xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 85723e5eec42f46dbfdb4c09b9e1ed66501d1ccf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright (c) 2017 Datto Inc.
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/txg.h>
45 #include <sys/avl.h>
46 #include <sys/unique.h>
47 #include <sys/dsl_pool.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/arc.h>
54 #include <sys/ddt.h>
55 #include "zfs_prop.h"
56 #include <sys/zfeature.h>
57 
58 /*
59  * SPA locking
60  *
61  * There are four basic locks for managing spa_t structures:
62  *
63  * spa_namespace_lock (global mutex)
64  *
65  *	This lock must be acquired to do any of the following:
66  *
67  *		- Lookup a spa_t by name
68  *		- Add or remove a spa_t from the namespace
69  *		- Increase spa_refcount from non-zero
70  *		- Check if spa_refcount is zero
71  *		- Rename a spa_t
72  *		- add/remove/attach/detach devices
73  *		- Held for the duration of create/destroy/import/export
74  *
75  *	It does not need to handle recursion.  A create or destroy may
76  *	reference objects (files or zvols) in other pools, but by
77  *	definition they must have an existing reference, and will never need
78  *	to lookup a spa_t by name.
79  *
80  * spa_refcount (per-spa refcount_t protected by mutex)
81  *
82  *	This reference count keep track of any active users of the spa_t.  The
83  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
84  *	the refcount is never really 'zero' - opening a pool implicitly keeps
85  *	some references in the DMU.  Internally we check against spa_minref, but
86  *	present the image of a zero/non-zero value to consumers.
87  *
88  * spa_config_lock[] (per-spa array of rwlocks)
89  *
90  *	This protects the spa_t from config changes, and must be held in
91  *	the following circumstances:
92  *
93  *		- RW_READER to perform I/O to the spa
94  *		- RW_WRITER to change the vdev config
95  *
96  * The locking order is fairly straightforward:
97  *
98  *		spa_namespace_lock	->	spa_refcount
99  *
100  *	The namespace lock must be acquired to increase the refcount from 0
101  *	or to check if it is zero.
102  *
103  *		spa_refcount		->	spa_config_lock[]
104  *
105  *	There must be at least one valid reference on the spa_t to acquire
106  *	the config lock.
107  *
108  *		spa_namespace_lock	->	spa_config_lock[]
109  *
110  *	The namespace lock must always be taken before the config lock.
111  *
112  *
113  * The spa_namespace_lock can be acquired directly and is globally visible.
114  *
115  * The namespace is manipulated using the following functions, all of which
116  * require the spa_namespace_lock to be held.
117  *
118  *	spa_lookup()		Lookup a spa_t by name.
119  *
120  *	spa_add()		Create a new spa_t in the namespace.
121  *
122  *	spa_remove()		Remove a spa_t from the namespace.  This also
123  *				frees up any memory associated with the spa_t.
124  *
125  *	spa_next()		Returns the next spa_t in the system, or the
126  *				first if NULL is passed.
127  *
128  *	spa_evict_all()		Shutdown and remove all spa_t structures in
129  *				the system.
130  *
131  *	spa_guid_exists()	Determine whether a pool/device guid exists.
132  *
133  * The spa_refcount is manipulated using the following functions:
134  *
135  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
136  *				called with spa_namespace_lock held if the
137  *				refcount is currently zero.
138  *
139  *	spa_close()		Remove a reference from the spa_t.  This will
140  *				not free the spa_t or remove it from the
141  *				namespace.  No locking is required.
142  *
143  *	spa_refcount_zero()	Returns true if the refcount is currently
144  *				zero.  Must be called with spa_namespace_lock
145  *				held.
146  *
147  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
148  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
149  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
150  *
151  * To read the configuration, it suffices to hold one of these locks as reader.
152  * To modify the configuration, you must hold all locks as writer.  To modify
153  * vdev state without altering the vdev tree's topology (e.g. online/offline),
154  * you must hold SCL_STATE and SCL_ZIO as writer.
155  *
156  * We use these distinct config locks to avoid recursive lock entry.
157  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
158  * block allocations (SCL_ALLOC), which may require reading space maps
159  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
160  *
161  * The spa config locks cannot be normal rwlocks because we need the
162  * ability to hand off ownership.  For example, SCL_ZIO is acquired
163  * by the issuing thread and later released by an interrupt thread.
164  * They do, however, obey the usual write-wanted semantics to prevent
165  * writer (i.e. system administrator) starvation.
166  *
167  * The lock acquisition rules are as follows:
168  *
169  * SCL_CONFIG
170  *	Protects changes to the vdev tree topology, such as vdev
171  *	add/remove/attach/detach.  Protects the dirty config list
172  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
173  *
174  * SCL_STATE
175  *	Protects changes to pool state and vdev state, such as vdev
176  *	online/offline/fault/degrade/clear.  Protects the dirty state list
177  *	(spa_state_dirty_list) and global pool state (spa_state).
178  *
179  * SCL_ALLOC
180  *	Protects changes to metaslab groups and classes.
181  *	Held as reader by metaslab_alloc() and metaslab_claim().
182  *
183  * SCL_ZIO
184  *	Held by bp-level zios (those which have no io_vd upon entry)
185  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
186  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
187  *
188  * SCL_FREE
189  *	Protects changes to metaslab groups and classes.
190  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
191  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
192  *	blocks in zio_done() while another i/o that holds either
193  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
194  *
195  * SCL_VDEV
196  *	Held as reader to prevent changes to the vdev tree during trivial
197  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
198  *	other locks, and lower than all of them, to ensure that it's safe
199  *	to acquire regardless of caller context.
200  *
201  * In addition, the following rules apply:
202  *
203  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
204  *	The lock ordering is SCL_CONFIG > spa_props_lock.
205  *
206  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
207  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
208  *	or zio_write_phys() -- the caller must ensure that the config cannot
209  *	cannot change in the interim, and that the vdev cannot be reopened.
210  *	SCL_STATE as reader suffices for both.
211  *
212  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
213  *
214  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
215  *				for writing.
216  *
217  *	spa_vdev_exit()		Release the config lock, wait for all I/O
218  *				to complete, sync the updated configs to the
219  *				cache, and release the namespace lock.
220  *
221  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
222  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
223  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
224  *
225  * spa_rename() is also implemented within this file since it requires
226  * manipulation of the namespace.
227  */
228 
229 static avl_tree_t spa_namespace_avl;
230 kmutex_t spa_namespace_lock;
231 static kcondvar_t spa_namespace_cv;
232 static int spa_active_count;
233 int spa_max_replication_override = SPA_DVAS_PER_BP;
234 
235 static kmutex_t spa_spare_lock;
236 static avl_tree_t spa_spare_avl;
237 static kmutex_t spa_l2cache_lock;
238 static avl_tree_t spa_l2cache_avl;
239 
240 kmem_cache_t *spa_buffer_pool;
241 int spa_mode_global;
242 
243 #ifdef ZFS_DEBUG
244 /*
245  * Everything except dprintf, spa, and indirect_remap is on by default
246  * in debug builds.
247  */
248 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA | ZFS_DEBUG_INDIRECT_REMAP);
249 #else
250 int zfs_flags = 0;
251 #endif
252 
253 /*
254  * zfs_recover can be set to nonzero to attempt to recover from
255  * otherwise-fatal errors, typically caused by on-disk corruption.  When
256  * set, calls to zfs_panic_recover() will turn into warning messages.
257  * This should only be used as a last resort, as it typically results
258  * in leaked space, or worse.
259  */
260 boolean_t zfs_recover = B_FALSE;
261 
262 /*
263  * If destroy encounters an EIO while reading metadata (e.g. indirect
264  * blocks), space referenced by the missing metadata can not be freed.
265  * Normally this causes the background destroy to become "stalled", as
266  * it is unable to make forward progress.  While in this stalled state,
267  * all remaining space to free from the error-encountering filesystem is
268  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
269  * permanently leak the space from indirect blocks that can not be read,
270  * and continue to free everything else that it can.
