1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2014 Integros [integros.com] 28 * Copyright (c) 2017 Datto Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/spa_impl.h> 34 #include <sys/spa_boot.h> 35 #include <sys/zio.h> 36 #include <sys/zio_checksum.h> 37 #include <sys/zio_compress.h> 38 #include <sys/dmu.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/zap.h> 41 #include <sys/zil.h> 42 #include <sys/vdev_impl.h> 43 #include <sys/vdev_initialize.h> 44 #include <sys/metaslab.h> 45 #include <sys/uberblock_impl.h> 46 #include <sys/txg.h> 47 #include <sys/avl.h> 48 #include <sys/unique.h> 49 #include <sys/dsl_pool.h> 50 #include <sys/dsl_dir.h> 51 #include <sys/dsl_prop.h> 52 #include <sys/dsl_scan.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/metaslab_impl.h> 55 #include <sys/arc.h> 56 #include <sys/ddt.h> 57 #include "zfs_prop.h" 58 #include <sys/zfeature.h> 59 60 /* 61 * SPA locking 62 * 63 * There are four basic locks for managing spa_t structures: 64 * 65 * spa_namespace_lock (global mutex) 66 * 67 * This lock must be acquired to do any of the following: 68 * 69 * - Lookup a spa_t by name 70 * - Add or remove a spa_t from the namespace 71 * - Increase spa_refcount from non-zero 72 * - Check if spa_refcount is zero 73 * - Rename a spa_t 74 * - add/remove/attach/detach devices 75 * - Held for the duration of create/destroy/import/export 76 * 77 * It does not need to handle recursion. A create or destroy may 78 * reference objects (files or zvols) in other pools, but by 79 * definition they must have an existing reference, and will never need 80 * to lookup a spa_t by name. 81 * 82 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 83 * 84 * This reference count keep track of any active users of the spa_t. The 85 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 86 * the refcount is never really 'zero' - opening a pool implicitly keeps 87 * some references in the DMU. Internally we check against spa_minref, but 88 * present the image of a zero/non-zero value to consumers. 89 * 90 * spa_config_lock[] (per-spa array of rwlocks) 91 * 92 * This protects the spa_t from config changes, and must be held in 93 * the following circumstances: 94 * 95 * - RW_READER to perform I/O to the spa 96 * - RW_WRITER to change the vdev config 97 * 98 * The locking order is fairly straightforward: 99 * 100 * spa_namespace_lock -> spa_refcount 101 * 102 * The namespace lock must be acquired to increase the refcount from 0 103 * or to check if it is zero. 104 * 105 * spa_refcount -> spa_config_lock[] 106 * 107 * There must be at least one valid reference on the spa_t to acquire 108 * the config lock. 109 * 110 * spa_namespace_lock -> spa_config_lock[] 111 * 112 * The namespace lock must always be taken before the config lock. 113 * 114 * 115 * The spa_namespace_lock can be acquired directly and is globally visible. 116 * 117 * The namespace is manipulated using the following functions, all of which 118 * require the spa_namespace_lock to be held. 119 * 120 * spa_lookup() Lookup a spa_t by name. 121 * 122 * spa_add() Create a new spa_t in the namespace. 123 * 124 * spa_remove() Remove a spa_t from the namespace. This also 125 * frees up any memory associated with the spa_t. 126 * 127 * spa_next() Returns the next spa_t in the system, or the 128 * first if NULL is passed. 129 * 130 * spa_evict_all() Shutdown and remove all spa_t structures in 131 * the system. 132 * 133 * spa_guid_exists() Determine whether a pool/device guid exists. 134 * 135 * The spa_refcount is manipulated using the following functions: 136 * 137 * spa_open_ref() Adds a reference to the given spa_t. Must be 138 * called with spa_namespace_lock held if the 139 * refcount is currently zero. 140 * 141 * spa_close() Remove a reference from the spa_t. This will 142 * not free the spa_t or remove it from the 143 * namespace. No locking is required. 