xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 59229f98006fc8ee5e568078d81b6ce572071e0b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/sunddi.h>
47 #include <sys/arc.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against spa_minref, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock[] (per-spa array of rwlocks)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * The locking order is fairly straightforward:
89  *
90  *		spa_namespace_lock	->	spa_refcount
91  *
92  *	The namespace lock must be acquired to increase the refcount from 0
93  *	or to check if it is zero.
94  *
95  *		spa_refcount		->	spa_config_lock[]
96  *
97  *	There must be at least one valid reference on the spa_t to acquire
98  *	the config lock.
99  *
100  *		spa_namespace_lock	->	spa_config_lock[]
101  *
102  *	The namespace lock must always be taken before the config lock.
103  *
104  *
105  * The spa_namespace_lock can be acquired directly and is globally visible.
106  *
107  * The namespace is manipulated using the following functions, all of which
108  * require the spa_namespace_lock to be held.
109  *
110  *	spa_lookup()		Lookup a spa_t by name.
111  *
112  *	spa_add()		Create a new spa_t in the namespace.
113  *
114  *	spa_remove()		Remove a spa_t from the namespace.  This also
115  *				frees up any memory associated with the spa_t.
116  *
117  *	spa_next()		Returns the next spa_t in the system, or the
118  *				first if NULL is passed.
119  *
120  *	spa_evict_all()		Shutdown and remove all spa_t structures in
121  *				the system.
122  *
123  *	spa_guid_exists()	Determine whether a pool/device guid exists.
124  *
125  * The spa_refcount is manipulated using the following functions:
126  *
127  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
128  *				called with spa_namespace_lock held if the
129  *				refcount is currently zero.
130  *
131  *	spa_close()		Remove a reference from the spa_t.  This will
132  *				not free the spa_t or remove it from the
133  *				namespace.  No locking is required.
134  *
135  *	spa_refcount_zero()	Returns true if the refcount is currently
136  *				zero.  Must be called with spa_namespace_lock
137  *				held.
138  *
139  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142  *
143  * To read the configuration, it suffices to hold one of these locks as reader.
144  * To modify the configuration, you must hold all locks as writer.  To modify
145  * vdev state without altering the vdev tree's topology (e.g. online/offline),
146  * you must hold SCL_STATE and SCL_ZIO as writer.
147  *
148  * We use these distinct config locks to avoid recursive lock entry.
149  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150  * block allocations (SCL_ALLOC), which may require reading space maps
151  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152  *
153  * The spa config locks cannot be normal rwlocks because we need the
154  * ability to hand off ownership.  For example, SCL_ZIO is acquired
155  * by the issuing thread and later released by an interrupt thread.
156  * They do, however, obey the usual write-wanted semantics to prevent
157  * writer (i.e. system administrator) starvation.
158  *
159  * The lock acquisition rules are as follows:
160  *
161  * SCL_CONFIG
162  *	Protects changes to the vdev tree topology, such as vdev
163  *	add/remove/attach/detach.  Protects the dirty config list
164  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
165  *
166  * SCL_STATE
167  *	Protects changes to pool state and vdev state, such as vdev
168  *	online/offline/fault/degrade/clear.  Protects the dirty state list
169  *	(spa_state_dirty_list) and global pool state (spa_state).
170  *
171  * SCL_ALLOC
172  *	Protects changes to metaslab groups and classes.
173  *	Held as reader by metaslab_alloc() and metaslab_claim().
174  *
175  * SCL_ZIO
176  *	Held by bp-level zios (those which have no io_vd upon entry)
177  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
178  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
179  *
180  * SCL_FREE
181  *	Protects changes to metaslab groups and classes.
182  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
183  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184  *	blocks in zio_done() while another i/o that holds either
185  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186  *
187  * SCL_VDEV
188  *	Held as reader to prevent changes to the vdev tree during trivial
189  *	inquiries such as bp_get_dasize().  SCL_VDEV is distinct from the
190  *	other locks, and lower than all of them, to ensure that it's safe
191  *	to acquire regardless of caller context.
192  *
193  * In addition, the following rules apply:
194  *
195  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
196  *	The lock ordering is SCL_CONFIG > spa_props_lock.
197  *
198  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
199  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200  *	or zio_write_phys() -- the caller must ensure that the config cannot
201  *	cannot change in the interim, and that the vdev cannot be reopened.
202  *	SCL_STATE as reader suffices for both.
203  *
204  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205  *
206  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
207  *				for writing.
208  *
209  *	spa_vdev_exit()		Release the config lock, wait for all I/O
210  *				to complete, sync the updated configs to the
211  *				cache, and release the namespace lock.
212  *
213  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216  *
217  * spa_rename() is also implemented within this file since is requires
218  * manipulation of the namespace.
