xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 71ae4d73f59ac7f557aef432bd39942b0eb4001a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/metaslab_impl.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against SPA_MINREF, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock (per-spa read-priority rwlock)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * spa_config_cache_lock (per-spa mutex)
89  *
90  *	This mutex prevents the spa_config nvlist from being updated.  No
91  *      other locks are required to obtain this lock, although implicitly you
92  *      must have the namespace lock or non-zero refcount to have any kind
93  *      of spa_t pointer at all.
94  *
95  * The locking order is fairly straightforward:
96  *
97  *		spa_namespace_lock	->	spa_refcount
98  *
99  *	The namespace lock must be acquired to increase the refcount from 0
100  *	or to check if it is zero.
101  *
102  *		spa_refcount		->	spa_config_lock
103  *
104  *	There must be at least one valid reference on the spa_t to acquire
105  *	the config lock.
106  *
107  *		spa_namespace_lock	->	spa_config_lock
108  *
109  *	The namespace lock must always be taken before the config lock.
110  *
111  *
112  * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and
113  * are globally visible.
114  *
115  * The namespace is manipulated using the following functions, all which require
116  * the spa_namespace_lock to be held.
117  *
118  *	spa_lookup()		Lookup a spa_t by name.
119  *
120  *	spa_add()		Create a new spa_t in the namespace.
121  *
122  *	spa_remove()		Remove a spa_t from the namespace.  This also
123  *				frees up any memory associated with the spa_t.
124  *
125  *	spa_next()		Returns the next spa_t in the system, or the
126  *				first if NULL is passed.
127  *
128  *	spa_evict_all()		Shutdown and remove all spa_t structures in
129  *				the system.
130  *
131  *	spa_guid_exists()	Determine whether a pool/device guid exists.
132  *
133  * The spa_refcount is manipulated using the following functions:
134  *
135  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
136  *				called with spa_namespace_lock held if the
137  *				refcount is currently zero.
138  *
139  *	spa_close()		Remove a reference from the spa_t.  This will
140  *				not free the spa_t or remove it from the
141  *				namespace.  No locking is required.
142  *
143  *	spa_refcount_zero()	Returns true if the refcount is currently
144  *				zero.  Must be called with spa_namespace_lock
145  *				held.
146  *
147  * The spa_config_lock is a form of rwlock.  It must be held as RW_READER
148  * to perform I/O to the pool, and as RW_WRITER to change the vdev config.
149  * The spa_config_lock is manipulated with spa_config_{enter,exit,held}().
150  *
151  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
152  *
153  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
154  *				for writing.
155  *
156  *	spa_vdev_exit()		Release the config lock, wait for all I/O
157  *				to complete, sync the updated configs to the
158  *				cache, and release the namespace lock.
159  *
160  * The spa_name() function also requires either the spa_namespace_lock
161  * or the spa_config_lock, as both are needed to do a rename.  spa_rename() is
162  * also implemented within this file since is requires manipulation of the
163  * namespace.
164  */
165 
166 static avl_tree_t spa_namespace_avl;
167 kmutex_t spa_namespace_lock;
168 static kcondvar_t spa_namespace_cv;
169 static int spa_active_count;
170 int spa_max_replication_override = SPA_DVAS_PER_BP;
171 
172 static kmutex_t spa_spare_lock;
173 static avl_tree_t spa_spare_avl;
174 static kmutex_t spa_l2cache_lock;
175 static avl_tree_t spa_l2cache_avl;
176 
177 kmem_cache_t *spa_buffer_pool;
178 int spa_mode;
179 
180 #ifdef ZFS_DEBUG
181 /* Everything except dprintf is on by default in debug builds */
182 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
183 #else
184 int zfs_flags = 0;
185 #endif
186 
187 /*
188  * zfs_recover can be set to nonzero to attempt to recover from
189  * otherwise-fatal errors, typically caused by on-disk corruption.  When
190  * set, calls to zfs_panic_recover() will turn into warning messages.