271  *
272  * The default, "stalling" behavior is useful if the storage partially
273  * fails (i.e. some but not all i/os fail), and then later recovers.  In
274  * this case, we will be able to continue pool operations while it is
275  * partially failed, and when it recovers, we can continue to free the
276  * space, with no leaks.  However, note that this case is actually
277  * fairly rare.
278  *
279  * Typically pools either (a) fail completely (but perhaps temporarily,
280  * e.g. a top-level vdev going offline), or (b) have localized,
281  * permanent errors (e.g. disk returns the wrong data due to bit flip or
282  * firmware bug).  In case (a), this setting does not matter because the
283  * pool will be suspended and the sync thread will not be able to make
284  * forward progress regardless.  In case (b), because the error is
285  * permanent, the best we can do is leak the minimum amount of space,
286  * which is what setting this flag will do.  Therefore, it is reasonable
287  * for this flag to normally be set, but we chose the more conservative
288  * approach of not setting it, so that there is no possibility of
289  * leaking space in the "partial temporary" failure case.
290  */
291 boolean_t zfs_free_leak_on_eio = B_FALSE;
292 
293 /*
294  * Expiration time in milliseconds. This value has two meanings. First it is
295  * used to determine when the spa_deadman() logic should fire. By default the
296  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
297  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
298  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
299  * in a system panic.
300  */
301 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
302 
303 /*
304  * Check time in milliseconds. This defines the frequency at which we check
305  * for hung I/O.
306  */
307 uint64_t zfs_deadman_checktime_ms = 5000ULL;
308 
309 /*
310  * Override the zfs deadman behavior via /etc/system. By default the
311  * deadman is enabled except on VMware and sparc deployments.
312  */
313 int zfs_deadman_enabled = -1;
314 
315 /*
316  * The worst case is single-sector max-parity RAID-Z blocks, in which
317  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
318  * times the size; so just assume that.  Add to this the fact that
319  * we can have up to 3 DVAs per bp, and one more factor of 2 because
320  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
321  * the worst case is:
322  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
323  */
324 int spa_asize_inflation = 24;
325 
326 /*
327  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
328  * the pool to be consumed.  This ensures that we don't run the pool
329  * completely out of space, due to unaccounted changes (e.g. to the MOS).
330  * It also limits the worst-case time to allocate space.  If we have
331  * less than this amount of free space, most ZPL operations (e.g. write,
332  * create) will return ENOSPC.
333  *
334  * Certain operations (e.g. file removal, most administrative actions) can
335  * use half the slop space.  They will only return ENOSPC if less than half
336  * the slop space is free.  Typically, once the pool has less than the slop
337  * space free, the user will use these operations to free up space in the pool.
338  * These are the operations that call dsl_pool_adjustedsize() with the netfree
339  * argument set to TRUE.
340  *
341  * A very restricted set of operations are always permitted, regardless of
342  * the amount of free space.  These are the operations that call
343  * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
344  * operations result in a net increase in the amount of space used,
345  * it is possible to run the pool completely out of space, causing it to
346  * be permanently read-only.
347  *
348  * Note that on very small pools, the slop space will be larger than
349  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
350  * but we never allow it to be more than half the pool size.
351  *
352  * See also the comments in zfs_space_check_t.
353  */
354 int spa_slop_shift = 5;
355 uint64_t spa_min_slop = 128 * 1024 * 1024;
356 
357 /*PRINTFLIKE2*/
358 void
359 spa_load_failed(spa_t *spa, const char *fmt, ...)
360 {
361 	va_list adx;
362 	char buf[256];
363 
364 	va_start(adx, fmt);
365 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
366 	va_end(adx);
367 
368 	zfs_dbgmsg("spa_load(%s): FAILED: %s", spa->spa_name, buf);
369 }
370 
371 /*PRINTFLIKE2*/
372 void
373 spa_load_note(spa_t *spa, const char *fmt, ...)
374 {
375 	va_list adx;
376 	char buf[256];
377 
378 	va_start(adx, fmt);
379 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
380 	va_end(adx);
381 
382 	zfs_dbgmsg("spa_load(%s): %s", spa->spa_name, buf);
383 }
384 
385 /*
386  * ==========================================================================
387  * SPA config locking
388  * ==========================================================================
389  */
390 static void
391 spa_config_lock_init(spa_t *spa)
392 {
393 	for (int i = 0; i < SCL_LOCKS; i++) {
394 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
395 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
396 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
397 		refcount_create_untracked(&scl->scl_count);
398 		scl->scl_writer = NULL;
399 		scl->scl_write_wanted = 0;
400 	}
401 }
402 
403 static void
404 spa_config_lock_destroy(spa_t *spa)
405 {
406 	for (int i = 0; i < SCL_LOCKS; i++) {
407 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
408 		mutex_destroy(&scl->scl_lock);
409 		cv_destroy(&scl->scl_cv);
410 		refcount_destroy(&scl->scl_count);
411 		ASSERT(scl->scl_writer == NULL);
412 		ASSERT(scl->scl_write_wanted == 0);
413 	}
414 }
415 
416 int
417 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
418 {
419 	for (int i = 0; i < SCL_LOCKS; i++) {
420 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
421 		if (!(locks & (1 << i)))
422 			continue;
423 		mutex_enter(&scl->scl_lock);
424 		if (rw == RW_READER) {
425 			if (scl->scl_writer || scl->scl_write_wanted) {
426 				mutex_exit(&scl->scl_lock);
427 				spa_config_exit(spa, locks & ((1 << i) - 1),
428 				    tag);
429 				return (0);
430 			}
431 		} else {
432 			ASSERT(scl->scl_writer != curthread);
433 			if (!refcount_is_zero(&scl->scl_count)) {
434 				mutex_exit(&scl->scl_lock);
435 				spa_config_exit(spa, locks & ((1 << i) - 1),
436 				    tag);
437 				return (0);
438 			}
439 			scl->scl_writer = curthread;
440 		}
441 		(void) refcount_add(&scl->scl_count, tag);
442 		mutex_exit(&scl->scl_lock);
443 	}
444 	return (1);
445 }
446 
447 void
448 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
449 {
450 	int wlocks_held = 0;
451 
452 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
453 
454 	for (int i = 0; i < SCL_LOCKS; i++) {
455 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
456 		if (scl->scl_writer == curthread)
457 			wlocks_held |= (1 << i);
458 		if (!(locks & (1 << i)))
459 			continue;
460 		mutex_enter(&scl->scl_lock);
461 		if (rw == RW_READER) {
462 			while (scl->scl_writer || scl->scl_write_wanted) {
463 				cv_wait(&scl->scl_cv, &scl->scl_lock);
464 			}
465 		} else {
466 			ASSERT(scl->scl_writer != curthread);
467 			while (!refcount_is_zero(&scl->scl_count)) {
468 				scl->scl_write_wanted++;
469 				cv_wait(&scl->scl_cv, &scl->scl_lock);
470 				scl->scl_write_wanted--;
471 			}
472 			scl->scl_writer = curthread;
473 		}
474 		(void) refcount_add(&scl->scl_count, tag);
475 		mutex_exit(&scl->scl_lock);
476 	}
477 	ASSERT3U(wlocks_held, <=, locks);
478 }
479 
480 void
481 spa_config_exit(spa_t *spa, int locks, void *tag)
482 {
483 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
484 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
485 		if (!(locks & (1 << i)))
486 			continue;
487 		mutex_enter(&scl->scl_lock);
488 		ASSERT(!refcount_is_zero(&scl->scl_count));
489 		if (refcount_remove(&scl->scl_count, tag) == 0) {
490 			ASSERT(scl->scl_writer == NULL ||
491 			    scl->scl_writer == curthread);
492 			scl->scl_writer = NULL;	/* OK in either case */
493 			cv_broadcast(&scl->scl_cv);
494 		}
495 		mutex_exit(&scl->scl_lock);
496 	}
497 }
498 
499 int
500 spa_config_held(spa_t *spa, int locks, krw_t rw)
501 {
502 	int locks_held = 0;
503 
504 	for (int i = 0; i < SCL_LOCKS; i++) {
505 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
506 		if (!(locks & (1 << i)))
507 			continue;
508 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
509 		    (rw == RW_WRITER && scl->scl_writer == curthread))
510 			locks_held |= 1 << i;
511 	}
512 
513 	return (locks_held);
514 }
515 
516 /*
517  * ==========================================================================
518  * SPA namespace functions
519  * ==========================================================================
520  */
521 
522 /*
523  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
524  * Returns NULL if no matching spa_t is found.
