xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision acefc525a071e96f717b3d8d4338fa9d0a807b8a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/spa_boot.h>
33 #include <sys/zio.h>
34 #include <sys/zio_checksum.h>
35 #include <sys/zio_compress.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/zap.h>
39 #include <sys/zil.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/uberblock_impl.h>
43 #include <sys/txg.h>
44 #include <sys/avl.h>
45 #include <sys/unique.h>
46 #include <sys/dsl_pool.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dsl_scan.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/metaslab_impl.h>
52 #include <sys/arc.h>
53 #include <sys/ddt.h>
54 #include "zfs_prop.h"
55 #include <sys/zfeature.h>
56 
57 /*
58  * SPA locking
59  *
60  * There are four basic locks for managing spa_t structures:
61  *
62  * spa_namespace_lock (global mutex)
63  *
64  *	This lock must be acquired to do any of the following:
65  *
66  *		- Lookup a spa_t by name
67  *		- Add or remove a spa_t from the namespace
68  *		- Increase spa_refcount from non-zero
69  *		- Check if spa_refcount is zero
70  *		- Rename a spa_t
71  *		- add/remove/attach/detach devices
72  *		- Held for the duration of create/destroy/import/export
73  *
74  *	It does not need to handle recursion.  A create or destroy may
75  *	reference objects (files or zvols) in other pools, but by
76  *	definition they must have an existing reference, and will never need
77  *	to lookup a spa_t by name.
78  *
79  * spa_refcount (per-spa refcount_t protected by mutex)
80  *
81  *	This reference count keep track of any active users of the spa_t.  The
82  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
83  *	the refcount is never really 'zero' - opening a pool implicitly keeps
84  *	some references in the DMU.  Internally we check against spa_minref, but
85  *	present the image of a zero/non-zero value to consumers.
86  *
87  * spa_config_lock[] (per-spa array of rwlocks)
88  *
89  *	This protects the spa_t from config changes, and must be held in
90  *	the following circumstances:
91  *
92  *		- RW_READER to perform I/O to the spa
93  *		- RW_WRITER to change the vdev config
94  *
95  * The locking order is fairly straightforward:
96  *
97  *		spa_namespace_lock	->	spa_refcount
98  *
99  *	The namespace lock must be acquired to increase the refcount from 0
100  *	or to check if it is zero.
101  *
102  *		spa_refcount		->	spa_config_lock[]
103  *
104  *	There must be at least one valid reference on the spa_t to acquire
105  *	the config lock.
106  *
107  *		spa_namespace_lock	->	spa_config_lock[]
108  *
109  *	The namespace lock must always be taken before the config lock.
110  *
111  *
112  * The spa_namespace_lock can be acquired directly and is globally visible.
113  *
114  * The namespace is manipulated using the following functions, all of which
115  * require the spa_namespace_lock to be held.
116  *
117  *	spa_lookup()		Lookup a spa_t by name.
118  *
119  *	spa_add()		Create a new spa_t in the namespace.
120  *
121  *	spa_remove()		Remove a spa_t from the namespace.  This also
122  *				frees up any memory associated with the spa_t.
123  *
124  *	spa_next()		Returns the next spa_t in the system, or the
125  *				first if NULL is passed.
126  *
127  *	spa_evict_all()		Shutdown and remove all spa_t structures in
128  *				the system.
129  *
130  *	spa_guid_exists()	Determine whether a pool/device guid exists.
131  *
132  * The spa_refcount is manipulated using the following functions:
133  *
134  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
135  *				called with spa_namespace_lock held if the
136  *				refcount is currently zero.
137  *
138  *	spa_close()		Remove a reference from the spa_t.  This will
139  *				not free the spa_t or remove it from the
140  *				namespace.  No locking is required.
141  *
142  *	spa_refcount_zero()	Returns true if the refcount is currently
143  *				zero.  Must be called with spa_namespace_lock
144  *				held.
145  *
146  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
147  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
148  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
149  *
150  * To read the configuration, it suffices to hold one of these locks as reader.
151  * To modify the configuration, you must hold all locks as writer.  To modify
152  * vdev state without altering the vdev tree's topology (e.g. online/offline),
153  * you must hold SCL_STATE and SCL_ZIO as writer.
154  *
155  * We use these distinct config locks to avoid recursive lock entry.
156  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
157  * block allocations (SCL_ALLOC), which may require reading space maps
158  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
159  *
160  * The spa config locks cannot be normal rwlocks because we need the
161  * ability to hand off ownership.  For example, SCL_ZIO is acquired
162  * by the issuing thread and later released by an interrupt thread.
163  * They do, however, obey the usual write-wanted semantics to prevent
164  * writer (i.e. system administrator) starvation.
165  *
166  * The lock acquisition rules are as follows:
167  *
168  * SCL_CONFIG
169  *	Protects changes to the vdev tree topology, such as vdev
170  *	add/remove/attach/detach.  Protects the dirty config list
171  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
172  *
173  * SCL_STATE
174  *	Protects changes to pool state and vdev state, such as vdev
175  *	online/offline/fault/degrade/clear.  Protects the dirty state list
176  *	(spa_state_dirty_list) and global pool state (spa_state).
177  *
178  * SCL_ALLOC
179  *	Protects changes to metaslab groups and classes.
180  *	Held as reader by metaslab_alloc() and metaslab_claim().
181  *
182  * SCL_ZIO
183  *	Held by bp-level zios (those which have no io_vd upon entry)
184  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
185  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
186  *
187  * SCL_FREE
188  *	Protects changes to metaslab groups and classes.
189  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
190  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
191  *	blocks in zio_done() while another i/o that holds either
192  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
193  *
194  * SCL_VDEV
195  *	Held as reader to prevent changes to the vdev tree during trivial
196  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
197  *	other locks, and lower than all of them, to ensure that it's safe
198  *	to acquire regardless of caller context.
199  *
200  * In addition, the following rules apply:
201  *
202  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
203  *	The lock ordering is SCL_CONFIG > spa_props_lock.
204  *
205  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
206  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
207  *	or zio_write_phys() -- the caller must ensure that the config cannot
208  *	cannot change in the interim, and that the vdev cannot be reopened.
209  *	SCL_STATE as reader suffices for both.
210  *
211  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
212  *
213  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
214  *				for writing.
215  *
216  *	spa_vdev_exit()		Release the config lock, wait for all I/O
217  *				to complete, sync the updated configs to the
218  *				cache, and release the namespace lock.
219  *
220  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
221  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
222  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
223  *
224  * spa_rename() is also implemented within this file since it requires
225  * manipulation of the namespace.
226  */
227 
228 static avl_tree_t spa_namespace_avl;
229 kmutex_t spa_namespace_lock;
230 static kcondvar_t spa_namespace_cv;
231 static int spa_active_count;
232 int spa_max_replication_override = SPA_DVAS_PER_BP;
233 
234 static kmutex_t spa_spare_lock;
235 static avl_tree_t spa_spare_avl;
236 static kmutex_t spa_l2cache_lock;
237 static avl_tree_t spa_l2cache_avl;
238 
239 kmem_cache_t *spa_buffer_pool;
240 int spa_mode_global;
241 
242 #ifdef ZFS_DEBUG
243 /* Everything except dprintf and spa is on by default in debug builds */
244 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
245 #else
246 int zfs_flags = 0;
247 #endif
248 
249 /*
250  * zfs_recover can be set to nonzero to attempt to recover from
251  * otherwise-fatal errors, typically caused by on-disk corruption.  When
252  * set, calls to zfs_panic_recover() will turn into warning messages.