144 * 145 * spa_refcount_zero() Returns true if the refcount is currently 146 * zero. Must be called with spa_namespace_lock 147 * held. 148 * 149 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 150 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 151 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 152 * 153 * To read the configuration, it suffices to hold one of these locks as reader. 154 * To modify the configuration, you must hold all locks as writer. To modify 155 * vdev state without altering the vdev tree's topology (e.g. online/offline), 156 * you must hold SCL_STATE and SCL_ZIO as writer. 157 * 158 * We use these distinct config locks to avoid recursive lock entry. 159 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 160 * block allocations (SCL_ALLOC), which may require reading space maps 161 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 162 * 163 * The spa config locks cannot be normal rwlocks because we need the 164 * ability to hand off ownership. For example, SCL_ZIO is acquired 165 * by the issuing thread and later released by an interrupt thread. 166 * They do, however, obey the usual write-wanted semantics to prevent 167 * writer (i.e. system administrator) starvation. 168 * 169 * The lock acquisition rules are as follows: 170 * 171 * SCL_CONFIG 172 * Protects changes to the vdev tree topology, such as vdev 173 * add/remove/attach/detach. Protects the dirty config list 174 * (spa_config_dirty_list) and the set of spares and l2arc devices. 175 * 176 * SCL_STATE 177 * Protects changes to pool state and vdev state, such as vdev 178 * online/offline/fault/degrade/clear. Protects the dirty state list 179 * (spa_state_dirty_list) and global pool state (spa_state). 180 * 181 * SCL_ALLOC 182 * Protects changes to metaslab groups and classes. 183 * Held as reader by metaslab_alloc() and metaslab_claim(). 184 * 185 * SCL_ZIO 186 * Held by bp-level zios (those which have no io_vd upon entry) 187 * to prevent changes to the vdev tree. The bp-level zio implicitly 188 * protects all of its vdev child zios, which do not hold SCL_ZIO. 189 * 190 * SCL_FREE 191 * Protects changes to metaslab groups and classes. 192 * Held as reader by metaslab_free(). SCL_FREE is distinct from 193 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 194 * blocks in zio_done() while another i/o that holds either 195 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 196 * 197 * SCL_VDEV 198 * Held as reader to prevent changes to the vdev tree during trivial 199 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 200 * other locks, and lower than all of them, to ensure that it's safe 201 * to acquire regardless of caller context. 202 * 203 * In addition, the following rules apply: 204 * 205 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 206 * The lock ordering is SCL_CONFIG > spa_props_lock. 207 * 208 * (b) I/O operations on leaf vdevs. For any zio operation that takes 209 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 210 * or zio_write_phys() -- the caller must ensure that the config cannot 211 * cannot change in the interim, and that the vdev cannot be reopened. 212 * SCL_STATE as reader suffices for both. 213 * 214 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 215 * 216 * spa_vdev_enter() Acquire the namespace lock and the config lock 217 * for writing. 218 * 219 * spa_vdev_exit() Release the config lock, wait for all I/O 220 * to complete, sync the updated configs to the 221 * cache, and release the namespace lock. 222 * 223 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 224 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 225 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 226 */ 227 228 static avl_tree_t spa_namespace_avl; 229 kmutex_t spa_namespace_lock; 230 static kcondvar_t spa_namespace_cv; 231 static int spa_active_count; 232 int spa_max_replication_override = SPA_DVAS_PER_BP; 233 234 static kmutex_t spa_spare_lock; 235 static avl_tree_t spa_spare_avl; 236 static kmutex_t spa_l2cache_lock; 237 static avl_tree_t spa_l2cache_avl; 238 239 kmem_cache_t *spa_buffer_pool; 240 int spa_mode_global; 241 242 #ifdef ZFS_DEBUG 243 /* 244 * Everything except dprintf, spa, and indirect_remap is on by default 245 * in debug builds. 