1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2014 Integros [integros.com] 28 * Copyright (c) 2017 Datto Inc. 29 * Copyright 2019 Joyent, Inc. 30 * Copyright (c) 2017, Intel Corporation. 31 * Copyright 2020 Joyent, Inc. 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/spa_impl.h> 36 #include <sys/spa_boot.h> 37 #include <sys/zio.h> 38 #include <sys/zio_checksum.h> 39 #include <sys/zio_compress.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/zap.h> 43 #include <sys/zil.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/vdev_initialize.h> 46 #include <sys/vdev_trim.h> 47 #include <sys/vdev_raidz.h> 48 #include <sys/metaslab.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dir.h> 55 #include <sys/dsl_prop.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/fs/zfs.h> 58 #include <sys/metaslab_impl.h> 59 #include <sys/arc.h> 60 #include <sys/ddt.h> 61 #include "zfs_prop.h" 62 #include <sys/btree.h> 63 #include <sys/zfeature.h> 64 65 /* 66 * SPA locking 67 * 68 * There are three basic locks for managing spa_t structures: 69 * 70 * spa_namespace_lock (global mutex) 71 * 72 * This lock must be acquired to do any of the following: 73 * 74 * - Lookup a spa_t by name 75 * - Add or remove a spa_t from the namespace 76 * - Increase spa_refcount from non-zero 77 * - Check if spa_refcount is zero 78 * - Rename a spa_t 79 * - add/remove/attach/detach devices 80 * - Held for the duration of create/destroy/import/export 81 * 82 * It does not need to handle recursion. A create or destroy may 83 * reference objects (files or zvols) in other pools, but by 84 * definition they must have an existing reference, and will never need 85 * to lookup a spa_t by name. 86 * 87 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 88 * 89 * This reference count keep track of any active users of the spa_t. The 90 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 91 * the refcount is never really 'zero' - opening a pool implicitly keeps 92 * some references in the DMU. Internally we check against spa_minref, but 93 * present the image of a zero/non-zero value to consumers. 94 * 95 * spa_config_lock[] (per-spa array of rwlocks) 96 * 97 * This protects the spa_t from config changes, and must be held in 98 * the following circumstances: 99 * 100 * - RW_READER to perform I/O to the spa 101 * - RW_WRITER to change the vdev config 102 * 103 * The locking order is fairly straightforward: 104 * 105 * spa_namespace_lock -> spa_refcount 106 * 107 * The namespace lock must be acquired to increase the refcount from 0 108 * or to check if it is zero. 109 * 110 * spa_refcount -> spa_config_lock[] 111 * 112 * There must be at least one valid reference on the spa_t to acquire 113 * the config lock. 114 * 115 * spa_namespace_lock -> spa_config_lock[] 116 * 117 * The namespace lock must always be taken before the config lock. 118 * 119 * 120 * The spa_namespace_lock can be acquired directly and is globally visible. 121 * 122 * The namespace is manipulated using the following functions, all of which 123 * require the spa_namespace_lock to be held. 124 * 125 * spa_lookup() Lookup a spa_t by name. 126 * 127 * spa_add() Create a new spa_t in the namespace. 128 * 129 * spa_remove() Remove a spa_t from the namespace. This also 130 * frees up any memory associated with the spa_t. 131 * 132 * spa_next() Returns the next spa_t in the system, or the 133 * first if NULL is passed. 134 * 135 * spa_evict_all() Shutdown and remove all spa_t structures in 136 * the system. 137 * 138 * spa_guid_exists() Determine whether a pool/device guid exists. 139 * 140 * The spa_refcount is manipulated using the following functions: 141 * 142 * spa_open_ref() Adds a reference to the given spa_t. Must be 143 * called with spa_namespace_lock held if the 144 * refcount is currently zero. 145 * 146 * spa_close() Remove a reference from the spa_t. This will 147 * not free the spa_t or remove it from the 148 * namespace. No locking is required. 149 * 150 * spa_refcount_zero() Returns true if the refcount is currently 151 * zero. Must be called with spa_namespace_lock 152 * held. 153 * 154 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 155 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 156 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 157 * 158 * To read the configuration, it suffices to hold one of these locks as reader. 159 * To modify the configuration, you must hold all locks as writer. To modify 160 * vdev state without altering the vdev tree's topology (e.g. online/offline), 161 * you must hold SCL_STATE and SCL_ZIO as writer. 162 * 163 * We use these distinct config locks to avoid recursive lock entry. 164 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 165 * block allocations (SCL_ALLOC), which may require reading space maps 166 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 167 * 168 * The spa config locks cannot be normal rwlocks because we need the 169 * ability to hand off ownership. For example, SCL_ZIO is acquired 170 * by the issuing thread and later released by an interrupt thread. 171 * They do, however, obey the usual write-wanted semantics to prevent 172 * writer (i.e. system administrator) starvation. 173 * 174 * The lock acquisition rules are as follows: 175 * 176 * SCL_CONFIG 177 * Protects changes to the vdev tree topology, such as vdev 178 * add/remove/attach/detach. Protects the dirty config list 179 * (spa_config_dirty_list) and the set of spares and l2arc devices. 180 * 181 * SCL_STATE 182 * Protects changes to pool state and vdev state, such as vdev 183 * online/offline/fault/degrade/clear. Protects the dirty state list 184 * (spa_state_dirty_list) and global pool state (spa_state). 185 * 186 * SCL_ALLOC 187 * Protects changes to metaslab groups and classes. 188 * Held as reader by metaslab_alloc() and metaslab_claim(). 189 * 190 * SCL_ZIO 191 * Held by bp-level zios (those which have no io_vd upon entry) 192 * to prevent changes to the vdev tree. The bp-level zio implicitly 193 * protects all of its vdev child zios, which do not hold SCL_ZIO. 194 * 195 * SCL_FREE 196 * Protects changes to metaslab groups and classes. 197 * Held as reader by metaslab_free(). SCL_FREE is distinct from 198 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 199 * blocks in zio_done() while another i/o that holds either 200 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 201 * 202 * SCL_VDEV 203 * Held as reader to prevent changes to the vdev tree during trivial 204 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 205 * other locks, and lower than all of them, to ensure that it's safe 206 * to acquire regardless of caller context. 207 * 208 * In addition, the following rules apply: 209 * 210 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 211 * The lock ordering is SCL_CONFIG > spa_props_lock. 212 * 213 * (b) I/O operations on leaf vdevs. For any zio operation that takes 214 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 215 * or zio_write_phys() -- the caller must ensure that the config cannot 216 * cannot change in the interim, and that the vdev cannot be reopened. 217 * SCL_STATE as reader suffices for both. 218 * 219 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 220 * 221 * spa_vdev_enter() Acquire the namespace lock and the config lock 222 * for writing. 223 * 224 * spa_vdev_exit() Release the config lock, wait for all I/O 225 * to complete, sync the updated configs to the 226 * cache, and release the namespace lock. 227 * 228 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 229 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 230 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 231 */ 232 233 static avl_tree_t spa_namespace_avl; 234 kmutex_t spa_namespace_lock; 235 static kcondvar_t spa_namespace_cv; 236 static int spa_active_count; 237 int spa_max_replication_override = SPA_DVAS_PER_BP; 238 239 static kmutex_t spa_spare_lock; 240 static avl_tree_t spa_spare_avl; 241 static kmutex_t spa_l2cache_lock; 242 static avl_tree_t spa_l2cache_avl; 243 244 kmem_cache_t *spa_buffer_pool; 245 int spa_mode_global; 246 247 #ifdef ZFS_DEBUG 248 /* 249 * Everything except dprintf, spa, and indirect_remap is on by default 250 * in debug builds. 251 */ 252 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP); 253 #else 254 int zfs_flags = 0; 255 #endif 256 257 /* 258 * zfs_recover can be set to nonzero to attempt to recover from 259 * otherwise-fatal errors, typically caused by on-disk corruption. When 260 * set, calls to zfs_panic_recover() will turn into warning messages. 261 * This should only be used as a last resort, as it typically results 262 * in leaked space, or worse. 263 */ 264 boolean_t zfs_recover = B_FALSE; 265 266 /* 267 * If destroy encounters an EIO while reading metadata (e.g. indirect 268 * blocks), space referenced by the missing metadata can not be freed. 