525  */
526 spa_t *
527 spa_lookup(const char *name)
528 {
529 	static spa_t search;	/* spa_t is large; don't allocate on stack */
530 	spa_t *spa;
531 	avl_index_t where;
532 	char *cp;
533 
534 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
535 
536 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
537 
538 	/*
539 	 * If it's a full dataset name, figure out the pool name and
540 	 * just use that.
541 	 */
542 	cp = strpbrk(search.spa_name, "/@#");
543 	if (cp != NULL)
544 		*cp = '\0';
545 
546 	spa = avl_find(&spa_namespace_avl, &search, &where);
547 
548 	return (spa);
549 }
550 
551 /*
552  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
553  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
554  * looking for potentially hung I/Os.
555  */
556 void
557 spa_deadman(void *arg)
558 {
559 	spa_t *spa = arg;
560 
561 	/*
562 	 * Disable the deadman timer if the pool is suspended.
563 	 */
564 	if (spa_suspended(spa)) {
565 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
566 		return;
567 	}
568 
569 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
570 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
571 	    ++spa->spa_deadman_calls);
572 	if (zfs_deadman_enabled)
573 		vdev_deadman(spa->spa_root_vdev);
574 }
575 
576 /*
577  * Create an uninitialized spa_t with the given name.  Requires
578  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
579  * exist by calling spa_lookup() first.
580  */
581 spa_t *
582 spa_add(const char *name, nvlist_t *config, const char *altroot)
583 {
584 	spa_t *spa;
585 	spa_config_dirent_t *dp;
586 	cyc_handler_t hdlr;
587 	cyc_time_t when;
588 
589 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
590 
591 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
592 
593 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
594 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
595 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
596 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
597 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
598 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
599 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
600 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
601 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
602 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
603 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
604 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
605 	mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
606 
607 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
608 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
609 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
610 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
611 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
612 
613 	for (int t = 0; t < TXG_SIZE; t++)
614 		bplist_create(&spa->spa_free_bplist[t]);
615 
616 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
617 	spa->spa_state = POOL_STATE_UNINITIALIZED;
618 	spa->spa_freeze_txg = UINT64_MAX;
619 	spa->spa_final_txg = UINT64_MAX;
620 	spa->spa_load_max_txg = UINT64_MAX;
621 	spa->spa_proc = &p0;
622 	spa->spa_proc_state = SPA_PROC_NONE;
623 
624 	hdlr.cyh_func = spa_deadman;
625 	hdlr.cyh_arg = spa;
626 	hdlr.cyh_level = CY_LOW_LEVEL;
627 
628 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
629 
630 	/*
631 	 * This determines how often we need to check for hung I/Os after
632 	 * the cyclic has already fired. Since checking for hung I/Os is
633 	 * an expensive operation we don't want to check too frequently.
634 	 * Instead wait for 5 seconds before checking again.
635 	 */
636 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
637 	when.cyt_when = CY_INFINITY;
638 	mutex_enter(&cpu_lock);
639 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
640 	mutex_exit(&cpu_lock);
641 
642 	refcount_create(&spa->spa_refcount);
643 	spa_config_lock_init(spa);
644 
645 	avl_add(&spa_namespace_avl, spa);
646 
647 	/*
648 	 * Set the alternate root, if there is one.
649 	 */
650 	if (altroot) {
651 		spa->spa_root = spa_strdup(altroot);
652 		spa_active_count++;
653 	}
654 
655 	avl_create(&spa->spa_alloc_tree, zio_bookmark_compare,
656 	    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
657 
658 	/*
659 	 * Every pool starts with the default cachefile
660 	 */
661 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
662 	    offsetof(spa_config_dirent_t, scd_link));
663 
664 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
665 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
666 	list_insert_head(&spa->spa_config_list, dp);
667 
668 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
669 	    KM_SLEEP) == 0);
670 
671 	if (config != NULL) {
672 		nvlist_t *features;
673 
674 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
675 		    &features) == 0) {
676 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
677 			    0) == 0);
678 		}
679 
680 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
681 	}
682 
683 	if (spa->spa_label_features == NULL) {
684 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
685 		    KM_SLEEP) == 0);
686 	}
687 
688 	spa->spa_iokstat = kstat_create("zfs", 0, name,
689 	    "disk", KSTAT_TYPE_IO, 1, 0);
690 	if (spa->spa_iokstat) {
691 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
692 		kstat_install(spa->spa_iokstat);
693 	}
694 
695 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
696 
697 	spa->spa_min_ashift = INT_MAX;
698 	spa->spa_max_ashift = 0;
699 
700 	/*
701 	 * As a pool is being created, treat all features as disabled by
702 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
703 	 * refcount cache.
704 	 */
705 	for (int i = 0; i < SPA_FEATURES; i++) {
706 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
707 	}
708 
709 	return (spa);
710 }
711 
712 /*
713  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
714  * spa_namespace_lock.  This is called only after the spa_t has been closed and
715  * deactivated.
716  */
717 void
718 spa_remove(spa_t *spa)
719 {
720 	spa_config_dirent_t *dp;
721 
722 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
723 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
724 	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
725 
726 	nvlist_free(spa->spa_config_splitting);
727 
728 	avl_remove(&spa_namespace_avl, spa);
729 	cv_broadcast(&spa_namespace_cv);
730 
731 	if (spa->spa_root) {
732 		spa_strfree(spa->spa_root);
733 		spa_active_count--;
734 	}
735 
736 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
737 		list_remove(&spa->spa_config_list, dp);
738 		if (dp->scd_path != NULL)
739 			spa_strfree(dp->scd_path);
740 		kmem_free(dp, sizeof (spa_config_dirent_t));
741 	}
742 
743 	avl_destroy(&spa->spa_alloc_tree);
744 	list_destroy(&spa->spa_config_list);
745 
746 	nvlist_free(spa->spa_label_features);
747 	nvlist_free(spa->spa_load_info);
748 	spa_config_set(spa, NULL);
749 
750 	mutex_enter(&cpu_lock);
751 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
752 		cyclic_remove(spa->spa_deadman_cycid);
753 	mutex_exit(&cpu_lock);
754 	spa->spa_deadman_cycid = CYCLIC_NONE;
755 
756 	refcount_destroy(&spa->spa_refcount);
757 
758 	spa_config_lock_destroy(spa);
759 
760 	kstat_delete(spa->spa_iokstat);
761 	spa->spa_iokstat = NULL;
762 
763 	for (int t = 0; t < TXG_SIZE; t++)
764 		bplist_destroy(&spa->spa_free_bplist[t]);
765 
766 	zio_checksum_templates_free(spa);
767 
768 	cv_destroy(&spa->spa_async_cv);
769 	cv_destroy(&spa->spa_evicting_os_cv);
770 	cv_destroy(&spa->spa_proc_cv);
771 	cv_destroy(&spa->spa_scrub_io_cv);
772 	cv_destroy(&spa->spa_suspend_cv);
773 
774 	mutex_destroy(&spa->spa_alloc_lock);
775 	mutex_destroy(&spa->spa_async_lock);
776 	mutex_destroy(&spa->spa_errlist_lock);
777 	mutex_destroy(&spa->spa_errlog_lock);
778 	mutex_destroy(&spa->spa_evicting_os_lock);
779 	mutex_destroy(&spa->spa_history_lock);
780 	mutex_destroy(&spa->spa_proc_lock);
781 	mutex_destroy(&spa->spa_props_lock);
782 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
783 	mutex_destroy(&spa->spa_scrub_lock);
784 	mutex_destroy(&spa->spa_suspend_lock);
785 	mutex_destroy(&spa->spa_vdev_top_lock);
786 	mutex_destroy(&spa->spa_iokstat_lock);
787 
788 	kmem_free(spa, sizeof (spa_t));
789 }
790 
791 /*
792  * Given a pool, return the next pool in the namespace, or NULL if there is
793  * none.  If 'prev' is NULL, return the first pool.
