1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2014 Integros [integros.com] 28 * Copyright (c) 2017 Datto Inc. 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/spa_impl.h> 33 #include <sys/spa_boot.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 #include <sys/zio_compress.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/vdev_impl.h> 42 #include <sys/metaslab.h> 43 #include <sys/uberblock_impl.h> 44 #include <sys/txg.h> 45 #include <sys/avl.h> 46 #include <sys/unique.h> 47 #include <sys/dsl_pool.h> 48 #include <sys/dsl_dir.h> 49 #include <sys/dsl_prop.h> 50 #include <sys/dsl_scan.h> 51 #include <sys/fs/zfs.h> 52 #include <sys/metaslab_impl.h> 53 #include <sys/arc.h> 54 #include <sys/ddt.h> 55 #include "zfs_prop.h" 56 #include <sys/zfeature.h> 57 58 /* 59 * SPA locking 60 * 61 * There are four basic locks for managing spa_t structures: 62 * 63 * spa_namespace_lock (global mutex) 64 * 65 * This lock must be acquired to do any of the following: 66 * 67 * - Lookup a spa_t by name 68 * - Add or remove a spa_t from the namespace 69 * - Increase spa_refcount from non-zero 70 * - Check if spa_refcount is zero 71 * - Rename a spa_t 72 * - add/remove/attach/detach devices 73 * - Held for the duration of create/destroy/import/export 74 * 75 * It does not need to handle recursion. A create or destroy may 76 * reference objects (files or zvols) in other pools, but by 77 * definition they must have an existing reference, and will never need 78 * to lookup a spa_t by name. 79 * 80 * spa_refcount (per-spa refcount_t protected by mutex) 81 * 82 * This reference count keep track of any active users of the spa_t. The 83 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 84 * the refcount is never really 'zero' - opening a pool implicitly keeps 85 * some references in the DMU. Internally we check against spa_minref, but 86 * present the image of a zero/non-zero value to consumers. 87 * 88 * spa_config_lock[] (per-spa array of rwlocks) 89 * 90 * This protects the spa_t from config changes, and must be held in 91 * the following circumstances: 92 * 93 * - RW_READER to perform I/O to the spa 94 * - RW_WRITER to change the vdev config 95 * 96 * The locking order is fairly straightforward: 97 * 98 * spa_namespace_lock -> spa_refcount 99 * 100 * The namespace lock must be acquired to increase the refcount from 0 101 * or to check if it is zero. 102 * 103 * spa_refcount -> spa_config_lock[] 104 * 105 * There must be at least one valid reference on the spa_t to acquire 106 * the config lock. 107 * 108 * spa_namespace_lock -> spa_config_lock[] 109 * 110 * The namespace lock must always be taken before the config lock. 111 * 112 * 113 * The spa_namespace_lock can be acquired directly and is globally visible. 114 * 115 * The namespace is manipulated using the following functions, all of which 116 * require the spa_namespace_lock to be held. 117 * 118 * spa_lookup() Lookup a spa_t by name. 119 * 120 * spa_add() Create a new spa_t in the namespace. 121 * 122 * spa_remove() Remove a spa_t from the namespace. This also 123 * frees up any memory associated with the spa_t. 124 * 125 * spa_next() Returns the next spa_t in the system, or the 126 * first if NULL is passed. 127 * 128 * spa_evict_all() Shutdown and remove all spa_t structures in 129 * the system. 130 * 131 * spa_guid_exists() Determine whether a pool/device guid exists. 132 * 133 * The spa_refcount is manipulated using the following functions: 134 * 135 * spa_open_ref() Adds a reference to the given spa_t. Must be 136 * called with spa_namespace_lock held if the 137 * refcount is currently zero. 138 * 139 * spa_close() Remove a reference from the spa_t. This will 140 * not free the spa_t or remove it from the 141 * namespace. No locking is required. 142 * 143 * spa_refcount_zero() Returns true if the refcount is currently 144 * zero. Must be called with spa_namespace_lock 145 * held. 146 * 147 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 148 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 149 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 150 * 151 * To read the configuration, it suffices to hold one of these locks as reader. 152 * To modify the configuration, you must hold all locks as writer. To modify 153 * vdev state without altering the vdev tree's topology (e.g. online/offline), 154 * you must hold SCL_STATE and SCL_ZIO as writer. 155 * 156 * We use these distinct config locks to avoid recursive lock entry. 157 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 158 * block allocations (SCL_ALLOC), which may require reading space maps 159 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 160 * 161 * The spa config locks cannot be normal rwlocks because we need the 162 * ability to hand off ownership. For example, SCL_ZIO is acquired 163 * by the issuing thread and later released by an interrupt thread. 164 * They do, however, obey the usual write-wanted semantics to prevent 165 * writer (i.e. system administrator) starvation. 166 * 167 * The lock acquisition rules are as follows: 168 * 169 * SCL_CONFIG 170 * Protects changes to the vdev tree topology, such as vdev 171 * add/remove/attach/detach. Protects the dirty config list 172 * (spa_config_dirty_list) and the set of spares and l2arc devices. 173 * 174 * SCL_STATE 175 * Protects changes to pool state and vdev state, such as vdev 176 * online/offline/fault/degrade/clear. Protects the dirty state list 177 * (spa_state_dirty_list) and global pool state (spa_state). 178 * 179 * SCL_ALLOC 180 * Protects changes to metaslab groups and classes. 181 * Held as reader by metaslab_alloc() and metaslab_claim(). 182 * 183 * SCL_ZIO 184 * Held by bp-level zios (those which have no io_vd upon entry) 185 * to prevent changes to the vdev tree. The bp-level zio implicitly 186 * protects all of its vdev child zios, which do not hold SCL_ZIO. 187 * 188 * SCL_FREE 189 * Protects changes to metaslab groups and classes. 190 * Held as reader by metaslab_free(). SCL_FREE is distinct from 191 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 192 * blocks in zio_done() while another i/o that holds either 193 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 194 * 195 * SCL_VDEV 196 * Held as reader to prevent changes to the vdev tree during trivial 197 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 198 * other locks, and lower than all of them, to ensure that it's safe 199 * to acquire regardless of caller context. 200 * 201 * In addition, the following rules apply: 202 * 203 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 204 * The lock ordering is SCL_CONFIG > spa_props_lock. 205 * 206 * (b) I/O operations on leaf vdevs. For any zio operation that takes 207 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 208 * or zio_write_phys() -- the caller must ensure that the config cannot 209 * cannot change in the interim, and that the vdev cannot be reopened. 210 * SCL_STATE as reader suffices for both. 211 * 212 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 213 * 214 * spa_vdev_enter() Acquire the namespace lock and the config lock 215 * for writing. 216 * 217 * spa_vdev_exit() Release the config lock, wait for all I/O 218 * to complete, sync the updated configs to the 219 * cache, and release the namespace lock. 220 * 221 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 222 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 223 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 224 * 225 * spa_rename() is also implemented within this file since it requires 226 * manipulation of the namespace. 