269 * Normally this causes the background destroy to become "stalled", as 270 * it is unable to make forward progress. While in this stalled state, 271 * all remaining space to free from the error-encountering filesystem is 272 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 273 * permanently leak the space from indirect blocks that can not be read, 274 * and continue to free everything else that it can. 275 * 276 * The default, "stalling" behavior is useful if the storage partially 277 * fails (i.e. some but not all i/os fail), and then later recovers. In 278 * this case, we will be able to continue pool operations while it is 279 * partially failed, and when it recovers, we can continue to free the 280 * space, with no leaks. However, note that this case is actually 281 * fairly rare. 282 * 283 * Typically pools either (a) fail completely (but perhaps temporarily, 284 * e.g. a top-level vdev going offline), or (b) have localized, 285 * permanent errors (e.g. disk returns the wrong data due to bit flip or 286 * firmware bug). In case (a), this setting does not matter because the 287 * pool will be suspended and the sync thread will not be able to make 288 * forward progress regardless. In case (b), because the error is 289 * permanent, the best we can do is leak the minimum amount of space, 290 * which is what setting this flag will do. Therefore, it is reasonable 291 * for this flag to normally be set, but we chose the more conservative 292 * approach of not setting it, so that there is no possibility of 293 * leaking space in the "partial temporary" failure case. 294 */ 295 boolean_t zfs_free_leak_on_eio = B_FALSE; 296 297 /* 298 * Expiration time in milliseconds. This value has two meanings. First it is 299 * used to determine when the spa_deadman() logic should fire. By default the 300 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. 301 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 302 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 303 * in a system panic. 304 */ 305 uint64_t zfs_deadman_synctime_ms = 1000000ULL; 306 307 /* 308 * Check time in milliseconds. This defines the frequency at which we check 309 * for hung I/O. 310 */ 311 uint64_t zfs_deadman_checktime_ms = 5000ULL; 312 313 /* 314 * Override the zfs deadman behavior via /etc/system. By default the 315 * deadman is enabled except on VMware and sparc deployments. 316 */ 317 int zfs_deadman_enabled = -1; 318 319 /* 320 * The worst case is single-sector max-parity RAID-Z blocks, in which 321 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 322 * times the size; so just assume that. Add to this the fact that 323 * we can have up to 3 DVAs per bp, and one more factor of 2 because 324 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 325 * the worst case is: 326 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 327 */ 328 int spa_asize_inflation = 24; 329 330 /* 331 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 332 * the pool to be consumed. This ensures that we don't run the pool 333 * completely out of space, due to unaccounted changes (e.g. to the MOS). 334 * It also limits the worst-case time to allocate space. If we have 335 * less than this amount of free space, most ZPL operations (e.g. write, 336 * create) will return ENOSPC. 337 * 338 * Certain operations (e.g. file removal, most administrative actions) can 339 * use half the slop space. They will only return ENOSPC if less than half 340 * the slop space is free. Typically, once the pool has less than the slop 341 * space free, the user will use these operations to free up space in the pool. 342 * These are the operations that call dsl_pool_adjustedsize() with the netfree 343 * argument set to TRUE. 344 * 345 * Operations that are almost guaranteed to free up space in the absence of 346 * a pool checkpoint can use up to three quarters of the slop space 347 * (e.g zfs destroy). 348 * 349 * A very restricted set of operations are always permitted, regardless of 350 * the amount of free space. These are the operations that call 351 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 352 * increase in the amount of space used, it is possible to run the pool 353 * completely out of space, causing it to be permanently read-only. 354 * 355 * Note that on very small pools, the slop space will be larger than 356 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 357 * but we never allow it to be more than half the pool size. 358 * 359 * See also the comments in zfs_space_check_t. 360 */ 361 int spa_slop_shift = 5; 362 uint64_t spa_min_slop = 128 * 1024 * 1024; 363 364 int spa_allocators = 4; 365 366 /*PRINTFLIKE2*/ 367 void 368 spa_load_failed(spa_t *spa, const char *fmt, ...) 369 { 370 va_list adx; 371 char buf[256]; 372 373 va_start(adx, fmt); 374 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 375 va_end(adx); 376 377 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 378 spa->spa_trust_config ? "trusted" : "untrusted", buf); 379 } 380 381 /*PRINTFLIKE2*/ 382 void 383 spa_load_note(spa_t *spa, const char *fmt, ...) 384 { 385 va_list adx; 386 char buf[256]; 387 388 va_start(adx, fmt); 389 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 390 va_end(adx); 391 392 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 393 spa->spa_trust_config ? "trusted" : "untrusted", buf); 394 } 395 396 /* 397 * By default dedup and user data indirects land in the special class 398 */ 399 int zfs_ddt_data_is_special = B_TRUE; 400 int zfs_user_indirect_is_special = B_TRUE; 401 402 /* 403 * The percentage of special class final space reserved for metadata only. 404 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 405 * let metadata into the class. 406 */ 407 int zfs_special_class_metadata_reserve_pct = 25; 408 409 /* 410 * ========================================================================== 411 * SPA config locking 412 * ========================================================================== 413 */ 414 static void 415 spa_config_lock_init(spa_t *spa) 416 { 417 for (int i = 0; i < SCL_LOCKS; i++) { 418 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 419 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 420 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 421 zfs_refcount_create_untracked(&scl->scl_count); 422 scl->scl_writer = NULL; 423 scl->scl_write_wanted = 0; 424 } 425 } 426 427 static void 428 spa_config_lock_destroy(spa_t *spa) 429 { 430 for (int i = 0; i < SCL_LOCKS; i++) { 431 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 432 mutex_destroy(&scl->scl_lock); 433 cv_destroy(&scl->scl_cv); 434 zfs_refcount_destroy(&scl->scl_count); 435 ASSERT(scl->scl_writer == NULL); 436 ASSERT(scl->scl_write_wanted == 0); 437 } 438 } 439 440 int 441 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 442 { 443 for (int i = 0; i < SCL_LOCKS; i++) { 444 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 445 if (!(locks & (1 << i))) 446 continue; 447 mutex_enter(&scl->scl_lock); 448 if (rw == RW_READER) { 449 if (scl->scl_writer || scl->scl_write_wanted) { 450 mutex_exit(&scl->scl_lock); 451 spa_config_exit(spa, locks & ((1 << i) - 1), 452 tag); 453 return (0); 454 } 455 } else { 456 ASSERT(scl->scl_writer != curthread); 457 if (!zfs_refcount_is_zero(&scl->scl_count)) { 458 mutex_exit(&scl->scl_lock); 459 spa_config_exit(spa, locks & ((1 << i) - 1), 460 tag); 461 return (0); 462 } 463 scl->scl_writer = curthread; 464 } 465 (void) zfs_refcount_add(&scl->scl_count, tag); 466 mutex_exit(&scl->scl_lock); 467 } 468 return (1); 469 } 470 471 void 472 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 473 { 474 int wlocks_held = 0; 475 476 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 477 478 for (int i = 0; i < SCL_LOCKS; i++) { 479 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 480 if (scl->scl_writer == curthread) 481 wlocks_held |= (1 << i); 482 if (!(locks & (1 << i))) 483 continue; 484 mutex_enter(&scl->scl_lock); 485 if (rw == RW_READER) { 486 while (scl->scl_writer || scl->scl_write_wanted) { 487 cv_wait(&scl->scl_cv, &scl->scl_lock); 488 } 489 } else { 490 ASSERT(scl->scl_writer != curthread); 491 while (!zfs_refcount_is_zero(&scl->scl_count)) { 492 scl->scl_write_wanted++; 493 cv_wait(&scl->scl_cv, &scl->scl_lock); 494 scl->scl_write_wanted--; 495 } 496 scl->scl_writer = curthread; 497 } 498 (void) zfs_refcount_add(&scl->scl_count, tag); 499 mutex_exit(&scl->scl_lock); 500 } 501 ASSERT3U(wlocks_held, <=, locks); 502 } 503 504 void 505 spa_config_exit(spa_t *spa, int locks, void *tag) 506 { 507 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 508 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 509 if (!(locks & (1 << i))) 510 continue; 511 mutex_enter(&scl->scl_lock); 512 ASSERT(!zfs_refcount_is_zero(&scl->scl_count)); 513 if (zfs_refcount_remove(&scl->scl_count, tag) == 0) { 514 ASSERT(scl->scl_writer == NULL || 515 scl->scl_writer == curthread); 516 scl->scl_writer = NULL; /* OK in either case */ 517 cv_broadcast(&scl->scl_cv); 518 } 519 mutex_exit(&scl->scl_lock); 520 } 521 } 522 523 int 524 spa_config_held(spa_t *spa, int locks, krw_t rw) 525 { 526 int locks_held = 0; 527 528 for (int i = 0; i < SCL_LOCKS; i++) { 529 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 530 if (!(locks & (1 << i))) 531 continue; 532 if ((rw == RW_READER && 533 !zfs_refcount_is_zero(&scl->scl_count)) || 534 (rw == RW_WRITER && scl->scl_writer == curthread)) 535 locks_held |= 1 << i; 536 } 537 538 return (locks_held); 539 } 540 541 /* 542 * ========================================================================== 543 * SPA namespace functions 544 * ========================================================================== 545 */ 546 547 /* 548 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 549 * Returns NULL if no matching spa_t is found. 