xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision cbc1abb4d4821ea30c4fe7712e0ada83b25b0151)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright (c) 2017 Datto Inc.
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/txg.h>
45 #include <sys/avl.h>
46 #include <sys/unique.h>
47 #include <sys/dsl_pool.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/arc.h>
54 #include <sys/ddt.h>
55 #include "zfs_prop.h"
56 #include <sys/zfeature.h>
57 
58 /*
59  * SPA locking
60  *
61  * There are four basic locks for managing spa_t structures:
62  *
63  * spa_namespace_lock (global mutex)
64  *
65  *	This lock must be acquired to do any of the following:
66  *
67  *		- Lookup a spa_t by name
68  *		- Add or remove a spa_t from the namespace
69  *		- Increase spa_refcount from non-zero
70  *		- Check if spa_refcount is zero
71  *		- Rename a spa_t
72  *		- add/remove/attach/detach devices
73  *		- Held for the duration of create/destroy/import/export
74  *
75  *	It does not need to handle recursion.  A create or destroy may
76  *	reference objects (files or zvols) in other pools, but by
77  *	definition they must have an existing reference, and will never need
78  *	to lookup a spa_t by name.
79  *
80  * spa_refcount (per-spa refcount_t protected by mutex)
81  *
82  *	This reference count keep track of any active users of the spa_t.  The
83  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
84  *	the refcount is never really 'zero' - opening a pool implicitly keeps
85  *	some references in the DMU.  Internally we check against spa_minref, but
86  *	present the image of a zero/non-zero value to consumers.
87  *
88  * spa_config_lock[] (per-spa array of rwlocks)
89  *
90  *	This protects the spa_t from config changes, and must be held in
91  *	the following circumstances:
92  *
93  *		- RW_READER to perform I/O to the spa
94  *		- RW_WRITER to change the vdev config
95  *
96  * The locking order is fairly straightforward:
97  *
98  *		spa_namespace_lock	->	spa_refcount
99  *
100  *	The namespace lock must be acquired to increase the refcount from 0
101  *	or to check if it is zero.
102  *
103  *		spa_refcount		->	spa_config_lock[]
104  *
105  *	There must be at least one valid reference on the spa_t to acquire
106  *	the config lock.
107  *
108  *		spa_namespace_lock	->	spa_config_lock[]
109  *
110  *	The namespace lock must always be taken before the config lock.
111  *
112  *
113  * The spa_namespace_lock can be acquired directly and is globally visible.
114  *
115  * The namespace is manipulated using the following functions, all of which
116  * require the spa_namespace_lock to be held.
117  *
118  *	spa_lookup()		Lookup a spa_t by name.
119  *
120  *	spa_add()		Create a new spa_t in the namespace.
121  *
122  *	spa_remove()		Remove a spa_t from the namespace.  This also
123  *				frees up any memory associated with the spa_t.
124  *
125  *	spa_next()		Returns the next spa_t in the system, or the
126  *				first if NULL is passed.
127  *
128  *	spa_evict_all()		Shutdown and remove all spa_t structures in
129  *				the system.
130  *
131  *	spa_guid_exists()	Determine whether a pool/device guid exists.
132  *
133  * The spa_refcount is manipulated using the following functions:
134  *
135  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
136  *				called with spa_namespace_lock held if the
137  *				refcount is currently zero.
138  *
139  *	spa_close()		Remove a reference from the spa_t.  This will
140  *				not free the spa_t or remove it from the
141  *				namespace.  No locking is required.
142  *
143  *	spa_refcount_zero()	Returns true if the refcount is currently
144  *				zero.  Must be called with spa_namespace_lock
145  *				held.
146  *
147  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
148  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
149  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
150  *
151  * To read the configuration, it suffices to hold one of these locks as reader.
152  * To modify the configuration, you must hold all locks as writer.  To modify
153  * vdev state without altering the vdev tree's topology (e.g. online/offline),
154  * you must hold SCL_STATE and SCL_ZIO as writer.
155  *
156  * We use these distinct config locks to avoid recursive lock entry.
157  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
158  * block allocations (SCL_ALLOC), which may require reading space maps
159  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
160  *
161  * The spa config locks cannot be normal rwlocks because we need the
162  * ability to hand off ownership.  For example, SCL_ZIO is acquired
163  * by the issuing thread and later released by an interrupt thread.
164  * They do, however, obey the usual write-wanted semantics to prevent
165  * writer (i.e. system administrator) starvation.
166  *
167  * The lock acquisition rules are as follows:
168  *
169  * SCL_CONFIG
170  *	Protects changes to the vdev tree topology, such as vdev
171  *	add/remove/attach/detach.  Protects the dirty config list
172  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
173  *
174  * SCL_STATE
175  *	Protects changes to pool state and vdev state, such as vdev
176  *	online/offline/fault/degrade/clear.  Protects the dirty state list
177  *	(spa_state_dirty_list) and global pool state (spa_state).
178  *
179  * SCL_ALLOC
180  *	Protects changes to metaslab groups and classes.
181  *	Held as reader by metaslab_alloc() and metaslab_claim().
182  *
183  * SCL_ZIO
184  *	Held by bp-level zios (those which have no io_vd upon entry)
185  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
186  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
187  *
188  * SCL_FREE
189  *	Protects changes to metaslab groups and classes.
190  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
191  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
192  *	blocks in zio_done() while another i/o that holds either
193  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
194  *
195  * SCL_VDEV
196  *	Held as reader to prevent changes to the vdev tree during trivial
197  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
198  *	other locks, and lower than all of them, to ensure that it's safe
199  *	to acquire regardless of caller context.
200  *
201  * In addition, the following rules apply:
202  *
203  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
204  *	The lock ordering is SCL_CONFIG > spa_props_lock.
205  *
206  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
207  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
208  *	or zio_write_phys() -- the caller must ensure that the config cannot
209  *	cannot change in the interim, and that the vdev cannot be reopened.
210  *	SCL_STATE as reader suffices for both.
211  *
212  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
213  *
214  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
215  *				for writing.
216  *
217  *	spa_vdev_exit()		Release the config lock, wait for all I/O
218  *				to complete, sync the updated configs to the
219  *				cache, and release the namespace lock.
220  *
221  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
222  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
223  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
224  *
225  * spa_rename() is also implemented within this file since it requires
226  * manipulation of the namespace.
227  */
228 
229 static avl_tree_t spa_namespace_avl;
230 kmutex_t spa_namespace_lock;
231 static kcondvar_t spa_namespace_cv;
232 static int spa_active_count;
233 int spa_max_replication_override = SPA_DVAS_PER_BP;
234 
235 static kmutex_t spa_spare_lock;
236 static avl_tree_t spa_spare_avl;
237 static kmutex_t spa_l2cache_lock;
238 static avl_tree_t spa_l2cache_avl;
239 
240 kmem_cache_t *spa_buffer_pool;
241 int spa_mode_global;
242 
243 #ifdef ZFS_DEBUG
244 /*
245  * Everything except dprintf, spa, and indirect_remap is on by default
246  * in debug builds.
247  */
248 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA | ZFS_DEBUG_INDIRECT_REMAP);
249 #else
250 int zfs_flags = 0;
251 #endif
252 
253 /*
254  * zfs_recover can be set to nonzero to attempt to recover from
255  * otherwise-fatal errors, typically caused by on-disk corruption.  When
256  * set, calls to zfs_panic_recover() will turn into warning messages.
257  * This should only be used as a last resort, as it typically results
258  * in leaked space, or worse.
259  */
260 boolean_t zfs_recover = B_FALSE;
261 
262 /*
263  * If destroy encounters an EIO while reading metadata (e.g. indirect
264  * blocks), space referenced by the missing metadata can not be freed.