246 */ 247 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP); 248 #else 249 int zfs_flags = 0; 250 #endif 251 252 /* 253 * zfs_recover can be set to nonzero to attempt to recover from 254 * otherwise-fatal errors, typically caused by on-disk corruption. When 255 * set, calls to zfs_panic_recover() will turn into warning messages. 256 * This should only be used as a last resort, as it typically results 257 * in leaked space, or worse. 258 */ 259 boolean_t zfs_recover = B_FALSE; 260 261 /* 262 * If destroy encounters an EIO while reading metadata (e.g. indirect 263 * blocks), space referenced by the missing metadata can not be freed. 264 * Normally this causes the background destroy to become "stalled", as 265 * it is unable to make forward progress. While in this stalled state, 266 * all remaining space to free from the error-encountering filesystem is 267 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 268 * permanently leak the space from indirect blocks that can not be read, 269 * and continue to free everything else that it can. 270 * 271 * The default, "stalling" behavior is useful if the storage partially 272 * fails (i.e. some but not all i/os fail), and then later recovers. In 273 * this case, we will be able to continue pool operations while it is 274 * partially failed, and when it recovers, we can continue to free the 275 * space, with no leaks. However, note that this case is actually 276 * fairly rare. 277 * 278 * Typically pools either (a) fail completely (but perhaps temporarily, 279 * e.g. a top-level vdev going offline), or (b) have localized, 280 * permanent errors (e.g. disk returns the wrong data due to bit flip or 281 * firmware bug). In case (a), this setting does not matter because the 282 * pool will be suspended and the sync thread will not be able to make 283 * forward progress regardless. In case (b), because the error is 284 * permanent, the best we can do is leak the minimum amount of space, 285 * which is what setting this flag will do. Therefore, it is reasonable 286 * for this flag to normally be set, but we chose the more conservative 287 * approach of not setting it, so that there is no possibility of 288 * leaking space in the "partial temporary" failure case. 289 */ 290 boolean_t zfs_free_leak_on_eio = B_FALSE; 291 292 /* 293 * Expiration time in milliseconds. This value has two meanings. First it is 294 * used to determine when the spa_deadman() logic should fire. By default the 295 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. 296 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 297 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 298 * in a system panic. 299 */ 300 uint64_t zfs_deadman_synctime_ms = 1000000ULL; 301 302 /* 303 * Check time in milliseconds. This defines the frequency at which we check 304 * for hung I/O. 305 */ 306 uint64_t zfs_deadman_checktime_ms = 5000ULL; 307 308 /* 309 * Override the zfs deadman behavior via /etc/system. By default the 310 * deadman is enabled except on VMware and sparc deployments. 311 */ 312 int zfs_deadman_enabled = -1; 313 314 /* 315 * The worst case is single-sector max-parity RAID-Z blocks, in which 316 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 317 * times the size; so just assume that. Add to this the fact that 318 * we can have up to 3 DVAs per bp, and one more factor of 2 because 319 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 320 * the worst case is: 321 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 322 */ 323 int spa_asize_inflation = 24; 324 325 /* 326 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 327 * the pool to be consumed. This ensures that we don't run the pool 328 * completely out of space, due to unaccounted changes (e.g. to the MOS). 329 * It also limits the worst-case time to allocate space. If we have 330 * less than this amount of free space, most ZPL operations (e.g. write, 331 * create) will return ENOSPC. 