191  */
192 int zfs_recover = 0;
193 
194 #define	SPA_MINREF	5	/* spa_refcnt for an open-but-idle pool */
195 
196 /*
197  * ==========================================================================
198  * SPA config locking
199  * ==========================================================================
200  */
201 static void
202 spa_config_lock_init(spa_config_lock_t *scl)
203 {
204 	mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
205 	scl->scl_writer = NULL;
206 	cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
207 	refcount_create(&scl->scl_count);
208 }
209 
210 static void
211 spa_config_lock_destroy(spa_config_lock_t *scl)
212 {
213 	mutex_destroy(&scl->scl_lock);
214 	ASSERT(scl->scl_writer == NULL);
215 	cv_destroy(&scl->scl_cv);
216 	refcount_destroy(&scl->scl_count);
217 }
218 
219 void
220 spa_config_enter(spa_t *spa, krw_t rw, void *tag)
221 {
222 	spa_config_lock_t *scl = &spa->spa_config_lock;
223 
224 	mutex_enter(&scl->scl_lock);
225 
226 	if (rw == RW_READER) {
227 		while (scl->scl_writer != NULL && scl->scl_writer != curthread)
228 			cv_wait(&scl->scl_cv, &scl->scl_lock);
229 	} else {
230 		while (!refcount_is_zero(&scl->scl_count) &&
231 		    scl->scl_writer != curthread)
232 			cv_wait(&scl->scl_cv, &scl->scl_lock);
233 		scl->scl_writer = curthread;
234 	}
235 
236 	(void) refcount_add(&scl->scl_count, tag);
237 
238 	mutex_exit(&scl->scl_lock);
239 }
240 
241 void
242 spa_config_exit(spa_t *spa, void *tag)
243 {
244 	spa_config_lock_t *scl = &spa->spa_config_lock;
245 
246 	mutex_enter(&scl->scl_lock);
247 
248 	ASSERT(!refcount_is_zero(&scl->scl_count));
249 
250 	if (refcount_remove(&scl->scl_count, tag) == 0) {
251 		cv_broadcast(&scl->scl_cv);
252 		ASSERT(scl->scl_writer == NULL || scl->scl_writer == curthread);
253 		scl->scl_writer = NULL;  /* OK in either case */
254 	}
255 
256 	mutex_exit(&scl->scl_lock);
257 }
258 
259 boolean_t
260 spa_config_held(spa_t *spa, krw_t rw)
261 {
262 	spa_config_lock_t *scl = &spa->spa_config_lock;
263 
264 	if (rw == RW_READER)
265 		return (!refcount_is_zero(&scl->scl_count));
266 	else
267 		return (scl->scl_writer == curthread);
268 }
269 
270 /*
271  * ==========================================================================
272  * SPA namespace functions
273  * ==========================================================================
274  */
275 
276 /*
277  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
278  * Returns NULL if no matching spa_t is found.
279  */
280 spa_t *
281 spa_lookup(const char *name)
282 {
283 	spa_t search, *spa;
284 	avl_index_t where;
285 	char c;
286 	char *cp;
287 
288 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
289 
290 	/*
291 	 * If it's a full dataset name, figure out the pool name and
292 	 * just use that.
293 	 */
294 	cp = strpbrk(name, "/@");
295 	if (cp) {
296 		c = *cp;
297 		*cp = '\0';
298 	}
299 
300 	search.spa_name = (char *)name;
301 	spa = avl_find(&spa_namespace_avl, &search, &where);
302 
303 	if (cp)
304 		*cp = c;
305 
306 	return (spa);
307 }
308 
309 /*
310  * Create an uninitialized spa_t with the given name.  Requires
311  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
312  * exist by calling spa_lookup() first.
313  */
314 spa_t *
315 spa_add(const char *name, const char *altroot)
316 {
317 	spa_t *spa;
318 	spa_config_dirent_t *dp;
319 
320 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
321 
322 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
323 
324 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
325 
326 	mutex_init(&spa->spa_uberblock_lock, NULL, MUTEX_DEFAULT, NULL);
327 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
328 	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
329 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
330 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
331 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
332 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
333 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
334 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
335 
336 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
337 	cv_init(&spa->spa_scrub_cv, NULL, CV_DEFAULT, NULL);
338 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
339 
340 	spa->spa_name = spa_strdup(name);
341 	spa->spa_state = POOL_STATE_UNINITIALIZED;
342 	spa->spa_freeze_txg = UINT64_MAX;
343 	spa->spa_final_txg = UINT64_MAX;
344 
345 	refcount_create(&spa->spa_refcount);
346 	spa_config_lock_init(&spa->spa_config_lock);
347 
348 	avl_add(&spa_namespace_avl, spa);
349 
350 	mutex_init(&spa->spa_zio_lock, NULL, MUTEX_DEFAULT, NULL);
351 
352 	/*
353 	 * Set the alternate root, if there is one.