794  */
795 spa_t *
796 spa_next(spa_t *prev)
797 {
798 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
799 
800 	if (prev)
801 		return (AVL_NEXT(&spa_namespace_avl, prev));
802 	else
803 		return (avl_first(&spa_namespace_avl));
804 }
805 
806 /*
807  * ==========================================================================
808  * SPA refcount functions
809  * ==========================================================================
810  */
811 
812 /*
813  * Add a reference to the given spa_t.  Must have at least one reference, or
814  * have the namespace lock held.
815  */
816 void
817 spa_open_ref(spa_t *spa, void *tag)
818 {
819 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
820 	    MUTEX_HELD(&spa_namespace_lock));
821 	(void) refcount_add(&spa->spa_refcount, tag);
822 }
823 
824 /*
825  * Remove a reference to the given spa_t.  Must have at least one reference, or
826  * have the namespace lock held.
827  */
828 void
829 spa_close(spa_t *spa, void *tag)
830 {
831 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
832 	    MUTEX_HELD(&spa_namespace_lock));
833 	(void) refcount_remove(&spa->spa_refcount, tag);
834 }
835 
836 /*
837  * Remove a reference to the given spa_t held by a dsl dir that is
838  * being asynchronously released.  Async releases occur from a taskq
839  * performing eviction of dsl datasets and dirs.  The namespace lock
840  * isn't held and the hold by the object being evicted may contribute to
841  * spa_minref (e.g. dataset or directory released during pool export),
842  * so the asserts in spa_close() do not apply.
843  */
844 void
845 spa_async_close(spa_t *spa, void *tag)
846 {
847 	(void) refcount_remove(&spa->spa_refcount, tag);
848 }
849 
850 /*
851  * Check to see if the spa refcount is zero.  Must be called with
852  * spa_namespace_lock held.  We really compare against spa_minref, which is the
853  * number of references acquired when opening a pool
854  */
855 boolean_t
856 spa_refcount_zero(spa_t *spa)
857 {
858 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
859 
860 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
861 }
862 
863 /*
864  * ==========================================================================
865  * SPA spare and l2cache tracking
866  * ==========================================================================
867  */
868 
869 /*
870  * Hot spares and cache devices are tracked using the same code below,
871  * for 'auxiliary' devices.
872  */
873 
874 typedef struct spa_aux {
875 	uint64_t	aux_guid;
876 	uint64_t	aux_pool;
877 	avl_node_t	aux_avl;
878 	int		aux_count;
879 } spa_aux_t;
880 
881 static int
882 spa_aux_compare(const void *a, const void *b)
883 {
884 	const spa_aux_t *sa = a;
885 	const spa_aux_t *sb = b;
886 
887 	if (sa->aux_guid < sb->aux_guid)
888 		return (-1);
889 	else if (sa->aux_guid > sb->aux_guid)
890 		return (1);
891 	else
892 		return (0);
893 }
894 
895 void
896 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
897 {
898 	avl_index_t where;
899 	spa_aux_t search;
900 	spa_aux_t *aux;
901 
902 	search.aux_guid = vd->vdev_guid;
903 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
904 		aux->aux_count++;
905 	} else {
906 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
907 		aux->aux_guid = vd->vdev_guid;
908 		aux->aux_count = 1;
909 		avl_insert(avl, aux, where);
910 	}
911 }
912 
913 void
914 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
915 {
916 	spa_aux_t search;
917 	spa_aux_t *aux;
918 	avl_index_t where;
919 
920 	search.aux_guid = vd->vdev_guid;
921 	aux = avl_find(avl, &search, &where);
922 
923 	ASSERT(aux != NULL);
924 
925 	if (--aux->aux_count == 0) {
926 		avl_remove(avl, aux);
927 		kmem_free(aux, sizeof (spa_aux_t));
928 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
929 		aux->aux_pool = 0ULL;
930 	}
931 }
932 
933 boolean_t
934 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
935 {
936 	spa_aux_t search, *found;
937 
938 	search.aux_guid = guid;
939 	found = avl_find(avl, &search, NULL);
940 
941 	if (pool) {
942 		if (found)
943 			*pool = found->aux_pool;
944 		else
945 			*pool = 0ULL;
946 	}
947 
948 	if (refcnt) {
949 		if (found)
950 			*refcnt = found->aux_count;
951 		else
952 			*refcnt = 0;
953 	}
954 
955 	return (found != NULL);
956 }
957 
958 void
959 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
960 {
961 	spa_aux_t search, *found;
962 	avl_index_t where;
963 
964 	search.aux_guid = vd->vdev_guid;
965 	found = avl_find(avl, &search, &where);
966 	ASSERT(found != NULL);
967 	ASSERT(found->aux_pool == 0ULL);
968 
969 	found->aux_pool = spa_guid(vd->vdev_spa);
970 }
971 
972 /*
973  * Spares are tracked globally due to the following constraints:
974  *
975  * 	- A spare may be part of multiple pools.
976  * 	- A spare may be added to a pool even if it's actively in use within
977  *	  another pool.
978  * 	- A spare in use in any pool can only be the source of a replacement if
979  *	  the target is a spare in the same pool.
980  *
981  * We keep track of all spares on the system through the use of a reference
982  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
983  * spare, then we bump the reference count in the AVL tree.  In addition, we set
984  * the 'vdev_isspare' member to indicate that the device is a spare (active or
985  * inactive).  When a spare is made active (used to replace a device in the
986  * pool), we also keep track of which pool its been made a part of.
987  *
988  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
989  * called under the spa_namespace lock as part of vdev reconfiguration.  The
990  * separate spare lock exists for the status query path, which does not need to
991  * be completely consistent with respect to other vdev configuration changes.
992  */
993 
994 static int
995 spa_spare_compare(const void *a, const void *b)
996 {
997 	return (spa_aux_compare(a, b));
998 }
999 
1000 void
1001 spa_spare_add(vdev_t *vd)
1002 {
1003 	mutex_enter(&spa_spare_lock);
1004 	ASSERT(!vd->vdev_isspare);
1005 	spa_aux_add(vd, &spa_spare_avl);
1006 	vd->vdev_isspare = B_TRUE;
1007 	mutex_exit(&spa_spare_lock);
1008 }
1009 
1010 void
1011 spa_spare_remove(vdev_t *vd)
1012 {
1013 	mutex_enter(&spa_spare_lock);
1014 	ASSERT(vd->vdev_isspare);
1015 	spa_aux_remove(vd, &spa_spare_avl);
1016 	vd->vdev_isspare = B_FALSE;
1017 	mutex_exit(&spa_spare_lock);
1018 }
1019 
1020 boolean_t
1021 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1022 {
1023 	boolean_t found;
1024 
1025 	mutex_enter(&spa_spare_lock);
1026 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1027 	mutex_exit(&spa_spare_lock);
1028 
1029 	return (found);
1030 }
1031 
1032 void
1033 spa_spare_activate(vdev_t *vd)
1034 {
1035 	mutex_enter(&spa_spare_lock);
1036 	ASSERT(vd->vdev_isspare);
1037 	spa_aux_activate(vd, &spa_spare_avl);
1038 	mutex_exit(&spa_spare_lock);
1039 }
1040 
1041 /*
1042  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1043  * Cache devices currently only support one pool per cache device, and so
1044  * for these devices the aux reference count is currently unused beyond 1.