253  * This should only be used as a last resort, as it typically results
254  * in leaked space, or worse.
255  */
256 boolean_t zfs_recover = B_FALSE;
257 
258 /*
259  * If destroy encounters an EIO while reading metadata (e.g. indirect
260  * blocks), space referenced by the missing metadata can not be freed.
261  * Normally this causes the background destroy to become "stalled", as
262  * it is unable to make forward progress.  While in this stalled state,
263  * all remaining space to free from the error-encountering filesystem is
264  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
265  * permanently leak the space from indirect blocks that can not be read,
266  * and continue to free everything else that it can.
267  *
268  * The default, "stalling" behavior is useful if the storage partially
269  * fails (i.e. some but not all i/os fail), and then later recovers.  In
270  * this case, we will be able to continue pool operations while it is
271  * partially failed, and when it recovers, we can continue to free the
272  * space, with no leaks.  However, note that this case is actually
273  * fairly rare.
274  *
275  * Typically pools either (a) fail completely (but perhaps temporarily,
276  * e.g. a top-level vdev going offline), or (b) have localized,
277  * permanent errors (e.g. disk returns the wrong data due to bit flip or
278  * firmware bug).  In case (a), this setting does not matter because the
279  * pool will be suspended and the sync thread will not be able to make
280  * forward progress regardless.  In case (b), because the error is
281  * permanent, the best we can do is leak the minimum amount of space,
282  * which is what setting this flag will do.  Therefore, it is reasonable
283  * for this flag to normally be set, but we chose the more conservative
284  * approach of not setting it, so that there is no possibility of
285  * leaking space in the "partial temporary" failure case.
286  */
287 boolean_t zfs_free_leak_on_eio = B_FALSE;
288 
289 /*
290  * Expiration time in milliseconds. This value has two meanings. First it is
291  * used to determine when the spa_deadman() logic should fire. By default the
292  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
293  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
294  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
295  * in a system panic.
296  */
297 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
298 
299 /*
300  * Check time in milliseconds. This defines the frequency at which we check
301  * for hung I/O.
302  */
303 uint64_t zfs_deadman_checktime_ms = 5000ULL;
304 
305 /*
306  * Override the zfs deadman behavior via /etc/system. By default the
307  * deadman is enabled except on VMware and sparc deployments.
308  */
309 int zfs_deadman_enabled = -1;
310 
311 /*
312  * The worst case is single-sector max-parity RAID-Z blocks, in which
313  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
314  * times the size; so just assume that.  Add to this the fact that
315  * we can have up to 3 DVAs per bp, and one more factor of 2 because
316  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
317  * the worst case is:
318  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
319  */
320 int spa_asize_inflation = 24;
321 
322 /*
323  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
324  * the pool to be consumed.  This ensures that we don't run the pool
325  * completely out of space, due to unaccounted changes (e.g. to the MOS).
326  * It also limits the worst-case time to allocate space.  If we have
327  * less than this amount of free space, most ZPL operations (e.g. write,
328  * create) will return ENOSPC.
329  *
330  * Certain operations (e.g. file removal, most administrative actions) can
331  * use half the slop space.  They will only return ENOSPC if less than half
332  * the slop space is free.  Typically, once the pool has less than the slop
333  * space free, the user will use these operations to free up space in the pool.
334  * These are the operations that call dsl_pool_adjustedsize() with the netfree
335  * argument set to TRUE.
336  *
337  * A very restricted set of operations are always permitted, regardless of
338  * the amount of free space.  These are the operations that call
339  * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
340  * operations result in a net increase in the amount of space used,
341  * it is possible to run the pool completely out of space, causing it to
342  * be permanently read-only.
343  *
344  * Note that on very small pools, the slop space will be larger than
345  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
346  * but we never allow it to be more than half the pool size.
347  *
348  * See also the comments in zfs_space_check_t.
349  */
350 int spa_slop_shift = 5;
351 uint64_t spa_min_slop = 128 * 1024 * 1024;
352 
353 /*
354  * ==========================================================================
355  * SPA config locking
356  * ==========================================================================
357  */
358 static void
359 spa_config_lock_init(spa_t *spa)
360 {
361 	for (int i = 0; i < SCL_LOCKS; i++) {
362 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
363 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
364 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
365 		refcount_create_untracked(&scl->scl_count);
366 		scl->scl_writer = NULL;
367 		scl->scl_write_wanted = 0;
368 	}
369 }
370 
371 static void
372 spa_config_lock_destroy(spa_t *spa)
373 {
374 	for (int i = 0; i < SCL_LOCKS; i++) {
375 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
376 		mutex_destroy(&scl->scl_lock);
377 		cv_destroy(&scl->scl_cv);
378 		refcount_destroy(&scl->scl_count);
379 		ASSERT(scl->scl_writer == NULL);
380 		ASSERT(scl->scl_write_wanted == 0);
381 	}
382 }
383 
384 int
385 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
386 {
387 	for (int i = 0; i < SCL_LOCKS; i++) {
388 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
389 		if (!(locks & (1 << i)))
390 			continue;
391 		mutex_enter(&scl->scl_lock);
392 		if (rw == RW_READER) {
393 			if (scl->scl_writer || scl->scl_write_wanted) {
394 				mutex_exit(&scl->scl_lock);
395 				spa_config_exit(spa, locks & ((1 << i) - 1),
396 				    tag);
397 				return (0);
398 			}
399 		} else {
400 			ASSERT(scl->scl_writer != curthread);
401 			if (!refcount_is_zero(&scl->scl_count)) {
402 				mutex_exit(&scl->scl_lock);
403 				spa_config_exit(spa, locks & ((1 << i) - 1),
404 				    tag);
405 				return (0);
406 			}
407 			scl->scl_writer = curthread;
408 		}
409 		(void) refcount_add(&scl->scl_count, tag);
410 		mutex_exit(&scl->scl_lock);
411 	}
412 	return (1);
413 }
414 
415 void
416 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
417 {
418 	int wlocks_held = 0;
419 
420 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
421 
422 	for (int i = 0; i < SCL_LOCKS; i++) {
423 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
424 		if (scl->scl_writer == curthread)
425 			wlocks_held |= (1 << i);
426 		if (!(locks & (1 << i)))
427 			continue;
428 		mutex_enter(&scl->scl_lock);
429 		if (rw == RW_READER) {
430 			while (scl->scl_writer || scl->scl_write_wanted) {
431 				cv_wait(&scl->scl_cv, &scl->scl_lock);
432 			}
433 		} else {
434 			ASSERT(scl->scl_writer != curthread);
435 			while (!refcount_is_zero(&scl->scl_count)) {
436 				scl->scl_write_wanted++;
437 				cv_wait(&scl->scl_cv, &scl->scl_lock);
438 				scl->scl_write_wanted--;
439 			}
440 			scl->scl_writer = curthread;
441 		}
442 		(void) refcount_add(&scl->scl_count, tag);
443 		mutex_exit(&scl->scl_lock);
444 	}
445 	ASSERT(wlocks_held <= locks);
446 }
447 
448 void
449 spa_config_exit(spa_t *spa, int locks, void *tag)
450 {
451 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
452 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
453 		if (!(locks & (1 << i)))
454 			continue;
455 		mutex_enter(&scl->scl_lock);
456 		ASSERT(!refcount_is_zero(&scl->scl_count));
457 		if (refcount_remove(&scl->scl_count, tag) == 0) {
458 			ASSERT(scl->scl_writer == NULL ||
459 			    scl->scl_writer == curthread);
460 			scl->scl_writer = NULL;	/* OK in either case */
461 			cv_broadcast(&scl->scl_cv);
462 		}
463 		mutex_exit(&scl->scl_lock);
464 	}
465 }
466 
467 int
468 spa_config_held(spa_t *spa, int locks, krw_t rw)
469 {
470 	int locks_held = 0;
471 
472 	for (int i = 0; i < SCL_LOCKS; i++) {
473 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
474 		if (!(locks & (1 << i)))
475 			continue;
476 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
477 		    (rw == RW_WRITER && scl->scl_writer == curthread))
478 			locks_held |= 1 << i;
479 	}
480 
481 	return (locks_held);
482 }
483 
484 /*
485  * ==========================================================================
486  * SPA namespace functions
487  * ==========================================================================
488  */
489 
490 /*
491  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
492  * Returns NULL if no matching spa_t is found.
