1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2014 Integros [integros.com] 28 * Copyright (c) 2017 Datto Inc. 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/spa_impl.h> 33 #include <sys/spa_boot.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 #include <sys/zio_compress.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/vdev_impl.h> 42 #include <sys/metaslab.h> 43 #include <sys/uberblock_impl.h> 44 #include <sys/txg.h> 45 #include <sys/avl.h> 46 #include <sys/unique.h> 47 #include <sys/dsl_pool.h> 48 #include <sys/dsl_dir.h> 49 #include <sys/dsl_prop.h> 50 #include <sys/dsl_scan.h> 51 #include <sys/fs/zfs.h> 52 #include <sys/metaslab_impl.h> 53 #include <sys/arc.h> 54 #include <sys/ddt.h> 55 #include "zfs_prop.h" 56 #include <sys/zfeature.h> 57 58 /* 59 * SPA locking 60 * 61 * There are four basic locks for managing spa_t structures: 62 * 63 * spa_namespace_lock (global mutex) 64 * 65 * This lock must be acquired to do any of the following: 66 * 67 * - Lookup a spa_t by name 68 * - Add or remove a spa_t from the namespace 69 * - Increase spa_refcount from non-zero 70 * - Check if spa_refcount is zero 71 * - Rename a spa_t 72 * - add/remove/attach/detach devices 73 * - Held for the duration of create/destroy/import/export 74 * 75 * It does not need to handle recursion. A create or destroy may 76 * reference objects (files or zvols) in other pools, but by 77 * definition they must have an existing reference, and will never need 78 * to lookup a spa_t by name. 79 * 80 * spa_refcount (per-spa refcount_t protected by mutex) 81 * 82 * This reference count keep track of any active users of the spa_t. The 83 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 84 * the refcount is never really 'zero' - opening a pool implicitly keeps 85 * some references in the DMU. Internally we check against spa_minref, but 86 * present the image of a zero/non-zero value to consumers. 87 * 88 * spa_config_lock[] (per-spa array of rwlocks) 89 * 90 * This protects the spa_t from config changes, and must be held in 91 * the following circumstances: 92 * 93 * - RW_READER to perform I/O to the spa 94 * - RW_WRITER to change the vdev config 95 * 96 * The locking order is fairly straightforward: 97 * 98 * spa_namespace_lock -> spa_refcount 99 * 100 * The namespace lock must be acquired to increase the refcount from 0 101 * or to check if it is zero. 102 * 103 * spa_refcount -> spa_config_lock[] 104 * 105 * There must be at least one valid reference on the spa_t to acquire 106 * the config lock. 107 * 108 * spa_namespace_lock -> spa_config_lock[] 109 * 110 * The namespace lock must always be taken before the config lock. 111 * 112 * 113 * The spa_namespace_lock can be acquired directly and is globally visible. 114 * 115 * The namespace is manipulated using the following functions, all of which 116 * require the spa_namespace_lock to be held. 117 * 118 * spa_lookup() Lookup a spa_t by name. 119 * 120 * spa_add() Create a new spa_t in the namespace. 121 * 122 * spa_remove() Remove a spa_t from the namespace. This also 123 * frees up any memory associated with the spa_t. 124 * 125 * spa_next() Returns the next spa_t in the system, or the 126 * first if NULL is passed. 127 * 128 * spa_evict_all() Shutdown and remove all spa_t structures in 129 * the system. 130 * 131 * spa_guid_exists() Determine whether a pool/device guid exists. 132 * 133 * The spa_refcount is manipulated using the following functions: 134 * 135 * spa_open_ref() Adds a reference to the given spa_t. Must be 136 * called with spa_namespace_lock held if the 137 * refcount is currently zero. 138 * 139 * spa_close() Remove a reference from the spa_t. This will 140 * not free the spa_t or remove it from the 141 * namespace. No locking is required. 142 * 143 * spa_refcount_zero() Returns true if the refcount is currently 144 * zero. Must be called with spa_namespace_lock 145 * held. 146 * 147 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 148 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 149 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 150 * 151 * To read the configuration, it suffices to hold one of these locks as reader. 152 * To modify the configuration, you must hold all locks as writer. To modify 153 * vdev state without altering the vdev tree's topology (e.g. online/offline), 154 * you must hold SCL_STATE and SCL_ZIO as writer. 155 * 156 * We use these distinct config locks to avoid recursive lock entry. 157 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 158 * block allocations (SCL_ALLOC), which may require reading space maps 159 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 160 * 161 * The spa config locks cannot be normal rwlocks because we need the 162 * ability to hand off ownership. For example, SCL_ZIO is acquired 163 * by the issuing thread and later released by an interrupt thread. 164 * They do, however, obey the usual write-wanted semantics to prevent 165 * writer (i.e. system administrator) starvation. 166 * 167 * The lock acquisition rules are as follows: 168 * 169 * SCL_CONFIG 170 * Protects changes to the vdev tree topology, such as vdev 171 * add/remove/attach/detach. Protects the dirty config list 172 * (spa_config_dirty_list) and the set of spares and l2arc devices. 173 * 174 * SCL_STATE 175 * Protects changes to pool state and vdev state, such as vdev 176 * online/offline/fault/degrade/clear. Protects the dirty state list 177 * (spa_state_dirty_list) and global pool state (spa_state). 178 * 179 * SCL_ALLOC 180 * Protects changes to metaslab groups and classes. 181 * Held as reader by metaslab_alloc() and metaslab_claim(). 182 * 183 * SCL_ZIO 184 * Held by bp-level zios (those which have no io_vd upon entry) 185 * to prevent changes to the vdev tree. The bp-level zio implicitly 186 * protects all of its vdev child zios, which do not hold SCL_ZIO. 187 * 188 * SCL_FREE 189 * Protects changes to metaslab groups and classes. 190 * Held as reader by metaslab_free(). SCL_FREE is distinct from 191 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 192 * blocks in zio_done() while another i/o that holds either 193 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 194 * 195 * SCL_VDEV 196 * Held as reader to prevent changes to the vdev tree during trivial 197 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 198 * other locks, and lower than all of them, to ensure that it's safe 199 * to acquire regardless of caller context. 200 * 201 * In addition, the following rules apply: 202 * 203 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 204 * The lock ordering is SCL_CONFIG > spa_props_lock. 205 * 206 * (b) I/O operations on leaf vdevs. For any zio operation that takes 207 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 208 * or zio_write_phys() -- the caller must ensure that the config cannot 209 * cannot change in the interim, and that the vdev cannot be reopened. 210 * SCL_STATE as reader suffices for both. 211 * 212 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 213 * 214 * spa_vdev_enter() Acquire the namespace lock and the config lock 215 * for writing. 