xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision a799b1e741b6f59012a469e6b57c40cb8061127b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/sunddi.h>
47 #include <sys/arc.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against spa_minref, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock[] (per-spa array of rwlocks)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * The locking order is fairly straightforward:
89  *
90  *		spa_namespace_lock	->	spa_refcount
91  *
92  *	The namespace lock must be acquired to increase the refcount from 0
93  *	or to check if it is zero.
94  *
95  *		spa_refcount		->	spa_config_lock[]
96  *
97  *	There must be at least one valid reference on the spa_t to acquire
98  *	the config lock.
99  *
100  *		spa_namespace_lock	->	spa_config_lock[]
101  *
102  *	The namespace lock must always be taken before the config lock.
103  *
104  *
105  * The spa_namespace_lock can be acquired directly and is globally visible.
106  *
107  * The namespace is manipulated using the following functions, all of which
108  * require the spa_namespace_lock to be held.
109  *
110  *	spa_lookup()		Lookup a spa_t by name.
111  *
112  *	spa_add()		Create a new spa_t in the namespace.
113  *
114  *	spa_remove()		Remove a spa_t from the namespace.  This also
115  *				frees up any memory associated with the spa_t.
116  *
117  *	spa_next()		Returns the next spa_t in the system, or the
118  *				first if NULL is passed.
119  *
120  *	spa_evict_all()		Shutdown and remove all spa_t structures in
121  *				the system.
122  *
123  *	spa_guid_exists()	Determine whether a pool/device guid exists.
124  *
125  * The spa_refcount is manipulated using the following functions:
126  *
127  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
128  *				called with spa_namespace_lock held if the
129  *				refcount is currently zero.
130  *
131  *	spa_close()		Remove a reference from the spa_t.  This will
132  *				not free the spa_t or remove it from the
133  *				namespace.  No locking is required.
134  *
135  *	spa_refcount_zero()	Returns true if the refcount is currently
136  *				zero.  Must be called with spa_namespace_lock
137  *				held.
138  *
139  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142  *
143  * To read the configuration, it suffices to hold one of these locks as reader.
144  * To modify the configuration, you must hold all locks as writer.  To modify
145  * vdev state without altering the vdev tree's topology (e.g. online/offline),
146  * you must hold SCL_STATE and SCL_ZIO as writer.
147  *
148  * We use these distinct config locks to avoid recursive lock entry.
149  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150  * block allocations (SCL_ALLOC), which may require reading space maps
151  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152  *
153  * The spa config locks cannot be normal rwlocks because we need the
154  * ability to hand off ownership.  For example, SCL_ZIO is acquired
155  * by the issuing thread and later released by an interrupt thread.
156  * They do, however, obey the usual write-wanted semantics to prevent
157  * writer (i.e. system administrator) starvation.
158  *
159  * The lock acquisition rules are as follows:
160  *
161  * SCL_CONFIG
162  *	Protects changes to the vdev tree topology, such as vdev
163  *	add/remove/attach/detach.  Protects the dirty config list
164  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
165  *
166  * SCL_STATE
167  *	Protects changes to pool state and vdev state, such as vdev
168  *	online/offline/fault/degrade/clear.  Protects the dirty state list
169  *	(spa_state_dirty_list) and global pool state (spa_state).
170  *
171  * SCL_ALLOC
172  *	Protects changes to metaslab groups and classes.
173  *	Held as reader by metaslab_alloc() and metaslab_claim().
174  *
175  * SCL_ZIO
176  *	Held by bp-level zios (those which have no io_vd upon entry)
177  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
178  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
179  *
180  * SCL_FREE
181  *	Protects changes to metaslab groups and classes.
182  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
183  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184  *	blocks in zio_done() while another i/o that holds either
185  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186  *
187  * SCL_VDEV
188  *	Held as reader to prevent changes to the vdev tree during trivial
189  *	inquiries such as bp_get_dasize().  SCL_VDEV is distinct from the
190  *	other locks, and lower than all of them, to ensure that it's safe
191  *	to acquire regardless of caller context.
192  *
193  * In addition, the following rules apply:
194  *
195  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
196  *	The lock ordering is SCL_CONFIG > spa_props_lock.
197  *
198  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
199  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200  *	or zio_write_phys() -- the caller must ensure that the config cannot
201  *	cannot change in the interim, and that the vdev cannot be reopened.
202  *	SCL_STATE as reader suffices for both.
203  *
204  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205  *
206  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
207  *				for writing.
208  *
209  *	spa_vdev_exit()		Release the config lock, wait for all I/O
210  *				to complete, sync the updated configs to the
211  *				cache, and release the namespace lock.
212  *
213  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216  *
217  * spa_rename() is also implemented within this file since is requires
218  * manipulation of the namespace.
