1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2014 Integros [integros.com] 28 * Copyright (c) 2017 Datto Inc. 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/spa_impl.h> 33 #include <sys/spa_boot.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 #include <sys/zio_compress.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/vdev_impl.h> 42 #include <sys/vdev_initialize.h> 43 #include <sys/metaslab.h> 44 #include <sys/uberblock_impl.h> 45 #include <sys/txg.h> 46 #include <sys/avl.h> 47 #include <sys/unique.h> 48 #include <sys/dsl_pool.h> 49 #include <sys/dsl_dir.h> 50 #include <sys/dsl_prop.h> 51 #include <sys/dsl_scan.h> 52 #include <sys/fs/zfs.h> 53 #include <sys/metaslab_impl.h> 54 #include <sys/arc.h> 55 #include <sys/ddt.h> 56 #include "zfs_prop.h" 57 #include <sys/zfeature.h> 58 59 /* 60 * SPA locking 61 * 62 * There are four basic locks for managing spa_t structures: 63 * 64 * spa_namespace_lock (global mutex) 65 * 66 * This lock must be acquired to do any of the following: 67 * 68 * - Lookup a spa_t by name 69 * - Add or remove a spa_t from the namespace 70 * - Increase spa_refcount from non-zero 71 * - Check if spa_refcount is zero 72 * - Rename a spa_t 73 * - add/remove/attach/detach devices 74 * - Held for the duration of create/destroy/import/export 75 * 76 * It does not need to handle recursion. A create or destroy may 77 * reference objects (files or zvols) in other pools, but by 78 * definition they must have an existing reference, and will never need 79 * to lookup a spa_t by name. 80 * 81 * spa_refcount (per-spa refcount_t protected by mutex) 82 * 83 * This reference count keep track of any active users of the spa_t. The 84 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 85 * the refcount is never really 'zero' - opening a pool implicitly keeps 86 * some references in the DMU. Internally we check against spa_minref, but 87 * present the image of a zero/non-zero value to consumers. 88 * 89 * spa_config_lock[] (per-spa array of rwlocks) 90 * 91 * This protects the spa_t from config changes, and must be held in 92 * the following circumstances: 93 * 94 * - RW_READER to perform I/O to the spa 95 * - RW_WRITER to change the vdev config 96 * 97 * The locking order is fairly straightforward: 98 * 99 * spa_namespace_lock -> spa_refcount 100 * 101 * The namespace lock must be acquired to increase the refcount from 0 102 * or to check if it is zero. 103 * 104 * spa_refcount -> spa_config_lock[] 105 * 106 * There must be at least one valid reference on the spa_t to acquire 107 * the config lock. 108 * 109 * spa_namespace_lock -> spa_config_lock[] 110 * 111 * The namespace lock must always be taken before the config lock. 112 * 113 * 114 * The spa_namespace_lock can be acquired directly and is globally visible. 115 * 116 * The namespace is manipulated using the following functions, all of which 117 * require the spa_namespace_lock to be held. 118 * 119 * spa_lookup() Lookup a spa_t by name. 120 * 121 * spa_add() Create a new spa_t in the namespace. 122 * 123 * spa_remove() Remove a spa_t from the namespace. This also 124 * frees up any memory associated with the spa_t. 125 * 126 * spa_next() Returns the next spa_t in the system, or the 127 * first if NULL is passed. 128 * 129 * spa_evict_all() Shutdown and remove all spa_t structures in 130 * the system. 131 * 132 * spa_guid_exists() Determine whether a pool/device guid exists. 133 * 134 * The spa_refcount is manipulated using the following functions: 135 * 136 * spa_open_ref() Adds a reference to the given spa_t. Must be 137 * called with spa_namespace_lock held if the 138 * refcount is currently zero. 139 * 140 * spa_close() Remove a reference from the spa_t. This will 141 * not free the spa_t or remove it from the 142 * namespace. No locking is required. 143 * 144 * spa_refcount_zero() Returns true if the refcount is currently 145 * zero. Must be called with spa_namespace_lock 146 * held. 147 * 148 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 149 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 150 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 151 * 152 * To read the configuration, it suffices to hold one of these locks as reader. 153 * To modify the configuration, you must hold all locks as writer. To modify 154 * vdev state without altering the vdev tree's topology (e.g. online/offline), 155 * you must hold SCL_STATE and SCL_ZIO as writer. 156 * 157 * We use these distinct config locks to avoid recursive lock entry. 158 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 159 * block allocations (SCL_ALLOC), which may require reading space maps 160 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 161 * 162 * The spa config locks cannot be normal rwlocks because we need the 163 * ability to hand off ownership. For example, SCL_ZIO is acquired 164 * by the issuing thread and later released by an interrupt thread. 165 * They do, however, obey the usual write-wanted semantics to prevent 166 * writer (i.e. system administrator) starvation. 167 * 168 * The lock acquisition rules are as follows: 169 * 170 * SCL_CONFIG 171 * Protects changes to the vdev tree topology, such as vdev 172 * add/remove/attach/detach. Protects the dirty config list 173 * (spa_config_dirty_list) and the set of spares and l2arc devices. 174 * 175 * SCL_STATE 176 * Protects changes to pool state and vdev state, such as vdev 177 * online/offline/fault/degrade/clear. Protects the dirty state list 178 * (spa_state_dirty_list) and global pool state (spa_state). 179 * 180 * SCL_ALLOC 181 * Protects changes to metaslab groups and classes. 182 * Held as reader by metaslab_alloc() and metaslab_claim(). 183 * 184 * SCL_ZIO 185 * Held by bp-level zios (those which have no io_vd upon entry) 186 * to prevent changes to the vdev tree. The bp-level zio implicitly 187 * protects all of its vdev child zios, which do not hold SCL_ZIO. 188 * 189 * SCL_FREE 190 * Protects changes to metaslab groups and classes. 191 * Held as reader by metaslab_free(). SCL_FREE is distinct from 192 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 193 * blocks in zio_done() while another i/o that holds either 194 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 195 * 196 * SCL_VDEV 197 * Held as reader to prevent changes to the vdev tree during trivial 198 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 199 * other locks, and lower than all of them, to ensure that it's safe 200 * to acquire regardless of caller context. 201 * 202 * In addition, the following rules apply: 203 * 204 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 205 * The lock ordering is SCL_CONFIG > spa_props_lock. 206 * 207 * (b) I/O operations on leaf vdevs. For any zio operation that takes 208 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 209 * or zio_write_phys() -- the caller must ensure that the config cannot 210 * cannot change in the interim, and that the vdev cannot be reopened. 211 * SCL_STATE as reader suffices for both. 212 * 213 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 214 * 215 * spa_vdev_enter() Acquire the namespace lock and the config lock 216 * for writing. 217 * 218 * spa_vdev_exit() Release the config lock, wait for all I/O 219 * to complete, sync the updated configs to the 220 * cache, and release the namespace lock. 221 * 222 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 223 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 224 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 225 * 226 * spa_rename() is also implemented within this file since it requires 227 * manipulation of the namespace. 228 */ 229 230 static avl_tree_t spa_namespace_avl; 231 kmutex_t spa_namespace_lock; 232 static kcondvar_t spa_namespace_cv; 233 static int spa_active_count; 234 int spa_max_replication_override = SPA_DVAS_PER_BP; 235 236 static kmutex_t spa_spare_lock; 237 static avl_tree_t spa_spare_avl; 238 static kmutex_t spa_l2cache_lock; 239 static avl_tree_t spa_l2cache_avl; 240 241 kmem_cache_t *spa_buffer_pool; 242 int spa_mode_global; 243 244 #ifdef ZFS_DEBUG 245 /* 246 * Everything except dprintf, spa, and indirect_remap is on by default 247 * in debug builds. 