216 * 217 * spa_vdev_exit() Release the config lock, wait for all I/O 218 * to complete, sync the updated configs to the 219 * cache, and release the namespace lock. 220 * 221 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 222 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 223 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 224 * 225 * spa_rename() is also implemented within this file since it requires 226 * manipulation of the namespace. 227 */ 228 229 static avl_tree_t spa_namespace_avl; 230 kmutex_t spa_namespace_lock; 231 static kcondvar_t spa_namespace_cv; 232 static int spa_active_count; 233 int spa_max_replication_override = SPA_DVAS_PER_BP; 234 235 static kmutex_t spa_spare_lock; 236 static avl_tree_t spa_spare_avl; 237 static kmutex_t spa_l2cache_lock; 238 static avl_tree_t spa_l2cache_avl; 239 240 kmem_cache_t *spa_buffer_pool; 241 int spa_mode_global; 242 243 #ifdef ZFS_DEBUG 244 /* Everything except dprintf and spa is on by default in debug builds */ 245 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA); 246 #else 247 int zfs_flags = 0; 248 #endif 249 250 /* 251 * zfs_recover can be set to nonzero to attempt to recover from 252 * otherwise-fatal errors, typically caused by on-disk corruption. When 253 * set, calls to zfs_panic_recover() will turn into warning messages. 254 * This should only be used as a last resort, as it typically results 255 * in leaked space, or worse. 256 */ 257 boolean_t zfs_recover = B_FALSE; 258 259 /* 260 * If destroy encounters an EIO while reading metadata (e.g. indirect 261 * blocks), space referenced by the missing metadata can not be freed. 262 * Normally this causes the background destroy to become "stalled", as 263 * it is unable to make forward progress. While in this stalled state, 264 * all remaining space to free from the error-encountering filesystem is 265 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 266 * permanently leak the space from indirect blocks that can not be read, 267 * and continue to free everything else that it can. 268 * 269 * The default, "stalling" behavior is useful if the storage partially 270 * fails (i.e. some but not all i/os fail), and then later recovers. In 271 * this case, we will be able to continue pool operations while it is 272 * partially failed, and when it recovers, we can continue to free the 273 * space, with no leaks. However, note that this case is actually 274 * fairly rare. 275 * 276 * Typically pools either (a) fail completely (but perhaps temporarily, 277 * e.g. a top-level vdev going offline), or (b) have localized, 278 * permanent errors (e.g. disk returns the wrong data due to bit flip or 279 * firmware bug). In case (a), this setting does not matter because the 280 * pool will be suspended and the sync thread will not be able to make 281 * forward progress regardless. In case (b), because the error is 282 * permanent, the best we can do is leak the minimum amount of space, 283 * which is what setting this flag will do. Therefore, it is reasonable 284 * for this flag to normally be set, but we chose the more conservative 285 * approach of not setting it, so that there is no possibility of 286 * leaking space in the "partial temporary" failure case. 287 */ 288 boolean_t zfs_free_leak_on_eio = B_FALSE; 289 290 /* 291 * Expiration time in milliseconds. This value has two meanings. First it is 292 * used to determine when the spa_deadman() logic should fire. By default the 293 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. 294 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 295 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 296 * in a system panic. 297 */ 298 uint64_t zfs_deadman_synctime_ms = 1000000ULL; 299 300 /* 301 * Check time in milliseconds. This defines the frequency at which we check 302 * for hung I/O. 303 */ 304 uint64_t zfs_deadman_checktime_ms = 5000ULL; 305 306 /* 307 * Override the zfs deadman behavior via /etc/system. By default the 308 * deadman is enabled except on VMware and sparc deployments. 309 */ 310 int zfs_deadman_enabled = -1; 311 312 /* 313 * The worst case is single-sector max-parity RAID-Z blocks, in which 314 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 315 * times the size; so just assume that. Add to this the fact that 316 * we can have up to 3 DVAs per bp, and one more factor of 2 because 317 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 318 * the worst case is: 319 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 320 */ 321 int spa_asize_inflation = 24; 322 323 /* 324 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 325 * the pool to be consumed. This ensures that we don't run the pool 326 * completely out of space, due to unaccounted changes (e.g. to the MOS). 327 * It also limits the worst-case time to allocate space. If we have 328 * less than this amount of free space, most ZPL operations (e.g. write, 329 * create) will return ENOSPC. 330 * 331 * Certain operations (e.g. file removal, most administrative actions) can 332 * use half the slop space. They will only return ENOSPC if less than half 333 * the slop space is free. Typically, once the pool has less than the slop 334 * space free, the user will use these operations to free up space in the pool. 335 * These are the operations that call dsl_pool_adjustedsize() with the netfree 336 * argument set to TRUE. 337 * 338 * A very restricted set of operations are always permitted, regardless of 339 * the amount of free space. These are the operations that call 340 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these 341 * operations result in a net increase in the amount of space used, 342 * it is possible to run the pool completely out of space, causing it to 343 * be permanently read-only. 344 * 345 * Note that on very small pools, the slop space will be larger than 346 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 347 * but we never allow it to be more than half the pool size. 348 * 349 * See also the comments in zfs_space_check_t. 350 */ 351 int spa_slop_shift = 5; 352 uint64_t spa_min_slop = 128 * 1024 * 1024; 353 354 /* 355 * ========================================================================== 356 * SPA config locking 357 * ========================================================================== 358 */ 359 static void 360 spa_config_lock_init(spa_t *spa) 361 { 362 for (int i = 0; i < SCL_LOCKS; i++) { 363 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 364 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 365 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 366 refcount_create_untracked(&scl->scl_count); 367 scl->scl_writer = NULL; 368 scl->scl_write_wanted = 0; 369 } 370 } 371 372 static void 373 spa_config_lock_destroy(spa_t *spa) 374 { 375 for (int i = 0; i < SCL_LOCKS; i++) { 376 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 377 mutex_destroy(&scl->scl_lock); 378 cv_destroy(&scl->scl_cv); 379 refcount_destroy(&scl->scl_count); 380 ASSERT(scl->scl_writer == NULL); 381 ASSERT(scl->scl_write_wanted == 0); 382 } 383 } 384 385 int 386 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 387 { 388 for (int i = 0; i < SCL_LOCKS; i++) { 389 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 390 if (!