265  * Normally this causes the background destroy to become "stalled", as
266  * it is unable to make forward progress.  While in this stalled state,
267  * all remaining space to free from the error-encountering filesystem is
268  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
269  * permanently leak the space from indirect blocks that can not be read,
270  * and continue to free everything else that it can.
271  *
272  * The default, "stalling" behavior is useful if the storage partially
273  * fails (i.e. some but not all i/os fail), and then later recovers.  In
274  * this case, we will be able to continue pool operations while it is
275  * partially failed, and when it recovers, we can continue to free the
276  * space, with no leaks.  However, note that this case is actually
277  * fairly rare.
278  *
279  * Typically pools either (a) fail completely (but perhaps temporarily,
280  * e.g. a top-level vdev going offline), or (b) have localized,
281  * permanent errors (e.g. disk returns the wrong data due to bit flip or
282  * firmware bug).  In case (a), this setting does not matter because the
283  * pool will be suspended and the sync thread will not be able to make
284  * forward progress regardless.  In case (b), because the error is
285  * permanent, the best we can do is leak the minimum amount of space,
286  * which is what setting this flag will do.  Therefore, it is reasonable
287  * for this flag to normally be set, but we chose the more conservative
288  * approach of not setting it, so that there is no possibility of
289  * leaking space in the "partial temporary" failure case.
290  */
291 boolean_t zfs_free_leak_on_eio = B_FALSE;
292 
293 /*
294  * Expiration time in milliseconds. This value has two meanings. First it is
295  * used to determine when the spa_deadman() logic should fire. By default the
296  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
297  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
298  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
299  * in a system panic.
300  */
301 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
302 
303 /*
304  * Check time in milliseconds. This defines the frequency at which we check
305  * for hung I/O.
306  */
307 uint64_t zfs_deadman_checktime_ms = 5000ULL;
308 
309 /*
310  * Override the zfs deadman behavior via /etc/system. By default the
311  * deadman is enabled except on VMware and sparc deployments.
312  */
313 int zfs_deadman_enabled = -1;
314 
315 /*
316  * The worst case is single-sector max-parity RAID-Z blocks, in which
317  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
318  * times the size; so just assume that.  Add to this the fact that
319  * we can have up to 3 DVAs per bp, and one more factor of 2 because
320  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
321  * the worst case is:
322  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
323  */
324 int spa_asize_inflation = 24;
325 
326 /*
327  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
328  * the pool to be consumed.  This ensures that we don't run the pool
329  * completely out of space, due to unaccounted changes (e.g. to the MOS).
330  * It also limits the worst-case time to allocate space.  If we have
331  * less than this amount of free space, most ZPL operations (e.g. write,
332  * create) will return ENOSPC.
333  *
334  * Certain operations (e.g. file removal, most administrative actions) can
335  * use half the slop space.  They will only return ENOSPC if less than half
336  * the slop space is free.  Typically, once the pool has less than the slop
337  * space free, the user will use these operations to free up space in the pool.
338  * These are the operations that call dsl_pool_adjustedsize() with the netfree
339  * argument set to TRUE.
340  *
341  * A very restricted set of operations are always permitted, regardless of
342  * the amount of free space.  These are the operations that call
343  * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
344  * operations result in a net increase in the amount of space used,
345  * it is possible to run the pool completely out of space, causing it to
346  * be permanently read-only.
347  *
348  * Note that on very small pools, the slop space will be larger than
349  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
350  * but we never allow it to be more than half the pool size.
351  *
352  * See also the comments in zfs_space_check_t.
353  */
354 int spa_slop_shift = 5;
355 uint64_t spa_min_slop = 128 * 1024 * 1024;
356 
357 /*
358  * ==========================================================================
359  * SPA config locking
360  * ==========================================================================
361  */
362 static void
363 spa_config_lock_init(spa_t *spa)
364 {
365 	for (int i = 0; i < SCL_LOCKS; i++) {
366 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
367 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
368 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
369 		refcount_create_untracked(&scl->scl_count);
370 		scl->scl_writer = NULL;
371 		scl->scl_write_wanted = 0;
372 	}
373 }
374 
375 static void
376 spa_config_lock_destroy(spa_t *spa)
377 {
378 	for (int i = 0; i < SCL_LOCKS; i++) {
379 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
380 		mutex_destroy(&scl->scl_lock);
381 		cv_destroy(&scl->scl_cv);
382 		refcount_destroy(&scl->scl_count);
383 		ASSERT(scl->scl_writer == NULL);
384 		ASSERT(scl->scl_write_wanted == 0);
385 	}
386 }
387 
388 int
389 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
390 {
391 	for (int i = 0; i < SCL_LOCKS; i++) {
392 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
393 		if (!(locks & (1 << i)))
394 			continue;
395 		mutex_enter(&scl->scl_lock);
396 		if (rw == RW_READER) {
397 			if (scl->scl_writer || scl->scl_write_wanted) {
398 				mutex_exit(&scl->scl_lock);
399 				spa_config_exit(spa, locks & ((1 << i) - 1),
400 				    tag);
401 				return (0);
402 			}
403 		} else {
404 			ASSERT(scl->scl_writer != curthread);
405 			if (!refcount_is_zero(&scl->scl_count)) {
406 				mutex_exit(&scl->scl_lock);
407 				spa_config_exit(spa, locks & ((1 << i) - 1),
408 				    tag);
409 				return (0);
410 			}
411 			scl->scl_writer = curthread;
412 		}
413 		(void) refcount_add(&scl->scl_count, tag);
414 		mutex_exit(&scl->scl_lock);
415 	}
416 	return (1);
417 }
418 
419 void
420 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
421 {
422 	int wlocks_held = 0;
423 
424 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
425 
426 	for (int i = 0; i < SCL_LOCKS; i++) {
427 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
428 		if (scl->scl_writer == curthread)
429 			wlocks_held |= (1 << i);
430 		if (!(locks & (1 << i)))
431 			continue;
432 		mutex_enter(&scl->scl_lock);
433 		if (rw == RW_READER) {
434 			while (scl->scl_writer || scl->scl_write_wanted) {
435 				cv_wait(&scl->scl_cv, &scl->scl_lock);
436 			}
437 		} else {
438 			ASSERT(scl->scl_writer != curthread);
439 			while (!refcount_is_zero(&scl->scl_count)) {
440 				scl->scl_write_wanted++;
441 				cv_wait(&scl->scl_cv, &scl->scl_lock);
442 				scl->scl_write_wanted--;
443 			}
444 			scl->scl_writer = curthread;
445 		}
446 		(void) refcount_add(&scl->scl_count, tag);
447 		mutex_exit(&scl->scl_lock);
448 	}
449 	ASSERT3U(wlocks_held, <=, locks);
450 }
451 
452 void
453 spa_config_exit(spa_t *spa, int locks, void *tag)
454 {
455 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
456 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
457 		if (!(locks & (1 << i)))
458 			continue;
459 		mutex_enter(&scl->scl_lock);
460 		ASSERT(!refcount_is_zero(&scl->scl_count));
461 		if (refcount_remove(&scl->scl_count, tag) == 0) {
462 			ASSERT(scl->scl_writer == NULL ||
463 			    scl->scl_writer == curthread);
464 			scl->scl_writer = NULL;	/* OK in either case */
465 			cv_broadcast(&scl->scl_cv);
466 		}
467 		mutex_exit(&scl->scl_lock);
468 	}
469 }
470 
471 int
472 spa_config_held(spa_t *spa, int locks, krw_t rw)
473 {
474 	int locks_held = 0;
475 
476 	for (int i = 0; i < SCL_LOCKS; i++) {
477 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
478 		if (!(locks & (1 << i)))
479 			continue;
480 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
481 		    (rw == RW_WRITER && scl->scl_writer == curthread))
482 			locks_held |= 1 << i;
483 	}
484 
485 	return (locks_held);
486 }
487 
488 /*
489  * ==========================================================================
490  * SPA namespace functions
491  * ==========================================================================
492  */
493 
494 /*
495  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
496  * Returns NULL if no matching spa_t is found.
