 list_remove(&spa->spa_config_list, dp); 513 if (dp->scd_path != NULL) 514 spa_strfree(dp->scd_path); 515 kmem_free(dp, sizeof (spa_config_dirent_t)); 516 } 517 518 list_destroy(&spa->spa_config_list); 519 520 spa_config_set(spa, NULL); 521 522 refcount_destroy(&spa->spa_refcount); 523 524 spa_config_lock_destroy(spa); 525 526 for (int t = 0; t < TXG_SIZE; t++) 527 bplist_fini(&spa->spa_free_bplist[t]); 528 bplist_fini(&spa->spa_deferred_bplist); 529 530 cv_destroy(&spa->spa_async_cv); 531 cv_destroy(&spa->spa_proc_cv); 532 cv_destroy(&spa->spa_scrub_io_cv); 533 cv_destroy(&spa->spa_suspend_cv); 534 535 mutex_destroy(&spa->spa_async_lock); 536 mutex_destroy(&spa->spa_errlist_lock); 537 mutex_destroy(&spa->spa_errlog_lock); 538 mutex_destroy(&spa->spa_history_lock); 539 mutex_destroy(&spa->spa_proc_lock); 540 mutex_destroy(&spa->spa_props_lock); 541 mutex_destroy(&spa->spa_scrub_lock); 542 mutex_destroy(&spa->spa_suspend_lock); 543 mutex_destroy(&spa->spa_vdev_top_lock); 544 545 kmem_free(spa, sizeof (spa_t)); 546 } 547 548 /* 549 * Given a pool, return the next pool in the namespace, or NULL if there is 550 * none. If 'prev' is NULL, return the first pool. 551 */ 552 spa_t * 553 spa_next(spa_t *prev) 554 { 555 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 556 557 if (prev) 558 return (AVL_NEXT(&spa_namespace_avl, prev)); 559 else 560 return (avl_first(&spa_namespace_avl)); 561 } 562 563 /* 564 * ========================================================================== 565 * SPA refcount functions 566 * ========================================================================== 567 */ 568 569 /* 570 * Add a reference to the given spa_t. Must have at least one reference, or 571 * have the namespace lock held. 572 */ 573 void 574 spa_open_ref(spa_t *spa, void *tag) 575 { 576 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 577 MUTEX_HELD(&spa_namespace_lock)); 578 (void) refcount_add(&spa->spa_refcount, tag); 579 } 580 581 /* 582 * Remove a reference to the given spa_t. Must have at least one reference, or 583 * have the namespace lock held. 584 */ 585 void 586 spa_close(spa_t *spa, void *tag) 587 { 588 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 589 MUTEX_HELD(&spa_namespace_lock)); 590 (void) refcount_remove(&spa->spa_refcount, tag); 591 } 592 593 /* 594 * Check to see if the spa refcount is zero. Must be called with 595 * spa_namespace_lock held. We really compare against spa_minref, which is the 596 * number of references acquired when opening a pool 597 */ 598 boolean_t 599 spa_refcount_zero(spa_t *spa) 600 { 601 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 602 603 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 604 } 605 606 /* 607 * ========================================================================== 608 * SPA spare and l2cache tracking 609 * ========================================================================== 610 */ 611 612 /* 613 * Hot spares and cache devices are tracked using the same code below, 614 * for 'auxiliary' devices. 615 */ 616 617 typedef struct spa_aux { 618 uint64_t aux_guid; 619 uint64_t aux_pool; 620 avl_node_t aux_avl; 621 int aux_count; 622 } spa_aux_t; 623 624 static int 625 spa_aux_compare(const void *a, const void *b) 626 { 627 const spa_aux_t *sa = a; 628 const spa_aux_t *sb = b; 629 630 if (sa->aux_guid < sb->aux_guid) 631 return (-1); 632 else if (sa->aux_guid > sb->aux_guid) 633 return (1); 634 else 635 return (0); 636 } 637 638 void 639 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 640 { 641 avl_index_t where; 642 spa_aux_t search; 643 spa_aux_t *aux; 644 645 search.aux_guid = vd->vdev_guid; 646 if ((aux = avl_find(avl, &search, &where)) != NULL) { 647 aux->aux_count++; 648 } else { 649 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 650 aux->aux_guid = vd->vdev_guid; 651 aux->aux_count = 1; 652 avl_insert(avl, aux, where); 653 } 654 } 655 656 void 657 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 658 { 659 spa_aux_t search; 660 spa_aux_t *aux; 661 avl_index_t where; 662 663 search.aux_guid = vd->vdev_guid; 664 aux = avl_find(avl, &search, &where); 665 666 ASSERT(aux != NULL); 667 668 if (--aux->aux_count == 0) { 669 avl_remove(avl, aux); 670 kmem_free(aux, sizeof (spa_aux_t)); 671 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 672 aux->aux_pool = 0ULL; 673 } 674 } 675 676 boolean_t 677 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 678 { 679 spa_aux_t search, *found; 680 681 search.aux_guid = guid; 682 found = avl_find(avl, &search, NULL); 683 684 if (pool) { 685 if (found) 686 *pool = found->aux_pool; 687 else 688 *pool = 0ULL; 689 } 690 691 if (refcnt) { 692 if (found) 693 *refcnt = found->aux_count; 694 else 695 *refcnt = 0; 696 } 697 698 return (found != NULL); 699 } 700 701 void 702 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 703 { 704 spa_aux_t search, *found; 705 avl_index_t where; 706 707 search.aux_guid = vd->vdev_guid; 708 found = avl_find(avl, &search, &where); 709 ASSERT(found != NULL); 710 ASSERT(found->aux_pool == 0ULL); 711 712 found->aux_pool = spa_guid(vd->vdev_spa); 713 } 714 715 /* 716 * Spares are tracked globally due to the following constraints: 717 * 718 * - A spare may be part of multiple pools. 719 * - A spare may be added to a pool even if it's actively in use within 720 * another pool. 721 * - A spare in use in any pool can only be the source of a replacement if 722 * the target is a spare in the same pool. 723 * 724 * We keep track of all spares on the system through the use of a reference 725 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 726 * spare, then we bump the reference count in the AVL tree. In addition, we set 727 * the 'vdev_isspare' member to indicate that the device is a spare (active or 728 * inactive). When a spare is made active (used to replace a device in the 729 * pool), we also keep track of which pool its been made a part of. 730 * 731 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 732 * called under the spa_namespace lock as part of vdev reconfiguration. The 733 * separate spare lock exists for the status query path, which does not need to 734 * be completely consistent with respect to other vdev configuration changes. 735 */ 736 737 static int 738 spa_spare_compare(const void *a, const void *b) 739 { 740 return (spa_aux_compare(a, b)); 741 } 742 743 void 744 spa_spare_add(vdev_t *vd) 745 { 746 mutex_enter(&spa_spare_lock); 747 ASSERT(!vd->vdev_isspare); 748 spa_aux_add(vd, &spa_spare_avl); 749 vd->vdev_isspare = B_TRUE; 750 mutex_exit(&spa_spare_lock); 751 } 752 753 void 754 spa_spare_remove(vdev_t *vd) 755 { 756 mutex_enter(&spa_spare_lock); 757 ASSERT(vd->vdev_isspare); 758 spa_aux_remove(vd, &spa_spare_avl); 759 vd->vdev_isspare = B_FALSE; 760 mutex_exit(&spa_spare_lock); 761 } 762 763 boolean_t 764 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 765 { 766 boolean_t found; 767 768 mutex_enter(&spa_spare_lock); 769 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 770 mutex_exit(&spa_spare_lock); 771 772 return (found); 773 } 774 775 void 776 spa_spare_activate(vdev_t *vd) 777 { 778 mutex_enter(&spa_spare_lock); 779 ASSERT(vd->vdev_isspare); 780 spa_aux_activate(vd, &spa_spare_avl); 781 mutex_exit(&spa_spare_lock); 782 } 783 784 /* 785 * Level 2 ARC devices are tracked globally for the same reasons as spares. 786 * Cache devices currently only support one pool per cache device, and so 787 * for these devices the aux reference count is currently unused beyond 1. 