219  */
220 
221 static avl_tree_t spa_namespace_avl;
222 kmutex_t spa_namespace_lock;
223 static kcondvar_t spa_namespace_cv;
224 static int spa_active_count;
225 int spa_max_replication_override = SPA_DVAS_PER_BP;
226 
227 static kmutex_t spa_spare_lock;
228 static avl_tree_t spa_spare_avl;
229 static kmutex_t spa_l2cache_lock;
230 static avl_tree_t spa_l2cache_avl;
231 
232 kmem_cache_t *spa_buffer_pool;
233 int spa_mode_global;
234 
235 #ifdef ZFS_DEBUG
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238 #else
239 int zfs_flags = 0;
240 #endif
241 
242 /*
243  * zfs_recover can be set to nonzero to attempt to recover from
244  * otherwise-fatal errors, typically caused by on-disk corruption.  When
245  * set, calls to zfs_panic_recover() will turn into warning messages.
246  */
247 int zfs_recover = 0;
248 
249 
250 /*
251  * ==========================================================================
252  * SPA config locking
253  * ==========================================================================
254  */
255 static void
256 spa_config_lock_init(spa_t *spa)
257 {
258 	for (int i = 0; i < SCL_LOCKS; i++) {
259 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 		refcount_create(&scl->scl_count);
263 		scl->scl_writer = NULL;
264 		scl->scl_write_wanted = 0;
265 	}
266 }
267 
268 static void
269 spa_config_lock_destroy(spa_t *spa)
270 {
271 	for (int i = 0; i < SCL_LOCKS; i++) {
272 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 		mutex_destroy(&scl->scl_lock);
274 		cv_destroy(&scl->scl_cv);
275 		refcount_destroy(&scl->scl_count);
276 		ASSERT(scl->scl_writer == NULL);
277 		ASSERT(scl->scl_write_wanted == 0);
278 	}
279 }
280 
281 int
282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283 {
284 	for (int i = 0; i < SCL_LOCKS; i++) {
285 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 		if (!(locks & (1 << i)))
287 			continue;
288 		mutex_enter(&scl->scl_lock);
289 		if (rw == RW_READER) {
290 			if (scl->scl_writer || scl->scl_write_wanted) {
291 				mutex_exit(&scl->scl_lock);
292 				spa_config_exit(spa, locks ^ (1 << i), tag);
293 				return (0);
294 			}
295 		} else {
296 			ASSERT(scl->scl_writer != curthread);
297 			if (!refcount_is_zero(&scl->scl_count)) {
298 				mutex_exit(&scl->scl_lock);
299 				spa_config_exit(spa, locks ^ (1 << i), tag);
300 				return (0);
301 			}
302 			scl->scl_writer = curthread;
303 		}
304 		(void) refcount_add(&scl->scl_count, tag);
305 		mutex_exit(&scl->scl_lock);
306 	}
307 	return (1);
308 }
309 
310 void
311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312 {
313 	for (int i = 0; i < SCL_LOCKS; i++) {
314 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
315 		if (!(locks & (1 << i)))
316 			continue;
317 		mutex_enter(&scl->scl_lock);
318 		if (rw == RW_READER) {
319 			while (scl->scl_writer || scl->scl_write_wanted) {
320 				cv_wait(&scl->scl_cv, &scl->scl_lock);
321 			}
322 		} else {
323 			ASSERT(scl->scl_writer != curthread);
324 			while (!refcount_is_zero(&scl->scl_count)) {
325 				scl->scl_write_wanted++;
326 				cv_wait(&scl->scl_cv, &scl->scl_lock);
327 				scl->scl_write_wanted--;
328 			}
329 			scl->scl_writer = curthread;
330 		}
331 		(void) refcount_add(&scl->scl_count, tag);
332 		mutex_exit(&scl->scl_lock);
333 	}
334 }
335 
336 void
337 spa_config_exit(spa_t *spa, int locks, void *tag)
338 {
339 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
340 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
341 		if (!(locks & (1 << i)))
342 			continue;
343 		mutex_enter(&scl->scl_lock);
344 		ASSERT(!refcount_is_zero(&scl->scl_count));
345 		if (refcount_remove(&scl->scl_count, tag) == 0) {
346 			ASSERT(scl->scl_writer == NULL ||
347 			    scl->scl_writer == curthread);
348 			scl->scl_writer = NULL;	/* OK in either case */
349 			cv_broadcast(&scl->scl_cv);
350 		}
351 		mutex_exit(&scl->scl_lock);
352 	}
353 }
354 
355 int
356 spa_config_held(spa_t *spa, int locks, krw_t rw)
357 {
358 	int locks_held = 0;
359 
360 	for (int i = 0; i < SCL_LOCKS; i++) {
361 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
362 		if (!(locks & (1 << i)))
363 			continue;
364 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
365 		    (rw == RW_WRITER && scl->scl_writer == curthread))
366 			locks_held |= 1 << i;
367 	}
368 
369 	return (locks_held);
370 }
371 
372 /*
373  * ==========================================================================
374  * SPA namespace functions
375  * ==========================================================================
376  */
377 
378 /*
379  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
380  * Returns NULL if no matching spa_t is found.