248 */ 249 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP); 250 #else 251 int zfs_flags = 0; 252 #endif 253 254 /* 255 * zfs_recover can be set to nonzero to attempt to recover from 256 * otherwise-fatal errors, typically caused by on-disk corruption. When 257 * set, calls to zfs_panic_recover() will turn into warning messages. 258 * This should only be used as a last resort, as it typically results 259 * in leaked space, or worse. 260 */ 261 boolean_t zfs_recover = B_FALSE; 262 263 /* 264 * If destroy encounters an EIO while reading metadata (e.g. indirect 265 * blocks), space referenced by the missing metadata can not be freed. 266 * Normally this causes the background destroy to become "stalled", as 267 * it is unable to make forward progress. While in this stalled state, 268 * all remaining space to free from the error-encountering filesystem is 269 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 270 * permanently leak the space from indirect blocks that can not be read, 271 * and continue to free everything else that it can. 272 * 273 * The default, "stalling" behavior is useful if the storage partially 274 * fails (i.e. some but not all i/os fail), and then later recovers. In 275 * this case, we will be able to continue pool operations while it is 276 * partially failed, and when it recovers, we can continue to free the 277 * space, with no leaks. However, note that this case is actually 278 * fairly rare. 279 * 280 * Typically pools either (a) fail completely (but perhaps temporarily, 281 * e.g. a top-level vdev going offline), or (b) have localized, 282 * permanent errors (e.g. disk returns the wrong data due to bit flip or 283 * firmware bug). In case (a), this setting does not matter because the 284 * pool will be suspended and the sync thread will not be able to make 285 * forward progress regardless. In case (b), because the error is 286 * permanent, the best we can do is leak the minimum amount of space, 287 * which is what setting this flag will do. Therefore, it is reasonable 288 * for this flag to normally be set, but we chose the more conservative 289 * approach of not setting it, so that there is no possibility of 290 * leaking space in the "partial temporary" failure case. 291 */ 292 boolean_t zfs_free_leak_on_eio = B_FALSE; 293 294 /* 295 * Expiration time in milliseconds. This value has two meanings. First it is 296 * used to determine when the spa_deadman() logic should fire. By default the 297 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. 298 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 299 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 300 * in a system panic. 301 */ 302 uint64_t zfs_deadman_synctime_ms = 1000000ULL; 303 304 /* 305 * Check time in milliseconds. This defines the frequency at which we check 306 * for hung I/O. 307 */ 308 uint64_t zfs_deadman_checktime_ms = 5000ULL; 309 310 /* 311 * Override the zfs deadman behavior via /etc/system. By default the 312 * deadman is enabled except on VMware and sparc deployments. 313 */ 314 int zfs_deadman_enabled = -1; 315 316 /* 317 * The worst case is single-sector max-parity RAID-Z blocks, in which 318 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 319 * times the size; so just assume that. Add to this the fact that 320 * we can have up to 3 DVAs per bp, and one more factor of 2 because 321 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 322 * the worst case is: 323 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 324 */ 325 int spa_asize_inflation = 24; 326 327 /* 328 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 329 * the pool to be consumed. This ensures that we don't run the pool 330 * completely out of space, due to unaccounted changes (e.g. to the MOS). 331 * It also limits the worst-case time to allocate space. If we have 332 * less than this amount of free space, most ZPL operations (e.g. write, 333 * create) will return ENOSPC. 334 * 335 * Certain operations (e.g. file removal, most administrative actions) can 336 * use half the slop space. They will only return ENOSPC if less than half 337 * the slop space is free. Typically, once the pool has less than the slop 338 * space free, the user will use these operations to free up space in the pool. 339 * These are the operations that call dsl_pool_adjustedsize() with the netfree 340 * argument set to TRUE. 341 * 342 * Operations that are almost guaranteed to free up space in the absence of 343 * a pool checkpoint can use up to three quarters of the slop space 344 * (e.g zfs destroy). 345 * 346 * A very restricted set of operations are always permitted, regardless of 347 * the amount of free space. These are the operations that call 348 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 349 * increase in the amount of space used, it is possible to run the pool 350 * completely out of space, causing it to be permanently read-only. 351 * 352 * Note that on very small pools, the slop space will be larger than 353 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 354 * but we never allow it to be more than half the pool size. 355 * 356 * See also the comments in zfs_space_check_t. 357 */ 358 int spa_slop_shift = 5; 359 uint64_t spa_min_slop = 128 * 1024 * 1024; 360 361 int spa_allocators = 4; 362 363 /*PRINTFLIKE2*/ 364 void 365 spa_load_failed(spa_t *spa, const char *fmt, ...) 366 { 367 va_list adx; 368 char buf[256]; 369 370 va_start(adx, fmt); 371 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 372 va_end(adx); 373 374 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 375 spa->spa_trust_config ? "trusted" : "untrusted", buf); 376 } 377 378 /*PRINTFLIKE2*/ 379 void 380 spa_load_note(spa_t *spa, const char *fmt, ...) 381 { 382 va_list adx; 383 char buf[256]; 384 385 va_start(adx, fmt); 386 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 387 va_end(adx); 388 389 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 390 spa->spa_trust_config ? "trusted" : "untrusted", buf); 391 } 392 393 /* 394 * ========================================================================== 395 * SPA config locking 396 * ========================================================================== 397 */ 398 static void 399 spa_config_lock_init(spa_t *spa) 400 { 401 for (int i = 0; i < SCL_LOCKS; i++) { 402 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 403 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 404 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 405 refcount_create_untracked(&scl->scl_count); 406 scl->scl_writer = NULL; 407 scl->scl_write_wanted = 0; 408 } 409 } 410 411 static void 412 spa_config_lock_destroy(spa_t *spa) 413 { 414 for (int i = 0; i < SCL_LOCKS; i++) { 415 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 416 mutex_destroy(&scl->scl_lock); 417 cv_destroy(&scl->scl_cv); 418 refcount_destroy(&scl->scl_count); 419 ASSERT(scl->scl_writer == NULL); 420 ASSERT(scl->scl_write_wanted == 0); 421 } 422 } 423 424 int 425 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 426 { 427 for (int i = 0; i < SCL_LOCKS; i++) { 428 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 429 if (!(locks & (1 << i))) 430 continue; 431 mutex_enter(&scl->scl_lock); 432 if (rw == RW_READER) { 433 if (scl->scl_writer || scl->scl_write_wanted) { 434 mutex_exit(&scl->scl_lock); 435 spa_config_exit(spa, locks & ((1 << i) - 1), 436 tag); 437 return (0); 438 } 439 } else { 440 ASSERT(scl->scl_writer != curthread); 441 if (!refcount_is_zero(&scl->scl_count)) { 442 mutex_exit(&scl->scl_lock); 443 spa_config_exit(spa, locks & ((1 << i) - 1), 444 tag); 445 return (0); 446 } 447 scl->scl_writer = curthread; 448 } 449 (void) refcount_add(&scl->scl_count, tag); 450 mutex_exit(&scl->scl_lock); 451 } 452 return (1); 453 } 454 455 void 456 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 457 { 458 int wlocks_held = 0; 459 460 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 461 462 for (int i = 0; i < SCL_LOCKS; i++) { 463 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 464 if (scl->scl_writer == curthread) 465 wlocks_held |= (1 << i); 466 if (!