788 */ 789 790 static int 791 spa_l2cache_compare(const void *a, const void *b) 792 { 793 return (spa_aux_compare(a, b)); 794 } 795 796 void 797 spa_l2cache_add(vdev_t *vd) 798 { 799 mutex_enter(&spa_l2cache_lock); 800 ASSERT(!vd->vdev_isl2cache); 801 spa_aux_add(vd, &spa_l2cache_avl); 802 vd->vdev_isl2cache = B_TRUE; 803 mutex_exit(&spa_l2cache_lock); 804 } 805 806 void 807 spa_l2cache_remove(vdev_t *vd) 808 { 809 mutex_enter(&spa_l2cache_lock); 810 ASSERT(vd->vdev_isl2cache); 811 spa_aux_remove(vd, &spa_l2cache_avl); 812 vd->vdev_isl2cache = B_FALSE; 813 mutex_exit(&spa_l2cache_lock); 814 } 815 816 boolean_t 817 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 818 { 819 boolean_t found; 820 821 mutex_enter(&spa_l2cache_lock); 822 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 823 mutex_exit(&spa_l2cache_lock); 824 825 return (found); 826 } 827 828 void 829 spa_l2cache_activate(vdev_t *vd) 830 { 831 mutex_enter(&spa_l2cache_lock); 832 ASSERT(vd->vdev_isl2cache); 833 spa_aux_activate(vd, &spa_l2cache_avl); 834 mutex_exit(&spa_l2cache_lock); 835 } 836 837 /* 838 * ========================================================================== 839 * SPA vdev locking 840 * ========================================================================== 841 */ 842 843 /* 844 * Lock the given spa_t for the purpose of adding or removing a vdev. 845 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 846 * It returns the next transaction group for the spa_t. 847 */ 848 uint64_t 849 spa_vdev_enter(spa_t *spa) 850 { 851 mutex_enter(&spa->spa_vdev_top_lock); 852 mutex_enter(&spa_namespace_lock); 853 return (spa_vdev_config_enter(spa)); 854 } 855 856 /* 857 * Internal implementation for spa_vdev_enter(). Used when a vdev 858 * operation requires multiple syncs (i.e. removing a device) while 859 * keeping the spa_namespace_lock held. 860 */ 861 uint64_t 862 spa_vdev_config_enter(spa_t *spa) 863 { 864 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 865 866 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 867 868 return (spa_last_synced_txg(spa) + 1); 869 } 870 871 /* 872 * Used in combination with spa_vdev_config_enter() to allow the syncing 873 * of multiple transactions without releasing the spa_namespace_lock. 874 */ 875 void 876 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 877 { 878 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 879 880 int config_changed = B_FALSE; 881 882 ASSERT(txg > spa_last_synced_txg(spa)); 883 884 spa->spa_pending_vdev = NULL; 885 886 /* 887 * Reassess the DTLs. 888 */ 889 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 890 891 /* 892 * If the config changed, notify the scrub thread that it must restart. 893 */ 894 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 895 dsl_pool_scrub_restart(spa->spa_dsl_pool); 896 config_changed = B_TRUE; 897 spa->spa_config_generation++; 898 } 899 900 /* 901 * Verify the metaslab classes. 902 */ 903 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 904 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 905 906 spa_config_exit(spa, SCL_ALL, spa); 907 908 /* 909 * Panic the system if the specified tag requires it. This 910 * is useful for ensuring that configurations are updated 911 * transactionally. 912 */ 913 if (zio_injection_enabled) 914 zio_handle_panic_injection(spa, tag, 0); 915 916 /* 917 * Note: this txg_wait_synced() is important because it ensures 918 * that there won't be more than one config change per txg. 919 * This allows us to use the txg as the generation number. 920 */ 921 if (error == 0) 922 txg_wait_synced(spa->spa_dsl_pool, txg); 923 924 if (vd != NULL) { 925 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0); 926 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 927 vdev_free(vd); 928 spa_config_exit(spa, SCL_ALL, spa); 929 } 930 931 /* 932 * If the config changed, update the config cache. 933 */ 934 if (config_changed) 935 spa_config_sync(spa, B_FALSE, B_TRUE); 936 } 937 938 /* 939 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 940 * locking of spa_vdev_enter(), we also want make sure the transactions have 941 * synced to disk, and then update the global configuration cache with the new 942 * information. 