493  */
494 spa_t *
495 spa_lookup(const char *name)
496 {
497 	static spa_t search;	/* spa_t is large; don't allocate on stack */
498 	spa_t *spa;
499 	avl_index_t where;
500 	char *cp;
501 
502 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
503 
504 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
505 
506 	/*
507 	 * If it's a full dataset name, figure out the pool name and
508 	 * just use that.
509 	 */
510 	cp = strpbrk(search.spa_name, "/@#");
511 	if (cp != NULL)
512 		*cp = '\0';
513 
514 	spa = avl_find(&spa_namespace_avl, &search, &where);
515 
516 	return (spa);
517 }
518 
519 /*
520  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
521  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
522  * looking for potentially hung I/Os.
523  */
524 void
525 spa_deadman(void *arg)
526 {
527 	spa_t *spa = arg;
528 
529 	/*
530 	 * Disable the deadman timer if the pool is suspended.
531 	 */
532 	if (spa_suspended(spa)) {
533 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
534 		return;
535 	}
536 
537 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
538 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
539 	    ++spa->spa_deadman_calls);
540 	if (zfs_deadman_enabled)
541 		vdev_deadman(spa->spa_root_vdev);
542 }
543 
544 /*
545  * Create an uninitialized spa_t with the given name.  Requires
546  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
547  * exist by calling spa_lookup() first.
548  */
549 spa_t *
550 spa_add(const char *name, nvlist_t *config, const char *altroot)
551 {
552 	spa_t *spa;
553 	spa_config_dirent_t *dp;
554 	cyc_handler_t hdlr;
555 	cyc_time_t when;
556 
557 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
558 
559 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
560 
561 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
562 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
563 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
564 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
565 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
566 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
567 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
568 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
569 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
570 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
571 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
572 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
573 
574 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
575 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
576 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
577 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
578 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
579 
580 	for (int t = 0; t < TXG_SIZE; t++)
581 		bplist_create(&spa->spa_free_bplist[t]);
582 
583 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
584 	spa->spa_state = POOL_STATE_UNINITIALIZED;
585 	spa->spa_freeze_txg = UINT64_MAX;
586 	spa->spa_final_txg = UINT64_MAX;
587 	spa->spa_load_max_txg = UINT64_MAX;
588 	spa->spa_proc = &p0;
589 	spa->spa_proc_state = SPA_PROC_NONE;
590 
591 	hdlr.cyh_func = spa_deadman;
592 	hdlr.cyh_arg = spa;
593 	hdlr.cyh_level = CY_LOW_LEVEL;
594 
595 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
596 
597 	/*
598 	 * This determines how often we need to check for hung I/Os after
599 	 * the cyclic has already fired. Since checking for hung I/Os is
600 	 * an expensive operation we don't want to check too frequently.
601 	 * Instead wait for 5 seconds before checking again.
602 	 */
603 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
604 	when.cyt_when = CY_INFINITY;
605 	mutex_enter(&cpu_lock);
606 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
607 	mutex_exit(&cpu_lock);
608 
609 	refcount_create(&spa->spa_refcount);
610 	spa_config_lock_init(spa);
611 
612 	avl_add(&spa_namespace_avl, spa);
613 
614 	/*
615 	 * Set the alternate root, if there is one.
616 	 */
617 	if (altroot) {
618 		spa->spa_root = spa_strdup(altroot);
619 		spa_active_count++;
620 	}
621 
622 	/*
623 	 * Every pool starts with the default cachefile
624 	 */
625 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
626 	    offsetof(spa_config_dirent_t, scd_link));
627 
628 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
629 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
630 	list_insert_head(&spa->spa_config_list, dp);
631 
632 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
633 	    KM_SLEEP) == 0);
634 
635 	if (config != NULL) {
636 		nvlist_t *features;
637 
638 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
639 		    &features) == 0) {
640 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
641 			    0) == 0);
642 		}
643 
644 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
645 	}
646 
647 	if (spa->spa_label_features == NULL) {
648 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
649 		    KM_SLEEP) == 0);
650 	}
651 
652 	spa->spa_iokstat = kstat_create("zfs", 0, name,
653 	    "disk", KSTAT_TYPE_IO, 1, 0);
654 	if (spa->spa_iokstat) {
655 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
656 		kstat_install(spa->spa_iokstat);
657 	}
658 
659 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
660 
661 	spa->spa_min_ashift = INT_MAX;
662 	spa->spa_max_ashift = 0;
663 
664 	/*
665 	 * As a pool is being created, treat all features as disabled by
666 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
667 	 * refcount cache.
668 	 */
669 	for (int i = 0; i < SPA_FEATURES; i++) {
670 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
671 	}
672 
673 	return (spa);
674 }
675 
676 /*
677  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
678  * spa_namespace_lock.  This is called only after the spa_t has been closed and
679  * deactivated.
680  */
681 void
682 spa_remove(spa_t *spa)
683 {
684 	spa_config_dirent_t *dp;
685 
686 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
687 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
688 	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
689 
690 	nvlist_free(spa->spa_config_splitting);
691 
692 	avl_remove(&spa_namespace_avl, spa);
693 	cv_broadcast(&spa_namespace_cv);
694 
695 	if (spa->spa_root) {
696 		spa_strfree(spa->spa_root);
697 		spa_active_count--;
698 	}
699 
700 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
701 		list_remove(&spa->spa_config_list, dp);
702 		if (dp->scd_path != NULL)
703 			spa_strfree(dp->scd_path);
704 		kmem_free(dp, sizeof (spa_config_dirent_t));
705 	}
706 
707 	list_destroy(&spa->spa_config_list);
708 
709 	nvlist_free(spa->spa_label_features);
710 	nvlist_free(spa->spa_load_info);
711 	spa_config_set(spa, NULL);
712 
713 	mutex_enter(&cpu_lock);
714 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
715 		cyclic_remove(spa->spa_deadman_cycid);
716 	mutex_exit(&cpu_lock);
717 	spa->spa_deadman_cycid = CYCLIC_NONE;
718 
719 	refcount_destroy(&spa->spa_refcount);
720 
721 	spa_config_lock_destroy(spa);
722 
723 	kstat_delete(spa->spa_iokstat);
724 	spa->spa_iokstat = NULL;
725 
726 	for (int t = 0; t < TXG_SIZE; t++)
727 		bplist_destroy(&spa->spa_free_bplist[t]);
728 
729 	zio_checksum_templates_free(spa);
730 
731 	cv_destroy(&spa->spa_async_cv);
732 	cv_destroy(&spa->spa_evicting_os_cv);
733 	cv_destroy(&spa->spa_proc_cv);
734 	cv_destroy(&spa->spa_scrub_io_cv);
735 	cv_destroy(&spa->spa_suspend_cv);
736 
737 	mutex_destroy(&spa->spa_async_lock);
738 	mutex_destroy(&spa->spa_errlist_lock);
739 	mutex_destroy(&spa->spa_errlog_lock);
740 	mutex_destroy(&spa->spa_evicting_os_lock);
741 	mutex_destroy(&spa->spa_history_lock);
742 	mutex_destroy(&spa->spa_proc_lock);
743 	mutex_destroy(&spa->spa_props_lock);
744 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
745 	mutex_destroy(&spa->spa_scrub_lock);
746 	mutex_destroy(&spa->spa_suspend_lock);
747 	mutex_destroy(&spa->spa_vdev_top_lock);
748 	mutex_destroy(&spa->spa_iokstat_lock);
749 
750 	kmem_free(spa, sizeof (spa_t));
751 }
752 
753 /*
754  * Given a pool, return the next pool in the namespace, or NULL if there is
755  * none.  If 'prev' is NULL, return the first pool.