(locks & (1 << i))) 391 continue; 392 mutex_enter(&scl->scl_lock); 393 if (rw == RW_READER) { 394 if (scl->scl_writer || scl->scl_write_wanted) { 395 mutex_exit(&scl->scl_lock); 396 spa_config_exit(spa, locks & ((1 << i) - 1), 397 tag); 398 return (0); 399 } 400 } else { 401 ASSERT(scl->scl_writer != curthread); 402 if (!refcount_is_zero(&scl->scl_count)) { 403 mutex_exit(&scl->scl_lock); 404 spa_config_exit(spa, locks & ((1 << i) - 1), 405 tag); 406 return (0); 407 } 408 scl->scl_writer = curthread; 409 } 410 (void) refcount_add(&scl->scl_count, tag); 411 mutex_exit(&scl->scl_lock); 412 } 413 return (1); 414 } 415 416 void 417 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 418 { 419 int wlocks_held = 0; 420 421 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 422 423 for (int i = 0; i < SCL_LOCKS; i++) { 424 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 425 if (scl->scl_writer == curthread) 426 wlocks_held |= (1 << i); 427 if (!(locks & (1 << i))) 428 continue; 429 mutex_enter(&scl->scl_lock); 430 if (rw == RW_READER) { 431 while (scl->scl_writer || scl->scl_write_wanted) { 432 cv_wait(&scl->scl_cv, &scl->scl_lock); 433 } 434 } else { 435 ASSERT(scl->scl_writer != curthread); 436 while (!refcount_is_zero(&scl->scl_count)) { 437 scl->scl_write_wanted++; 438 cv_wait(&scl->scl_cv, &scl->scl_lock); 439 scl->scl_write_wanted--; 440 } 441 scl->scl_writer = curthread; 442 } 443 (void) refcount_add(&scl->scl_count, tag); 444 mutex_exit(&scl->scl_lock); 445 } 446 ASSERT(wlocks_held <= locks); 447 } 448 449 void 450 spa_config_exit(spa_t *spa, int locks, void *tag) 451 { 452 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 453 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 454 if (!(locks & (1 << i))) 455 continue; 456 mutex_enter(&scl->scl_lock); 457 ASSERT(!refcount_is_zero(&scl->scl_count)); 458 if (refcount_remove(&scl->scl_count, tag) == 0) { 459 ASSERT(scl->scl_writer == NULL || 460 scl->scl_writer == curthread); 461 scl->scl_writer = NULL; /* OK in either case */ 462 cv_broadcast(&scl->scl_cv); 463 } 464 mutex_exit(&scl->scl_lock); 465 } 466 } 467 468 int 469 spa_config_held(spa_t *spa, int locks, krw_t rw) 470 { 471 int locks_held = 0; 472 473 for (int i = 0; i < SCL_LOCKS; i++) { 474 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 475 if (!(locks & (1 << i))) 476 continue; 477 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 478 (rw == RW_WRITER && scl->scl_writer == curthread)) 479 locks_held |= 1 << i; 480 } 481 482 return (locks_held); 483 } 484 485 /* 486 * ========================================================================== 487 * SPA namespace functions 488 * ========================================================================== 489 */ 490 491 /* 492 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 493 * Returns NULL if no matching spa_t is found. 494 */ 495 spa_t * 496 spa_lookup(const char *name) 497 { 498 static spa_t search; /* spa_t is large; don't allocate on stack */ 499 spa_t *spa; 500 avl_index_t where; 501 char *cp; 502 503 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 504 505 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 506 507 /* 508 * If it's a full dataset name, figure out the pool name and 509 * just use that. 510 */ 511 cp = strpbrk(search.spa_name, "/@#"); 512 if (cp != NULL) 513 *cp = '\0'; 514 515 spa = avl_find(&spa_namespace_avl, &search, &where); 516 517 return (spa); 518 } 519 520 /* 521 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 522 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 523 * looking for potentially hung I/Os. 524 */ 525 void 526 spa_deadman(void *arg) 527 { 528 spa_t *spa = arg; 529 530 /* 531 * Disable the deadman timer if the pool is suspended. 532 */ 533 if (spa_suspended(spa)) { 534 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 535 return; 536 } 537 538 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 539 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 540 ++spa->spa_deadman_calls); 541 if (zfs_deadman_enabled) 542 vdev_deadman(spa->spa_root_vdev); 543 } 544 545 /* 546 * Create an uninitialized spa_t with the given name. Requires 547 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 548 * exist by calling spa_lookup() first. 549 */ 550 spa_t * 551 spa_add(const char *name, nvlist_t *config, const char *altroot) 552 { 553 spa_t *spa; 554 spa_config_dirent_t *dp; 555 cyc_handler_t hdlr; 556 cyc_time_t when; 557 558 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 559 560 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 561 562 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 563 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 564 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 565 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 566 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 567 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 568 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 569 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 570 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 571 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 572 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 573 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 574 mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL); 575 576 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 577 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 578 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 579 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 580 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 581 582 for (int t = 0; t < TXG_SIZE; t++) 583 bplist_create(&spa->spa_free_bplist[t]); 584 585 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 586 spa->spa_state = POOL_STATE_UNINITIALIZED; 587 spa->spa_freeze_txg = UINT64_MAX; 588 spa->spa_final_txg = UINT64_MAX; 589 spa->spa_load_max_txg = UINT64_MAX; 590 spa->spa_proc = &p0; 591 spa->spa_proc_state = SPA_PROC_NONE; 592 593 hdlr.cyh_func = spa_deadman; 594 hdlr.cyh_arg = spa; 595 hdlr.cyh_level = CY_LOW_LEVEL; 596 597 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 598 599 /* 600 * This determines how often we need to check for hung I/Os after 601 * the cyclic has already fired. Since checking for hung I/Os is 602 * an expensive operation we don't want to check too frequently. 603 * Instead wait for 5 seconds before checking again. 604 */ 605 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); 606 when.cyt_when = CY_INFINITY; 607 mutex_enter(&cpu_lock); 608 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 609 mutex_exit(&cpu_lock); 610 611 refcount_create(&spa->spa_refcount); 612 spa_config_lock_init(spa); 613 614 avl_add(&spa_namespace_avl, spa); 615 616 /* 617 * Set the alternate root, if there is one. 618 */ 619 if (altroot) { 620 spa->spa_root = spa_strdup(altroot); 621 spa_active_count++; 622 } 623 624 avl_create(&spa->spa_alloc_tree, zio_bookmark_compare, 625 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 626 627 /* 628 * Every pool starts with the default cachefile 629 */ 630 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 631 offsetof(spa_config_dirent_t, scd_link)); 632 633 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 634 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 635 list_insert_head(&spa->spa_config_list, dp); 636 637 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 638 KM_SLEEP) == 0); 639 640 if (config != NULL) { 641 nvlist_t *features; 642 643 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 644 &features) == 0) { 645 VERIFY(nvlist_dup(features, &spa->spa_label_features, 646 0) == 0); 647 } 648 649 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 650 } 651 652 if (spa->spa_label_features == NULL) { 653 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 654 KM_SLEEP) == 0); 655 } 656 657 spa->spa_iokstat = kstat_create("zfs", 0, name, 658 "disk", KSTAT_TYPE_IO, 1, 0); 659 if (spa->spa_iokstat) { 660 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 661 kstat_install(spa->spa_iokstat); 662 } 663 664 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0); 665 666 spa->spa_min_ashift = INT_MAX; 667 spa->spa_max_ashift = 0; 668 669 /* 670 * As a pool is being created, treat all features as disabled by 671 * setting SPA_FEATURE_DISABLED for all entries in the feature 672 * refcount cache. 