943 */ 944 int 945 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 946 { 947 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 948 mutex_exit(&spa_namespace_lock); 949 mutex_exit(&spa->spa_vdev_top_lock); 950 951 return (error); 952 } 953 954 /* 955 * Lock the given spa_t for the purpose of changing vdev state. 956 */ 957 void 958 spa_vdev_state_enter(spa_t *spa, int oplocks) 959 { 960 int locks = SCL_STATE_ALL | oplocks; 961 962 /* 963 * Root pools may need to read of the underlying devfs filesystem 964 * when opening up a vdev. Unfortunately if we're holding the 965 * SCL_ZIO lock it will result in a deadlock when we try to issue 966 * the read from the root filesystem. Instead we "prefetch" 967 * the associated vnodes that we need prior to opening the 968 * underlying devices and cache them so that we can prevent 969 * any I/O when we are doing the actual open. 970 */ 971 if (spa_is_root(spa)) { 972 spa_config_enter(spa, SCL_STATE | SCL_L2ARC, spa, RW_WRITER); 973 vdev_hold(spa->spa_root_vdev); 974 spa_config_enter(spa, SCL_ZIO | oplocks, spa, RW_WRITER); 975 } else { 976 spa_config_enter(spa, locks, spa, RW_WRITER); 977 } 978 spa->spa_vdev_locks = locks; 979 } 980 981 int 982 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 983 { 984 boolean_t config_changed = B_FALSE; 985 986 if (vd != NULL || error == 0) 987 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 988 0, 0, B_FALSE); 989 990 if (vd != NULL) { 991 vdev_state_dirty(vd->vdev_top); 992 config_changed = B_TRUE; 993 spa->spa_config_generation++; 994 } 995 996 if (spa_is_root(spa)) 997 vdev_rele(spa->spa_root_vdev); 998 999 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1000 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1001 1002 /* 1003 * If anything changed, wait for it to sync. This ensures that, 1004 * from the system administrator's perspective, zpool(1M) commands 1005 * are synchronous. This is important for things like zpool offline: 1006 * when the command completes, you expect no further I/O from ZFS. 1007 */ 1008 if (vd != NULL) 1009 txg_wait_synced(spa->spa_dsl_pool, 0); 1010 1011 /* 1012 * If the config changed, update the config cache. 1013 */ 1014 if (config_changed) { 1015 mutex_enter(&spa_namespace_lock); 1016 spa_config_sync(spa, B_FALSE, B_TRUE); 1017 mutex_exit(&spa_namespace_lock); 1018 } 1019 1020 return (error); 1021 } 1022 1023 /* 1024 * ========================================================================== 1025 * Miscellaneous functions 1026 * ========================================================================== 1027 */ 1028 1029 /* 1030 * Rename a spa_t. 1031 */ 1032 int 1033 spa_rename(const char *name, const char *newname) 1034 { 1035 spa_t *spa; 1036 int err; 1037 1038 /* 1039 * Lookup the spa_t and grab the config lock for writing. We need to 1040 * actually open the pool so that we can sync out the necessary labels. 1041 * It's OK to call spa_open() with the namespace lock held because we 1042 * allow recursive calls for other reasons. 1043 */ 1044 mutex_enter(&spa_namespace_lock); 1045 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1046 mutex_exit(&spa_namespace_lock); 1047 return (err); 1048 } 1049 1050 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1051 1052 avl_remove(&spa_namespace_avl, spa); 1053 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1054 avl_add(&spa_namespace_avl, spa); 1055 1056 /* 1057 * Sync all labels to disk with the new names by marking the root vdev 1058 * dirty and waiting for it to sync. It will pick up the new pool name 1059 * during the sync. 1060 */ 1061 vdev_config_dirty(spa->spa_root_vdev); 1062 1063 spa_config_exit(spa, SCL_ALL, FTAG); 1064 1065 txg_wait_synced(spa->spa_dsl_pool, 0); 1066 1067 /* 1068 * Sync the updated config cache. 