219  */
220 
221 static avl_tree_t spa_namespace_avl;
222 kmutex_t spa_namespace_lock;
223 static kcondvar_t spa_namespace_cv;
224 static int spa_active_count;
225 int spa_max_replication_override = SPA_DVAS_PER_BP;
226 
227 static kmutex_t spa_spare_lock;
228 static avl_tree_t spa_spare_avl;
229 static kmutex_t spa_l2cache_lock;
230 static avl_tree_t spa_l2cache_avl;
231 
232 kmem_cache_t *spa_buffer_pool;
233 int spa_mode_global;
234 
235 #ifdef ZFS_DEBUG
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238 #else
239 int zfs_flags = 0;
240 #endif
241 
242 /*
243  * zfs_recover can be set to nonzero to attempt to recover from
244  * otherwise-fatal errors, typically caused by on-disk corruption.  When
245  * set, calls to zfs_panic_recover() will turn into warning messages.
246  */
247 int zfs_recover = 0;
248 
249 
250 /*
251  * ==========================================================================
252  * SPA config locking
253  * ==========================================================================
254  */
255 static void
256 spa_config_lock_init(spa_t *spa)
257 {
258 	for (int i = 0; i < SCL_LOCKS; i++) {
259 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 		refcount_create(&scl->scl_count);
263 		scl->scl_writer = NULL;
264 		scl->scl_write_wanted = 0;
265 	}
266 }
267 
268 static void
269 spa_config_lock_destroy(spa_t *spa)
270 {
271 	for (int i = 0; i < SCL_LOCKS; i++) {
272 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 		mutex_destroy(&scl->scl_lock);
274 		cv_destroy(&scl->scl_cv);
275 		refcount_destroy(&scl->scl_count);
276 		ASSERT(scl->scl_writer == NULL);
277 		ASSERT(scl->scl_write_wanted == 0);
278 	}
279 }
280 
281 int
282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283 {
284 	for (int i = 0; i < SCL_LOCKS; i++) {
285 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 		if (!(locks & (1 << i)))
287 			continue;
288 		mutex_enter(&scl->scl_lock);
289 		if (rw == RW_READER) {
290 			if (scl->scl_writer || scl->scl_write_wanted) {
291 				mutex_exit(&scl->scl_lock);
292 				spa_config_exit(spa, locks ^ (1 << i), tag);
293 				return (0);
294 			}
295 		} else {
296 			ASSERT(scl->scl_writer != curthread);
297 			if (!refcount_is_zero(&scl->scl_count)) {
298 				mutex_exit(&scl->scl_lock);
299 				spa_config_exit(spa, locks ^ (1 << i), tag);
300 				return (0);
301 			}
302 			scl->scl_writer = curthread;
303 		}
304 		(void) refcount_add(&scl->scl_count, tag);
305 		mutex_exit(&scl->scl_lock);
306 	}
307 	return (1);
308 }
309 
310 void
311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312 {
313 	int wlocks_held = 0;
314 
315 	for (int i = 0; i < SCL_LOCKS; i++) {
316 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
317 		if (scl->scl_writer == curthread)
318 			wlocks_held |= (1 << i);
319 		if (!(locks & (1 << i)))
320 			continue;
321 		mutex_enter(&scl->scl_lock);
322 		if (rw == RW_READER) {
323 			while (scl->scl_writer || scl->scl_write_wanted) {
324 				cv_wait(&scl->scl_cv, &scl->scl_lock);
325 			}
326 		} else {
327 			ASSERT(scl->scl_writer != curthread);
328 			while (!refcount_is_zero(&scl->scl_count)) {
329 				scl->scl_write_wanted++;
330 				cv_wait(&scl->scl_cv, &scl->scl_lock);
331 				scl->scl_write_wanted--;
332 			}
333 			scl->scl_writer = curthread;
334 		}
335 		(void) refcount_add(&scl->scl_count, tag);
336 		mutex_exit(&scl->scl_lock);
337 	}
338 	ASSERT(wlocks_held <= locks);
339 }
340 
341 void
342 spa_config_exit(spa_t *spa, int locks, void *tag)
343 {
344 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
345 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
346 		if (!(locks & (1 << i)))
347 			continue;
348 		mutex_enter(&scl->scl_lock);
349 		ASSERT(!refcount_is_zero(&scl->scl_count));
350 		if (refcount_remove(&scl->scl_count, tag) == 0) {
351 			ASSERT(scl->scl_writer == NULL ||
352 			    scl->scl_writer == curthread);
353 			scl->scl_writer = NULL;	/* OK in either case */
354 			cv_broadcast(&scl->scl_cv);
355 		}
356 		mutex_exit(&scl->scl_lock);
357 	}
358 }
359 
360 int
361 spa_config_held(spa_t *spa, int locks, krw_t rw)
362 {
363 	int locks_held = 0;
364 
365 	for (int i = 0; i < SCL_LOCKS; i++) {
366 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
367 		if (!(locks & (1 << i)))
368 			continue;
369 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
370 		    (rw == RW_WRITER && scl->scl_writer == curthread))
371 			locks_held |= 1 << i;
372 	}
373 
374 	return (locks_held);
375 }
376 
377 /*
378  * ==========================================================================
379  * SPA namespace functions
380  * ==========================================================================
381  */
382 
383 /*
384  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
385  * Returns NULL if no matching spa_t is found.