673 */ 674 for (int i = 0; i < SPA_FEATURES; i++) { 675 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 676 } 677 678 return (spa); 679 } 680 681 /* 682 * Removes a spa_t from the namespace, freeing up any memory used. Requires 683 * spa_namespace_lock. This is called only after the spa_t has been closed and 684 * deactivated. 685 */ 686 void 687 spa_remove(spa_t *spa) 688 { 689 spa_config_dirent_t *dp; 690 691 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 692 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 693 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0); 694 695 nvlist_free(spa->spa_config_splitting); 696 697 avl_remove(&spa_namespace_avl, spa); 698 cv_broadcast(&spa_namespace_cv); 699 700 if (spa->spa_root) { 701 spa_strfree(spa->spa_root); 702 spa_active_count--; 703 } 704 705 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 706 list_remove(&spa->spa_config_list, dp); 707 if (dp->scd_path != NULL) 708 spa_strfree(dp->scd_path); 709 kmem_free(dp, sizeof (spa_config_dirent_t)); 710 } 711 712 avl_destroy(&spa->spa_alloc_tree); 713 list_destroy(&spa->spa_config_list); 714 715 nvlist_free(spa->spa_label_features); 716 nvlist_free(spa->spa_load_info); 717 spa_config_set(spa, NULL); 718 719 mutex_enter(&cpu_lock); 720 if (spa->spa_deadman_cycid != CYCLIC_NONE) 721 cyclic_remove(spa->spa_deadman_cycid); 722 mutex_exit(&cpu_lock); 723 spa->spa_deadman_cycid = CYCLIC_NONE; 724 725 refcount_destroy(&spa->spa_refcount); 726 727 spa_config_lock_destroy(spa); 728 729 kstat_delete(spa->spa_iokstat); 730 spa->spa_iokstat = NULL; 731 732 for (int t = 0; t < TXG_SIZE; t++) 733 bplist_destroy(&spa->spa_free_bplist[t]); 734 735 zio_checksum_templates_free(spa); 736 737 cv_destroy(&spa->spa_async_cv); 738 cv_destroy(&spa->spa_evicting_os_cv); 739 cv_destroy(&spa->spa_proc_cv); 740 cv_destroy(&spa->spa_scrub_io_cv); 741 cv_destroy(&spa->spa_suspend_cv); 742 743 mutex_destroy(&spa->spa_alloc_lock); 744 mutex_destroy(&spa->spa_async_lock); 745 mutex_destroy(&spa->spa_errlist_lock); 746 mutex_destroy(&spa->spa_errlog_lock); 747 mutex_destroy(&spa->spa_evicting_os_lock); 748 mutex_destroy(&spa->spa_history_lock); 749 mutex_destroy(&spa->spa_proc_lock); 750 mutex_destroy(&spa->spa_props_lock); 751 mutex_destroy(&spa->spa_cksum_tmpls_lock); 752 mutex_destroy(&spa->spa_scrub_lock); 753 mutex_destroy(&spa->spa_suspend_lock); 754 mutex_destroy(&spa->spa_vdev_top_lock); 755 mutex_destroy(&spa->spa_iokstat_lock); 756 757 kmem_free(spa, sizeof (spa_t)); 758 } 759 760 /* 761 * Given a pool, return the next pool in the namespace, or NULL if there is 762 * none. If 'prev' is NULL, return the first pool. 763 */ 764 spa_t * 765 spa_next(spa_t *prev) 766 { 767 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 768 769 if (prev) 770 return (AVL_NEXT(&spa_namespace_avl, prev)); 771 else 772 return (avl_first(&spa_namespace_avl)); 773 } 774 775 /* 776 * ========================================================================== 777 * SPA refcount functions 778 * ========================================================================== 779 */ 780 781 /* 782 * Add a reference to the given spa_t. Must have at least one reference, or 783 * have the namespace lock held. 784 */ 785 void 786 spa_open_ref(spa_t *spa, void *tag) 787 { 788 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 789 MUTEX_HELD(&spa_namespace_lock)); 790 (void) refcount_add(&spa->spa_refcount, tag); 791 } 792 793 /* 794 * Remove a reference to the given spa_t. Must have at least one reference, or 795 * have the namespace lock held. 796 */ 797 void 798 spa_close(spa_t *spa, void *tag) 799 { 800 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 801 MUTEX_HELD(&spa_namespace_lock)); 802 (void) refcount_remove(&spa->spa_refcount, tag); 803 } 804 805 /* 806 * Remove a reference to the given spa_t held by a dsl dir that is 807 * being asynchronously released. Async releases occur from a taskq 808 * performing eviction of dsl datasets and dirs. The namespace lock 809 * isn't held and the hold by the object being evicted may contribute to 810 * spa_minref (e.g. dataset or directory released during pool export), 811 * so the asserts in spa_close() do not apply. 812 */ 813 void 814 spa_async_close(spa_t *spa, void *tag) 815 { 816 (void) refcount_remove(&spa->spa_refcount, tag); 817 } 818 819 /* 820 * Check to see if the spa refcount is zero. Must be called with 821 * spa_namespace_lock held. We really compare against spa_minref, which is the 822 * number of references acquired when opening a pool 823 */ 824 boolean_t 825 spa_refcount_zero(spa_t *spa) 826 { 827 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 828 829 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 830 } 831 832 /* 833 * ========================================================================== 834 * SPA spare and l2cache tracking 835 * ========================================================================== 836 */ 837 838 /* 839 * Hot spares and cache devices are tracked using the same code below, 840 * for 'auxiliary' devices. 841 */ 842 843 typedef struct spa_aux { 844 uint64_t aux_guid; 845 uint64_t aux_pool; 846 avl_node_t aux_avl; 847 int aux_count; 848 } spa_aux_t; 849 850 static int 851 spa_aux_compare(const void *a, const void *b) 852 { 853 const spa_aux_t *sa = a; 854 const spa_aux_t *sb = b; 855 856 if (sa->aux_guid < sb->aux_guid) 857 return (-1); 858 else if (sa->aux_guid > sb->aux_guid) 859 return (1); 860 else 861 return (0); 862 } 863 864 void 865 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 866 { 867 avl_index_t where; 868 spa_aux_t search; 869 spa_aux_t *aux; 870 871 search.aux_guid = vd->vdev_guid; 872 if ((aux = avl_find(avl, &search, &where)) != NULL) { 873 aux->aux_count++; 874 } else { 875 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 876 aux->aux_guid = vd->vdev_guid; 877 aux->aux_count = 1; 878 avl_insert(avl, aux, where); 879 } 880 } 881 882 void 883 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 884 { 885 spa_aux_t search; 886 spa_aux_t *aux; 887 avl_index_t where; 888 889 search.aux_guid = vd->vdev_guid; 890 aux = avl_find(avl, &search, &where); 891 892 ASSERT(aux != NULL); 893 894 if (--aux->aux_count == 0) { 895 avl_remove(avl, aux); 896 kmem_free(aux, sizeof (spa_aux_t)); 897 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 898 aux->aux_pool = 0ULL; 899 } 900 } 901 902 boolean_t 903 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 904 { 905 spa_aux_t search, *found; 906 907 search.aux_guid = guid; 908 found = avl_find(avl, &search, NULL); 909 910 if (pool) { 911 if (found) 912 *pool = found->aux_pool; 913 else 914 *pool = 0ULL; 915 } 916 917 if (refcnt) { 918 if (found) 919 *refcnt = found->aux_count; 920 else 921 *refcnt = 0; 922 } 923 924 return (found != NULL); 925 } 926 927 void 928 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 929 { 930 spa_aux_t search, *found; 931 avl_index_t where; 932 933 search.aux_guid = vd->vdev_guid; 934 found = avl_find(avl, &search, &where); 935 ASSERT(found != NULL); 936 ASSERT(found->aux_pool == 0ULL); 937 938 found->aux_pool = spa_guid(vd->vdev_spa); 939 } 940 941 /* 942 * Spares are tracked globally due to the following constraints: 943 * 944 * - A spare may be part of multiple pools. 