xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision c56b380c394069fe4abc1010960870ca8b2726a8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/spa_boot.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/arc.h>
50 #include <sys/ddt.h>
51 #include "zfs_prop.h"
52 #include "zfeature_common.h"
53 
54 /*
55  * SPA locking
56  *
57  * There are four basic locks for managing spa_t structures:
58  *
59  * spa_namespace_lock (global mutex)
60  *
61  *	This lock must be acquired to do any of the following:
62  *
63  *		- Lookup a spa_t by name
64  *		- Add or remove a spa_t from the namespace
65  *		- Increase spa_refcount from non-zero
66  *		- Check if spa_refcount is zero
67  *		- Rename a spa_t
68  *		- add/remove/attach/detach devices
69  *		- Held for the duration of create/destroy/import/export
70  *
71  *	It does not need to handle recursion.  A create or destroy may
72  *	reference objects (files or zvols) in other pools, but by
73  *	definition they must have an existing reference, and will never need
74  *	to lookup a spa_t by name.
75  *
76  * spa_refcount (per-spa refcount_t protected by mutex)
77  *
78  *	This reference count keep track of any active users of the spa_t.  The
79  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
80  *	the refcount is never really 'zero' - opening a pool implicitly keeps
81  *	some references in the DMU.  Internally we check against spa_minref, but
82  *	present the image of a zero/non-zero value to consumers.
83  *
84  * spa_config_lock[] (per-spa array of rwlocks)
85  *
86  *	This protects the spa_t from config changes, and must be held in
87  *	the following circumstances:
88  *
89  *		- RW_READER to perform I/O to the spa
90  *		- RW_WRITER to change the vdev config
91  *
92  * The locking order is fairly straightforward:
93  *
94  *		spa_namespace_lock	->	spa_refcount
95  *
96  *	The namespace lock must be acquired to increase the refcount from 0
97  *	or to check if it is zero.
98  *
99  *		spa_refcount		->	spa_config_lock[]
100  *
101  *	There must be at least one valid reference on the spa_t to acquire
102  *	the config lock.
103  *
104  *		spa_namespace_lock	->	spa_config_lock[]
105  *
106  *	The namespace lock must always be taken before the config lock.
107  *
108  *
109  * The spa_namespace_lock can be acquired directly and is globally visible.
110  *
111  * The namespace is manipulated using the following functions, all of which
112  * require the spa_namespace_lock to be held.
113  *
114  *	spa_lookup()		Lookup a spa_t by name.
115  *
116  *	spa_add()		Create a new spa_t in the namespace.
117  *
118  *	spa_remove()		Remove a spa_t from the namespace.  This also
119  *				frees up any memory associated with the spa_t.
120  *
121  *	spa_next()		Returns the next spa_t in the system, or the
122  *				first if NULL is passed.
123  *
124  *	spa_evict_all()		Shutdown and remove all spa_t structures in
125  *				the system.
126  *
127  *	spa_guid_exists()	Determine whether a pool/device guid exists.
128  *
129  * The spa_refcount is manipulated using the following functions:
130  *
131  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
132  *				called with spa_namespace_lock held if the
133  *				refcount is currently zero.
134  *
135  *	spa_close()		Remove a reference from the spa_t.  This will
136  *				not free the spa_t or remove it from the
137  *				namespace.  No locking is required.
138  *
139  *	spa_refcount_zero()	Returns true if the refcount is currently
140  *				zero.  Must be called with spa_namespace_lock
141  *				held.
142  *
143  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
144  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
145  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
146  *
147  * To read the configuration, it suffices to hold one of these locks as reader.
148  * To modify the configuration, you must hold all locks as writer.  To modify
149  * vdev state without altering the vdev tree's topology (e.g. online/offline),
150  * you must hold SCL_STATE and SCL_ZIO as writer.
151  *
152  * We use these distinct config locks to avoid recursive lock entry.
153  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
154  * block allocations (SCL_ALLOC), which may require reading space maps
155  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
156  *
157  * The spa config locks cannot be normal rwlocks because we need the
158  * ability to hand off ownership.  For example, SCL_ZIO is acquired
159  * by the issuing thread and later released by an interrupt thread.
160  * They do, however, obey the usual write-wanted semantics to prevent
161  * writer (i.e. system administrator) starvation.
162  *
163  * The lock acquisition rules are as follows:
164  *
165  * SCL_CONFIG
166  *	Protects changes to the vdev tree topology, such as vdev
167  *	add/remove/attach/detach.  Protects the dirty config list
168  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
169  *
170  * SCL_STATE
171  *	Protects changes to pool state and vdev state, such as vdev
172  *	online/offline/fault/degrade/clear.  Protects the dirty state list
173  *	(spa_state_dirty_list) and global pool state (spa_state).
174  *
175  * SCL_ALLOC
176  *	Protects changes to metaslab groups and classes.
177  *	Held as reader by metaslab_alloc() and metaslab_claim().
178  *
179  * SCL_ZIO
180  *	Held by bp-level zios (those which have no io_vd upon entry)
181  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
182  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
183  *
184  * SCL_FREE
185  *	Protects changes to metaslab groups and classes.
186  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
187  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
188  *	blocks in zio_done() while another i/o that holds either
189  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
190  *
191  * SCL_VDEV
192  *	Held as reader to prevent changes to the vdev tree during trivial
193  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
194  *	other locks, and lower than all of them, to ensure that it's safe
195  *	to acquire regardless of caller context.
196  *
197  * In addition, the following rules apply:
198  *
199  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
200  *	The lock ordering is SCL_CONFIG > spa_props_lock.
201  *
202  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
203  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
204  *	or zio_write_phys() -- the caller must ensure that the config cannot
205  *	cannot change in the interim, and that the vdev cannot be reopened.
206  *	SCL_STATE as reader suffices for both.
207  *
208  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
209  *
210  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
211  *				for writing.
212  *
213  *	spa_vdev_exit()		Release the config lock, wait for all I/O
214  *				to complete, sync the updated configs to the
215  *				cache, and release the namespace lock.
216  *
217  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
218  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
219  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
220  *
221  * spa_rename() is also implemented within this file since it requires
222  * manipulation of the namespace.