386  */
387 spa_t *
388 spa_lookup(const char *name)
389 {
390 	static spa_t search;	/* spa_t is large; don't allocate on stack */
391 	spa_t *spa;
392 	avl_index_t where;
393 	char c;
394 	char *cp;
395 
396 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
397 
398 	/*
399 	 * If it's a full dataset name, figure out the pool name and
400 	 * just use that.
401 	 */
402 	cp = strpbrk(name, "/@");
403 	if (cp) {
404 		c = *cp;
405 		*cp = '\0';
406 	}
407 
408 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
409 	spa = avl_find(&spa_namespace_avl, &search, &where);
410 
411 	if (cp)
412 		*cp = c;
413 
414 	return (spa);
415 }
416 
417 /*
418  * Create an uninitialized spa_t with the given name.  Requires
419  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
420  * exist by calling spa_lookup() first.
421  */
422 spa_t *
423 spa_add(const char *name, const char *altroot)
424 {
425 	spa_t *spa;
426 	spa_config_dirent_t *dp;
427 
428 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
429 
430 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
431 
432 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
433 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
434 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
435 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
436 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
437 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
438 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
439 
440 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
441 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
442 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
443 
444 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
445 	spa->spa_state = POOL_STATE_UNINITIALIZED;
446 	spa->spa_freeze_txg = UINT64_MAX;
447 	spa->spa_final_txg = UINT64_MAX;
448 
449 	refcount_create(&spa->spa_refcount);
450 	spa_config_lock_init(spa);
451 
452 	avl_add(&spa_namespace_avl, spa);
453 
454 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
455 
456 	/*
457 	 * Set the alternate root, if there is one.
458 	 */
459 	if (altroot) {
460 		spa->spa_root = spa_strdup(altroot);
461 		spa_active_count++;
462 	}
463 
464 	/*
465 	 * Every pool starts with the default cachefile
466 	 */
467 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
468 	    offsetof(spa_config_dirent_t, scd_link));
469 
470 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
471 	dp->scd_path = spa_strdup(spa_config_path);
472 	list_insert_head(&spa->spa_config_list, dp);
473 
474 	return (spa);
475 }
476 
477 /*
478  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
479  * spa_namespace_lock.  This is called only after the spa_t has been closed and
480  * deactivated.
481  */
482 void
483 spa_remove(spa_t *spa)
484 {
485 	spa_config_dirent_t *dp;
486 
487 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
488 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
489 
490 	avl_remove(&spa_namespace_avl, spa);
491 	cv_broadcast(&spa_namespace_cv);
492 
493 	if (spa->spa_root) {
494 		spa_strfree(spa->spa_root);
495 		spa_active_count--;
496 	}
497 
498 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
499 		list_remove(&spa->spa_config_list, dp);
500 		if (dp->scd_path != NULL)
501 			spa_strfree(dp->scd_path);
502 		kmem_free(dp, sizeof (spa_config_dirent_t));
503 	}
504 
505 	list_destroy(&spa->spa_config_list);
506 
507 	spa_config_set(spa, NULL);
508 
509 	refcount_destroy(&spa->spa_refcount);
510 
511 	spa_config_lock_destroy(spa);
512 
513 	cv_destroy(&spa->spa_async_cv);
514 	cv_destroy(&spa->spa_scrub_io_cv);
515 	cv_destroy(&spa->spa_suspend_cv);
516 
517 	mutex_destroy(&spa->spa_async_lock);
518 	mutex_destroy(&spa->spa_scrub_lock);
519 	mutex_destroy(&spa->spa_errlog_lock);
520 	mutex_destroy(&spa->spa_errlist_lock);
521 	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
522 	mutex_destroy(&spa->spa_history_lock);
523 	mutex_destroy(&spa->spa_props_lock);
524 	mutex_destroy(&spa->spa_suspend_lock);
525 
526 	kmem_free(spa, sizeof (spa_t));
527 }
528 
529 /*
530  * Given a pool, return the next pool in the namespace, or NULL if there is
531  * none.  If 'prev' is NULL, return the first pool.
532  */
533 spa_t *
534 spa_next(spa_t *prev)
535 {
536 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
537 
538 	if (prev)
539 		return (AVL_NEXT(&spa_namespace_avl, prev));
540 	else
541 		return (avl_first(&spa_namespace_avl));
542 }
543 
544 /*
545  * ==========================================================================
546  * SPA refcount functions
547  * ==========================================================================
548  */
549 
550 /*
551  * Add a reference to the given spa_t.  Must have at least one reference, or
552  * have the namespace lock held.