354 	 */
355 	if (altroot) {
356 		spa->spa_root = spa_strdup(altroot);
357 		spa_active_count++;
358 	}
359 
360 	/*
361 	 * Every pool starts with the default cachefile
362 	 */
363 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
364 	    offsetof(spa_config_dirent_t, scd_link));
365 
366 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
367 	dp->scd_path = spa_strdup(spa_config_path);
368 	list_insert_head(&spa->spa_config_list, dp);
369 
370 	return (spa);
371 }
372 
373 /*
374  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
375  * spa_namespace_lock.  This is called only after the spa_t has been closed and
376  * deactivated.
377  */
378 void
379 spa_remove(spa_t *spa)
380 {
381 	spa_config_dirent_t *dp;
382 
383 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
384 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
385 	ASSERT(spa->spa_scrub_thread == NULL);
386 
387 	avl_remove(&spa_namespace_avl, spa);
388 	cv_broadcast(&spa_namespace_cv);
389 
390 	if (spa->spa_root) {
391 		spa_strfree(spa->spa_root);
392 		spa_active_count--;
393 	}
394 
395 	if (spa->spa_name)
396 		spa_strfree(spa->spa_name);
397 
398 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
399 		list_remove(&spa->spa_config_list, dp);
400 		if (dp->scd_path != NULL)
401 			spa_strfree(dp->scd_path);
402 		kmem_free(dp, sizeof (spa_config_dirent_t));
403 	}
404 
405 	list_destroy(&spa->spa_config_list);
406 
407 	spa_config_set(spa, NULL);
408 
409 	refcount_destroy(&spa->spa_refcount);
410 
411 	spa_config_lock_destroy(&spa->spa_config_lock);
412 
413 	rw_destroy(&spa->spa_traverse_lock);
414 
415 	cv_destroy(&spa->spa_async_cv);
416 	cv_destroy(&spa->spa_scrub_cv);
417 	cv_destroy(&spa->spa_scrub_io_cv);
418 
419 	mutex_destroy(&spa->spa_uberblock_lock);
420 	mutex_destroy(&spa->spa_async_lock);
421 	mutex_destroy(&spa->spa_config_cache_lock);
422 	mutex_destroy(&spa->spa_scrub_lock);
423 	mutex_destroy(&spa->spa_errlog_lock);
424 	mutex_destroy(&spa->spa_errlist_lock);
425 	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
426 	mutex_destroy(&spa->spa_history_lock);
427 	mutex_destroy(&spa->spa_props_lock);
428 	mutex_destroy(&spa->spa_zio_lock);
429 
430 	kmem_free(spa, sizeof (spa_t));
431 }
432 
433 /*
434  * Given a pool, return the next pool in the namespace, or NULL if there is
435  * none.  If 'prev' is NULL, return the first pool.
436  */
437 spa_t *
438 spa_next(spa_t *prev)
439 {
440 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
441 
442 	if (prev)
443 		return (AVL_NEXT(&spa_namespace_avl, prev));
444 	else
445 		return (avl_first(&spa_namespace_avl));
446 }
447 
448 /*
449  * ==========================================================================
450  * SPA refcount functions
451  * ==========================================================================
452  */
453 
454 /*
455  * Add a reference to the given spa_t.  Must have at least one reference, or
456  * have the namespace lock held.
457  */
458 void
459 spa_open_ref(spa_t *spa, void *tag)
460 {
461 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
462 	    MUTEX_HELD(&spa_namespace_lock));
463 
464 	(void) refcount_add(&spa->spa_refcount, tag);
465 }
466 
467 /*
468  * Remove a reference to the given spa_t.  Must have at least one reference, or
469  * have the namespace lock held.
470  */
471 void
472 spa_close(spa_t *spa, void *tag)
473 {
474 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
475 	    MUTEX_HELD(&spa_namespace_lock));
476 
477 	(void) refcount_remove(&spa->spa_refcount, tag);
478 }
479 
480 /*
481  * Check to see if the spa refcount is zero.  Must be called with
482  * spa_namespace_lock held.  We really compare against SPA_MINREF, which is the
483  * number of references acquired when opening a pool
484  */
485 boolean_t
486 spa_refcount_zero(spa_t *spa)
487 {
488 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
489 
490 	return (refcount_count(&spa->spa_refcount) == SPA_MINREF);
491 }
492 
493 /*
494  * ==========================================================================
495  * SPA spare and l2cache tracking
496  * ==========================================================================
497  */
498 
499 /*
500  * Hot spares and cache devices are tracked using the same code below,
501  * for 'auxiliary' devices.