223  */
224 
225 static avl_tree_t spa_namespace_avl;
226 kmutex_t spa_namespace_lock;
227 static kcondvar_t spa_namespace_cv;
228 static int spa_active_count;
229 int spa_max_replication_override = SPA_DVAS_PER_BP;
230 
231 static kmutex_t spa_spare_lock;
232 static avl_tree_t spa_spare_avl;
233 static kmutex_t spa_l2cache_lock;
234 static avl_tree_t spa_l2cache_avl;
235 
236 kmem_cache_t *spa_buffer_pool;
237 int spa_mode_global;
238 
239 #ifdef ZFS_DEBUG
240 /* Everything except dprintf and spa is on by default in debug builds */
241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
242 #else
243 int zfs_flags = 0;
244 #endif
245 
246 /*
247  * zfs_recover can be set to nonzero to attempt to recover from
248  * otherwise-fatal errors, typically caused by on-disk corruption.  When
249  * set, calls to zfs_panic_recover() will turn into warning messages.
250  */
251 int zfs_recover = 0;
252 
253 extern int zfs_txg_synctime_ms;
254 
255 /*
256  * Expiration time in units of zfs_txg_synctime_ms. This value has two
257  * meanings. First it is used to determine when the spa_deadman logic
258  * should fire. By default the spa_deadman will fire if spa_sync has
259  * not completed in 1000 * zfs_txg_synctime_ms (i.e. 1000 seconds).
260  * Secondly, the value determines if an I/O is considered "hung".
261  * Any I/O that has not completed in zfs_deadman_synctime is considered
262  * "hung" resulting in a system panic.
263  */
264 uint64_t zfs_deadman_synctime = 1000ULL;
265 
266 /*
267  * Override the zfs deadman behavior via /etc/system. By default the
268  * deadman is enabled except on VMware and sparc deployments.
269  */
270 int zfs_deadman_enabled = -1;
271 
272 
273 /*
274  * ==========================================================================
275  * SPA config locking
276  * ==========================================================================
277  */
278 static void
279 spa_config_lock_init(spa_t *spa)
280 {
281 	for (int i = 0; i < SCL_LOCKS; i++) {
282 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
283 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
284 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
285 		refcount_create_untracked(&scl->scl_count);
286 		scl->scl_writer = NULL;
287 		scl->scl_write_wanted = 0;
288 	}
289 }
290 
291 static void
292 spa_config_lock_destroy(spa_t *spa)
293 {
294 	for (int i = 0; i < SCL_LOCKS; i++) {
295 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
296 		mutex_destroy(&scl->scl_lock);
297 		cv_destroy(&scl->scl_cv);
298 		refcount_destroy(&scl->scl_count);
299 		ASSERT(scl->scl_writer == NULL);
300 		ASSERT(scl->scl_write_wanted == 0);
301 	}
302 }
303 
304 int
305 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
306 {
307 	for (int i = 0; i < SCL_LOCKS; i++) {
308 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
309 		if (!(locks & (1 << i)))
310 			continue;
311 		mutex_enter(&scl->scl_lock);
312 		if (rw == RW_READER) {
313 			if (scl->scl_writer || scl->scl_write_wanted) {
314 				mutex_exit(&scl->scl_lock);
315 				spa_config_exit(spa, locks ^ (1 << i), tag);
316 				return (0);
317 			}
318 		} else {
319 			ASSERT(scl->scl_writer != curthread);
320 			if (!refcount_is_zero(&scl->scl_count)) {
321 				mutex_exit(&scl->scl_lock);
322 				spa_config_exit(spa, locks ^ (1 << i), tag);
323 				return (0);
324 			}
325 			scl->scl_writer = curthread;
326 		}
327 		(void) refcount_add(&scl->scl_count, tag);
328 		mutex_exit(&scl->scl_lock);
329 	}
330 	return (1);
331 }
332 
333 void
334 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
335 {
336 	int wlocks_held = 0;
337 
338 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
339 
340 	for (int i = 0; i < SCL_LOCKS; i++) {
341 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
342 		if (scl->scl_writer == curthread)
343 			wlocks_held |= (1 << i);
344 		if (!(locks & (1 << i)))
345 			continue;
346 		mutex_enter(&scl->scl_lock);
347 		if (rw == RW_READER) {
348 			while (scl->scl_writer || scl->scl_write_wanted) {
349 				cv_wait(&scl->scl_cv, &scl->scl_lock);
350 			}
351 		} else {
352 			ASSERT(scl->scl_writer != curthread);
353 			while (!refcount_is_zero(&scl->scl_count)) {
354 				scl->scl_write_wanted++;
355 				cv_wait(&scl->scl_cv, &scl->scl_lock);
356 				scl->scl_write_wanted--;
357 			}
358 			scl->scl_writer = curthread;
359 		}
360 		(void) refcount_add(&scl->scl_count, tag);
361 		mutex_exit(&scl->scl_lock);
362 	}
363 	ASSERT(wlocks_held <= locks);
364 }
365 
366 void
367 spa_config_exit(spa_t *spa, int locks, void *tag)
368 {
369 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
370 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
371 		if (!(locks & (1 << i)))
372 			continue;
373 		mutex_enter(&scl->scl_lock);
374 		ASSERT(!refcount_is_zero(&scl->scl_count));
375 		if (refcount_remove(&scl->scl_count, tag) == 0) {
376 			ASSERT(scl->scl_writer == NULL ||
377 			    scl->scl_writer == curthread);
378 			scl->scl_writer = NULL;	/* OK in either case */
379 			cv_broadcast(&scl->scl_cv);
380 		}
381 		mutex_exit(&scl->scl_lock);
382 	}
383 }
384 
385 int
386 spa_config_held(spa_t *spa, int locks, krw_t rw)
387 {
388 	int locks_held = 0;
389 
390 	for (int i = 0; i < SCL_LOCKS; i++) {
391 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
392 		if (!(locks & (1 << i)))
393 			continue;
394 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
395 		    (rw == RW_WRITER && scl->scl_writer == curthread))
396 			locks_held |= 1 << i;
397 	}
398 
399 	return (locks_held);
400 }
401 
402 /*
403  * ==========================================================================
404  * SPA namespace functions
405  * ==========================================================================
406  */
407 
408 /*
409  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
410  * Returns NULL if no matching spa_t is found.
411  */
412 spa_t *
413 spa_lookup(const char *name)
414 {
415 	static spa_t search;	/* spa_t is large; don't allocate on stack */
416 	spa_t *spa;
417 	avl_index_t where;
418 	char *cp;
419 
420 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
421 
422 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
423 
424 	/*
425 	 * If it's a full dataset name, figure out the pool name and
426 	 * just use that.
427 	 */
428 	cp = strpbrk(search.spa_name, "/@");
429 	if (cp != NULL)
430 		*cp = '\0';
431 
432 	spa = avl_find(&spa_namespace_avl, &search, &where);
433 
434 	return (spa);
435 }
436 
437 /*
438  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
439  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
440  * looking for potentially hung I/Os.