227 */ 228 229 static avl_tree_t spa_namespace_avl; 230 kmutex_t spa_namespace_lock; 231 static kcondvar_t spa_namespace_cv; 232 static int spa_active_count; 233 int spa_max_replication_override = SPA_DVAS_PER_BP; 234 235 static kmutex_t spa_spare_lock; 236 static avl_tree_t spa_spare_avl; 237 static kmutex_t spa_l2cache_lock; 238 static avl_tree_t spa_l2cache_avl; 239 240 kmem_cache_t *spa_buffer_pool; 241 int spa_mode_global; 242 243 #ifdef ZFS_DEBUG 244 /* 245 * Everything except dprintf, spa, and indirect_remap is on by default 246 * in debug builds. 247 */ 248 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA | ZFS_DEBUG_INDIRECT_REMAP); 249 #else 250 int zfs_flags = 0; 251 #endif 252 253 /* 254 * zfs_recover can be set to nonzero to attempt to recover from 255 * otherwise-fatal errors, typically caused by on-disk corruption. When 256 * set, calls to zfs_panic_recover() will turn into warning messages. 257 * This should only be used as a last resort, as it typically results 258 * in leaked space, or worse. 259 */ 260 boolean_t zfs_recover = B_FALSE; 261 262 /* 263 * If destroy encounters an EIO while reading metadata (e.g. indirect 264 * blocks), space referenced by the missing metadata can not be freed. 265 * Normally this causes the background destroy to become "stalled", as 266 * it is unable to make forward progress. While in this stalled state, 267 * all remaining space to free from the error-encountering filesystem is 268 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 269 * permanently leak the space from indirect blocks that can not be read, 270 * and continue to free everything else that it can. 271 * 272 * The default, "stalling" behavior is useful if the storage partially 273 * fails (i.e. some but not all i/os fail), and then later recovers. In 274 * this case, we will be able to continue pool operations while it is 275 * partially failed, and when it recovers, we can continue to free the 276 * space, with no leaks. However, note that this case is actually 277 * fairly rare. 278 * 279 * Typically pools either (a) fail completely (but perhaps temporarily, 280 * e.g. a top-level vdev going offline), or (b) have localized, 281 * permanent errors (e.g. disk returns the wrong data due to bit flip or 282 * firmware bug). In case (a), this setting does not matter because the 283 * pool will be suspended and the sync thread will not be able to make 284 * forward progress regardless. In case (b), because the error is 285 * permanent, the best we can do is leak the minimum amount of space, 286 * which is what setting this flag will do. Therefore, it is reasonable 287 * for this flag to normally be set, but we chose the more conservative 288 * approach of not setting it, so that there is no possibility of 289 * leaking space in the "partial temporary" failure case. 290 */ 291 boolean_t zfs_free_leak_on_eio = B_FALSE; 292 293 /* 294 * Expiration time in milliseconds. This value has two meanings. First it is 295 * used to determine when the spa_deadman() logic should fire. By default the 296 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. 297 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 298 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 299 * in a system panic. 300 */ 301 uint64_t zfs_deadman_synctime_ms = 1000000ULL; 302 303 /* 304 * Check time in milliseconds. This defines the frequency at which we check 305 * for hung I/O. 306 */ 307 uint64_t zfs_deadman_checktime_ms = 5000ULL; 308 309 /* 310 * Override the zfs deadman behavior via /etc/system. By default the 311 * deadman is enabled except on VMware and sparc deployments. 312 */ 313 int zfs_deadman_enabled = -1; 314 315 /* 316 * The worst case is single-sector max-parity RAID-Z blocks, in which 317 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 318 * times the size; so just assume that. Add to this the fact that 319 * we can have up to 3 DVAs per bp, and one more factor of 2 because 320 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 321 * the worst case is: 322 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 323 */ 324 int spa_asize_inflation = 24; 325 326 /* 327 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 328 * the pool to be consumed. This ensures that we don't run the pool 329 * completely out of space, due to unaccounted changes (e.g. to the MOS). 330 * It also limits the worst-case time to allocate space. If we have 331 * less than this amount of free space, most ZPL operations (e.g. write, 332 * create) will return ENOSPC. 333 * 334 * Certain operations (e.g. file removal, most administrative actions) can 335 * use half the slop space. They will only return ENOSPC if less than half 336 * the slop space is free. Typically, once the pool has less than the slop 337 * space free, the user will use these operations to free up space in the pool. 338 * These are the operations that call dsl_pool_adjustedsize() with the netfree 339 * argument set to TRUE. 340 * 341 * A very restricted set of operations are always permitted, regardless of 342 * the amount of free space. These are the operations that call 343 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these 344 * operations result in a net increase in the amount of space used, 345 * it is possible to run the pool completely out of space, causing it to 346 * be permanently read-only. 347 * 348 * Note that on very small pools, the slop space will be larger than 349 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 350 * but we never allow it to be more than half the pool size. 351 * 352 * See also the comments in zfs_space_check_t. 353 */ 354 int spa_slop_shift = 5; 355 uint64_t spa_min_slop = 128 * 1024 * 1024; 356 357 /*PRINTFLIKE2*/ 358 void 359 spa_load_failed(spa_t *spa, const char *fmt, ...) 360 { 361 va_list adx; 362 char buf[256]; 363 364 va_start(adx, fmt); 365 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 366 va_end(adx); 367 368 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 369 spa->spa_trust_config ? "trusted" : "untrusted", buf); 370 } 371 372 /*PRINTFLIKE2*/ 373 void 374 spa_load_note(spa_t *spa, const char *fmt, ...) 375 { 376 va_list adx; 377 char buf[256]; 378 379 va_start(adx, fmt); 380 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 381 va_end(adx); 382 383 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 384 spa->spa_trust_config ? "trusted" : "untrusted", buf); 385 } 386 387 /* 388 * ========================================================================== 389 * SPA config locking 390 * ========================================================================== 391 */ 392 static void 393 spa_config_lock_init(spa_t *spa) 394 { 395 for (int i = 0; i < SCL_LOCKS; i++) { 396 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 397 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 398 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 399 refcount_create_untracked(&scl->scl_count); 400 scl->scl_writer = NULL; 401 scl->scl_write_wanted = 0; 402 } 403 } 404 405 static void 406 spa_config_lock_destroy(spa_t *spa) 407 { 408 for (int i = 0; i < SCL_LOCKS; i++) { 409 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 410 mutex_destroy(&scl->scl_lock); 411 cv_destroy(&scl->scl_cv); 412 refcount_destroy(&scl->scl_count); 413 ASSERT(scl->scl_writer == NULL); 414 ASSERT(scl->scl_write_wanted == 0); 415 } 416 } 417 418 int 419 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 420 { 421 for (int i = 0; i < SCL_LOCKS; i++) { 422 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 423 if (!