550 */ 551 spa_t * 552 spa_lookup(const char *name) 553 { 554 static spa_t search; /* spa_t is large; don't allocate on stack */ 555 spa_t *spa; 556 avl_index_t where; 557 char *cp; 558 559 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 560 561 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 562 563 /* 564 * If it's a full dataset name, figure out the pool name and 565 * just use that. 566 */ 567 cp = strpbrk(search.spa_name, "/@#"); 568 if (cp != NULL) 569 *cp = '\0'; 570 571 spa = avl_find(&spa_namespace_avl, &search, &where); 572 573 return (spa); 574 } 575 576 /* 577 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 578 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 579 * looking for potentially hung I/Os. 580 */ 581 void 582 spa_deadman(void *arg) 583 { 584 spa_t *spa = arg; 585 586 /* 587 * Disable the deadman timer if the pool is suspended. 588 */ 589 if (spa_suspended(spa)) { 590 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 591 return; 592 } 593 594 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 595 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 596 ++spa->spa_deadman_calls); 597 if (zfs_deadman_enabled) 598 vdev_deadman(spa->spa_root_vdev); 599 } 600 601 int 602 spa_log_sm_sort_by_txg(const void *va, const void *vb) 603 { 604 const spa_log_sm_t *a = va; 605 const spa_log_sm_t *b = vb; 606 607 return (TREE_CMP(a->sls_txg, b->sls_txg)); 608 } 609 610 /* 611 * Create an uninitialized spa_t with the given name. Requires 612 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 613 * exist by calling spa_lookup() first. 614 */ 615 spa_t * 616 spa_add(const char *name, nvlist_t *config, const char *altroot) 617 { 618 spa_t *spa; 619 spa_config_dirent_t *dp; 620 cyc_handler_t hdlr; 621 cyc_time_t when; 622 623 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 624 625 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 626 627 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 628 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 629 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 630 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 631 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 632 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 633 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 634 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 635 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 636 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 637 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 638 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 639 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 640 mutex_init(&spa->spa_imp_kstat_lock, NULL, MUTEX_DEFAULT, NULL); 641 642 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 643 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 644 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 645 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 646 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 647 648 for (int t = 0; t < TXG_SIZE; t++) 649 bplist_create(&spa->spa_free_bplist[t]); 650 651 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 652 spa->spa_state = POOL_STATE_UNINITIALIZED; 653 spa->spa_freeze_txg = UINT64_MAX; 654 spa->spa_final_txg = UINT64_MAX; 655 spa->spa_load_max_txg = UINT64_MAX; 656 spa->spa_proc = &p0; 657 spa->spa_proc_state = SPA_PROC_NONE; 658 spa->spa_trust_config = B_TRUE; 659 660 hdlr.cyh_func = spa_deadman; 661 hdlr.cyh_arg = spa; 662 hdlr.cyh_level = CY_LOW_LEVEL; 663 664 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 665 666 /* 667 * This determines how often we need to check for hung I/Os after 668 * the cyclic has already fired. Since checking for hung I/Os is 669 * an expensive operation we don't want to check too frequently. 670 * Instead wait for 5 seconds before checking again. 671 */ 672 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); 673 when.cyt_when = CY_INFINITY; 674 mutex_enter(&cpu_lock); 675 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 676 mutex_exit(&cpu_lock); 677 678 zfs_refcount_create(&spa->spa_refcount); 679 spa_config_lock_init(spa); 680 681 avl_add(&spa_namespace_avl, spa); 682 683 /* 684 * Set the alternate root, if there is one. 685 */ 686 if (altroot) { 687 spa->spa_root = spa_strdup(altroot); 688 spa_active_count++; 689 } 690 691 spa->spa_alloc_count = spa_allocators; 692 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count * 693 sizeof (kmutex_t), KM_SLEEP); 694 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count * 695 sizeof (avl_tree_t), KM_SLEEP); 696 for (int i = 0; i < spa->spa_alloc_count; i++) { 697 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL); 698 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare, 699 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 700 } 701 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 702 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 703 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 704 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 705 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 706 offsetof(log_summary_entry_t, lse_node)); 707 708 /* 709 * Every pool starts with the default cachefile 710 */ 711 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 712 offsetof(spa_config_dirent_t, scd_link)); 713 714 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 715 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 716 list_insert_head(&spa->spa_config_list, dp); 717 718 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 719 KM_SLEEP) == 0); 720 721 if (config != NULL) { 722 nvlist_t *features; 723 724 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 725 &features) == 0) { 726 VERIFY(nvlist_dup(features, &spa->spa_label_features, 727 0) == 0); 728 } 729 730 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 731 } 732 733 if (spa->spa_label_features == NULL) { 734 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 735 KM_SLEEP) == 0); 736 } 737 738 spa->spa_iokstat = kstat_create("zfs", 0, name, 739 "disk", KSTAT_TYPE_IO, 1, 0); 740 if (spa->spa_iokstat) { 741 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 742 kstat_install(spa->spa_iokstat); 743 } 744 745 spa->spa_min_ashift = INT_MAX; 746 spa->spa_max_ashift = 0; 747 748 /* 749 * As a pool is being created, treat all features as disabled by 750 * setting SPA_FEATURE_DISABLED for all entries in the feature 751 * refcount cache. 752 */ 753 for (int i = 0; i < SPA_FEATURES; i++) { 754 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 755 } 756 757 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 758 offsetof(vdev_t, vdev_leaf_node)); 759 760 return (spa); 761 } 762 763 /* 764 * Removes a spa_t from the namespace, freeing up any memory used. Requires 765 * spa_namespace_lock. This is called only after the spa_t has been closed and 766 * deactivated. 767 */ 768 void 769 spa_remove(spa_t *spa) 770 { 771 spa_config_dirent_t *dp; 772 773 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 774 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 775 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 776 777 nvlist_free(spa->spa_config_splitting); 778 779 avl_remove(&spa_namespace_avl, spa); 780 cv_broadcast(&spa_namespace_cv); 781 782 if (spa->spa_root) { 783 spa_strfree(spa->spa_root); 784 spa_active_count--; 785 } 786 787 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 788 list_remove(&spa->spa_config_list, dp); 789 if (dp->scd_path != NULL) 790 spa_strfree(dp->scd_path); 791 kmem_free(dp, sizeof (spa_config_dirent_t)); 792 } 793 794 for (int i = 0; i < spa->spa_alloc_count; i++) { 795 avl_destroy(&spa->spa_alloc_trees[i]); 796 mutex_destroy(&spa->spa_alloc_locks[i]); 797 } 798 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count * 799 sizeof (kmutex_t)); 800 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count * 801 sizeof (avl_tree_t)); 802 803 avl_destroy(&spa->spa_metaslabs_by_flushed); 804 avl_destroy(&spa->spa_sm_logs_by_txg); 805 list_destroy(&spa->spa_log_summary); 806 list_destroy(&spa->spa_config_list); 807 list_destroy(&spa->spa_leaf_list); 808 809 nvlist_free(spa->spa_label_features); 810 nvlist_free(spa->spa_load_info); 811 spa_config_set(spa, NULL); 812 813 mutex_enter(&cpu_lock); 814 if (spa->spa_deadman_cycid != CYCLIC_NONE) 815 cyclic_remove(spa->spa_deadman_cycid); 816 mutex_exit(&cpu_lock); 817 spa->spa_deadman_cycid = CYCLIC_NONE; 818 819 zfs_refcount_destroy(&spa->spa_refcount); 820 821 spa_config_lock_destroy(spa); 822 823 kstat_delete(spa->spa_iokstat); 824 spa->spa_iokstat = NULL; 825 826 for (int t = 0; t < TXG_SIZE; t++) 827 bplist_destroy(&spa->spa_free_bplist[t]); 828 829 zio_checksum_templates_free(spa); 830 831 cv_destroy(&spa->spa_async_cv); 832 cv_destroy(&spa->spa_evicting_os_cv); 833 cv_destroy(&spa->spa_proc_cv); 834 cv_destroy(&spa->spa_scrub_io_cv); 835 cv_destroy(&spa->spa_suspend_cv); 836 837 mutex_destroy(&spa->spa_flushed_ms_lock); 838 mutex_destroy(&spa->spa_async_lock); 839 mutex_destroy(&spa->spa_errlist_lock); 840 mutex_destroy(&spa->spa_errlog_lock); 841 