553  */
554 void
555 spa_open_ref(spa_t *spa, void *tag)
556 {
557 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
558 	    MUTEX_HELD(&spa_namespace_lock));
559 	(void) refcount_add(&spa->spa_refcount, tag);
560 }
561 
562 /*
563  * Remove a reference to the given spa_t.  Must have at least one reference, or
564  * have the namespace lock held.
565  */
566 void
567 spa_close(spa_t *spa, void *tag)
568 {
569 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
570 	    MUTEX_HELD(&spa_namespace_lock));
571 	(void) refcount_remove(&spa->spa_refcount, tag);
572 }
573 
574 /*
575  * Check to see if the spa refcount is zero.  Must be called with
576  * spa_namespace_lock held.  We really compare against spa_minref, which is the
577  * number of references acquired when opening a pool
578  */
579 boolean_t
580 spa_refcount_zero(spa_t *spa)
581 {
582 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
583 
584 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
585 }
586 
587 /*
588  * ==========================================================================
589  * SPA spare and l2cache tracking
590  * ==========================================================================
591  */
592 
593 /*
594  * Hot spares and cache devices are tracked using the same code below,
595  * for 'auxiliary' devices.
596  */
597 
598 typedef struct spa_aux {
599 	uint64_t	aux_guid;
600 	uint64_t	aux_pool;
601 	avl_node_t	aux_avl;
602 	int		aux_count;
603 } spa_aux_t;
604 
605 static int
606 spa_aux_compare(const void *a, const void *b)
607 {
608 	const spa_aux_t *sa = a;
609 	const spa_aux_t *sb = b;
610 
611 	if (sa->aux_guid < sb->aux_guid)
612 		return (-1);
613 	else if (sa->aux_guid > sb->aux_guid)
614 		return (1);
615 	else
616 		return (0);
617 }
618 
619 void
620 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
621 {
622 	avl_index_t where;
623 	spa_aux_t search;
624 	spa_aux_t *aux;
625 
626 	search.aux_guid = vd->vdev_guid;
627 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
628 		aux->aux_count++;
629 	} else {
630 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
631 		aux->aux_guid = vd->vdev_guid;
632 		aux->aux_count = 1;
633 		avl_insert(avl, aux, where);
634 	}
635 }
636 
637 void
638 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
639 {
640 	spa_aux_t search;
641 	spa_aux_t *aux;
642 	avl_index_t where;
643 
644 	search.aux_guid = vd->vdev_guid;
645 	aux = avl_find(avl, &search, &where);
646 
647 	ASSERT(aux != NULL);
648 
649 	if (--aux->aux_count == 0) {
650 		avl_remove(avl, aux);
651 		kmem_free(aux, sizeof (spa_aux_t));
652 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
653 		aux->aux_pool = 0ULL;
654 	}
655 }
656 
657 boolean_t
658 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
659 {
660 	spa_aux_t search, *found;
661 
662 	search.aux_guid = guid;
663 	found = avl_find(avl, &search, NULL);
664 
665 	if (pool) {
666 		if (found)
667 			*pool = found->aux_pool;
668 		else
669 			*pool = 0ULL;
670 	}
671 
672 	if (refcnt) {
673 		if (found)
674 			*refcnt = found->aux_count;
675 		else
676 			*refcnt = 0;
677 	}
678 
679 	return (found != NULL);
680 }
681 
682 void
683 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
684 {
685 	spa_aux_t search, *found;
686 	avl_index_t where;
687 
688 	search.aux_guid = vd->vdev_guid;
689 	found = avl_find(avl, &search, &where);
690 	ASSERT(found != NULL);
691 	ASSERT(found->aux_pool == 0ULL);
692 
693 	found->aux_pool = spa_guid(vd->vdev_spa);
694 }
695 
696 /*
697  * Spares are tracked globally due to the following constraints:
698  *
699  * 	- A spare may be part of multiple pools.
700  * 	- A spare may be added to a pool even if it's actively in use within
701  *	  another pool.
702  * 	- A spare in use in any pool can only be the source of a replacement if
703  *	  the target is a spare in the same pool.
704  *
705  * We keep track of all spares on the system through the use of a reference
706  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
707  * spare, then we bump the reference count in the AVL tree.  In addition, we set
708  * the 'vdev_isspare' member to indicate that the device is a spare (active or
709  * inactive).  When a spare is made active (used to replace a device in the
710  * pool), we also keep track of which pool its been made a part of.
711  *
712  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
713  * called under the spa_namespace lock as part of vdev reconfiguration.  The
714  * separate spare lock exists for the status query path, which does not need to
715  * be completely consistent with respect to other vdev configuration changes.