945 * - A spare may be added to a pool even if it's actively in use within 946 * another pool. 947 * - A spare in use in any pool can only be the source of a replacement if 948 * the target is a spare in the same pool. 949 * 950 * We keep track of all spares on the system through the use of a reference 951 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 952 * spare, then we bump the reference count in the AVL tree. In addition, we set 953 * the 'vdev_isspare' member to indicate that the device is a spare (active or 954 * inactive). When a spare is made active (used to replace a device in the 955 * pool), we also keep track of which pool its been made a part of. 956 * 957 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 958 * called under the spa_namespace lock as part of vdev reconfiguration. The 959 * separate spare lock exists for the status query path, which does not need to 960 * be completely consistent with respect to other vdev configuration changes. 961 */ 962 963 static int 964 spa_spare_compare(const void *a, const void *b) 965 { 966 return (spa_aux_compare(a, b)); 967 } 968 969 void 970 spa_spare_add(vdev_t *vd) 971 { 972 mutex_enter(&spa_spare_lock); 973 ASSERT(!vd->vdev_isspare); 974 spa_aux_add(vd, &spa_spare_avl); 975 vd->vdev_isspare = B_TRUE; 976 mutex_exit(&spa_spare_lock); 977 } 978 979 void 980 spa_spare_remove(vdev_t *vd) 981 { 982 mutex_enter(&spa_spare_lock); 983 ASSERT(vd->vdev_isspare); 984 spa_aux_remove(vd, &spa_spare_avl); 985 vd->vdev_isspare = B_FALSE; 986 mutex_exit(&spa_spare_lock); 987 } 988 989 boolean_t 990 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 991 { 992 boolean_t found; 993 994 mutex_enter(&spa_spare_lock); 995 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 996 mutex_exit(&spa_spare_lock); 997 998 return (found); 999 } 1000 1001 void 1002 spa_spare_activate(vdev_t *vd) 1003 { 1004 mutex_enter(&spa_spare_lock); 1005 ASSERT(vd->vdev_isspare); 1006 spa_aux_activate(vd, &spa_spare_avl); 1007 mutex_exit(&spa_spare_lock); 1008 } 1009 1010 /* 1011 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1012 * Cache devices currently only support one pool per cache device, and so 1013 * for these devices the aux reference count is currently unused beyond 1. 1014 */ 1015 1016 static int 1017 spa_l2cache_compare(const void *a, const void *b) 1018 { 1019 return (spa_aux_compare(a, b)); 1020 } 1021 1022 void 1023 spa_l2cache_add(vdev_t *vd) 1024 { 1025 mutex_enter(&spa_l2cache_lock); 1026 ASSERT(!vd->vdev_isl2cache); 1027 spa_aux_add(vd, &spa_l2cache_avl); 1028 vd->vdev_isl2cache = B_TRUE; 1029 mutex_exit(&spa_l2cache_lock); 1030 } 1031 1032 void 1033 spa_l2cache_remove(vdev_t *vd) 1034 { 1035 mutex_enter(&spa_l2cache_lock); 1036 ASSERT(vd->vdev_isl2cache); 1037 spa_aux_remove(vd, &spa_l2cache_avl); 1038 vd->vdev_isl2cache = B_FALSE; 1039 mutex_exit(&spa_l2cache_lock); 1040 } 1041 1042 boolean_t 1043 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1044 { 1045 boolean_t found; 1046 1047 mutex_enter(&spa_l2cache_lock); 1048 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1049 mutex_exit(&spa_l2cache_lock); 1050 1051 return (found); 1052 } 1053 1054 void 1055 spa_l2cache_activate(vdev_t *vd) 1056 { 1057 mutex_enter(&spa_l2cache_lock); 1058 ASSERT(vd->vdev_isl2cache); 1059 spa_aux_activate(vd, &spa_l2cache_avl); 1060 mutex_exit(&spa_l2cache_lock); 1061 } 1062 1063 /* 1064 * ========================================================================== 1065 * SPA vdev locking 1066 * ========================================================================== 1067 */ 1068 1069 /* 1070 * Lock the given spa_t for the purpose of adding or removing a vdev. 1071 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1072 * It returns the next transaction group for the spa_t. 1073 */ 1074 uint64_t 1075 spa_vdev_enter(spa_t *spa) 1076 { 1077 mutex_enter(&spa->spa_vdev_top_lock); 1078 mutex_enter(&spa_namespace_lock); 1079 return (spa_vdev_config_enter(spa)); 1080 } 1081 1082 /* 1083 * Internal implementation for spa_vdev_enter(). Used when a vdev 1084 * operation requires multiple syncs (i.e. removing a device) while 1085 * keeping the spa_namespace_lock held. 1086 */ 1087 uint64_t 1088 spa_vdev_config_enter(spa_t *spa) 1089 { 1090 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1091 1092 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1093 1094 return (spa_last_synced_txg(spa) + 1); 1095 } 1096 1097 /* 1098 * Used in combination with spa_vdev_config_enter() to allow the syncing 1099 * of multiple transactions without releasing the spa_namespace_lock. 1100 */ 1101 void 1102 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1103 { 1104 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1105 1106 int config_changed = B_FALSE; 1107 1108 ASSERT(txg > spa_last_synced_txg(spa)); 1109 1110 spa->spa_pending_vdev = NULL; 1111 1112 /* 1113 * Reassess the DTLs. 1114 */ 1115 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 1116 1117 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1118 config_changed = B_TRUE; 1119 spa->spa_config_generation++; 1120 } 1121 1122 /* 1123 * Verify the metaslab classes. 1124 */ 1125 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1126 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1127 1128 spa_config_exit(spa, SCL_ALL, spa); 1129 1130 /* 1131 * Panic the system if the specified tag requires it. This 1132 * is useful for ensuring that configurations are updated 1133 * transactionally. 1134 */ 1135 if (zio_injection_enabled) 1136 zio_handle_panic_injection(spa, tag, 0); 1137 1138 /* 1139 * Note: this txg_wait_synced() is important because it ensures 1140 * that there won't be more than one config change per txg. 1141 * This allows us to use the txg as the generation number. 1142 */ 1143 if (error == 0) 1144 txg_wait_synced(spa->spa_dsl_pool, txg); 1145 1146 if (vd != NULL) { 1147 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1148 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1149 vdev_free(vd); 1150 spa_config_exit(spa, SCL_ALL, spa); 1151 } 1152 1153 /* 1154 * If the config changed, update the config cache. 1155 */ 1156 if (config_changed) 1157 spa_config_sync(spa, B_FALSE, B_TRUE); 1158 } 1159 1160 /* 1161 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1162 * locking of spa_vdev_enter(), we also want make sure the transactions have 1163 * synced to disk, and then update the global configuration cache with the new 1164 * information. 1165 */ 1166 int 1167 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1168 { 1169 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1170 mutex_exit(&spa_namespace_lock); 1171 mutex_exit(&spa->spa_vdev_top_lock); 1172 1173 return (error); 1174 } 1175 1176 /* 1177 * Lock the given spa_t for the purpose of changing vdev state. 