497  */
498 spa_t *
499 spa_lookup(const char *name)
500 {
501 	static spa_t search;	/* spa_t is large; don't allocate on stack */
502 	spa_t *spa;
503 	avl_index_t where;
504 	char *cp;
505 
506 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
507 
508 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
509 
510 	/*
511 	 * If it's a full dataset name, figure out the pool name and
512 	 * just use that.
513 	 */
514 	cp = strpbrk(search.spa_name, "/@#");
515 	if (cp != NULL)
516 		*cp = '\0';
517 
518 	spa = avl_find(&spa_namespace_avl, &search, &where);
519 
520 	return (spa);
521 }
522 
523 /*
524  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
525  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
526  * looking for potentially hung I/Os.
527  */
528 void
529 spa_deadman(void *arg)
530 {
531 	spa_t *spa = arg;
532 
533 	/*
534 	 * Disable the deadman timer if the pool is suspended.
535 	 */
536 	if (spa_suspended(spa)) {
537 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
538 		return;
539 	}
540 
541 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
542 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
543 	    ++spa->spa_deadman_calls);
544 	if (zfs_deadman_enabled)
545 		vdev_deadman(spa->spa_root_vdev);
546 }
547 
548 /*
549  * Create an uninitialized spa_t with the given name.  Requires
550  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
551  * exist by calling spa_lookup() first.
552  */
553 spa_t *
554 spa_add(const char *name, nvlist_t *config, const char *altroot)
555 {
556 	spa_t *spa;
557 	spa_config_dirent_t *dp;
558 	cyc_handler_t hdlr;
559 	cyc_time_t when;
560 
561 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
562 
563 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
564 
565 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
566 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
567 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
568 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
569 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
570 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
571 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
572 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
573 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
574 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
575 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
576 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
577 	mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
578 
579 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
580 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
581 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
582 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
583 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
584 
585 	for (int t = 0; t < TXG_SIZE; t++)
586 		bplist_create(&spa->spa_free_bplist[t]);
587 
588 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
589 	spa->spa_state = POOL_STATE_UNINITIALIZED;
590 	spa->spa_freeze_txg = UINT64_MAX;
591 	spa->spa_final_txg = UINT64_MAX;
592 	spa->spa_load_max_txg = UINT64_MAX;
593 	spa->spa_proc = &p0;
594 	spa->spa_proc_state = SPA_PROC_NONE;
595 
596 	hdlr.cyh_func = spa_deadman;
597 	hdlr.cyh_arg = spa;
598 	hdlr.cyh_level = CY_LOW_LEVEL;
599 
600 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
601 
602 	/*
603 	 * This determines how often we need to check for hung I/Os after
604 	 * the cyclic has already fired. Since checking for hung I/Os is
605 	 * an expensive operation we don't want to check too frequently.
606 	 * Instead wait for 5 seconds before checking again.
607 	 */
608 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
609 	when.cyt_when = CY_INFINITY;
610 	mutex_enter(&cpu_lock);
611 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
612 	mutex_exit(&cpu_lock);
613 
614 	refcount_create(&spa->spa_refcount);
615 	spa_config_lock_init(spa);
616 
617 	avl_add(&spa_namespace_avl, spa);
618 
619 	/*
620 	 * Set the alternate root, if there is one.
621 	 */
622 	if (altroot) {
623 		spa->spa_root = spa_strdup(altroot);
624 		spa_active_count++;
625 	}
626 
627 	avl_create(&spa->spa_alloc_tree, zio_bookmark_compare,
628 	    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
629 
630 	/*
631 	 * Every pool starts with the default cachefile
632 	 */
633 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
634 	    offsetof(spa_config_dirent_t, scd_link));
635 
636 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
637 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
638 	list_insert_head(&spa->spa_config_list, dp);
639 
640 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
641 	    KM_SLEEP) == 0);
642 
643 	if (config != NULL) {
644 		nvlist_t *features;
645 
646 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
647 		    &features) == 0) {
648 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
649 			    0) == 0);
650 		}
651 
652 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
653 	}
654 
655 	if (spa->spa_label_features == NULL) {
656 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
657 		    KM_SLEEP) == 0);
658 	}
659 
660 	spa->spa_iokstat = kstat_create("zfs", 0, name,
661 	    "disk", KSTAT_TYPE_IO, 1, 0);
662 	if (spa->spa_iokstat) {
663 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
664 		kstat_install(spa->spa_iokstat);
665 	}
666 
667 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
668 
669 	spa->spa_min_ashift = INT_MAX;
670 	spa->spa_max_ashift = 0;
671 
672 	/*
673 	 * As a pool is being created, treat all features as disabled by
674 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
675 	 * refcount cache.
676 	 */
677 	for (int i = 0; i < SPA_FEATURES; i++) {
678 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
679 	}
680 
681 	return (spa);
682 }
683 
684 /*
685  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
686  * spa_namespace_lock.  This is called only after the spa_t has been closed and
687  * deactivated.
688  */
689 void
690 spa_remove(spa_t *spa)
691 {
692 	spa_config_dirent_t *dp;
693 
694 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
695 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
696 	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
697 
698 	nvlist_free(spa->spa_config_splitting);
699 
700 	avl_remove(&spa_namespace_avl, spa);
701 	cv_broadcast(&spa_namespace_cv);
702 
703 	if (spa->spa_root) {
704 		spa_strfree(spa->spa_root);
705 		spa_active_count--;
706 	}
707 
708 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
709 		list_remove(&spa->spa_config_list, dp);
710 		if (dp->scd_path != NULL)
711 			spa_strfree(dp->scd_path);
712 		kmem_free(dp, sizeof (spa_config_dirent_t));
713 	}
714 
715 	avl_destroy(&spa->spa_alloc_tree);
716 	list_destroy(&spa->spa_config_list);
717 
718 	nvlist_free(spa->spa_label_features);
719 	nvlist_free(spa->spa_load_info);
720 	spa_config_set(spa, NULL);
721 
722 	mutex_enter(&cpu_lock);
723 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
724 		cyclic_remove(spa->spa_deadman_cycid);
725 	mutex_exit(&cpu_lock);
726 	spa->spa_deadman_cycid = CYCLIC_NONE;
727 
728 	refcount_destroy(&spa->spa_refcount);
729 
730 	spa_config_lock_destroy(spa);
731 
732 	kstat_delete(spa->spa_iokstat);
733 	spa->spa_iokstat = NULL;
734 
735 	for (int t = 0; t < TXG_SIZE; t++)
736 		bplist_destroy(&spa->spa_free_bplist[t]);
737 
738 	zio_checksum_templates_free(spa);
739 
740 	cv_destroy(&spa->spa_async_cv);
741 	cv_destroy(&spa->spa_evicting_os_cv);
742 	cv_destroy(&spa->spa_proc_cv);
743 	cv_destroy(&spa->spa_scrub_io_cv);
744 	cv_destroy(&spa->spa_suspend_cv);
745 
746 	mutex_destroy(&spa->spa_alloc_lock);
747 	mutex_destroy(&spa->spa_async_lock);
748 	mutex_destroy(&spa->spa_errlist_lock);
749 	mutex_destroy(&spa->spa_errlog_lock);
750 	mutex_destroy(&spa->spa_evicting_os_lock);
751 	mutex_destroy(&spa->spa_history_lock);
752 	mutex_destroy(&spa->spa_proc_lock);
753 	mutex_destroy(&spa->spa_props_lock);
754 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
755 	mutex_destroy(&spa->spa_scrub_lock);
756 	mutex_destroy(&spa->spa_suspend_lock);
757 	mutex_destroy(&spa->spa_vdev_top_lock);
758 	mutex_destroy(&spa->spa_iokstat_lock);
759 
760 	kmem_free(spa, sizeof (spa_t));
761 }
762 
763 /*
764  * Given a pool, return the next pool in the namespace, or NULL if there is
765  * none.  If 'prev' is NULL, return the first pool.