716  */
717 
718 static int
719 spa_spare_compare(const void *a, const void *b)
720 {
721 	return (spa_aux_compare(a, b));
722 }
723 
724 void
725 spa_spare_add(vdev_t *vd)
726 {
727 	mutex_enter(&spa_spare_lock);
728 	ASSERT(!vd->vdev_isspare);
729 	spa_aux_add(vd, &spa_spare_avl);
730 	vd->vdev_isspare = B_TRUE;
731 	mutex_exit(&spa_spare_lock);
732 }
733 
734 void
735 spa_spare_remove(vdev_t *vd)
736 {
737 	mutex_enter(&spa_spare_lock);
738 	ASSERT(vd->vdev_isspare);
739 	spa_aux_remove(vd, &spa_spare_avl);
740 	vd->vdev_isspare = B_FALSE;
741 	mutex_exit(&spa_spare_lock);
742 }
743 
744 boolean_t
745 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
746 {
747 	boolean_t found;
748 
749 	mutex_enter(&spa_spare_lock);
750 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
751 	mutex_exit(&spa_spare_lock);
752 
753 	return (found);
754 }
755 
756 void
757 spa_spare_activate(vdev_t *vd)
758 {
759 	mutex_enter(&spa_spare_lock);
760 	ASSERT(vd->vdev_isspare);
761 	spa_aux_activate(vd, &spa_spare_avl);
762 	mutex_exit(&spa_spare_lock);
763 }
764 
765 /*
766  * Level 2 ARC devices are tracked globally for the same reasons as spares.
767  * Cache devices currently only support one pool per cache device, and so
768  * for these devices the aux reference count is currently unused beyond 1.
769  */
770 
771 static int
772 spa_l2cache_compare(const void *a, const void *b)
773 {
774 	return (spa_aux_compare(a, b));
775 }
776 
777 void
778 spa_l2cache_add(vdev_t *vd)
779 {
780 	mutex_enter(&spa_l2cache_lock);
781 	ASSERT(!vd->vdev_isl2cache);
782 	spa_aux_add(vd, &spa_l2cache_avl);
783 	vd->vdev_isl2cache = B_TRUE;
784 	mutex_exit(&spa_l2cache_lock);
785 }
786 
787 void
788 spa_l2cache_remove(vdev_t *vd)
789 {
790 	mutex_enter(&spa_l2cache_lock);
791 	ASSERT(vd->vdev_isl2cache);
792 	spa_aux_remove(vd, &spa_l2cache_avl);
793 	vd->vdev_isl2cache = B_FALSE;
794 	mutex_exit(&spa_l2cache_lock);
795 }
796 
797 boolean_t
798 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
799 {
800 	boolean_t found;
801 
802 	mutex_enter(&spa_l2cache_lock);
803 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
804 	mutex_exit(&spa_l2cache_lock);
805 
806 	return (found);
807 }
808 
809 void
810 spa_l2cache_activate(vdev_t *vd)
811 {
812 	mutex_enter(&spa_l2cache_lock);
813 	ASSERT(vd->vdev_isl2cache);
814 	spa_aux_activate(vd, &spa_l2cache_avl);
815 	mutex_exit(&spa_l2cache_lock);
816 }
817 
818 void
819 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc)
820 {
821 	vdev_space_update(vd, space, alloc, B_FALSE);
822 }
823 
824 /*
825  * ==========================================================================
826  * SPA vdev locking
827  * ==========================================================================
828  */
829 
830 /*
831  * Lock the given spa_t for the purpose of adding or removing a vdev.
832  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
833  * It returns the next transaction group for the spa_t.
834  */
835 uint64_t
836 spa_vdev_enter(spa_t *spa)
837 {
838 	mutex_enter(&spa_namespace_lock);
839 
840 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
841 
842 	return (spa_last_synced_txg(spa) + 1);
843 }
844 
845 /*
846  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
847  * locking of spa_vdev_enter(), we also want make sure the transactions have
848  * synced to disk, and then update the global configuration cache with the new
849  * information.
850  */
851 int
852 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
853 {
854 	int config_changed = B_FALSE;
855 
856 	ASSERT(txg > spa_last_synced_txg(spa));
857 
858 	spa->spa_pending_vdev = NULL;
859 
860 	/*
861 	 * Reassess the DTLs.
862 	 */
863 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
864 
865 	/*
866 	 * If the config changed, notify the scrub thread that it must restart.
867 	 */
868 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
869 		dsl_pool_scrub_restart(spa->spa_dsl_pool);
870 		config_changed = B_TRUE;
871 	}
872 
873 	spa_config_exit(spa, SCL_ALL, spa);
874 
875 	/*
876 	 * Note: this txg_wait_synced() is important because it ensures
877 	 * that there won't be more than one config change per txg.
878 	 * This allows us to use the txg as the generation number.
879 	 */
880 	if (error == 0)
881 		txg_wait_synced(spa->spa_dsl_pool, txg);
882 
883 	if (vd != NULL) {
884 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
885 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
886 		vdev_free(vd);
887 		spa_config_exit(spa, SCL_ALL, spa);
888 	}
889 
890 	/*
891 	 * If the config changed, update the config cache.