381  */
382 spa_t *
383 spa_lookup(const char *name)
384 {
385 	static spa_t search;	/* spa_t is large; don't allocate on stack */
386 	spa_t *spa;
387 	avl_index_t where;
388 	char c;
389 	char *cp;
390 
391 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
392 
393 	/*
394 	 * If it's a full dataset name, figure out the pool name and
395 	 * just use that.
396 	 */
397 	cp = strpbrk(name, "/@");
398 	if (cp) {
399 		c = *cp;
400 		*cp = '\0';
401 	}
402 
403 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
404 	spa = avl_find(&spa_namespace_avl, &search, &where);
405 
406 	if (cp)
407 		*cp = c;
408 
409 	return (spa);
410 }
411 
412 /*
413  * Create an uninitialized spa_t with the given name.  Requires
414  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
415  * exist by calling spa_lookup() first.
416  */
417 spa_t *
418 spa_add(const char *name, const char *altroot)
419 {
420 	spa_t *spa;
421 	spa_config_dirent_t *dp;
422 
423 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
424 
425 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
426 
427 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
428 	mutex_init(&spa->spa_async_root_lock, NULL, MUTEX_DEFAULT, NULL);
429 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
430 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
431 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
432 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
433 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
434 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
435 
436 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
437 	cv_init(&spa->spa_async_root_cv, NULL, CV_DEFAULT, NULL);
438 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
439 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
440 
441 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
442 	spa->spa_state = POOL_STATE_UNINITIALIZED;
443 	spa->spa_freeze_txg = UINT64_MAX;
444 	spa->spa_final_txg = UINT64_MAX;
445 
446 	refcount_create(&spa->spa_refcount);
447 	spa_config_lock_init(spa);
448 
449 	avl_add(&spa_namespace_avl, spa);
450 
451 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
452 
453 	/*
454 	 * Set the alternate root, if there is one.
455 	 */
456 	if (altroot) {
457 		spa->spa_root = spa_strdup(altroot);
458 		spa_active_count++;
459 	}
460 
461 	/*
462 	 * Every pool starts with the default cachefile
463 	 */
464 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
465 	    offsetof(spa_config_dirent_t, scd_link));
466 
467 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
468 	dp->scd_path = spa_strdup(spa_config_path);
469 	list_insert_head(&spa->spa_config_list, dp);
470 
471 	return (spa);
472 }
473 
474 /*
475  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
476  * spa_namespace_lock.  This is called only after the spa_t has been closed and
477  * deactivated.
478  */
479 void
480 spa_remove(spa_t *spa)
481 {
482 	spa_config_dirent_t *dp;
483 
484 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
485 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
486 
487 	avl_remove(&spa_namespace_avl, spa);
488 	cv_broadcast(&spa_namespace_cv);
489 
490 	if (spa->spa_root) {
491 		spa_strfree(spa->spa_root);
492 		spa_active_count--;
493 	}
494 
495 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
496 		list_remove(&spa->spa_config_list, dp);
497 		if (dp->scd_path != NULL)
498 			spa_strfree(dp->scd_path);
499 		kmem_free(dp, sizeof (spa_config_dirent_t));
500 	}
501 
502 	list_destroy(&spa->spa_config_list);
503 
504 	spa_config_set(spa, NULL);
505 
506 	refcount_destroy(&spa->spa_refcount);
507 
508 	spa_config_lock_destroy(spa);
509 
510 	cv_destroy(&spa->spa_async_cv);
511 	cv_destroy(&spa->spa_async_root_cv);
512 	cv_destroy(&spa->spa_scrub_io_cv);
513 	cv_destroy(&spa->spa_suspend_cv);
514 
515 	mutex_destroy(&spa->spa_async_lock);
516 	mutex_destroy(&spa->spa_async_root_lock);
517 	mutex_destroy(&spa->spa_scrub_lock);
518 	mutex_destroy(&spa->spa_errlog_lock);
519 	mutex_destroy(&spa->spa_errlist_lock);
520 	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
521 	mutex_destroy(&spa->spa_history_lock);
522 	mutex_destroy(&spa->spa_props_lock);
523 	mutex_destroy(&spa->spa_suspend_lock);
524 
525 	kmem_free(spa, sizeof (spa_t));
526 }
527 
528 /*
529  * Given a pool, return the next pool in the namespace, or NULL if there is
530  * none.  If 'prev' is NULL, return the first pool.
531  */
532 spa_t *
533 spa_next(spa_t *prev)
534 {
535 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
536 
537 	if (prev)
538 		return (AVL_NEXT(&spa_namespace_avl, prev));
539 	else
540 		return (avl_first(&spa_namespace_avl));
541 }
542 
543 /*
544  * ==========================================================================
545  * SPA refcount functions
546  * ==========================================================================
547  */
548 
549 /*
550  * Add a reference to the given spa_t.  Must have at least one reference, or
551  * have the namespace lock held.