1045  */
1046 
1047 static int
1048 spa_l2cache_compare(const void *a, const void *b)
1049 {
1050 	return (spa_aux_compare(a, b));
1051 }
1052 
1053 void
1054 spa_l2cache_add(vdev_t *vd)
1055 {
1056 	mutex_enter(&spa_l2cache_lock);
1057 	ASSERT(!vd->vdev_isl2cache);
1058 	spa_aux_add(vd, &spa_l2cache_avl);
1059 	vd->vdev_isl2cache = B_TRUE;
1060 	mutex_exit(&spa_l2cache_lock);
1061 }
1062 
1063 void
1064 spa_l2cache_remove(vdev_t *vd)
1065 {
1066 	mutex_enter(&spa_l2cache_lock);
1067 	ASSERT(vd->vdev_isl2cache);
1068 	spa_aux_remove(vd, &spa_l2cache_avl);
1069 	vd->vdev_isl2cache = B_FALSE;
1070 	mutex_exit(&spa_l2cache_lock);
1071 }
1072 
1073 boolean_t
1074 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1075 {
1076 	boolean_t found;
1077 
1078 	mutex_enter(&spa_l2cache_lock);
1079 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1080 	mutex_exit(&spa_l2cache_lock);
1081 
1082 	return (found);
1083 }
1084 
1085 void
1086 spa_l2cache_activate(vdev_t *vd)
1087 {
1088 	mutex_enter(&spa_l2cache_lock);
1089 	ASSERT(vd->vdev_isl2cache);
1090 	spa_aux_activate(vd, &spa_l2cache_avl);
1091 	mutex_exit(&spa_l2cache_lock);
1092 }
1093 
1094 /*
1095  * ==========================================================================
1096  * SPA vdev locking
1097  * ==========================================================================
1098  */
1099 
1100 /*
1101  * Lock the given spa_t for the purpose of adding or removing a vdev.
1102  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1103  * It returns the next transaction group for the spa_t.
1104  */
1105 uint64_t
1106 spa_vdev_enter(spa_t *spa)
1107 {
1108 	mutex_enter(&spa->spa_vdev_top_lock);
1109 	mutex_enter(&spa_namespace_lock);
1110 	return (spa_vdev_config_enter(spa));
1111 }
1112 
1113 /*
1114  * Internal implementation for spa_vdev_enter().  Used when a vdev
1115  * operation requires multiple syncs (i.e. removing a device) while
1116  * keeping the spa_namespace_lock held.
1117  */
1118 uint64_t
1119 spa_vdev_config_enter(spa_t *spa)
1120 {
1121 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1122 
1123 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1124 
1125 	return (spa_last_synced_txg(spa) + 1);
1126 }
1127 
1128 /*
1129  * Used in combination with spa_vdev_config_enter() to allow the syncing
1130  * of multiple transactions without releasing the spa_namespace_lock.
1131  */
1132 void
1133 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1134 {
1135 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1136 
1137 	int config_changed = B_FALSE;
1138 
1139 	ASSERT(txg > spa_last_synced_txg(spa));
1140 
1141 	spa->spa_pending_vdev = NULL;
1142 
1143 	/*
1144 	 * Reassess the DTLs.
1145 	 */
1146 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1147 
1148 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1149 		config_changed = B_TRUE;
1150 		spa->spa_config_generation++;
1151 	}
1152 
1153 	/*
1154 	 * Verify the metaslab classes.
1155 	 */
1156 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1157 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1158 
1159 	spa_config_exit(spa, SCL_ALL, spa);
1160 
1161 	/*
1162 	 * Panic the system if the specified tag requires it.  This
1163 	 * is useful for ensuring that configurations are updated
1164 	 * transactionally.
1165 	 */
1166 	if (zio_injection_enabled)
1167 		zio_handle_panic_injection(spa, tag, 0);
1168 
1169 	/*
1170 	 * Note: this txg_wait_synced() is important because it ensures
1171 	 * that there won't be more than one config change per txg.
1172 	 * This allows us to use the txg as the generation number.
1173 	 */
1174 	if (error == 0)
1175 		txg_wait_synced(spa->spa_dsl_pool, txg);
1176 
1177 	if (vd != NULL) {
1178 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1179 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1180 		vdev_free(vd);
1181 		spa_config_exit(spa, SCL_ALL, spa);
1182 	}
1183 
1184 	/*
1185 	 * If the config changed, update the config cache.
1186 	 */
1187 	if (config_changed)
1188 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1189 }
1190 
1191 /*
1192  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1193  * locking of spa_vdev_enter(), we also want make sure the transactions have
1194  * synced to disk, and then update the global configuration cache with the new
1195  * information.
1196  */
1197 int
1198 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1199 {
1200 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1201 	mutex_exit(&spa_namespace_lock);
1202 	mutex_exit(&spa->spa_vdev_top_lock);
1203 
1204 	return (error);
1205 }
1206 
1207 /*
1208  * Lock the given spa_t for the purpose of changing vdev state.
1209  */
1210 void
1211 spa_vdev_state_enter(spa_t *spa, int oplocks)
1212 {
1213 	int locks = SCL_STATE_ALL | oplocks;
1214 
1215 	/*
1216 	 * Root pools may need to read of the underlying devfs filesystem
1217 	 * when opening up a vdev.  Unfortunately if we're holding the
1218 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1219 	 * the read from the root filesystem.  Instead we "prefetch"
1220 	 * the associated vnodes that we need prior to opening the
1221 	 * underlying devices and cache them so that we can prevent
1222 	 * any I/O when we are doing the actual open.
1223 	 */
1224 	if (spa_is_root(spa)) {
1225 		int low = locks & ~(SCL_ZIO - 1);
1226 		int high = locks & ~low;
1227 
1228 		spa_config_enter(spa, high, spa, RW_WRITER);
1229 		vdev_hold(spa->spa_root_vdev);
1230 		spa_config_enter(spa, low, spa, RW_WRITER);
1231 	} else {
1232 		spa_config_enter(spa, locks, spa, RW_WRITER);
1233 	}
1234 	spa->spa_vdev_locks = locks;
1235 }
1236 
1237 int
1238 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1239 {
1240 	boolean_t config_changed = B_FALSE;
1241 
1242 	if (vd != NULL || error == 0)
1243 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1244 		    0, 0, B_FALSE);
1245 
1246 	if (vd != NULL) {
1247 		vdev_state_dirty(vd->vdev_top);
1248 		config_changed = B_TRUE;
1249 		spa->spa_config_generation++;
1250 	}
1251 
1252 	if (spa_is_root(spa))
1253 		vdev_rele(spa->spa_root_vdev);
1254 
1255 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1256 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1257 
1258 	/*
1259 	 * If anything changed, wait for it to sync.  This ensures that,
1260 	 * from the system administrator's perspective, zpool(1M) commands
1261 	 * are synchronous.  This is important for things like zpool offline:
1262 	 * when the command completes, you expect no further I/O from ZFS.
1263 	 */
1264 	if (vd != NULL)
1265 		txg_wait_synced(spa->spa_dsl_pool, 0);
1266 
1267 	/*
1268 	 * If the config changed, update the config cache.
1269 	 */
1270 	if (config_changed) {
1271 		mutex_enter(&spa_namespace_lock);
1272 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1273 		mutex_exit(&spa_namespace_lock);
1274 	}
1275 
1276 	return (error);
1277 }
1278 
1279 /*
1280  * ==========================================================================
1281  * Miscellaneous functions
1282  * ==========================================================================
1283  */
1284 
1285 void
1286 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1287 {
1288 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1289 		fnvlist_add_boolean(spa->spa_label_features, feature);
1290 		/*
1291 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1292 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1293 		 * Thankfully, in this case we don't need to dirty the config
1294 		 * because it will be written out anyway when we finish
1295 		 * creating the pool.