756  */
757 spa_t *
758 spa_next(spa_t *prev)
759 {
760 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
761 
762 	if (prev)
763 		return (AVL_NEXT(&spa_namespace_avl, prev));
764 	else
765 		return (avl_first(&spa_namespace_avl));
766 }
767 
768 /*
769  * ==========================================================================
770  * SPA refcount functions
771  * ==========================================================================
772  */
773 
774 /*
775  * Add a reference to the given spa_t.  Must have at least one reference, or
776  * have the namespace lock held.
777  */
778 void
779 spa_open_ref(spa_t *spa, void *tag)
780 {
781 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
782 	    MUTEX_HELD(&spa_namespace_lock));
783 	(void) refcount_add(&spa->spa_refcount, tag);
784 }
785 
786 /*
787  * Remove a reference to the given spa_t.  Must have at least one reference, or
788  * have the namespace lock held.
789  */
790 void
791 spa_close(spa_t *spa, void *tag)
792 {
793 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
794 	    MUTEX_HELD(&spa_namespace_lock));
795 	(void) refcount_remove(&spa->spa_refcount, tag);
796 }
797 
798 /*
799  * Remove a reference to the given spa_t held by a dsl dir that is
800  * being asynchronously released.  Async releases occur from a taskq
801  * performing eviction of dsl datasets and dirs.  The namespace lock
802  * isn't held and the hold by the object being evicted may contribute to
803  * spa_minref (e.g. dataset or directory released during pool export),
804  * so the asserts in spa_close() do not apply.
805  */
806 void
807 spa_async_close(spa_t *spa, void *tag)
808 {
809 	(void) refcount_remove(&spa->spa_refcount, tag);
810 }
811 
812 /*
813  * Check to see if the spa refcount is zero.  Must be called with
814  * spa_namespace_lock held.  We really compare against spa_minref, which is the
815  * number of references acquired when opening a pool
816  */
817 boolean_t
818 spa_refcount_zero(spa_t *spa)
819 {
820 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
821 
822 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
823 }
824 
825 /*
826  * ==========================================================================
827  * SPA spare and l2cache tracking
828  * ==========================================================================
829  */
830 
831 /*
832  * Hot spares and cache devices are tracked using the same code below,
833  * for 'auxiliary' devices.
834  */
835 
836 typedef struct spa_aux {
837 	uint64_t	aux_guid;
838 	uint64_t	aux_pool;
839 	avl_node_t	aux_avl;
840 	int		aux_count;
841 } spa_aux_t;
842 
843 static int
844 spa_aux_compare(const void *a, const void *b)
845 {
846 	const spa_aux_t *sa = a;
847 	const spa_aux_t *sb = b;
848 
849 	if (sa->aux_guid < sb->aux_guid)
850 		return (-1);
851 	else if (sa->aux_guid > sb->aux_guid)
852 		return (1);
853 	else
854 		return (0);
855 }
856 
857 void
858 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
859 {
860 	avl_index_t where;
861 	spa_aux_t search;
862 	spa_aux_t *aux;
863 
864 	search.aux_guid = vd->vdev_guid;
865 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
866 		aux->aux_count++;
867 	} else {
868 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
869 		aux->aux_guid = vd->vdev_guid;
870 		aux->aux_count = 1;
871 		avl_insert(avl, aux, where);
872 	}
873 }
874 
875 void
876 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
877 {
878 	spa_aux_t search;
879 	spa_aux_t *aux;
880 	avl_index_t where;
881 
882 	search.aux_guid = vd->vdev_guid;
883 	aux = avl_find(avl, &search, &where);
884 
885 	ASSERT(aux != NULL);
886 
887 	if (--aux->aux_count == 0) {
888 		avl_remove(avl, aux);
889 		kmem_free(aux, sizeof (spa_aux_t));
890 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
891 		aux->aux_pool = 0ULL;
892 	}
893 }
894 
895 boolean_t
896 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
897 {
898 	spa_aux_t search, *found;
899 
900 	search.aux_guid = guid;
901 	found = avl_find(avl, &search, NULL);
902 
903 	if (pool) {
904 		if (found)
905 			*pool = found->aux_pool;
906 		else
907 			*pool = 0ULL;
908 	}
909 
910 	if (refcnt) {
911 		if (found)
912 			*refcnt = found->aux_count;
913 		else
914 			*refcnt = 0;
915 	}
916 
917 	return (found != NULL);
918 }
919 
920 void
921 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
922 {
923 	spa_aux_t search, *found;
924 	avl_index_t where;
925 
926 	search.aux_guid = vd->vdev_guid;
927 	found = avl_find(avl, &search, &where);
928 	ASSERT(found != NULL);
929 	ASSERT(found->aux_pool == 0ULL);
930 
931 	found->aux_pool = spa_guid(vd->vdev_spa);
932 }
933 
934 /*
935  * Spares are tracked globally due to the following constraints:
936  *
937  * 	- A spare may be part of multiple pools.
938  * 	- A spare may be added to a pool even if it's actively in use within
939  *	  another pool.
940  * 	- A spare in use in any pool can only be the source of a replacement if
941  *	  the target is a spare in the same pool.
942  *
943  * We keep track of all spares on the system through the use of a reference
944  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
945  * spare, then we bump the reference count in the AVL tree.  In addition, we set
946  * the 'vdev_isspare' member to indicate that the device is a spare (active or
947  * inactive).  When a spare is made active (used to replace a device in the
948  * pool), we also keep track of which pool its been made a part of.
949  *
950  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
951  * called under the spa_namespace lock as part of vdev reconfiguration.  The
952  * separate spare lock exists for the status query path, which does not need to
953  * be completely consistent with respect to other vdev configuration changes.