(locks & (1 << i))) 424 continue; 425 mutex_enter(&scl->scl_lock); 426 if (rw == RW_READER) { 427 if (scl->scl_writer || scl->scl_write_wanted) { 428 mutex_exit(&scl->scl_lock); 429 spa_config_exit(spa, locks & ((1 << i) - 1), 430 tag); 431 return (0); 432 } 433 } else { 434 ASSERT(scl->scl_writer != curthread); 435 if (!refcount_is_zero(&scl->scl_count)) { 436 mutex_exit(&scl->scl_lock); 437 spa_config_exit(spa, locks & ((1 << i) - 1), 438 tag); 439 return (0); 440 } 441 scl->scl_writer = curthread; 442 } 443 (void) refcount_add(&scl->scl_count, tag); 444 mutex_exit(&scl->scl_lock); 445 } 446 return (1); 447 } 448 449 void 450 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 451 { 452 int wlocks_held = 0; 453 454 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 455 456 for (int i = 0; i < SCL_LOCKS; i++) { 457 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 458 if (scl->scl_writer == curthread) 459 wlocks_held |= (1 << i); 460 if (!(locks & (1 << i))) 461 continue; 462 mutex_enter(&scl->scl_lock); 463 if (rw == RW_READER) { 464 while (scl->scl_writer || scl->scl_write_wanted) { 465 cv_wait(&scl->scl_cv, &scl->scl_lock); 466 } 467 } else { 468 ASSERT(scl->scl_writer != curthread); 469 while (!refcount_is_zero(&scl->scl_count)) { 470 scl->scl_write_wanted++; 471 cv_wait(&scl->scl_cv, &scl->scl_lock); 472 scl->scl_write_wanted--; 473 } 474 scl->scl_writer = curthread; 475 } 476 (void) refcount_add(&scl->scl_count, tag); 477 mutex_exit(&scl->scl_lock); 478 } 479 ASSERT3U(wlocks_held, <=, locks); 480 } 481 482 void 483 spa_config_exit(spa_t *spa, int locks, void *tag) 484 { 485 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 486 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 487 if (!(locks & (1 << i))) 488 continue; 489 mutex_enter(&scl->scl_lock); 490 ASSERT(!refcount_is_zero(&scl->scl_count)); 491 if (refcount_remove(&scl->scl_count, tag) == 0) { 492 ASSERT(scl->scl_writer == NULL || 493 scl->scl_writer == curthread); 494 scl->scl_writer = NULL; /* OK in either case */ 495 cv_broadcast(&scl->scl_cv); 496 } 497 mutex_exit(&scl->scl_lock); 498 } 499 } 500 501 int 502 spa_config_held(spa_t *spa, int locks, krw_t rw) 503 { 504 int locks_held = 0; 505 506 for (int i = 0; i < SCL_LOCKS; i++) { 507 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 508 if (!(locks & (1 << i))) 509 continue; 510 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 511 (rw == RW_WRITER && scl->scl_writer == curthread)) 512 locks_held |= 1 << i; 513 } 514 515 return (locks_held); 516 } 517 518 /* 519 * ========================================================================== 520 * SPA namespace functions 521 * ========================================================================== 522 */ 523 524 /* 525 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 526 * Returns NULL if no matching spa_t is found. 527 */ 528 spa_t * 529 spa_lookup(const char *name) 530 { 531 static spa_t search; /* spa_t is large; don't allocate on stack */ 532 spa_t *spa; 533 avl_index_t where; 534 char *cp; 535 536 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 537 538 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 539 540 /* 541 * If it's a full dataset name, figure out the pool name and 542 * just use that. 543 */ 544 cp = strpbrk(search.spa_name, "/@#"); 545 if (cp != NULL) 546 *cp = '\0'; 547 548 spa = avl_find(&spa_namespace_avl, &search, &where); 549 550 return (spa); 551 } 552 553 /* 554 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 555 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 556 * looking for potentially hung I/Os. 557 */ 558 void 559 spa_deadman(void *arg) 560 { 561 spa_t *spa = arg; 562 563 /* 564 * Disable the deadman timer if the pool is suspended. 565 */ 566 if (spa_suspended(spa)) { 567 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 568 return; 569 } 570 571 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 572 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 573 ++spa->spa_deadman_calls); 574 if (zfs_deadman_enabled) 575 vdev_deadman(spa->spa_root_vdev); 576 } 577 578 /* 579 * Create an uninitialized spa_t with the given name. Requires 580 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 581 * exist by calling spa_lookup() first. 582 */ 583 spa_t * 584 spa_add(const char *name, nvlist_t *config, const char *altroot) 585 { 586 spa_t *spa; 587 spa_config_dirent_t *dp; 588 cyc_handler_t hdlr; 589 cyc_time_t when; 590 591 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 592 593 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 594 595 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 596 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 597 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 598 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 599 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 600 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 601 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 602 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 603 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 604 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 605 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 606 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 607 mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL); 608 609 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 610 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 611 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 612 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 613 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 614 615 for (int t = 0; t < TXG_SIZE; t++) 616 bplist_create(&spa->spa_free_bplist[t]); 617 618 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 619 spa->spa_state = POOL_STATE_UNINITIALIZED; 620 spa->spa_freeze_txg = UINT64_MAX; 621 spa->spa_final_txg = UINT64_MAX; 622 spa->spa_load_max_txg = UINT64_MAX; 623 spa->spa_proc = &p0; 624 spa->spa_proc_state = SPA_PROC_NONE; 625 spa->spa_trust_config = B_TRUE; 626 627 hdlr.cyh_func = spa_deadman; 628 hdlr.cyh_arg = spa; 629 hdlr.cyh_level = CY_LOW_LEVEL; 630 631 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 632 633 /* 634 * This determines how often we need to check for hung I/Os after 635 * the cyclic has already fired. Since checking for hung I/Os is 636 * an expensive operation we don't want to check too frequently. 637 * Instead wait for 5 seconds before checking again. 638 */ 639 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); 640 when.cyt_when = CY_INFINITY; 641 mutex_enter(&cpu_lock); 642 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 643 mutex_exit(&cpu_lock); 644 645 refcount_create(&spa->spa_refcount); 646 spa_config_lock_init(spa); 647 648 avl_add(&spa_namespace_avl, spa); 649 650 /* 651 * Set the alternate root, if there is one. 652 */ 653 if (altroot) { 654 spa->spa_root = spa_strdup(altroot); 655 spa_active_count++; 656 } 657 658 avl_create(&spa->spa_alloc_tree, zio_bookmark_compare, 659 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 660 661 /* 662 * Every pool starts with the default cachefile 663 */ 664 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 665 offsetof(spa_config_dirent_t, scd_link)); 666 667 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 668 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 669 list_insert_head(&spa->spa_config_list, dp); 670 671 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 672 KM_SLEEP) == 0); 673 674 if (config != NULL) { 675 nvlist_t *features; 676 677 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 678 &features) == 0) { 679 VERIFY(nvlist_dup(features, &spa->spa_label_features, 680 0) == 0); 681 } 682 683 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 684 } 685 686 if (spa->spa_label_features == NULL) { 687 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 688 KM_SLEEP) == 0); 689 } 690 691 spa->spa_iokstat = kstat_create("zfs", 0, name, 692 "disk", KSTAT_TYPE_IO, 1, 0); 693 if (spa->spa_iokstat) { 694 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 695 kstat_install(spa->spa_iokstat); 696 } 697 698 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0); 699 700 spa->spa_min_ashift = INT_MAX; 701 spa->spa_max_ashift = 0; 702 703 /* 704 * As a pool is being created, treat all features as disabled by 705 * setting SPA_FEATURE_DISABLED for all entries in the feature 706 * refcount cache. 