1178 */ 1179 void 1180 spa_vdev_state_enter(spa_t *spa, int oplocks) 1181 { 1182 int locks = SCL_STATE_ALL | oplocks; 1183 1184 /* 1185 * Root pools may need to read of the underlying devfs filesystem 1186 * when opening up a vdev. Unfortunately if we're holding the 1187 * SCL_ZIO lock it will result in a deadlock when we try to issue 1188 * the read from the root filesystem. Instead we "prefetch" 1189 * the associated vnodes that we need prior to opening the 1190 * underlying devices and cache them so that we can prevent 1191 * any I/O when we are doing the actual open. 1192 */ 1193 if (spa_is_root(spa)) { 1194 int low = locks & ~(SCL_ZIO - 1); 1195 int high = locks & ~low; 1196 1197 spa_config_enter(spa, high, spa, RW_WRITER); 1198 vdev_hold(spa->spa_root_vdev); 1199 spa_config_enter(spa, low, spa, RW_WRITER); 1200 } else { 1201 spa_config_enter(spa, locks, spa, RW_WRITER); 1202 } 1203 spa->spa_vdev_locks = locks; 1204 } 1205 1206 int 1207 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1208 { 1209 boolean_t config_changed = B_FALSE; 1210 1211 if (vd != NULL || error == 0) 1212 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1213 0, 0, B_FALSE); 1214 1215 if (vd != NULL) { 1216 vdev_state_dirty(vd->vdev_top); 1217 config_changed = B_TRUE; 1218 spa->spa_config_generation++; 1219 } 1220 1221 if (spa_is_root(spa)) 1222 vdev_rele(spa->spa_root_vdev); 1223 1224 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1225 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1226 1227 /* 1228 * If anything changed, wait for it to sync. This ensures that, 1229 * from the system administrator's perspective, zpool(1M) commands 1230 * are synchronous. This is important for things like zpool offline: 1231 * when the command completes, you expect no further I/O from ZFS. 1232 */ 1233 if (vd != NULL) 1234 txg_wait_synced(spa->spa_dsl_pool, 0); 1235 1236 /* 1237 * If the config changed, update the config cache. 1238 */ 1239 if (config_changed) { 1240 mutex_enter(&spa_namespace_lock); 1241 spa_config_sync(spa, B_FALSE, B_TRUE); 1242 mutex_exit(&spa_namespace_lock); 1243 } 1244 1245 return (error); 1246 } 1247 1248 /* 1249 * ========================================================================== 1250 * Miscellaneous functions 1251 * ========================================================================== 1252 */ 1253 1254 void 1255 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1256 { 1257 if (!nvlist_exists(spa->spa_label_features, feature)) { 1258 fnvlist_add_boolean(spa->spa_label_features, feature); 1259 /* 1260 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1261 * dirty the vdev config because lock SCL_CONFIG is not held. 1262 * Thankfully, in this case we don't need to dirty the config 1263 * because it will be written out anyway when we finish 1264 * creating the pool. 1265 */ 1266 if (tx->tx_txg != TXG_INITIAL) 1267 vdev_config_dirty(spa->spa_root_vdev); 1268 } 1269 } 1270 1271 void 1272 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1273 { 1274 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1275 vdev_config_dirty(spa->spa_root_vdev); 1276 } 1277 1278 /* 1279 * Rename a spa_t. 1280 */ 1281 int 1282 spa_rename(const char *name, const char *newname) 1283 { 1284 spa_t *spa; 1285 int err; 1286 1287 /* 1288 * Lookup the spa_t and grab the config lock for writing. We need to 1289 * actually open the pool so that we can sync out the necessary labels. 1290 * It's OK to call spa_open() with the namespace lock held because we 1291 * allow recursive calls for other reasons. 1292 */ 1293 mutex_enter(&spa_namespace_lock); 1294 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1295 mutex_exit(&spa_namespace_lock); 1296 return (err); 1297 } 1298 1299 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1300 1301 avl_remove(&spa_namespace_avl, spa); 1302 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1303 avl_add(&spa_namespace_avl, spa); 1304 1305 /* 1306 * Sync all labels to disk with the new names by marking the root vdev 1307 * dirty and waiting for it to sync. It will pick up the new pool name 1308 * during the sync. 1309 */ 1310 vdev_config_dirty(spa->spa_root_vdev); 1311 1312 spa_config_exit(spa, SCL_ALL, FTAG); 1313 1314 txg_wait_synced(spa->spa_dsl_pool, 0); 1315 1316 /* 1317 * Sync the updated config cache. 1318 */ 1319 spa_config_sync(spa, B_FALSE, B_TRUE); 1320 1321 spa_close(spa, FTAG); 1322 1323 mutex_exit(&spa_namespace_lock); 1324 1325 return (0); 1326 } 1327 1328 /* 1329 * Return the spa_t associated with given pool_guid, if it exists. If 1330 * device_guid is non-zero, determine whether the pool exists *and* contains 1331 * a device with the specified device_guid. 1332 */ 1333 spa_t * 1334 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1335 { 1336 spa_t *spa; 1337 avl_tree_t *t = &spa_namespace_avl; 1338 1339 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1340 1341 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1342 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1343 continue; 1344 if (spa->spa_root_vdev == NULL) 1345 continue; 1346 if (spa_guid(spa) == pool_guid) { 1347 if (device_guid == 0) 1348 break; 1349 1350 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1351 device_guid) != NULL) 1352 break; 1353 1354 /* 1355 * Check any devices we may be in the process of adding. 1356 */ 1357 if (spa->spa_pending_vdev) { 1358 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1359 device_guid) != NULL) 1360 break; 1361 } 1362 } 1363 } 1364 1365 return (spa); 1366 } 1367 1368 /* 1369 * Determine whether a pool with the given pool_guid exists. 1370 */ 1371 boolean_t 1372 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1373 { 1374 return (spa_by_guid(pool_guid, device_guid) != NULL); 1375 } 1376 1377 char * 1378 spa_strdup(const char *s) 1379 { 1380 size_t len; 1381 char *new; 1382 1383 len = strlen(s); 1384 new = kmem_alloc(len + 1, KM_SLEEP); 1385 bcopy(s, new, len); 1386 new[len] = '\0'; 1387 1388 return (new); 1389 } 1390 1391 void 1392 spa_strfree(char *s) 1393 { 1394 kmem_free(s, strlen(s) + 1); 1395 } 1396 1397 uint64_t 1398 spa_get_random(uint64_t range) 1399 { 1400 uint64_t r; 1401 1402 ASSERT(range != 0); 1403 1404 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1405 1406 return (r % range); 1407 } 1408 1409 uint64_t 1410 spa_generate_guid(spa_t *spa) 1411 { 1412 uint64_t guid = spa_get_random(-1ULL); 1413 1414 if (spa != NULL) { 1415 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1416 guid = spa_get_random(-1ULL); 1417 } else { 1418 while (guid == 0 || spa_guid_exists(guid, 0)) 1419 guid = spa_get_random(-1ULL); 1420 } 1421 1422 return (guid); 1423 } 1424 1425 void 1426 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1427 { 1428 char type[256]; 1429 char *checksum = NULL; 1430 char *compress = NULL; 1431 1432 if (bp != NULL) { 1433 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1434 dmu_object_byteswap_t bswap = 1435 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1436 (void) snprintf(type, sizeof (type), "bswap %s %s", 1437 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1438 "metadata" : "data", 1439 dmu_ot_byteswap[bswap].ob_name); 1440 } else { 1441 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1442 sizeof (type)); 1443 } 1444 if (!BP_IS_EMBEDDED(bp)) { 1445 checksum = 1446 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1447 } 1448 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1449 } 1450 1451 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1452 compress); 1453 } 1454 1455 void 1456 spa_freeze(spa_t *spa) 1457 { 1458 uint64_t freeze_txg = 0; 1459 1460 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1461 if (spa->spa_freeze_txg == UINT64_MAX) { 1462 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1463 spa->spa_freeze_txg = freeze_txg; 1464 } 1465 spa_config_exit(spa, SCL_ALL, FTAG); 1466 if (freeze_txg != 0) 1467 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1468 } 1469 1470 void 1471 zfs_panic_recover(const char *fmt, ...) 