1296 		 */
1297 		if (tx->tx_txg != TXG_INITIAL)
1298 			vdev_config_dirty(spa->spa_root_vdev);
1299 	}
1300 }
1301 
1302 void
1303 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1304 {
1305 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1306 		vdev_config_dirty(spa->spa_root_vdev);
1307 }
1308 
1309 /*
1310  * Rename a spa_t.
1311  */
1312 int
1313 spa_rename(const char *name, const char *newname)
1314 {
1315 	spa_t *spa;
1316 	int err;
1317 
1318 	/*
1319 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1320 	 * actually open the pool so that we can sync out the necessary labels.
1321 	 * It's OK to call spa_open() with the namespace lock held because we
1322 	 * allow recursive calls for other reasons.
1323 	 */
1324 	mutex_enter(&spa_namespace_lock);
1325 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1326 		mutex_exit(&spa_namespace_lock);
1327 		return (err);
1328 	}
1329 
1330 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1331 
1332 	avl_remove(&spa_namespace_avl, spa);
1333 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1334 	avl_add(&spa_namespace_avl, spa);
1335 
1336 	/*
1337 	 * Sync all labels to disk with the new names by marking the root vdev
1338 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1339 	 * during the sync.
1340 	 */
1341 	vdev_config_dirty(spa->spa_root_vdev);
1342 
1343 	spa_config_exit(spa, SCL_ALL, FTAG);
1344 
1345 	txg_wait_synced(spa->spa_dsl_pool, 0);
1346 
1347 	/*
1348 	 * Sync the updated config cache.
1349 	 */
1350 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
1351 
1352 	spa_close(spa, FTAG);
1353 
1354 	mutex_exit(&spa_namespace_lock);
1355 
1356 	return (0);
1357 }
1358 
1359 /*
1360  * Return the spa_t associated with given pool_guid, if it exists.  If
1361  * device_guid is non-zero, determine whether the pool exists *and* contains
1362  * a device with the specified device_guid.
1363  */
1364 spa_t *
1365 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1366 {
1367 	spa_t *spa;
1368 	avl_tree_t *t = &spa_namespace_avl;
1369 
1370 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1371 
1372 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1373 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1374 			continue;
1375 		if (spa->spa_root_vdev == NULL)
1376 			continue;
1377 		if (spa_guid(spa) == pool_guid) {
1378 			if (device_guid == 0)
1379 				break;
1380 
1381 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1382 			    device_guid) != NULL)
1383 				break;
1384 
1385 			/*
1386 			 * Check any devices we may be in the process of adding.
1387 			 */
1388 			if (spa->spa_pending_vdev) {
1389 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1390 				    device_guid) != NULL)
1391 					break;
1392 			}
1393 		}
1394 	}
1395 
1396 	return (spa);
1397 }
1398 
1399 /*
1400  * Determine whether a pool with the given pool_guid exists.
1401  */
1402 boolean_t
1403 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1404 {
1405 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1406 }
1407 
1408 char *
1409 spa_strdup(const char *s)
1410 {
1411 	size_t len;
1412 	char *new;
1413 
1414 	len = strlen(s);
1415 	new = kmem_alloc(len + 1, KM_SLEEP);
1416 	bcopy(s, new, len);
1417 	new[len] = '\0';
1418 
1419 	return (new);
1420 }
1421 
1422 void
1423 spa_strfree(char *s)
1424 {
1425 	kmem_free(s, strlen(s) + 1);
1426 }
1427 
1428 uint64_t
1429 spa_get_random(uint64_t range)
1430 {
1431 	uint64_t r;
1432 
1433 	ASSERT(range != 0);
1434 
1435 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1436 
1437 	return (r % range);
1438 }
1439 
1440 uint64_t
1441 spa_generate_guid(spa_t *spa)
1442 {
1443 	uint64_t guid = spa_get_random(-1ULL);
1444 
1445 	if (spa != NULL) {
1446 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1447 			guid = spa_get_random(-1ULL);
1448 	} else {
1449 		while (guid == 0 || spa_guid_exists(guid, 0))
1450 			guid = spa_get_random(-1ULL);
1451 	}
1452 
1453 	return (guid);
1454 }
1455 
1456 void
1457 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1458 {
1459 	char type[256];
1460 	char *checksum = NULL;
1461 	char *compress = NULL;
1462 
1463 	if (bp != NULL) {
1464 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1465 			dmu_object_byteswap_t bswap =
1466 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1467 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1468 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1469 			    "metadata" : "data",
1470 			    dmu_ot_byteswap[bswap].ob_name);
1471 		} else {
1472 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1473 			    sizeof (type));
1474 		}
1475 		if (!BP_IS_EMBEDDED(bp)) {
1476 			checksum =
1477 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1478 		}
1479 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1480 	}
1481 
1482 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1483 	    compress);
1484 }
1485 
1486 void
1487 spa_freeze(spa_t *spa)
1488 {
1489 	uint64_t freeze_txg = 0;
1490 
1491 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1492 	if (spa->spa_freeze_txg == UINT64_MAX) {
1493 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1494 		spa->spa_freeze_txg = freeze_txg;
1495 	}
1496 	spa_config_exit(spa, SCL_ALL, FTAG);
1497 	if (freeze_txg != 0)
1498 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1499 }
1500 
1501 void
1502 zfs_panic_recover(const char *fmt, ...)
1503 {
1504 	va_list adx;
1505 
1506 	va_start(adx, fmt);
1507 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1508 	va_end(adx);
1509 }
1510 
1511 /*
1512  * This is a stripped-down version of strtoull, suitable only for converting
1513  * lowercase hexadecimal numbers that don't overflow.
1514  */
1515 uint64_t
1516 zfs_strtonum(const char *str, char **nptr)
1517 {
1518 	uint64_t val = 0;
1519 	char c;
1520 	int digit;
1521 
1522 	while ((c = *str) != '\0') {
1523 		if (c >= '0' && c <= '9')
1524 			digit = c - '0';
1525 		else if (c >= 'a' && c <= 'f')
1526 			digit = 10 + c - 'a';
1527 		else
1528 			break;
1529 
1530 		val *= 16;
1531 		val += digit;
1532 
1533 		str++;
1534 	}
1535 
1536 	if (nptr)
1537 		*nptr = (char *)str;
1538 
1539 	return (val);
1540 }
1541 
1542 /*
1543  * ==========================================================================
1544  * Accessor functions
1545  * ==========================================================================
1546  */
1547 
1548 boolean_t
1549 spa_shutting_down(spa_t *spa)
1550 {
1551 	return (spa->spa_async_suspended);
1552 }
1553 
1554 dsl_pool_t *
1555 spa_get_dsl(spa_t *spa)
1556 {
1557 	return (spa->spa_dsl_pool);
1558 }
1559 
1560 boolean_t
1561 spa_is_initializing(spa_t *spa)
1562 {
1563 	return (spa->spa_is_initializing);
1564 }
1565 
1566 boolean_t
1567 spa_indirect_vdevs_loaded(spa_t *spa)
1568 {
1569 	return (spa->spa_indirect_vdevs_loaded);
1570 }
1571 
1572 blkptr_t *
1573 spa_get_rootblkptr(spa_t *spa)
1574 {
1575 	return (&spa->spa_ubsync.ub_rootbp);
1576 }
1577 
1578 void
1579 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1580 {
1581 	spa->spa_uberblock.ub_rootbp = *bp;
1582 }
1583 
1584 void
1585 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1586 {
1587 	if (spa->spa_root == NULL)
1588 		buf[0] = '\0';
1589 	else
1590 		(void) strncpy(buf, spa->spa_root, buflen);
1591 }
1592 
1593 int
1594 spa_sync_pass(spa_t *spa)
1595 {
1596 	return (spa->spa_sync_pass);
1597 }
1598 
1599 char *
1600 spa_name(spa_t *spa)
1601 {
1602 	return (spa->spa_name);
1603 }
1604 
1605 uint64_t
1606 spa_guid(spa_t *spa)
1607 {
1608 	dsl_pool_t *dp = spa_get_dsl(spa);
1609 	uint64_t guid;
1610 
1611 	/*
1612 	 * If we fail to parse the config during spa_load(), we can go through
1613 	 * the error path (which posts an ereport) and end up here with no root
1614 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1615 	 * this case.