332 * 333 * Certain operations (e.g. file removal, most administrative actions) can 334 * use half the slop space. They will only return ENOSPC if less than half 335 * the slop space is free. Typically, once the pool has less than the slop 336 * space free, the user will use these operations to free up space in the pool. 337 * These are the operations that call dsl_pool_adjustedsize() with the netfree 338 * argument set to TRUE. 339 * 340 * Operations that are almost guaranteed to free up space in the absence of 341 * a pool checkpoint can use up to three quarters of the slop space 342 * (e.g zfs destroy). 343 * 344 * A very restricted set of operations are always permitted, regardless of 345 * the amount of free space. These are the operations that call 346 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 347 * increase in the amount of space used, it is possible to run the pool 348 * completely out of space, causing it to be permanently read-only. 349 * 350 * Note that on very small pools, the slop space will be larger than 351 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 352 * but we never allow it to be more than half the pool size. 353 * 354 * See also the comments in zfs_space_check_t. 355 */ 356 int spa_slop_shift = 5; 357 uint64_t spa_min_slop = 128 * 1024 * 1024; 358 359 int spa_allocators = 4; 360 361 /*PRINTFLIKE2*/ 362 void 363 spa_load_failed(spa_t *spa, const char *fmt, ...) 364 { 365 va_list adx; 366 char buf[256]; 367 368 va_start(adx, fmt); 369 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 370 va_end(adx); 371 372 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 373 spa->spa_trust_config ? "trusted" : "untrusted", buf); 374 } 375 376 /*PRINTFLIKE2*/ 377 void 378 spa_load_note(spa_t *spa, const char *fmt, ...) 379 { 380 va_list adx; 381 char buf[256]; 382 383 va_start(adx, fmt); 384 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 385 va_end(adx); 386 387 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 388 spa->spa_trust_config ? "trusted" : "untrusted", buf); 389 } 390 391 /* 392 * By default dedup and user data indirects land in the special class 393 */ 394 int zfs_ddt_data_is_special = B_TRUE; 395 int zfs_user_indirect_is_special = B_TRUE; 396 397 /* 398 * The percentage of special class final space reserved for metadata only. 399 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 400 * let metadata into the class. 401 */ 402 int zfs_special_class_metadata_reserve_pct = 25; 403 404 /* 405 * ========================================================================== 406 * SPA config locking 407 * ========================================================================== 408 */ 409 static void 410 spa_config_lock_init(spa_t *spa) 411 { 412 for (int i = 0; i < SCL_LOCKS; i++) { 413 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 414 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 415 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 416 zfs_refcount_create_untracked(&scl->scl_count); 417 scl->scl_writer = NULL; 418 scl->scl_write_wanted = 0; 419 } 420 } 421 422 static void 423 spa_config_lock_destroy(spa_t *spa) 424 { 425 for (int i = 0; i < SCL_LOCKS; i++) { 426 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 427 mutex_destroy(&scl->scl_lock); 428 cv_destroy(&scl->scl_cv); 429 zfs_refcount_destroy(&scl->scl_count); 430 ASSERT(scl->scl_writer == NULL); 431 ASSERT(scl->scl_write_wanted == 0); 432 } 433 } 434 435 int 436 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 437 { 438 for (int i = 0; i < SCL_LOCKS; i++) { 439 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 440 if (!