1472 { 1473 va_list adx; 1474 1475 va_start(adx, fmt); 1476 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1477 va_end(adx); 1478 } 1479 1480 /* 1481 * This is a stripped-down version of strtoull, suitable only for converting 1482 * lowercase hexadecimal numbers that don't overflow. 1483 */ 1484 uint64_t 1485 zfs_strtonum(const char *str, char **nptr) 1486 { 1487 uint64_t val = 0; 1488 char c; 1489 int digit; 1490 1491 while ((c = *str) != '\0') { 1492 if (c >= '0' && c <= '9') 1493 digit = c - '0'; 1494 else if (c >= 'a' && c <= 'f') 1495 digit = 10 + c - 'a'; 1496 else 1497 break; 1498 1499 val *= 16; 1500 val += digit; 1501 1502 str++; 1503 } 1504 1505 if (nptr) 1506 *nptr = (char *)str; 1507 1508 return (val); 1509 } 1510 1511 /* 1512 * ========================================================================== 1513 * Accessor functions 1514 * ========================================================================== 1515 */ 1516 1517 boolean_t 1518 spa_shutting_down(spa_t *spa) 1519 { 1520 return (spa->spa_async_suspended); 1521 } 1522 1523 dsl_pool_t * 1524 spa_get_dsl(spa_t *spa) 1525 { 1526 return (spa->spa_dsl_pool); 1527 } 1528 1529 boolean_t 1530 spa_is_initializing(spa_t *spa) 1531 { 1532 return (spa->spa_is_initializing); 1533 } 1534 1535 blkptr_t * 1536 spa_get_rootblkptr(spa_t *spa) 1537 { 1538 return (&spa->spa_ubsync.ub_rootbp); 1539 } 1540 1541 void 1542 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1543 { 1544 spa->spa_uberblock.ub_rootbp = *bp; 1545 } 1546 1547 void 1548 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1549 { 1550 if (spa->spa_root == NULL) 1551 buf[0] = '\0'; 1552 else 1553 (void) strncpy(buf, spa->spa_root, buflen); 1554 } 1555 1556 int 1557 spa_sync_pass(spa_t *spa) 1558 { 1559 return (spa->spa_sync_pass); 1560 } 1561 1562 char * 1563 spa_name(spa_t *spa) 1564 { 1565 return (spa->spa_name); 1566 } 1567 1568 uint64_t 1569 spa_guid(spa_t *spa) 1570 { 1571 dsl_pool_t *dp = spa_get_dsl(spa); 1572 uint64_t guid; 1573 1574 /* 1575 * If we fail to parse the config during spa_load(), we can go through 1576 * the error path (which posts an ereport) and end up here with no root 1577 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1578 * this case. 1579 */ 1580 if (spa->spa_root_vdev == NULL) 1581 return (spa->spa_config_guid); 1582 1583 guid = spa->spa_last_synced_guid != 0 ? 1584 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1585 1586 /* 1587 * Return the most recently synced out guid unless we're 1588 * in syncing context. 1589 */ 1590 if (dp && dsl_pool_sync_context(dp)) 1591 return (spa->spa_root_vdev->vdev_guid); 1592 else 1593 return (guid); 1594 } 1595 1596 uint64_t 1597 spa_load_guid(spa_t *spa) 1598 { 1599 /* 1600 * This is a GUID that exists solely as a reference for the 1601 * purposes of the arc. It is generated at load time, and 1602 * is never written to persistent storage. 1603 */ 1604 return (spa->spa_load_guid); 1605 } 1606 1607 uint64_t 1608 spa_last_synced_txg(spa_t *spa) 1609 { 1610 return (spa->spa_ubsync.ub_txg); 1611 } 1612 1613 uint64_t 1614 spa_first_txg(spa_t *spa) 1615 { 1616 return (spa->spa_first_txg); 1617 } 1618 1619 uint64_t 1620 spa_syncing_txg(spa_t *spa) 1621 { 1622 return (spa->spa_syncing_txg); 1623 } 1624 1625 /* 1626 * Return the last txg where data can be dirtied. The final txgs 1627 * will be used to just clear out any deferred frees that remain. 1628 */ 1629 uint64_t 1630 spa_final_dirty_txg(spa_t *spa) 1631 { 1632 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1633 } 1634 1635 pool_state_t 1636 spa_state(spa_t *spa) 1637 { 1638 return (spa->spa_state); 1639 } 1640 1641 spa_load_state_t 1642 spa_load_state(spa_t *spa) 1643 { 1644 return (spa->spa_load_state); 1645 } 1646 1647 uint64_t 1648 spa_freeze_txg(spa_t *spa) 1649 { 1650 return (spa->spa_freeze_txg); 1651 } 1652 1653 /* ARGSUSED */ 1654 uint64_t 1655 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1656 { 1657 return (lsize * spa_asize_inflation); 1658 } 1659 1660 /* 1661 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%), 1662 * or at least 128MB, unless that would cause it to be more than half the 1663 * pool size. 1664 * 1665 * See the comment above spa_slop_shift for details. 1666 */ 1667 uint64_t 1668 spa_get_slop_space(spa_t *spa) 1669 { 1670 uint64_t space = spa_get_dspace(spa); 1671 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop))); 1672 } 1673 1674 uint64_t 1675 spa_get_dspace(spa_t *spa) 1676 { 1677 return (spa->spa_dspace); 1678 } 1679 1680 void 1681 spa_update_dspace(spa_t *spa) 1682 { 1683 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1684 ddt_get_dedup_dspace(spa); 1685 } 1686 1687 /* 1688 * Return the failure mode that has been set to this pool. The default 1689 * behavior will be to block all I/Os when a complete failure occurs. 1690 */ 1691 uint8_t 1692 spa_get_failmode(spa_t *spa) 1693 { 1694 return (spa->spa_failmode); 1695 } 1696 1697 boolean_t 1698 spa_suspended(spa_t *spa) 1699 { 1700 return (spa->spa_suspended); 1701 } 1702 1703 uint64_t 1704 spa_version(spa_t *spa) 1705 { 1706 return (spa->spa_ubsync.ub_version); 1707 } 1708 1709 boolean_t 1710 spa_deflate(spa_t *spa) 1711 { 1712 return (spa->spa_deflate); 1713 } 1714 1715 metaslab_class_t * 1716 spa_normal_class(spa_t *spa) 1717 { 1718 return (spa->spa_normal_class); 1719 } 1720 1721 metaslab_class_t * 1722 spa_log_class(spa_t *spa) 1723 { 1724 return (spa->spa_log_class); 1725 } 1726 1727 void 1728 spa_evicting_os_register(spa_t *spa, objset_t *os) 1729 { 1730 mutex_enter(&spa->spa_evicting_os_lock); 1731 list_insert_head(&spa->spa_evicting_os_list, os); 1732 mutex_exit(&spa->spa_evicting_os_lock); 1733 } 1734 1735 void 1736 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 1737 { 1738 mutex_enter(&spa->spa_evicting_os_lock); 1739 list_remove(&spa->spa_evicting_os_list, os); 1740 cv_broadcast(&spa->spa_evicting_os_cv); 1741 mutex_exit(&spa->spa_evicting_os_lock); 1742 } 1743 1744 void 1745 spa_evicting_os_wait(spa_t *spa) 1746 { 1747 mutex_enter(&spa->spa_evicting_os_lock); 1748 while (!list_is_empty(&spa->spa_evicting_os_list)) 1749 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 1750 mutex_exit(&spa->spa_evicting_os_lock); 1751 1752 dmu_buf_user_evict_wait(); 1753 } 1754 1755 int 1756 spa_max_replication(spa_t *spa) 1757 { 1758 /* 1759 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1760 * handle BPs with more than one DVA allocated. Set our max 1761 * replication level accordingly. 