(locks & (1 << i))) 467 continue; 468 mutex_enter(&scl->scl_lock); 469 if (rw == RW_READER) { 470 while (scl->scl_writer || scl->scl_write_wanted) { 471 cv_wait(&scl->scl_cv, &scl->scl_lock); 472 } 473 } else { 474 ASSERT(scl->scl_writer != curthread); 475 while (!refcount_is_zero(&scl->scl_count)) { 476 scl->scl_write_wanted++; 477 cv_wait(&scl->scl_cv, &scl->scl_lock); 478 scl->scl_write_wanted--; 479 } 480 scl->scl_writer = curthread; 481 } 482 (void) refcount_add(&scl->scl_count, tag); 483 mutex_exit(&scl->scl_lock); 484 } 485 ASSERT3U(wlocks_held, <=, locks); 486 } 487 488 void 489 spa_config_exit(spa_t *spa, int locks, void *tag) 490 { 491 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 492 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 493 if (!(locks & (1 << i))) 494 continue; 495 mutex_enter(&scl->scl_lock); 496 ASSERT(!refcount_is_zero(&scl->scl_count)); 497 if (refcount_remove(&scl->scl_count, tag) == 0) { 498 ASSERT(scl->scl_writer == NULL || 499 scl->scl_writer == curthread); 500 scl->scl_writer = NULL; /* OK in either case */ 501 cv_broadcast(&scl->scl_cv); 502 } 503 mutex_exit(&scl->scl_lock); 504 } 505 } 506 507 int 508 spa_config_held(spa_t *spa, int locks, krw_t rw) 509 { 510 int locks_held = 0; 511 512 for (int i = 0; i < SCL_LOCKS; i++) { 513 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 514 if (!(locks & (1 << i))) 515 continue; 516 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 517 (rw == RW_WRITER && scl->scl_writer == curthread)) 518 locks_held |= 1 << i; 519 } 520 521 return (locks_held); 522 } 523 524 /* 525 * ========================================================================== 526 * SPA namespace functions 527 * ========================================================================== 528 */ 529 530 /* 531 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 532 * Returns NULL if no matching spa_t is found. 533 */ 534 spa_t * 535 spa_lookup(const char *name) 536 { 537 static spa_t search; /* spa_t is large; don't allocate on stack */ 538 spa_t *spa; 539 avl_index_t where; 540 char *cp; 541 542 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 543 544 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 545 546 /* 547 * If it's a full dataset name, figure out the pool name and 548 * just use that. 549 */ 550 cp = strpbrk(search.spa_name, "/@#"); 551 if (cp != NULL) 552 *cp = '\0'; 553 554 spa = avl_find(&spa_namespace_avl, &search, &where); 555 556 return (spa); 557 } 558 559 /* 560 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 561 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 562 * looking for potentially hung I/Os. 563 */ 564 void 565 spa_deadman(void *arg) 566 { 567 spa_t *spa = arg; 568 569 /* 570 * Disable the deadman timer if the pool is suspended. 571 */ 572 if (spa_suspended(spa)) { 573 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 574 return; 575 } 576 577 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 578 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 579 ++spa->spa_deadman_calls); 580 if (zfs_deadman_enabled) 581 vdev_deadman(spa->spa_root_vdev); 582 } 583 584 /* 585 * Create an uninitialized spa_t with the given name. Requires 586 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 587 * exist by calling spa_lookup() first. 588 */ 589 spa_t * 590 spa_add(const char *name, nvlist_t *config, const char *altroot) 591 { 592 spa_t *spa; 593 spa_config_dirent_t *dp; 594 cyc_handler_t hdlr; 595 cyc_time_t when; 596 597 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 598 599 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 600 601 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 602 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 603 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 604 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 605 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 606 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 607 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 608 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 609 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 610 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 611 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 612 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 613 614 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 615 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 616 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 617 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 618 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 619 620 for (int t = 0; t < TXG_SIZE; t++) 621 bplist_create(&spa->spa_free_bplist[t]); 622 623 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 624 spa->spa_state = POOL_STATE_UNINITIALIZED; 625 spa->spa_freeze_txg = UINT64_MAX; 626 spa->spa_final_txg = UINT64_MAX; 627 spa->spa_load_max_txg = UINT64_MAX; 628 spa->spa_proc = &p0; 629 spa->spa_proc_state = SPA_PROC_NONE; 630 spa->spa_trust_config = B_TRUE; 631 632 hdlr.cyh_func = spa_deadman; 633 hdlr.cyh_arg = spa; 634 hdlr.cyh_level = CY_LOW_LEVEL; 635 636 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 637 638 /* 639 * This determines how often we need to check for hung I/Os after 640 * the cyclic has already fired. Since checking for hung I/Os is 641 * an expensive operation we don't want to check too frequently. 642 * Instead wait for 5 seconds before checking again. 643 */ 644 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); 645 when.cyt_when = CY_INFINITY; 646 mutex_enter(&cpu_lock); 647 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 648 mutex_exit(&cpu_lock); 649 650 refcount_create(&spa->spa_refcount); 651 spa_config_lock_init(spa); 652 653 avl_add(&spa_namespace_avl, spa); 654 655 /* 656 * Set the alternate root, if there is one. 657 */ 658 if (altroot) { 659 spa->spa_root = spa_strdup(altroot); 660 spa_active_count++; 661 } 662 663 spa->spa_alloc_count = spa_allocators; 664 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count * 665 sizeof (kmutex_t), KM_SLEEP); 666 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count * 667 sizeof (avl_tree_t), KM_SLEEP); 668 for (int i = 0; i < spa->spa_alloc_count; i++) { 669 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL); 670 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare, 671 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 672 } 673 674 /* 675 * Every pool starts with the default cachefile 676 */ 677 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 678 offsetof(spa_config_dirent_t, scd_link)); 679 680 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 681 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 682 list_insert_head(&spa->spa_config_list, dp); 683 684 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 685 KM_SLEEP) == 0); 686 687 if (config != NULL) { 688 nvlist_t *features; 689 690 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 691 &features) == 0) { 692 VERIFY(nvlist_dup(features, &spa->spa_label_features, 693 0) == 0); 694 } 695 696 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 697 } 698 699 if (spa->spa_label_features == NULL) { 700 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 701 KM_SLEEP) == 0); 702 } 703 704 spa->spa_iokstat = kstat_create("zfs", 0, name, 705 "disk", KSTAT_TYPE_IO, 1, 0); 706 if (spa->spa_iokstat) { 707 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 708 kstat_install(spa->spa_iokstat); 709 } 710 711 spa->spa_min_ashift = INT_MAX; 712 spa->spa_max_ashift = 0; 713 714 /* 715 * As a pool is being created, treat all features as disabled by 716 * setting SPA_FEATURE_DISABLED for all entries in the feature 717 * refcount cache. 718 */ 719 for (int i = 0; i < SPA_FEATURES; i++) { 720 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 721 } 722 723 return (spa); 724 } 725 726 /* 727 * Removes a spa_t from the namespace, freeing up any memory used. Requires 728 * spa_namespace_lock. This is called only after the spa_t has been closed and 729 * deactivated. 