552  */
553 void
554 spa_open_ref(spa_t *spa, void *tag)
555 {
556 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
557 	    MUTEX_HELD(&spa_namespace_lock));
558 	(void) refcount_add(&spa->spa_refcount, tag);
559 }
560 
561 /*
562  * Remove a reference to the given spa_t.  Must have at least one reference, or
563  * have the namespace lock held.
564  */
565 void
566 spa_close(spa_t *spa, void *tag)
567 {
568 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
569 	    MUTEX_HELD(&spa_namespace_lock));
570 	(void) refcount_remove(&spa->spa_refcount, tag);
571 }
572 
573 /*
574  * Check to see if the spa refcount is zero.  Must be called with
575  * spa_namespace_lock held.  We really compare against spa_minref, which is the
576  * number of references acquired when opening a pool
577  */
578 boolean_t
579 spa_refcount_zero(spa_t *spa)
580 {
581 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
582 
583 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
584 }
585 
586 /*
587  * ==========================================================================
588  * SPA spare and l2cache tracking
589  * ==========================================================================
590  */
591 
592 /*
593  * Hot spares and cache devices are tracked using the same code below,
594  * for 'auxiliary' devices.
595  */
596 
597 typedef struct spa_aux {
598 	uint64_t	aux_guid;
599 	uint64_t	aux_pool;
600 	avl_node_t	aux_avl;
601 	int		aux_count;
602 } spa_aux_t;
603 
604 static int
605 spa_aux_compare(const void *a, const void *b)
606 {
607 	const spa_aux_t *sa = a;
608 	const spa_aux_t *sb = b;
609 
610 	if (sa->aux_guid < sb->aux_guid)
611 		return (-1);
612 	else if (sa->aux_guid > sb->aux_guid)
613 		return (1);
614 	else
615 		return (0);
616 }
617 
618 void
619 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
620 {
621 	avl_index_t where;
622 	spa_aux_t search;
623 	spa_aux_t *aux;
624 
625 	search.aux_guid = vd->vdev_guid;
626 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
627 		aux->aux_count++;
628 	} else {
629 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
630 		aux->aux_guid = vd->vdev_guid;
631 		aux->aux_count = 1;
632 		avl_insert(avl, aux, where);
633 	}
634 }
635 
636 void
637 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
638 {
639 	spa_aux_t search;
640 	spa_aux_t *aux;
641 	avl_index_t where;
642 
643 	search.aux_guid = vd->vdev_guid;
644 	aux = avl_find(avl, &search, &where);
645 
646 	ASSERT(aux != NULL);
647 
648 	if (--aux->aux_count == 0) {
649 		avl_remove(avl, aux);
650 		kmem_free(aux, sizeof (spa_aux_t));
651 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
652 		aux->aux_pool = 0ULL;
653 	}
654 }
655 
656 boolean_t
657 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
658 {
659 	spa_aux_t search, *found;
660 
661 	search.aux_guid = guid;
662 	found = avl_find(avl, &search, NULL);
663 
664 	if (pool) {
665 		if (found)
666 			*pool = found->aux_pool;
667 		else
668 			*pool = 0ULL;
669 	}
670 
671 	if (refcnt) {
672 		if (found)
673 			*refcnt = found->aux_count;
674 		else
675 			*refcnt = 0;
676 	}
677 
678 	return (found != NULL);
679 }
680 
681 void
682 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
683 {
684 	spa_aux_t search, *found;
685 	avl_index_t where;
686 
687 	search.aux_guid = vd->vdev_guid;
688 	found = avl_find(avl, &search, &where);
689 	ASSERT(found != NULL);
690 	ASSERT(found->aux_pool == 0ULL);
691 
692 	found->aux_pool = spa_guid(vd->vdev_spa);
693 }
694 
695 /*
696  * Spares are tracked globally due to the following constraints:
697  *
698  * 	- A spare may be part of multiple pools.
699  * 	- A spare may be added to a pool even if it's actively in use within
700  *	  another pool.
701  * 	- A spare in use in any pool can only be the source of a replacement if
702  *	  the target is a spare in the same pool.
703  *
704  * We keep track of all spares on the system through the use of a reference
705  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
706  * spare, then we bump the reference count in the AVL tree.  In addition, we set
707  * the 'vdev_isspare' member to indicate that the device is a spare (active or
708  * inactive).  When a spare is made active (used to replace a device in the
709  * pool), we also keep track of which pool its been made a part of.
710  *
711  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
712  * called under the spa_namespace lock as part of vdev reconfiguration.  The
713  * separate spare lock exists for the status query path, which does not need to
714  * be completely consistent with respect to other vdev configuration changes.