707 */ 708 for (int i = 0; i < SPA_FEATURES; i++) { 709 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 710 } 711 712 return (spa); 713 } 714 715 /* 716 * Removes a spa_t from the namespace, freeing up any memory used. Requires 717 * spa_namespace_lock. This is called only after the spa_t has been closed and 718 * deactivated. 719 */ 720 void 721 spa_remove(spa_t *spa) 722 { 723 spa_config_dirent_t *dp; 724 725 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 726 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 727 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0); 728 729 nvlist_free(spa->spa_config_splitting); 730 731 avl_remove(&spa_namespace_avl, spa); 732 cv_broadcast(&spa_namespace_cv); 733 734 if (spa->spa_root) { 735 spa_strfree(spa->spa_root); 736 spa_active_count--; 737 } 738 739 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 740 list_remove(&spa->spa_config_list, dp); 741 if (dp->scd_path != NULL) 742 spa_strfree(dp->scd_path); 743 kmem_free(dp, sizeof (spa_config_dirent_t)); 744 } 745 746 avl_destroy(&spa->spa_alloc_tree); 747 list_destroy(&spa->spa_config_list); 748 749 nvlist_free(spa->spa_label_features); 750 nvlist_free(spa->spa_load_info); 751 spa_config_set(spa, NULL); 752 753 mutex_enter(&cpu_lock); 754 if (spa->spa_deadman_cycid != CYCLIC_NONE) 755 cyclic_remove(spa->spa_deadman_cycid); 756 mutex_exit(&cpu_lock); 757 spa->spa_deadman_cycid = CYCLIC_NONE; 758 759 refcount_destroy(&spa->spa_refcount); 760 761 spa_config_lock_destroy(spa); 762 763 kstat_delete(spa->spa_iokstat); 764 spa->spa_iokstat = NULL; 765 766 for (int t = 0; t < TXG_SIZE; t++) 767 bplist_destroy(&spa->spa_free_bplist[t]); 768 769 zio_checksum_templates_free(spa); 770 771 cv_destroy(&spa->spa_async_cv); 772 cv_destroy(&spa->spa_evicting_os_cv); 773 cv_destroy(&spa->spa_proc_cv); 774 cv_destroy(&spa->spa_scrub_io_cv); 775 cv_destroy(&spa->spa_suspend_cv); 776 777 mutex_destroy(&spa->spa_alloc_lock); 778 mutex_destroy(&spa->spa_async_lock); 779 mutex_destroy(&spa->spa_errlist_lock); 780 mutex_destroy(&spa->spa_errlog_lock); 781 mutex_destroy(&spa->spa_evicting_os_lock); 782 mutex_destroy(&spa->spa_history_lock); 783 mutex_destroy(&spa->spa_proc_lock); 784 mutex_destroy(&spa->spa_props_lock); 785 mutex_destroy(&spa->spa_cksum_tmpls_lock); 786 mutex_destroy(&spa->spa_scrub_lock); 787 mutex_destroy(&spa->spa_suspend_lock); 788 mutex_destroy(&spa->spa_vdev_top_lock); 789 mutex_destroy(&spa->spa_iokstat_lock); 790 791 kmem_free(spa, sizeof (spa_t)); 792 } 793 794 /* 795 * Given a pool, return the next pool in the namespace, or NULL if there is 796 * none. If 'prev' is NULL, return the first pool. 797 */ 798 spa_t * 799 spa_next(spa_t *prev) 800 { 801 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 802 803 if (prev) 804 return (AVL_NEXT(&spa_namespace_avl, prev)); 805 else 806 return (avl_first(&spa_namespace_avl)); 807 } 808 809 /* 810 * ========================================================================== 811 * SPA refcount functions 812 * ========================================================================== 813 */ 814 815 /* 816 * Add a reference to the given spa_t. Must have at least one reference, or 817 * have the namespace lock held. 818 */ 819 void 820 spa_open_ref(spa_t *spa, void *tag) 821 { 822 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 823 MUTEX_HELD(&spa_namespace_lock)); 824 (void) refcount_add(&spa->spa_refcount, tag); 825 } 826 827 /* 828 * Remove a reference to the given spa_t. Must have at least one reference, or 829 * have the namespace lock held. 830 */ 831 void 832 spa_close(spa_t *spa, void *tag) 833 { 834 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 835 MUTEX_HELD(&spa_namespace_lock)); 836 (void) refcount_remove(&spa->spa_refcount, tag); 837 } 838 839 /* 840 * Remove a reference to the given spa_t held by a dsl dir that is 841 * being asynchronously released. Async releases occur from a taskq 842 * performing eviction of dsl datasets and dirs. The namespace lock 843 * isn't held and the hold by the object being evicted may contribute to 844 * spa_minref (e.g. dataset or directory released during pool export), 845 * so the asserts in spa_close() do not apply. 846 */ 847 void 848 spa_async_close(spa_t *spa, void *tag) 849 { 850 (void) refcount_remove(&spa->spa_refcount, tag); 851 } 852 853 /* 854 * Check to see if the spa refcount is zero. Must be called with 855 * spa_namespace_lock held. We really compare against spa_minref, which is the 856 * number of references acquired when opening a pool 857 */ 858 boolean_t 859 spa_refcount_zero(spa_t *spa) 860 { 861 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 862 863 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 864 } 865 866 /* 867 * ========================================================================== 868 * SPA spare and l2cache tracking 869 * ========================================================================== 870 */ 871 872 /* 873 * Hot spares and cache devices are tracked using the same code below, 874 * for 'auxiliary' devices. 875 */ 876 877 typedef struct spa_aux { 878 uint64_t aux_guid; 879 uint64_t aux_pool; 880 avl_node_t aux_avl; 881 int aux_count; 882 } spa_aux_t; 883 884 static int 885 spa_aux_compare(const void *a, const void *b) 886 { 887 const spa_aux_t *sa = a; 888 const spa_aux_t *sb = b; 889 890 if (sa->aux_guid < sb->aux_guid) 891 return (-1); 892 else if (sa->aux_guid > sb->aux_guid) 893 return (1); 894 else 895 return (0); 896 } 897 898 void 899 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 900 { 901 avl_index_t where; 902 spa_aux_t search; 903 spa_aux_t *aux; 904 905 search.aux_guid = vd->vdev_guid; 906 if ((aux = avl_find(avl, &search, &where)) != NULL) { 907 aux->aux_count++; 908 } else { 909 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 910 aux->aux_guid = vd->vdev_guid; 911 aux->aux_count = 1; 912 avl_insert(avl, aux, where); 913 } 914 } 915 916 void 917 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 918 { 919 spa_aux_t search; 920 spa_aux_t *aux; 921 avl_index_t where; 922 923 search.aux_guid = vd->vdev_guid; 924 aux = avl_find(avl, &search, &where); 925 926 ASSERT(aux != NULL); 927 928 if (--aux->aux_count == 0) { 929 avl_remove(avl, aux); 930 kmem_free(aux, sizeof (spa_aux_t)); 931 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 932 aux->aux_pool = 0ULL; 933 } 934 } 935 936 boolean_t 937 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 938 { 939 spa_aux_t search, *found; 940 941 search.aux_guid = guid; 942 found = avl_find(avl, &search, NULL); 943 944 if (pool) { 945 if (found) 946 *pool = found->aux_pool; 947 else 948 *pool = 0ULL; 949 } 950 951 if (refcnt) { 952 if (found) 953 *refcnt = found->aux_count; 954 else 955 *refcnt = 0; 956 } 957 958 return (found != NULL); 959 } 960 961 void 962 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 963 { 964 spa_aux_t search, *found; 965 avl_index_t where; 966 967 search.aux_guid = vd->vdev_guid; 968 found = avl_find(avl, &search, &where); 969 ASSERT(found != NULL); 970 ASSERT(found->aux_pool == 0ULL); 971 972 found->aux_pool = spa_guid(vd->vdev_spa); 973 } 974 975 /* 976 * Spares are tracked globally due to the following constraints: 977 * 978 * - A spare may be part of multiple pools. 