(locks & (1 << i))) 441 continue; 442 mutex_enter(&scl->scl_lock); 443 if (rw == RW_READER) { 444 if (scl->scl_writer || scl->scl_write_wanted) { 445 mutex_exit(&scl->scl_lock); 446 spa_config_exit(spa, locks & ((1 << i) - 1), 447 tag); 448 return (0); 449 } 450 } else { 451 ASSERT(scl->scl_writer != curthread); 452 if (!zfs_refcount_is_zero(&scl->scl_count)) { 453 mutex_exit(&scl->scl_lock); 454 spa_config_exit(spa, locks & ((1 << i) - 1), 455 tag); 456 return (0); 457 } 458 scl->scl_writer = curthread; 459 } 460 (void) zfs_refcount_add(&scl->scl_count, tag); 461 mutex_exit(&scl->scl_lock); 462 } 463 return (1); 464 } 465 466 void 467 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 468 { 469 int wlocks_held = 0; 470 471 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 472 473 for (int i = 0; i < SCL_LOCKS; i++) { 474 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 475 if (scl->scl_writer == curthread) 476 wlocks_held |= (1 << i); 477 if (!(locks & (1 << i))) 478 continue; 479 mutex_enter(&scl->scl_lock); 480 if (rw == RW_READER) { 481 while (scl->scl_writer || scl->scl_write_wanted) { 482 cv_wait(&scl->scl_cv, &scl->scl_lock); 483 } 484 } else { 485 ASSERT(scl->scl_writer != curthread); 486 while (!zfs_refcount_is_zero(&scl->scl_count)) { 487 scl->scl_write_wanted++; 488 cv_wait(&scl->scl_cv, &scl->scl_lock); 489 scl->scl_write_wanted--; 490 } 491 scl->scl_writer = curthread; 492 } 493 (void) zfs_refcount_add(&scl->scl_count, tag); 494 mutex_exit(&scl->scl_lock); 495 } 496 ASSERT3U(wlocks_held, <=, locks); 497 } 498 499 void 500 spa_config_exit(spa_t *spa, int locks, void *tag) 501 { 502 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 503 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 504 if (!(locks & (1 << i))) 505 continue; 506 mutex_enter(&scl->scl_lock); 507 ASSERT(!zfs_refcount_is_zero(&scl->scl_count)); 508 if (zfs_refcount_remove(&scl->scl_count, tag) == 0) { 509 ASSERT(scl->scl_writer == NULL || 510 scl->scl_writer == curthread); 511 scl->scl_writer = NULL; /* OK in either case */ 512 cv_broadcast(&scl->scl_cv); 513 } 514 mutex_exit(&scl->scl_lock); 515 } 516 } 517 518 int 519 spa_config_held(spa_t *spa, int locks, krw_t rw) 520 { 521 int locks_held = 0; 522 523 for (int i = 0; i < SCL_LOCKS; i++) { 524 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 525 if (!(locks & (1 << i))) 526 continue; 527 if ((rw == RW_READER && 528 !zfs_refcount_is_zero(&scl->scl_count)) || 529 (rw == RW_WRITER && scl->scl_writer == curthread)) 530 locks_held |= 1 << i; 531 } 532 533 return (locks_held); 534 } 535 536 /* 537 * ========================================================================== 538 * SPA namespace functions 539 * ========================================================================== 540 */ 541 542 /* 543 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 544 * Returns NULL if no matching spa_t is found. 545 */ 546 spa_t * 547 spa_lookup(const char *name) 548 { 549 static spa_t search; /* spa_t is large; don't allocate on stack */ 550 spa_t *spa; 551 avl_index_t where; 552 char *cp; 553 554 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 555 556 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 557 558 /* 559 * If it's a full dataset name, figure out the pool name and 560 * just use that. 561 */ 562 cp = strpbrk(search.spa_name, "/@#"); 563 if (cp != NULL) 564 *cp = '\0'; 565 566 spa = avl_find(&spa_namespace_avl, &search, &where); 567 568 return (spa); 569 } 570 571 /* 572 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 573 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 574 * looking for potentially hung I/Os. 575 */ 576 void 577 spa_deadman(void *arg) 578 { 579 spa_t *spa = arg; 580 581 /* 582 * Disable the deadman timer if the pool is suspended. 583 */ 584 if (spa_suspended(spa)) { 585 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 586 return; 587 } 588 589 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 590 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 591 ++spa->spa_deadman_calls); 592 if (zfs_deadman_enabled) 593 vdev_deadman(spa->spa_root_vdev); 594 } 595 596 /* 597 * Create an uninitialized spa_t with the given name. Requires 598 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 599 * exist by calling spa_lookup() first. 