766  */
767 spa_t *
768 spa_next(spa_t *prev)
769 {
770 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
771 
772 	if (prev)
773 		return (AVL_NEXT(&spa_namespace_avl, prev));
774 	else
775 		return (avl_first(&spa_namespace_avl));
776 }
777 
778 /*
779  * ==========================================================================
780  * SPA refcount functions
781  * ==========================================================================
782  */
783 
784 /*
785  * Add a reference to the given spa_t.  Must have at least one reference, or
786  * have the namespace lock held.
787  */
788 void
789 spa_open_ref(spa_t *spa, void *tag)
790 {
791 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
792 	    MUTEX_HELD(&spa_namespace_lock));
793 	(void) refcount_add(&spa->spa_refcount, tag);
794 }
795 
796 /*
797  * Remove a reference to the given spa_t.  Must have at least one reference, or
798  * have the namespace lock held.
799  */
800 void
801 spa_close(spa_t *spa, void *tag)
802 {
803 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
804 	    MUTEX_HELD(&spa_namespace_lock));
805 	(void) refcount_remove(&spa->spa_refcount, tag);
806 }
807 
808 /*
809  * Remove a reference to the given spa_t held by a dsl dir that is
810  * being asynchronously released.  Async releases occur from a taskq
811  * performing eviction of dsl datasets and dirs.  The namespace lock
812  * isn't held and the hold by the object being evicted may contribute to
813  * spa_minref (e.g. dataset or directory released during pool export),
814  * so the asserts in spa_close() do not apply.
815  */
816 void
817 spa_async_close(spa_t *spa, void *tag)
818 {
819 	(void) refcount_remove(&spa->spa_refcount, tag);
820 }
821 
822 /*
823  * Check to see if the spa refcount is zero.  Must be called with
824  * spa_namespace_lock held.  We really compare against spa_minref, which is the
825  * number of references acquired when opening a pool
826  */
827 boolean_t
828 spa_refcount_zero(spa_t *spa)
829 {
830 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
831 
832 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
833 }
834 
835 /*
836  * ==========================================================================
837  * SPA spare and l2cache tracking
838  * ==========================================================================
839  */
840 
841 /*
842  * Hot spares and cache devices are tracked using the same code below,
843  * for 'auxiliary' devices.
844  */
845 
846 typedef struct spa_aux {
847 	uint64_t	aux_guid;
848 	uint64_t	aux_pool;
849 	avl_node_t	aux_avl;
850 	int		aux_count;
851 } spa_aux_t;
852 
853 static int
854 spa_aux_compare(const void *a, const void *b)
855 {
856 	const spa_aux_t *sa = a;
857 	const spa_aux_t *sb = b;
858 
859 	if (sa->aux_guid < sb->aux_guid)
860 		return (-1);
861 	else if (sa->aux_guid > sb->aux_guid)
862 		return (1);
863 	else
864 		return (0);
865 }
866 
867 void
868 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
869 {
870 	avl_index_t where;
871 	spa_aux_t search;
872 	spa_aux_t *aux;
873 
874 	search.aux_guid = vd->vdev_guid;
875 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
876 		aux->aux_count++;
877 	} else {
878 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
879 		aux->aux_guid = vd->vdev_guid;
880 		aux->aux_count = 1;
881 		avl_insert(avl, aux, where);
882 	}
883 }
884 
885 void
886 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
887 {
888 	spa_aux_t search;
889 	spa_aux_t *aux;
890 	avl_index_t where;
891 
892 	search.aux_guid = vd->vdev_guid;
893 	aux = avl_find(avl, &search, &where);
894 
895 	ASSERT(aux != NULL);
896 
897 	if (--aux->aux_count == 0) {
898 		avl_remove(avl, aux);
899 		kmem_free(aux, sizeof (spa_aux_t));
900 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
901 		aux->aux_pool = 0ULL;
902 	}
903 }
904 
905 boolean_t
906 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
907 {
908 	spa_aux_t search, *found;
909 
910 	search.aux_guid = guid;
911 	found = avl_find(avl, &search, NULL);
912 
913 	if (pool) {
914 		if (found)
915 			*pool = found->aux_pool;
916 		else
917 			*pool = 0ULL;
918 	}
919 
920 	if (refcnt) {
921 		if (found)
922 			*refcnt = found->aux_count;
923 		else
924 			*refcnt = 0;
925 	}
926 
927 	return (found != NULL);
928 }
929 
930 void
931 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
932 {
933 	spa_aux_t search, *found;
934 	avl_index_t where;
935 
936 	search.aux_guid = vd->vdev_guid;
937 	found = avl_find(avl, &search, &where);
938 	ASSERT(found != NULL);
939 	ASSERT(found->aux_pool == 0ULL);
940 
941 	found->aux_pool = spa_guid(vd->vdev_spa);
942 }
943 
944 /*
945  * Spares are tracked globally due to the following constraints:
946  *
947  * 	- A spare may be part of multiple pools.
948  * 	- A spare may be added to a pool even if it's actively in use within
949  *	  another pool.
950  * 	- A spare in use in any pool can only be the source of a replacement if
951  *	  the target is a spare in the same pool.
952  *
953  * We keep track of all spares on the system through the use of a reference
954  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
955  * spare, then we bump the reference count in the AVL tree.  In addition, we set
956  * the 'vdev_isspare' member to indicate that the device is a spare (active or
957  * inactive).  When a spare is made active (used to replace a device in the
958  * pool), we also keep track of which pool its been made a part of.
959  *
960  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
961  * called under the spa_namespace lock as part of vdev reconfiguration.  The
962  * separate spare lock exists for the status query path, which does not need to
963  * be completely consistent with respect to other vdev configuration changes.
964  */
965 
966 static int
967 spa_spare_compare(const void *a, const void *b)
968 {
969 	return (spa_aux_compare(a, b));
970 }
971 
972 void
973 spa_spare_add(vdev_t *vd)
974 {
975 	mutex_enter(&spa_spare_lock);
976 	ASSERT(!vd->vdev_isspare);
977 	spa_aux_add(vd, &spa_spare_avl);
978 	vd->vdev_isspare = B_TRUE;
979 	mutex_exit(&spa_spare_lock);
980 }
981 
982 void
983 spa_spare_remove(vdev_t *vd)
984 {
985 	mutex_enter(&spa_spare_lock);
986 	ASSERT(vd->vdev_isspare);
987 	spa_aux_remove(vd, &spa_spare_avl);
988 	vd->vdev_isspare = B_FALSE;
989 	mutex_exit(&spa_spare_lock);
990 }
991 
992 boolean_t
993 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
994 {
995 	boolean_t found;
996 
997 	mutex_enter(&spa_spare_lock);
998 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
999 	mutex_exit(&spa_spare_lock);
1000 
1001 	return (found);
1002 }
1003 
1004 void
1005 spa_spare_activate(vdev_t *vd)
1006 {
1007 	mutex_enter(&spa_spare_lock);
1008 	ASSERT(vd->vdev_isspare);
1009 	spa_aux_activate(vd, &spa_spare_avl);
1010 	mutex_exit(&spa_spare_lock);
1011 }
1012 
1013 /*
1014  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1015  * Cache devices currently only support one pool per cache device, and so
1016  * for these devices the aux reference count is currently unused beyond 1.