979 * - A spare may be added to a pool even if it's actively in use within 980 * another pool. 981 * - A spare in use in any pool can only be the source of a replacement if 982 * the target is a spare in the same pool. 983 * 984 * We keep track of all spares on the system through the use of a reference 985 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 986 * spare, then we bump the reference count in the AVL tree. In addition, we set 987 * the 'vdev_isspare' member to indicate that the device is a spare (active or 988 * inactive). When a spare is made active (used to replace a device in the 989 * pool), we also keep track of which pool its been made a part of. 990 * 991 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 992 * called under the spa_namespace lock as part of vdev reconfiguration. The 993 * separate spare lock exists for the status query path, which does not need to 994 * be completely consistent with respect to other vdev configuration changes. 995 */ 996 997 static int 998 spa_spare_compare(const void *a, const void *b) 999 { 1000 return (spa_aux_compare(a, b)); 1001 } 1002 1003 void 1004 spa_spare_add(vdev_t *vd) 1005 { 1006 mutex_enter(&spa_spare_lock); 1007 ASSERT(!vd->vdev_isspare); 1008 spa_aux_add(vd, &spa_spare_avl); 1009 vd->vdev_isspare = B_TRUE; 1010 mutex_exit(&spa_spare_lock); 1011 } 1012 1013 void 1014 spa_spare_remove(vdev_t *vd) 1015 { 1016 mutex_enter(&spa_spare_lock); 1017 ASSERT(vd->vdev_isspare); 1018 spa_aux_remove(vd, &spa_spare_avl); 1019 vd->vdev_isspare = B_FALSE; 1020 mutex_exit(&spa_spare_lock); 1021 } 1022 1023 boolean_t 1024 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1025 { 1026 boolean_t found; 1027 1028 mutex_enter(&spa_spare_lock); 1029 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1030 mutex_exit(&spa_spare_lock); 1031 1032 return (found); 1033 } 1034 1035 void 1036 spa_spare_activate(vdev_t *vd) 1037 { 1038 mutex_enter(&spa_spare_lock); 1039 ASSERT(vd->vdev_isspare); 1040 spa_aux_activate(vd, &spa_spare_avl); 1041 mutex_exit(&spa_spare_lock); 1042 } 1043 1044 /* 1045 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1046 * Cache devices currently only support one pool per cache device, and so 1047 * for these devices the aux reference count is currently unused beyond 1. 1048 */ 1049 1050 static int 1051 spa_l2cache_compare(const void *a, const void *b) 1052 { 1053 return (spa_aux_compare(a, b)); 1054 } 1055 1056 void 1057 spa_l2cache_add(vdev_t *vd) 1058 { 1059 mutex_enter(&spa_l2cache_lock); 1060 ASSERT(!vd->vdev_isl2cache); 1061 spa_aux_add(vd, &spa_l2cache_avl); 1062 vd->vdev_isl2cache = B_TRUE; 1063 mutex_exit(&spa_l2cache_lock); 1064 } 1065 1066 void 1067 spa_l2cache_remove(vdev_t *vd) 1068 { 1069 mutex_enter(&spa_l2cache_lock); 1070 ASSERT(vd->vdev_isl2cache); 1071 spa_aux_remove(vd, &spa_l2cache_avl); 1072 vd->vdev_isl2cache = B_FALSE; 1073 mutex_exit(&spa_l2cache_lock); 1074 } 1075 1076 boolean_t 1077 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1078 { 1079 boolean_t found; 1080 1081 mutex_enter(&spa_l2cache_lock); 1082 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1083 mutex_exit(&spa_l2cache_lock); 1084 1085 return (found); 1086 } 1087 1088 void 1089 spa_l2cache_activate(vdev_t *vd) 1090 { 1091 mutex_enter(&spa_l2cache_lock); 1092 ASSERT(vd->vdev_isl2cache); 1093 spa_aux_activate(vd, &spa_l2cache_avl); 1094 mutex_exit(&spa_l2cache_lock); 1095 } 1096 1097 /* 1098 * ========================================================================== 1099 * SPA vdev locking 1100 * ========================================================================== 1101 */ 1102 1103 /* 1104 * Lock the given spa_t for the purpose of adding or removing a vdev. 1105 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1106 * It returns the next transaction group for the spa_t. 1107 */ 1108 uint64_t 1109 spa_vdev_enter(spa_t *spa) 1110 { 1111 mutex_enter(&spa->spa_vdev_top_lock); 1112 mutex_enter(&spa_namespace_lock); 1113 return (spa_vdev_config_enter(spa)); 1114 } 1115 1116 /* 1117 * Internal implementation for spa_vdev_enter(). Used when a vdev 1118 * operation requires multiple syncs (i.e. removing a device) while 1119 * keeping the spa_namespace_lock held. 1120 */ 1121 uint64_t 1122 spa_vdev_config_enter(spa_t *spa) 1123 { 1124 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1125 1126 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1127 1128 return (spa_last_synced_txg(spa) + 1); 1129 } 1130 1131 /* 1132 * Used in combination with spa_vdev_config_enter() to allow the syncing 1133 * of multiple transactions without releasing the spa_namespace_lock. 1134 */ 1135 void 1136 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1137 { 1138 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1139 1140 int config_changed = B_FALSE; 1141 1142 ASSERT(txg > spa_last_synced_txg(spa)); 1143 1144 spa->spa_pending_vdev = NULL; 1145 1146 /* 1147 * Reassess the DTLs. 1148 */ 1149 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 1150 1151 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1152 config_changed = B_TRUE; 1153 spa->spa_config_generation++; 1154 } 1155 1156 /* 1157 * Verify the metaslab classes. 1158 */ 1159 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1160 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1161 1162 spa_config_exit(spa, SCL_ALL, spa); 1163 1164 /* 1165 * Panic the system if the specified tag requires it. This 1166 * is useful for ensuring that configurations are updated 1167 * transactionally. 1168 */ 1169 if (zio_injection_enabled) 1170 zio_handle_panic_injection(spa, tag, 0); 1171 1172 /* 1173 * Note: this txg_wait_synced() is important because it ensures 1174 * that there won't be more than one config change per txg. 1175 * This allows us to use the txg as the generation number. 1176 */ 1177 if (error == 0) 1178 txg_wait_synced(spa->spa_dsl_pool, txg); 1179 1180 if (vd != NULL) { 1181 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1182 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1183 vdev_free(vd); 1184 spa_config_exit(spa, SCL_ALL, spa); 1185 } 1186 1187 /* 1188 * If the config changed, update the config cache. 1189 */ 1190 if (config_changed) 1191 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1192 } 1193 1194 /* 1195 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1196 * locking of spa_vdev_enter(), we also want make sure the transactions have 1197 * synced to disk, and then update the global configuration cache with the new 1198 * information. 1199 */ 1200 int 1201 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1202 { 1203 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1204 mutex_exit(&spa_namespace_lock); 1205 mutex_exit(&spa->spa_vdev_top_lock); 1206 1207 return (error); 1208 } 1209 1210 /* 1211 * Lock the given spa_t for the purpose of changing vdev state. 1212 */ 1213 void 1214 spa_vdev_state_enter(spa_t *spa, int oplocks) 1215 { 1216 int locks = SCL_STATE_ALL | oplocks; 1217 1218 /* 1219 * Root pools may need to read of the underlying devfs filesystem 1220 * when opening up a vdev. Unfortunately if we're holding the 1221 * SCL_ZIO lock it will result in a deadlock when we try to issue 1222 * the read from the root filesystem. Instead we "prefetch" 1223 * the associated vnodes that we need prior to opening the 1224 * underlying devices and cache them so that we can prevent 1225 * any I/O when we are doing the actual open. 1226 */ 1227 if (spa_is_root(spa)) { 1228 int low = locks & ~(SCL_ZIO - 1); 1229 int high = locks & ~low; 1230 1231 spa_config_enter(spa, high, spa, RW_WRITER); 1232 vdev_hold(spa->spa_root_vdev); 1233 spa_config_enter(spa, low, spa, RW_WRITER); 1234 } else { 1235 spa_config_enter(spa, locks, spa, RW_WRITER); 1236 } 1237 spa->spa_vdev_locks = locks; 1238 } 1239 1240 int 1241 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1242 { 1243 boolean_t config_changed = B_FALSE; 1244 1245 if (vd != NULL || error == 0) 1246 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1247 0, 0, B_FALSE); 1248 1249 if (vd != NULL) { 1250 vdev_state_dirty(vd->vdev_top); 1251 config_changed = B_TRUE; 1252 spa->spa_config_generation++; 1253 } 1254 1255 if (spa_is_root(spa)) 1256 vdev_rele(spa->spa_root_vdev); 1257 1258 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1259 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1260 1261 /* 1262 * If anything changed, wait for it to sync. This ensures that, 1263 * from the system administrator's perspective, zpool(1M) commands 1264 * are synchronous. This is important for things like zpool offline: 1265 * when the command completes, you expect no further I/O from ZFS. 1266 */ 1267 if (vd != NULL) 1268 txg_wait_synced(spa->spa_dsl_pool, 0); 1269 1270 /* 1271 * If the config changed, update the config cache. 