600 */ 601 spa_t * 602 spa_add(const char *name, nvlist_t *config, const char *altroot) 603 { 604 spa_t *spa; 605 spa_config_dirent_t *dp; 606 cyc_handler_t hdlr; 607 cyc_time_t when; 608 609 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 610 611 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 612 613 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 614 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 615 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 616 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 617 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 618 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 619 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 620 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 621 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 622 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 623 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 624 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 625 626 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 627 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 628 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 629 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 630 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 631 632 for (int t = 0; t < TXG_SIZE; t++) 633 bplist_create(&spa->spa_free_bplist[t]); 634 635 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 636 spa->spa_state = POOL_STATE_UNINITIALIZED; 637 spa->spa_freeze_txg = UINT64_MAX; 638 spa->spa_final_txg = UINT64_MAX; 639 spa->spa_load_max_txg = UINT64_MAX; 640 spa->spa_proc = &p0; 641 spa->spa_proc_state = SPA_PROC_NONE; 642 spa->spa_trust_config = B_TRUE; 643 644 hdlr.cyh_func = spa_deadman; 645 hdlr.cyh_arg = spa; 646 hdlr.cyh_level = CY_LOW_LEVEL; 647 648 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 649 650 /* 651 * This determines how often we need to check for hung I/Os after 652 * the cyclic has already fired. Since checking for hung I/Os is 653 * an expensive operation we don't want to check too frequently. 654 * Instead wait for 5 seconds before checking again. 655 */ 656 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); 657 when.cyt_when = CY_INFINITY; 658 mutex_enter(&cpu_lock); 659 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 660 mutex_exit(&cpu_lock); 661 662 zfs_refcount_create(&spa->spa_refcount); 663 spa_config_lock_init(spa); 664 665 avl_add(&spa_namespace_avl, spa); 666 667 /* 668 * Set the alternate root, if there is one. 669 */ 670 if (altroot) { 671 spa->spa_root = spa_strdup(altroot); 672 spa_active_count++; 673 } 674 675 spa->spa_alloc_count = spa_allocators; 676 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count * 677 sizeof (kmutex_t), KM_SLEEP); 678 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count * 679 sizeof (avl_tree_t), KM_SLEEP); 680 for (int i = 0; i < spa->spa_alloc_count; i++) { 681 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL); 682 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare, 683 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 684 } 685 686 /* 687 * Every pool starts with the default cachefile 688 */ 689 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 690 offsetof(spa_config_dirent_t, scd_link)); 691 692 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 693 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 694 list_insert_head(&spa->spa_config_list, dp); 695 696 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 697 KM_SLEEP) == 0); 698 699 if (config != NULL) { 700 nvlist_t *features; 701 702 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 703 &features) == 0) { 704 VERIFY(nvlist_dup(features, &spa->spa_label_features, 705 0) == 0); 706 } 707 708 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 709 } 710 711 if (spa->spa_label_features == NULL) { 712 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 713 KM_SLEEP) == 0); 714 } 715 716 spa->spa_iokstat = kstat_create("zfs", 0, name, 717 "disk", KSTAT_TYPE_IO, 1, 0); 718 if (spa->spa_iokstat) { 719 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 720 kstat_install(spa->spa_iokstat); 721 } 722 723 spa->spa_min_ashift = INT_MAX; 724 spa->spa_max_ashift = 0; 725 726 /* 727 * As a pool is being created, treat all features as disabled by 728 * setting SPA_FEATURE_DISABLED for all entries in the feature 729 * refcount cache. 