892 	 */
893 	if (config_changed)
894 		spa_config_sync(spa, B_FALSE, B_TRUE);
895 
896 	mutex_exit(&spa_namespace_lock);
897 
898 	return (error);
899 }
900 
901 /*
902  * Lock the given spa_t for the purpose of changing vdev state.
903  */
904 void
905 spa_vdev_state_enter(spa_t *spa)
906 {
907 	spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
908 }
909 
910 int
911 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
912 {
913 	if (vd != NULL)
914 		vdev_state_dirty(vd->vdev_top);
915 
916 	spa_config_exit(spa, SCL_STATE_ALL, spa);
917 
918 	/*
919 	 * If anything changed, wait for it to sync.  This ensures that,
920 	 * from the system administrator's perspective, zpool(1M) commands
921 	 * are synchronous.  This is important for things like zpool offline:
922 	 * when the command completes, you expect no further I/O from ZFS.
923 	 */
924 	if (vd != NULL)
925 		txg_wait_synced(spa->spa_dsl_pool, 0);
926 
927 	return (error);
928 }
929 
930 /*
931  * ==========================================================================
932  * Miscellaneous functions
933  * ==========================================================================
934  */
935 
936 /*
937  * Rename a spa_t.
938  */
939 int
940 spa_rename(const char *name, const char *newname)
941 {
942 	spa_t *spa;
943 	int err;
944 
945 	/*
946 	 * Lookup the spa_t and grab the config lock for writing.  We need to
947 	 * actually open the pool so that we can sync out the necessary labels.
948 	 * It's OK to call spa_open() with the namespace lock held because we
949 	 * allow recursive calls for other reasons.
950 	 */
951 	mutex_enter(&spa_namespace_lock);
952 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
953 		mutex_exit(&spa_namespace_lock);
954 		return (err);
955 	}
956 
957 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
958 
959 	avl_remove(&spa_namespace_avl, spa);
960 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
961 	avl_add(&spa_namespace_avl, spa);
962 
963 	/*
964 	 * Sync all labels to disk with the new names by marking the root vdev
965 	 * dirty and waiting for it to sync.  It will pick up the new pool name
966 	 * during the sync.
967 	 */
968 	vdev_config_dirty(spa->spa_root_vdev);
969 
970 	spa_config_exit(spa, SCL_ALL, FTAG);
971 
972 	txg_wait_synced(spa->spa_dsl_pool, 0);
973 
974 	/*
975 	 * Sync the updated config cache.
976 	 */
977 	spa_config_sync(spa, B_FALSE, B_TRUE);
978 
979 	spa_close(spa, FTAG);
980 
981 	mutex_exit(&spa_namespace_lock);
982 
983 	return (0);
984 }
985 
986 
987 /*
988  * Determine whether a pool with given pool_guid exists.  If device_guid is
989  * non-zero, determine whether the pool exists *and* contains a device with the
990  * specified device_guid.
991  */
992 boolean_t
993 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
994 {
995 	spa_t *spa;
996 	avl_tree_t *t = &spa_namespace_avl;
997 
998 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
999 
1000 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1001 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1002 			continue;
1003 		if (spa->spa_root_vdev == NULL)
1004 			continue;
1005 		if (spa_guid(spa) == pool_guid) {
1006 			if (device_guid == 0)
1007 				break;
1008 
1009 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1010 			    device_guid) != NULL)
1011 				break;
1012 
1013 			/*
1014 			 * Check any devices we may be in the process of adding.