1272 */ 1273 if (config_changed) { 1274 mutex_enter(&spa_namespace_lock); 1275 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1276 mutex_exit(&spa_namespace_lock); 1277 } 1278 1279 return (error); 1280 } 1281 1282 /* 1283 * ========================================================================== 1284 * Miscellaneous functions 1285 * ========================================================================== 1286 */ 1287 1288 void 1289 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1290 { 1291 if (!nvlist_exists(spa->spa_label_features, feature)) { 1292 fnvlist_add_boolean(spa->spa_label_features, feature); 1293 /* 1294 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1295 * dirty the vdev config because lock SCL_CONFIG is not held. 1296 * Thankfully, in this case we don't need to dirty the config 1297 * because it will be written out anyway when we finish 1298 * creating the pool. 1299 */ 1300 if (tx->tx_txg != TXG_INITIAL) 1301 vdev_config_dirty(spa->spa_root_vdev); 1302 } 1303 } 1304 1305 void 1306 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1307 { 1308 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1309 vdev_config_dirty(spa->spa_root_vdev); 1310 } 1311 1312 /* 1313 * Rename a spa_t. 1314 */ 1315 int 1316 spa_rename(const char *name, const char *newname) 1317 { 1318 spa_t *spa; 1319 int err; 1320 1321 /* 1322 * Lookup the spa_t and grab the config lock for writing. We need to 1323 * actually open the pool so that we can sync out the necessary labels. 1324 * It's OK to call spa_open() with the namespace lock held because we 1325 * allow recursive calls for other reasons. 1326 */ 1327 mutex_enter(&spa_namespace_lock); 1328 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1329 mutex_exit(&spa_namespace_lock); 1330 return (err); 1331 } 1332 1333 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1334 1335 avl_remove(&spa_namespace_avl, spa); 1336 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1337 avl_add(&spa_namespace_avl, spa); 1338 1339 /* 1340 * Sync all labels to disk with the new names by marking the root vdev 1341 * dirty and waiting for it to sync. It will pick up the new pool name 1342 * during the sync. 1343 */ 1344 vdev_config_dirty(spa->spa_root_vdev); 1345 1346 spa_config_exit(spa, SCL_ALL, FTAG); 1347 1348 txg_wait_synced(spa->spa_dsl_pool, 0); 1349 1350 /* 1351 * Sync the updated config cache. 1352 */ 1353 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1354 1355 spa_close(spa, FTAG); 1356 1357 mutex_exit(&spa_namespace_lock); 1358 1359 return (0); 1360 } 1361 1362 /* 1363 * Return the spa_t associated with given pool_guid, if it exists. If 1364 * device_guid is non-zero, determine whether the pool exists *and* contains 1365 * a device with the specified device_guid. 1366 */ 1367 spa_t * 1368 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1369 { 1370 spa_t *spa; 1371 avl_tree_t *t = &spa_namespace_avl; 1372 1373 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1374 1375 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1376 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1377 continue; 1378 if (spa->spa_root_vdev == NULL) 1379 continue; 1380 if (spa_guid(spa) == pool_guid) { 1381 if (device_guid == 0) 1382 break; 1383 1384 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1385 device_guid) != NULL) 1386 break; 1387 1388 /* 1389 * Check any devices we may be in the process of adding. 1390 */ 1391 if (spa->spa_pending_vdev) { 1392 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1393 device_guid) != NULL) 1394 break; 1395 } 1396 } 1397 } 1398 1399 return (spa); 1400 } 1401 1402 /* 1403 * Determine whether a pool with the given pool_guid exists. 1404 */ 1405 boolean_t 1406 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1407 { 1408 return (spa_by_guid(pool_guid, device_guid) != NULL); 1409 } 1410 1411 char * 1412 spa_strdup(const char *s) 1413 { 1414 size_t len; 1415 char *new; 1416 1417 len = strlen(s); 1418 new = kmem_alloc(len + 1, KM_SLEEP); 1419 bcopy(s, new, len); 1420 new[len] = '\0'; 1421 1422 return (new); 1423 } 1424 1425 void 1426 spa_strfree(char *s) 1427 { 1428 kmem_free(s, strlen(s) + 1); 1429 } 1430 1431 uint64_t 1432 spa_get_random(uint64_t range) 1433 { 1434 uint64_t r; 1435 1436 ASSERT(range != 0); 1437 1438 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1439 1440 return (r % range); 1441 } 1442 1443 uint64_t 1444 spa_generate_guid(spa_t *spa) 1445 { 1446 uint64_t guid = spa_get_random(-1ULL); 1447 1448 if (spa != NULL) { 1449 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1450 guid = spa_get_random(-1ULL); 1451 } else { 1452 while (guid == 0 || spa_guid_exists(guid, 0)) 1453 guid = spa_get_random(-1ULL); 1454 } 1455 1456 return (guid); 1457 } 1458 1459 void 1460 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1461 { 1462 char type[256]; 1463 char *checksum = NULL; 1464 char *compress = NULL; 1465 1466 if (bp != NULL) { 1467 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1468 dmu_object_byteswap_t bswap = 1469 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1470 (void) snprintf(type, sizeof (type), "bswap %s %s", 1471 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1472 "metadata" : "data", 1473 dmu_ot_byteswap[bswap].ob_name); 1474 } else { 1475 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1476 sizeof (type)); 1477 } 1478 if (!BP_IS_EMBEDDED(bp)) { 1479 checksum = 1480 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1481 } 1482 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1483 } 1484 1485 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1486 compress); 1487 } 1488 1489 void 1490 spa_freeze(spa_t *spa) 1491 { 1492 uint64_t freeze_txg = 0; 1493 1494 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1495 if (spa->spa_freeze_txg == UINT64_MAX) { 1496 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1497 spa->spa_freeze_txg = freeze_txg; 1498 } 1499 spa_config_exit(spa, SCL_ALL, FTAG); 1500 if (freeze_txg != 0) 1501 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1502 } 1503 1504 void 1505 zfs_panic_recover(const char *fmt, ...) 1506 { 1507 va_list adx; 1508 1509 va_start(adx, fmt); 1510 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1511 va_end(adx); 1512 } 1513 1514 /* 1515 * This is a stripped-down version of strtoull, suitable only for converting 1516 * lowercase hexadecimal numbers that don't overflow. 