1762 */ 1763 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1764 return (1); 1765 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1766 } 1767 1768 int 1769 spa_prev_software_version(spa_t *spa) 1770 { 1771 return (spa->spa_prev_software_version); 1772 } 1773 1774 uint64_t 1775 spa_deadman_synctime(spa_t *spa) 1776 { 1777 return (spa->spa_deadman_synctime); 1778 } 1779 1780 uint64_t 1781 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1782 { 1783 uint64_t asize = DVA_GET_ASIZE(dva); 1784 uint64_t dsize = asize; 1785 1786 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1787 1788 if (asize != 0 && spa->spa_deflate) { 1789 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1790 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1791 } 1792 1793 return (dsize); 1794 } 1795 1796 uint64_t 1797 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1798 { 1799 uint64_t dsize = 0; 1800 1801 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 1802 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1803 1804 return (dsize); 1805 } 1806 1807 uint64_t 1808 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1809 { 1810 uint64_t dsize = 0; 1811 1812 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1813 1814 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 1815 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1816 1817 spa_config_exit(spa, SCL_VDEV, FTAG); 1818 1819 return (dsize); 1820 } 1821 1822 /* 1823 * ========================================================================== 1824 * Initialization and Termination 1825 * ========================================================================== 1826 */ 1827 1828 static int 1829 spa_name_compare(const void *a1, const void *a2) 1830 { 1831 const spa_t *s1 = a1; 1832 const spa_t *s2 = a2; 1833 int s; 1834 1835 s = strcmp(s1->spa_name, s2->spa_name); 1836 if (s > 0) 1837 return (1); 1838 if (s < 0) 1839 return (-1); 1840 return (0); 1841 } 1842 1843 int 1844 spa_busy(void) 1845 { 1846 return (spa_active_count); 1847 } 1848 1849 void 1850 spa_boot_init() 1851 { 1852 spa_config_load(); 1853 } 1854 1855 void 1856 spa_init(int mode) 1857 { 1858 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1859 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1860 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1861 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1862 1863 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1864 offsetof(spa_t, spa_avl)); 1865 1866 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1867 offsetof(spa_aux_t, aux_avl)); 1868 1869 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1870 offsetof(spa_aux_t, aux_avl)); 1871 1872 spa_mode_global = mode; 1873 1874 #ifdef _KERNEL 1875 spa_arch_init(); 1876 #else 1877 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 1878 arc_procfd = open("/proc/self/ctl", O_WRONLY); 1879 if (arc_procfd == -1) { 1880 perror("could not enable watchpoints: " 1881 "opening /proc/self/ctl failed: "); 1882 } else { 1883 arc_watch = B_TRUE; 1884 } 1885 } 1886 #endif 1887 1888 refcount_init(); 1889 unique_init(); 1890 range_tree_init(); 1891 metaslab_alloc_trace_init(); 1892 zio_init(); 1893 dmu_init(); 1894 zil_init(); 1895 vdev_cache_stat_init(); 1896 zfs_prop_init(); 1897 zpool_prop_init(); 1898 zpool_feature_init(); 1899 spa_config_load(); 1900 l2arc_start(); 1901 } 1902 1903 void 1904 spa_fini(void) 1905 { 1906 l2arc_stop(); 1907 1908 spa_evict_all(); 1909 1910 vdev_cache_stat_fini(); 1911 zil_fini(); 1912 dmu_fini(); 1913 zio_fini(); 1914 metaslab_alloc_trace_fini(); 1915 range_tree_fini(); 1916 unique_fini(); 1917 refcount_fini(); 1918 1919 avl_destroy(&spa_namespace_avl); 1920 avl_destroy(&spa_spare_avl); 1921 avl_destroy(&spa_l2cache_avl); 1922 1923 cv_destroy(&spa_namespace_cv); 1924 mutex_destroy(&spa_namespace_lock); 1925 mutex_destroy(&spa_spare_lock); 1926 mutex_destroy(&spa_l2cache_lock); 1927 } 1928 1929 /* 1930 * Return whether this pool has slogs. No locking needed. 1931 * It's not a problem if the wrong answer is returned as it's only for 1932 * performance and not correctness 1933 */ 1934 boolean_t 1935 spa_has_slogs(spa_t *spa) 1936 { 1937 return (spa->spa_log_class->mc_rotor != NULL); 1938 } 1939 1940 spa_log_state_t 1941 spa_get_log_state(spa_t *spa) 1942 { 1943 return (spa->spa_log_state); 1944 } 1945 1946 void 1947 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1948 { 1949 spa->spa_log_state = state; 1950 } 1951 1952 boolean_t 1953 spa_is_root(spa_t *spa) 1954 { 1955 return (spa->spa_is_root); 1956 } 1957 1958 boolean_t 1959 spa_writeable(spa_t *spa) 1960 { 1961 return (!!(spa->spa_mode & FWRITE)); 1962 } 1963 1964 /* 1965 * Returns true if there is a pending sync task in any of the current 1966 * syncing txg, the current quiescing txg, or the current open txg. 1967 */ 1968 boolean_t 1969 spa_has_pending_synctask(spa_t *spa) 1970 { 1971 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks)); 1972 } 1973 1974 int 1975 spa_mode(spa_t *spa) 1976 { 1977 return (spa->spa_mode); 1978 } 1979 1980 uint64_t 1981 spa_bootfs(spa_t *spa) 1982 { 1983 return (spa->spa_bootfs); 1984 } 1985 1986 uint64_t 1987 spa_delegation(spa_t *spa) 1988 { 1989 return (spa->spa_delegation); 1990 } 1991 1992 objset_t * 1993 spa_meta_objset(spa_t *spa) 1994 { 1995 return (spa->spa_meta_objset); 1996 } 1997 1998 enum zio_checksum 1999 spa_dedup_checksum(spa_t *spa) 2000 { 2001 return (spa->spa_dedup_checksum); 2002 } 2003 2004 /* 2005 * Reset pool scan stat per scan pass (or reboot). 2006 */ 2007 void 2008 spa_scan_stat_init(spa_t *spa) 2009 { 2010 /* data not stored on disk */ 2011 spa->spa_scan_pass_start = gethrestime_sec(); 2012 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2013 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2014 else 2015 spa->spa_scan_pass_scrub_pause = 0; 2016 spa->spa_scan_pass_scrub_spent_paused = 0; 2017 spa->spa_scan_pass_exam = 0; 2018 vdev_scan_stat_init(spa->spa_root_vdev); 2019 } 2020 2021 /* 2022 * Get scan stats for zpool status reports 2023 */ 2024 int 2025 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2026 { 2027 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2028 2029 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 2030 return (SET_ERROR(ENOENT)); 2031 bzero(ps, sizeof (pool_scan_stat_t)); 2032 2033 /* data stored on disk */ 2034 ps->pss_func = scn->scn_phys.scn_func; 2035 ps->pss_start_time = scn->scn_phys.scn_start_time; 2036 ps->pss_end_time = scn->scn_phys.scn_end_time; 2037 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2038 ps->pss_examined = scn->scn_phys.scn_examined; 2039 ps->pss_to_process = scn->scn_phys.scn_to_process; 2040 ps->pss_processed = scn->scn_phys.scn_processed; 2041 ps->pss_errors = scn->scn_phys.scn_errors; 2042 ps->pss_state = scn->scn_phys.scn_state; 2043 2044 /* data not stored on disk */ 2045 ps->pss_pass_start = spa->spa_scan_pass_start; 2046 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2047 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2048 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2049 2050 return (0); 2051 } 2052 2053 boolean_t 2054 spa_debug_enabled(spa_t *spa) 2055 { 2056 return (spa->spa_debug); 2057 } 2058 2059 int 2060 spa_maxblocksize(spa_t *spa) 2061 { 2062 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2063 return (SPA_MAXBLOCKSIZE); 2064 else 2065 return (SPA_OLD_MAXBLOCKSIZE); 2066 } 2067