954  */
955 
956 static int
957 spa_spare_compare(const void *a, const void *b)
958 {
959 	return (spa_aux_compare(a, b));
960 }
961 
962 void
963 spa_spare_add(vdev_t *vd)
964 {
965 	mutex_enter(&spa_spare_lock);
966 	ASSERT(!vd->vdev_isspare);
967 	spa_aux_add(vd, &spa_spare_avl);
968 	vd->vdev_isspare = B_TRUE;
969 	mutex_exit(&spa_spare_lock);
970 }
971 
972 void
973 spa_spare_remove(vdev_t *vd)
974 {
975 	mutex_enter(&spa_spare_lock);
976 	ASSERT(vd->vdev_isspare);
977 	spa_aux_remove(vd, &spa_spare_avl);
978 	vd->vdev_isspare = B_FALSE;
979 	mutex_exit(&spa_spare_lock);
980 }
981 
982 boolean_t
983 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
984 {
985 	boolean_t found;
986 
987 	mutex_enter(&spa_spare_lock);
988 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
989 	mutex_exit(&spa_spare_lock);
990 
991 	return (found);
992 }
993 
994 void
995 spa_spare_activate(vdev_t *vd)
996 {
997 	mutex_enter(&spa_spare_lock);
998 	ASSERT(vd->vdev_isspare);
999 	spa_aux_activate(vd, &spa_spare_avl);
1000 	mutex_exit(&spa_spare_lock);
1001 }
1002 
1003 /*
1004  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1005  * Cache devices currently only support one pool per cache device, and so
1006  * for these devices the aux reference count is currently unused beyond 1.
1007  */
1008 
1009 static int
1010 spa_l2cache_compare(const void *a, const void *b)
1011 {
1012 	return (spa_aux_compare(a, b));
1013 }
1014 
1015 void
1016 spa_l2cache_add(vdev_t *vd)
1017 {
1018 	mutex_enter(&spa_l2cache_lock);
1019 	ASSERT(!vd->vdev_isl2cache);
1020 	spa_aux_add(vd, &spa_l2cache_avl);
1021 	vd->vdev_isl2cache = B_TRUE;
1022 	mutex_exit(&spa_l2cache_lock);
1023 }
1024 
1025 void
1026 spa_l2cache_remove(vdev_t *vd)
1027 {
1028 	mutex_enter(&spa_l2cache_lock);
1029 	ASSERT(vd->vdev_isl2cache);
1030 	spa_aux_remove(vd, &spa_l2cache_avl);
1031 	vd->vdev_isl2cache = B_FALSE;
1032 	mutex_exit(&spa_l2cache_lock);
1033 }
1034 
1035 boolean_t
1036 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1037 {
1038 	boolean_t found;
1039 
1040 	mutex_enter(&spa_l2cache_lock);
1041 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1042 	mutex_exit(&spa_l2cache_lock);
1043 
1044 	return (found);
1045 }
1046 
1047 void
1048 spa_l2cache_activate(vdev_t *vd)
1049 {
1050 	mutex_enter(&spa_l2cache_lock);
1051 	ASSERT(vd->vdev_isl2cache);
1052 	spa_aux_activate(vd, &spa_l2cache_avl);
1053 	mutex_exit(&spa_l2cache_lock);
1054 }
1055 
1056 /*
1057  * ==========================================================================
1058  * SPA vdev locking
1059  * ==========================================================================
1060  */
1061 
1062 /*
1063  * Lock the given spa_t for the purpose of adding or removing a vdev.
1064  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1065  * It returns the next transaction group for the spa_t.
1066  */
1067 uint64_t
1068 spa_vdev_enter(spa_t *spa)
1069 {
1070 	mutex_enter(&spa->spa_vdev_top_lock);
1071 	mutex_enter(&spa_namespace_lock);
1072 	return (spa_vdev_config_enter(spa));
1073 }
1074 
1075 /*
1076  * Internal implementation for spa_vdev_enter().  Used when a vdev
1077  * operation requires multiple syncs (i.e. removing a device) while
1078  * keeping the spa_namespace_lock held.
1079  */
1080 uint64_t
1081 spa_vdev_config_enter(spa_t *spa)
1082 {
1083 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1084 
1085 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1086 
1087 	return (spa_last_synced_txg(spa) + 1);
1088 }
1089 
1090 /*
1091  * Used in combination with spa_vdev_config_enter() to allow the syncing
1092  * of multiple transactions without releasing the spa_namespace_lock.
1093  */
1094 void
1095 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1096 {
1097 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1098 
1099 	int config_changed = B_FALSE;
1100 
1101 	ASSERT(txg > spa_last_synced_txg(spa));
1102 
1103 	spa->spa_pending_vdev = NULL;
1104 
1105 	/*
1106 	 * Reassess the DTLs.
1107 	 */
1108 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1109 
1110 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1111 		config_changed = B_TRUE;
1112 		spa->spa_config_generation++;
1113 	}
1114 
1115 	/*
1116 	 * Verify the metaslab classes.
1117 	 */
1118 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1119 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1120 
1121 	spa_config_exit(spa, SCL_ALL, spa);
1122 
1123 	/*
1124 	 * Panic the system if the specified tag requires it.  This
1125 	 * is useful for ensuring that configurations are updated
1126 	 * transactionally.
1127 	 */
1128 	if (zio_injection_enabled)
1129 		zio_handle_panic_injection(spa, tag, 0);
1130 
1131 	/*
1132 	 * Note: this txg_wait_synced() is important because it ensures
1133 	 * that there won't be more than one config change per txg.
1134 	 * This allows us to use the txg as the generation number.
1135 	 */
1136 	if (error == 0)
1137 		txg_wait_synced(spa->spa_dsl_pool, txg);
1138 
1139 	if (vd != NULL) {
1140 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1141 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1142 		vdev_free(vd);
1143 		spa_config_exit(spa, SCL_ALL, spa);
1144 	}
1145 
1146 	/*
1147 	 * If the config changed, update the config cache.
1148 	 */
1149 	if (config_changed)
1150 		spa_config_sync(spa, B_FALSE, B_TRUE);
1151 }
1152 
1153 /*
1154  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1155  * locking of spa_vdev_enter(), we also want make sure the transactions have
1156  * synced to disk, and then update the global configuration cache with the new
1157  * information.
1158  */
1159 int
1160 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1161 {
1162 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1163 	mutex_exit(&spa_namespace_lock);
1164 	mutex_exit(&spa->spa_vdev_top_lock);
1165 
1166 	return (error);
1167 }
1168 
1169 /*
1170  * Lock the given spa_t for the purpose of changing vdev state.
1171  */
1172 void
1173 spa_vdev_state_enter(spa_t *spa, int oplocks)
1174 {
1175 	int locks = SCL_STATE_ALL | oplocks;
1176 
1177 	/*
1178 	 * Root pools may need to read of the underlying devfs filesystem
1179 	 * when opening up a vdev.  Unfortunately if we're holding the
1180 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1181 	 * the read from the root filesystem.  Instead we "prefetch"
1182 	 * the associated vnodes that we need prior to opening the
1183 	 * underlying devices and cache them so that we can prevent
1184 	 * any I/O when we are doing the actual open.
1185 	 */
1186 	if (spa_is_root(spa)) {
1187 		int low = locks & ~(SCL_ZIO - 1);
1188 		int high = locks & ~low;
1189 
1190 		spa_config_enter(spa, high, spa, RW_WRITER);
1191 		vdev_hold(spa->spa_root_vdev);
1192 		spa_config_enter(spa, low, spa, RW_WRITER);
1193 	} else {
1194 		spa_config_enter(spa, locks, spa, RW_WRITER);
1195 	}
1196 	spa->spa_vdev_locks = locks;
1197 }
1198 
1199 int
1200 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1201 {
1202 	boolean_t config_changed = B_FALSE;
1203 
1204 	if (vd != NULL || error == 0)
1205 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1206 		    0, 0, B_FALSE);
1207 
1208 	if (vd != NULL) {
1209 		vdev_state_dirty(vd->vdev_top);
1210 		config_changed = B_TRUE;
1211 		spa->spa_config_generation++;
1212 	}
1213 
1214 	if (spa_is_root(spa))
1215 		vdev_rele(spa->spa_root_vdev);
1216 
1217 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1218 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1219 
1220 	/*
1221 	 * If anything changed, wait for it to sync.  This ensures that,
1222 	 * from the system administrator's perspective, zpool(1M) commands
1223 	 * are synchronous.  This is important for things like zpool offline:
1224 	 * when the command completes, you expect no further I/O from ZFS.