715  */
716 
717 static int
718 spa_spare_compare(const void *a, const void *b)
719 {
720 	return (spa_aux_compare(a, b));
721 }
722 
723 void
724 spa_spare_add(vdev_t *vd)
725 {
726 	mutex_enter(&spa_spare_lock);
727 	ASSERT(!vd->vdev_isspare);
728 	spa_aux_add(vd, &spa_spare_avl);
729 	vd->vdev_isspare = B_TRUE;
730 	mutex_exit(&spa_spare_lock);
731 }
732 
733 void
734 spa_spare_remove(vdev_t *vd)
735 {
736 	mutex_enter(&spa_spare_lock);
737 	ASSERT(vd->vdev_isspare);
738 	spa_aux_remove(vd, &spa_spare_avl);
739 	vd->vdev_isspare = B_FALSE;
740 	mutex_exit(&spa_spare_lock);
741 }
742 
743 boolean_t
744 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
745 {
746 	boolean_t found;
747 
748 	mutex_enter(&spa_spare_lock);
749 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
750 	mutex_exit(&spa_spare_lock);
751 
752 	return (found);
753 }
754 
755 void
756 spa_spare_activate(vdev_t *vd)
757 {
758 	mutex_enter(&spa_spare_lock);
759 	ASSERT(vd->vdev_isspare);
760 	spa_aux_activate(vd, &spa_spare_avl);
761 	mutex_exit(&spa_spare_lock);
762 }
763 
764 /*
765  * Level 2 ARC devices are tracked globally for the same reasons as spares.
766  * Cache devices currently only support one pool per cache device, and so
767  * for these devices the aux reference count is currently unused beyond 1.
768  */
769 
770 static int
771 spa_l2cache_compare(const void *a, const void *b)
772 {
773 	return (spa_aux_compare(a, b));
774 }
775 
776 void
777 spa_l2cache_add(vdev_t *vd)
778 {
779 	mutex_enter(&spa_l2cache_lock);
780 	ASSERT(!vd->vdev_isl2cache);
781 	spa_aux_add(vd, &spa_l2cache_avl);
782 	vd->vdev_isl2cache = B_TRUE;
783 	mutex_exit(&spa_l2cache_lock);
784 }
785 
786 void
787 spa_l2cache_remove(vdev_t *vd)
788 {
789 	mutex_enter(&spa_l2cache_lock);
790 	ASSERT(vd->vdev_isl2cache);
791 	spa_aux_remove(vd, &spa_l2cache_avl);
792 	vd->vdev_isl2cache = B_FALSE;
793 	mutex_exit(&spa_l2cache_lock);
794 }
795 
796 boolean_t
797 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
798 {
799 	boolean_t found;
800 
801 	mutex_enter(&spa_l2cache_lock);
802 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
803 	mutex_exit(&spa_l2cache_lock);
804 
805 	return (found);
806 }
807 
808 void
809 spa_l2cache_activate(vdev_t *vd)
810 {
811 	mutex_enter(&spa_l2cache_lock);
812 	ASSERT(vd->vdev_isl2cache);
813 	spa_aux_activate(vd, &spa_l2cache_avl);
814 	mutex_exit(&spa_l2cache_lock);
815 }
816 
817 void
818 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc)
819 {
820 	vdev_space_update(vd, space, alloc, B_FALSE);
821 }
822 
823 /*
824  * ==========================================================================
825  * SPA vdev locking
826  * ==========================================================================
827  */
828 
829 /*
830  * Lock the given spa_t for the purpose of adding or removing a vdev.
831  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
832  * It returns the next transaction group for the spa_t.
833  */
834 uint64_t
835 spa_vdev_enter(spa_t *spa)
836 {
837 	mutex_enter(&spa_namespace_lock);
838 
839 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
840 
841 	return (spa_last_synced_txg(spa) + 1);
842 }
843 
844 /*
845  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
846  * locking of spa_vdev_enter(), we also want make sure the transactions have
847  * synced to disk, and then update the global configuration cache with the new
848  * information.
849  */
850 int
851 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
852 {
853 	int config_changed = B_FALSE;
854 
855 	ASSERT(txg > spa_last_synced_txg(spa));
856 
857 	spa->spa_pending_vdev = NULL;
858 
859 	/*
860 	 * Reassess the DTLs.
861 	 */
862 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
863 
864 	/*
865 	 * If the config changed, notify the scrub thread that it must restart.
866 	 */
867 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
868 		dsl_pool_scrub_restart(spa->spa_dsl_pool);
869 		config_changed = B_TRUE;
870 	}
871 
872 	spa_config_exit(spa, SCL_ALL, spa);
873 
874 	/*
875 	 * Note: this txg_wait_synced() is important because it ensures
876 	 * that there won't be more than one config change per txg.
877 	 * This allows us to use the txg as the generation number.
878 	 */
879 	if (error == 0)
880 		txg_wait_synced(spa->spa_dsl_pool, txg);
881 
882 	if (vd != NULL) {
883 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
884 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
885 		vdev_free(vd);
886 		spa_config_exit(spa, SCL_ALL, spa);
887 	}
888 
889 	/*
890 	 * If the config changed, update the config cache.
