xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision b66926aad422ad350796a2770d6b2d328a63b92c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright (c) 2017 Datto Inc.
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/txg.h>
45 #include <sys/avl.h>
46 #include <sys/unique.h>
47 #include <sys/dsl_pool.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/arc.h>
54 #include <sys/ddt.h>
55 #include "zfs_prop.h"
56 #include <sys/zfeature.h>
57 
58 /*
59  * SPA locking
60  *
61  * There are four basic locks for managing spa_t structures:
62  *
63  * spa_namespace_lock (global mutex)
64  *
65  *	This lock must be acquired to do any of the following:
66  *
67  *		- Lookup a spa_t by name
68  *		- Add or remove a spa_t from the namespace
69  *		- Increase spa_refcount from non-zero
70  *		- Check if spa_refcount is zero
71  *		- Rename a spa_t
72  *		- add/remove/attach/detach devices
73  *		- Held for the duration of create/destroy/import/export
74  *
75  *	It does not need to handle recursion.  A create or destroy may
76  *	reference objects (files or zvols) in other pools, but by
77  *	definition they must have an existing reference, and will never need
78  *	to lookup a spa_t by name.
79  *
80  * spa_refcount (per-spa refcount_t protected by mutex)
81  *
82  *	This reference count keep track of any active users of the spa_t.  The
83  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
84  *	the refcount is never really 'zero' - opening a pool implicitly keeps
85  *	some references in the DMU.  Internally we check against spa_minref, but
86  *	present the image of a zero/non-zero value to consumers.
87  *
88  * spa_config_lock[] (per-spa array of rwlocks)
89  *
90  *	This protects the spa_t from config changes, and must be held in
91  *	the following circumstances:
92  *
93  *		- RW_READER to perform I/O to the spa
94  *		- RW_WRITER to change the vdev config
95  *
96  * The locking order is fairly straightforward:
97  *
98  *		spa_namespace_lock	->	spa_refcount
99  *
100  *	The namespace lock must be acquired to increase the refcount from 0
101  *	or to check if it is zero.
102  *
103  *		spa_refcount		->	spa_config_lock[]
104  *
105  *	There must be at least one valid reference on the spa_t to acquire
106  *	the config lock.
107  *
108  *		spa_namespace_lock	->	spa_config_lock[]
109  *
110  *	The namespace lock must always be taken before the config lock.
111  *
112  *
113  * The spa_namespace_lock can be acquired directly and is globally visible.
114  *
115  * The namespace is manipulated using the following functions, all of which
116  * require the spa_namespace_lock to be held.
117  *
118  *	spa_lookup()		Lookup a spa_t by name.
119  *
120  *	spa_add()		Create a new spa_t in the namespace.
121  *
122  *	spa_remove()		Remove a spa_t from the namespace.  This also
123  *				frees up any memory associated with the spa_t.
124  *
125  *	spa_next()		Returns the next spa_t in the system, or the
126  *				first if NULL is passed.
127  *
128  *	spa_evict_all()		Shutdown and remove all spa_t structures in
129  *				the system.
130  *
131  *	spa_guid_exists()	Determine whether a pool/device guid exists.
132  *
133  * The spa_refcount is manipulated using the following functions:
134  *
135  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
136  *				called with spa_namespace_lock held if the
137  *				refcount is currently zero.
138  *
139  *	spa_close()		Remove a reference from the spa_t.  This will
140  *				not free the spa_t or remove it from the
141  *				namespace.  No locking is required.
142  *
143  *	spa_refcount_zero()	Returns true if the refcount is currently
144  *				zero.  Must be called with spa_namespace_lock
145  *				held.
146  *
147  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
148  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
149  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
150  *
151  * To read the configuration, it suffices to hold one of these locks as reader.
152  * To modify the configuration, you must hold all locks as writer.  To modify
153  * vdev state without altering the vdev tree's topology (e.g. online/offline),
154  * you must hold SCL_STATE and SCL_ZIO as writer.
155  *
156  * We use these distinct config locks to avoid recursive lock entry.
157  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
158  * block allocations (SCL_ALLOC), which may require reading space maps
159  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
160  *
161  * The spa config locks cannot be normal rwlocks because we need the
162  * ability to hand off ownership.  For example, SCL_ZIO is acquired
163  * by the issuing thread and later released by an interrupt thread.
164  * They do, however, obey the usual write-wanted semantics to prevent
165  * writer (i.e. system administrator) starvation.
166  *
167  * The lock acquisition rules are as follows:
168  *
169  * SCL_CONFIG
170  *	Protects changes to the vdev tree topology, such as vdev
171  *	add/remove/attach/detach.  Protects the dirty config list
172  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
173  *
174  * SCL_STATE
175  *	Protects changes to pool state and vdev state, such as vdev
176  *	online/offline/fault/degrade/clear.  Protects the dirty state list
177  *	(spa_state_dirty_list) and global pool state (spa_state).
178  *
179  * SCL_ALLOC
180  *	Protects changes to metaslab groups and classes.
181  *	Held as reader by metaslab_alloc() and metaslab_claim().
182  *
183  * SCL_ZIO
184  *	Held by bp-level zios (those which have no io_vd upon entry)
185  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
186  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
187  *
188  * SCL_FREE
189  *	Protects changes to metaslab groups and classes.
190  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
191  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
192  *	blocks in zio_done() while another i/o that holds either
193  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
194  *
195  * SCL_VDEV
196  *	Held as reader to prevent changes to the vdev tree during trivial
197  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
198  *	other locks, and lower than all of them, to ensure that it's safe
199  *	to acquire regardless of caller context.
200  *
201  * In addition, the following rules apply:
202  *
203  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
204  *	The lock ordering is SCL_CONFIG > spa_props_lock.
205  *
206  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
207  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
208  *	or zio_write_phys() -- the caller must ensure that the config cannot
209  *	cannot change in the interim, and that the vdev cannot be reopened.
210  *	SCL_STATE as reader suffices for both.
211  *
212  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
213  *
214  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
215  *				for writing.
216  *
217  *	spa_vdev_exit()		Release the config lock, wait for all I/O
218  *				to complete, sync the updated configs to the
219  *				cache, and release the namespace lock.
220  *
221  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
222  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
223  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
224  *
225  * spa_rename() is also implemented within this file since it requires
226  * manipulation of the namespace.
227  */
228 
229 static avl_tree_t spa_namespace_avl;
230 kmutex_t spa_namespace_lock;
231 static kcondvar_t spa_namespace_cv;
232 static int spa_active_count;
233 int spa_max_replication_override = SPA_DVAS_PER_BP;
234 
235 static kmutex_t spa_spare_lock;
236 static avl_tree_t spa_spare_avl;
237 static kmutex_t spa_l2cache_lock;
238 static avl_tree_t spa_l2cache_avl;
239 
240 kmem_cache_t *spa_buffer_pool;
241 int spa_mode_global;
242 
243 #ifdef ZFS_DEBUG
244 /*
245  * Everything except dprintf, spa, and indirect_remap is on by default
246  * in debug builds.
247  */
248 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA | ZFS_DEBUG_INDIRECT_REMAP);
249 #else
250 int zfs_flags = 0;
251 #endif
252 
253 /*
254  * zfs_recover can be set to nonzero to attempt to recover from
255  * otherwise-fatal errors, typically caused by on-disk corruption.  When
256  * set, calls to zfs_panic_recover() will turn into warning messages.
257  * This should only be used as a last resort, as it typically results
258  * in leaked space, or worse.
259  */
260 boolean_t zfs_recover = B_FALSE;
261 
262 /*
263  * If destroy encounters an EIO while reading metadata (e.g. indirect
264  * blocks), space referenced by the missing metadata can not be freed.
265  * Normally this causes the background destroy to become "stalled", as
266  * it is unable to make forward progress.  While in this stalled state,
267  * all remaining space to free from the error-encountering filesystem is
268  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
269  * permanently leak the space from indirect blocks that can not be read,
270  * and continue to free everything else that it can.