1017  */
1018 
1019 static int
1020 spa_l2cache_compare(const void *a, const void *b)
1021 {
1022 	return (spa_aux_compare(a, b));
1023 }
1024 
1025 void
1026 spa_l2cache_add(vdev_t *vd)
1027 {
1028 	mutex_enter(&spa_l2cache_lock);
1029 	ASSERT(!vd->vdev_isl2cache);
1030 	spa_aux_add(vd, &spa_l2cache_avl);
1031 	vd->vdev_isl2cache = B_TRUE;
1032 	mutex_exit(&spa_l2cache_lock);
1033 }
1034 
1035 void
1036 spa_l2cache_remove(vdev_t *vd)
1037 {
1038 	mutex_enter(&spa_l2cache_lock);
1039 	ASSERT(vd->vdev_isl2cache);
1040 	spa_aux_remove(vd, &spa_l2cache_avl);
1041 	vd->vdev_isl2cache = B_FALSE;
1042 	mutex_exit(&spa_l2cache_lock);
1043 }
1044 
1045 boolean_t
1046 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1047 {
1048 	boolean_t found;
1049 
1050 	mutex_enter(&spa_l2cache_lock);
1051 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1052 	mutex_exit(&spa_l2cache_lock);
1053 
1054 	return (found);
1055 }
1056 
1057 void
1058 spa_l2cache_activate(vdev_t *vd)
1059 {
1060 	mutex_enter(&spa_l2cache_lock);
1061 	ASSERT(vd->vdev_isl2cache);
1062 	spa_aux_activate(vd, &spa_l2cache_avl);
1063 	mutex_exit(&spa_l2cache_lock);
1064 }
1065 
1066 /*
1067  * ==========================================================================
1068  * SPA vdev locking
1069  * ==========================================================================
1070  */
1071 
1072 /*
1073  * Lock the given spa_t for the purpose of adding or removing a vdev.
1074  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1075  * It returns the next transaction group for the spa_t.
1076  */
1077 uint64_t
1078 spa_vdev_enter(spa_t *spa)
1079 {
1080 	mutex_enter(&spa->spa_vdev_top_lock);
1081 	mutex_enter(&spa_namespace_lock);
1082 	return (spa_vdev_config_enter(spa));
1083 }
1084 
1085 /*
1086  * Internal implementation for spa_vdev_enter().  Used when a vdev
1087  * operation requires multiple syncs (i.e. removing a device) while
1088  * keeping the spa_namespace_lock held.
1089  */
1090 uint64_t
1091 spa_vdev_config_enter(spa_t *spa)
1092 {
1093 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1094 
1095 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1096 
1097 	return (spa_last_synced_txg(spa) + 1);
1098 }
1099 
1100 /*
1101  * Used in combination with spa_vdev_config_enter() to allow the syncing
1102  * of multiple transactions without releasing the spa_namespace_lock.
1103  */
1104 void
1105 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1106 {
1107 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1108 
1109 	int config_changed = B_FALSE;
1110 
1111 	ASSERT(txg > spa_last_synced_txg(spa));
1112 
1113 	spa->spa_pending_vdev = NULL;
1114 
1115 	/*
1116 	 * Reassess the DTLs.
1117 	 */
1118 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1119 
1120 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1121 		config_changed = B_TRUE;
1122 		spa->spa_config_generation++;
1123 	}
1124 
1125 	/*
1126 	 * Verify the metaslab classes.
1127 	 */
1128 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1129 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1130 
1131 	spa_config_exit(spa, SCL_ALL, spa);
1132 
1133 	/*
1134 	 * Panic the system if the specified tag requires it.  This
1135 	 * is useful for ensuring that configurations are updated
1136 	 * transactionally.
1137 	 */
1138 	if (zio_injection_enabled)
1139 		zio_handle_panic_injection(spa, tag, 0);
1140 
1141 	/*
1142 	 * Note: this txg_wait_synced() is important because it ensures
1143 	 * that there won't be more than one config change per txg.
1144 	 * This allows us to use the txg as the generation number.
1145 	 */
1146 	if (error == 0)
1147 		txg_wait_synced(spa->spa_dsl_pool, txg);
1148 
1149 	if (vd != NULL) {
1150 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1151 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1152 		vdev_free(vd);
1153 		spa_config_exit(spa, SCL_ALL, spa);
1154 	}
1155 
1156 	/*
1157 	 * If the config changed, update the config cache.
1158 	 */
1159 	if (config_changed)
1160 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1161 }
1162 
1163 /*
1164  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1165  * locking of spa_vdev_enter(), we also want make sure the transactions have
1166  * synced to disk, and then update the global configuration cache with the new
1167  * information.
1168  */
1169 int
1170 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1171 {
1172 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1173 	mutex_exit(&spa_namespace_lock);
1174 	mutex_exit(&spa->spa_vdev_top_lock);
1175 
1176 	return (error);
1177 }
1178 
1179 /*
1180  * Lock the given spa_t for the purpose of changing vdev state.
1181  */
1182 void
1183 spa_vdev_state_enter(spa_t *spa, int oplocks)
1184 {
1185 	int locks = SCL_STATE_ALL | oplocks;
1186 
1187 	/*
1188 	 * Root pools may need to read of the underlying devfs filesystem
1189 	 * when opening up a vdev.  Unfortunately if we're holding the
1190 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1191 	 * the read from the root filesystem.  Instead we "prefetch"
1192 	 * the associated vnodes that we need prior to opening the
1193 	 * underlying devices and cache them so that we can prevent
1194 	 * any I/O when we are doing the actual open.
1195 	 */
1196 	if (spa_is_root(spa)) {
1197 		int low = locks & ~(SCL_ZIO - 1);
1198 		int high = locks & ~low;
1199 
1200 		spa_config_enter(spa, high, spa, RW_WRITER);
1201 		vdev_hold(spa->spa_root_vdev);
1202 		spa_config_enter(spa, low, spa, RW_WRITER);
1203 	} else {
1204 		spa_config_enter(spa, locks, spa, RW_WRITER);
1205 	}
1206 	spa->spa_vdev_locks = locks;
1207 }
1208 
1209 int
1210 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1211 {
1212 	boolean_t config_changed = B_FALSE;
1213 
1214 	if (vd != NULL || error == 0)
1215 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1216 		    0, 0, B_FALSE);
1217 
1218 	if (vd != NULL) {
1219 		vdev_state_dirty(vd->vdev_top);
1220 		config_changed = B_TRUE;
1221 		spa->spa_config_generation++;
1222 	}
1223 
1224 	if (spa_is_root(spa))
1225 		vdev_rele(spa->spa_root_vdev);
1226 
1227 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1228 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1229 
1230 	/*
1231 	 * If anything changed, wait for it to sync.  This ensures that,
1232 	 * from the system administrator's perspective, zpool(1M) commands
1233 	 * are synchronous.  This is important for things like zpool offline:
1234 	 * when the command completes, you expect no further I/O from ZFS.
1235 	 */
1236 	if (vd != NULL)
1237 		txg_wait_synced(spa->spa_dsl_pool, 0);
1238 
1239 	/*
1240 	 * If the config changed, update the config cache.
1241 	 */
1242 	if (config_changed) {
1243 		mutex_enter(&spa_namespace_lock);
1244 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1245 		mutex_exit(&spa_namespace_lock);
1246 	}
1247 
1248 	return (error);
1249 }
1250 
1251 /*
1252  * ==========================================================================
1253  * Miscellaneous functions
1254  * ==========================================================================
1255  */
1256 
1257 void
1258 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1259 {
1260 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1261 		fnvlist_add_boolean(spa->spa_label_features, feature);
1262 		/*
1263 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1264 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1265 		 * Thankfully, in this case we don't need to dirty the config
1266 		 * because it will be written out anyway when we finish
1267 		 * creating the pool.