891 	 */
892 	if (config_changed)
893 		spa_config_sync(spa, B_FALSE, B_TRUE);
894 
895 	mutex_exit(&spa_namespace_lock);
896 
897 	return (error);
898 }
899 
900 /*
901  * Lock the given spa_t for the purpose of changing vdev state.
902  */
903 void
904 spa_vdev_state_enter(spa_t *spa)
905 {
906 	spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
907 }
908 
909 int
910 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
911 {
912 	if (vd != NULL)
913 		vdev_state_dirty(vd->vdev_top);
914 
915 	spa_config_exit(spa, SCL_STATE_ALL, spa);
916 
917 	/*
918 	 * If anything changed, wait for it to sync.  This ensures that,
919 	 * from the system administrator's perspective, zpool(1M) commands
920 	 * are synchronous.  This is important for things like zpool offline:
921 	 * when the command completes, you expect no further I/O from ZFS.
922 	 */
923 	if (vd != NULL)
924 		txg_wait_synced(spa->spa_dsl_pool, 0);
925 
926 	return (error);
927 }
928 
929 /*
930  * ==========================================================================
931  * Miscellaneous functions
932  * ==========================================================================
933  */
934 
935 /*
936  * Rename a spa_t.
937  */
938 int
939 spa_rename(const char *name, const char *newname)
940 {
941 	spa_t *spa;
942 	int err;
943 
944 	/*
945 	 * Lookup the spa_t and grab the config lock for writing.  We need to
946 	 * actually open the pool so that we can sync out the necessary labels.
947 	 * It's OK to call spa_open() with the namespace lock held because we
948 	 * allow recursive calls for other reasons.
949 	 */
950 	mutex_enter(&spa_namespace_lock);
951 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
952 		mutex_exit(&spa_namespace_lock);
953 		return (err);
954 	}
955 
956 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
957 
958 	avl_remove(&spa_namespace_avl, spa);
959 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
960 	avl_add(&spa_namespace_avl, spa);
961 
962 	/*
963 	 * Sync all labels to disk with the new names by marking the root vdev
964 	 * dirty and waiting for it to sync.  It will pick up the new pool name
965 	 * during the sync.
966 	 */
967 	vdev_config_dirty(spa->spa_root_vdev);
968 
969 	spa_config_exit(spa, SCL_ALL, FTAG);
970 
971 	txg_wait_synced(spa->spa_dsl_pool, 0);
972 
973 	/*
974 	 * Sync the updated config cache.
975 	 */
976 	spa_config_sync(spa, B_FALSE, B_TRUE);
977 
978 	spa_close(spa, FTAG);
979 
980 	mutex_exit(&spa_namespace_lock);
981 
982 	return (0);
983 }
984 
985 
986 /*
987  * Determine whether a pool with given pool_guid exists.  If device_guid is
988  * non-zero, determine whether the pool exists *and* contains a device with the
989  * specified device_guid.
990  */
991 boolean_t
992 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
993 {
994 	spa_t *spa;
995 	avl_tree_t *t = &spa_namespace_avl;
996 
997 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
998 
999 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1000 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1001 			continue;
1002 		if (spa->spa_root_vdev == NULL)
1003 			continue;
1004 		if (spa_guid(spa) == pool_guid) {
1005 			if (device_guid == 0)
1006 				break;
1007 
1008 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1009 			    device_guid) != NULL)
1010 				break;
1011 
1012 			/*
1013 			 * Check any devices we may be in the process of adding.