271  *
272  * The default, "stalling" behavior is useful if the storage partially
273  * fails (i.e. some but not all i/os fail), and then later recovers.  In
274  * this case, we will be able to continue pool operations while it is
275  * partially failed, and when it recovers, we can continue to free the
276  * space, with no leaks.  However, note that this case is actually
277  * fairly rare.
278  *
279  * Typically pools either (a) fail completely (but perhaps temporarily,
280  * e.g. a top-level vdev going offline), or (b) have localized,
281  * permanent errors (e.g. disk returns the wrong data due to bit flip or
282  * firmware bug).  In case (a), this setting does not matter because the
283  * pool will be suspended and the sync thread will not be able to make
284  * forward progress regardless.  In case (b), because the error is
285  * permanent, the best we can do is leak the minimum amount of space,
286  * which is what setting this flag will do.  Therefore, it is reasonable
287  * for this flag to normally be set, but we chose the more conservative
288  * approach of not setting it, so that there is no possibility of
289  * leaking space in the "partial temporary" failure case.
290  */
291 boolean_t zfs_free_leak_on_eio = B_FALSE;
292 
293 /*
294  * Expiration time in milliseconds. This value has two meanings. First it is
295  * used to determine when the spa_deadman() logic should fire. By default the
296  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
297  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
298  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
299  * in a system panic.
300  */
301 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
302 
303 /*
304  * Check time in milliseconds. This defines the frequency at which we check
305  * for hung I/O.
306  */
307 uint64_t zfs_deadman_checktime_ms = 5000ULL;
308 
309 /*
310  * Override the zfs deadman behavior via /etc/system. By default the
311  * deadman is enabled except on VMware and sparc deployments.
312  */
313 int zfs_deadman_enabled = -1;
314 
315 /*
316  * The worst case is single-sector max-parity RAID-Z blocks, in which
317  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
318  * times the size; so just assume that.  Add to this the fact that
319  * we can have up to 3 DVAs per bp, and one more factor of 2 because
320  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
321  * the worst case is:
322  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
323  */
324 int spa_asize_inflation = 24;
325 
326 /*
327  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
328  * the pool to be consumed.  This ensures that we don't run the pool
329  * completely out of space, due to unaccounted changes (e.g. to the MOS).
330  * It also limits the worst-case time to allocate space.  If we have
331  * less than this amount of free space, most ZPL operations (e.g. write,
332  * create) will return ENOSPC.
333  *
334  * Certain operations (e.g. file removal, most administrative actions) can
335  * use half the slop space.  They will only return ENOSPC if less than half
336  * the slop space is free.  Typically, once the pool has less than the slop
337  * space free, the user will use these operations to free up space in the pool.
338  * These are the operations that call dsl_pool_adjustedsize() with the netfree
339  * argument set to TRUE.
340  *
341  * A very restricted set of operations are always permitted, regardless of
342  * the amount of free space.  These are the operations that call
343  * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
344  * operations result in a net increase in the amount of space used,
345  * it is possible to run the pool completely out of space, causing it to
346  * be permanently read-only.
347  *
348  * Note that on very small pools, the slop space will be larger than
349  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
350  * but we never allow it to be more than half the pool size.
351  *
352  * See also the comments in zfs_space_check_t.
353  */
354 int spa_slop_shift = 5;
355 uint64_t spa_min_slop = 128 * 1024 * 1024;
356 
357 /*PRINTFLIKE2*/
358 void
359 spa_load_failed(spa_t *spa, const char *fmt, ...)
360 {
361 	va_list adx;
362 	char buf[256];
363 
364 	va_start(adx, fmt);
365 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
366 	va_end(adx);
367 
368 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
369 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
370 }
371 
372 /*PRINTFLIKE2*/
373 void
374 spa_load_note(spa_t *spa, const char *fmt, ...)
375 {
376 	va_list adx;
377 	char buf[256];
378 
379 	va_start(adx, fmt);
380 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
381 	va_end(adx);
382 
383 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
384 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
385 }
386 
387 /*
388  * ==========================================================================
389  * SPA config locking
390  * ==========================================================================
391  */
392 static void
393 spa_config_lock_init(spa_t *spa)
394 {
395 	for (int i = 0; i < SCL_LOCKS; i++) {
396 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
397 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
398 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
399 		refcount_create_untracked(&scl->scl_count);
400 		scl->scl_writer = NULL;
401 		scl->scl_write_wanted = 0;
402 	}
403 }
404 
405 static void
406 spa_config_lock_destroy(spa_t *spa)
407 {
408 	for (int i = 0; i < SCL_LOCKS; i++) {
409 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
410 		mutex_destroy(&scl->scl_lock);
411 		cv_destroy(&scl->scl_cv);
412 		refcount_destroy(&scl->scl_count);
413 		ASSERT(scl->scl_writer == NULL);
414 		ASSERT(scl->scl_write_wanted == 0);
415 	}
416 }
417 
418 int
419 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
420 {
421 	for (int i = 0; i < SCL_LOCKS; i++) {
422 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
423 		if (!(locks & (1 << i)))
424 			continue;
425 		mutex_enter(&scl->scl_lock);
426 		if (rw == RW_READER) {
427 			if (scl->scl_writer || scl->scl_write_wanted) {
428 				mutex_exit(&scl->scl_lock);
429 				spa_config_exit(spa, locks & ((1 << i) - 1),
430 				    tag);
431 				return (0);
432 			}
433 		} else {
434 			ASSERT(scl->scl_writer != curthread);
435 			if (!refcount_is_zero(&scl->scl_count)) {
436 				mutex_exit(&scl->scl_lock);
437 				spa_config_exit(spa, locks & ((1 << i) - 1),
438 				    tag);
439 				return (0);
440 			}
441 			scl->scl_writer = curthread;
442 		}
443 		(void) refcount_add(&scl->scl_count, tag);
444 		mutex_exit(&scl->scl_lock);
445 	}
446 	return (1);
447 }
448 
449 void
450 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
451 {
452 	int wlocks_held = 0;
453 
454 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
455 
456 	for (int i = 0; i < SCL_LOCKS; i++) {
457 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
458 		if (scl->scl_writer == curthread)
459 			wlocks_held |= (1 << i);
460 		if (!(locks & (1 << i)))
461 			continue;
462 		mutex_enter(&scl->scl_lock);
463 		if (rw == RW_READER) {
464 			while (scl->scl_writer || scl->scl_write_wanted) {
465 				cv_wait(&scl->scl_cv, &scl->scl_lock);
466 			}
467 		} else {
468 			ASSERT(scl->scl_writer != curthread);
469 			while (!refcount_is_zero(&scl->scl_count)) {
470 				scl->scl_write_wanted++;
471 				cv_wait(&scl->scl_cv, &scl->scl_lock);
472 				scl->scl_write_wanted--;
473 			}
474 			scl->scl_writer = curthread;
475 		}
476 		(void) refcount_add(&scl->scl_count, tag);
477 		mutex_exit(&scl->scl_lock);
478 	}
479 	ASSERT3U(wlocks_held, <=, locks);
480 }
481 
482 void
483 spa_config_exit(spa_t *spa, int locks, void *tag)
484 {
485 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
486 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
487 		if (!(locks & (1 << i)))
488 			continue;
489 		mutex_enter(&scl->scl_lock);
490 		ASSERT(!refcount_is_zero(&scl->scl_count));
491 		if (refcount_remove(&scl->scl_count, tag) == 0) {
492 			ASSERT(scl->scl_writer == NULL ||
493 			    scl->scl_writer == curthread);
494 			scl->scl_writer = NULL;	/* OK in either case */
495 			cv_broadcast(&scl->scl_cv);
496 		}
497 		mutex_exit(&scl->scl_lock);
498 	}
499 }
500 
501 int
502 spa_config_held(spa_t *spa, int locks, krw_t rw)
503 {
504 	int locks_held = 0;
505 
506 	for (int i = 0; i < SCL_LOCKS; i++) {
507 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
508 		if (!(locks & (1 << i)))
509 			continue;
510 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
511 		    (rw == RW_WRITER && scl->scl_writer == curthread))
512 			locks_held |= 1 << i;
513 	}
514 
515 	return (locks_held);
516 }
517 
518 /*
519  * ==========================================================================
520  * SPA namespace functions
521  * ==========================================================================
522  */
523 
524 /*
525  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
526  * Returns NULL if no matching spa_t is found.