441  */
442 void
443 spa_deadman(void *arg)
444 {
445 	spa_t *spa = arg;
446 
447 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
448 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
449 	    ++spa->spa_deadman_calls);
450 	if (zfs_deadman_enabled)
451 		vdev_deadman(spa->spa_root_vdev);
452 }
453 
454 /*
455  * Create an uninitialized spa_t with the given name.  Requires
456  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
457  * exist by calling spa_lookup() first.
458  */
459 spa_t *
460 spa_add(const char *name, nvlist_t *config, const char *altroot)
461 {
462 	spa_t *spa;
463 	spa_config_dirent_t *dp;
464 	cyc_handler_t hdlr;
465 	cyc_time_t when;
466 
467 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
468 
469 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
470 
471 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
472 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
473 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
474 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
475 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
476 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
477 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
478 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
479 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
480 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
481 
482 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
483 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
484 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
485 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
486 
487 	for (int t = 0; t < TXG_SIZE; t++)
488 		bplist_create(&spa->spa_free_bplist[t]);
489 
490 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
491 	spa->spa_state = POOL_STATE_UNINITIALIZED;
492 	spa->spa_freeze_txg = UINT64_MAX;
493 	spa->spa_final_txg = UINT64_MAX;
494 	spa->spa_load_max_txg = UINT64_MAX;
495 	spa->spa_proc = &p0;
496 	spa->spa_proc_state = SPA_PROC_NONE;
497 
498 	hdlr.cyh_func = spa_deadman;
499 	hdlr.cyh_arg = spa;
500 	hdlr.cyh_level = CY_LOW_LEVEL;
501 
502 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime *
503 	    zfs_txg_synctime_ms);
504 
505 	/*
506 	 * This determines how often we need to check for hung I/Os after
507 	 * the cyclic has already fired. Since checking for hung I/Os is
508 	 * an expensive operation we don't want to check too frequently.
509 	 * Instead wait for 5 synctimes before checking again.
510 	 */
511 	when.cyt_interval = MSEC2NSEC(5 * zfs_txg_synctime_ms);
512 	when.cyt_when = CY_INFINITY;
513 	mutex_enter(&cpu_lock);
514 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
515 	mutex_exit(&cpu_lock);
516 
517 	refcount_create(&spa->spa_refcount);
518 	spa_config_lock_init(spa);
519 
520 	avl_add(&spa_namespace_avl, spa);
521 
522 	/*
523 	 * Set the alternate root, if there is one.
524 	 */
525 	if (altroot) {
526 		spa->spa_root = spa_strdup(altroot);
527 		spa_active_count++;
528 	}
529 
530 	/*
531 	 * Every pool starts with the default cachefile
532 	 */
533 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
534 	    offsetof(spa_config_dirent_t, scd_link));
535 
536 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
537 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
538 	list_insert_head(&spa->spa_config_list, dp);
539 
540 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
541 	    KM_SLEEP) == 0);
542 
543 	if (config != NULL) {
544 		nvlist_t *features;
545 
546 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
547 		    &features) == 0) {
548 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
549 			    0) == 0);
550 		}
551 
552 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
553 	}
554 
555 	if (spa->spa_label_features == NULL) {
556 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
557 		    KM_SLEEP) == 0);
558 	}
559 
560 	spa->spa_iokstat = kstat_create("zfs", 0, name,
561 	    "disk", KSTAT_TYPE_IO, 1, 0);
562 	if (spa->spa_iokstat) {
563 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
564 		kstat_install(spa->spa_iokstat);
565 	}
566 
567 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
568 
569 	return (spa);
570 }
571 
572 /*
573  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
574  * spa_namespace_lock.  This is called only after the spa_t has been closed and
575  * deactivated.
576  */
577 void
578 spa_remove(spa_t *spa)
579 {
580 	spa_config_dirent_t *dp;
581 
582 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
583 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
584 
585 	nvlist_free(spa->spa_config_splitting);
586 
587 	avl_remove(&spa_namespace_avl, spa);
588 	cv_broadcast(&spa_namespace_cv);
589 
590 	if (spa->spa_root) {
591 		spa_strfree(spa->spa_root);
592 		spa_active_count--;
593 	}
594 
595 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
596 		list_remove(&spa->spa_config_list, dp);
597 		if (dp->scd_path != NULL)
598 			spa_strfree(dp->scd_path);
599 		kmem_free(dp, sizeof (spa_config_dirent_t));
600 	}
601 
602 	list_destroy(&spa->spa_config_list);
603 
604 	nvlist_free(spa->spa_label_features);
605 	nvlist_free(spa->spa_load_info);
606 	spa_config_set(spa, NULL);
607 
608 	mutex_enter(&cpu_lock);
609 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
610 		cyclic_remove(spa->spa_deadman_cycid);
611 	mutex_exit(&cpu_lock);
612 	spa->spa_deadman_cycid = CYCLIC_NONE;
613 
614 	refcount_destroy(&spa->spa_refcount);
615 
616 	spa_config_lock_destroy(spa);
617 
618 	kstat_delete(spa->spa_iokstat);
619 	spa->spa_iokstat = NULL;
620 
621 	for (int t = 0; t < TXG_SIZE; t++)
622 		bplist_destroy(&spa->spa_free_bplist[t]);
623 
624 	cv_destroy(&spa->spa_async_cv);
625 	cv_destroy(&spa->spa_proc_cv);
626 	cv_destroy(&spa->spa_scrub_io_cv);
627 	cv_destroy(&spa->spa_suspend_cv);
628 
629 	mutex_destroy(&spa->spa_async_lock);
630 	mutex_destroy(&spa->spa_errlist_lock);
631 	mutex_destroy(&spa->spa_errlog_lock);
632 	mutex_destroy(&spa->spa_history_lock);
633 	mutex_destroy(&spa->spa_proc_lock);
634 	mutex_destroy(&spa->spa_props_lock);
635 	mutex_destroy(&spa->spa_scrub_lock);
636 	mutex_destroy(&spa->spa_suspend_lock);
637 	mutex_destroy(&spa->spa_vdev_top_lock);
638 	mutex_destroy(&spa->spa_iokstat_lock);
639 
640 	kmem_free(spa, sizeof (spa_t));
641 }
642 
643 /*
644  * Given a pool, return the next pool in the namespace, or NULL if there is
645  * none.  If 'prev' is NULL, return the first pool.
646  */
647 spa_t *
648 spa_next(spa_t *prev)
649 {
650 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
651 
652 	if (prev)
653 		return (AVL_NEXT(&spa_namespace_avl, prev));
654 	else
655 		return (avl_first(&spa_namespace_avl));
656 }
657 
658 /*
659  * ==========================================================================
660  * SPA refcount functions
661  * ==========================================================================
662  */
663 
664 /*
665  * Add a reference to the given spa_t.  Must have at least one reference, or
666  * have the namespace lock held.