730 */ 731 void 732 spa_remove(spa_t *spa) 733 { 734 spa_config_dirent_t *dp; 735 736 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 737 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 738 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0); 739 740 nvlist_free(spa->spa_config_splitting); 741 742 avl_remove(&spa_namespace_avl, spa); 743 cv_broadcast(&spa_namespace_cv); 744 745 if (spa->spa_root) { 746 spa_strfree(spa->spa_root); 747 spa_active_count--; 748 } 749 750 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 751 list_remove(&spa->spa_config_list, dp); 752 if (dp->scd_path != NULL) 753 spa_strfree(dp->scd_path); 754 kmem_free(dp, sizeof (spa_config_dirent_t)); 755 } 756 757 for (int i = 0; i < spa->spa_alloc_count; i++) { 758 avl_destroy(&spa->spa_alloc_trees[i]); 759 mutex_destroy(&spa->spa_alloc_locks[i]); 760 } 761 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count * 762 sizeof (kmutex_t)); 763 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count * 764 sizeof (avl_tree_t)); 765 766 list_destroy(&spa->spa_config_list); 767 768 nvlist_free(spa->spa_label_features); 769 nvlist_free(spa->spa_load_info); 770 spa_config_set(spa, NULL); 771 772 mutex_enter(&cpu_lock); 773 if (spa->spa_deadman_cycid != CYCLIC_NONE) 774 cyclic_remove(spa->spa_deadman_cycid); 775 mutex_exit(&cpu_lock); 776 spa->spa_deadman_cycid = CYCLIC_NONE; 777 778 refcount_destroy(&spa->spa_refcount); 779 780 spa_config_lock_destroy(spa); 781 782 kstat_delete(spa->spa_iokstat); 783 spa->spa_iokstat = NULL; 784 785 for (int t = 0; t < TXG_SIZE; t++) 786 bplist_destroy(&spa->spa_free_bplist[t]); 787 788 zio_checksum_templates_free(spa); 789 790 cv_destroy(&spa->spa_async_cv); 791 cv_destroy(&spa->spa_evicting_os_cv); 792 cv_destroy(&spa->spa_proc_cv); 793 cv_destroy(&spa->spa_scrub_io_cv); 794 cv_destroy(&spa->spa_suspend_cv); 795 796 mutex_destroy(&spa->spa_async_lock); 797 mutex_destroy(&spa->spa_errlist_lock); 798 mutex_destroy(&spa->spa_errlog_lock); 799 mutex_destroy(&spa->spa_evicting_os_lock); 800 mutex_destroy(&spa->spa_history_lock); 801 mutex_destroy(&spa->spa_proc_lock); 802 mutex_destroy(&spa->spa_props_lock); 803 mutex_destroy(&spa->spa_cksum_tmpls_lock); 804 mutex_destroy(&spa->spa_scrub_lock); 805 mutex_destroy(&spa->spa_suspend_lock); 806 mutex_destroy(&spa->spa_vdev_top_lock); 807 mutex_destroy(&spa->spa_iokstat_lock); 808 809 kmem_free(spa, sizeof (spa_t)); 810 } 811 812 /* 813 * Given a pool, return the next pool in the namespace, or NULL if there is 814 * none. If 'prev' is NULL, return the first pool. 815 */ 816 spa_t * 817 spa_next(spa_t *prev) 818 { 819 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 820 821 if (prev) 822 return (AVL_NEXT(&spa_namespace_avl, prev)); 823 else 824 return (avl_first(&spa_namespace_avl)); 825 } 826 827 /* 828 * ========================================================================== 829 * SPA refcount functions 830 * ========================================================================== 831 */ 832 833 /* 834 * Add a reference to the given spa_t. Must have at least one reference, or 835 * have the namespace lock held. 836 */ 837 void 838 spa_open_ref(spa_t *spa, void *tag) 839 { 840 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 841 MUTEX_HELD(&spa_namespace_lock)); 842 (void) refcount_add(&spa->spa_refcount, tag); 843 } 844 845 /* 846 * Remove a reference to the given spa_t. Must have at least one reference, or 847 * have the namespace lock held. 848 */ 849 void 850 spa_close(spa_t *spa, void *tag) 851 { 852 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 853 MUTEX_HELD(&spa_namespace_lock)); 854 (void) refcount_remove(&spa->spa_refcount, tag); 855 } 856 857 /* 858 * Remove a reference to the given spa_t held by a dsl dir that is 859 * being asynchronously released. Async releases occur from a taskq 860 * performing eviction of dsl datasets and dirs. The namespace lock 861 * isn't held and the hold by the object being evicted may contribute to 862 * spa_minref (e.g. dataset or directory released during pool export), 863 * so the asserts in spa_close() do not apply. 864 */ 865 void 866 spa_async_close(spa_t *spa, void *tag) 867 { 868 (void) refcount_remove(&spa->spa_refcount, tag); 869 } 870 871 /* 872 * Check to see if the spa refcount is zero. Must be called with 873 * spa_namespace_lock held. We really compare against spa_minref, which is the 874 * number of references acquired when opening a pool 875 */ 876 boolean_t 877 spa_refcount_zero(spa_t *spa) 878 { 879 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 880 881 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 882 } 883 884 /* 885 * ========================================================================== 886 * SPA spare and l2cache tracking 887 * ========================================================================== 888 */ 889 890 /* 891 * Hot spares and cache devices are tracked using the same code below, 892 * for 'auxiliary' devices. 893 */ 894 895 typedef struct spa_aux { 896 uint64_t aux_guid; 897 uint64_t aux_pool; 898 avl_node_t aux_avl; 899 int aux_count; 900 } spa_aux_t; 901 902 static int 903 spa_aux_compare(const void *a, const void *b) 904 { 905 const spa_aux_t *sa = a; 906 const spa_aux_t *sb = b; 907 908 if (sa->aux_guid < sb->aux_guid) 909 return (-1); 910 else if (sa->aux_guid > sb->aux_guid) 911 return (1); 912 else 913 return (0); 914 } 915 916 void 917 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 918 { 919 avl_index_t where; 920 spa_aux_t search; 921 spa_aux_t *aux; 922 923 search.aux_guid = vd->vdev_guid; 924 if ((aux = avl_find(avl, &search, &where)) != NULL) { 925 aux->aux_count++; 926 } else { 927 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 928 aux->aux_guid = vd->vdev_guid; 929 aux->aux_count = 1; 930 avl_insert(avl, aux, where); 931 } 932 } 933 934 void 935 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 936 { 937 spa_aux_t search; 938 spa_aux_t *aux; 939 avl_index_t where; 940 941 search.aux_guid = vd->vdev_guid; 942 aux = avl_find(avl, &search, &where); 943 944 ASSERT(aux != NULL); 945 946 if (--aux->aux_count == 0) { 947 avl_remove(avl, aux); 948 kmem_free(aux, sizeof (spa_aux_t)); 949 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 950 aux->aux_pool = 0ULL; 951 } 952 } 953 954 boolean_t 955 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 956 { 957 spa_aux_t search, *found; 958 959 search.aux_guid = guid; 960 found = avl_find(avl, &search, NULL); 961 962 if (pool) { 963 if (found) 964 *pool = found->aux_pool; 965 else 966 *pool = 0ULL; 967 } 968 969 if (refcnt) { 970 if (found) 971 *refcnt = found->aux_count; 972 else 973 *refcnt = 0; 974 } 975 976 return (found != NULL); 977 } 978 979 void 980 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 981 { 982 spa_aux_t search, *found; 983 avl_index_t where; 984 985 search.aux_guid = vd->vdev_guid; 986 found = avl_find(avl, &search, &where); 987 ASSERT(found != NULL); 988 ASSERT(found->aux_pool == 0ULL); 989 990 found->aux_pool = spa_guid(vd->vdev_spa); 991 } 992 993 /* 994 * Spares are tracked globally due to the following constraints: 995 * 996 * - A spare may be part of multiple pools. 997 * - A spare may be added to a pool even if it's actively in use within 998 * another pool. 999 * - A spare in use in any pool can only be the source of a replacement if 1000 * the target is a spare in the same pool. 1001 * 1002 * We keep track of all spares on the system through the use of a reference 1003 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1004 * spare, then we bump the reference count in the AVL tree. In addition, we set 1005 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1006 * inactive). When a spare is made active (used to replace a device in the 1007 * pool), we also keep track of which pool its been made a part of. 1008 * 1009 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1010 * called under the spa_namespace lock as part of vdev reconfiguration. The 1011 * separate spare lock exists for the status query path, which does not need to 1012 * be completely consistent with respect to other vdev configuration changes. 