1014 			 */
1015 			if (spa->spa_pending_vdev) {
1016 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1017 				    device_guid) != NULL)
1018 					break;
1019 			}
1020 		}
1021 	}
1022 
1023 	return (spa != NULL);
1024 }
1025 
1026 char *
1027 spa_strdup(const char *s)
1028 {
1029 	size_t len;
1030 	char *new;
1031 
1032 	len = strlen(s);
1033 	new = kmem_alloc(len + 1, KM_SLEEP);
1034 	bcopy(s, new, len);
1035 	new[len] = '\0';
1036 
1037 	return (new);
1038 }
1039 
1040 void
1041 spa_strfree(char *s)
1042 {
1043 	kmem_free(s, strlen(s) + 1);
1044 }
1045 
1046 uint64_t
1047 spa_get_random(uint64_t range)
1048 {
1049 	uint64_t r;
1050 
1051 	ASSERT(range != 0);
1052 
1053 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1054 
1055 	return (r % range);
1056 }
1057 
1058 void
1059 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
1060 {
1061 	int d;
1062 
1063 	if (bp == NULL) {
1064 		(void) snprintf(buf, len, "<NULL>");
1065 		return;
1066 	}
1067 
1068 	if (BP_IS_HOLE(bp)) {
1069 		(void) snprintf(buf, len, "<hole>");
1070 		return;
1071 	}
1072 
1073 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
1074 	    (u_longlong_t)BP_GET_LEVEL(bp),
1075 	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
1076 	    (u_longlong_t)BP_GET_LSIZE(bp),
1077 	    (u_longlong_t)BP_GET_PSIZE(bp));
1078 
1079 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
1080 		const dva_t *dva = &bp->blk_dva[d];
1081 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
1082 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
1083 		    (u_longlong_t)DVA_GET_VDEV(dva),
1084 		    (u_longlong_t)DVA_GET_OFFSET(dva),
1085 		    (u_longlong_t)DVA_GET_ASIZE(dva));
1086 	}
1087 
1088 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
1089 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
1090 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
1091 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
1092 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
1093 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
1094 	    (u_longlong_t)bp->blk_birth,
1095 	    (u_longlong_t)bp->blk_fill,
1096 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
1097 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
1098 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
1099 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
1100 }
1101 
1102 void
1103 spa_freeze(spa_t *spa)
1104 {
1105 	uint64_t freeze_txg = 0;
1106 
1107 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1108 	if (spa->spa_freeze_txg == UINT64_MAX) {
1109 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1110 		spa->spa_freeze_txg = freeze_txg;
1111 	}
1112 	spa_config_exit(spa, SCL_ALL, FTAG);
1113 	if (freeze_txg != 0)
1114 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1115 }
1116 
1117 void
1118 zfs_panic_recover(const char *fmt, ...)
1119 {
1120 	va_list adx;
1121 
1122 	va_start(adx, fmt);
1123 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1124 	va_end(adx);
1125 }
1126 
1127 /*
1128  * ==========================================================================
1129  * Accessor functions
1130  * ==========================================================================
1131  */
1132 
1133 boolean_t
1134 spa_shutting_down(spa_t *spa)
1135 {
1136 	return (spa->spa_async_suspended);
1137 }
1138 
1139 dsl_pool_t *
1140 spa_get_dsl(spa_t *spa)
1141 {
1142 	return (spa->spa_dsl_pool);
1143 }
1144 
1145 blkptr_t *
1146 spa_get_rootblkptr(spa_t *spa)
1147 {
1148 	return (&spa->spa_ubsync.ub_rootbp);
1149 }
1150 
1151 void
1152 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1153 {
1154 	spa->spa_uberblock.ub_rootbp = *bp;
1155 }
1156 
1157 void
1158 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1159 {
1160 	if (spa->spa_root == NULL)
1161 		buf[0] = '\0';
1162 	else
1163 		(void) strncpy(buf, spa->spa_root, buflen);
1164 }
1165 
1166 int
1167 spa_sync_pass(spa_t *spa)
1168 {
1169 	return (spa->spa_sync_pass);
1170 }
1171 
1172 char *
1173 spa_name(spa_t *spa)
1174 {
1175 	return (spa->spa_name);
1176 }
1177 
1178 uint64_t
1179 spa_guid(spa_t *spa)
1180 {
1181 	/*
1182 	 * If we fail to parse the config during spa_load(), we can go through
1183 	 * the error path (which posts an ereport) and end up here with no root
1184 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1185 	 * this case.
1186 	 */
1187 	if (spa->spa_root_vdev != NULL)
1188 		return (spa->spa_root_vdev->vdev_guid);
1189 	else
1190 		return (spa->spa_load_guid);
1191 }
1192 
1193 uint64_t
1194 spa_last_synced_txg(spa_t *spa)
1195 {
1196 	return (spa->spa_ubsync.ub_txg);
1197 }
1198 
1199 uint64_t
1200 spa_first_txg(spa_t *spa)
1201 {
1202 	return (spa->spa_first_txg);
1203 }
1204 
1205 pool_state_t
1206 spa_state(spa_t *spa)
1207 {
1208 	return (spa->spa_state);
1209 }
1210 
1211 uint64_t
1212 spa_freeze_txg(spa_t *spa)
1213 {
1214 	return (spa->spa_freeze_txg);
1215 }
1216 
1217 /*
1218  * Return how much space is allocated in the pool (ie. sum of all asize)
1219  */
1220 uint64_t
1221 spa_get_alloc(spa_t *spa)
1222 {
1223 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
1224 }
1225 
1226 /*
1227  * Return how much (raid-z inflated) space there is in the pool.
1228  */
1229 uint64_t
1230 spa_get_space(spa_t *spa)
1231 {
1232 	return (spa->spa_root_vdev->vdev_stat.vs_space);
1233 }
1234 
1235 /*
1236  * Return the amount of raid-z-deflated space in the pool.
1237  */
1238 uint64_t
1239 spa_get_dspace(spa_t *spa)
1240 {
1241 	if (spa->spa_deflate)
1242 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
1243 	else
1244 		return (spa->spa_root_vdev->vdev_stat.vs_space);
1245 }
1246 
1247 /* ARGSUSED */
1248 uint64_t
1249 spa_get_asize(spa_t *spa, uint64_t lsize)
1250 {
1251 	/*
1252 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
1253 	 * case the space requirement is exactly 2x; so just assume that.