502  */
503 
504 typedef struct spa_aux {
505 	uint64_t	aux_guid;
506 	uint64_t	aux_pool;
507 	avl_node_t	aux_avl;
508 	int		aux_count;
509 } spa_aux_t;
510 
511 static int
512 spa_aux_compare(const void *a, const void *b)
513 {
514 	const spa_aux_t *sa = a;
515 	const spa_aux_t *sb = b;
516 
517 	if (sa->aux_guid < sb->aux_guid)
518 		return (-1);
519 	else if (sa->aux_guid > sb->aux_guid)
520 		return (1);
521 	else
522 		return (0);
523 }
524 
525 void
526 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
527 {
528 	avl_index_t where;
529 	spa_aux_t search;
530 	spa_aux_t *aux;
531 
532 	search.aux_guid = vd->vdev_guid;
533 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
534 		aux->aux_count++;
535 	} else {
536 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
537 		aux->aux_guid = vd->vdev_guid;
538 		aux->aux_count = 1;
539 		avl_insert(avl, aux, where);
540 	}
541 }
542 
543 void
544 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
545 {
546 	spa_aux_t search;
547 	spa_aux_t *aux;
548 	avl_index_t where;
549 
550 	search.aux_guid = vd->vdev_guid;
551 	aux = avl_find(avl, &search, &where);
552 
553 	ASSERT(aux != NULL);
554 
555 	if (--aux->aux_count == 0) {
556 		avl_remove(avl, aux);
557 		kmem_free(aux, sizeof (spa_aux_t));
558 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
559 		aux->aux_pool = 0ULL;
560 	}
561 }
562 
563 boolean_t
564 spa_aux_exists(uint64_t guid, uint64_t *pool, avl_tree_t *avl)
565 {
566 	spa_aux_t search, *found;
567 	avl_index_t where;
568 
569 	search.aux_guid = guid;
570 	found = avl_find(avl, &search, &where);
571 
572 	if (pool) {
573 		if (found)
574 			*pool = found->aux_pool;
575 		else
576 			*pool = 0ULL;
577 	}
578 
579 	return (found != NULL);
580 }
581 
582 void
583 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
584 {
585 	spa_aux_t search, *found;
586 	avl_index_t where;
587 
588 	search.aux_guid = vd->vdev_guid;
589 	found = avl_find(avl, &search, &where);
590 	ASSERT(found != NULL);
591 	ASSERT(found->aux_pool == 0ULL);
592 
593 	found->aux_pool = spa_guid(vd->vdev_spa);
594 }
595 
596 /*
597  * Spares are tracked globally due to the following constraints:
598  *
599  * 	- A spare may be part of multiple pools.
600  * 	- A spare may be added to a pool even if it's actively in use within
601  *	  another pool.
602  * 	- A spare in use in any pool can only be the source of a replacement if
603  *	  the target is a spare in the same pool.
604  *
605  * We keep track of all spares on the system through the use of a reference
606  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
607  * spare, then we bump the reference count in the AVL tree.  In addition, we set
608  * the 'vdev_isspare' member to indicate that the device is a spare (active or
609  * inactive).  When a spare is made active (used to replace a device in the
610  * pool), we also keep track of which pool its been made a part of.
611  *
612  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
613  * called under the spa_namespace lock as part of vdev reconfiguration.  The
614  * separate spare lock exists for the status query path, which does not need to
615  * be completely consistent with respect to other vdev configuration changes.
616  */
617 
618 static int
619 spa_spare_compare(const void *a, const void *b)
620 {
621 	return (spa_aux_compare(a, b));
622 }
623 
624 void
625 spa_spare_add(vdev_t *vd)
626 {
627 	mutex_enter(&spa_spare_lock);
628 	ASSERT(!vd->vdev_isspare);
629 	spa_aux_add(vd, &spa_spare_avl);
630 	vd->vdev_isspare = B_TRUE;
631 	mutex_exit(&spa_spare_lock);
632 }
633 
634 void
635 spa_spare_remove(vdev_t *vd)
636 {
637 	mutex_enter(&spa_spare_lock);
638 	ASSERT(vd->vdev_isspare);
639 	spa_aux_remove(vd, &spa_spare_avl);
640 	vd->vdev_isspare = B_FALSE;
641 	mutex_exit(&spa_spare_lock);
642 }
643 
644 boolean_t
645 spa_spare_exists(uint64_t guid, uint64_t *pool)
646 {
647 	boolean_t found;
648 
649 	mutex_enter(&spa_spare_lock);
650 	found = spa_aux_exists(guid, pool, &spa_spare_avl);
651 	mutex_exit(&spa_spare_lock);
652 
653 	return (found);
654 }
655 
656 void
657 spa_spare_activate(vdev_t *vd)
658 {
659 	mutex_enter(&spa_spare_lock);
660 	ASSERT(vd->vdev_isspare);
661 	spa_aux_activate(vd, &spa_spare_avl);
662 	mutex_exit(&spa_spare_lock);
663 }
664 
665 /*
666  * Level 2 ARC devices are tracked globally for the same reasons as spares.