mutex_destroy(&spa->spa_evicting_os_lock); 842 mutex_destroy(&spa->spa_history_lock); 843 mutex_destroy(&spa->spa_proc_lock); 844 mutex_destroy(&spa->spa_props_lock); 845 mutex_destroy(&spa->spa_cksum_tmpls_lock); 846 mutex_destroy(&spa->spa_scrub_lock); 847 mutex_destroy(&spa->spa_suspend_lock); 848 mutex_destroy(&spa->spa_vdev_top_lock); 849 mutex_destroy(&spa->spa_iokstat_lock); 850 mutex_destroy(&spa->spa_imp_kstat_lock); 851 852 kmem_free(spa, sizeof (spa_t)); 853 } 854 855 /* 856 * Given a pool, return the next pool in the namespace, or NULL if there is 857 * none. If 'prev' is NULL, return the first pool. 858 */ 859 spa_t * 860 spa_next(spa_t *prev) 861 { 862 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 863 864 if (prev) 865 return (AVL_NEXT(&spa_namespace_avl, prev)); 866 else 867 return (avl_first(&spa_namespace_avl)); 868 } 869 870 /* 871 * ========================================================================== 872 * SPA refcount functions 873 * ========================================================================== 874 */ 875 876 /* 877 * Add a reference to the given spa_t. Must have at least one reference, or 878 * have the namespace lock held. 879 */ 880 void 881 spa_open_ref(spa_t *spa, void *tag) 882 { 883 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 884 MUTEX_HELD(&spa_namespace_lock)); 885 (void) zfs_refcount_add(&spa->spa_refcount, tag); 886 } 887 888 /* 889 * Remove a reference to the given spa_t. Must have at least one reference, or 890 * have the namespace lock held. 891 */ 892 void 893 spa_close(spa_t *spa, void *tag) 894 { 895 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 896 MUTEX_HELD(&spa_namespace_lock)); 897 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 898 } 899 900 /* 901 * Remove a reference to the given spa_t held by a dsl dir that is 902 * being asynchronously released. Async releases occur from a taskq 903 * performing eviction of dsl datasets and dirs. The namespace lock 904 * isn't held and the hold by the object being evicted may contribute to 905 * spa_minref (e.g. dataset or directory released during pool export), 906 * so the asserts in spa_close() do not apply. 907 */ 908 void 909 spa_async_close(spa_t *spa, void *tag) 910 { 911 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 912 } 913 914 /* 915 * Check to see if the spa refcount is zero. Must be called with 916 * spa_namespace_lock held. We really compare against spa_minref, which is the 917 * number of references acquired when opening a pool 918 */ 919 boolean_t 920 spa_refcount_zero(spa_t *spa) 921 { 922 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 923 924 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 925 } 926 927 /* 928 * ========================================================================== 929 * SPA spare and l2cache tracking 930 * ========================================================================== 931 */ 932 933 /* 934 * Hot spares and cache devices are tracked using the same code below, 935 * for 'auxiliary' devices. 936 */ 937 938 typedef struct spa_aux { 939 uint64_t aux_guid; 940 uint64_t aux_pool; 941 avl_node_t aux_avl; 942 int aux_count; 943 } spa_aux_t; 944 945 static inline int 946 spa_aux_compare(const void *a, const void *b) 947 { 948 const spa_aux_t *sa = (const spa_aux_t *)a; 949 const spa_aux_t *sb = (const spa_aux_t *)b; 950 951 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 952 } 953 954 void 955 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 956 { 957 avl_index_t where; 958 spa_aux_t search; 959 spa_aux_t *aux; 960 961 search.aux_guid = vd->vdev_guid; 962 if ((aux = avl_find(avl, &search, &where)) != NULL) { 963 aux->aux_count++; 964 } else { 965 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 966 aux->aux_guid = vd->vdev_guid; 967 aux->aux_count = 1; 968 avl_insert(avl, aux, where); 969 } 970 } 971 972 void 973 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 974 { 975 spa_aux_t search; 976 spa_aux_t *aux; 977 avl_index_t where; 978 979 search.aux_guid = vd->vdev_guid; 980 aux = avl_find(avl, &search, &where); 981 982 ASSERT(aux != NULL); 983 984 if (--aux->aux_count == 0) { 985 avl_remove(avl, aux); 986 kmem_free(aux, sizeof (spa_aux_t)); 987 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 988 aux->aux_pool = 0ULL; 989 } 990 } 991 992 boolean_t 993 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 994 { 995 spa_aux_t search, *found; 996 997 search.aux_guid = guid; 998 found = avl_find(avl, &search, NULL); 999 1000 if (pool) { 1001 if (found) 1002 *pool = found->aux_pool; 1003 else 1004 *pool = 0ULL; 1005 } 1006 1007 if (refcnt) { 1008 if (found) 1009 *refcnt = found->aux_count; 1010 else 1011 *refcnt = 0; 1012 } 1013 1014 return (found != NULL); 1015 } 1016 1017 void 1018 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1019 { 1020 spa_aux_t search, *found; 1021 avl_index_t where; 1022 1023 search.aux_guid = vd->vdev_guid; 1024 found = avl_find(avl, &search, &where); 1025 ASSERT(found != NULL); 1026 ASSERT(found->aux_pool == 0ULL); 1027 1028 found->aux_pool = spa_guid(vd->vdev_spa); 1029 } 1030 1031 /* 1032 * Spares are tracked globally due to the following constraints: 1033 * 1034 * - A spare may be part of multiple pools. 1035 * - A spare may be added to a pool even if it's actively in use within 1036 * another pool. 1037 * - A spare in use in any pool can only be the source of a replacement if 1038 * the target is a spare in the same pool. 1039 * 1040 * We keep track of all spares on the system through the use of a reference 1041 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1042 * spare, then we bump the reference count in the AVL tree. In addition, we set 1043 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1044 * inactive). When a spare is made active (used to replace a device in the 1045 * pool), we also keep track of which pool its been made a part of. 1046 * 1047 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1048 * called under the spa_namespace lock as part of vdev reconfiguration. The 1049 * separate spare lock exists for the status query path, which does not need to 1050 * be completely consistent with respect to other vdev configuration changes. 1051 */ 1052 1053 /* 1054 * Poll the spare vdevs to make sure they are not faulty. 1055 * 1056 * The probe operation will raise an ENXIO error and create an FM ereport if the 1057 * probe fails. 1058 */ 1059 void 1060 spa_spare_poll(spa_t *spa) 1061 { 1062 boolean_t async_request = B_FALSE; 1063 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 1064 for (int i = 0; i < spa->spa_spares.sav_count; i++) { 1065 spa_aux_t search, *found; 1066 vdev_t *vd = spa->spa_spares.sav_vdevs[i]; 1067 1068 search.aux_guid = vd->vdev_guid; 1069 1070 mutex_enter(&spa_spare_lock); 1071 found = avl_find(&spa_spare_avl, &search, NULL); 1072 /* This spare is in use by a pool. */ 1073 if (found != NULL && found->aux_pool != 0) { 1074 mutex_exit(&spa_spare_lock); 1075 continue; 1076 } 1077 mutex_exit(&spa_spare_lock); 1078 1079 vd->vdev_probe_wanted = B_TRUE; 1080 async_request = B_TRUE; 1081 } 1082 if (async_request) 1083 spa_async_request(spa, SPA_ASYNC_PROBE); 1084 1085 spa_config_exit(spa, SCL_STATE, FTAG); 1086 } 1087 1088 static int 1089 spa_spare_compare(const void *a, const void *b) 1090 { 1091 return (spa_aux_compare(a, b)); 1092 } 1093 1094 void 1095 spa_spare_add(vdev_t *vd) 1096 { 1097 mutex_enter(&spa_spare_lock); 1098 ASSERT(!vd->vdev_isspare); 1099 spa_aux_add(vd, &spa_spare_avl); 1100 vd->vdev_isspare = B_TRUE; 1101 mutex_exit(&spa_spare_lock); 1102 } 1103 1104 void 1105 spa_spare_remove(vdev_t *vd) 1106 { 1107 mutex_enter(&spa_spare_lock); 1108 ASSERT(vd->vdev_isspare); 1109 spa_aux_remove(vd, &spa_spare_avl); 1110 vd->vdev_isspare = B_FALSE; 1111 mutex_exit(&spa_spare_lock); 1112 } 1113 1114 boolean_t 1115 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1116 { 1117 boolean_t found; 1118 1119 mutex_enter(&spa_spare_lock); 1120 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1121 mutex_exit(&spa_spare_lock); 1122 1123 return (found); 1124 } 1125 1126 void 1127 spa_spare_activate(vdev_t *vd) 1128 { 1129 mutex_enter(&spa_spare_lock); 1130 ASSERT(vd->vdev_isspare); 1131 spa_aux_activate(vd, &spa_spare_avl); 1132 mutex_exit(&spa_spare_lock); 1133 } 1134 1135 /* 1136 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1137 * Cache devices currently only support one pool per cache device, and so 1138 * for these devices the aux reference count is currently unused beyond 1. 