1254 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
1255 	 * we have to multiply by a total of 6x.
1256 	 */
1257 	return (lsize * 6);
1258 }
1259 
1260 /*
1261  * Return the failure mode that has been set to this pool. The default
1262  * behavior will be to block all I/Os when a complete failure occurs.
1263  */
1264 uint8_t
1265 spa_get_failmode(spa_t *spa)
1266 {
1267 	return (spa->spa_failmode);
1268 }
1269 
1270 boolean_t
1271 spa_suspended(spa_t *spa)
1272 {
1273 	return (spa->spa_suspended);
1274 }
1275 
1276 uint64_t
1277 spa_version(spa_t *spa)
1278 {
1279 	return (spa->spa_ubsync.ub_version);
1280 }
1281 
1282 int
1283 spa_max_replication(spa_t *spa)
1284 {
1285 	/*
1286 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1287 	 * handle BPs with more than one DVA allocated.  Set our max
1288 	 * replication level accordingly.
1289 	 */
1290 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1291 		return (1);
1292 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1293 }
1294 
1295 uint64_t
1296 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1297 {
1298 	int sz = 0, i;
1299 
1300 	if (!spa->spa_deflate)
1301 		return (BP_GET_ASIZE(bp));
1302 
1303 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1304 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1305 		vdev_t *vd =
1306 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1307 		if (vd)
1308 			sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >>
1309 			    SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1310 	}
1311 	spa_config_exit(spa, SCL_VDEV, FTAG);
1312 	return (sz);
1313 }
1314 
1315 /*
1316  * ==========================================================================
1317  * Initialization and Termination
1318  * ==========================================================================
1319  */
1320 
1321 static int
1322 spa_name_compare(const void *a1, const void *a2)
1323 {
1324 	const spa_t *s1 = a1;
1325 	const spa_t *s2 = a2;
1326 	int s;
1327 
1328 	s = strcmp(s1->spa_name, s2->spa_name);
1329 	if (s > 0)
1330 		return (1);
1331 	if (s < 0)
1332 		return (-1);
1333 	return (0);
1334 }
1335 
1336 int
1337 spa_busy(void)
1338 {
1339 	return (spa_active_count);
1340 }
1341 
1342 void
1343 spa_boot_init()
1344 {
1345 	spa_config_load();
1346 }
1347 
1348 void
1349 spa_init(int mode)
1350 {
1351 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1352 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1353 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1354 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1355 
1356 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1357 	    offsetof(spa_t, spa_avl));
1358 
1359 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1360 	    offsetof(spa_aux_t, aux_avl));
1361 
1362 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1363 	    offsetof(spa_aux_t, aux_avl));
1364 
1365 	spa_mode_global = mode;
1366 
1367 	refcount_init();
1368 	unique_init();
1369 	zio_init();
1370 	dmu_init();
1371 	zil_init();
1372 	vdev_cache_stat_init();
1373 	zfs_prop_init();
1374 	zpool_prop_init();
1375 	spa_config_load();
1376 	l2arc_start();
1377 }
1378 
1379 void
1380 spa_fini(void)
1381 {
1382 	l2arc_stop();
1383 
1384 	spa_evict_all();
1385 
1386 	vdev_cache_stat_fini();
1387 	zil_fini();
1388 	dmu_fini();
1389 	zio_fini();
1390 	unique_fini();
1391 	refcount_fini();
1392 
1393 	avl_destroy(&spa_namespace_avl);
1394 	avl_destroy(&spa_spare_avl);
1395 	avl_destroy(&spa_l2cache_avl);
1396 
1397 	cv_destroy(&spa_namespace_cv);
1398 	mutex_destroy(&spa_namespace_lock);
1399 	mutex_destroy(&spa_spare_lock);
1400 	mutex_destroy(&spa_l2cache_lock);
1401 }
1402 
1403 /*
1404  * Return whether this pool has slogs. No locking needed.
1405  * It's not a problem if the wrong answer is returned as it's only for
1406  * performance and not correctness
1407  */
1408 boolean_t
1409 spa_has_slogs(spa_t *spa)
1410 {
1411 	return (spa->spa_log_class->mc_rotor != NULL);
1412 }
1413 
1414 /*
1415  * Return whether this pool is the root pool.
1416  */
1417 boolean_t
1418 spa_is_root(spa_t *spa)
1419 {
1420 	return (spa->spa_is_root);
1421 }
1422 
1423 boolean_t
1424 spa_writeable(spa_t *spa)
1425 {
1426 	return (!!(spa->spa_mode & FWRITE));
1427 }
1428 
1429 int
1430 spa_mode(spa_t *spa)
1431 {
1432 	return (spa->spa_mode);
1433 }
1434