527  */
528 spa_t *
529 spa_lookup(const char *name)
530 {
531 	static spa_t search;	/* spa_t is large; don't allocate on stack */
532 	spa_t *spa;
533 	avl_index_t where;
534 	char *cp;
535 
536 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
537 
538 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
539 
540 	/*
541 	 * If it's a full dataset name, figure out the pool name and
542 	 * just use that.
543 	 */
544 	cp = strpbrk(search.spa_name, "/@#");
545 	if (cp != NULL)
546 		*cp = '\0';
547 
548 	spa = avl_find(&spa_namespace_avl, &search, &where);
549 
550 	return (spa);
551 }
552 
553 /*
554  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
555  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
556  * looking for potentially hung I/Os.
557  */
558 void
559 spa_deadman(void *arg)
560 {
561 	spa_t *spa = arg;
562 
563 	/*
564 	 * Disable the deadman timer if the pool is suspended.
565 	 */
566 	if (spa_suspended(spa)) {
567 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
568 		return;
569 	}
570 
571 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
572 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
573 	    ++spa->spa_deadman_calls);
574 	if (zfs_deadman_enabled)
575 		vdev_deadman(spa->spa_root_vdev);
576 }
577 
578 /*
579  * Create an uninitialized spa_t with the given name.  Requires
580  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
581  * exist by calling spa_lookup() first.
582  */
583 spa_t *
584 spa_add(const char *name, nvlist_t *config, const char *altroot)
585 {
586 	spa_t *spa;
587 	spa_config_dirent_t *dp;
588 	cyc_handler_t hdlr;
589 	cyc_time_t when;
590 
591 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
592 
593 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
594 
595 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
596 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
597 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
598 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
599 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
600 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
601 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
602 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
603 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
604 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
605 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
606 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
607 	mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
608 
609 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
610 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
611 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
612 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
613 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
614 
615 	for (int t = 0; t < TXG_SIZE; t++)
616 		bplist_create(&spa->spa_free_bplist[t]);
617 
618 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
619 	spa->spa_state = POOL_STATE_UNINITIALIZED;
620 	spa->spa_freeze_txg = UINT64_MAX;
621 	spa->spa_final_txg = UINT64_MAX;
622 	spa->spa_load_max_txg = UINT64_MAX;
623 	spa->spa_proc = &p0;
624 	spa->spa_proc_state = SPA_PROC_NONE;
625 	spa->spa_trust_config = B_TRUE;
626 
627 	hdlr.cyh_func = spa_deadman;
628 	hdlr.cyh_arg = spa;
629 	hdlr.cyh_level = CY_LOW_LEVEL;
630 
631 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
632 
633 	/*
634 	 * This determines how often we need to check for hung I/Os after
635 	 * the cyclic has already fired. Since checking for hung I/Os is
636 	 * an expensive operation we don't want to check too frequently.
637 	 * Instead wait for 5 seconds before checking again.
638 	 */
639 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
640 	when.cyt_when = CY_INFINITY;
641 	mutex_enter(&cpu_lock);
642 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
643 	mutex_exit(&cpu_lock);
644 
645 	refcount_create(&spa->spa_refcount);
646 	spa_config_lock_init(spa);
647 
648 	avl_add(&spa_namespace_avl, spa);
649 
650 	/*
651 	 * Set the alternate root, if there is one.
652 	 */
653 	if (altroot) {
654 		spa->spa_root = spa_strdup(altroot);
655 		spa_active_count++;
656 	}
657 
658 	avl_create(&spa->spa_alloc_tree, zio_bookmark_compare,
659 	    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
660 
661 	/*
662 	 * Every pool starts with the default cachefile
663 	 */
664 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
665 	    offsetof(spa_config_dirent_t, scd_link));
666 
667 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
668 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
669 	list_insert_head(&spa->spa_config_list, dp);
670 
671 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
672 	    KM_SLEEP) == 0);
673 
674 	if (config != NULL) {
675 		nvlist_t *features;
676 
677 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
678 		    &features) == 0) {
679 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
680 			    0) == 0);
681 		}
682 
683 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
684 	}
685 
686 	if (spa->spa_label_features == NULL) {
687 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
688 		    KM_SLEEP) == 0);
689 	}
690 
691 	spa->spa_iokstat = kstat_create("zfs", 0, name,
692 	    "disk", KSTAT_TYPE_IO, 1, 0);
693 	if (spa->spa_iokstat) {
694 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
695 		kstat_install(spa->spa_iokstat);
696 	}
697 
698 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
699 
700 	spa->spa_min_ashift = INT_MAX;
701 	spa->spa_max_ashift = 0;
702 
703 	/*
704 	 * As a pool is being created, treat all features as disabled by
705 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
706 	 * refcount cache.
707 	 */
708 	for (int i = 0; i < SPA_FEATURES; i++) {
709 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
710 	}
711 
712 	return (spa);
713 }
714 
715 /*
716  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
717  * spa_namespace_lock.  This is called only after the spa_t has been closed and
718  * deactivated.
719  */
720 void
721 spa_remove(spa_t *spa)
722 {
723 	spa_config_dirent_t *dp;
724 
725 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
726 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
727 	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
728 
729 	nvlist_free(spa->spa_config_splitting);
730 
731 	avl_remove(&spa_namespace_avl, spa);
732 	cv_broadcast(&spa_namespace_cv);
733 
734 	if (spa->spa_root) {
735 		spa_strfree(spa->spa_root);
736 		spa_active_count--;
737 	}
738 
739 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
740 		list_remove(&spa->spa_config_list, dp);
741 		if (dp->scd_path != NULL)
742 			spa_strfree(dp->scd_path);
743 		kmem_free(dp, sizeof (spa_config_dirent_t));
744 	}
745 
746 	avl_destroy(&spa->spa_alloc_tree);
747 	list_destroy(&spa->spa_config_list);
748 
749 	nvlist_free(spa->spa_label_features);
750 	nvlist_free(spa->spa_load_info);
751 	spa_config_set(spa, NULL);
752 
753 	mutex_enter(&cpu_lock);
754 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
755 		cyclic_remove(spa->spa_deadman_cycid);
756 	mutex_exit(&cpu_lock);
757 	spa->spa_deadman_cycid = CYCLIC_NONE;
758 
759 	refcount_destroy(&spa->spa_refcount);
760 
761 	spa_config_lock_destroy(spa);
762 
763 	kstat_delete(spa->spa_iokstat);
764 	spa->spa_iokstat = NULL;
765 
766 	for (int t = 0; t < TXG_SIZE; t++)
767 		bplist_destroy(&spa->spa_free_bplist[t]);
768 
769 	zio_checksum_templates_free(spa);
770 
771 	cv_destroy(&spa->spa_async_cv);
772 	cv_destroy(&spa->spa_evicting_os_cv);
773 	cv_destroy(&spa->spa_proc_cv);
774 	cv_destroy(&spa->spa_scrub_io_cv);
775 	cv_destroy(&spa->spa_suspend_cv);
776 
777 	mutex_destroy(&spa->spa_alloc_lock);
778 	mutex_destroy(&spa->spa_async_lock);
779 	mutex_destroy(&spa->spa_errlist_lock);
780 	mutex_destroy(&spa->spa_errlog_lock);
781 	mutex_destroy(&spa->spa_evicting_os_lock);
782 	mutex_destroy(&spa->spa_history_lock);
783 	mutex_destroy(&spa->spa_proc_lock);
784 	mutex_destroy(&spa->spa_props_lock);
785 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
786 	mutex_destroy(&spa->spa_scrub_lock);
787 	mutex_destroy(&spa->spa_suspend_lock);
788 	mutex_destroy(&spa->spa_vdev_top_lock);
789 	mutex_destroy(&spa->spa_iokstat_lock);
790 
791 	kmem_free(spa, sizeof (spa_t));
792 }
793 
794 /*
795  * Given a pool, return the next pool in the namespace, or NULL if there is
796  * none.  If 'prev' is NULL, return the first pool.