1517 */ 1518 uint64_t 1519 zfs_strtonum(const char *str, char **nptr) 1520 { 1521 uint64_t val = 0; 1522 char c; 1523 int digit; 1524 1525 while ((c = *str) != '\0') { 1526 if (c >= '0' && c <= '9') 1527 digit = c - '0'; 1528 else if (c >= 'a' && c <= 'f') 1529 digit = 10 + c - 'a'; 1530 else 1531 break; 1532 1533 val *= 16; 1534 val += digit; 1535 1536 str++; 1537 } 1538 1539 if (nptr) 1540 *nptr = (char *)str; 1541 1542 return (val); 1543 } 1544 1545 /* 1546 * ========================================================================== 1547 * Accessor functions 1548 * ========================================================================== 1549 */ 1550 1551 boolean_t 1552 spa_shutting_down(spa_t *spa) 1553 { 1554 return (spa->spa_async_suspended); 1555 } 1556 1557 dsl_pool_t * 1558 spa_get_dsl(spa_t *spa) 1559 { 1560 return (spa->spa_dsl_pool); 1561 } 1562 1563 boolean_t 1564 spa_is_initializing(spa_t *spa) 1565 { 1566 return (spa->spa_is_initializing); 1567 } 1568 1569 boolean_t 1570 spa_indirect_vdevs_loaded(spa_t *spa) 1571 { 1572 return (spa->spa_indirect_vdevs_loaded); 1573 } 1574 1575 blkptr_t * 1576 spa_get_rootblkptr(spa_t *spa) 1577 { 1578 return (&spa->spa_ubsync.ub_rootbp); 1579 } 1580 1581 void 1582 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1583 { 1584 spa->spa_uberblock.ub_rootbp = *bp; 1585 } 1586 1587 void 1588 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1589 { 1590 if (spa->spa_root == NULL) 1591 buf[0] = '\0'; 1592 else 1593 (void) strncpy(buf, spa->spa_root, buflen); 1594 } 1595 1596 int 1597 spa_sync_pass(spa_t *spa) 1598 { 1599 return (spa->spa_sync_pass); 1600 } 1601 1602 char * 1603 spa_name(spa_t *spa) 1604 { 1605 return (spa->spa_name); 1606 } 1607 1608 uint64_t 1609 spa_guid(spa_t *spa) 1610 { 1611 dsl_pool_t *dp = spa_get_dsl(spa); 1612 uint64_t guid; 1613 1614 /* 1615 * If we fail to parse the config during spa_load(), we can go through 1616 * the error path (which posts an ereport) and end up here with no root 1617 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1618 * this case. 1619 */ 1620 if (spa->spa_root_vdev == NULL) 1621 return (spa->spa_config_guid); 1622 1623 guid = spa->spa_last_synced_guid != 0 ? 1624 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1625 1626 /* 1627 * Return the most recently synced out guid unless we're 1628 * in syncing context. 1629 */ 1630 if (dp && dsl_pool_sync_context(dp)) 1631 return (spa->spa_root_vdev->vdev_guid); 1632 else 1633 return (guid); 1634 } 1635 1636 uint64_t 1637 spa_load_guid(spa_t *spa) 1638 { 1639 /* 1640 * This is a GUID that exists solely as a reference for the 1641 * purposes of the arc. It is generated at load time, and 1642 * is never written to persistent storage. 1643 */ 1644 return (spa->spa_load_guid); 1645 } 1646 1647 uint64_t 1648 spa_last_synced_txg(spa_t *spa) 1649 { 1650 return (spa->spa_ubsync.ub_txg); 1651 } 1652 1653 uint64_t 1654 spa_first_txg(spa_t *spa) 1655 { 1656 return (spa->spa_first_txg); 1657 } 1658 1659 uint64_t 1660 spa_syncing_txg(spa_t *spa) 1661 { 1662 return (spa->spa_syncing_txg); 1663 } 1664 1665 /* 1666 * Return the last txg where data can be dirtied. The final txgs 1667 * will be used to just clear out any deferred frees that remain. 1668 */ 1669 uint64_t 1670 spa_final_dirty_txg(spa_t *spa) 1671 { 1672 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1673 } 1674 1675 pool_state_t 1676 spa_state(spa_t *spa) 1677 { 1678 return (spa->spa_state); 1679 } 1680 1681 spa_load_state_t 1682 spa_load_state(spa_t *spa) 1683 { 1684 return (spa->spa_load_state); 1685 } 1686 1687 uint64_t 1688 spa_freeze_txg(spa_t *spa) 1689 { 1690 return (spa->spa_freeze_txg); 1691 } 1692 1693 /* ARGSUSED */ 1694 uint64_t 1695 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1696 { 1697 return (lsize * spa_asize_inflation); 1698 } 1699 1700 /* 1701 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%), 1702 * or at least 128MB, unless that would cause it to be more than half the 1703 * pool size. 1704 * 1705 * See the comment above spa_slop_shift for details. 1706 */ 1707 uint64_t 1708 spa_get_slop_space(spa_t *spa) 1709 { 1710 uint64_t space = spa_get_dspace(spa); 1711 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop))); 1712 } 1713 1714 uint64_t 1715 spa_get_dspace(spa_t *spa) 1716 { 1717 return (spa->spa_dspace); 1718 } 1719 1720 void 1721 spa_update_dspace(spa_t *spa) 1722 { 1723 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1724 ddt_get_dedup_dspace(spa); 1725 if (spa->spa_vdev_removal != NULL) { 1726 /* 1727 * We can't allocate from the removing device, so 1728 * subtract its size. This prevents the DMU/DSL from 1729 * filling up the (now smaller) pool while we are in the 1730 * middle of removing the device. 1731 * 1732 * Note that the DMU/DSL doesn't actually know or care 1733 * how much space is allocated (it does its own tracking 1734 * of how much space has been logically used). So it 1735 * doesn't matter that the data we are moving may be 1736 * allocated twice (on the old device and the new 1737 * device). 1738 */ 1739 vdev_t *vd = spa->spa_vdev_removal->svr_vdev; 1740 spa->spa_dspace -= spa_deflate(spa) ? 1741 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1742 } 1743 } 1744 1745 /* 1746 * Return the failure mode that has been set to this pool. The default 1747 * behavior will be to block all I/Os when a complete failure occurs. 1748 */ 1749 uint8_t 1750 spa_get_failmode(spa_t *spa) 1751 { 1752 return (spa->spa_failmode); 1753 } 1754 1755 boolean_t 1756 spa_suspended(spa_t *spa) 1757 { 1758 return (spa->spa_suspended); 1759 } 1760 1761 uint64_t 1762 spa_version(spa_t *spa) 1763 { 1764 return (spa->spa_ubsync.ub_version); 1765 } 1766 1767 boolean_t 1768 spa_deflate(spa_t *spa) 1769 { 1770 return (spa->spa_deflate); 1771 } 1772 1773 metaslab_class_t * 1774 spa_normal_class(spa_t *spa) 1775 { 1776 return (spa->spa_normal_class); 1777 } 1778 1779 metaslab_class_t * 1780 spa_log_class(spa_t *spa) 1781 { 1782 return (spa->spa_log_class); 1783 } 1784 1785 void 1786 spa_evicting_os_register(spa_t *spa, objset_t *os) 1787 { 1788 mutex_enter(&spa->spa_evicting_os_lock); 1789 list_insert_head(&spa->spa_evicting_os_list, os); 1790 mutex_exit(&spa->spa_evicting_os_lock); 1791 } 1792 1793 void 1794 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 1795 { 1796 mutex_enter(&spa->spa_evicting_os_lock); 1797 list_remove(&spa->spa_evicting_os_list, os); 1798 cv_broadcast(&spa->spa_evicting_os_cv); 1799 mutex_exit(&spa->spa_evicting_os_lock); 1800 } 1801 1802 void 1803 spa_evicting_os_wait(spa_t *spa) 1804 { 1805 mutex_enter(&spa->spa_evicting_os_lock); 1806 while (!list_is_empty(&spa->spa_evicting_os_list)) 1807 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 1808 mutex_exit(&spa->spa_evicting_os_lock); 1809 1810 dmu_buf_user_evict_wait(); 1811 } 1812 1813 int 1814 spa_max_replication(spa_t *spa) 1815 { 1816 /* 1817 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1818 * handle BPs with more than one DVA allocated. Set our max 1819 * replication level accordingly. 1820 */ 1821 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1822 return (1); 1823 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1824 } 1825 1826 int 1827 spa_prev_software_version(spa_t *spa) 1828 { 1829 return (spa->spa_prev_software_version); 1830 } 1831 1832 uint64_t 1833 spa_deadman_synctime(spa_t *spa) 1834 { 1835 return (spa->spa_deadman_synctime); 1836 } 1837 1838 uint64_t 1839 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1840 { 1841 uint64_t asize = DVA_GET_ASIZE(dva); 1842 uint64_t dsize = asize; 1843 1844 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1845 1846 if (asize != 0 && spa->spa_deflate) { 1847 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1848 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1849 } 1850 1851 return (dsize); 1852 } 1853 1854 uint64_t 1855 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1856 { 1857 uint64_t dsize = 0; 1858 1859 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 1860 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1861 1862 return (dsize); 1863 } 1864 1865 uint64_t 1866 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1867 { 1868 uint64_t dsize = 0; 1869 1870 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1871 