1225 	 */
1226 	if (vd != NULL)
1227 		txg_wait_synced(spa->spa_dsl_pool, 0);
1228 
1229 	/*
1230 	 * If the config changed, update the config cache.
1231 	 */
1232 	if (config_changed) {
1233 		mutex_enter(&spa_namespace_lock);
1234 		spa_config_sync(spa, B_FALSE, B_TRUE);
1235 		mutex_exit(&spa_namespace_lock);
1236 	}
1237 
1238 	return (error);
1239 }
1240 
1241 /*
1242  * ==========================================================================
1243  * Miscellaneous functions
1244  * ==========================================================================
1245  */
1246 
1247 void
1248 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1249 {
1250 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1251 		fnvlist_add_boolean(spa->spa_label_features, feature);
1252 		/*
1253 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1254 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1255 		 * Thankfully, in this case we don't need to dirty the config
1256 		 * because it will be written out anyway when we finish
1257 		 * creating the pool.
1258 		 */
1259 		if (tx->tx_txg != TXG_INITIAL)
1260 			vdev_config_dirty(spa->spa_root_vdev);
1261 	}
1262 }
1263 
1264 void
1265 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1266 {
1267 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1268 		vdev_config_dirty(spa->spa_root_vdev);
1269 }
1270 
1271 /*
1272  * Rename a spa_t.
1273  */
1274 int
1275 spa_rename(const char *name, const char *newname)
1276 {
1277 	spa_t *spa;
1278 	int err;
1279 
1280 	/*
1281 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1282 	 * actually open the pool so that we can sync out the necessary labels.
1283 	 * It's OK to call spa_open() with the namespace lock held because we
1284 	 * allow recursive calls for other reasons.
1285 	 */
1286 	mutex_enter(&spa_namespace_lock);
1287 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1288 		mutex_exit(&spa_namespace_lock);
1289 		return (err);
1290 	}
1291 
1292 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1293 
1294 	avl_remove(&spa_namespace_avl, spa);
1295 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1296 	avl_add(&spa_namespace_avl, spa);
1297 
1298 	/*
1299 	 * Sync all labels to disk with the new names by marking the root vdev
1300 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1301 	 * during the sync.
1302 	 */
1303 	vdev_config_dirty(spa->spa_root_vdev);
1304 
1305 	spa_config_exit(spa, SCL_ALL, FTAG);
1306 
1307 	txg_wait_synced(spa->spa_dsl_pool, 0);
1308 
1309 	/*
1310 	 * Sync the updated config cache.
1311 	 */
1312 	spa_config_sync(spa, B_FALSE, B_TRUE);
1313 
1314 	spa_close(spa, FTAG);
1315 
1316 	mutex_exit(&spa_namespace_lock);
1317 
1318 	return (0);
1319 }
1320 
1321 /*
1322  * Return the spa_t associated with given pool_guid, if it exists.  If
1323  * device_guid is non-zero, determine whether the pool exists *and* contains
1324  * a device with the specified device_guid.
1325  */
1326 spa_t *
1327 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1328 {
1329 	spa_t *spa;
1330 	avl_tree_t *t = &spa_namespace_avl;
1331 
1332 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1333 
1334 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1335 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1336 			continue;
1337 		if (spa->spa_root_vdev == NULL)
1338 			continue;
1339 		if (spa_guid(spa) == pool_guid) {
1340 			if (device_guid == 0)
1341 				break;
1342 
1343 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1344 			    device_guid) != NULL)
1345 				break;
1346 
1347 			/*
1348 			 * Check any devices we may be in the process of adding.
1349 			 */
1350 			if (spa->spa_pending_vdev) {
1351 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1352 				    device_guid) != NULL)
1353 					break;
1354 			}
1355 		}
1356 	}
1357 
1358 	return (spa);
1359 }
1360 
1361 /*
1362  * Determine whether a pool with the given pool_guid exists.
1363  */
1364 boolean_t
1365 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1366 {
1367 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1368 }
1369 
1370 char *
1371 spa_strdup(const char *s)
1372 {
1373 	size_t len;
1374 	char *new;
1375 
1376 	len = strlen(s);
1377 	new = kmem_alloc(len + 1, KM_SLEEP);
1378 	bcopy(s, new, len);
1379 	new[len] = '\0';
1380 
1381 	return (new);
1382 }
1383 
1384 void
1385 spa_strfree(char *s)
1386 {
1387 	kmem_free(s, strlen(s) + 1);
1388 }
1389 
1390 uint64_t
1391 spa_get_random(uint64_t range)
1392 {
1393 	uint64_t r;
1394 
1395 	ASSERT(range != 0);
1396 
1397 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1398 
1399 	return (r % range);
1400 }
1401 
1402 uint64_t
1403 spa_generate_guid(spa_t *spa)
1404 {
1405 	uint64_t guid = spa_get_random(-1ULL);
1406 
1407 	if (spa != NULL) {
1408 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1409 			guid = spa_get_random(-1ULL);
1410 	} else {
1411 		while (guid == 0 || spa_guid_exists(guid, 0))
1412 			guid = spa_get_random(-1ULL);
1413 	}
1414 
1415 	return (guid);
1416 }
1417 
1418 void
1419 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1420 {
1421 	char type[256];
1422 	char *checksum = NULL;
1423 	char *compress = NULL;
1424 
1425 	if (bp != NULL) {
1426 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1427 			dmu_object_byteswap_t bswap =
1428 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1429 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1430 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1431 			    "metadata" : "data",
1432 			    dmu_ot_byteswap[bswap].ob_name);
1433 		} else {
1434 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1435 			    sizeof (type));
1436 		}
1437 		if (!BP_IS_EMBEDDED(bp)) {
1438 			checksum =
1439 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1440 		}
1441 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1442 	}
1443 
1444 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1445 	    compress);
1446 }
1447 
1448 void
1449 spa_freeze(spa_t *spa)
1450 {
1451 	uint64_t freeze_txg = 0;
1452 
1453 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1454 	if (spa->spa_freeze_txg == UINT64_MAX) {
1455 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1456 		spa->spa_freeze_txg = freeze_txg;
1457 	}
1458 	spa_config_exit(spa, SCL_ALL, FTAG);
1459 	if (freeze_txg != 0)
1460 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1461 }
1462 
1463 void
1464 zfs_panic_recover(const char *fmt, ...)
1465 {
1466 	va_list adx;
1467 
1468 	va_start(adx, fmt);
1469 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1470 	va_end(adx);
1471 }
1472 
1473 /*
1474  * This is a stripped-down version of strtoull, suitable only for converting
1475  * lowercase hexadecimal numbers that don't overflow.