667  */
668 void
669 spa_open_ref(spa_t *spa, void *tag)
670 {
671 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
672 	    MUTEX_HELD(&spa_namespace_lock));
673 	(void) refcount_add(&spa->spa_refcount, tag);
674 }
675 
676 /*
677  * Remove a reference to the given spa_t.  Must have at least one reference, or
678  * have the namespace lock held.
679  */
680 void
681 spa_close(spa_t *spa, void *tag)
682 {
683 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
684 	    MUTEX_HELD(&spa_namespace_lock));
685 	(void) refcount_remove(&spa->spa_refcount, tag);
686 }
687 
688 /*
689  * Check to see if the spa refcount is zero.  Must be called with
690  * spa_namespace_lock held.  We really compare against spa_minref, which is the
691  * number of references acquired when opening a pool
692  */
693 boolean_t
694 spa_refcount_zero(spa_t *spa)
695 {
696 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
697 
698 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
699 }
700 
701 /*
702  * ==========================================================================
703  * SPA spare and l2cache tracking
704  * ==========================================================================
705  */
706 
707 /*
708  * Hot spares and cache devices are tracked using the same code below,
709  * for 'auxiliary' devices.
710  */
711 
712 typedef struct spa_aux {
713 	uint64_t	aux_guid;
714 	uint64_t	aux_pool;
715 	avl_node_t	aux_avl;
716 	int		aux_count;
717 } spa_aux_t;
718 
719 static int
720 spa_aux_compare(const void *a, const void *b)
721 {
722 	const spa_aux_t *sa = a;
723 	const spa_aux_t *sb = b;
724 
725 	if (sa->aux_guid < sb->aux_guid)
726 		return (-1);
727 	else if (sa->aux_guid > sb->aux_guid)
728 		return (1);
729 	else
730 		return (0);
731 }
732 
733 void
734 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
735 {
736 	avl_index_t where;
737 	spa_aux_t search;
738 	spa_aux_t *aux;
739 
740 	search.aux_guid = vd->vdev_guid;
741 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
742 		aux->aux_count++;
743 	} else {
744 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
745 		aux->aux_guid = vd->vdev_guid;
746 		aux->aux_count = 1;
747 		avl_insert(avl, aux, where);
748 	}
749 }
750 
751 void
752 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
753 {
754 	spa_aux_t search;
755 	spa_aux_t *aux;
756 	avl_index_t where;
757 
758 	search.aux_guid = vd->vdev_guid;
759 	aux = avl_find(avl, &search, &where);
760 
761 	ASSERT(aux != NULL);
762 
763 	if (--aux->aux_count == 0) {
764 		avl_remove(avl, aux);
765 		kmem_free(aux, sizeof (spa_aux_t));
766 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
767 		aux->aux_pool = 0ULL;
768 	}
769 }
770 
771 boolean_t
772 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
773 {
774 	spa_aux_t search, *found;
775 
776 	search.aux_guid = guid;
777 	found = avl_find(avl, &search, NULL);
778 
779 	if (pool) {
780 		if (found)
781 			*pool = found->aux_pool;
782 		else
783 			*pool = 0ULL;
784 	}
785 
786 	if (refcnt) {
787 		if (found)
788 			*refcnt = found->aux_count;
789 		else
790 			*refcnt = 0;
791 	}
792 
793 	return (found != NULL);
794 }
795 
796 void
797 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
798 {
799 	spa_aux_t search, *found;
800 	avl_index_t where;
801 
802 	search.aux_guid = vd->vdev_guid;
803 	found = avl_find(avl, &search, &where);
804 	ASSERT(found != NULL);
805 	ASSERT(found->aux_pool == 0ULL);
806 
807 	found->aux_pool = spa_guid(vd->vdev_spa);
808 }
809 
810 /*
811  * Spares are tracked globally due to the following constraints:
812  *
813  * 	- A spare may be part of multiple pools.
814  * 	- A spare may be added to a pool even if it's actively in use within
815  *	  another pool.
816  * 	- A spare in use in any pool can only be the source of a replacement if
817  *	  the target is a spare in the same pool.
818  *
819  * We keep track of all spares on the system through the use of a reference
820  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
821  * spare, then we bump the reference count in the AVL tree.  In addition, we set
822  * the 'vdev_isspare' member to indicate that the device is a spare (active or
823  * inactive).  When a spare is made active (used to replace a device in the
824  * pool), we also keep track of which pool its been made a part of.
825  *
826  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
827  * called under the spa_namespace lock as part of vdev reconfiguration.  The
828  * separate spare lock exists for the status query path, which does not need to
829  * be completely consistent with respect to other vdev configuration changes.
830  */
831 
832 static int
833 spa_spare_compare(const void *a, const void *b)
834 {
835 	return (spa_aux_compare(a, b));
836 }
837 
838 void
839 spa_spare_add(vdev_t *vd)
840 {
841 	mutex_enter(&spa_spare_lock);
842 	ASSERT(!vd->vdev_isspare);
843 	spa_aux_add(vd, &spa_spare_avl);
844 	vd->vdev_isspare = B_TRUE;
845 	mutex_exit(&spa_spare_lock);
846 }
847 
848 void
849 spa_spare_remove(vdev_t *vd)
850 {
851 	mutex_enter(&spa_spare_lock);
852 	ASSERT(vd->vdev_isspare);
853 	spa_aux_remove(vd, &spa_spare_avl);
854 	vd->vdev_isspare = B_FALSE;
855 	mutex_exit(&spa_spare_lock);
856 }
857 
858 boolean_t
859 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
860 {
861 	boolean_t found;
862 
863 	mutex_enter(&spa_spare_lock);
864 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
865 	mutex_exit(&spa_spare_lock);
866 
867 	return (found);
868 }
869 
870 void
871 spa_spare_activate(vdev_t *vd)
872 {
873 	mutex_enter(&spa_spare_lock);
874 	ASSERT(vd->vdev_isspare);
875 	spa_aux_activate(vd, &spa_spare_avl);
876 	mutex_exit(&spa_spare_lock);
877 }
878 
879 /*
880  * Level 2 ARC devices are tracked globally for the same reasons as spares.
881  * Cache devices currently only support one pool per cache device, and so
882  * for these devices the aux reference count is currently unused beyond 1.