1139 */ 1140 1141 static int 1142 spa_l2cache_compare(const void *a, const void *b) 1143 { 1144 return (spa_aux_compare(a, b)); 1145 } 1146 1147 void 1148 spa_l2cache_add(vdev_t *vd) 1149 { 1150 mutex_enter(&spa_l2cache_lock); 1151 ASSERT(!vd->vdev_isl2cache); 1152 spa_aux_add(vd, &spa_l2cache_avl); 1153 vd->vdev_isl2cache = B_TRUE; 1154 mutex_exit(&spa_l2cache_lock); 1155 } 1156 1157 void 1158 spa_l2cache_remove(vdev_t *vd) 1159 { 1160 mutex_enter(&spa_l2cache_lock); 1161 ASSERT(vd->vdev_isl2cache); 1162 spa_aux_remove(vd, &spa_l2cache_avl); 1163 vd->vdev_isl2cache = B_FALSE; 1164 mutex_exit(&spa_l2cache_lock); 1165 } 1166 1167 boolean_t 1168 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1169 { 1170 boolean_t found; 1171 1172 mutex_enter(&spa_l2cache_lock); 1173 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1174 mutex_exit(&spa_l2cache_lock); 1175 1176 return (found); 1177 } 1178 1179 void 1180 spa_l2cache_activate(vdev_t *vd) 1181 { 1182 mutex_enter(&spa_l2cache_lock); 1183 ASSERT(vd->vdev_isl2cache); 1184 spa_aux_activate(vd, &spa_l2cache_avl); 1185 mutex_exit(&spa_l2cache_lock); 1186 } 1187 1188 /* 1189 * ========================================================================== 1190 * SPA vdev locking 1191 * ========================================================================== 1192 */ 1193 1194 /* 1195 * Lock the given spa_t for the purpose of adding or removing a vdev. 1196 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1197 * It returns the next transaction group for the spa_t. 1198 */ 1199 uint64_t 1200 spa_vdev_enter(spa_t *spa) 1201 { 1202 mutex_enter(&spa->spa_vdev_top_lock); 1203 mutex_enter(&spa_namespace_lock); 1204 1205 vdev_autotrim_stop_all(spa); 1206 1207 return (spa_vdev_config_enter(spa)); 1208 } 1209 1210 /* 1211 * Internal implementation for spa_vdev_enter(). Used when a vdev 1212 * operation requires multiple syncs (i.e. removing a device) while 1213 * keeping the spa_namespace_lock held. 1214 */ 1215 uint64_t 1216 spa_vdev_config_enter(spa_t *spa) 1217 { 1218 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1219 1220 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1221 1222 return (spa_last_synced_txg(spa) + 1); 1223 } 1224 1225 /* 1226 * Used in combination with spa_vdev_config_enter() to allow the syncing 1227 * of multiple transactions without releasing the spa_namespace_lock. 1228 */ 1229 void 1230 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1231 { 1232 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1233 1234 int config_changed = B_FALSE; 1235 1236 ASSERT(txg > spa_last_synced_txg(spa)); 1237 1238 spa->spa_pending_vdev = NULL; 1239 1240 /* 1241 * Reassess the DTLs. 1242 */ 1243 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 1244 1245 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1246 config_changed = B_TRUE; 1247 spa->spa_config_generation++; 1248 } 1249 1250 /* 1251 * Verify the metaslab classes. 1252 */ 1253 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1254 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1255 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1256 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1257 1258 spa_config_exit(spa, SCL_ALL, spa); 1259 1260 /* 1261 * Panic the system if the specified tag requires it. This 1262 * is useful for ensuring that configurations are updated 1263 * transactionally. 1264 */ 1265 if (zio_injection_enabled) 1266 zio_handle_panic_injection(spa, tag, 0); 1267 1268 /* 1269 * Note: this txg_wait_synced() is important because it ensures 1270 * that there won't be more than one config change per txg. 1271 * This allows us to use the txg as the generation number. 1272 */ 1273 if (error == 0) 1274 txg_wait_synced(spa->spa_dsl_pool, txg); 1275 1276 if (vd != NULL) { 1277 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1278 if (vd->vdev_ops->vdev_op_leaf) { 1279 mutex_enter(&vd->vdev_initialize_lock); 1280 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1281 NULL); 1282 mutex_exit(&vd->vdev_initialize_lock); 1283 1284 mutex_enter(&vd->vdev_trim_lock); 1285 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1286 mutex_exit(&vd->vdev_trim_lock); 1287 } 1288 1289 /* 1290 * The vdev may be both a leaf and top-level device. 1291 */ 1292 vdev_autotrim_stop_wait(vd); 1293 1294 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1295 vdev_free(vd); 1296 spa_config_exit(spa, SCL_ALL, spa); 1297 } 1298 1299 /* 1300 * If the config changed, update the config cache. 1301 */ 1302 if (config_changed) 1303 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1304 } 1305 1306 /* 1307 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1308 * locking of spa_vdev_enter(), we also want make sure the transactions have 1309 * synced to disk, and then update the global configuration cache with the new 1310 * information. 1311 */ 1312 int 1313 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1314 { 1315 vdev_autotrim_restart(spa); 1316 1317 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1318 mutex_exit(&spa_namespace_lock); 1319 mutex_exit(&spa->spa_vdev_top_lock); 1320 1321 return (error); 1322 } 1323 1324 /* 1325 * Lock the given spa_t for the purpose of changing vdev state. 1326 */ 1327 void 1328 spa_vdev_state_enter(spa_t *spa, int oplocks) 1329 { 1330 int locks = SCL_STATE_ALL | oplocks; 1331 1332 /* 1333 * Root pools may need to read of the underlying devfs filesystem 1334 * when opening up a vdev. Unfortunately if we're holding the 1335 * SCL_ZIO lock it will result in a deadlock when we try to issue 1336 * the read from the root filesystem. Instead we "prefetch" 1337 * the associated vnodes that we need prior to opening the 1338 * underlying devices and cache them so that we can prevent 1339 * any I/O when we are doing the actual open. 1340 */ 1341 if (spa_is_root(spa)) { 1342 int low = locks & ~(SCL_ZIO - 1); 1343 int high = locks & ~low; 1344 1345 spa_config_enter(spa, high, spa, RW_WRITER); 1346 vdev_hold(spa->spa_root_vdev); 1347 spa_config_enter(spa, low, spa, RW_WRITER); 1348 } else { 1349 spa_config_enter(spa, locks, spa, RW_WRITER); 1350 } 1351 spa->spa_vdev_locks = locks; 1352 } 1353 1354 int 1355 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1356 { 1357 boolean_t config_changed = B_FALSE; 1358 1359 if (vd != NULL || error == 0) 1360 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1361 0, 0, B_FALSE); 1362 1363 if (vd != NULL) { 1364 vdev_state_dirty(vd->vdev_top); 1365 config_changed = B_TRUE; 1366 spa->spa_config_generation++; 1367 } 1368 1369 if (spa_is_root(spa)) 1370 vdev_rele(spa->spa_root_vdev); 1371 1372 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1373 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1374 1375 /* 1376 * If anything changed, wait for it to sync. This ensures that, 1377 * from the system administrator's perspective, zpool(1M) commands 1378 * are synchronous. This is important for things like zpool offline: 1379 * when the command completes, you expect no further I/O from ZFS. 1380 */ 1381 if (vd != NULL) 1382 txg_wait_synced(spa->spa_dsl_pool, 0); 1383 1384 /* 1385 * If the config changed, update the config cache. 1386 */ 1387 if (config_changed) { 1388 mutex_enter(&spa_namespace_lock); 1389 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1390 mutex_exit(&spa_namespace_lock); 1391 } 1392 1393 return (error); 1394 } 1395 1396 /* 1397 * ========================================================================== 1398 * Miscellaneous functions 1399 * ========================================================================== 1400 */ 1401 1402 void 1403 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1404 { 1405 if (!nvlist_exists(spa->spa_label_features, feature)) { 1406 fnvlist_add_boolean(spa->spa_label_features, feature); 1407 /* 1408 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1409 * dirty the vdev config because lock SCL_CONFIG is not held. 1410 * Thankfully, in this case we don't need to dirty the config 1411 * because it will be written out anyway when we finish 1412 * creating the pool. 1413 */ 1414 if (tx->tx_txg != TXG_INITIAL) 1415 vdev_config_dirty(spa->spa_root_vdev); 1416 } 1417 } 1418 1419 void 1420 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1421 { 1422 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1423 vdev_config_dirty(spa->spa_root_vdev); 1424 } 1425 1426 /* 1427 * Return the spa_t associated with given pool_guid, if it exists. If 1428 * device_guid is non-zero, determine whether the pool exists *and* contains 1429 * a device with the specified device_guid. 1430 */ 1431 spa_t * 1432 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1433 { 1434 spa_t *spa; 1435 avl_tree_t *t = &spa_namespace_avl; 1436 1437 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1438 1439 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1440 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1441 continue; 1442 if (spa->spa_root_vdev == NULL) 1443 continue; 1444 if (spa_guid(spa) == pool_guid) { 1445 if (device_guid == 0) 1446 break; 1447 1448 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1449 device_guid) != NULL) 1450 break; 1451 1452 /* 1453 * Check any devices we may be in the process of adding. 1454 */ 1455 if (spa->spa_pending_vdev) { 1456 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1457 device_guid) != NULL) 1458 break; 1459 } 1460 } 1461 } 1462 1463 return (spa); 1464 } 1465 1466 /* 1467 * Determine whether a pool with the given pool_guid exists. 