667  * Cache devices currently only support one pool per cache device, and so
668  * for these devices the aux reference count is currently unused beyond 1.
669  */
670 
671 static int
672 spa_l2cache_compare(const void *a, const void *b)
673 {
674 	return (spa_aux_compare(a, b));
675 }
676 
677 void
678 spa_l2cache_add(vdev_t *vd)
679 {
680 	mutex_enter(&spa_l2cache_lock);
681 	ASSERT(!vd->vdev_isl2cache);
682 	spa_aux_add(vd, &spa_l2cache_avl);
683 	vd->vdev_isl2cache = B_TRUE;
684 	mutex_exit(&spa_l2cache_lock);
685 }
686 
687 void
688 spa_l2cache_remove(vdev_t *vd)
689 {
690 	mutex_enter(&spa_l2cache_lock);
691 	ASSERT(vd->vdev_isl2cache);
692 	spa_aux_remove(vd, &spa_l2cache_avl);
693 	vd->vdev_isl2cache = B_FALSE;
694 	mutex_exit(&spa_l2cache_lock);
695 }
696 
697 boolean_t
698 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
699 {
700 	boolean_t found;
701 
702 	mutex_enter(&spa_l2cache_lock);
703 	found = spa_aux_exists(guid, pool, &spa_l2cache_avl);
704 	mutex_exit(&spa_l2cache_lock);
705 
706 	return (found);
707 }
708 
709 void
710 spa_l2cache_activate(vdev_t *vd)
711 {
712 	mutex_enter(&spa_l2cache_lock);
713 	ASSERT(vd->vdev_isl2cache);
714 	spa_aux_activate(vd, &spa_l2cache_avl);
715 	mutex_exit(&spa_l2cache_lock);
716 }
717 
718 void
719 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc)
720 {
721 	vdev_space_update(vd, space, alloc, B_FALSE);
722 }
723 
724 /*
725  * ==========================================================================
726  * SPA vdev locking
727  * ==========================================================================
728  */
729 
730 /*
731  * Lock the given spa_t for the purpose of adding or removing a vdev.
732  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
733  * It returns the next transaction group for the spa_t.
734  */
735 uint64_t
736 spa_vdev_enter(spa_t *spa)
737 {
738 	mutex_enter(&spa_namespace_lock);
739 
740 	/*
741 	 * Suspend scrub activity while we mess with the config.  We must do
742 	 * this after acquiring the namespace lock to avoid a 3-way deadlock
743 	 * with spa_scrub_stop() and the scrub thread.
744 	 */
745 	spa_scrub_suspend(spa);
746 
747 	spa_config_enter(spa, RW_WRITER, spa);
748 
749 	return (spa_last_synced_txg(spa) + 1);
750 }
751 
752 /*
753  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
754  * locking of spa_vdev_enter(), we also want make sure the transactions have
755  * synced to disk, and then update the global configuration cache with the new
756  * information.
757  */
758 int
759 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
760 {
761 	int config_changed = B_FALSE;
762 
763 	ASSERT(txg > spa_last_synced_txg(spa));
764 
765 	/*
766 	 * Reassess the DTLs.
767 	 */
768 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
769 
770 	/*
771 	 * If the config changed, notify the scrub thread that it must restart.
772 	 */
773 	if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) {
774 		config_changed = B_TRUE;
775 		spa_scrub_restart(spa, txg);
776 	}
777 
778 	spa_config_exit(spa, spa);
779 
780 	/*
781 	 * Allow scrubbing to resume.
782 	 */
783 	spa_scrub_resume(spa);
784 
785 	/*
786 	 * Note: this txg_wait_synced() is important because it ensures
787 	 * that there won't be more than one config change per txg.
788 	 * This allows us to use the txg as the generation number.
789 	 */
790 	if (error == 0)
791 		txg_wait_synced(spa->spa_dsl_pool, txg);
792 
793 	if (vd != NULL) {
794 		ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
795 		vdev_free(vd);
796 	}
797 
798 	/*
799 	 * If the config changed, update the config cache.