1616 	 */
1617 	if (spa->spa_root_vdev == NULL)
1618 		return (spa->spa_config_guid);
1619 
1620 	guid = spa->spa_last_synced_guid != 0 ?
1621 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1622 
1623 	/*
1624 	 * Return the most recently synced out guid unless we're
1625 	 * in syncing context.
1626 	 */
1627 	if (dp && dsl_pool_sync_context(dp))
1628 		return (spa->spa_root_vdev->vdev_guid);
1629 	else
1630 		return (guid);
1631 }
1632 
1633 uint64_t
1634 spa_load_guid(spa_t *spa)
1635 {
1636 	/*
1637 	 * This is a GUID that exists solely as a reference for the
1638 	 * purposes of the arc.  It is generated at load time, and
1639 	 * is never written to persistent storage.
1640 	 */
1641 	return (spa->spa_load_guid);
1642 }
1643 
1644 uint64_t
1645 spa_last_synced_txg(spa_t *spa)
1646 {
1647 	return (spa->spa_ubsync.ub_txg);
1648 }
1649 
1650 uint64_t
1651 spa_first_txg(spa_t *spa)
1652 {
1653 	return (spa->spa_first_txg);
1654 }
1655 
1656 uint64_t
1657 spa_syncing_txg(spa_t *spa)
1658 {
1659 	return (spa->spa_syncing_txg);
1660 }
1661 
1662 /*
1663  * Return the last txg where data can be dirtied. The final txgs
1664  * will be used to just clear out any deferred frees that remain.
1665  */
1666 uint64_t
1667 spa_final_dirty_txg(spa_t *spa)
1668 {
1669 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1670 }
1671 
1672 pool_state_t
1673 spa_state(spa_t *spa)
1674 {
1675 	return (spa->spa_state);
1676 }
1677 
1678 spa_load_state_t
1679 spa_load_state(spa_t *spa)
1680 {
1681 	return (spa->spa_load_state);
1682 }
1683 
1684 uint64_t
1685 spa_freeze_txg(spa_t *spa)
1686 {
1687 	return (spa->spa_freeze_txg);
1688 }
1689 
1690 /* ARGSUSED */
1691 uint64_t
1692 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1693 {
1694 	return (lsize * spa_asize_inflation);
1695 }
1696 
1697 /*
1698  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1699  * or at least 128MB, unless that would cause it to be more than half the
1700  * pool size.
1701  *
1702  * See the comment above spa_slop_shift for details.
1703  */
1704 uint64_t
1705 spa_get_slop_space(spa_t *spa)
1706 {
1707 	uint64_t space = spa_get_dspace(spa);
1708 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1709 }
1710 
1711 uint64_t
1712 spa_get_dspace(spa_t *spa)
1713 {
1714 	return (spa->spa_dspace);
1715 }
1716 
1717 void
1718 spa_update_dspace(spa_t *spa)
1719 {
1720 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1721 	    ddt_get_dedup_dspace(spa);
1722 	if (spa->spa_vdev_removal != NULL) {
1723 		/*
1724 		 * We can't allocate from the removing device, so
1725 		 * subtract its size.  This prevents the DMU/DSL from
1726 		 * filling up the (now smaller) pool while we are in the
1727 		 * middle of removing the device.
1728 		 *
1729 		 * Note that the DMU/DSL doesn't actually know or care
1730 		 * how much space is allocated (it does its own tracking
1731 		 * of how much space has been logically used).  So it
1732 		 * doesn't matter that the data we are moving may be
1733 		 * allocated twice (on the old device and the new
1734 		 * device).
1735 		 */
1736 		vdev_t *vd = spa->spa_vdev_removal->svr_vdev;
1737 		spa->spa_dspace -= spa_deflate(spa) ?
1738 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1739 	}
1740 }
1741 
1742 /*
1743  * Return the failure mode that has been set to this pool. The default
1744  * behavior will be to block all I/Os when a complete failure occurs.
1745  */
1746 uint8_t
1747 spa_get_failmode(spa_t *spa)
1748 {
1749 	return (spa->spa_failmode);
1750 }
1751 
1752 boolean_t
1753 spa_suspended(spa_t *spa)
1754 {
1755 	return (spa->spa_suspended);
1756 }
1757 
1758 uint64_t
1759 spa_version(spa_t *spa)
1760 {
1761 	return (spa->spa_ubsync.ub_version);
1762 }
1763 
1764 boolean_t
1765 spa_deflate(spa_t *spa)
1766 {
1767 	return (spa->spa_deflate);
1768 }
1769 
1770 metaslab_class_t *
1771 spa_normal_class(spa_t *spa)
1772 {
1773 	return (spa->spa_normal_class);
1774 }
1775 
1776 metaslab_class_t *
1777 spa_log_class(spa_t *spa)
1778 {
1779 	return (spa->spa_log_class);
1780 }
1781 
1782 void
1783 spa_evicting_os_register(spa_t *spa, objset_t *os)
1784 {
1785 	mutex_enter(&spa->spa_evicting_os_lock);
1786 	list_insert_head(&spa->spa_evicting_os_list, os);
1787 	mutex_exit(&spa->spa_evicting_os_lock);
1788 }
1789 
1790 void
1791 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1792 {
1793 	mutex_enter(&spa->spa_evicting_os_lock);
1794 	list_remove(&spa->spa_evicting_os_list, os);
1795 	cv_broadcast(&spa->spa_evicting_os_cv);
1796 	mutex_exit(&spa->spa_evicting_os_lock);
1797 }
1798 
1799 void
1800 spa_evicting_os_wait(spa_t *spa)
1801 {
1802 	mutex_enter(&spa->spa_evicting_os_lock);
1803 	while (!list_is_empty(&spa->spa_evicting_os_list))
1804 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1805 	mutex_exit(&spa->spa_evicting_os_lock);
1806 
1807 	dmu_buf_user_evict_wait();
1808 }
1809 
1810 int
1811 spa_max_replication(spa_t *spa)
1812 {
1813 	/*
1814 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1815 	 * handle BPs with more than one DVA allocated.  Set our max
1816 	 * replication level accordingly.