797  */
798 spa_t *
799 spa_next(spa_t *prev)
800 {
801 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
802 
803 	if (prev)
804 		return (AVL_NEXT(&spa_namespace_avl, prev));
805 	else
806 		return (avl_first(&spa_namespace_avl));
807 }
808 
809 /*
810  * ==========================================================================
811  * SPA refcount functions
812  * ==========================================================================
813  */
814 
815 /*
816  * Add a reference to the given spa_t.  Must have at least one reference, or
817  * have the namespace lock held.
818  */
819 void
820 spa_open_ref(spa_t *spa, void *tag)
821 {
822 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
823 	    MUTEX_HELD(&spa_namespace_lock));
824 	(void) refcount_add(&spa->spa_refcount, tag);
825 }
826 
827 /*
828  * Remove a reference to the given spa_t.  Must have at least one reference, or
829  * have the namespace lock held.
830  */
831 void
832 spa_close(spa_t *spa, void *tag)
833 {
834 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
835 	    MUTEX_HELD(&spa_namespace_lock));
836 	(void) refcount_remove(&spa->spa_refcount, tag);
837 }
838 
839 /*
840  * Remove a reference to the given spa_t held by a dsl dir that is
841  * being asynchronously released.  Async releases occur from a taskq
842  * performing eviction of dsl datasets and dirs.  The namespace lock
843  * isn't held and the hold by the object being evicted may contribute to
844  * spa_minref (e.g. dataset or directory released during pool export),
845  * so the asserts in spa_close() do not apply.
846  */
847 void
848 spa_async_close(spa_t *spa, void *tag)
849 {
850 	(void) refcount_remove(&spa->spa_refcount, tag);
851 }
852 
853 /*
854  * Check to see if the spa refcount is zero.  Must be called with
855  * spa_namespace_lock held.  We really compare against spa_minref, which is the
856  * number of references acquired when opening a pool
857  */
858 boolean_t
859 spa_refcount_zero(spa_t *spa)
860 {
861 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
862 
863 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
864 }
865 
866 /*
867  * ==========================================================================
868  * SPA spare and l2cache tracking
869  * ==========================================================================
870  */
871 
872 /*
873  * Hot spares and cache devices are tracked using the same code below,
874  * for 'auxiliary' devices.
875  */
876 
877 typedef struct spa_aux {
878 	uint64_t	aux_guid;
879 	uint64_t	aux_pool;
880 	avl_node_t	aux_avl;
881 	int		aux_count;
882 } spa_aux_t;
883 
884 static int
885 spa_aux_compare(const void *a, const void *b)
886 {
887 	const spa_aux_t *sa = a;
888 	const spa_aux_t *sb = b;
889 
890 	if (sa->aux_guid < sb->aux_guid)
891 		return (-1);
892 	else if (sa->aux_guid > sb->aux_guid)
893 		return (1);
894 	else
895 		return (0);
896 }
897 
898 void
899 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
900 {
901 	avl_index_t where;
902 	spa_aux_t search;
903 	spa_aux_t *aux;
904 
905 	search.aux_guid = vd->vdev_guid;
906 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
907 		aux->aux_count++;
908 	} else {
909 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
910 		aux->aux_guid = vd->vdev_guid;
911 		aux->aux_count = 1;
912 		avl_insert(avl, aux, where);
913 	}
914 }
915 
916 void
917 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
918 {
919 	spa_aux_t search;
920 	spa_aux_t *aux;
921 	avl_index_t where;
922 
923 	search.aux_guid = vd->vdev_guid;
924 	aux = avl_find(avl, &search, &where);
925 
926 	ASSERT(aux != NULL);
927 
928 	if (--aux->aux_count == 0) {
929 		avl_remove(avl, aux);
930 		kmem_free(aux, sizeof (spa_aux_t));
931 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
932 		aux->aux_pool = 0ULL;
933 	}
934 }
935 
936 boolean_t
937 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
938 {
939 	spa_aux_t search, *found;
940 
941 	search.aux_guid = guid;
942 	found = avl_find(avl, &search, NULL);
943 
944 	if (pool) {
945 		if (found)
946 			*pool = found->aux_pool;
947 		else
948 			*pool = 0ULL;
949 	}
950 
951 	if (refcnt) {
952 		if (found)
953 			*refcnt = found->aux_count;
954 		else
955 			*refcnt = 0;
956 	}
957 
958 	return (found != NULL);
959 }
960 
961 void
962 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
963 {
964 	spa_aux_t search, *found;
965 	avl_index_t where;
966 
967 	search.aux_guid = vd->vdev_guid;
968 	found = avl_find(avl, &search, &where);
969 	ASSERT(found != NULL);
970 	ASSERT(found->aux_pool == 0ULL);
971 
972 	found->aux_pool = spa_guid(vd->vdev_spa);
973 }
974 
975 /*
976  * Spares are tracked globally due to the following constraints:
977  *
978  * 	- A spare may be part of multiple pools.
979  * 	- A spare may be added to a pool even if it's actively in use within
980  *	  another pool.
981  * 	- A spare in use in any pool can only be the source of a replacement if
982  *	  the target is a spare in the same pool.
983  *
984  * We keep track of all spares on the system through the use of a reference
985  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
986  * spare, then we bump the reference count in the AVL tree.  In addition, we set
987  * the 'vdev_isspare' member to indicate that the device is a spare (active or
988  * inactive).  When a spare is made active (used to replace a device in the
989  * pool), we also keep track of which pool its been made a part of.
990  *
991  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
992  * called under the spa_namespace lock as part of vdev reconfiguration.  The
993  * separate spare lock exists for the status query path, which does not need to
994  * be completely consistent with respect to other vdev configuration changes.
995  */
996 
997 static int
998 spa_spare_compare(const void *a, const void *b)
999 {
1000 	return (spa_aux_compare(a, b));
1001 }
1002 
1003 void
1004 spa_spare_add(vdev_t *vd)
1005 {
1006 	mutex_enter(&spa_spare_lock);
1007 	ASSERT(!vd->vdev_isspare);
1008 	spa_aux_add(vd, &spa_spare_avl);
1009 	vd->vdev_isspare = B_TRUE;
1010 	mutex_exit(&spa_spare_lock);
1011 }
1012 
1013 void
1014 spa_spare_remove(vdev_t *vd)
1015 {
1016 	mutex_enter(&spa_spare_lock);
1017 	ASSERT(vd->vdev_isspare);
1018 	spa_aux_remove(vd, &spa_spare_avl);
1019 	vd->vdev_isspare = B_FALSE;
1020 	mutex_exit(&spa_spare_lock);
1021 }
1022 
1023 boolean_t
1024 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1025 {
1026 	boolean_t found;
1027 
1028 	mutex_enter(&spa_spare_lock);
1029 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1030 	mutex_exit(&spa_spare_lock);
1031 
1032 	return (found);
1033 }
1034 
1035 void
1036 spa_spare_activate(vdev_t *vd)
1037 {
1038 	mutex_enter(&spa_spare_lock);
1039 	ASSERT(vd->vdev_isspare);
1040 	spa_aux_activate(vd, &spa_spare_avl);
1041 	mutex_exit(&spa_spare_lock);
1042 }
1043 
1044 /*
1045  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1046  * Cache devices currently only support one pool per cache device, and so
1047  * for these devices the aux reference count is currently unused beyond 1.