1013 */ 1014 1015 static int 1016 spa_spare_compare(const void *a, const void *b) 1017 { 1018 return (spa_aux_compare(a, b)); 1019 } 1020 1021 void 1022 spa_spare_add(vdev_t *vd) 1023 { 1024 mutex_enter(&spa_spare_lock); 1025 ASSERT(!vd->vdev_isspare); 1026 spa_aux_add(vd, &spa_spare_avl); 1027 vd->vdev_isspare = B_TRUE; 1028 mutex_exit(&spa_spare_lock); 1029 } 1030 1031 void 1032 spa_spare_remove(vdev_t *vd) 1033 { 1034 mutex_enter(&spa_spare_lock); 1035 ASSERT(vd->vdev_isspare); 1036 spa_aux_remove(vd, &spa_spare_avl); 1037 vd->vdev_isspare = B_FALSE; 1038 mutex_exit(&spa_spare_lock); 1039 } 1040 1041 boolean_t 1042 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1043 { 1044 boolean_t found; 1045 1046 mutex_enter(&spa_spare_lock); 1047 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1048 mutex_exit(&spa_spare_lock); 1049 1050 return (found); 1051 } 1052 1053 void 1054 spa_spare_activate(vdev_t *vd) 1055 { 1056 mutex_enter(&spa_spare_lock); 1057 ASSERT(vd->vdev_isspare); 1058 spa_aux_activate(vd, &spa_spare_avl); 1059 mutex_exit(&spa_spare_lock); 1060 } 1061 1062 /* 1063 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1064 * Cache devices currently only support one pool per cache device, and so 1065 * for these devices the aux reference count is currently unused beyond 1. 1066 */ 1067 1068 static int 1069 spa_l2cache_compare(const void *a, const void *b) 1070 { 1071 return (spa_aux_compare(a, b)); 1072 } 1073 1074 void 1075 spa_l2cache_add(vdev_t *vd) 1076 { 1077 mutex_enter(&spa_l2cache_lock); 1078 ASSERT(!vd->vdev_isl2cache); 1079 spa_aux_add(vd, &spa_l2cache_avl); 1080 vd->vdev_isl2cache = B_TRUE; 1081 mutex_exit(&spa_l2cache_lock); 1082 } 1083 1084 void 1085 spa_l2cache_remove(vdev_t *vd) 1086 { 1087 mutex_enter(&spa_l2cache_lock); 1088 ASSERT(vd->vdev_isl2cache); 1089 spa_aux_remove(vd, &spa_l2cache_avl); 1090 vd->vdev_isl2cache = B_FALSE; 1091 mutex_exit(&spa_l2cache_lock); 1092 } 1093 1094 boolean_t 1095 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1096 { 1097 boolean_t found; 1098 1099 mutex_enter(&spa_l2cache_lock); 1100 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1101 mutex_exit(&spa_l2cache_lock); 1102 1103 return (found); 1104 } 1105 1106 void 1107 spa_l2cache_activate(vdev_t *vd) 1108 { 1109 mutex_enter(&spa_l2cache_lock); 1110 ASSERT(vd->vdev_isl2cache); 1111 spa_aux_activate(vd, &spa_l2cache_avl); 1112 mutex_exit(&spa_l2cache_lock); 1113 } 1114 1115 /* 1116 * ========================================================================== 1117 * SPA vdev locking 1118 * ========================================================================== 1119 */ 1120 1121 /* 1122 * Lock the given spa_t for the purpose of adding or removing a vdev. 1123 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1124 * It returns the next transaction group for the spa_t. 1125 */ 1126 uint64_t 1127 spa_vdev_enter(spa_t *spa) 1128 { 1129 mutex_enter(&spa->spa_vdev_top_lock); 1130 mutex_enter(&spa_namespace_lock); 1131 return (spa_vdev_config_enter(spa)); 1132 } 1133 1134 /* 1135 * Internal implementation for spa_vdev_enter(). Used when a vdev 1136 * operation requires multiple syncs (i.e. removing a device) while 1137 * keeping the spa_namespace_lock held. 1138 */ 1139 uint64_t 1140 spa_vdev_config_enter(spa_t *spa) 1141 { 1142 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1143 1144 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1145 1146 return (spa_last_synced_txg(spa) + 1); 1147 } 1148 1149 /* 1150 * Used in combination with spa_vdev_config_enter() to allow the syncing 1151 * of multiple transactions without releasing the spa_namespace_lock. 1152 */ 1153 void 1154 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1155 { 1156 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1157 1158 int config_changed = B_FALSE; 1159 1160 ASSERT(txg > spa_last_synced_txg(spa)); 1161 1162 spa->spa_pending_vdev = NULL; 1163 1164 /* 1165 * Reassess the DTLs. 1166 */ 1167 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 1168 1169 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1170 config_changed = B_TRUE; 1171 spa->spa_config_generation++; 1172 } 1173 1174 /* 1175 * Verify the metaslab classes. 1176 */ 1177 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1178 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1179 1180 spa_config_exit(spa, SCL_ALL, spa); 1181 1182 /* 1183 * Panic the system if the specified tag requires it. This 1184 * is useful for ensuring that configurations are updated 1185 * transactionally. 1186 */ 1187 if (zio_injection_enabled) 1188 zio_handle_panic_injection(spa, tag, 0); 1189 1190 /* 1191 * Note: this txg_wait_synced() is important because it ensures 1192 * that there won't be more than one config change per txg. 1193 * This allows us to use the txg as the generation number. 1194 */ 1195 if (error == 0) 1196 txg_wait_synced(spa->spa_dsl_pool, txg); 1197 1198 if (vd != NULL) { 1199 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1200 if (vd->vdev_ops->vdev_op_leaf) { 1201 mutex_enter(&vd->vdev_initialize_lock); 1202 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED); 1203 mutex_exit(&vd->vdev_initialize_lock); 1204 } 1205 1206 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1207 vdev_free(vd); 1208 spa_config_exit(spa, SCL_ALL, spa); 1209 } 1210 1211 /* 1212 * If the config changed, update the config cache. 1213 */ 1214 if (config_changed) 1215 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1216 } 1217 1218 /* 1219 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1220 * locking of spa_vdev_enter(), we also want make sure the transactions have 1221 * synced to disk, and then update the global configuration cache with the new 1222 * information. 1223 */ 1224 int 1225 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1226 { 1227 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1228 mutex_exit(&spa_namespace_lock); 1229 mutex_exit(&spa->spa_vdev_top_lock); 1230 1231 return (error); 1232 } 1233 1234 /* 1235 * Lock the given spa_t for the purpose of changing vdev state. 1236 */ 1237 void 1238 spa_vdev_state_enter(spa_t *spa, int oplocks) 1239 { 1240 int locks = SCL_STATE_ALL | oplocks; 1241 1242 /* 1243 * Root pools may need to read of the underlying devfs filesystem 1244 * when opening up a vdev. Unfortunately if we're holding the 1245 * SCL_ZIO lock it will result in a deadlock when we try to issue 1246 * the read from the root filesystem. Instead we "prefetch" 1247 * the associated vnodes that we need prior to opening the 1248 * underlying devices and cache them so that we can prevent 1249 * any I/O when we are doing the actual open. 1250 */ 1251 if (spa_is_root(spa)) { 1252 int low = locks & ~(SCL_ZIO - 1); 1253 int high = locks & ~low; 1254 1255 spa_config_enter(spa, high, spa, RW_WRITER); 1256 vdev_hold(spa->spa_root_vdev); 1257 spa_config_enter(spa, low, spa, RW_WRITER); 1258 } else { 1259 spa_config_enter(spa, locks, spa, RW_WRITER); 1260 } 1261 spa->spa_vdev_locks = locks; 1262 } 1263 1264 int 1265 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1266 { 1267 boolean_t config_changed = B_FALSE; 1268 1269 if (vd != NULL || error == 0) 1270 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1271 0, 0, B_FALSE); 1272 1273 if (vd != NULL) { 1274 vdev_state_dirty(vd->vdev_top); 1275 config_changed = B_TRUE; 1276 spa->spa_config_generation++; 1277 } 1278 1279 if (spa_is_root(spa)) 1280 vdev_rele(spa->spa_root_vdev); 1281 1282 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1283 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1284 1285 /* 1286 * If anything changed, wait for it to sync. This ensures that, 1287 * from the system administrator's perspective, zpool(1M) commands 1288 * are synchronous. This is important for things like zpool offline: 1289 * when the command completes, you expect no further I/O from ZFS. 1290 */ 1291 if (vd != NULL) 1292 txg_wait_synced(spa->spa_dsl_pool, 0); 1293 1294 /* 1295 * If the config changed, update the config cache. 