800 	 */
801 	if (config_changed)
802 		spa_config_sync(spa, B_FALSE, B_TRUE);
803 
804 	mutex_exit(&spa_namespace_lock);
805 
806 	return (error);
807 }
808 
809 /*
810  * ==========================================================================
811  * Miscellaneous functions
812  * ==========================================================================
813  */
814 
815 /*
816  * Rename a spa_t.
817  */
818 int
819 spa_rename(const char *name, const char *newname)
820 {
821 	spa_t *spa;
822 	int err;
823 
824 	/*
825 	 * Lookup the spa_t and grab the config lock for writing.  We need to
826 	 * actually open the pool so that we can sync out the necessary labels.
827 	 * It's OK to call spa_open() with the namespace lock held because we
828 	 * allow recursive calls for other reasons.
829 	 */
830 	mutex_enter(&spa_namespace_lock);
831 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
832 		mutex_exit(&spa_namespace_lock);
833 		return (err);
834 	}
835 
836 	spa_config_enter(spa, RW_WRITER, FTAG);
837 
838 	avl_remove(&spa_namespace_avl, spa);
839 	spa_strfree(spa->spa_name);
840 	spa->spa_name = spa_strdup(newname);
841 	avl_add(&spa_namespace_avl, spa);
842 
843 	/*
844 	 * Sync all labels to disk with the new names by marking the root vdev
845 	 * dirty and waiting for it to sync.  It will pick up the new pool name
846 	 * during the sync.
847 	 */
848 	vdev_config_dirty(spa->spa_root_vdev);
849 
850 	spa_config_exit(spa, FTAG);
851 
852 	txg_wait_synced(spa->spa_dsl_pool, 0);
853 
854 	/*
855 	 * Sync the updated config cache.
856 	 */
857 	spa_config_sync(spa, B_FALSE, B_TRUE);
858 
859 	spa_close(spa, FTAG);
860 
861 	mutex_exit(&spa_namespace_lock);
862 
863 	return (0);
864 }
865 
866 
867 /*
868  * Determine whether a pool with given pool_guid exists.  If device_guid is
869  * non-zero, determine whether the pool exists *and* contains a device with the
870  * specified device_guid.
871  */
872 boolean_t
873 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
874 {
875 	spa_t *spa;
876 	avl_tree_t *t = &spa_namespace_avl;
877 
878 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
879 
880 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
881 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
882 			continue;
883 		if (spa->spa_root_vdev == NULL)
884 			continue;
885 		if (spa_guid(spa) == pool_guid) {
886 			if (device_guid == 0)
887 				break;
888 
889 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
890 			    device_guid) != NULL)
891 				break;
892 
893 			/*
894 			 * Check any devices we may be in the process of adding.
895 			 */
896 			if (spa->spa_pending_vdev) {
897 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
898 				    device_guid) != NULL)
899 					break;
900 			}
901 		}
902 	}
903 
904 	return (spa != NULL);
905 }
906 
907 char *
908 spa_strdup(const char *s)
909 {
910 	size_t len;
911 	char *new;
912 
913 	len = strlen(s);
914 	new = kmem_alloc(len + 1, KM_SLEEP);
915 	bcopy(s, new, len);
916 	new[len] = '\0';
917 
918 	return (new);
919 }
920 
921 void
922 spa_strfree(char *s)
923 {
924 	kmem_free(s, strlen(s) + 1);
925 }
926 
927 uint64_t
928 spa_get_random(uint64_t range)
929 {
930 	uint64_t r;
931 
932 	ASSERT(range != 0);
933 
934 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
935 
936 	return (r % range);
937 }
938 
939 void
940 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
941 {
942 	int d;
943 
944 	if (bp == NULL) {
945 		(void) snprintf(buf, len, "<NULL>");
946 		return;
947 	}
948 
949 	if (BP_IS_HOLE(bp)) {
950 		(void) snprintf(buf, len, "<hole>");
951 		return;
952 	}
953 
954 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
955 	    (u_longlong_t)BP_GET_LEVEL(bp),
956 	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
957 	    (u_longlong_t)BP_GET_LSIZE(bp),
958 	    (u_longlong_t)BP_GET_PSIZE(bp));
959 
960 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
961 		const dva_t *dva = &bp->blk_dva[d];
962 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
963 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
964 		    (u_longlong_t)DVA_GET_VDEV(dva),
965 		    (u_longlong_t)DVA_GET_OFFSET(dva),
966 		    (u_longlong_t)DVA_GET_ASIZE(dva));
967 	}
968 
969 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
970 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
971 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
972 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
973 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
974 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
975 	    (u_longlong_t)bp->blk_birth,
976 	    (u_longlong_t)bp->blk_fill,
977 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
978 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
979 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
980 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
981 }
982 
983 void
984 spa_freeze(spa_t *spa)
985 {
986 	uint64_t freeze_txg = 0;
987 
988 	spa_config_enter(spa, RW_WRITER, FTAG);
989 	if (spa->spa_freeze_txg == UINT64_MAX) {
990 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
991 		spa->spa_freeze_txg = freeze_txg;
992 	}
993 	spa_config_exit(spa, FTAG);
994 	if (freeze_txg != 0)
995 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
996 }
997 
998 void
999 zfs_panic_recover(const char *fmt, ...)