1048  */
1049 
1050 static int
1051 spa_l2cache_compare(const void *a, const void *b)
1052 {
1053 	return (spa_aux_compare(a, b));
1054 }
1055 
1056 void
1057 spa_l2cache_add(vdev_t *vd)
1058 {
1059 	mutex_enter(&spa_l2cache_lock);
1060 	ASSERT(!vd->vdev_isl2cache);
1061 	spa_aux_add(vd, &spa_l2cache_avl);
1062 	vd->vdev_isl2cache = B_TRUE;
1063 	mutex_exit(&spa_l2cache_lock);
1064 }
1065 
1066 void
1067 spa_l2cache_remove(vdev_t *vd)
1068 {
1069 	mutex_enter(&spa_l2cache_lock);
1070 	ASSERT(vd->vdev_isl2cache);
1071 	spa_aux_remove(vd, &spa_l2cache_avl);
1072 	vd->vdev_isl2cache = B_FALSE;
1073 	mutex_exit(&spa_l2cache_lock);
1074 }
1075 
1076 boolean_t
1077 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1078 {
1079 	boolean_t found;
1080 
1081 	mutex_enter(&spa_l2cache_lock);
1082 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1083 	mutex_exit(&spa_l2cache_lock);
1084 
1085 	return (found);
1086 }
1087 
1088 void
1089 spa_l2cache_activate(vdev_t *vd)
1090 {
1091 	mutex_enter(&spa_l2cache_lock);
1092 	ASSERT(vd->vdev_isl2cache);
1093 	spa_aux_activate(vd, &spa_l2cache_avl);
1094 	mutex_exit(&spa_l2cache_lock);
1095 }
1096 
1097 /*
1098  * ==========================================================================
1099  * SPA vdev locking
1100  * ==========================================================================
1101  */
1102 
1103 /*
1104  * Lock the given spa_t for the purpose of adding or removing a vdev.
1105  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1106  * It returns the next transaction group for the spa_t.
1107  */
1108 uint64_t
1109 spa_vdev_enter(spa_t *spa)
1110 {
1111 	mutex_enter(&spa->spa_vdev_top_lock);
1112 	mutex_enter(&spa_namespace_lock);
1113 	return (spa_vdev_config_enter(spa));
1114 }
1115 
1116 /*
1117  * Internal implementation for spa_vdev_enter().  Used when a vdev
1118  * operation requires multiple syncs (i.e. removing a device) while
1119  * keeping the spa_namespace_lock held.
1120  */
1121 uint64_t
1122 spa_vdev_config_enter(spa_t *spa)
1123 {
1124 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1125 
1126 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1127 
1128 	return (spa_last_synced_txg(spa) + 1);
1129 }
1130 
1131 /*
1132  * Used in combination with spa_vdev_config_enter() to allow the syncing
1133  * of multiple transactions without releasing the spa_namespace_lock.
1134  */
1135 void
1136 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1137 {
1138 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1139 
1140 	int config_changed = B_FALSE;
1141 
1142 	ASSERT(txg > spa_last_synced_txg(spa));
1143 
1144 	spa->spa_pending_vdev = NULL;
1145 
1146 	/*
1147 	 * Reassess the DTLs.
1148 	 */
1149 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1150 
1151 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1152 		config_changed = B_TRUE;
1153 		spa->spa_config_generation++;
1154 	}
1155 
1156 	/*
1157 	 * Verify the metaslab classes.
1158 	 */
1159 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1160 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1161 
1162 	spa_config_exit(spa, SCL_ALL, spa);
1163 
1164 	/*
1165 	 * Panic the system if the specified tag requires it.  This
1166 	 * is useful for ensuring that configurations are updated
1167 	 * transactionally.
1168 	 */
1169 	if (zio_injection_enabled)
1170 		zio_handle_panic_injection(spa, tag, 0);
1171 
1172 	/*
1173 	 * Note: this txg_wait_synced() is important because it ensures
1174 	 * that there won't be more than one config change per txg.
1175 	 * This allows us to use the txg as the generation number.
1176 	 */
1177 	if (error == 0)
1178 		txg_wait_synced(spa->spa_dsl_pool, txg);
1179 
1180 	if (vd != NULL) {
1181 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1182 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1183 		vdev_free(vd);
1184 		spa_config_exit(spa, SCL_ALL, spa);
1185 	}
1186 
1187 	/*
1188 	 * If the config changed, update the config cache.
1189 	 */
1190 	if (config_changed)
1191 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1192 }
1193 
1194 /*
1195  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1196  * locking of spa_vdev_enter(), we also want make sure the transactions have
1197  * synced to disk, and then update the global configuration cache with the new
1198  * information.
1199  */
1200 int
1201 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1202 {
1203 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1204 	mutex_exit(&spa_namespace_lock);
1205 	mutex_exit(&spa->spa_vdev_top_lock);
1206 
1207 	return (error);
1208 }
1209 
1210 /*
1211  * Lock the given spa_t for the purpose of changing vdev state.
1212  */
1213 void
1214 spa_vdev_state_enter(spa_t *spa, int oplocks)
1215 {
1216 	int locks = SCL_STATE_ALL | oplocks;
1217 
1218 	/*
1219 	 * Root pools may need to read of the underlying devfs filesystem
1220 	 * when opening up a vdev.  Unfortunately if we're holding the
1221 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1222 	 * the read from the root filesystem.  Instead we "prefetch"
1223 	 * the associated vnodes that we need prior to opening the
1224 	 * underlying devices and cache them so that we can prevent
1225 	 * any I/O when we are doing the actual open.
1226 	 */
1227 	if (spa_is_root(spa)) {
1228 		int low = locks & ~(SCL_ZIO - 1);
1229 		int high = locks & ~low;
1230 
1231 		spa_config_enter(spa, high, spa, RW_WRITER);
1232 		vdev_hold(spa->spa_root_vdev);
1233 		spa_config_enter(spa, low, spa, RW_WRITER);
1234 	} else {
1235 		spa_config_enter(spa, locks, spa, RW_WRITER);
1236 	}
1237 	spa->spa_vdev_locks = locks;
1238 }
1239 
1240 int
1241 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1242 {
1243 	boolean_t config_changed = B_FALSE;
1244 
1245 	if (vd != NULL || error == 0)
1246 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1247 		    0, 0, B_FALSE);
1248 
1249 	if (vd != NULL) {
1250 		vdev_state_dirty(vd->vdev_top);
1251 		config_changed = B_TRUE;
1252 		spa->spa_config_generation++;
1253 	}
1254 
1255 	if (spa_is_root(spa))
1256 		vdev_rele(spa->spa_root_vdev);
1257 
1258 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1259 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1260 
1261 	/*
1262 	 * If anything changed, wait for it to sync.  This ensures that,
1263 	 * from the system administrator's perspective, zpool(1M) commands
1264 	 * are synchronous.  This is important for things like zpool offline:
1265 	 * when the command completes, you expect no further I/O from ZFS.
1266 	 */
1267 	if (vd != NULL)
1268 		txg_wait_synced(spa->spa_dsl_pool, 0);
1269 
1270 	/*
1271 	 * If the config changed, update the config cache.
1272 	 */
1273 	if (config_changed) {
1274 		mutex_enter(&spa_namespace_lock);
1275 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1276 		mutex_exit(&spa_namespace_lock);
1277 	}
1278 
1279 	return (error);
1280 }
1281 
1282 /*
1283  * ==========================================================================
1284  * Miscellaneous functions
1285  * ==========================================================================
1286  */
1287 
1288 void
1289 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1290 {
1291 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1292 		fnvlist_add_boolean(spa->spa_label_features, feature);
1293 		/*
1294 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1295 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1296 		 * Thankfully, in this case we don't need to dirty the config
1297 		 * because it will be written out anyway when we finish
1298 		 * creating the pool.