1296 */ 1297 if (config_changed) { 1298 mutex_enter(&spa_namespace_lock); 1299 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1300 mutex_exit(&spa_namespace_lock); 1301 } 1302 1303 return (error); 1304 } 1305 1306 /* 1307 * ========================================================================== 1308 * Miscellaneous functions 1309 * ========================================================================== 1310 */ 1311 1312 void 1313 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1314 { 1315 if (!nvlist_exists(spa->spa_label_features, feature)) { 1316 fnvlist_add_boolean(spa->spa_label_features, feature); 1317 /* 1318 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1319 * dirty the vdev config because lock SCL_CONFIG is not held. 1320 * Thankfully, in this case we don't need to dirty the config 1321 * because it will be written out anyway when we finish 1322 * creating the pool. 1323 */ 1324 if (tx->tx_txg != TXG_INITIAL) 1325 vdev_config_dirty(spa->spa_root_vdev); 1326 } 1327 } 1328 1329 void 1330 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1331 { 1332 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1333 vdev_config_dirty(spa->spa_root_vdev); 1334 } 1335 1336 /* 1337 * Rename a spa_t. 1338 */ 1339 int 1340 spa_rename(const char *name, const char *newname) 1341 { 1342 spa_t *spa; 1343 int err; 1344 1345 /* 1346 * Lookup the spa_t and grab the config lock for writing. We need to 1347 * actually open the pool so that we can sync out the necessary labels. 1348 * It's OK to call spa_open() with the namespace lock held because we 1349 * allow recursive calls for other reasons. 1350 */ 1351 mutex_enter(&spa_namespace_lock); 1352 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1353 mutex_exit(&spa_namespace_lock); 1354 return (err); 1355 } 1356 1357 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1358 1359 avl_remove(&spa_namespace_avl, spa); 1360 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1361 avl_add(&spa_namespace_avl, spa); 1362 1363 /* 1364 * Sync all labels to disk with the new names by marking the root vdev 1365 * dirty and waiting for it to sync. It will pick up the new pool name 1366 * during the sync. 1367 */ 1368 vdev_config_dirty(spa->spa_root_vdev); 1369 1370 spa_config_exit(spa, SCL_ALL, FTAG); 1371 1372 txg_wait_synced(spa->spa_dsl_pool, 0); 1373 1374 /* 1375 * Sync the updated config cache. 1376 */ 1377 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1378 1379 spa_close(spa, FTAG); 1380 1381 mutex_exit(&spa_namespace_lock); 1382 1383 return (0); 1384 } 1385 1386 /* 1387 * Return the spa_t associated with given pool_guid, if it exists. If 1388 * device_guid is non-zero, determine whether the pool exists *and* contains 1389 * a device with the specified device_guid. 1390 */ 1391 spa_t * 1392 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1393 { 1394 spa_t *spa; 1395 avl_tree_t *t = &spa_namespace_avl; 1396 1397 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1398 1399 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1400 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1401 continue; 1402 if (spa->spa_root_vdev == NULL) 1403 continue; 1404 if (spa_guid(spa) == pool_guid) { 1405 if (device_guid == 0) 1406 break; 1407 1408 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1409 device_guid) != NULL) 1410 break; 1411 1412 /* 1413 * Check any devices we may be in the process of adding. 1414 */ 1415 if (spa->spa_pending_vdev) { 1416 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1417 device_guid) != NULL) 1418 break; 1419 } 1420 } 1421 } 1422 1423 return (spa); 1424 } 1425 1426 /* 1427 * Determine whether a pool with the given pool_guid exists. 1428 */ 1429 boolean_t 1430 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1431 { 1432 return (spa_by_guid(pool_guid, device_guid) != NULL); 1433 } 1434 1435 char * 1436 spa_strdup(const char *s) 1437 { 1438 size_t len; 1439 char *new; 1440 1441 len = strlen(s); 1442 new = kmem_alloc(len + 1, KM_SLEEP); 1443 bcopy(s, new, len); 1444 new[len] = '\0'; 1445 1446 return (new); 1447 } 1448 1449 void 1450 spa_strfree(char *s) 1451 { 1452 kmem_free(s, strlen(s) + 1); 1453 } 1454 1455 uint64_t 1456 spa_get_random(uint64_t range) 1457 { 1458 uint64_t r; 1459 1460 ASSERT(range != 0); 1461 1462 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1463 1464 return (r % range); 1465 } 1466 1467 uint64_t 1468 spa_generate_guid(spa_t *spa) 1469 { 1470 uint64_t guid = spa_get_random(-1ULL); 1471 1472 if (spa != NULL) { 1473 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1474 guid = spa_get_random(-1ULL); 1475 } else { 1476 while (guid == 0 || spa_guid_exists(guid, 0)) 1477 guid = spa_get_random(-1ULL); 1478 } 1479 1480 return (guid); 1481 } 1482 1483 void 1484 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1485 { 1486 char type[256]; 1487 char *checksum = NULL; 1488 char *compress = NULL; 1489 1490 if (bp != NULL) { 1491 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1492 dmu_object_byteswap_t bswap = 1493 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1494 (void) snprintf(type, sizeof (type), "bswap %s %s", 1495 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1496 "metadata" : "data", 1497 dmu_ot_byteswap[bswap].ob_name); 1498 } else { 1499 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1500 sizeof (type)); 1501 } 1502 if (!BP_IS_EMBEDDED(bp)) { 1503 checksum = 1504 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1505 } 1506 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1507 } 1508 1509 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1510 compress); 1511 } 1512 1513 void 1514 spa_freeze(spa_t *spa) 1515 { 1516 uint64_t freeze_txg = 0; 1517 1518 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1519 if (spa->spa_freeze_txg == UINT64_MAX) { 1520 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1521 spa->spa_freeze_txg = freeze_txg; 1522 } 1523 spa_config_exit(spa, SCL_ALL, FTAG); 1524 if (freeze_txg != 0) 1525 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1526 } 1527 1528 void 1529 zfs_panic_recover(const char *fmt, ...) 1530 { 1531 va_list adx; 1532 1533 va_start(adx, fmt); 1534 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1535 va_end(adx); 1536 } 1537 1538 /* 1539 * This is a stripped-down version of strtoull, suitable only for converting 1540 * lowercase hexadecimal numbers that don't overflow. 1541 */ 1542 uint64_t 1543 zfs_strtonum(const char *str, char **nptr) 1544 { 1545 uint64_t val = 0; 1546 char c; 1547 int digit; 1548 1549 while ((c = *str) != '\0') { 1550 if (c >= '0' && c <= '9') 1551 digit = c - '0'; 1552 else if (c >= 'a' && c <= 'f') 1553 digit = 10 + c - 'a'; 1554 else 1555 break; 1556 1557 val *= 16; 1558 val += digit; 1559 1560 str++; 1561 } 1562 1563 if (nptr) 1564 *nptr = (char *)str; 1565 1566 return (val); 1567 } 1568 1569 /* 1570 * ========================================================================== 1571 * Accessor functions 1572 * ========================================================================== 1573 */ 1574 1575 boolean_t 1576 spa_shutting_down(spa_t *spa) 1577 { 1578 return (spa->spa_async_suspended); 1579 } 1580 1581 dsl_pool_t * 1582 spa_get_dsl(spa_t *spa) 1583 { 1584 return (spa->spa_dsl_pool); 1585 } 1586 1587 boolean_t 1588 spa_is_initializing(spa_t *spa) 1589 { 1590 return (spa->spa_is_initializing); 1591 } 1592 1593 boolean_t 1594 spa_indirect_vdevs_loaded(spa_t *spa) 1595 { 1596 return (spa->spa_indirect_vdevs_loaded); 1597 } 1598 1599 blkptr_t * 1600 spa_get_rootblkptr(spa_t *spa) 1601 { 1602 return (&spa->spa_ubsync.ub_rootbp); 1603 } 1604 1605 void 1606 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1607 { 1608 spa->spa_uberblock.ub_rootbp = *bp; 1609 } 1610 1611 void 1612 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1613 { 1614 if (spa->spa_root == NULL) 1615 buf[0] = '\0'; 1616 else 1617 (void) strncpy(buf, spa->spa_root, buflen); 1618 } 1619 1620 int 1621 spa_sync_pass(spa_t *spa) 1622 { 1623 return (spa->spa_sync_pass); 1624 } 1625 1626 char * 1627 spa_name(spa_t *spa) 1628 { 1629 return (spa->spa_name); 1630 } 1631 1632 uint64_t 1633 spa_guid(spa_t *spa) 1634 { 1635 dsl_pool_t *dp = spa_get_dsl(spa); 1636 uint64_t guid; 1637 1638 /* 1639 * If we fail to parse the config during spa_load(), we can go through 1640 * the error path (which posts an ereport) and end up here with no root 1641 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1642 * this case. 1643 */ 1644 if (spa->spa_root_vdev == NULL) 1645 return (spa->spa_config_guid); 1646 1647 guid = spa->spa_last_synced_guid != 0 ? 