1268 		 */
1269 		if (tx->tx_txg != TXG_INITIAL)
1270 			vdev_config_dirty(spa->spa_root_vdev);
1271 	}
1272 }
1273 
1274 void
1275 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1276 {
1277 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1278 		vdev_config_dirty(spa->spa_root_vdev);
1279 }
1280 
1281 /*
1282  * Rename a spa_t.
1283  */
1284 int
1285 spa_rename(const char *name, const char *newname)
1286 {
1287 	spa_t *spa;
1288 	int err;
1289 
1290 	/*
1291 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1292 	 * actually open the pool so that we can sync out the necessary labels.
1293 	 * It's OK to call spa_open() with the namespace lock held because we
1294 	 * allow recursive calls for other reasons.
1295 	 */
1296 	mutex_enter(&spa_namespace_lock);
1297 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1298 		mutex_exit(&spa_namespace_lock);
1299 		return (err);
1300 	}
1301 
1302 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1303 
1304 	avl_remove(&spa_namespace_avl, spa);
1305 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1306 	avl_add(&spa_namespace_avl, spa);
1307 
1308 	/*
1309 	 * Sync all labels to disk with the new names by marking the root vdev
1310 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1311 	 * during the sync.
1312 	 */
1313 	vdev_config_dirty(spa->spa_root_vdev);
1314 
1315 	spa_config_exit(spa, SCL_ALL, FTAG);
1316 
1317 	txg_wait_synced(spa->spa_dsl_pool, 0);
1318 
1319 	/*
1320 	 * Sync the updated config cache.
1321 	 */
1322 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
1323 
1324 	spa_close(spa, FTAG);
1325 
1326 	mutex_exit(&spa_namespace_lock);
1327 
1328 	return (0);
1329 }
1330 
1331 /*
1332  * Return the spa_t associated with given pool_guid, if it exists.  If
1333  * device_guid is non-zero, determine whether the pool exists *and* contains
1334  * a device with the specified device_guid.
1335  */
1336 spa_t *
1337 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1338 {
1339 	spa_t *spa;
1340 	avl_tree_t *t = &spa_namespace_avl;
1341 
1342 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1343 
1344 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1345 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1346 			continue;
1347 		if (spa->spa_root_vdev == NULL)
1348 			continue;
1349 		if (spa_guid(spa) == pool_guid) {
1350 			if (device_guid == 0)
1351 				break;
1352 
1353 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1354 			    device_guid) != NULL)
1355 				break;
1356 
1357 			/*
1358 			 * Check any devices we may be in the process of adding.
1359 			 */
1360 			if (spa->spa_pending_vdev) {
1361 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1362 				    device_guid) != NULL)
1363 					break;
1364 			}
1365 		}
1366 	}
1367 
1368 	return (spa);
1369 }
1370 
1371 /*
1372  * Determine whether a pool with the given pool_guid exists.
1373  */
1374 boolean_t
1375 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1376 {
1377 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1378 }
1379 
1380 char *
1381 spa_strdup(const char *s)
1382 {
1383 	size_t len;
1384 	char *new;
1385 
1386 	len = strlen(s);
1387 	new = kmem_alloc(len + 1, KM_SLEEP);
1388 	bcopy(s, new, len);
1389 	new[len] = '\0';
1390 
1391 	return (new);
1392 }
1393 
1394 void
1395 spa_strfree(char *s)
1396 {
1397 	kmem_free(s, strlen(s) + 1);
1398 }
1399 
1400 uint64_t
1401 spa_get_random(uint64_t range)
1402 {
1403 	uint64_t r;
1404 
1405 	ASSERT(range != 0);
1406 
1407 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1408 
1409 	return (r % range);
1410 }
1411 
1412 uint64_t
1413 spa_generate_guid(spa_t *spa)
1414 {
1415 	uint64_t guid = spa_get_random(-1ULL);
1416 
1417 	if (spa != NULL) {
1418 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1419 			guid = spa_get_random(-1ULL);
1420 	} else {
1421 		while (guid == 0 || spa_guid_exists(guid, 0))
1422 			guid = spa_get_random(-1ULL);
1423 	}
1424 
1425 	return (guid);
1426 }
1427 
1428 void
1429 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1430 {
1431 	char type[256];
1432 	char *checksum = NULL;
1433 	char *compress = NULL;
1434 
1435 	if (bp != NULL) {
1436 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1437 			dmu_object_byteswap_t bswap =
1438 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1439 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1440 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1441 			    "metadata" : "data",
1442 			    dmu_ot_byteswap[bswap].ob_name);
1443 		} else {
1444 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1445 			    sizeof (type));
1446 		}
1447 		if (!BP_IS_EMBEDDED(bp)) {
1448 			checksum =
1449 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1450 		}
1451 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1452 	}
1453 
1454 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1455 	    compress);
1456 }
1457 
1458 void
1459 spa_freeze(spa_t *spa)
1460 {
1461 	uint64_t freeze_txg = 0;
1462 
1463 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1464 	if (spa->spa_freeze_txg == UINT64_MAX) {
1465 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1466 		spa->spa_freeze_txg = freeze_txg;
1467 	}
1468 	spa_config_exit(spa, SCL_ALL, FTAG);
1469 	if (freeze_txg != 0)
1470 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1471 }
1472 
1473 void
1474 zfs_panic_recover(const char *fmt, ...)
1475 {
1476 	va_list adx;
1477 
1478 	va_start(adx, fmt);
1479 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1480 	va_end(adx);
1481 }
1482 
1483 /*
1484  * This is a stripped-down version of strtoull, suitable only for converting
1485  * lowercase hexadecimal numbers that don't overflow.
1486  */
1487 uint64_t
1488 zfs_strtonum(const char *str, char **nptr)
1489 {
1490 	uint64_t val = 0;
1491 	char c;
1492 	int digit;
1493 
1494 	while ((c = *str) != '\0') {
1495 		if (c >= '0' && c <= '9')
1496 			digit = c - '0';
1497 		else if (c >= 'a' && c <= 'f')
1498 			digit = 10 + c - 'a';
1499 		else
1500 			break;
1501 
1502 		val *= 16;
1503 		val += digit;
1504 
1505 		str++;
1506 	}
1507 
1508 	if (nptr)
1509 		*nptr = (char *)str;
1510 
1511 	return (val);
1512 }
1513 
1514 /*
1515  * ==========================================================================
1516  * Accessor functions
1517  * ==========================================================================
1518  */
1519 
1520 boolean_t
1521 spa_shutting_down(spa_t *spa)
1522 {
1523 	return (spa->spa_async_suspended);
1524 }
1525 
1526 dsl_pool_t *
1527 spa_get_dsl(spa_t *spa)
1528 {
1529 	return (spa->spa_dsl_pool);
1530 }
1531 
1532 boolean_t
1533 spa_is_initializing(spa_t *spa)
1534 {
1535 	return (spa->spa_is_initializing);
1536 }
1537 
1538 boolean_t
1539 spa_indirect_vdevs_loaded(spa_t *spa)
1540 {
1541 	return (spa->spa_indirect_vdevs_loaded);
1542 }
1543 
1544 blkptr_t *
1545 spa_get_rootblkptr(spa_t *spa)
1546 {
1547 	return (&spa->spa_ubsync.ub_rootbp);
1548 }
1549 
1550 void
1551 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1552 {
1553 	spa->spa_uberblock.ub_rootbp = *bp;
1554 }
1555 
1556 void
1557 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1558 {
1559 	if (spa->spa_root == NULL)
1560 		buf[0] = '\0';
1561 	else
1562 		(void) strncpy(buf, spa->spa_root, buflen);
1563 }
1564 
1565 int
1566 spa_sync_pass(spa_t *spa)
1567 {
1568 	return (spa->spa_sync_pass);
1569 }
1570 
1571 char *
1572 spa_name(spa_t *spa)
1573 {
1574 	return (spa->spa_name);
1575 }
1576 
1577 uint64_t
1578 spa_guid(spa_t *spa)
1579 {
1580 	dsl_pool_t *dp = spa_get_dsl(spa);
1581 	uint64_t guid;
1582 
1583 	/*
1584 	 * If we fail to parse the config during spa_load(), we can go through
1585 	 * the error path (which posts an ereport) and end up here with no root
1586 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1587 	 * this case.