1069 */ 1070 spa_config_sync(spa, B_FALSE, B_TRUE); 1071 1072 spa_close(spa, FTAG); 1073 1074 mutex_exit(&spa_namespace_lock); 1075 1076 return (0); 1077 } 1078 1079 1080 /* 1081 * Determine whether a pool with given pool_guid exists. If device_guid is 1082 * non-zero, determine whether the pool exists *and* contains a device with the 1083 * specified device_guid. 1084 */ 1085 boolean_t 1086 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1087 { 1088 spa_t *spa; 1089 avl_tree_t *t = &spa_namespace_avl; 1090 1091 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1092 1093 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1094 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1095 continue; 1096 if (spa->spa_root_vdev == NULL) 1097 continue; 1098 if (spa_guid(spa) == pool_guid) { 1099 if (device_guid == 0) 1100 break; 1101 1102 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1103 device_guid) != NULL) 1104 break; 1105 1106 /* 1107 * Check any devices we may be in the process of adding. 1108 */ 1109 if (spa->spa_pending_vdev) { 1110 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1111 device_guid) != NULL) 1112 break; 1113 } 1114 } 1115 } 1116 1117 return (spa != NULL); 1118 } 1119 1120 char * 1121 spa_strdup(const char *s) 1122 { 1123 size_t len; 1124 char *new; 1125 1126 len = strlen(s); 1127 new = kmem_alloc(len + 1, KM_SLEEP); 1128 bcopy(s, new, len); 1129 new[len] = '\0'; 1130 1131 return (new); 1132 } 1133 1134 void 1135 spa_strfree(char *s) 1136 { 1137 kmem_free(s, strlen(s) + 1); 1138 } 1139 1140 uint64_t 1141 spa_get_random(uint64_t range) 1142 { 1143 uint64_t r; 1144 1145 ASSERT(range != 0); 1146 1147 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1148 1149 return (r % range); 1150 } 1151 1152 uint64_t 1153 spa_generate_guid(spa_t *spa) 1154 { 1155 uint64_t guid = spa_get_random(-1ULL); 1156 1157 if (spa != NULL) { 1158 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1159 guid = spa_get_random(-1ULL); 1160 } else { 1161 while (guid == 0 || spa_guid_exists(guid, 0)) 1162 guid = spa_get_random(-1ULL); 1163 } 1164 1165 return (guid); 1166 } 1167 1168 void 1169 sprintf_blkptr(char *buf, const blkptr_t *bp) 1170 { 1171 char *type = NULL; 1172 char *checksum = NULL; 1173 char *compress = NULL; 1174 1175 if (bp != NULL) { 1176 type = dmu_ot[BP_GET_TYPE(bp)].ot_name; 1177 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1178 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1179 } 1180 1181 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress); 1182 } 1183 1184 void 1185 spa_freeze(spa_t *spa) 1186 { 1187 uint64_t freeze_txg = 0; 1188 1189 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1190 if (spa->spa_freeze_txg == UINT64_MAX) { 1191 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1192 spa->spa_freeze_txg = freeze_txg; 1193 } 1194 spa_config_exit(spa, SCL_ALL, FTAG); 1195 if (freeze_txg != 0) 1196 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1197 } 1198 1199 void 1200 zfs_panic_recover(const char *fmt, ...) 1201 { 1202 va_list adx; 1203 1204 va_start(adx, fmt); 1205 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1206 va_end(adx); 1207 } 1208 1209 /* 1210 * ========================================================================== 1211 * Accessor functions 1212 * ========================================================================== 1213 */ 1214 1215 boolean_t 1216 spa_shutting_down(spa_t *spa) 1217 { 1218 return (spa->spa_async_suspended); 1219 } 1220 1221 dsl_pool_t * 1222 spa_get_dsl(spa_t *spa) 1223 { 1224 return (spa->spa_dsl_pool); 1225 } 1226 1227 blkptr_t * 1228 spa_get_rootblkptr(spa_t *spa) 1229 { 1230 return (&spa->spa_ubsync.ub_rootbp); 1231 } 1232 1233 void 1234 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1235 { 1236 spa->spa_uberblock.ub_rootbp = *bp; 1237 } 1238 1239 void 1240 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1241 { 1242 if (spa->spa_root == NULL) 1243 buf[0] = '\0'; 1244 else 1245 (void) strncpy(buf, spa->spa_root, buflen); 1246 } 1247 1248 int 1249 spa_sync_pass(spa_t *spa) 1250 { 1251 return (spa->spa_sync_pass); 1252 } 1253 1254 char * 1255 spa_name(spa_t *spa) 1256 { 1257 return (spa->spa_name); 1258 } 1259 1260 uint64_t 1261 spa_guid(spa_t *spa) 1262 { 1263 /* 1264 * If we fail to parse the config during spa_load(), we can go through 1265 * the error path (which posts an ereport) and end up here with no root 1266 * vdev. We stash the original pool guid in 'spa_load_guid' to handle 1267 * this case. 1268 */ 1269 if (spa->spa_root_vdev != NULL) 1270 return (spa->spa_root_vdev->vdev_guid); 1271 else 1272 return (spa->spa_load_guid); 1273 } 1274 1275 uint64_t 1276 spa_last_synced_txg(spa_t *spa) 1277 { 1278 return (spa->spa_ubsync.ub_txg); 1279 } 1280 1281 uint64_t 1282 spa_first_txg(spa_t *spa) 1283 { 1284 return (spa->spa_first_txg); 1285 } 1286 1287 uint64_t 1288 spa_syncing_txg(spa_t *spa) 1289 { 1290 return (spa->spa_syncing_txg); 1291 } 1292 1293 pool_state_t 1294 spa_state(spa_t *spa) 1295 { 1296 return (spa->spa_state); 1297 } 1298 1299 spa_load_state_t 1300 spa_load_state(spa_t *spa) 1301 { 1302 return (spa->spa_load_state); 1303 } 1304 1305 uint64_t 1306 spa_freeze_txg(spa_t *spa) 1307 { 1308 return (spa->spa_freeze_txg); 1309 } 1310 1311 /* ARGSUSED */ 1312 uint64_t 1313 spa_get_asize(spa_t *spa, uint64_t lsize) 1314 { 1315 /* 1316 * The worst case is single-sector max-parity RAID-Z blocks, in which 1317 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 1318 * times the size; so just assume that. Add to this the fact that 1319 * we can have up to 3 DVAs per bp, and one more factor of 2 because 1320 * the block may be dittoed with up to 3 DVAs by ddt_sync(). 1321 */ 1322 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2); 1323 } 1324 1325 uint64_t 1326 spa_get_dspace(spa_t *spa) 1327 { 1328 return (spa->spa_dspace); 1329 } 1330 1331 void 1332 spa_update_dspace(spa_t *spa) 1333 { 1334 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1335 ddt_get_dedup_dspace(spa); 1336 } 1337 1338 /* 1339 * Return the failure mode that has been set to this pool. The default 1340 * behavior will be to block all I/Os when a complete failure occurs. 1341 */ 1342 uint8_t 1343 spa_get_failmode(spa_t *spa) 1344 { 1345 return (spa->spa_failmode); 1346 } 1347 1348 boolean_t 1349 spa_suspended(spa_t *spa) 1350 { 1351 return (spa->spa_suspended); 1352 } 1353 1354 uint64_t 1355 spa_version(spa_t *spa) 1356 { 1357 return (spa->spa_ubsync.ub_version); 1358 } 1359 1360 boolean_t 1361 spa_deflate(spa_t *spa) 1362 { 1363 return (spa->spa_deflate); 1364 } 1365 1366 metaslab_class_t * 1367 spa_normal_class(spa_t *spa) 1368 { 1369 return (spa->spa_normal_class); 1370 } 1371 1372 metaslab_class_t * 1373 spa_log_class(spa_t *spa) 1374 { 1375 return (spa->spa_log_class); 1376 } 1377 1378 int 1379 spa_max_replication(spa_t *spa) 1380 { 1381 /* 1382 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1383 * handle BPs with more than one DVA allocated. Set our max 1384 * replication level accordingly. 1385 */ 1386 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1387 return (1); 1388 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1389 } 1390 1391 uint64_t 1392 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1393 { 1394 uint64_t asize = DVA_GET_ASIZE(dva); 1395 uint64_t dsize = asize; 1396 1397 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1398 1399 if (asize != 0 && spa->spa_deflate) { 1400 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1401 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1402 } 1403 1404 return (dsize); 1405 } 1406 1407 