1648 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1649 1650 /* 1651 * Return the most recently synced out guid unless we're 1652 * in syncing context. 1653 */ 1654 if (dp && dsl_pool_sync_context(dp)) 1655 return (spa->spa_root_vdev->vdev_guid); 1656 else 1657 return (guid); 1658 } 1659 1660 uint64_t 1661 spa_load_guid(spa_t *spa) 1662 { 1663 /* 1664 * This is a GUID that exists solely as a reference for the 1665 * purposes of the arc. It is generated at load time, and 1666 * is never written to persistent storage. 1667 */ 1668 return (spa->spa_load_guid); 1669 } 1670 1671 uint64_t 1672 spa_last_synced_txg(spa_t *spa) 1673 { 1674 return (spa->spa_ubsync.ub_txg); 1675 } 1676 1677 uint64_t 1678 spa_first_txg(spa_t *spa) 1679 { 1680 return (spa->spa_first_txg); 1681 } 1682 1683 uint64_t 1684 spa_syncing_txg(spa_t *spa) 1685 { 1686 return (spa->spa_syncing_txg); 1687 } 1688 1689 /* 1690 * Return the last txg where data can be dirtied. The final txgs 1691 * will be used to just clear out any deferred frees that remain. 1692 */ 1693 uint64_t 1694 spa_final_dirty_txg(spa_t *spa) 1695 { 1696 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1697 } 1698 1699 pool_state_t 1700 spa_state(spa_t *spa) 1701 { 1702 return (spa->spa_state); 1703 } 1704 1705 spa_load_state_t 1706 spa_load_state(spa_t *spa) 1707 { 1708 return (spa->spa_load_state); 1709 } 1710 1711 uint64_t 1712 spa_freeze_txg(spa_t *spa) 1713 { 1714 return (spa->spa_freeze_txg); 1715 } 1716 1717 /* ARGSUSED */ 1718 uint64_t 1719 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1720 { 1721 return (lsize * spa_asize_inflation); 1722 } 1723 1724 /* 1725 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%), 1726 * or at least 128MB, unless that would cause it to be more than half the 1727 * pool size. 1728 * 1729 * See the comment above spa_slop_shift for details. 1730 */ 1731 uint64_t 1732 spa_get_slop_space(spa_t *spa) 1733 { 1734 uint64_t space = spa_get_dspace(spa); 1735 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop))); 1736 } 1737 1738 uint64_t 1739 spa_get_dspace(spa_t *spa) 1740 { 1741 return (spa->spa_dspace); 1742 } 1743 1744 uint64_t 1745 spa_get_checkpoint_space(spa_t *spa) 1746 { 1747 return (spa->spa_checkpoint_info.sci_dspace); 1748 } 1749 1750 void 1751 spa_update_dspace(spa_t *spa) 1752 { 1753 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1754 ddt_get_dedup_dspace(spa); 1755 if (spa->spa_vdev_removal != NULL) { 1756 /* 1757 * We can't allocate from the removing device, so 1758 * subtract its size. This prevents the DMU/DSL from 1759 * filling up the (now smaller) pool while we are in the 1760 * middle of removing the device. 1761 * 1762 * Note that the DMU/DSL doesn't actually know or care 1763 * how much space is allocated (it does its own tracking 1764 * of how much space has been logically used). So it 1765 * doesn't matter that the data we are moving may be 1766 * allocated twice (on the old device and the new 1767 * device). 1768 */ 1769 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1770 vdev_t *vd = 1771 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1772 spa->spa_dspace -= spa_deflate(spa) ? 1773 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1774 spa_config_exit(spa, SCL_VDEV, FTAG); 1775 } 1776 } 1777 1778 /* 1779 * Return the failure mode that has been set to this pool. The default 1780 * behavior will be to block all I/Os when a complete failure occurs. 1781 */ 1782 uint8_t 1783 spa_get_failmode(spa_t *spa) 1784 { 1785 return (spa->spa_failmode); 1786 } 1787 1788 boolean_t 1789 spa_suspended(spa_t *spa) 1790 { 1791 return (spa->spa_suspended); 1792 } 1793 1794 uint64_t 1795 spa_version(spa_t *spa) 1796 { 1797 return (spa->spa_ubsync.ub_version); 1798 } 1799 1800 boolean_t 1801 spa_deflate(spa_t *spa) 1802 { 1803 return (spa->spa_deflate); 1804 } 1805 1806 metaslab_class_t * 1807 spa_normal_class(spa_t *spa) 1808 { 1809 return (spa->spa_normal_class); 1810 } 1811 1812 metaslab_class_t * 1813 spa_log_class(spa_t *spa) 1814 { 1815 return (spa->spa_log_class); 1816 } 1817 1818 void 1819 spa_evicting_os_register(spa_t *spa, objset_t *os) 1820 { 1821 mutex_enter(&spa->spa_evicting_os_lock); 1822 list_insert_head(&spa->spa_evicting_os_list, os); 1823 mutex_exit(&spa->spa_evicting_os_lock); 1824 } 1825 1826 void 1827 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 1828 { 1829 mutex_enter(&spa->spa_evicting_os_lock); 1830 list_remove(&spa->spa_evicting_os_list, os); 1831 cv_broadcast(&spa->spa_evicting_os_cv); 1832 mutex_exit(&spa->spa_evicting_os_lock); 1833 } 1834 1835 void 1836 spa_evicting_os_wait(spa_t *spa) 1837 { 1838 mutex_enter(&spa->spa_evicting_os_lock); 1839 while (!list_is_empty(&spa->spa_evicting_os_list)) 1840 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 1841 mutex_exit(&spa->spa_evicting_os_lock); 1842 1843 dmu_buf_user_evict_wait(); 1844 } 1845 1846 int 1847 spa_max_replication(spa_t *spa) 1848 { 1849 /* 1850 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1851 * handle BPs with more than one DVA allocated. Set our max 1852 * replication level accordingly. 1853 */ 1854 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1855 return (1); 1856 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1857 } 1858 1859 int 1860 spa_prev_software_version(spa_t *spa) 1861 { 1862 return (spa->spa_prev_software_version); 1863 } 1864 1865 uint64_t 1866 spa_deadman_synctime(spa_t *spa) 1867 { 1868 return (spa->spa_deadman_synctime); 1869 } 1870 1871 uint64_t 1872 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1873 { 1874 uint64_t asize = DVA_GET_ASIZE(dva); 1875 uint64_t dsize = asize; 1876 1877 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1878 1879 if (asize != 0 && spa->spa_deflate) { 1880 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1881 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1882 } 1883 1884 return (dsize); 1885 } 1886 1887 uint64_t 1888 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1889 { 1890 uint64_t dsize = 0; 1891 1892 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 1893 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1894 1895 return (dsize); 1896 } 1897 1898 uint64_t 1899 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1900 { 1901 uint64_t dsize = 0; 1902 1903 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1904 1905 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 1906 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1907 1908 spa_config_exit(spa, SCL_VDEV, FTAG); 1909 1910 return (dsize); 1911 } 1912 1913 /* 1914 * ========================================================================== 1915 * Initialization and Termination 1916 * ========================================================================== 1917 */ 1918 1919 static int 1920 spa_name_compare(const void *a1, const void *a2) 1921 { 1922 const spa_t *s1 = a1; 1923 const spa_t *s2 = a2; 1924 int s; 1925 1926 s = strcmp(s1->spa_name, s2->spa_name); 1927 if (s > 0) 1928 return (1); 1929 if (s < 0) 1930 return (-1); 1931 return (0); 1932 } 1933 1934 int 1935 spa_busy(void) 1936 { 1937 return (spa_active_count); 1938 } 1939 1940 void 1941 spa_boot_init() 1942 { 1943 spa_config_load(); 1944 } 1945 1946 void 1947 spa_init(int mode) 1948 { 1949 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1950 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1951 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1952 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1953 1954 