1299 		 */
1300 		if (tx->tx_txg != TXG_INITIAL)
1301 			vdev_config_dirty(spa->spa_root_vdev);
1302 	}
1303 }
1304 
1305 void
1306 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1307 {
1308 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1309 		vdev_config_dirty(spa->spa_root_vdev);
1310 }
1311 
1312 /*
1313  * Rename a spa_t.
1314  */
1315 int
1316 spa_rename(const char *name, const char *newname)
1317 {
1318 	spa_t *spa;
1319 	int err;
1320 
1321 	/*
1322 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1323 	 * actually open the pool so that we can sync out the necessary labels.
1324 	 * It's OK to call spa_open() with the namespace lock held because we
1325 	 * allow recursive calls for other reasons.
1326 	 */
1327 	mutex_enter(&spa_namespace_lock);
1328 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1329 		mutex_exit(&spa_namespace_lock);
1330 		return (err);
1331 	}
1332 
1333 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1334 
1335 	avl_remove(&spa_namespace_avl, spa);
1336 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1337 	avl_add(&spa_namespace_avl, spa);
1338 
1339 	/*
1340 	 * Sync all labels to disk with the new names by marking the root vdev
1341 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1342 	 * during the sync.
1343 	 */
1344 	vdev_config_dirty(spa->spa_root_vdev);
1345 
1346 	spa_config_exit(spa, SCL_ALL, FTAG);
1347 
1348 	txg_wait_synced(spa->spa_dsl_pool, 0);
1349 
1350 	/*
1351 	 * Sync the updated config cache.
1352 	 */
1353 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
1354 
1355 	spa_close(spa, FTAG);
1356 
1357 	mutex_exit(&spa_namespace_lock);
1358 
1359 	return (0);
1360 }
1361 
1362 /*
1363  * Return the spa_t associated with given pool_guid, if it exists.  If
1364  * device_guid is non-zero, determine whether the pool exists *and* contains
1365  * a device with the specified device_guid.
1366  */
1367 spa_t *
1368 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1369 {
1370 	spa_t *spa;
1371 	avl_tree_t *t = &spa_namespace_avl;
1372 
1373 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1374 
1375 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1376 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1377 			continue;
1378 		if (spa->spa_root_vdev == NULL)
1379 			continue;
1380 		if (spa_guid(spa) == pool_guid) {
1381 			if (device_guid == 0)
1382 				break;
1383 
1384 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1385 			    device_guid) != NULL)
1386 				break;
1387 
1388 			/*
1389 			 * Check any devices we may be in the process of adding.
1390 			 */
1391 			if (spa->spa_pending_vdev) {
1392 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1393 				    device_guid) != NULL)
1394 					break;
1395 			}
1396 		}
1397 	}
1398 
1399 	return (spa);
1400 }
1401 
1402 /*
1403  * Determine whether a pool with the given pool_guid exists.
1404  */
1405 boolean_t
1406 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1407 {
1408 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1409 }
1410 
1411 char *
1412 spa_strdup(const char *s)
1413 {
1414 	size_t len;
1415 	char *new;
1416 
1417 	len = strlen(s);
1418 	new = kmem_alloc(len + 1, KM_SLEEP);
1419 	bcopy(s, new, len);
1420 	new[len] = '\0';
1421 
1422 	return (new);
1423 }
1424 
1425 void
1426 spa_strfree(char *s)
1427 {
1428 	kmem_free(s, strlen(s) + 1);
1429 }
1430 
1431 uint64_t
1432 spa_get_random(uint64_t range)
1433 {
1434 	uint64_t r;
1435 
1436 	ASSERT(range != 0);
1437 
1438 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1439 
1440 	return (r % range);
1441 }
1442 
1443 uint64_t
1444 spa_generate_guid(spa_t *spa)
1445 {
1446 	uint64_t guid = spa_get_random(-1ULL);
1447 
1448 	if (spa != NULL) {
1449 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1450 			guid = spa_get_random(-1ULL);
1451 	} else {
1452 		while (guid == 0 || spa_guid_exists(guid, 0))
1453 			guid = spa_get_random(-1ULL);
1454 	}
1455 
1456 	return (guid);
1457 }
1458 
1459 void
1460 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1461 {
1462 	char type[256];
1463 	char *checksum = NULL;
1464 	char *compress = NULL;
1465 
1466 	if (bp != NULL) {
1467 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1468 			dmu_object_byteswap_t bswap =
1469 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1470 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1471 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1472 			    "metadata" : "data",
1473 			    dmu_ot_byteswap[bswap].ob_name);
1474 		} else {
1475 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1476 			    sizeof (type));
1477 		}
1478 		if (!BP_IS_EMBEDDED(bp)) {
1479 			checksum =
1480 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1481 		}
1482 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1483 	}
1484 
1485 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1486 	    compress);
1487 }
1488 
1489 void
1490 spa_freeze(spa_t *spa)
1491 {
1492 	uint64_t freeze_txg = 0;
1493 
1494 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1495 	if (spa->spa_freeze_txg == UINT64_MAX) {
1496 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1497 		spa->spa_freeze_txg = freeze_txg;
1498 	}
1499 	spa_config_exit(spa, SCL_ALL, FTAG);
1500 	if (freeze_txg != 0)
1501 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1502 }
1503 
1504 void
1505 zfs_panic_recover(const char *fmt, ...)
1506 {
1507 	va_list adx;
1508 
1509 	va_start(adx, fmt);
1510 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1511 	va_end(adx);
1512 }
1513 
1514 /*
1515  * This is a stripped-down version of strtoull, suitable only for converting
1516  * lowercase hexadecimal numbers that don't overflow.
1517  */
1518 uint64_t
1519 zfs_strtonum(const char *str, char **nptr)
1520 {
1521 	uint64_t val = 0;
1522 	char c;
1523 	int digit;
1524 
1525 	while ((c = *str) != '\0') {
1526 		if (c >= '0' && c <= '9')
1527 			digit = c - '0';
1528 		else if (c >= 'a' && c <= 'f')
1529 			digit = 10 + c - 'a';
1530 		else
1531 			break;
1532 
1533 		val *= 16;
1534 		val += digit;
1535 
1536 		str++;
1537 	}
1538 
1539 	if (nptr)
1540 		*nptr = (char *)str;
1541 
1542 	return (val);
1543 }
1544 
1545 /*
1546  * ==========================================================================
1547  * Accessor functions
1548  * ==========================================================================
1549  */
1550 
1551 boolean_t
1552 spa_shutting_down(spa_t *spa)
1553 {
1554 	return (spa->spa_async_suspended);
1555 }
1556 
1557 dsl_pool_t *
1558 spa_get_dsl(spa_t *spa)
1559 {
1560 	return (spa->spa_dsl_pool);
1561 }
1562 
1563 boolean_t
1564 spa_is_initializing(spa_t *spa)
1565 {
1566 	return (spa->spa_is_initializing);
1567 }
1568 
1569 boolean_t
1570 spa_indirect_vdevs_loaded(spa_t *spa)
1571 {
1572 	return (spa->spa_indirect_vdevs_loaded);
1573 }
1574 
1575 blkptr_t *
1576 spa_get_rootblkptr(spa_t *spa)
1577 {
1578 	return (&spa->spa_ubsync.ub_rootbp);
1579 }
1580 
1581 void
1582 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1583 {
1584 	spa->spa_uberblock.ub_rootbp = *bp;
1585 }
1586 
1587 void
1588 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1589 {
1590 	if (spa->spa_root == NULL)
1591 		buf[0] = '\0';
1592 	else
1593 		(void) strncpy(buf, spa->spa_root, buflen);
1594 }
1595 
1596 int
1597 spa_sync_pass(spa_t *spa)
1598 {
1599 	return (spa->spa_sync_pass);
1600 }
1601 
1602 char *
1603 spa_name(spa_t *spa)
1604 {
1605 	return (spa->spa_name);
1606 }
1607 
1608 uint64_t
1609 spa_guid(spa_t *spa)
1610 {
1611 	dsl_pool_t *dp = spa_get_dsl(spa);
1612 	uint64_t guid;
1613 
1614 	/*
1615 	 * If we fail to parse the config during spa_load(), we can go through
1616 	 * the error path (which posts an ereport) and end up here with no root
1617 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1618 	 * this case.