883  */
884 
885 static int
886 spa_l2cache_compare(const void *a, const void *b)
887 {
888 	return (spa_aux_compare(a, b));
889 }
890 
891 void
892 spa_l2cache_add(vdev_t *vd)
893 {
894 	mutex_enter(&spa_l2cache_lock);
895 	ASSERT(!vd->vdev_isl2cache);
896 	spa_aux_add(vd, &spa_l2cache_avl);
897 	vd->vdev_isl2cache = B_TRUE;
898 	mutex_exit(&spa_l2cache_lock);
899 }
900 
901 void
902 spa_l2cache_remove(vdev_t *vd)
903 {
904 	mutex_enter(&spa_l2cache_lock);
905 	ASSERT(vd->vdev_isl2cache);
906 	spa_aux_remove(vd, &spa_l2cache_avl);
907 	vd->vdev_isl2cache = B_FALSE;
908 	mutex_exit(&spa_l2cache_lock);
909 }
910 
911 boolean_t
912 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
913 {
914 	boolean_t found;
915 
916 	mutex_enter(&spa_l2cache_lock);
917 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
918 	mutex_exit(&spa_l2cache_lock);
919 
920 	return (found);
921 }
922 
923 void
924 spa_l2cache_activate(vdev_t *vd)
925 {
926 	mutex_enter(&spa_l2cache_lock);
927 	ASSERT(vd->vdev_isl2cache);
928 	spa_aux_activate(vd, &spa_l2cache_avl);
929 	mutex_exit(&spa_l2cache_lock);
930 }
931 
932 /*
933  * ==========================================================================
934  * SPA vdev locking
935  * ==========================================================================
936  */
937 
938 /*
939  * Lock the given spa_t for the purpose of adding or removing a vdev.
940  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
941  * It returns the next transaction group for the spa_t.
942  */
943 uint64_t
944 spa_vdev_enter(spa_t *spa)
945 {
946 	mutex_enter(&spa->spa_vdev_top_lock);
947 	mutex_enter(&spa_namespace_lock);
948 	return (spa_vdev_config_enter(spa));
949 }
950 
951 /*
952  * Internal implementation for spa_vdev_enter().  Used when a vdev
953  * operation requires multiple syncs (i.e. removing a device) while
954  * keeping the spa_namespace_lock held.
955  */
956 uint64_t
957 spa_vdev_config_enter(spa_t *spa)
958 {
959 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
960 
961 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
962 
963 	return (spa_last_synced_txg(spa) + 1);
964 }
965 
966 /*
967  * Used in combination with spa_vdev_config_enter() to allow the syncing
968  * of multiple transactions without releasing the spa_namespace_lock.
969  */
970 void
971 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
972 {
973 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
974 
975 	int config_changed = B_FALSE;
976 
977 	ASSERT(txg > spa_last_synced_txg(spa));
978 
979 	spa->spa_pending_vdev = NULL;
980 
981 	/*
982 	 * Reassess the DTLs.
983 	 */
984 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
985 
986 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
987 		config_changed = B_TRUE;
988 		spa->spa_config_generation++;
989 	}
990 
991 	/*
992 	 * Verify the metaslab classes.
993 	 */
994 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
995 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
996 
997 	spa_config_exit(spa, SCL_ALL, spa);
998 
999 	/*
1000 	 * Panic the system if the specified tag requires it.  This
1001 	 * is useful for ensuring that configurations are updated
1002 	 * transactionally.
1003 	 */
1004 	if (zio_injection_enabled)
1005 		zio_handle_panic_injection(spa, tag, 0);
1006 
1007 	/*
1008 	 * Note: this txg_wait_synced() is important because it ensures
1009 	 * that there won't be more than one config change per txg.
1010 	 * This allows us to use the txg as the generation number.
1011 	 */
1012 	if (error == 0)
1013 		txg_wait_synced(spa->spa_dsl_pool, txg);
1014 
1015 	if (vd != NULL) {
1016 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
1017 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1018 		vdev_free(vd);
1019 		spa_config_exit(spa, SCL_ALL, spa);
1020 	}
1021 
1022 	/*
1023 	 * If the config changed, update the config cache.
1024 	 */
1025 	if (config_changed)
1026 		spa_config_sync(spa, B_FALSE, B_TRUE);
1027 }
1028 
1029 /*
1030  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1031  * locking of spa_vdev_enter(), we also want make sure the transactions have
1032  * synced to disk, and then update the global configuration cache with the new
1033  * information.
1034  */
1035 int
1036 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1037 {
1038 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1039 	mutex_exit(&spa_namespace_lock);
1040 	mutex_exit(&spa->spa_vdev_top_lock);
1041 
1042 	return (error);
1043 }
1044 
1045 /*
1046  * Lock the given spa_t for the purpose of changing vdev state.
1047  */
1048 void
1049 spa_vdev_state_enter(spa_t *spa, int oplocks)
1050 {
1051 	int locks = SCL_STATE_ALL | oplocks;
1052 
1053 	/*
1054 	 * Root pools may need to read of the underlying devfs filesystem
1055 	 * when opening up a vdev.  Unfortunately if we're holding the
1056 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1057 	 * the read from the root filesystem.  Instead we "prefetch"
1058 	 * the associated vnodes that we need prior to opening the
1059 	 * underlying devices and cache them so that we can prevent
1060 	 * any I/O when we are doing the actual open.
1061 	 */
1062 	if (spa_is_root(spa)) {
1063 		int low = locks & ~(SCL_ZIO - 1);
1064 		int high = locks & ~low;
1065 
1066 		spa_config_enter(spa, high, spa, RW_WRITER);
1067 		vdev_hold(spa->spa_root_vdev);
1068 		spa_config_enter(spa, low, spa, RW_WRITER);
1069 	} else {
1070 		spa_config_enter(spa, locks, spa, RW_WRITER);
1071 	}
1072 	spa->spa_vdev_locks = locks;
1073 }
1074 
1075 int
1076 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1077 {
1078 	boolean_t config_changed = B_FALSE;
1079 
1080 	if (vd != NULL || error == 0)
1081 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1082 		    0, 0, B_FALSE);
1083 
1084 	if (vd != NULL) {
1085 		vdev_state_dirty(vd->vdev_top);
1086 		config_changed = B_TRUE;
1087 		spa->spa_config_generation++;
1088 	}
1089 
1090 	if (spa_is_root(spa))
1091 		vdev_rele(spa->spa_root_vdev);
1092 
1093 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1094 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1095 
1096 	/*
1097 	 * If anything changed, wait for it to sync.  This ensures that,
1098 	 * from the system administrator's perspective, zpool(1M) commands
1099 	 * are synchronous.  This is important for things like zpool offline:
1100 	 * when the command completes, you expect no further I/O from ZFS.
1101 	 */
1102 	if (vd != NULL)
1103 		txg_wait_synced(spa->spa_dsl_pool, 0);
1104 
1105 	/*
1106 	 * If the config changed, update the config cache.