1000 {
1001 	va_list adx;
1002 
1003 	va_start(adx, fmt);
1004 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1005 	va_end(adx);
1006 }
1007 
1008 /*
1009  * ==========================================================================
1010  * Accessor functions
1011  * ==========================================================================
1012  */
1013 
1014 krwlock_t *
1015 spa_traverse_rwlock(spa_t *spa)
1016 {
1017 	return (&spa->spa_traverse_lock);
1018 }
1019 
1020 int
1021 spa_traverse_wanted(spa_t *spa)
1022 {
1023 	return (spa->spa_traverse_wanted);
1024 }
1025 
1026 dsl_pool_t *
1027 spa_get_dsl(spa_t *spa)
1028 {
1029 	return (spa->spa_dsl_pool);
1030 }
1031 
1032 blkptr_t *
1033 spa_get_rootblkptr(spa_t *spa)
1034 {
1035 	return (&spa->spa_ubsync.ub_rootbp);
1036 }
1037 
1038 void
1039 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1040 {
1041 	spa->spa_uberblock.ub_rootbp = *bp;
1042 }
1043 
1044 void
1045 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1046 {
1047 	if (spa->spa_root == NULL)
1048 		buf[0] = '\0';
1049 	else
1050 		(void) strncpy(buf, spa->spa_root, buflen);
1051 }
1052 
1053 int
1054 spa_sync_pass(spa_t *spa)
1055 {
1056 	return (spa->spa_sync_pass);
1057 }
1058 
1059 char *
1060 spa_name(spa_t *spa)
1061 {
1062 	/*
1063 	 * Accessing the name requires holding either the namespace lock or the
1064 	 * config lock, both of which are required to do a rename.
1065 	 */
1066 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1067 	    spa_config_held(spa, RW_READER));
1068 
1069 	return (spa->spa_name);
1070 }
1071 
1072 uint64_t
1073 spa_guid(spa_t *spa)
1074 {
1075 	/*
1076 	 * If we fail to parse the config during spa_load(), we can go through
1077 	 * the error path (which posts an ereport) and end up here with no root
1078 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1079 	 * this case.
1080 	 */
1081 	if (spa->spa_root_vdev != NULL)
1082 		return (spa->spa_root_vdev->vdev_guid);
1083 	else
1084 		return (spa->spa_load_guid);
1085 }
1086 
1087 uint64_t
1088 spa_last_synced_txg(spa_t *spa)
1089 {
1090 	return (spa->spa_ubsync.ub_txg);
1091 }
1092 
1093 uint64_t
1094 spa_first_txg(spa_t *spa)
1095 {
1096 	return (spa->spa_first_txg);
1097 }
1098 
1099 int
1100 spa_state(spa_t *spa)
1101 {
1102 	return (spa->spa_state);
1103 }
1104 
1105 uint64_t
1106 spa_freeze_txg(spa_t *spa)
1107 {
1108 	return (spa->spa_freeze_txg);
1109 }
1110 
1111 /*
1112  * Return how much space is allocated in the pool (ie. sum of all asize)
1113  */
1114 uint64_t
1115 spa_get_alloc(spa_t *spa)
1116 {
1117 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
1118 }
1119 
1120 /*
1121  * Return how much (raid-z inflated) space there is in the pool.
1122  */
1123 uint64_t
1124 spa_get_space(spa_t *spa)
1125 {
1126 	return (spa->spa_root_vdev->vdev_stat.vs_space);
1127 }
1128 
1129 /*
1130  * Return the amount of raid-z-deflated space in the pool.