1619 	 */
1620 	if (spa->spa_root_vdev == NULL)
1621 		return (spa->spa_config_guid);
1622 
1623 	guid = spa->spa_last_synced_guid != 0 ?
1624 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1625 
1626 	/*
1627 	 * Return the most recently synced out guid unless we're
1628 	 * in syncing context.
1629 	 */
1630 	if (dp && dsl_pool_sync_context(dp))
1631 		return (spa->spa_root_vdev->vdev_guid);
1632 	else
1633 		return (guid);
1634 }
1635 
1636 uint64_t
1637 spa_load_guid(spa_t *spa)
1638 {
1639 	/*
1640 	 * This is a GUID that exists solely as a reference for the
1641 	 * purposes of the arc.  It is generated at load time, and
1642 	 * is never written to persistent storage.
1643 	 */
1644 	return (spa->spa_load_guid);
1645 }
1646 
1647 uint64_t
1648 spa_last_synced_txg(spa_t *spa)
1649 {
1650 	return (spa->spa_ubsync.ub_txg);
1651 }
1652 
1653 uint64_t
1654 spa_first_txg(spa_t *spa)
1655 {
1656 	return (spa->spa_first_txg);
1657 }
1658 
1659 uint64_t
1660 spa_syncing_txg(spa_t *spa)
1661 {
1662 	return (spa->spa_syncing_txg);
1663 }
1664 
1665 /*
1666  * Return the last txg where data can be dirtied. The final txgs
1667  * will be used to just clear out any deferred frees that remain.
1668  */
1669 uint64_t
1670 spa_final_dirty_txg(spa_t *spa)
1671 {
1672 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1673 }
1674 
1675 pool_state_t
1676 spa_state(spa_t *spa)
1677 {
1678 	return (spa->spa_state);
1679 }
1680 
1681 spa_load_state_t
1682 spa_load_state(spa_t *spa)
1683 {
1684 	return (spa->spa_load_state);
1685 }
1686 
1687 uint64_t
1688 spa_freeze_txg(spa_t *spa)
1689 {
1690 	return (spa->spa_freeze_txg);
1691 }
1692 
1693 /* ARGSUSED */
1694 uint64_t
1695 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1696 {
1697 	return (lsize * spa_asize_inflation);
1698 }
1699 
1700 /*
1701  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1702  * or at least 128MB, unless that would cause it to be more than half the
1703  * pool size.
1704  *
1705  * See the comment above spa_slop_shift for details.
1706  */
1707 uint64_t
1708 spa_get_slop_space(spa_t *spa)
1709 {
1710 	uint64_t space = spa_get_dspace(spa);
1711 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1712 }
1713 
1714 uint64_t
1715 spa_get_dspace(spa_t *spa)
1716 {
1717 	return (spa->spa_dspace);
1718 }
1719 
1720 void
1721 spa_update_dspace(spa_t *spa)
1722 {
1723 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1724 	    ddt_get_dedup_dspace(spa);
1725 	if (spa->spa_vdev_removal != NULL) {
1726 		/*
1727 		 * We can't allocate from the removing device, so
1728 		 * subtract its size.  This prevents the DMU/DSL from
1729 		 * filling up the (now smaller) pool while we are in the
1730 		 * middle of removing the device.
1731 		 *
1732 		 * Note that the DMU/DSL doesn't actually know or care
1733 		 * how much space is allocated (it does its own tracking
1734 		 * of how much space has been logically used).  So it
1735 		 * doesn't matter that the data we are moving may be
1736 		 * allocated twice (on the old device and the new
1737 		 * device).
1738 		 */
1739 		vdev_t *vd = spa->spa_vdev_removal->svr_vdev;
1740 		spa->spa_dspace -= spa_deflate(spa) ?
1741 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1742 	}
1743 }
1744 
1745 /*
1746  * Return the failure mode that has been set to this pool. The default
1747  * behavior will be to block all I/Os when a complete failure occurs.
1748  */
1749 uint8_t
1750 spa_get_failmode(spa_t *spa)
1751 {
1752 	return (spa->spa_failmode);
1753 }
1754 
1755 boolean_t
1756 spa_suspended(spa_t *spa)
1757 {
1758 	return (spa->spa_suspended);
1759 }
1760 
1761 uint64_t
1762 spa_version(spa_t *spa)
1763 {
1764 	return (spa->spa_ubsync.ub_version);
1765 }
1766 
1767 boolean_t
1768 spa_deflate(spa_t *spa)
1769 {
1770 	return (spa->spa_deflate);
1771 }
1772 
1773 metaslab_class_t *
1774 spa_normal_class(spa_t *spa)
1775 {
1776 	return (spa->spa_normal_class);
1777 }
1778 
1779 metaslab_class_t *
1780 spa_log_class(spa_t *spa)
1781 {
1782 	return (spa->spa_log_class);
1783 }
1784 
1785 void
1786 spa_evicting_os_register(spa_t *spa, objset_t *os)
1787 {
1788 	mutex_enter(&spa->spa_evicting_os_lock);
1789 	list_insert_head(&spa->spa_evicting_os_list, os);
1790 	mutex_exit(&spa->spa_evicting_os_lock);
1791 }
1792 
1793 void
1794 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1795 {
1796 	mutex_enter(&spa->spa_evicting_os_lock);
1797 	list_remove(&spa->spa_evicting_os_list, os);
1798 	cv_broadcast(&spa->spa_evicting_os_cv);
1799 	mutex_exit(&spa->spa_evicting_os_lock);
1800 }
1801 
1802 void
1803 spa_evicting_os_wait(spa_t *spa)
1804 {
1805 	mutex_enter(&spa->spa_evicting_os_lock);
1806 	while (!list_is_empty(&spa->spa_evicting_os_list))
1807 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1808 	mutex_exit(&spa->spa_evicting_os_lock);
1809 
1810 	dmu_buf_user_evict_wait();
1811 }
1812 
1813 int
1814 spa_max_replication(spa_t *spa)
1815 {
1816 	/*
1817 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1818 	 * handle BPs with more than one DVA allocated.  Set our max
1819 	 * replication level accordingly.