1107 	 */
1108 	if (config_changed) {
1109 		mutex_enter(&spa_namespace_lock);
1110 		spa_config_sync(spa, B_FALSE, B_TRUE);
1111 		mutex_exit(&spa_namespace_lock);
1112 	}
1113 
1114 	return (error);
1115 }
1116 
1117 /*
1118  * ==========================================================================
1119  * Miscellaneous functions
1120  * ==========================================================================
1121  */
1122 
1123 void
1124 spa_activate_mos_feature(spa_t *spa, const char *feature)
1125 {
1126 	(void) nvlist_add_boolean(spa->spa_label_features, feature);
1127 	vdev_config_dirty(spa->spa_root_vdev);
1128 }
1129 
1130 void
1131 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1132 {
1133 	(void) nvlist_remove_all(spa->spa_label_features, feature);
1134 	vdev_config_dirty(spa->spa_root_vdev);
1135 }
1136 
1137 /*
1138  * Rename a spa_t.
1139  */
1140 int
1141 spa_rename(const char *name, const char *newname)
1142 {
1143 	spa_t *spa;
1144 	int err;
1145 
1146 	/*
1147 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1148 	 * actually open the pool so that we can sync out the necessary labels.
1149 	 * It's OK to call spa_open() with the namespace lock held because we
1150 	 * allow recursive calls for other reasons.
1151 	 */
1152 	mutex_enter(&spa_namespace_lock);
1153 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1154 		mutex_exit(&spa_namespace_lock);
1155 		return (err);
1156 	}
1157 
1158 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1159 
1160 	avl_remove(&spa_namespace_avl, spa);
1161 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1162 	avl_add(&spa_namespace_avl, spa);
1163 
1164 	/*
1165 	 * Sync all labels to disk with the new names by marking the root vdev
1166 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1167 	 * during the sync.
1168 	 */
1169 	vdev_config_dirty(spa->spa_root_vdev);
1170 
1171 	spa_config_exit(spa, SCL_ALL, FTAG);
1172 
1173 	txg_wait_synced(spa->spa_dsl_pool, 0);
1174 
1175 	/*
1176 	 * Sync the updated config cache.
1177 	 */
1178 	spa_config_sync(spa, B_FALSE, B_TRUE);
1179 
1180 	spa_close(spa, FTAG);
1181 
1182 	mutex_exit(&spa_namespace_lock);
1183 
1184 	return (0);
1185 }
1186 
1187 /*
1188  * Return the spa_t associated with given pool_guid, if it exists.  If
1189  * device_guid is non-zero, determine whether the pool exists *and* contains
1190  * a device with the specified device_guid.
1191  */
1192 spa_t *
1193 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1194 {
1195 	spa_t *spa;
1196 	avl_tree_t *t = &spa_namespace_avl;
1197 
1198 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1199 
1200 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1201 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1202 			continue;
1203 		if (spa->spa_root_vdev == NULL)
1204 			continue;
1205 		if (spa_guid(spa) == pool_guid) {
1206 			if (device_guid == 0)
1207 				break;
1208 
1209 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1210 			    device_guid) != NULL)
1211 				break;
1212 
1213 			/*
1214 			 * Check any devices we may be in the process of adding.
1215 			 */
1216 			if (spa->spa_pending_vdev) {
1217 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1218 				    device_guid) != NULL)
1219 					break;
1220 			}
1221 		}
1222 	}
1223 
1224 	return (spa);
1225 }
1226 
1227 /*
1228  * Determine whether a pool with the given pool_guid exists.
1229  */
1230 boolean_t
1231 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1232 {
1233 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1234 }
1235 
1236 char *
1237 spa_strdup(const char *s)
1238 {
1239 	size_t len;
1240 	char *new;
1241 
1242 	len = strlen(s);
1243 	new = kmem_alloc(len + 1, KM_SLEEP);
1244 	bcopy(s, new, len);
1245 	new[len] = '\0';
1246 
1247 	return (new);
1248 }
1249 
1250 void
1251 spa_strfree(char *s)
1252 {
1253 	kmem_free(s, strlen(s) + 1);
1254 }
1255 
1256 uint64_t
1257 spa_get_random(uint64_t range)
1258 {
1259 	uint64_t r;
1260 
1261 	ASSERT(range != 0);
1262 
1263 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1264 
1265 	return (r % range);
1266 }
1267 
1268 uint64_t
1269 spa_generate_guid(spa_t *spa)
1270 {
1271 	uint64_t guid = spa_get_random(-1ULL);
1272 
1273 	if (spa != NULL) {
1274 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1275 			guid = spa_get_random(-1ULL);
1276 	} else {
1277 		while (guid == 0 || spa_guid_exists(guid, 0))
1278 			guid = spa_get_random(-1ULL);
1279 	}
1280 
1281 	return (guid);
1282 }
1283 
1284 void
1285 sprintf_blkptr(char *buf, const blkptr_t *bp)
1286 {
1287 	char type[256];
1288 	char *checksum = NULL;
1289 	char *compress = NULL;
1290 
1291 	if (bp != NULL) {
1292 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1293 			dmu_object_byteswap_t bswap =
1294 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1295 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1296 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1297 			    "metadata" : "data",
1298 			    dmu_ot_byteswap[bswap].ob_name);
1299 		} else {
1300 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1301 			    sizeof (type));
1302 		}
1303 		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1304 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1305 	}
1306 
1307 	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1308 }
1309 
1310 void
1311 spa_freeze(spa_t *spa)
1312 {
1313 	uint64_t freeze_txg = 0;
1314 
1315 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1316 	if (spa->spa_freeze_txg == UINT64_MAX) {
1317 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1318 		spa->spa_freeze_txg = freeze_txg;
1319 	}
1320 	spa_config_exit(spa, SCL_ALL, FTAG);
1321 	if (freeze_txg != 0)
1322 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1323 }
1324 
1325 void
1326 zfs_panic_recover(const char *fmt, ...)
1327 {
1328 	va_list adx;
1329 
1330 	va_start(adx, fmt);
1331 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1332 	va_end(adx);
1333 }
1334 
1335 /*
1336  * This is a stripped-down version of strtoull, suitable only for converting
1337  * lowercase hexadecimal numbers that don't overflow.