1015 			 */
1016 			if (spa->spa_pending_vdev) {
1017 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1018 				    device_guid) != NULL)
1019 					break;
1020 			}
1021 		}
1022 	}
1023 
1024 	return (spa != NULL);
1025 }
1026 
1027 char *
1028 spa_strdup(const char *s)
1029 {
1030 	size_t len;
1031 	char *new;
1032 
1033 	len = strlen(s);
1034 	new = kmem_alloc(len + 1, KM_SLEEP);
1035 	bcopy(s, new, len);
1036 	new[len] = '\0';
1037 
1038 	return (new);
1039 }
1040 
1041 void
1042 spa_strfree(char *s)
1043 {
1044 	kmem_free(s, strlen(s) + 1);
1045 }
1046 
1047 uint64_t
1048 spa_get_random(uint64_t range)
1049 {
1050 	uint64_t r;
1051 
1052 	ASSERT(range != 0);
1053 
1054 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1055 
1056 	return (r % range);
1057 }
1058 
1059 void
1060 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
1061 {
1062 	int d;
1063 
1064 	if (bp == NULL) {
1065 		(void) snprintf(buf, len, "<NULL>");
1066 		return;
1067 	}
1068 
1069 	if (BP_IS_HOLE(bp)) {
1070 		(void) snprintf(buf, len, "<hole>");
1071 		return;
1072 	}
1073 
1074 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
1075 	    (u_longlong_t)BP_GET_LEVEL(bp),
1076 	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
1077 	    (u_longlong_t)BP_GET_LSIZE(bp),
1078 	    (u_longlong_t)BP_GET_PSIZE(bp));
1079 
1080 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
1081 		const dva_t *dva = &bp->blk_dva[d];
1082 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
1083 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
1084 		    (u_longlong_t)DVA_GET_VDEV(dva),
1085 		    (u_longlong_t)DVA_GET_OFFSET(dva),
1086 		    (u_longlong_t)DVA_GET_ASIZE(dva));
1087 	}
1088 
1089 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
1090 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
1091 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
1092 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
1093 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
1094 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
1095 	    (u_longlong_t)bp->blk_birth,
1096 	    (u_longlong_t)bp->blk_fill,
1097 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
1098 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
1099 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
1100 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
1101 }
1102 
1103 void
1104 spa_freeze(spa_t *spa)
1105 {
1106 	uint64_t freeze_txg = 0;
1107 
1108 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1109 	if (spa->spa_freeze_txg == UINT64_MAX) {
1110 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1111 		spa->spa_freeze_txg = freeze_txg;
1112 	}
1113 	spa_config_exit(spa, SCL_ALL, FTAG);
1114 	if (freeze_txg != 0)
1115 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1116 }
1117 
1118 void
1119 zfs_panic_recover(const char *fmt, ...)
1120 {
1121 	va_list adx;
1122 
1123 	va_start(adx, fmt);
1124 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1125 	va_end(adx);
1126 }
1127 
1128 /*
1129  * ==========================================================================
1130  * Accessor functions
1131  * ==========================================================================
1132  */
1133 
1134 boolean_t
1135 spa_shutting_down(spa_t *spa)
1136 {
1137 	return (spa->spa_async_suspended);
1138 }
1139 
1140 dsl_pool_t *
1141 spa_get_dsl(spa_t *spa)
1142 {
1143 	return (spa->spa_dsl_pool);
1144 }
1145 
1146 blkptr_t *
1147 spa_get_rootblkptr(spa_t *spa)
1148 {
1149 	return (&spa->spa_ubsync.ub_rootbp);
1150 }
1151 
1152 void
1153 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1154 {
1155 	spa->spa_uberblock.ub_rootbp = *bp;
1156 }
1157 
1158 void
1159 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1160 {
1161 	if (spa->spa_root == NULL)
1162 		buf[0] = '\0';
1163 	else
1164 		(void) strncpy(buf, spa->spa_root, buflen);
1165 }
1166 
1167 int
1168 spa_sync_pass(spa_t *spa)
1169 {
1170 	return (spa->spa_sync_pass);
1171 }
1172 
1173 char *
1174 spa_name(spa_t *spa)
1175 {
1176 	return (spa->spa_name);
1177 }
1178 
1179 uint64_t
1180 spa_guid(spa_t *spa)
1181 {
1182 	/*
1183 	 * If we fail to parse the config during spa_load(), we can go through
1184 	 * the error path (which posts an ereport) and end up here with no root
1185 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1186 	 * this case.
1187 	 */
1188 	if (spa->spa_root_vdev != NULL)
1189 		return (spa->spa_root_vdev->vdev_guid);
1190 	else
1191 		return (spa->spa_load_guid);
1192 }
1193 
1194 uint64_t
1195 spa_last_synced_txg(spa_t *spa)
1196 {
1197 	return (spa->spa_ubsync.ub_txg);
1198 }
1199 
1200 uint64_t
1201 spa_first_txg(spa_t *spa)
1202 {
1203 	return (spa->spa_first_txg);
1204 }
1205 
1206 pool_state_t
1207 spa_state(spa_t *spa)
1208 {
1209 	return (spa->spa_state);
1210 }
1211 
1212 uint64_t
1213 spa_freeze_txg(spa_t *spa)
1214 {
1215 	return (spa->spa_freeze_txg);
1216 }
1217 
1218 /*
1219  * Return how much space is allocated in the pool (ie. sum of all asize)
1220  */
1221 uint64_t
1222 spa_get_alloc(spa_t *spa)
1223 {
1224 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
1225 }
1226 
1227 /*
1228  * Return how much (raid-z inflated) space there is in the pool.
1229  */
1230 uint64_t
1231 spa_get_space(spa_t *spa)
1232 {
1233 	return (spa->spa_root_vdev->vdev_stat.vs_space);
1234 }
1235 
1236 /*
1237  * Return the amount of raid-z-deflated space in the pool.
1238  */
1239 uint64_t
1240 spa_get_dspace(spa_t *spa)
1241 {
1242 	if (spa->spa_deflate)
1243 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
1244 	else
1245 		return (spa->spa_root_vdev->vdev_stat.vs_space);
1246 }
1247 
1248 /* ARGSUSED */
1249 uint64_t
1250 spa_get_asize(spa_t *spa, uint64_t lsize)
1251 {
1252 	/*
1253 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
1254 	 * case the space requirement is exactly 2x; so just assume that.