1820 	 */
1821 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1822 		return (1);
1823 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1824 }
1825 
1826 int
1827 spa_prev_software_version(spa_t *spa)
1828 {
1829 	return (spa->spa_prev_software_version);
1830 }
1831 
1832 uint64_t
1833 spa_deadman_synctime(spa_t *spa)
1834 {
1835 	return (spa->spa_deadman_synctime);
1836 }
1837 
1838 uint64_t
1839 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1840 {
1841 	uint64_t asize = DVA_GET_ASIZE(dva);
1842 	uint64_t dsize = asize;
1843 
1844 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1845 
1846 	if (asize != 0 && spa->spa_deflate) {
1847 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1848 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1849 	}
1850 
1851 	return (dsize);
1852 }
1853 
1854 uint64_t
1855 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1856 {
1857 	uint64_t dsize = 0;
1858 
1859 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1860 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1861 
1862 	return (dsize);
1863 }
1864 
1865 uint64_t
1866 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1867 {
1868 	uint64_t dsize = 0;
1869 
1870 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1871 
1872 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1873 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1874 
1875 	spa_config_exit(spa, SCL_VDEV, FTAG);
1876 
1877 	return (dsize);
1878 }
1879 
1880 /*
1881  * ==========================================================================
1882  * Initialization and Termination
1883  * ==========================================================================
1884  */
1885 
1886 static int
1887 spa_name_compare(const void *a1, const void *a2)
1888 {
1889 	const spa_t *s1 = a1;
1890 	const spa_t *s2 = a2;
1891 	int s;
1892 
1893 	s = strcmp(s1->spa_name, s2->spa_name);
1894 	if (s > 0)
1895 		return (1);
1896 	if (s < 0)
1897 		return (-1);
1898 	return (0);
1899 }
1900 
1901 int
1902 spa_busy(void)
1903 {
1904 	return (spa_active_count);
1905 }
1906 
1907 void
1908 spa_boot_init()
1909 {
1910 	spa_config_load();
1911 }
1912 
1913 void
1914 spa_init(int mode)
1915 {
1916 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1917 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1918 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1919 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1920 
1921 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1922 	    offsetof(spa_t, spa_avl));
1923 
1924 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1925 	    offsetof(spa_aux_t, aux_avl));
1926 
1927 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1928 	    offsetof(spa_aux_t, aux_avl));
1929 
1930 	spa_mode_global = mode;
1931 
1932 #ifdef _KERNEL
1933 	spa_arch_init();
1934 #else
1935 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1936 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1937 		if (arc_procfd == -1) {
1938 			perror("could not enable watchpoints: "
1939 			    "opening /proc/self/ctl failed: ");
1940 		} else {
1941 			arc_watch = B_TRUE;
1942 		}
1943 	}
1944 #endif
1945 
1946 	refcount_init();
1947 	unique_init();
1948 	range_tree_init();
1949 	metaslab_alloc_trace_init();
1950 	zio_init();
1951 	dmu_init();
1952 	zil_init();
1953 	vdev_cache_stat_init();
1954 	zfs_prop_init();
1955 	zpool_prop_init();
1956 	zpool_feature_init();
1957 	spa_config_load();
1958 	l2arc_start();
1959 }
1960 
1961 void
1962 spa_fini(void)
1963 {
1964 	l2arc_stop();
1965 
1966 	spa_evict_all();
1967 
1968 	vdev_cache_stat_fini();
1969 	zil_fini();
1970 	dmu_fini();
1971 	zio_fini();
1972 	metaslab_alloc_trace_fini();
1973 	range_tree_fini();
1974 	unique_fini();
1975 	refcount_fini();
1976 
1977 	avl_destroy(&spa_namespace_avl);
1978 	avl_destroy(&spa_spare_avl);
1979 	avl_destroy(&spa_l2cache_avl);
1980 
1981 	cv_destroy(&spa_namespace_cv);
1982 	mutex_destroy(&spa_namespace_lock);
1983 	mutex_destroy(&spa_spare_lock);
1984 	mutex_destroy(&spa_l2cache_lock);
1985 }
1986 
1987 /*
1988  * Return whether this pool has slogs. No locking needed.
1989  * It's not a problem if the wrong answer is returned as it's only for
1990  * performance and not correctness
1991  */
1992 boolean_t
1993 spa_has_slogs(spa_t *spa)
1994 {
1995 	return (spa->spa_log_class->mc_rotor != NULL);
1996 }
1997 
1998 spa_log_state_t
1999 spa_get_log_state(spa_t *spa)
2000 {
2001 	return (spa->spa_log_state);
2002 }
2003 
2004 void
2005 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2006 {
2007 	spa->spa_log_state = state;
2008 }
2009 
2010 boolean_t
2011 spa_is_root(spa_t *spa)
2012 {
2013 	return (spa->spa_is_root);
2014 }
2015 
2016 boolean_t
2017 spa_writeable(spa_t *spa)
2018 {
2019 	return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2020 }
2021 
2022 /*
2023  * Returns true if there is a pending sync task in any of the current
2024  * syncing txg, the current quiescing txg, or the current open txg.
2025  */
2026 boolean_t
2027 spa_has_pending_synctask(spa_t *spa)
2028 {
2029 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2030 }
2031 
2032 int
2033 spa_mode(spa_t *spa)
2034 {
2035 	return (spa->spa_mode);
2036 }
2037 
2038 uint64_t
2039 spa_bootfs(spa_t *spa)
2040 {
2041 	return (spa->spa_bootfs);
2042 }
2043 
2044 uint64_t
2045 spa_delegation(spa_t *spa)
2046 {
2047 	return (spa->spa_delegation);
2048 }
2049 
2050 objset_t *
2051 spa_meta_objset(spa_t *spa)
2052 {
2053 	return (spa->spa_meta_objset);
2054 }
2055 
2056 enum zio_checksum
2057 spa_dedup_checksum(spa_t *spa)
2058 {
2059 	return (spa->spa_dedup_checksum);
2060 }
2061 
2062 /*
2063  * Reset pool scan stat per scan pass (or reboot).
2064  */
2065 void
2066 spa_scan_stat_init(spa_t *spa)
2067 {
2068 	/* data not stored on disk */
2069 	spa->spa_scan_pass_start = gethrestime_sec();
2070 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2071 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2072 	else
2073 		spa->spa_scan_pass_scrub_pause = 0;
2074 	spa->spa_scan_pass_scrub_spent_paused = 0;
2075 	spa->spa_scan_pass_exam = 0;
2076 	vdev_scan_stat_init(spa->spa_root_vdev);
2077 }
2078 
2079 /*
2080  * Get scan stats for zpool status reports
2081  */
2082 int
2083 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2084 {
2085 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2086 
2087 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2088 		return (SET_ERROR(ENOENT));
2089 	bzero(ps, sizeof (pool_scan_stat_t));
2090 
2091 	/* data stored on disk */
2092 	ps->pss_func = scn->scn_phys.scn_func;
2093 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2094 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2095 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2096 	ps->pss_examined = scn->scn_phys.scn_examined;
2097 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2098 	ps->pss_processed = scn->scn_phys.scn_processed;
2099 	ps->pss_errors = scn->scn_phys.scn_errors;
2100 	ps->pss_state = scn->scn_phys.scn_state;
2101 
2102 	/* data not stored on disk */
2103 	ps->pss_pass_start = spa->spa_scan_pass_start;
2104 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2105 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2106 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2107 
2108 	return (0);
2109 }
2110 
2111 boolean_t
2112 spa_debug_enabled(spa_t *spa)
2113 {
2114 	return (spa->spa_debug);
2115 }
2116 
2117 int
2118 spa_maxblocksize(spa_t *spa)
2119 {
2120 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2121 		return (SPA_MAXBLOCKSIZE);
2122 	else
2123 		return (SPA_OLD_MAXBLOCKSIZE);
2124 }
2125 
2126 /*
2127  * Returns the txg that the last device removal completed. No indirect mappings
2128  * have been added since this txg.
2129  */
2130 uint64_t
2131 spa_get_last_removal_txg(spa_t *spa)
2132 {
2133 	uint64_t vdevid;
2134 	uint64_t ret = -1ULL;
2135 
2136 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2137 	/*
2138 	 * sr_prev_indirect_vdev is only modified while holding all the
2139 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2140 	 * examining it.
2141 	 */
2142 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2143 
2144 	while (vdevid != -1ULL) {
2145 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2146 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2147 
2148 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2149 
2150 		/*
2151 		 * If the removal did not remap any data, we don't care.
2152 		 */
2153 		if (vdev_indirect_births_count(vib) != 0) {
2154 			ret = vdev_indirect_births_last_entry_txg(vib);
2155 			break;
2156 		}
2157 
2158 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2159 	}
2160 	spa_config_exit(spa, SCL_VDEV, FTAG);
2161 
2162 	IMPLY(ret != -1ULL,
2163 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2164 
2165 	return (ret);
2166 }
2167 
2168 boolean_t
2169 spa_trust_config(spa_t *spa)
2170 {
2171 	return (spa->spa_trust_config);
2172 }
2173 
2174 uint64_t
2175 spa_missing_tvds_allowed(spa_t *spa)
2176 {
2177 	return (spa->spa_missing_tvds_allowed);
2178 }
2179 
2180 void
2181 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2182 {
2183 	spa->spa_missing_tvds = missing;
2184 }
2185