1872 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 1873 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1874 1875 spa_config_exit(spa, SCL_VDEV, FTAG); 1876 1877 return (dsize); 1878 } 1879 1880 /* 1881 * ========================================================================== 1882 * Initialization and Termination 1883 * ========================================================================== 1884 */ 1885 1886 static int 1887 spa_name_compare(const void *a1, const void *a2) 1888 { 1889 const spa_t *s1 = a1; 1890 const spa_t *s2 = a2; 1891 int s; 1892 1893 s = strcmp(s1->spa_name, s2->spa_name); 1894 if (s > 0) 1895 return (1); 1896 if (s < 0) 1897 return (-1); 1898 return (0); 1899 } 1900 1901 int 1902 spa_busy(void) 1903 { 1904 return (spa_active_count); 1905 } 1906 1907 void 1908 spa_boot_init() 1909 { 1910 spa_config_load(); 1911 } 1912 1913 void 1914 spa_init(int mode) 1915 { 1916 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1917 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1918 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1919 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1920 1921 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1922 offsetof(spa_t, spa_avl)); 1923 1924 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1925 offsetof(spa_aux_t, aux_avl)); 1926 1927 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1928 offsetof(spa_aux_t, aux_avl)); 1929 1930 spa_mode_global = mode; 1931 1932 #ifdef _KERNEL 1933 spa_arch_init(); 1934 #else 1935 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 1936 arc_procfd = open("/proc/self/ctl", O_WRONLY); 1937 if (arc_procfd == -1) { 1938 perror("could not enable watchpoints: " 1939 "opening /proc/self/ctl failed: "); 1940 } else { 1941 arc_watch = B_TRUE; 1942 } 1943 } 1944 #endif 1945 1946 refcount_init(); 1947 unique_init(); 1948 range_tree_init(); 1949 metaslab_alloc_trace_init(); 1950 zio_init(); 1951 dmu_init(); 1952 zil_init(); 1953 vdev_cache_stat_init(); 1954 zfs_prop_init(); 1955 zpool_prop_init(); 1956 zpool_feature_init(); 1957 spa_config_load(); 1958 l2arc_start(); 1959 } 1960 1961 void 1962 spa_fini(void) 1963 { 1964 l2arc_stop(); 1965 1966 spa_evict_all(); 1967 1968 vdev_cache_stat_fini(); 1969 zil_fini(); 1970 dmu_fini(); 1971 zio_fini(); 1972 metaslab_alloc_trace_fini(); 1973 range_tree_fini(); 1974 unique_fini(); 1975 refcount_fini(); 1976 1977 avl_destroy(&spa_namespace_avl); 1978 avl_destroy(&spa_spare_avl); 1979 avl_destroy(&spa_l2cache_avl); 1980 1981 cv_destroy(&spa_namespace_cv); 1982 mutex_destroy(&spa_namespace_lock); 1983 mutex_destroy(&spa_spare_lock); 1984 mutex_destroy(&spa_l2cache_lock); 1985 } 1986 1987 /* 1988 * Return whether this pool has slogs. No locking needed. 1989 * It's not a problem if the wrong answer is returned as it's only for 1990 * performance and not correctness 1991 */ 1992 boolean_t 1993 spa_has_slogs(spa_t *spa) 1994 { 1995 return (spa->spa_log_class->mc_rotor != NULL); 1996 } 1997 1998 spa_log_state_t 1999 spa_get_log_state(spa_t *spa) 2000 { 2001 return (spa->spa_log_state); 2002 } 2003 2004 void 2005 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2006 { 2007 spa->spa_log_state = state; 2008 } 2009 2010 boolean_t 2011 spa_is_root(spa_t *spa) 2012 { 2013 return (spa->spa_is_root); 2014 } 2015 2016 boolean_t 2017 spa_writeable(spa_t *spa) 2018 { 2019 return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config); 2020 } 2021 2022 /* 2023 * Returns true if there is a pending sync task in any of the current 2024 * syncing txg, the current quiescing txg, or the current open txg. 2025 */ 2026 boolean_t 2027 spa_has_pending_synctask(spa_t *spa) 2028 { 2029 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks)); 2030 } 2031 2032 int 2033 spa_mode(spa_t *spa) 2034 { 2035 return (spa->spa_mode); 2036 } 2037 2038 uint64_t 2039 spa_bootfs(spa_t *spa) 2040 { 2041 return (spa->spa_bootfs); 2042 } 2043 2044 uint64_t 2045 spa_delegation(spa_t *spa) 2046 { 2047 return (spa->spa_delegation); 2048 } 2049 2050 objset_t * 2051 spa_meta_objset(spa_t *spa) 2052 { 2053 return (spa->spa_meta_objset); 2054 } 2055 2056 enum zio_checksum 2057 spa_dedup_checksum(spa_t *spa) 2058 { 2059 return (spa->spa_dedup_checksum); 2060 } 2061 2062 /* 2063 * Reset pool scan stat per scan pass (or reboot). 2064 */ 2065 void 2066 spa_scan_stat_init(spa_t *spa) 2067 { 2068 /* data not stored on disk */ 2069 spa->spa_scan_pass_start = gethrestime_sec(); 2070 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2071 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2072 else 2073 spa->spa_scan_pass_scrub_pause = 0; 2074 spa->spa_scan_pass_scrub_spent_paused = 0; 2075 spa->spa_scan_pass_exam = 0; 2076 vdev_scan_stat_init(spa->spa_root_vdev); 2077 } 2078 2079 /* 2080 * Get scan stats for zpool status reports 2081 */ 2082 int 2083 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2084 { 2085 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2086 2087 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 2088 return (SET_ERROR(ENOENT)); 2089 bzero(ps, sizeof (pool_scan_stat_t)); 2090 2091 /* data stored on disk */ 2092 ps->pss_func = scn->scn_phys.scn_func; 2093 ps->pss_start_time = scn->scn_phys.scn_start_time; 2094 ps->pss_end_time = scn->scn_phys.scn_end_time; 2095 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2096 ps->pss_examined = scn->scn_phys.scn_examined; 2097 ps->pss_to_process = scn->scn_phys.scn_to_process; 2098 ps->pss_processed = scn->scn_phys.scn_processed; 2099 ps->pss_errors = scn->scn_phys.scn_errors; 2100 ps->pss_state = scn->scn_phys.scn_state; 2101 2102 /* data not stored on disk */ 2103 ps->pss_pass_start = spa->spa_scan_pass_start; 2104 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2105 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2106 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2107 2108 return (0); 2109 } 2110 2111 boolean_t 2112 spa_debug_enabled(spa_t *spa) 2113 { 2114 return (spa->spa_debug); 2115 } 2116 2117 int 2118 spa_maxblocksize(spa_t *spa) 2119 { 2120 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2121 return (SPA_MAXBLOCKSIZE); 2122 else 2123 return (SPA_OLD_MAXBLOCKSIZE); 2124 } 2125 2126 /* 2127 * Returns the txg that the last device removal completed. No indirect mappings 2128 * have been added since this txg. 2129 */ 2130 uint64_t 2131 spa_get_last_removal_txg(spa_t *spa) 2132 { 2133 uint64_t vdevid; 2134 uint64_t ret = -1ULL; 2135 2136 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2137 /* 2138 * sr_prev_indirect_vdev is only modified while holding all the 2139 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2140 * examining it. 2141 */ 2142 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2143 2144 while (vdevid != -1ULL) { 2145 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2146 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2147 2148 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2149 2150 /* 2151 * If the removal did not remap any data, we don't care. 2152 */ 2153 if (vdev_indirect_births_count(vib) != 0) { 2154 ret = vdev_indirect_births_last_entry_txg(vib); 2155 break; 2156 } 2157 2158 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2159 } 2160 spa_config_exit(spa, SCL_VDEV, FTAG); 2161 2162 IMPLY(ret != -1ULL, 2163 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2164 2165 return (ret); 2166 } 2167 2168 boolean_t 2169 spa_trust_config(spa_t *spa) 2170 { 2171 return (spa->spa_trust_config); 2172 } 2173 2174 uint64_t 2175 spa_missing_tvds_allowed(spa_t *spa) 2176 { 2177 return (spa->spa_missing_tvds_allowed); 2178 } 2179 2180 void 2181 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2182 { 2183 spa->spa_missing_tvds = missing; 2184 } 2185