1338  */
1339 uint64_t
1340 strtonum(const char *str, char **nptr)
1341 {
1342 	uint64_t val = 0;
1343 	char c;
1344 	int digit;
1345 
1346 	while ((c = *str) != '\0') {
1347 		if (c >= '0' && c <= '9')
1348 			digit = c - '0';
1349 		else if (c >= 'a' && c <= 'f')
1350 			digit = 10 + c - 'a';
1351 		else
1352 			break;
1353 
1354 		val *= 16;
1355 		val += digit;
1356 
1357 		str++;
1358 	}
1359 
1360 	if (nptr)
1361 		*nptr = (char *)str;
1362 
1363 	return (val);
1364 }
1365 
1366 /*
1367  * ==========================================================================
1368  * Accessor functions
1369  * ==========================================================================
1370  */
1371 
1372 boolean_t
1373 spa_shutting_down(spa_t *spa)
1374 {
1375 	return (spa->spa_async_suspended);
1376 }
1377 
1378 dsl_pool_t *
1379 spa_get_dsl(spa_t *spa)
1380 {
1381 	return (spa->spa_dsl_pool);
1382 }
1383 
1384 boolean_t
1385 spa_is_initializing(spa_t *spa)
1386 {
1387 	return (spa->spa_is_initializing);
1388 }
1389 
1390 blkptr_t *
1391 spa_get_rootblkptr(spa_t *spa)
1392 {
1393 	return (&spa->spa_ubsync.ub_rootbp);
1394 }
1395 
1396 void
1397 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1398 {
1399 	spa->spa_uberblock.ub_rootbp = *bp;
1400 }
1401 
1402 void
1403 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1404 {
1405 	if (spa->spa_root == NULL)
1406 		buf[0] = '\0';
1407 	else
1408 		(void) strncpy(buf, spa->spa_root, buflen);
1409 }
1410 
1411 int
1412 spa_sync_pass(spa_t *spa)
1413 {
1414 	return (spa->spa_sync_pass);
1415 }
1416 
1417 char *
1418 spa_name(spa_t *spa)
1419 {
1420 	return (spa->spa_name);
1421 }
1422 
1423 uint64_t
1424 spa_guid(spa_t *spa)
1425 {
1426 	dsl_pool_t *dp = spa_get_dsl(spa);
1427 	uint64_t guid;
1428 
1429 	/*
1430 	 * If we fail to parse the config during spa_load(), we can go through
1431 	 * the error path (which posts an ereport) and end up here with no root
1432 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1433 	 * this case.
1434 	 */
1435 	if (spa->spa_root_vdev == NULL)
1436 		return (spa->spa_config_guid);
1437 
1438 	guid = spa->spa_last_synced_guid != 0 ?
1439 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1440 
1441 	/*
1442 	 * Return the most recently synced out guid unless we're
1443 	 * in syncing context.
1444 	 */
1445 	if (dp && dsl_pool_sync_context(dp))
1446 		return (spa->spa_root_vdev->vdev_guid);
1447 	else
1448 		return (guid);
1449 }
1450 
1451 uint64_t
1452 spa_load_guid(spa_t *spa)
1453 {
1454 	/*
1455 	 * This is a GUID that exists solely as a reference for the
1456 	 * purposes of the arc.  It is generated at load time, and
1457 	 * is never written to persistent storage.
1458 	 */
1459 	return (spa->spa_load_guid);
1460 }
1461 
1462 uint64_t
1463 spa_last_synced_txg(spa_t *spa)
1464 {
1465 	return (spa->spa_ubsync.ub_txg);
1466 }
1467 
1468 uint64_t
1469 spa_first_txg(spa_t *spa)
1470 {
1471 	return (spa->spa_first_txg);
1472 }
1473 
1474 uint64_t
1475 spa_syncing_txg(spa_t *spa)
1476 {
1477 	return (spa->spa_syncing_txg);
1478 }
1479 
1480 pool_state_t
1481 spa_state(spa_t *spa)
1482 {
1483 	return (spa->spa_state);
1484 }
1485 
1486 spa_load_state_t
1487 spa_load_state(spa_t *spa)
1488 {
1489 	return (spa->spa_load_state);
1490 }
1491 
1492 uint64_t
1493 spa_freeze_txg(spa_t *spa)
1494 {
1495 	return (spa->spa_freeze_txg);
1496 }
1497 
1498 /* ARGSUSED */
1499 uint64_t
1500 spa_get_asize(spa_t *spa, uint64_t lsize)
1501 {
1502 	/*
1503 	 * The worst case is single-sector max-parity RAID-Z blocks, in which
1504 	 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1505 	 * times the size; so just assume that.  Add to this the fact that
1506 	 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1507 	 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1508 	 */
1509 	return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1510 }
1511 
1512 uint64_t
1513 spa_get_dspace(spa_t *spa)
1514 {
1515 	return (spa->spa_dspace);
1516 }
1517 
1518 void
1519 spa_update_dspace(spa_t *spa)
1520 {
1521 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1522 	    ddt_get_dedup_dspace(spa);
1523 }
1524 
1525 /*
1526  * Return the failure mode that has been set to this pool. The default
1527  * behavior will be to block all I/Os when a complete failure occurs.
1528  */
1529 uint8_t
1530 spa_get_failmode(spa_t *spa)
1531 {
1532 	return (spa->spa_failmode);
1533 }
1534 
1535 boolean_t
1536 spa_suspended(spa_t *spa)
1537 {
1538 	return (spa->spa_suspended);
1539 }
1540 
1541 uint64_t
1542 spa_version(spa_t *spa)
1543 {
1544 	return (spa->spa_ubsync.ub_version);
1545 }
1546 
1547 boolean_t
1548 spa_deflate(spa_t *spa)
1549 {
1550 	return (spa->spa_deflate);
1551 }
1552 
1553 metaslab_class_t *
1554 spa_normal_class(spa_t *spa)
1555 {
1556 	return (spa->spa_normal_class);
1557 }
1558 
1559 metaslab_class_t *
1560 spa_log_class(spa_t *spa)
1561 {
1562 	return (spa->spa_log_class);
1563 }
1564 
1565 int
1566 spa_max_replication(spa_t *spa)
1567 {
1568 	/*
1569 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1570 	 * handle BPs with more than one DVA allocated.  Set our max
1571 	 * replication level accordingly.