1255 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
1256 	 * we have to multiply by a total of 6x.
1257 	 */
1258 	return (lsize * 6);
1259 }
1260 
1261 /*
1262  * Return the failure mode that has been set to this pool. The default
1263  * behavior will be to block all I/Os when a complete failure occurs.
1264  */
1265 uint8_t
1266 spa_get_failmode(spa_t *spa)
1267 {
1268 	return (spa->spa_failmode);
1269 }
1270 
1271 boolean_t
1272 spa_suspended(spa_t *spa)
1273 {
1274 	return (spa->spa_suspended);
1275 }
1276 
1277 uint64_t
1278 spa_version(spa_t *spa)
1279 {
1280 	return (spa->spa_ubsync.ub_version);
1281 }
1282 
1283 int
1284 spa_max_replication(spa_t *spa)
1285 {
1286 	/*
1287 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1288 	 * handle BPs with more than one DVA allocated.  Set our max
1289 	 * replication level accordingly.
1290 	 */
1291 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1292 		return (1);
1293 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1294 }
1295 
1296 uint64_t
1297 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1298 {
1299 	int sz = 0, i;
1300 
1301 	if (!spa->spa_deflate)
1302 		return (BP_GET_ASIZE(bp));
1303 
1304 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1305 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1306 		vdev_t *vd =
1307 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1308 		if (vd)
1309 			sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >>
1310 			    SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1311 	}
1312 	spa_config_exit(spa, SCL_VDEV, FTAG);
1313 	return (sz);
1314 }
1315 
1316 /*
1317  * ==========================================================================
1318  * Initialization and Termination
1319  * ==========================================================================
1320  */
1321 
1322 static int
1323 spa_name_compare(const void *a1, const void *a2)
1324 {
1325 	const spa_t *s1 = a1;
1326 	const spa_t *s2 = a2;
1327 	int s;
1328 
1329 	s = strcmp(s1->spa_name, s2->spa_name);
1330 	if (s > 0)
1331 		return (1);
1332 	if (s < 0)
1333 		return (-1);
1334 	return (0);
1335 }
1336 
1337 int
1338 spa_busy(void)
1339 {
1340 	return (spa_active_count);
1341 }
1342 
1343 void
1344 spa_boot_init()
1345 {
1346 	spa_config_load();
1347 }
1348 
1349 void
1350 spa_init(int mode)
1351 {
1352 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1353 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1354 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1355 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1356 
1357 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1358 	    offsetof(spa_t, spa_avl));
1359 
1360 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1361 	    offsetof(spa_aux_t, aux_avl));
1362 
1363 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1364 	    offsetof(spa_aux_t, aux_avl));
1365 
1366 	spa_mode_global = mode;
1367 
1368 	refcount_init();
1369 	unique_init();
1370 	zio_init();
1371 	dmu_init();
1372 	zil_init();
1373 	vdev_cache_stat_init();
1374 	zfs_prop_init();
1375 	zpool_prop_init();
1376 	spa_config_load();
1377 	l2arc_start();
1378 }
1379 
1380 void
1381 spa_fini(void)
1382 {
1383 	l2arc_stop();
1384 
1385 	spa_evict_all();
1386 
1387 	vdev_cache_stat_fini();
1388 	zil_fini();
1389 	dmu_fini();
1390 	zio_fini();
1391 	unique_fini();
1392 	refcount_fini();
1393 
1394 	avl_destroy(&spa_namespace_avl);
1395 	avl_destroy(&spa_spare_avl);
1396 	avl_destroy(&spa_l2cache_avl);
1397 
1398 	cv_destroy(&spa_namespace_cv);
1399 	mutex_destroy(&spa_namespace_lock);
1400 	mutex_destroy(&spa_spare_lock);
1401 	mutex_destroy(&spa_l2cache_lock);
1402 }
1403 
1404 /*
1405  * Return whether this pool has slogs. No locking needed.
1406  * It's not a problem if the wrong answer is returned as it's only for
1407  * performance and not correctness
1408  */
1409 boolean_t
1410 spa_has_slogs(spa_t *spa)
1411 {
1412 	return (spa->spa_log_class->mc_rotor != NULL);
1413 }
1414 
1415 /*
1416  * Return whether this pool is the root pool.
1417  */
1418 boolean_t
1419 spa_is_root(spa_t *spa)
1420 {
1421 	return (spa->spa_is_root);
1422 }
1423 
1424 boolean_t
1425 spa_writeable(spa_t *spa)
1426 {
1427 	return (!!(spa->spa_mode & FWRITE));
1428 }
1429 
1430 int
1431 spa_mode(spa_t *spa)
1432 {
1433 	return (spa->spa_mode);
1434 }
1435