1468 */ 1469 boolean_t 1470 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1471 { 1472 return (spa_by_guid(pool_guid, device_guid) != NULL); 1473 } 1474 1475 char * 1476 spa_strdup(const char *s) 1477 { 1478 size_t len; 1479 char *new; 1480 1481 len = strlen(s); 1482 new = kmem_alloc(len + 1, KM_SLEEP); 1483 bcopy(s, new, len); 1484 new[len] = '\0'; 1485 1486 return (new); 1487 } 1488 1489 void 1490 spa_strfree(char *s) 1491 { 1492 kmem_free(s, strlen(s) + 1); 1493 } 1494 1495 uint64_t 1496 spa_get_random(uint64_t range) 1497 { 1498 uint64_t r; 1499 1500 ASSERT(range != 0); 1501 1502 if (range == 1) 1503 return (0); 1504 1505 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1506 1507 return (r % range); 1508 } 1509 1510 uint64_t 1511 spa_generate_guid(spa_t *spa) 1512 { 1513 uint64_t guid = spa_get_random(-1ULL); 1514 1515 if (spa != NULL) { 1516 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1517 guid = spa_get_random(-1ULL); 1518 } else { 1519 while (guid == 0 || spa_guid_exists(guid, 0)) 1520 guid = spa_get_random(-1ULL); 1521 } 1522 1523 return (guid); 1524 } 1525 1526 void 1527 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1528 { 1529 char type[256]; 1530 char *checksum = NULL; 1531 char *compress = NULL; 1532 1533 if (bp != NULL) { 1534 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1535 dmu_object_byteswap_t bswap = 1536 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1537 (void) snprintf(type, sizeof (type), "bswap %s %s", 1538 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1539 "metadata" : "data", 1540 dmu_ot_byteswap[bswap].ob_name); 1541 } else { 1542 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1543 sizeof (type)); 1544 } 1545 if (!BP_IS_EMBEDDED(bp)) { 1546 checksum = 1547 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1548 } 1549 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1550 } 1551 1552 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1553 compress); 1554 } 1555 1556 void 1557 spa_freeze(spa_t *spa) 1558 { 1559 uint64_t freeze_txg = 0; 1560 1561 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1562 if (spa->spa_freeze_txg == UINT64_MAX) { 1563 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1564 spa->spa_freeze_txg = freeze_txg; 1565 } 1566 spa_config_exit(spa, SCL_ALL, FTAG); 1567 if (freeze_txg != 0) 1568 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1569 } 1570 1571 void 1572 zfs_panic_recover(const char *fmt, ...) 1573 { 1574 va_list adx; 1575 1576 va_start(adx, fmt); 1577 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1578 va_end(adx); 1579 } 1580 1581 /* 1582 * This is a stripped-down version of strtoull, suitable only for converting 1583 * lowercase hexadecimal numbers that don't overflow. 1584 */ 1585 uint64_t 1586 zfs_strtonum(const char *str, char **nptr) 1587 { 1588 uint64_t val = 0; 1589 char c; 1590 int digit; 1591 1592 while ((c = *str) != '\0') { 1593 if (c >= '0' && c <= '9') 1594 digit = c - '0'; 1595 else if (c >= 'a' && c <= 'f') 1596 digit = 10 + c - 'a'; 1597 else 1598 break; 1599 1600 val *= 16; 1601 val += digit; 1602 1603 str++; 1604 } 1605 1606 if (nptr) 1607 *nptr = (char *)str; 1608 1609 return (val); 1610 } 1611 1612 void 1613 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1614 { 1615 /* 1616 * We bump the feature refcount for each special vdev added to the pool 1617 */ 1618 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1619 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1620 } 1621 1622 /* 1623 * ========================================================================== 1624 * Accessor functions 1625 * ========================================================================== 1626 */ 1627 1628 boolean_t 1629 spa_shutting_down(spa_t *spa) 1630 { 1631 return (spa->spa_async_suspended); 1632 } 1633 1634 dsl_pool_t * 1635 spa_get_dsl(spa_t *spa) 1636 { 1637 return (spa->spa_dsl_pool); 1638 } 1639 1640 boolean_t 1641 spa_is_initializing(spa_t *spa) 1642 { 1643 return (spa->spa_is_initializing); 1644 } 1645 1646 boolean_t 1647 spa_indirect_vdevs_loaded(spa_t *spa) 1648 { 1649 return (spa->spa_indirect_vdevs_loaded); 1650 } 1651 1652 blkptr_t * 1653 spa_get_rootblkptr(spa_t *spa) 1654 { 1655 return (&spa->spa_ubsync.ub_rootbp); 1656 } 1657 1658 void 1659 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1660 { 1661 spa->spa_uberblock.ub_rootbp = *bp; 1662 } 1663 1664 void 1665 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1666 { 1667 if (spa->spa_root == NULL) 1668 buf[0] = '\0'; 1669 else 1670 (void) strncpy(buf, spa->spa_root, buflen); 1671 } 1672 1673 int 1674 spa_sync_pass(spa_t *spa) 1675 { 1676 return (spa->spa_sync_pass); 1677 } 1678 1679 char * 1680 spa_name(spa_t *spa) 1681 { 1682 return (spa->spa_name); 1683 } 1684 1685 uint64_t 1686 spa_guid(spa_t *spa) 1687 { 1688 dsl_pool_t *dp = spa_get_dsl(spa); 1689 uint64_t guid; 1690 1691 /* 1692 * If we fail to parse the config during spa_load(), we can go through 1693 * the error path (which posts an ereport) and end up here with no root 1694 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1695 * this case. 1696 */ 1697 if (spa->spa_root_vdev == NULL) 1698 return (spa->spa_config_guid); 1699 1700 guid = spa->spa_last_synced_guid != 0 ? 1701 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1702 1703 /* 1704 * Return the most recently synced out guid unless we're 1705 * in syncing context. 1706 */ 1707 if (dp && dsl_pool_sync_context(dp)) 1708 return (spa->spa_root_vdev->vdev_guid); 1709 else 1710 return (guid); 1711 } 1712 1713 uint64_t 1714 spa_load_guid(spa_t *spa) 1715 { 1716 /* 1717 * This is a GUID that exists solely as a reference for the 1718 * purposes of the arc. It is generated at load time, and 1719 * is never written to persistent storage. 1720 */ 1721 return (spa->spa_load_guid); 1722 } 1723 1724 uint64_t 1725 spa_last_synced_txg(spa_t *spa) 1726 { 1727 return (spa->spa_ubsync.ub_txg); 1728 } 1729 1730 uint64_t 1731 spa_first_txg(spa_t *spa) 1732 { 1733 return (spa->spa_first_txg); 1734 } 1735 1736 uint64_t 1737 spa_syncing_txg(spa_t *spa) 1738 { 1739 return (spa->spa_syncing_txg); 1740 } 1741 1742 /* 1743 * Return the last txg where data can be dirtied. The final txgs 1744 * will be used to just clear out any deferred frees that remain. 1745 */ 1746 uint64_t 1747 spa_final_dirty_txg(spa_t *spa) 1748 { 1749 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1750 } 1751 1752 pool_state_t 1753 spa_state(spa_t *spa) 1754 { 1755 return (spa->spa_state); 1756 } 1757 1758 spa_load_state_t 1759 spa_load_state(spa_t *spa) 1760 { 1761 return (spa->spa_load_state); 1762 } 1763 1764 uint64_t 1765 spa_freeze_txg(spa_t *spa) 1766 { 1767 return (spa->spa_freeze_txg); 1768 } 1769 1770 /* ARGSUSED */ 1771 uint64_t 1772 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1773 { 1774 return (lsize * spa_asize_inflation); 1775 } 1776 1777 /* 1778 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%), 1779 * or at least 128MB, unless that would cause it to be more than half the 1780 * pool size. 1781 * 1782 * See the comment above spa_slop_shift for details. 1783 */ 1784 uint64_t 1785 spa_get_slop_space(spa_t *spa) 1786 { 1787 uint64_t space = spa_get_dspace(spa); 1788 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop))); 1789 } 1790 1791 uint64_t 1792 spa_get_dspace(spa_t *spa) 1793 { 1794 return (spa->spa_dspace); 1795 } 1796 1797 uint64_t 1798 spa_get_checkpoint_space(spa_t *spa) 1799 { 1800 return (spa->spa_checkpoint_info.sci_dspace); 1801 } 1802 1803 void 1804 spa_update_dspace(spa_t *spa) 1805 { 1806 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1807 ddt_get_dedup_dspace(spa); 1808 if (spa->spa_vdev_removal != NULL) { 1809 /* 1810 * We can't allocate from the removing device, so 1811 * subtract its size. This prevents the DMU/DSL from 1812 * filling up the (now smaller) pool while we are in the 1813 * middle of removing the device. 1814 * 1815 * Note that the DMU/DSL doesn't actually know or care 1816 * how much space is allocated (it does its own tracking 1817 * of how much space has been logically used). So it 1818 * doesn't matter that the data we are moving may be 1819 * allocated twice (on the old device and the new 1820 * device). 1821 */ 1822 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1823 vdev_t *vd = 1824 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1825 spa->spa_dspace -= spa_deflate(spa) ? 1826 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1827 spa_config_exit(spa, SCL_VDEV, FTAG); 1828 } 1829 } 1830 1831 /* 1832 * Return the failure mode that has been set to this pool. The default 1833 * behavior will be to block all I/Os when a complete failure occurs. 