1572 	 */
1573 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1574 		return (1);
1575 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1576 }
1577 
1578 int
1579 spa_prev_software_version(spa_t *spa)
1580 {
1581 	return (spa->spa_prev_software_version);
1582 }
1583 
1584 uint64_t
1585 spa_deadman_synctime(spa_t *spa)
1586 {
1587 	return (spa->spa_deadman_synctime);
1588 }
1589 
1590 uint64_t
1591 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1592 {
1593 	uint64_t asize = DVA_GET_ASIZE(dva);
1594 	uint64_t dsize = asize;
1595 
1596 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1597 
1598 	if (asize != 0 && spa->spa_deflate) {
1599 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1600 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1601 	}
1602 
1603 	return (dsize);
1604 }
1605 
1606 uint64_t
1607 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1608 {
1609 	uint64_t dsize = 0;
1610 
1611 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1612 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1613 
1614 	return (dsize);
1615 }
1616 
1617 uint64_t
1618 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1619 {
1620 	uint64_t dsize = 0;
1621 
1622 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1623 
1624 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1625 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1626 
1627 	spa_config_exit(spa, SCL_VDEV, FTAG);
1628 
1629 	return (dsize);
1630 }
1631 
1632 /*
1633  * ==========================================================================
1634  * Initialization and Termination
1635  * ==========================================================================
1636  */
1637 
1638 static int
1639 spa_name_compare(const void *a1, const void *a2)
1640 {
1641 	const spa_t *s1 = a1;
1642 	const spa_t *s2 = a2;
1643 	int s;
1644 
1645 	s = strcmp(s1->spa_name, s2->spa_name);
1646 	if (s > 0)
1647 		return (1);
1648 	if (s < 0)
1649 		return (-1);
1650 	return (0);
1651 }
1652 
1653 int
1654 spa_busy(void)
1655 {
1656 	return (spa_active_count);
1657 }
1658 
1659 void
1660 spa_boot_init()
1661 {
1662 	spa_config_load();
1663 }
1664 
1665 void
1666 spa_init(int mode)
1667 {
1668 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1669 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1670 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1671 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1672 
1673 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1674 	    offsetof(spa_t, spa_avl));
1675 
1676 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1677 	    offsetof(spa_aux_t, aux_avl));
1678 
1679 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1680 	    offsetof(spa_aux_t, aux_avl));
1681 
1682 	spa_mode_global = mode;
1683 
1684 #ifdef _KERNEL
1685 	spa_arch_init();
1686 #else
1687 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1688 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1689 		if (arc_procfd == -1) {
1690 			perror("could not enable watchpoints: "
1691 			    "opening /proc/self/ctl failed: ");
1692 		} else {
1693 			arc_watch = B_TRUE;
1694 		}
1695 	}
1696 #endif
1697 
1698 	refcount_init();
1699 	unique_init();
1700 	space_map_init();
1701 	zio_init();
1702 	dmu_init();
1703 	zil_init();
1704 	vdev_cache_stat_init();
1705 	zfs_prop_init();
1706 	zpool_prop_init();
1707 	zpool_feature_init();
1708 	spa_config_load();
1709 	l2arc_start();
1710 }
1711 
1712 void
1713 spa_fini(void)
1714 {
1715 	l2arc_stop();
1716 
1717 	spa_evict_all();
1718 
1719 	vdev_cache_stat_fini();
1720 	zil_fini();
1721 	dmu_fini();
1722 	zio_fini();
1723 	space_map_fini();
1724 	unique_fini();
1725 	refcount_fini();
1726 
1727 	avl_destroy(&spa_namespace_avl);
1728 	avl_destroy(&spa_spare_avl);
1729 	avl_destroy(&spa_l2cache_avl);
1730 
1731 	cv_destroy(&spa_namespace_cv);
1732 	mutex_destroy(&spa_namespace_lock);
1733 	mutex_destroy(&spa_spare_lock);
1734 	mutex_destroy(&spa_l2cache_lock);
1735 }
1736 
1737 /*
1738  * Return whether this pool has slogs. No locking needed.
1739  * It's not a problem if the wrong answer is returned as it's only for
1740  * performance and not correctness
1741  */
1742 boolean_t
1743 spa_has_slogs(spa_t *spa)
1744 {
1745 	return (spa->spa_log_class->mc_rotor != NULL);
1746 }
1747 
1748 spa_log_state_t
1749 spa_get_log_state(spa_t *spa)
1750 {
1751 	return (spa->spa_log_state);
1752 }
1753 
1754 void
1755 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1756 {
1757 	spa->spa_log_state = state;
1758 }
1759 
1760 boolean_t
1761 spa_is_root(spa_t *spa)
1762 {
1763 	return (spa->spa_is_root);
1764 }
1765 
1766 boolean_t
1767 spa_writeable(spa_t *spa)
1768 {
1769 	return (!!(spa->spa_mode & FWRITE));
1770 }
1771 
1772 int
1773 spa_mode(spa_t *spa)
1774 {
1775 	return (spa->spa_mode);
1776 }
1777 
1778 uint64_t
1779 spa_bootfs(spa_t *spa)
1780 {
1781 	return (spa->spa_bootfs);
1782 }
1783 
1784 uint64_t
1785 spa_delegation(spa_t *spa)
1786 {
1787 	return (spa->spa_delegation);
1788 }
1789 
1790 objset_t *
1791 spa_meta_objset(spa_t *spa)
1792 {
1793 	return (spa->spa_meta_objset);
1794 }
1795 
1796 enum zio_checksum
1797 spa_dedup_checksum(spa_t *spa)
1798 {
1799 	return (spa->spa_dedup_checksum);
1800 }
1801 
1802 /*
1803  * Reset pool scan stat per scan pass (or reboot).
1804  */
1805 void
1806 spa_scan_stat_init(spa_t *spa)
1807 {
1808 	/* data not stored on disk */
1809 	spa->spa_scan_pass_start = gethrestime_sec();
1810 	spa->spa_scan_pass_exam = 0;
1811 	vdev_scan_stat_init(spa->spa_root_vdev);
1812 }
1813 
1814 /*
1815  * Get scan stats for zpool status reports
1816  */
1817 int
1818 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1819 {
1820 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1821 
1822 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1823 		return (SET_ERROR(ENOENT));
1824 	bzero(ps, sizeof (pool_scan_stat_t));
1825 
1826 	/* data stored on disk */
1827 	ps->pss_func = scn->scn_phys.scn_func;
1828 	ps->pss_start_time = scn->scn_phys.scn_start_time;
1829 	ps->pss_end_time = scn->scn_phys.scn_end_time;
1830 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1831 	ps->pss_examined = scn->scn_phys.scn_examined;
1832 	ps->pss_to_process = scn->scn_phys.scn_to_process;
1833 	ps->pss_processed = scn->scn_phys.scn_processed;
1834 	ps->pss_errors = scn->scn_phys.scn_errors;
1835 	ps->pss_state = scn->scn_phys.scn_state;
1836 
1837 	/* data not stored on disk */
1838 	ps->pss_pass_start = spa->spa_scan_pass_start;
1839 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1840 
1841 	return (0);
1842 }
1843 
1844 boolean_t
1845 spa_debug_enabled(spa_t *spa)
1846 {
1847 	return (spa->spa_debug);
1848 }
1849