1817 	 */
1818 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1819 		return (1);
1820 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1821 }
1822 
1823 int
1824 spa_prev_software_version(spa_t *spa)
1825 {
1826 	return (spa->spa_prev_software_version);
1827 }
1828 
1829 uint64_t
1830 spa_deadman_synctime(spa_t *spa)
1831 {
1832 	return (spa->spa_deadman_synctime);
1833 }
1834 
1835 uint64_t
1836 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1837 {
1838 	uint64_t asize = DVA_GET_ASIZE(dva);
1839 	uint64_t dsize = asize;
1840 
1841 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1842 
1843 	if (asize != 0 && spa->spa_deflate) {
1844 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1845 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1846 	}
1847 
1848 	return (dsize);
1849 }
1850 
1851 uint64_t
1852 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1853 {
1854 	uint64_t dsize = 0;
1855 
1856 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1857 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1858 
1859 	return (dsize);
1860 }
1861 
1862 uint64_t
1863 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1864 {
1865 	uint64_t dsize = 0;
1866 
1867 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1868 
1869 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1870 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1871 
1872 	spa_config_exit(spa, SCL_VDEV, FTAG);
1873 
1874 	return (dsize);
1875 }
1876 
1877 /*
1878  * ==========================================================================
1879  * Initialization and Termination
1880  * ==========================================================================
1881  */
1882 
1883 static int
1884 spa_name_compare(const void *a1, const void *a2)
1885 {
1886 	const spa_t *s1 = a1;
1887 	const spa_t *s2 = a2;
1888 	int s;
1889 
1890 	s = strcmp(s1->spa_name, s2->spa_name);
1891 	if (s > 0)
1892 		return (1);
1893 	if (s < 0)
1894 		return (-1);
1895 	return (0);
1896 }
1897 
1898 int
1899 spa_busy(void)
1900 {
1901 	return (spa_active_count);
1902 }
1903 
1904 void
1905 spa_boot_init()
1906 {
1907 	spa_config_load();
1908 }
1909 
1910 void
1911 spa_init(int mode)
1912 {
1913 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1914 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1915 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1916 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1917 
1918 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1919 	    offsetof(spa_t, spa_avl));
1920 
1921 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1922 	    offsetof(spa_aux_t, aux_avl));
1923 
1924 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1925 	    offsetof(spa_aux_t, aux_avl));
1926 
1927 	spa_mode_global = mode;
1928 
1929 #ifdef _KERNEL
1930 	spa_arch_init();
1931 #else
1932 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1933 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1934 		if (arc_procfd == -1) {
1935 			perror("could not enable watchpoints: "
1936 			    "opening /proc/self/ctl failed: ");
1937 		} else {
1938 			arc_watch = B_TRUE;
1939 		}
1940 	}
1941 #endif
1942 
1943 	refcount_init();
1944 	unique_init();
1945 	range_tree_init();
1946 	metaslab_alloc_trace_init();
1947 	zio_init();
1948 	dmu_init();
1949 	zil_init();
1950 	vdev_cache_stat_init();
1951 	zfs_prop_init();
1952 	zpool_prop_init();
1953 	zpool_feature_init();
1954 	spa_config_load();
1955 	l2arc_start();
1956 }
1957 
1958 void
1959 spa_fini(void)
1960 {
1961 	l2arc_stop();
1962 
1963 	spa_evict_all();
1964 
1965 	vdev_cache_stat_fini();
1966 	zil_fini();
1967 	dmu_fini();
1968 	zio_fini();
1969 	metaslab_alloc_trace_fini();
1970 	range_tree_fini();
1971 	unique_fini();
1972 	refcount_fini();
1973 
1974 	avl_destroy(&spa_namespace_avl);
1975 	avl_destroy(&spa_spare_avl);
1976 	avl_destroy(&spa_l2cache_avl);
1977 
1978 	cv_destroy(&spa_namespace_cv);
1979 	mutex_destroy(&spa_namespace_lock);
1980 	mutex_destroy(&spa_spare_lock);
1981 	mutex_destroy(&spa_l2cache_lock);
1982 }
1983 
1984 /*
1985  * Return whether this pool has slogs. No locking needed.
1986  * It's not a problem if the wrong answer is returned as it's only for
1987  * performance and not correctness
1988  */
1989 boolean_t
1990 spa_has_slogs(spa_t *spa)
1991 {
1992 	return (spa->spa_log_class->mc_rotor != NULL);
1993 }
1994 
1995 spa_log_state_t
1996 spa_get_log_state(spa_t *spa)
1997 {
1998 	return (spa->spa_log_state);
1999 }
2000 
2001 void
2002 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2003 {
2004 	spa->spa_log_state = state;
2005 }
2006 
2007 boolean_t
2008 spa_is_root(spa_t *spa)
2009 {
2010 	return (spa->spa_is_root);
2011 }
2012 
2013 boolean_t
2014 spa_writeable(spa_t *spa)
2015 {
2016 	return (!!(spa->spa_mode & FWRITE));
2017 }
2018 
2019 /*
2020  * Returns true if there is a pending sync task in any of the current
2021  * syncing txg, the current quiescing txg, or the current open txg.
2022  */
2023 boolean_t
2024 spa_has_pending_synctask(spa_t *spa)
2025 {
2026 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2027 }
2028 
2029 int
2030 spa_mode(spa_t *spa)
2031 {
2032 	return (spa->spa_mode);
2033 }
2034 
2035 uint64_t
2036 spa_bootfs(spa_t *spa)
2037 {
2038 	return (spa->spa_bootfs);
2039 }
2040 
2041 uint64_t
2042 spa_delegation(spa_t *spa)
2043 {
2044 	return (spa->spa_delegation);
2045 }
2046 
2047 objset_t *
2048 spa_meta_objset(spa_t *spa)
2049 {
2050 	return (spa->spa_meta_objset);
2051 }
2052 
2053 enum zio_checksum
2054 spa_dedup_checksum(spa_t *spa)
2055 {
2056 	return (spa->spa_dedup_checksum);
2057 }
2058 
2059 /*
2060  * Reset pool scan stat per scan pass (or reboot).
2061  */
2062 void
2063 spa_scan_stat_init(spa_t *spa)
2064 {
2065 	/* data not stored on disk */
2066 	spa->spa_scan_pass_start = gethrestime_sec();
2067 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2068 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2069 	else
2070 		spa->spa_scan_pass_scrub_pause = 0;
2071 	spa->spa_scan_pass_scrub_spent_paused = 0;
2072 	spa->spa_scan_pass_exam = 0;
2073 	vdev_scan_stat_init(spa->spa_root_vdev);
2074 }
2075 
2076 /*
2077  * Get scan stats for zpool status reports
2078  */
2079 int
2080 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2081 {
2082 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2083 
2084 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2085 		return (SET_ERROR(ENOENT));
2086 	bzero(ps, sizeof (pool_scan_stat_t));
2087 
2088 	/* data stored on disk */
2089 	ps->pss_func = scn->scn_phys.scn_func;
2090 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2091 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2092 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2093 	ps->pss_examined = scn->scn_phys.scn_examined;
2094 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2095 	ps->pss_processed = scn->scn_phys.scn_processed;
2096 	ps->pss_errors = scn->scn_phys.scn_errors;
2097 	ps->pss_state = scn->scn_phys.scn_state;
2098 
2099 	/* data not stored on disk */
2100 	ps->pss_pass_start = spa->spa_scan_pass_start;
2101 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2102 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2103 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2104 
2105 	return (0);
2106 }
2107 
2108 boolean_t
2109 spa_debug_enabled(spa_t *spa)
2110 {
2111 	return (spa->spa_debug);
2112 }
2113 
2114 int
2115 spa_maxblocksize(spa_t *spa)
2116 {
2117 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2118 		return (SPA_MAXBLOCKSIZE);
2119 	else
2120 		return (SPA_OLD_MAXBLOCKSIZE);
2121 }
2122 
2123 /*
2124  * Returns the txg that the last device removal completed. No indirect mappings
2125  * have been added since this txg.
2126  */
2127 uint64_t
2128 spa_get_last_removal_txg(spa_t *spa)
2129 {
2130 	uint64_t vdevid;
2131 	uint64_t ret = -1ULL;
2132 
2133 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2134 	/*
2135 	 * sr_prev_indirect_vdev is only modified while holding all the
2136 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2137 	 * examining it.
2138 	 */
2139 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2140 
2141 	while (vdevid != -1ULL) {
2142 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2143 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2144 
2145 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2146 
2147 		/*
2148 		 * If the removal did not remap any data, we don't care.
2149 		 */
2150 		if (vdev_indirect_births_count(vib) != 0) {
2151 			ret = vdev_indirect_births_last_entry_txg(vib);
2152 			break;
2153 		}
2154 
2155 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2156 	}
2157 	spa_config_exit(spa, SCL_VDEV, FTAG);
2158 
2159 	IMPLY(ret != -1ULL,
2160 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2161 
2162 	return (ret);
2163 }
2164