uint64_t 1408 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1409 { 1410 uint64_t dsize = 0; 1411 1412 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1413 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1414 1415 return (dsize); 1416 } 1417 1418 uint64_t 1419 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1420 { 1421 uint64_t dsize = 0; 1422 1423 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1424 1425 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1426 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1427 1428 spa_config_exit(spa, SCL_VDEV, FTAG); 1429 1430 return (dsize); 1431 } 1432 1433 /* 1434 * ========================================================================== 1435 * Initialization and Termination 1436 * ========================================================================== 1437 */ 1438 1439 static int 1440 spa_name_compare(const void *a1, const void *a2) 1441 { 1442 const spa_t *s1 = a1; 1443 const spa_t *s2 = a2; 1444 int s; 1445 1446 s = strcmp(s1->spa_name, s2->spa_name); 1447 if (s > 0) 1448 return (1); 1449 if (s < 0) 1450 return (-1); 1451 return (0); 1452 } 1453 1454 int 1455 spa_busy(void) 1456 { 1457 return (spa_active_count); 1458 } 1459 1460 void 1461 spa_boot_init() 1462 { 1463 spa_config_load(); 1464 } 1465 1466 void 1467 spa_init(int mode) 1468 { 1469 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1470 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1471 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1472 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1473 1474 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1475 offsetof(spa_t, spa_avl)); 1476 1477 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1478 offsetof(spa_aux_t, aux_avl)); 1479 1480 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1481 offsetof(spa_aux_t, aux_avl)); 1482 1483 spa_mode_global = mode; 1484 1485 refcount_init(); 1486 unique_init(); 1487 zio_init(); 1488 dmu_init(); 1489 zil_init(); 1490 vdev_cache_stat_init(); 1491 zfs_prop_init(); 1492 zpool_prop_init(); 1493 spa_config_load(); 1494 l2arc_start(); 1495 } 1496 1497 void 1498 spa_fini(void) 1499 { 1500 l2arc_stop(); 1501 1502 spa_evict_all(); 1503 1504 vdev_cache_stat_fini(); 1505 zil_fini(); 1506 dmu_fini(); 1507 zio_fini(); 1508 unique_fini(); 1509 refcount_fini(); 1510 1511 avl_destroy(&spa_namespace_avl); 1512 avl_destroy(&spa_spare_avl); 1513 avl_destroy(&spa_l2cache_avl); 1514 1515 cv_destroy(&spa_namespace_cv); 1516 mutex_destroy(&spa_namespace_lock); 1517 mutex_destroy(&spa_spare_lock); 1518 mutex_destroy(&spa_l2cache_lock); 1519 } 1520 1521 /* 1522 * Return whether this pool has slogs. No locking needed. 1523 * It's not a problem if the wrong answer is returned as it's only for 1524 * performance and not correctness 1525 */ 1526 boolean_t 1527 spa_has_slogs(spa_t *spa) 1528 { 1529 return (spa->spa_log_class->mc_rotor != NULL); 1530 } 1531 1532 spa_log_state_t 1533 spa_get_log_state(spa_t *spa) 1534 { 1535 return (spa->spa_log_state); 1536 } 1537 1538 void 1539 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1540 { 1541 spa->spa_log_state = state; 1542 } 1543 1544 boolean_t 1545 spa_is_root(spa_t *spa) 1546 { 1547 return (spa->spa_is_root); 1548 } 1549 1550 boolean_t 1551 spa_writeable(spa_t *spa) 1552 { 1553 return (!!(spa->spa_mode & FWRITE)); 1554 } 1555 1556 int 1557 spa_mode(spa_t *spa) 1558 { 1559 return (spa->spa_mode); 1560 } 1561 1562 uint64_t 1563 spa_bootfs(spa_t *spa) 1564 { 1565 return (spa->spa_bootfs); 1566 } 1567 1568 uint64_t 1569 spa_delegation(spa_t *spa) 1570 { 1571 return (spa->spa_delegation); 1572 } 1573 1574 objset_t * 1575 spa_meta_objset(spa_t *spa) 1576 { 1577 return (spa->spa_meta_objset); 1578 } 1579 1580 enum zio_checksum 1581 spa_dedup_checksum(spa_t *spa) 1582 { 1583 return (spa->spa_dedup_checksum); 1584 } 1585