1476  */
1477 uint64_t
1478 strtonum(const char *str, char **nptr)
1479 {
1480 	uint64_t val = 0;
1481 	char c;
1482 	int digit;
1483 
1484 	while ((c = *str) != '\0') {
1485 		if (c >= '0' && c <= '9')
1486 			digit = c - '0';
1487 		else if (c >= 'a' && c <= 'f')
1488 			digit = 10 + c - 'a';
1489 		else
1490 			break;
1491 
1492 		val *= 16;
1493 		val += digit;
1494 
1495 		str++;
1496 	}
1497 
1498 	if (nptr)
1499 		*nptr = (char *)str;
1500 
1501 	return (val);
1502 }
1503 
1504 /*
1505  * ==========================================================================
1506  * Accessor functions
1507  * ==========================================================================
1508  */
1509 
1510 boolean_t
1511 spa_shutting_down(spa_t *spa)
1512 {
1513 	return (spa->spa_async_suspended);
1514 }
1515 
1516 dsl_pool_t *
1517 spa_get_dsl(spa_t *spa)
1518 {
1519 	return (spa->spa_dsl_pool);
1520 }
1521 
1522 boolean_t
1523 spa_is_initializing(spa_t *spa)
1524 {
1525 	return (spa->spa_is_initializing);
1526 }
1527 
1528 blkptr_t *
1529 spa_get_rootblkptr(spa_t *spa)
1530 {
1531 	return (&spa->spa_ubsync.ub_rootbp);
1532 }
1533 
1534 void
1535 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1536 {
1537 	spa->spa_uberblock.ub_rootbp = *bp;
1538 }
1539 
1540 void
1541 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1542 {
1543 	if (spa->spa_root == NULL)
1544 		buf[0] = '\0';
1545 	else
1546 		(void) strncpy(buf, spa->spa_root, buflen);
1547 }
1548 
1549 int
1550 spa_sync_pass(spa_t *spa)
1551 {
1552 	return (spa->spa_sync_pass);
1553 }
1554 
1555 char *
1556 spa_name(spa_t *spa)
1557 {
1558 	return (spa->spa_name);
1559 }
1560 
1561 uint64_t
1562 spa_guid(spa_t *spa)
1563 {
1564 	dsl_pool_t *dp = spa_get_dsl(spa);
1565 	uint64_t guid;
1566 
1567 	/*
1568 	 * If we fail to parse the config during spa_load(), we can go through
1569 	 * the error path (which posts an ereport) and end up here with no root
1570 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1571 	 * this case.
1572 	 */
1573 	if (spa->spa_root_vdev == NULL)
1574 		return (spa->spa_config_guid);
1575 
1576 	guid = spa->spa_last_synced_guid != 0 ?
1577 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1578 
1579 	/*
1580 	 * Return the most recently synced out guid unless we're
1581 	 * in syncing context.
1582 	 */
1583 	if (dp && dsl_pool_sync_context(dp))
1584 		return (spa->spa_root_vdev->vdev_guid);
1585 	else
1586 		return (guid);
1587 }
1588 
1589 uint64_t
1590 spa_load_guid(spa_t *spa)
1591 {
1592 	/*
1593 	 * This is a GUID that exists solely as a reference for the
1594 	 * purposes of the arc.  It is generated at load time, and
1595 	 * is never written to persistent storage.
1596 	 */
1597 	return (spa->spa_load_guid);
1598 }
1599 
1600 uint64_t
1601 spa_last_synced_txg(spa_t *spa)
1602 {
1603 	return (spa->spa_ubsync.ub_txg);
1604 }
1605 
1606 uint64_t
1607 spa_first_txg(spa_t *spa)
1608 {
1609 	return (spa->spa_first_txg);
1610 }
1611 
1612 uint64_t
1613 spa_syncing_txg(spa_t *spa)
1614 {
1615 	return (spa->spa_syncing_txg);
1616 }
1617 
1618 pool_state_t
1619 spa_state(spa_t *spa)
1620 {
1621 	return (spa->spa_state);
1622 }
1623 
1624 spa_load_state_t
1625 spa_load_state(spa_t *spa)
1626 {
1627 	return (spa->spa_load_state);
1628 }
1629 
1630 uint64_t
1631 spa_freeze_txg(spa_t *spa)
1632 {
1633 	return (spa->spa_freeze_txg);
1634 }
1635 
1636 /* ARGSUSED */
1637 uint64_t
1638 spa_get_asize(spa_t *spa, uint64_t lsize)
1639 {
1640 	return (lsize * spa_asize_inflation);
1641 }
1642 
1643 /*
1644  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1645  * or at least 128MB, unless that would cause it to be more than half the
1646  * pool size.
1647  *
1648  * See the comment above spa_slop_shift for details.
1649  */
1650 uint64_t
1651 spa_get_slop_space(spa_t *spa)
1652 {
1653 	uint64_t space = spa_get_dspace(spa);
1654 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1655 }
1656 
1657 uint64_t
1658 spa_get_dspace(spa_t *spa)
1659 {
1660 	return (spa->spa_dspace);
1661 }
1662 
1663 void
1664 spa_update_dspace(spa_t *spa)
1665 {
1666 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1667 	    ddt_get_dedup_dspace(spa);
1668 }
1669 
1670 /*
1671  * Return the failure mode that has been set to this pool. The default
1672  * behavior will be to block all I/Os when a complete failure occurs.
1673  */
1674 uint8_t
1675 spa_get_failmode(spa_t *spa)
1676 {
1677 	return (spa->spa_failmode);
1678 }
1679 
1680 boolean_t
1681 spa_suspended(spa_t *spa)
1682 {
1683 	return (spa->spa_suspended);
1684 }
1685 
1686 uint64_t
1687 spa_version(spa_t *spa)
1688 {
1689 	return (spa->spa_ubsync.ub_version);
1690 }
1691 
1692 boolean_t
1693 spa_deflate(spa_t *spa)
1694 {
1695 	return (spa->spa_deflate);
1696 }
1697 
1698 metaslab_class_t *
1699 spa_normal_class(spa_t *spa)
1700 {
1701 	return (spa->spa_normal_class);
1702 }
1703 
1704 metaslab_class_t *
1705 spa_log_class(spa_t *spa)
1706 {
1707 	return (spa->spa_log_class);
1708 }
1709 
1710 void
1711 spa_evicting_os_register(spa_t *spa, objset_t *os)
1712 {
1713 	mutex_enter(&spa->spa_evicting_os_lock);
1714 	list_insert_head(&spa->spa_evicting_os_list, os);
1715 	mutex_exit(&spa->spa_evicting_os_lock);
1716 }
1717 
1718 void
1719 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1720 {
1721 	mutex_enter(&spa->spa_evicting_os_lock);
1722 	list_remove(&spa->spa_evicting_os_list, os);
1723 	cv_broadcast(&spa->spa_evicting_os_cv);
1724 	mutex_exit(&spa->spa_evicting_os_lock);
1725 }
1726 
1727 void
1728 spa_evicting_os_wait(spa_t *spa)
1729 {
1730 	mutex_enter(&spa->spa_evicting_os_lock);
1731 	while (!list_is_empty(&spa->spa_evicting_os_list))
1732 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1733 	mutex_exit(&spa->spa_evicting_os_lock);
1734 
1735 	dmu_buf_user_evict_wait();
1736 }
1737 
1738 int
1739 spa_max_replication(spa_t *spa)
1740 {
1741 	/*
1742 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1743 	 * handle BPs with more than one DVA allocated.  Set our max
1744 	 * replication level accordingly.