1131  */
1132 uint64_t
1133 spa_get_dspace(spa_t *spa)
1134 {
1135 	if (spa->spa_deflate)
1136 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
1137 	else
1138 		return (spa->spa_root_vdev->vdev_stat.vs_space);
1139 }
1140 
1141 /* ARGSUSED */
1142 uint64_t
1143 spa_get_asize(spa_t *spa, uint64_t lsize)
1144 {
1145 	/*
1146 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
1147 	 * case the space requirement is exactly 2x; so just assume that.
1148 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
1149 	 * we have to multiply by a total of 6x.
1150 	 */
1151 	return (lsize * 6);
1152 }
1153 
1154 /*
1155  * Return the failure mode that has been set to this pool. The default
1156  * behavior will be to block all I/Os when a complete failure occurs.
1157  */
1158 uint8_t
1159 spa_get_failmode(spa_t *spa)
1160 {
1161 	return (spa->spa_failmode);
1162 }
1163 
1164 uint64_t
1165 spa_version(spa_t *spa)
1166 {
1167 	return (spa->spa_ubsync.ub_version);
1168 }
1169 
1170 int
1171 spa_max_replication(spa_t *spa)
1172 {
1173 	/*
1174 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1175 	 * handle BPs with more than one DVA allocated.  Set our max
1176 	 * replication level accordingly.
1177 	 */
1178 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1179 		return (1);
1180 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1181 }
1182 
1183 uint64_t
1184 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1185 {
1186 	int sz = 0, i;
1187 
1188 	if (!spa->spa_deflate)
1189 		return (BP_GET_ASIZE(bp));
1190 
1191 	spa_config_enter(spa, RW_READER, FTAG);
1192 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1193 		vdev_t *vd =
1194 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1195 		if (vd)
1196 			sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >>
1197 			    SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1198 	}
1199 	spa_config_exit(spa, FTAG);
1200 	return (sz);
1201 }
1202 
1203 /*
1204  * ==========================================================================
1205  * Initialization and Termination
1206  * ==========================================================================
1207  */
1208 
1209 static int
1210 spa_name_compare(const void *a1, const void *a2)
1211 {
1212 	const spa_t *s1 = a1;
1213 	const spa_t *s2 = a2;
1214 	int s;
1215 
1216 	s = strcmp(s1->spa_name, s2->spa_name);
1217 	if (s > 0)
1218 		return (1);
1219 	if (s < 0)
1220 		return (-1);
1221 	return (0);
1222 }
1223 
1224 int
1225 spa_busy(void)
1226 {
1227 	return (spa_active_count);
1228 }
1229 
1230 void
1231 spa_boot_init()
1232 {
1233 	spa_config_load();
1234 }
1235 
1236 void
1237 spa_init(int mode)
1238 {
1239 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1240 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1241 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1242 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1243 
1244 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1245 	    offsetof(spa_t, spa_avl));
1246 
1247 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1248 	    offsetof(spa_aux_t, aux_avl));
1249 
1250 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1251 	    offsetof(spa_aux_t, aux_avl));
1252 
1253 	spa_mode = mode;
1254 
1255 	refcount_init();
1256 	unique_init();
1257 	zio_init();
1258 	dmu_init();
1259 	zil_init();
1260 	vdev_cache_stat_init();
1261 	zfs_prop_init();
1262 	zpool_prop_init();
1263 	spa_config_load();
1264 }
1265 
1266 void
1267 spa_fini(void)
1268 {
1269 	spa_evict_all();
1270 
1271 	vdev_cache_stat_fini();
1272 	zil_fini();
1273 	dmu_fini();
1274 	zio_fini();
1275 	unique_fini();
1276 	refcount_fini();
1277 
1278 	avl_destroy(&spa_namespace_avl);
1279 	avl_destroy(&spa_spare_avl);
1280 	avl_destroy(&spa_l2cache_avl);
1281 
1282 	cv_destroy(&spa_namespace_cv);
1283 	mutex_destroy(&spa_namespace_lock);
1284 	mutex_destroy(&spa_spare_lock);
1285 	mutex_destroy(&spa_l2cache_lock);
1286 }
1287 
1288 /*
1289  * Return whether this pool has slogs. No locking needed.
1290  * It's not a problem if the wrong answer is returned as it's only for
1291  * performance and not correctness
1292  */
1293 boolean_t
1294 spa_has_slogs(spa_t *spa)
1295 {
1296 	return (spa->spa_log_class->mc_rotor != NULL);
1297 }
1298 
1299 /*
1300  * Return whether this pool is the root pool.
1301  */
1302 boolean_t
1303 spa_is_root(spa_t *spa)
1304 {
1305 	return (spa->spa_is_root);
1306 }
1307