730 */ 731 for (int i = 0; i < SPA_FEATURES; i++) { 732 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 733 } 734 735 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 736 offsetof(vdev_t, vdev_leaf_node)); 737 738 return (spa); 739 } 740 741 /* 742 * Removes a spa_t from the namespace, freeing up any memory used. Requires 743 * spa_namespace_lock. This is called only after the spa_t has been closed and 744 * deactivated. 745 */ 746 void 747 spa_remove(spa_t *spa) 748 { 749 spa_config_dirent_t *dp; 750 751 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 752 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 753 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 754 755 nvlist_free(spa->spa_config_splitting); 756 757 avl_remove(&spa_namespace_avl, spa); 758 cv_broadcast(&spa_namespace_cv); 759 760 if (spa->spa_root) { 761 spa_strfree(spa->spa_root); 762 spa_active_count--; 763 } 764 765 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 766 list_remove(&spa->spa_config_list, dp); 767 if (dp->scd_path != NULL) 768 spa_strfree(dp->scd_path); 769 kmem_free(dp, sizeof (spa_config_dirent_t)); 770 } 771 772 for (int i = 0; i < spa->spa_alloc_count; i++) { 773 avl_destroy(&spa->spa_alloc_trees[i]); 774 mutex_destroy(&spa->spa_alloc_locks[i]); 775 } 776 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count * 777 sizeof (kmutex_t)); 778 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count * 779 sizeof (avl_tree_t)); 780 781 list_destroy(&spa->spa_config_list); 782 list_destroy(&spa->spa_leaf_list); 783 784 nvlist_free(spa->spa_label_features); 785 nvlist_free(spa->spa_load_info); 786 spa_config_set(spa, NULL); 787 788 mutex_enter(&cpu_lock); 789 if (spa->spa_deadman_cycid != CYCLIC_NONE) 790 cyclic_remove(spa->spa_deadman_cycid); 791 mutex_exit(&cpu_lock); 792 spa->spa_deadman_cycid = CYCLIC_NONE; 793 794 zfs_refcount_destroy(&spa->spa_refcount); 795 796 spa_config_lock_destroy(spa); 797 798 kstat_delete(spa->spa_iokstat); 799 spa->spa_iokstat = NULL; 800 801 for (int t = 0; t < TXG_SIZE; t++) 802 bplist_destroy(&spa->spa_free_bplist[t]); 803 804 zio_checksum_templates_free(spa); 805 806 cv_destroy(&spa->spa_async_cv); 807 cv_destroy(&spa->spa_evicting_os_cv); 808 cv_destroy(&spa->spa_proc_cv); 809 cv_destroy(&spa->spa_scrub_io_cv); 810 cv_destroy(&spa->spa_suspend_cv); 811 812 mutex_destroy(&spa->spa_async_lock); 813 mutex_destroy(&spa->spa_errlist_lock); 814 mutex_destroy(&spa->spa_errlog_lock); 815 mutex_destroy(&spa->spa_evicting_os_lock); 816 mutex_destroy(&spa->spa_history_lock); 817 mutex_destroy(&spa->spa_proc_lock); 818 mutex_destroy(&spa->spa_props_lock); 819 mutex_destroy(&spa->spa_cksum_tmpls_lock); 820 mutex_destroy(&spa->spa_scrub_lock); 821 mutex_destroy(&spa->spa_suspend_lock); 822 mutex_destroy(&spa->spa_vdev_top_lock); 823 mutex_destroy(&spa->spa_iokstat_lock); 824 825 kmem_free(spa, sizeof (spa_t)); 826 } 827 828 /* 829 * Given a pool, return the next pool in the namespace, or NULL if there is 830 * none. If 'prev' is NULL, return the first pool. 831 */ 832 spa_t * 833 spa_next(spa_t *prev) 834 { 835 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 836 837 if (prev) 838 return (AVL_NEXT(&spa_namespace_avl, prev)); 839 else 840 return (avl_first(&spa_namespace_avl)); 841 } 842 843 /* 844 * ========================================================================== 845 * SPA refcount functions 846 * ========================================================================== 847 */ 848 849 /* 850 * Add a reference to the given spa_t. Must have at least one reference, or 851 * have the namespace lock held. 852 */ 853 void 854 spa_open_ref(spa_t *spa, void *tag) 855 { 856 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 