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1955 offsetof(spa_t, spa_avl)); 1956 1957 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1958 offsetof(spa_aux_t, aux_avl)); 1959 1960 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1961 offsetof(spa_aux_t, aux_avl)); 1962 1963 spa_mode_global = mode; 1964 1965 #ifdef _KERNEL 1966 spa_arch_init(); 1967 #else 1968 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 1969 arc_procfd = open("/proc/self/ctl", O_WRONLY); 1970 if (arc_procfd == -1) { 1971 perror("could not enable watchpoints: " 1972 "opening /proc/self/ctl failed: "); 1973 } else { 1974 arc_watch = B_TRUE; 1975 } 1976 } 1977 #endif 1978 1979 refcount_init(); 1980 unique_init(); 1981 range_tree_init(); 1982 metaslab_alloc_trace_init(); 1983 zio_init(); 1984 dmu_init(); 1985 zil_init(); 1986 vdev_cache_stat_init(); 1987 zfs_prop_init(); 1988 zpool_prop_init(); 1989 zpool_feature_init(); 1990 spa_config_load(); 1991 l2arc_start(); 1992 } 1993 1994 void 1995 spa_fini(void) 1996 { 1997 l2arc_stop(); 1998 1999 spa_evict_all(); 2000 2001 vdev_cache_stat_fini(); 2002 zil_fini(); 2003 dmu_fini(); 2004 zio_fini(); 2005 metaslab_alloc_trace_fini(); 2006 range_tree_fini(); 2007 unique_fini(); 2008 refcount_fini(); 2009 2010 avl_destroy(&spa_namespace_avl); 2011 avl_destroy(&spa_spare_avl); 2012 avl_destroy(&spa_l2cache_avl); 2013 2014 cv_destroy(&spa_namespace_cv); 2015 mutex_destroy(&spa_namespace_lock); 2016 mutex_destroy(&spa_spare_lock); 2017 mutex_destroy(&spa_l2cache_lock); 2018 } 2019 2020 /* 2021 * Return whether this pool has slogs. No locking needed. 2022 * It's not a problem if the wrong answer is returned as it's only for 2023 * performance and not correctness 2024 */ 2025 boolean_t 2026 spa_has_slogs(spa_t *spa) 2027 { 2028 return (spa->spa_log_class->mc_rotor != NULL); 2029 } 2030 2031 spa_log_state_t 2032 spa_get_log_state(spa_t *spa) 2033 { 2034 return (spa->spa_log_state); 2035 } 2036 2037 void 2038 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2039 { 2040 spa->spa_log_state = state; 2041 } 2042 2043 boolean_t 2044 spa_is_root(spa_t *spa) 2045 { 2046 return (spa->spa_is_root); 2047 } 2048 2049 boolean_t 2050 spa_writeable(spa_t *spa) 2051 { 2052 return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config); 2053 } 2054 2055 /* 2056 * Returns true if there is a pending sync task in any of the current 2057 * syncing txg, the current quiescing txg, or the current open txg. 2058 */ 2059 boolean_t 2060 spa_has_pending_synctask(spa_t *spa) 2061 { 2062 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2063 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2064 } 2065 2066 int 2067 spa_mode(spa_t *spa) 2068 { 2069 return (spa->spa_mode); 2070 } 2071 2072 uint64_t 2073 spa_bootfs(spa_t *spa) 2074 { 2075 return (spa->spa_bootfs); 2076 } 2077 2078 uint64_t 2079 spa_delegation(spa_t *spa) 2080 { 2081 return (spa->spa_delegation); 2082 } 2083 2084 objset_t * 2085 spa_meta_objset(spa_t *spa) 2086 { 2087 return (spa->spa_meta_objset); 2088 } 2089 2090 enum zio_checksum 2091 spa_dedup_checksum(spa_t *spa) 2092 { 2093 return (spa->spa_dedup_checksum); 2094 } 2095 2096 /* 2097 * Reset pool scan stat per scan pass (or reboot). 2098 */ 2099 void 2100 spa_scan_stat_init(spa_t *spa) 2101 { 2102 /* data not stored on disk */ 2103 spa->spa_scan_pass_start = gethrestime_sec(); 2104 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2105 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2106 else 2107 spa->spa_scan_pass_scrub_pause = 0; 2108 spa->spa_scan_pass_scrub_spent_paused = 0; 2109 spa->spa_scan_pass_exam = 0; 2110 vdev_scan_stat_init(spa->spa_root_vdev); 2111 } 2112 2113 /* 2114 * Get scan stats for zpool status reports 2115 */ 2116 int 2117 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2118 { 2119 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2120 2121 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 2122 return (SET_ERROR(ENOENT)); 2123 bzero(ps, sizeof (pool_scan_stat_t)); 2124 2125 /* data stored on disk */ 2126 ps->pss_func = scn->scn_phys.scn_func; 2127 ps->pss_start_time = scn->scn_phys.scn_start_time; 2128 ps->pss_end_time = scn->scn_phys.scn_end_time; 2129 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2130 ps->pss_examined = scn->scn_phys.scn_examined; 2131 ps->pss_to_process = scn->scn_phys.scn_to_process; 2132 ps->pss_processed = scn->scn_phys.scn_processed; 2133 ps->pss_errors = scn->scn_phys.scn_errors; 2134 ps->pss_state = scn->scn_phys.scn_state; 2135 2136 /* data not stored on disk */ 2137 ps->pss_pass_start = spa->spa_scan_pass_start; 2138 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2139 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2140 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2141 2142 return (0); 2143 } 2144 2145 int 2146 spa_maxblocksize(spa_t *spa) 2147 { 2148 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2149 return (SPA_MAXBLOCKSIZE); 2150 else 2151 return (SPA_OLD_MAXBLOCKSIZE); 2152 } 2153 2154 /* 2155 * Returns the txg that the last device removal completed. No indirect mappings 2156 * have been added since this txg. 2157 */ 2158 uint64_t 2159 spa_get_last_removal_txg(spa_t *spa) 2160 { 2161 uint64_t vdevid; 2162 uint64_t ret = -1ULL; 2163 2164 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2165 /* 2166 * sr_prev_indirect_vdev is only modified while holding all the 2167 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2168 * examining it. 2169 */ 2170 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2171 2172 while (vdevid != -1ULL) { 2173 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2174 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2175 2176 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2177 2178 /* 2179 * If the removal did not remap any data, we don't care. 2180 */ 2181 if (vdev_indirect_births_count(vib) != 0) { 2182 ret = vdev_indirect_births_last_entry_txg(vib); 2183 break; 2184 } 2185 2186 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2187 } 2188 spa_config_exit(spa, SCL_VDEV, FTAG); 2189 2190 IMPLY(ret != -1ULL, 2191 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2192 2193 return (ret); 2194 } 2195 2196 boolean_t 2197 spa_trust_config(spa_t *spa) 2198 { 2199 return (spa->spa_trust_config); 2200 } 2201 2202 uint64_t 2203 spa_missing_tvds_allowed(spa_t *spa) 2204 { 2205 return (spa->spa_missing_tvds_allowed); 2206 } 2207 2208 void 2209 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2210 { 2211 spa->spa_missing_tvds = missing; 2212 } 2213 2214 boolean_t 2215 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2216 { 2217 vdev_t *rvd = spa->spa_root_vdev; 2218 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2219 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2220 return (B_FALSE); 2221 } 2222 return (B_TRUE); 2223 } 2224 2225 boolean_t 2226 spa_has_checkpoint(spa_t *spa) 2227 { 2228 return (spa->spa_checkpoint_txg != 0); 2229 } 2230 2231 boolean_t 2232 spa_importing_readonly_checkpoint(spa_t *spa) 2233 { 2234 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2235 spa->spa_mode == FREAD); 2236 } 2237 2238 uint64_t 2239 spa_min_claim_txg(spa_t *spa) 2240 { 2241 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2242 2243 if (checkpoint_txg != 0) 2244 return (checkpoint_txg + 1); 2245 2246 return (spa->spa_first_txg); 2247 } 2248 2249 /* 2250 * If there is a checkpoint, async destroys may consume more space from 2251 * the pool instead of freeing it. In an attempt to save the pool from 2252 * getting suspended when it is about to run out of space, we stop 2253 * processing async destroys. 2254 */ 2255 boolean_t 2256 spa_suspend_async_destroy(spa_t *spa) 2257 { 2258 dsl_pool_t *dp = spa_get_dsl(spa); 2259 2260 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2261 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2262 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2263 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2264 2265 if (spa_has_checkpoint(spa) && avail == 0) 2266 return (B_TRUE); 2267 2268 return (B_FALSE); 2269 } 2270