1745 	 */
1746 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1747 		return (1);
1748 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1749 }
1750 
1751 int
1752 spa_prev_software_version(spa_t *spa)
1753 {
1754 	return (spa->spa_prev_software_version);
1755 }
1756 
1757 uint64_t
1758 spa_deadman_synctime(spa_t *spa)
1759 {
1760 	return (spa->spa_deadman_synctime);
1761 }
1762 
1763 uint64_t
1764 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1765 {
1766 	uint64_t asize = DVA_GET_ASIZE(dva);
1767 	uint64_t dsize = asize;
1768 
1769 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1770 
1771 	if (asize != 0 && spa->spa_deflate) {
1772 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1773 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1774 	}
1775 
1776 	return (dsize);
1777 }
1778 
1779 uint64_t
1780 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1781 {
1782 	uint64_t dsize = 0;
1783 
1784 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1785 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1786 
1787 	return (dsize);
1788 }
1789 
1790 uint64_t
1791 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1792 {
1793 	uint64_t dsize = 0;
1794 
1795 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1796 
1797 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1798 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1799 
1800 	spa_config_exit(spa, SCL_VDEV, FTAG);
1801 
1802 	return (dsize);
1803 }
1804 
1805 /*
1806  * ==========================================================================
1807  * Initialization and Termination
1808  * ==========================================================================
1809  */
1810 
1811 static int
1812 spa_name_compare(const void *a1, const void *a2)
1813 {
1814 	const spa_t *s1 = a1;
1815 	const spa_t *s2 = a2;
1816 	int s;
1817 
1818 	s = strcmp(s1->spa_name, s2->spa_name);
1819 	if (s > 0)
1820 		return (1);
1821 	if (s < 0)
1822 		return (-1);
1823 	return (0);
1824 }
1825 
1826 int
1827 spa_busy(void)
1828 {
1829 	return (spa_active_count);
1830 }
1831 
1832 void
1833 spa_boot_init()
1834 {
1835 	spa_config_load();
1836 }
1837 
1838 void
1839 spa_init(int mode)
1840 {
1841 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1842 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1843 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1844 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1845 
1846 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1847 	    offsetof(spa_t, spa_avl));
1848 
1849 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1850 	    offsetof(spa_aux_t, aux_avl));
1851 
1852 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1853 	    offsetof(spa_aux_t, aux_avl));
1854 
1855 	spa_mode_global = mode;
1856 
1857 #ifdef _KERNEL
1858 	spa_arch_init();
1859 #else
1860 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1861 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1862 		if (arc_procfd == -1) {
1863 			perror("could not enable watchpoints: "
1864 			    "opening /proc/self/ctl failed: ");
1865 		} else {
1866 			arc_watch = B_TRUE;
1867 		}
1868 	}
1869 #endif
1870 
1871 	refcount_init();
1872 	unique_init();
1873 	range_tree_init();
1874 	zio_init();
1875 	dmu_init();
1876 	zil_init();
1877 	vdev_cache_stat_init();
1878 	zfs_prop_init();
1879 	zpool_prop_init();
1880 	zpool_feature_init();
1881 	spa_config_load();
1882 	l2arc_start();
1883 }
1884 
1885 void
1886 spa_fini(void)
1887 {
1888 	l2arc_stop();
1889 
1890 	spa_evict_all();
1891 
1892 	vdev_cache_stat_fini();
1893 	zil_fini();
1894 	dmu_fini();
1895 	zio_fini();
1896 	range_tree_fini();
1897 	unique_fini();
1898 	refcount_fini();
1899 
1900 	avl_destroy(&spa_namespace_avl);
1901 	avl_destroy(&spa_spare_avl);
1902 	avl_destroy(&spa_l2cache_avl);
1903 
1904 	cv_destroy(&spa_namespace_cv);
1905 	mutex_destroy(&spa_namespace_lock);
1906 	mutex_destroy(&spa_spare_lock);
1907 	mutex_destroy(&spa_l2cache_lock);
1908 }
1909 
1910 /*
1911  * Return whether this pool has slogs. No locking needed.
1912  * It's not a problem if the wrong answer is returned as it's only for
1913  * performance and not correctness
1914  */
1915 boolean_t
1916 spa_has_slogs(spa_t *spa)
1917 {
1918 	return (spa->spa_log_class->mc_rotor != NULL);
1919 }
1920 
1921 spa_log_state_t
1922 spa_get_log_state(spa_t *spa)
1923 {
1924 	return (spa->spa_log_state);
1925 }
1926 
1927 void
1928 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1929 {
1930 	spa->spa_log_state = state;
1931 }
1932 
1933 boolean_t
1934 spa_is_root(spa_t *spa)
1935 {
1936 	return (spa->spa_is_root);
1937 }
1938 
1939 boolean_t
1940 spa_writeable(spa_t *spa)
1941 {
1942 	return (!!(spa->spa_mode & FWRITE));
1943 }
1944 
1945 /*
1946  * Returns true if there is a pending sync task in any of the current
1947  * syncing txg, the current quiescing txg, or the current open txg.
1948  */
1949 boolean_t
1950 spa_has_pending_synctask(spa_t *spa)
1951 {
1952 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1953 }
1954 
1955 int
1956 spa_mode(spa_t *spa)
1957 {
1958 	return (spa->spa_mode);
1959 }
1960 
1961 uint64_t
1962 spa_bootfs(spa_t *spa)
1963 {
1964 	return (spa->spa_bootfs);
1965 }
1966 
1967 uint64_t
1968 spa_delegation(spa_t *spa)
1969 {
1970 	return (spa->spa_delegation);
1971 }
1972 
1973 objset_t *
1974 spa_meta_objset(spa_t *spa)
1975 {
1976 	return (spa->spa_meta_objset);
1977 }
1978 
1979 enum zio_checksum
1980 spa_dedup_checksum(spa_t *spa)
1981 {
1982 	return (spa->spa_dedup_checksum);
1983 }
1984 
1985 /*
1986  * Reset pool scan stat per scan pass (or reboot).
1987  */
1988 void
1989 spa_scan_stat_init(spa_t *spa)
1990 {
1991 	/* data not stored on disk */
1992 	spa->spa_scan_pass_start = gethrestime_sec();
1993 	spa->spa_scan_pass_exam = 0;
1994 	vdev_scan_stat_init(spa->spa_root_vdev);
1995 }
1996 
1997 /*
1998  * Get scan stats for zpool status reports
1999  */
2000 int
2001 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2002 {
2003 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2004 
2005 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2006 		return (SET_ERROR(ENOENT));
2007 	bzero(ps, sizeof (pool_scan_stat_t));
2008 
2009 	/* data stored on disk */
2010 	ps->pss_func = scn->scn_phys.scn_func;
2011 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2012 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2013 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2014 	ps->pss_examined = scn->scn_phys.scn_examined;
2015 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2016 	ps->pss_processed = scn->scn_phys.scn_processed;
2017 	ps->pss_errors = scn->scn_phys.scn_errors;
2018 	ps->pss_state = scn->scn_phys.scn_state;
2019 
2020 	/* data not stored on disk */
2021 	ps->pss_pass_start = spa->spa_scan_pass_start;
2022 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2023 
2024 	return (0);
2025 }
2026 
2027 boolean_t
2028 spa_debug_enabled(spa_t *spa)
2029 {
2030 	return (spa->spa_debug);
2031 }
2032 
2033 int
2034 spa_maxblocksize(spa_t *spa)
2035 {
2036 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2037 		return (SPA_MAXBLOCKSIZE);
2038 	else
2039 		return (SPA_OLD_MAXBLOCKSIZE);
2040 }
2041