1834 */ 1835 uint8_t 1836 spa_get_failmode(spa_t *spa) 1837 { 1838 return (spa->spa_failmode); 1839 } 1840 1841 boolean_t 1842 spa_suspended(spa_t *spa) 1843 { 1844 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1845 } 1846 1847 uint64_t 1848 spa_version(spa_t *spa) 1849 { 1850 return (spa->spa_ubsync.ub_version); 1851 } 1852 1853 boolean_t 1854 spa_deflate(spa_t *spa) 1855 { 1856 return (spa->spa_deflate); 1857 } 1858 1859 metaslab_class_t * 1860 spa_normal_class(spa_t *spa) 1861 { 1862 return (spa->spa_normal_class); 1863 } 1864 1865 metaslab_class_t * 1866 spa_log_class(spa_t *spa) 1867 { 1868 return (spa->spa_log_class); 1869 } 1870 1871 metaslab_class_t * 1872 spa_special_class(spa_t *spa) 1873 { 1874 return (spa->spa_special_class); 1875 } 1876 1877 metaslab_class_t * 1878 spa_dedup_class(spa_t *spa) 1879 { 1880 return (spa->spa_dedup_class); 1881 } 1882 1883 /* 1884 * Locate an appropriate allocation class 1885 */ 1886 metaslab_class_t * 1887 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1888 uint_t level, uint_t special_smallblk) 1889 { 1890 if (DMU_OT_IS_ZIL(objtype)) { 1891 if (spa->spa_log_class->mc_groups != 0) 1892 return (spa_log_class(spa)); 1893 else 1894 return (spa_normal_class(spa)); 1895 } 1896 1897 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1898 1899 if (DMU_OT_IS_DDT(objtype)) { 1900 if (spa->spa_dedup_class->mc_groups != 0) 1901 return (spa_dedup_class(spa)); 1902 else if (has_special_class && zfs_ddt_data_is_special) 1903 return (spa_special_class(spa)); 1904 else 1905 return (spa_normal_class(spa)); 1906 } 1907 1908 /* Indirect blocks for user data can land in special if allowed */ 1909 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 1910 if (has_special_class && zfs_user_indirect_is_special) 1911 return (spa_special_class(spa)); 1912 else 1913 return (spa_normal_class(spa)); 1914 } 1915 1916 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 1917 if (has_special_class) 1918 return (spa_special_class(spa)); 1919 else 1920 return (spa_normal_class(spa)); 1921 } 1922 1923 /* 1924 * Allow small file blocks in special class in some cases (like 1925 * for the dRAID vdev feature). But always leave a reserve of 1926 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 1927 */ 1928 if (DMU_OT_IS_FILE(objtype) && 1929 has_special_class && size <= special_smallblk) { 1930 metaslab_class_t *special = spa_special_class(spa); 1931 uint64_t alloc = metaslab_class_get_alloc(special); 1932 uint64_t space = metaslab_class_get_space(special); 1933 uint64_t limit = 1934 (space * (100 - zfs_special_class_metadata_reserve_pct)) 1935 / 100; 1936 1937 if (alloc < limit) 1938 return (special); 1939 } 1940 1941 return (spa_normal_class(spa)); 1942 } 1943 1944 void 1945 spa_evicting_os_register(spa_t *spa, objset_t *os) 1946 { 1947 mutex_enter(&spa->spa_evicting_os_lock); 1948 list_insert_head(&spa->spa_evicting_os_list, os); 1949 mutex_exit(&spa->spa_evicting_os_lock); 1950 } 1951 1952 void 1953 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 1954 { 1955 mutex_enter(&spa->spa_evicting_os_lock); 1956 list_remove(&spa->spa_evicting_os_list, os); 1957 cv_broadcast(&spa->spa_evicting_os_cv); 1958 mutex_exit(&spa->spa_evicting_os_lock); 1959 } 1960 1961 void 1962 spa_evicting_os_wait(spa_t *spa) 1963 { 1964 mutex_enter(&spa->spa_evicting_os_lock); 1965 while (!list_is_empty(&spa->spa_evicting_os_list)) 1966 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 1967 mutex_exit(&spa->spa_evicting_os_lock); 1968 1969 dmu_buf_user_evict_wait(); 1970 } 1971 1972 int 1973 spa_max_replication(spa_t *spa) 1974 { 1975 /* 1976 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1977 * handle BPs with more than one DVA allocated. Set our max 1978 * replication level accordingly. 1979 */ 1980 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1981 return (1); 1982 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1983 } 1984 1985 int 1986 spa_prev_software_version(spa_t *spa) 1987 { 1988 return (spa->spa_prev_software_version); 1989 } 1990 1991 uint64_t 1992 spa_deadman_synctime(spa_t *spa) 1993 { 1994 return (spa->spa_deadman_synctime); 1995 } 1996 1997 spa_autotrim_t 1998 spa_get_autotrim(spa_t *spa) 1999 { 2000 return (spa->spa_autotrim); 2001 } 2002 2003 uint64_t 2004 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2005 { 2006 uint64_t asize = DVA_GET_ASIZE(dva); 2007 uint64_t dsize = asize; 2008 2009 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2010 2011 if (asize != 0 && spa->spa_deflate) { 2012 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2013 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 2014 } 2015 2016 return (dsize); 2017 } 2018 2019 uint64_t 2020 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2021 { 2022 uint64_t dsize = 0; 2023 2024 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2025 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2026 2027 return (dsize); 2028 } 2029 2030 uint64_t 2031 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2032 { 2033 uint64_t dsize = 0; 2034 2035 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2036 2037 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2038 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2039 2040 spa_config_exit(spa, SCL_VDEV, FTAG); 2041 2042 return (dsize); 2043 } 2044 2045 uint64_t 2046 spa_dirty_data(spa_t *spa) 2047 { 2048 return (spa->spa_dsl_pool->dp_dirty_total); 2049 } 2050 2051 /* 2052 * ========================================================================== 2053 * SPA Import Progress Routines 2054 * The illumos implementation of these are different from OpenZFS. OpenZFS 2055 * uses the Linux /proc fs, whereas we use a kstat on the spa. 2056 * ========================================================================== 2057 */ 2058 2059 typedef struct spa_import_progress { 2060 kstat_named_t sip_load_state; 2061 kstat_named_t sip_mmp_sec_remaining; /* MMP activity check */ 2062 kstat_named_t sip_load_max_txg; /* rewind txg */ 2063 } spa_import_progress_t; 2064 2065 static void 2066 spa_import_progress_init(void) 2067 { 2068 } 2069 2070 static void 2071 spa_import_progress_destroy(void) 2072 { 2073 } 2074 2075 void spa_import_progress_add(spa_t *); 2076 2077 int 2078 spa_import_progress_set_state(spa_t *spa, spa_load_state_t load_state) 2079 { 2080 if (spa->spa_imp_kstat == NULL) 2081 spa_import_progress_add(spa); 2082 2083 mutex_enter(&spa->spa_imp_kstat_lock); 2084 if (spa->spa_imp_kstat != NULL) { 2085 spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data; 2086 if (sip != NULL) 2087 sip->sip_load_state.value.ui64 = (uint64_t)load_state; 2088 } 2089 mutex_exit(&spa->spa_imp_kstat_lock); 2090 2091 return (0); 2092 } 2093 2094 int 2095 spa_import_progress_set_max_txg(spa_t *spa, uint64_t load_max_txg) 2096 { 2097 if (spa->spa_imp_kstat == NULL) 2098 spa_import_progress_add(spa); 2099 2100 mutex_enter(&spa->spa_imp_kstat_lock); 2101 if (spa->spa_imp_kstat != NULL) { 2102 spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data; 2103 if (sip != NULL) 2104 sip->sip_load_max_txg.value.ui64 = load_max_txg; 2105 } 2106 mutex_exit(&spa->spa_imp_kstat_lock); 2107 2108 return (0); 2109 } 2110 2111 int 2112 spa_import_progress_set_mmp_check(spa_t *spa, uint64_t mmp_sec_remaining) 2113 { 2114 if (spa->spa_imp_kstat == NULL) 2115 spa_import_progress_add(spa); 2116 2117 mutex_enter(&spa->spa_imp_kstat_lock); 2118 if (spa->spa_imp_kstat != NULL) { 2119 spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data; 2120 if (sip != NULL) 2121 sip->sip_mmp_sec_remaining.value.ui64 = 2122 mmp_sec_remaining; 2123 } 2124 mutex_exit(&spa->spa_imp_kstat_lock); 2125 2126 return (0); 2127 } 2128 2129 /* 2130 * A new import is in progress. Add an entry. 2131 */ 2132 void 2133 spa_import_progress_add(spa_t *spa) 2134 { 2135 char *poolname = NULL; 2136 spa_import_progress_t *sip; 2137 2138 mutex_enter(&spa->spa_imp_kstat_lock); 2139 if (spa->spa_imp_kstat != NULL) { 2140 sip = spa->spa_imp_kstat->ks_data; 2141 sip->sip_load_state.value.ui64 = (uint64_t)spa_load_state(spa); 2142 mutex_exit(&spa->spa_imp_kstat_lock); 2143 return; 2144 } 2145 2146 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2147 &poolname); 2148 if (poolname == NULL) 2149 poolname = spa_name(spa); 2150 2151 spa->spa_imp_kstat = kstat_create("zfs_import", 0, poolname, 2152 "zfs_misc", KSTAT_TYPE_NAMED, 2153 sizeof (spa_import_progress_t) / sizeof (kstat_named_t), 2154 KSTAT_FLAG_VIRTUAL); 2155 if (spa->spa_imp_kstat != NULL) { 2156 sip = kmem_alloc(sizeof (spa_import_progress_t), KM_SLEEP); 2157 spa->spa_imp_kstat->ks_data = sip; 2158 2159 sip->sip_load_state.value.ui64 = (uint64_t)spa_load_state(spa); 2160 2161 kstat_named_init(&sip->sip_load_state, 2162 "spa_load_state", KSTAT_DATA_UINT64); 2163 kstat_named_init(&sip->sip_mmp_sec_remaining, 2164 "mmp_sec_remaining", KSTAT_DATA_UINT64); 2165 kstat_named_init(&sip->sip_load_max_txg, 2166 "spa_load_max_txg", KSTAT_DATA_UINT64); 2167 spa->spa_imp_kstat->ks_lock = &spa->spa_imp_kstat_lock; 2168 kstat_install(spa->spa_imp_kstat); 2169 } 2170 mutex_exit(&spa->spa_imp_kstat_lock); 2171 } 2172 2173 void 2174 spa_import_progress_remove(spa_t *spa) 2175 { 2176 if (spa->spa_imp_kstat != NULL) { 2177 void *data = spa->spa_imp_kstat->ks_data; 2178 2179 kstat_delete(spa->spa_imp_kstat); 2180 spa->spa_imp_kstat = NULL; 2181 kmem_free(data, sizeof (spa_import_progress_t)); 2182 } 2183 } 2184 2185 /* 2186 * ========================================================================== 2187 * Initialization and Termination 2188 * ========================================================================== 2189 */ 2190 2191 static int 2192 spa_name_compare(const void *a1, const void *a2) 2193 { 2194 const spa_t *s1 = a1; 2195 const spa_t *s2 = a2; 2196 int s; 2197 2198 s = strcmp(s1->spa_name, s2->spa_name); 2199 2200 return (TREE_ISIGN(s)); 2201 } 2202 2203 int 2204 spa_busy(void) 2205 { 2206 return (spa_active_count); 2207 } 2208 2209 void 2210 spa_boot_init() 2211 { 2212 spa_config_load(); 2213 } 2214 2215 void 2216 spa_init(int mode) 2217 { 2218 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2219 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2220 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2221 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2222 2223 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2224 offsetof(spa_t, spa_avl)); 