1588 	 */
1589 	if (spa->spa_root_vdev == NULL)
1590 		return (spa->spa_config_guid);
1591 
1592 	guid = spa->spa_last_synced_guid != 0 ?
1593 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1594 
1595 	/*
1596 	 * Return the most recently synced out guid unless we're
1597 	 * in syncing context.
1598 	 */
1599 	if (dp && dsl_pool_sync_context(dp))
1600 		return (spa->spa_root_vdev->vdev_guid);
1601 	else
1602 		return (guid);
1603 }
1604 
1605 uint64_t
1606 spa_load_guid(spa_t *spa)
1607 {
1608 	/*
1609 	 * This is a GUID that exists solely as a reference for the
1610 	 * purposes of the arc.  It is generated at load time, and
1611 	 * is never written to persistent storage.
1612 	 */
1613 	return (spa->spa_load_guid);
1614 }
1615 
1616 uint64_t
1617 spa_last_synced_txg(spa_t *spa)
1618 {
1619 	return (spa->spa_ubsync.ub_txg);
1620 }
1621 
1622 uint64_t
1623 spa_first_txg(spa_t *spa)
1624 {
1625 	return (spa->spa_first_txg);
1626 }
1627 
1628 uint64_t
1629 spa_syncing_txg(spa_t *spa)
1630 {
1631 	return (spa->spa_syncing_txg);
1632 }
1633 
1634 /*
1635  * Return the last txg where data can be dirtied. The final txgs
1636  * will be used to just clear out any deferred frees that remain.
1637  */
1638 uint64_t
1639 spa_final_dirty_txg(spa_t *spa)
1640 {
1641 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1642 }
1643 
1644 pool_state_t
1645 spa_state(spa_t *spa)
1646 {
1647 	return (spa->spa_state);
1648 }
1649 
1650 spa_load_state_t
1651 spa_load_state(spa_t *spa)
1652 {
1653 	return (spa->spa_load_state);
1654 }
1655 
1656 uint64_t
1657 spa_freeze_txg(spa_t *spa)
1658 {
1659 	return (spa->spa_freeze_txg);
1660 }
1661 
1662 /* ARGSUSED */
1663 uint64_t
1664 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1665 {
1666 	return (lsize * spa_asize_inflation);
1667 }
1668 
1669 /*
1670  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1671  * or at least 128MB, unless that would cause it to be more than half the
1672  * pool size.
1673  *
1674  * See the comment above spa_slop_shift for details.
1675  */
1676 uint64_t
1677 spa_get_slop_space(spa_t *spa)
1678 {
1679 	uint64_t space = spa_get_dspace(spa);
1680 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1681 }
1682 
1683 uint64_t
1684 spa_get_dspace(spa_t *spa)
1685 {
1686 	return (spa->spa_dspace);
1687 }
1688 
1689 void
1690 spa_update_dspace(spa_t *spa)
1691 {
1692 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1693 	    ddt_get_dedup_dspace(spa);
1694 	if (spa->spa_vdev_removal != NULL) {
1695 		/*
1696 		 * We can't allocate from the removing device, so
1697 		 * subtract its size.  This prevents the DMU/DSL from
1698 		 * filling up the (now smaller) pool while we are in the
1699 		 * middle of removing the device.
1700 		 *
1701 		 * Note that the DMU/DSL doesn't actually know or care
1702 		 * how much space is allocated (it does its own tracking
1703 		 * of how much space has been logically used).  So it
1704 		 * doesn't matter that the data we are moving may be
1705 		 * allocated twice (on the old device and the new
1706 		 * device).
1707 		 */
1708 		vdev_t *vd = spa->spa_vdev_removal->svr_vdev;
1709 		spa->spa_dspace -= spa_deflate(spa) ?
1710 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1711 	}
1712 }
1713 
1714 /*
1715  * Return the failure mode that has been set to this pool. The default
1716  * behavior will be to block all I/Os when a complete failure occurs.
1717  */
1718 uint8_t
1719 spa_get_failmode(spa_t *spa)
1720 {
1721 	return (spa->spa_failmode);
1722 }
1723 
1724 boolean_t
1725 spa_suspended(spa_t *spa)
1726 {
1727 	return (spa->spa_suspended);
1728 }
1729 
1730 uint64_t
1731 spa_version(spa_t *spa)
1732 {
1733 	return (spa->spa_ubsync.ub_version);
1734 }
1735 
1736 boolean_t
1737 spa_deflate(spa_t *spa)
1738 {
1739 	return (spa->spa_deflate);
1740 }
1741 
1742 metaslab_class_t *
1743 spa_normal_class(spa_t *spa)
1744 {
1745 	return (spa->spa_normal_class);
1746 }
1747 
1748 metaslab_class_t *
1749 spa_log_class(spa_t *spa)
1750 {
1751 	return (spa->spa_log_class);
1752 }
1753 
1754 void
1755 spa_evicting_os_register(spa_t *spa, objset_t *os)
1756 {
1757 	mutex_enter(&spa->spa_evicting_os_lock);
1758 	list_insert_head(&spa->spa_evicting_os_list, os);
1759 	mutex_exit(&spa->spa_evicting_os_lock);
1760 }
1761 
1762 void
1763 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1764 {
1765 	mutex_enter(&spa->spa_evicting_os_lock);
1766 	list_remove(&spa->spa_evicting_os_list, os);
1767 	cv_broadcast(&spa->spa_evicting_os_cv);
1768 	mutex_exit(&spa->spa_evicting_os_lock);
1769 }
1770 
1771 void
1772 spa_evicting_os_wait(spa_t *spa)
1773 {
1774 	mutex_enter(&spa->spa_evicting_os_lock);
1775 	while (!list_is_empty(&spa->spa_evicting_os_list))
1776 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1777 	mutex_exit(&spa->spa_evicting_os_lock);
1778 
1779 	dmu_buf_user_evict_wait();
1780 }
1781 
1782 int
1783 spa_max_replication(spa_t *spa)
1784 {
1785 	/*
1786 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1787 	 * handle BPs with more than one DVA allocated.  Set our max
1788 	 * replication level accordingly.