2225 2226 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2227 offsetof(spa_aux_t, aux_avl)); 2228 2229 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2230 offsetof(spa_aux_t, aux_avl)); 2231 2232 spa_mode_global = mode; 2233 2234 #ifdef _KERNEL 2235 spa_arch_init(); 2236 #else 2237 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 2238 arc_procfd = open("/proc/self/ctl", O_WRONLY); 2239 if (arc_procfd == -1) { 2240 perror("could not enable watchpoints: " 2241 "opening /proc/self/ctl failed: "); 2242 } else { 2243 arc_watch = B_TRUE; 2244 } 2245 } 2246 #endif 2247 2248 zfs_refcount_init(); 2249 unique_init(); 2250 zfs_btree_init(); 2251 metaslab_stat_init(); 2252 zio_init(); 2253 dmu_init(); 2254 zil_init(); 2255 vdev_cache_stat_init(); 2256 vdev_mirror_stat_init(); 2257 vdev_raidz_math_init(); 2258 zfs_prop_init(); 2259 zpool_prop_init(); 2260 zpool_feature_init(); 2261 spa_config_load(); 2262 l2arc_start(); 2263 scan_init(); 2264 spa_import_progress_init(); 2265 } 2266 2267 void 2268 spa_fini(void) 2269 { 2270 l2arc_stop(); 2271 2272 spa_evict_all(); 2273 2274 vdev_cache_stat_fini(); 2275 vdev_mirror_stat_fini(); 2276 vdev_raidz_math_fini(); 2277 zil_fini(); 2278 dmu_fini(); 2279 zio_fini(); 2280 metaslab_stat_fini(); 2281 zfs_btree_fini(); 2282 unique_fini(); 2283 zfs_refcount_fini(); 2284 scan_fini(); 2285 spa_import_progress_destroy(); 2286 2287 avl_destroy(&spa_namespace_avl); 2288 avl_destroy(&spa_spare_avl); 2289 avl_destroy(&spa_l2cache_avl); 2290 2291 cv_destroy(&spa_namespace_cv); 2292 mutex_destroy(&spa_namespace_lock); 2293 mutex_destroy(&spa_spare_lock); 2294 mutex_destroy(&spa_l2cache_lock); 2295 } 2296 2297 /* 2298 * Return whether this pool has slogs. No locking needed. 2299 * It's not a problem if the wrong answer is returned as it's only for 2300 * performance and not correctness 2301 */ 2302 boolean_t 2303 spa_has_slogs(spa_t *spa) 2304 { 2305 return (spa->spa_log_class->mc_rotor != NULL); 2306 } 2307 2308 spa_log_state_t 2309 spa_get_log_state(spa_t *spa) 2310 { 2311 return (spa->spa_log_state); 2312 } 2313 2314 void 2315 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2316 { 2317 spa->spa_log_state = state; 2318 } 2319 2320 boolean_t 2321 spa_is_root(spa_t *spa) 2322 { 2323 return (spa->spa_is_root); 2324 } 2325 2326 boolean_t 2327 spa_writeable(spa_t *spa) 2328 { 2329 return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config); 2330 } 2331 2332 /* 2333 * Returns true if there is a pending sync task in any of the current 2334 * syncing txg, the current quiescing txg, or the current open txg. 2335 */ 2336 boolean_t 2337 spa_has_pending_synctask(spa_t *spa) 2338 { 2339 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2340 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2341 } 2342 2343 int 2344 spa_mode(spa_t *spa) 2345 { 2346 return (spa->spa_mode); 2347 } 2348 2349 uint64_t 2350 spa_bootfs(spa_t *spa) 2351 { 2352 return (spa->spa_bootfs); 2353 } 2354 2355 uint64_t 2356 spa_delegation(spa_t *spa) 2357 { 2358 return (spa->spa_delegation); 2359 } 2360 2361 objset_t * 2362 spa_meta_objset(spa_t *spa) 2363 { 2364 return (spa->spa_meta_objset); 2365 } 2366 2367 enum zio_checksum 2368 spa_dedup_checksum(spa_t *spa) 2369 { 2370 return (spa->spa_dedup_checksum); 2371 } 2372 2373 /* 2374 * Reset pool scan stat per scan pass (or reboot). 2375 */ 2376 void 2377 spa_scan_stat_init(spa_t *spa) 2378 { 2379 /* data not stored on disk */ 2380 spa->spa_scan_pass_start = gethrestime_sec(); 2381 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2382 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2383 else 2384 spa->spa_scan_pass_scrub_pause = 0; 2385 spa->spa_scan_pass_scrub_spent_paused = 0; 2386 spa->spa_scan_pass_exam = 0; 2387 spa->spa_scan_pass_issued = 0; 2388 vdev_scan_stat_init(spa->spa_root_vdev); 2389 } 2390 2391 /* 2392 * Get scan stats for zpool status reports 2393 */ 2394 int 2395 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2396 { 2397 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2398 2399 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 2400 return (SET_ERROR(ENOENT)); 2401 bzero(ps, sizeof (pool_scan_stat_t)); 2402 2403 /* data stored on disk */ 2404 ps->pss_func = scn->scn_phys.scn_func; 2405 ps->pss_state = scn->scn_phys.scn_state; 2406 ps->pss_start_time = scn->scn_phys.scn_start_time; 2407 ps->pss_end_time = scn->scn_phys.scn_end_time; 2408 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2409 ps->pss_to_process = scn->scn_phys.scn_to_process; 2410 ps->pss_processed = scn->scn_phys.scn_processed; 2411 ps->pss_errors = scn->scn_phys.scn_errors; 2412 ps->pss_examined = scn->scn_phys.scn_examined; 2413 ps->pss_issued = 2414 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2415 ps->pss_state = scn->scn_phys.scn_state; 2416 2417 /* data not stored on disk */ 2418 ps->pss_pass_start = spa->spa_scan_pass_start; 2419 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2420 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2421 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2422 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2423 2424 return (0); 2425 } 2426 2427 int 2428 spa_maxblocksize(spa_t *spa) 2429 { 2430 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2431 return (SPA_MAXBLOCKSIZE); 2432 else 2433 return (SPA_OLD_MAXBLOCKSIZE); 2434 } 2435 2436 int 2437 spa_maxdnodesize(spa_t *spa) 2438 { 2439 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2440 return (DNODE_MAX_SIZE); 2441 else 2442 return (DNODE_MIN_SIZE); 2443 } 2444 2445 boolean_t 2446 spa_multihost(spa_t *spa) 2447 { 2448 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2449 } 2450 2451 unsigned long 2452 spa_get_hostid(void) 2453 { 2454 unsigned long myhostid; 2455 2456 #ifdef _KERNEL 2457 myhostid = zone_get_hostid(NULL); 2458 #else /* _KERNEL */ 2459 /* 2460 * We're emulating the system's hostid in userland, so 2461 * we can't use zone_get_hostid(). 2462 */ 2463 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2464 #endif /* _KERNEL */ 2465 2466 return (myhostid); 2467 } 2468 2469 /* 2470 * Returns the txg that the last device removal completed. No indirect mappings 2471 * have been added since this txg. 2472 */ 2473 uint64_t 2474 spa_get_last_removal_txg(spa_t *spa) 2475 { 2476 uint64_t vdevid; 2477 uint64_t ret = -1ULL; 2478 2479 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2480 /* 2481 * sr_prev_indirect_vdev is only modified while holding all the 2482 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2483 * examining it. 2484 */ 2485 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2486 2487 while (vdevid != -1ULL) { 2488 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2489 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2490 2491 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2492 2493 /* 2494 * If the removal did not remap any data, we don't care. 2495 */ 2496 if (vdev_indirect_births_count(vib) != 0) { 2497 ret = vdev_indirect_births_last_entry_txg(vib); 2498 break; 2499 } 2500 2501 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2502 } 2503 spa_config_exit(spa, SCL_VDEV, FTAG); 2504 2505 IMPLY(ret != -1ULL, 2506 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2507 2508 return (ret); 2509 } 2510 2511 boolean_t 2512 spa_trust_config(spa_t *spa) 2513 { 2514 return (spa->spa_trust_config); 2515 } 2516 2517 uint64_t 2518 spa_missing_tvds_allowed(spa_t *spa) 2519 { 2520 return (spa->spa_missing_tvds_allowed); 2521 } 2522 2523 space_map_t * 2524 spa_syncing_log_sm(spa_t *spa) 2525 { 2526 return (spa->spa_syncing_log_sm); 2527 } 2528 2529 void 2530 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2531 { 2532 spa->spa_missing_tvds = missing; 2533 } 2534 2535 boolean_t 2536 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2537 { 2538 vdev_t *rvd = spa->spa_root_vdev; 2539 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2540 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2541 return (B_FALSE); 2542 } 2543 return (B_TRUE); 2544 } 2545 2546 boolean_t 2547 spa_has_checkpoint(spa_t *spa) 2548 { 2549 return (spa->spa_checkpoint_txg != 0); 2550 } 2551 2552 boolean_t 2553 spa_importing_readonly_checkpoint(spa_t *spa) 2554 { 2555 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2556 spa->spa_mode == FREAD); 2557 } 2558 2559 uint64_t 2560 spa_min_claim_txg(spa_t *spa) 2561 { 2562 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2563 2564 if (checkpoint_txg != 0) 2565 return (checkpoint_txg + 1); 2566 2567 return (spa->spa_first_txg); 2568 } 2569 2570 /* 2571 * If there is a checkpoint, async destroys may consume more space from 2572 * the pool instead of freeing it. In an attempt to save the pool from 2573 * getting suspended when it is about to run out of space, we stop 2574 * processing async destroys. 2575 */ 2576 boolean_t 2577 spa_suspend_async_destroy(spa_t *spa) 2578 { 2579 dsl_pool_t *dp = spa_get_dsl(spa); 2580 2581 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2582 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2583 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2584 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2585 2586 if (spa_has_checkpoint(spa) && avail == 0) 2587 return (B_TRUE); 2588 2589 return (B_FALSE); 2590 } 2591