1789 	 */
1790 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1791 		return (1);
1792 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1793 }
1794 
1795 int
1796 spa_prev_software_version(spa_t *spa)
1797 {
1798 	return (spa->spa_prev_software_version);
1799 }
1800 
1801 uint64_t
1802 spa_deadman_synctime(spa_t *spa)
1803 {
1804 	return (spa->spa_deadman_synctime);
1805 }
1806 
1807 uint64_t
1808 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1809 {
1810 	uint64_t asize = DVA_GET_ASIZE(dva);
1811 	uint64_t dsize = asize;
1812 
1813 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1814 
1815 	if (asize != 0 && spa->spa_deflate) {
1816 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1817 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1818 	}
1819 
1820 	return (dsize);
1821 }
1822 
1823 uint64_t
1824 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1825 {
1826 	uint64_t dsize = 0;
1827 
1828 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1829 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1830 
1831 	return (dsize);
1832 }
1833 
1834 uint64_t
1835 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1836 {
1837 	uint64_t dsize = 0;
1838 
1839 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1840 
1841 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1842 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1843 
1844 	spa_config_exit(spa, SCL_VDEV, FTAG);
1845 
1846 	return (dsize);
1847 }
1848 
1849 /*
1850  * ==========================================================================
1851  * Initialization and Termination
1852  * ==========================================================================
1853  */
1854 
1855 static int
1856 spa_name_compare(const void *a1, const void *a2)
1857 {
1858 	const spa_t *s1 = a1;
1859 	const spa_t *s2 = a2;
1860 	int s;
1861 
1862 	s = strcmp(s1->spa_name, s2->spa_name);
1863 	if (s > 0)
1864 		return (1);
1865 	if (s < 0)
1866 		return (-1);
1867 	return (0);
1868 }
1869 
1870 int
1871 spa_busy(void)
1872 {
1873 	return (spa_active_count);
1874 }
1875 
1876 void
1877 spa_boot_init()
1878 {
1879 	spa_config_load();
1880 }
1881 
1882 void
1883 spa_init(int mode)
1884 {
1885 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1886 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1887 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1888 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1889 
1890 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1891 	    offsetof(spa_t, spa_avl));
1892 
1893 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1894 	    offsetof(spa_aux_t, aux_avl));
1895 
1896 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1897 	    offsetof(spa_aux_t, aux_avl));
1898 
1899 	spa_mode_global = mode;
1900 
1901 #ifdef _KERNEL
1902 	spa_arch_init();
1903 #else
1904 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1905 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1906 		if (arc_procfd == -1) {
1907 			perror("could not enable watchpoints: "
1908 			    "opening /proc/self/ctl failed: ");
1909 		} else {
1910 			arc_watch = B_TRUE;
1911 		}
1912 	}
1913 #endif
1914 
1915 	refcount_init();
1916 	unique_init();
1917 	range_tree_init();
1918 	metaslab_alloc_trace_init();
1919 	zio_init();
1920 	dmu_init();
1921 	zil_init();
1922 	vdev_cache_stat_init();
1923 	zfs_prop_init();
1924 	zpool_prop_init();
1925 	zpool_feature_init();
1926 	spa_config_load();
1927 	l2arc_start();
1928 }
1929 
1930 void
1931 spa_fini(void)
1932 {
1933 	l2arc_stop();
1934 
1935 	spa_evict_all();
1936 
1937 	vdev_cache_stat_fini();
1938 	zil_fini();
1939 	dmu_fini();
1940 	zio_fini();
1941 	metaslab_alloc_trace_fini();
1942 	range_tree_fini();
1943 	unique_fini();
1944 	refcount_fini();
1945 
1946 	avl_destroy(&spa_namespace_avl);
1947 	avl_destroy(&spa_spare_avl);
1948 	avl_destroy(&spa_l2cache_avl);
1949 
1950 	cv_destroy(&spa_namespace_cv);
1951 	mutex_destroy(&spa_namespace_lock);
1952 	mutex_destroy(&spa_spare_lock);
1953 	mutex_destroy(&spa_l2cache_lock);
1954 }
1955 
1956 /*
1957  * Return whether this pool has slogs. No locking needed.
1958  * It's not a problem if the wrong answer is returned as it's only for
1959  * performance and not correctness
1960  */
1961 boolean_t
1962 spa_has_slogs(spa_t *spa)
1963 {
1964 	return (spa->spa_log_class->mc_rotor != NULL);
1965 }
1966 
1967 spa_log_state_t
1968 spa_get_log_state(spa_t *spa)
1969 {
1970 	return (spa->spa_log_state);
1971 }
1972 
1973 void
1974 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1975 {
1976 	spa->spa_log_state = state;
1977 }
1978 
1979 boolean_t
1980 spa_is_root(spa_t *spa)
1981 {
1982 	return (spa->spa_is_root);
1983 }
1984 
1985 boolean_t
1986 spa_writeable(spa_t *spa)
1987 {
1988 	return (!!(spa->spa_mode & FWRITE));
1989 }
1990 
1991 /*
1992  * Returns true if there is a pending sync task in any of the current
1993  * syncing txg, the current quiescing txg, or the current open txg.
1994  */
1995 boolean_t
1996 spa_has_pending_synctask(spa_t *spa)
1997 {
1998 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1999 }
2000 
2001 int
2002 spa_mode(spa_t *spa)
2003 {
2004 	return (spa->spa_mode);
2005 }
2006 
2007 uint64_t
2008 spa_bootfs(spa_t *spa)
2009 {
2010 	return (spa->spa_bootfs);
2011 }
2012 
2013 uint64_t
2014 spa_delegation(spa_t *spa)
2015 {
2016 	return (spa->spa_delegation);
2017 }
2018 
2019 objset_t *
2020 spa_meta_objset(spa_t *spa)
2021 {
2022 	return (spa->spa_meta_objset);
2023 }
2024 
2025 enum zio_checksum
2026 spa_dedup_checksum(spa_t *spa)
2027 {
2028 	return (spa->spa_dedup_checksum);
2029 }
2030 
2031 /*
2032  * Reset pool scan stat per scan pass (or reboot).
2033  */
2034 void
2035 spa_scan_stat_init(spa_t *spa)
2036 {
2037 	/* data not stored on disk */
2038 	spa->spa_scan_pass_start = gethrestime_sec();
2039 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2040 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2041 	else
2042 		spa->spa_scan_pass_scrub_pause = 0;
2043 	spa->spa_scan_pass_scrub_spent_paused = 0;
2044 	spa->spa_scan_pass_exam = 0;
2045 	vdev_scan_stat_init(spa->spa_root_vdev);
2046 }
2047 
2048 /*
2049  * Get scan stats for zpool status reports
2050  */
2051 int
2052 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2053 {
2054 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2055 
2056 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2057 		return (SET_ERROR(ENOENT));
2058 	bzero(ps, sizeof (pool_scan_stat_t));
2059 
2060 	/* data stored on disk */
2061 	ps->pss_func = scn->scn_phys.scn_func;
2062 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2063 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2064 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2065 	ps->pss_examined = scn->scn_phys.scn_examined;
2066 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2067 	ps->pss_processed = scn->scn_phys.scn_processed;
2068 	ps->pss_errors = scn->scn_phys.scn_errors;
2069 	ps->pss_state = scn->scn_phys.scn_state;
2070 
2071 	/* data not stored on disk */
2072 	ps->pss_pass_start = spa->spa_scan_pass_start;
2073 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2074 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2075 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2076 
2077 	return (0);
2078 }
2079 
2080 boolean_t
2081 spa_debug_enabled(spa_t *spa)
2082 {
2083 	return (spa->spa_debug);
2084 }
2085 
2086 int
2087 spa_maxblocksize(spa_t *spa)
2088 {
2089 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2090 		return (SPA_MAXBLOCKSIZE);
2091 	else
2092 		return (SPA_OLD_MAXBLOCKSIZE);
2093 }
2094 
2095 /*
2096  * Returns the txg that the last device removal completed. No indirect mappings
2097  * have been added since this txg.
2098  */
2099 uint64_t
2100 spa_get_last_removal_txg(spa_t *spa)
2101 {
2102 	uint64_t vdevid;
2103 	uint64_t ret = -1ULL;
2104 
2105 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2106 	/*
2107 	 * sr_prev_indirect_vdev is only modified while holding all the
2108 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2109 	 * examining it.
2110 	 */
2111 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2112 
2113 	while (vdevid != -1ULL) {
2114 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2115 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2116 
2117 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2118 
2119 		/*
2120 		 * If the removal did not remap any data, we don't care.
2121 		 */
2122 		if (vdev_indirect_births_count(vib) != 0) {
2123 			ret = vdev_indirect_births_last_entry_txg(vib);
2124 			break;
2125 		}
2126 
2127 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2128 	}
2129 	spa_config_exit(spa, SCL_VDEV, FTAG);
2130 
2131 	IMPLY(ret != -1ULL,
2132 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2133 
2134 	return (ret);
2135 }
2136