857 MUTEX_HELD(&spa_namespace_lock)); 858 (void) zfs_refcount_add(&spa->spa_refcount, tag); 859 } 860 861 /* 862 * Remove a reference to the given spa_t. Must have at least one reference, or 863 * have the namespace lock held. 864 */ 865 void 866 spa_close(spa_t *spa, void *tag) 867 { 868 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 869 MUTEX_HELD(&spa_namespace_lock)); 870 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 871 } 872 873 /* 874 * Remove a reference to the given spa_t held by a dsl dir that is 875 * being asynchronously released. Async releases occur from a taskq 876 * performing eviction of dsl datasets and dirs. The namespace lock 877 * isn't held and the hold by the object being evicted may contribute to 878 * spa_minref (e.g. dataset or directory released during pool export), 879 * so the asserts in spa_close() do not apply. 880 */ 881 void 882 spa_async_close(spa_t *spa, void *tag) 883 { 884 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 885 } 886 887 /* 888 * Check to see if the spa refcount is zero. Must be called with 889 * spa_namespace_lock held. We really compare against spa_minref, which is the 890 * number of references acquired when opening a pool 891 */ 892 boolean_t 893 spa_refcount_zero(spa_t *spa) 894 { 895 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 896 897 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 898 } 899 900 /* 901 * ========================================================================== 902 * SPA spare and l2cache tracking 903 * ========================================================================== 904 */ 905 906 /* 907 * Hot spares and cache devices are tracked using the same code below, 908 * for 'auxiliary' devices. 909 */ 910 911 typedef struct spa_aux { 912 uint64_t aux_guid; 913 uint64_t aux_pool; 914 avl_node_t aux_avl; 915 int aux_count; 916 } spa_aux_t; 917 918 static inline int 919 spa_aux_compare(const void *a, const void *b) 920 { 921 const spa_aux_t *sa = (const spa_aux_t *)a; 922 const spa_aux_t *sb = (const spa_aux_t *)b; 923 924 return (AVL_CMP(sa->aux_guid, sb->aux_guid)); 925 } 926 927 void 928 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 929 { 930 avl_index_t where; 931 spa_aux_t search; 932 spa_aux_t *aux; 933 934 search.aux_guid = vd->vdev_guid; 935 if ((aux = avl_find(avl, &search, &where)) != NULL) { 936 aux->aux_count++; 937 } else { 938 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 939 aux->aux_guid = vd->vdev_guid; 940 aux->aux_count = 1; 941 avl_insert(avl, aux, where); 942 } 943 } 944 945 void 946 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 947 { 948 spa_aux_t search; 949 spa_aux_t *aux; 950 avl_index_t where; 951 952 search.aux_guid = vd->vdev_guid; 953 aux = avl_find(avl, &search, &where); 954 955 ASSERT(aux != NULL); 956 957 if (--aux->aux_count == 0) { 958 avl_remove(avl, aux); 959 kmem_free(aux, sizeof (spa_aux_t)); 960 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 961 aux->aux_pool = 0ULL; 962 } 963 } 964 965 boolean_t 966 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 967 { 968 spa_aux_t search, *found; 969 970 search.aux_guid = guid; 971 found = avl_find(avl, &search, NULL); 972 973 if (pool) { 974 if (found) 975 *pool = found->aux_pool; 976 else 977 *pool = 0ULL; 978 } 979 980 if (refcnt) { 981 if (found) 982 *refcnt = found->aux_count; 983 else 984 *refcnt = 0; 985 } 986 987 return (found != NULL); 988 } 989 990 void 991 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 992 { 993 spa_aux_t search, *found; 994 avl_index_t where; 995 996 search.aux_guid = vd->vdev_guid; 997 found = avl_find(avl, &search, &where); 998 ASSERT(found != NULL); 999 ASSERT(found->aux_pool == 0ULL); 1000 1001 found->aux_pool = spa_guid(vd->vdev_spa); 1002 } 1003 1004 /* 1005 * Spares are tracked globally due to the following constraints: 1006 * 1007 * - A spare may be part of multiple pools. 1008 * - A spare may be added to a pool even if it's actively in use within 1009 * another pool. 1010 * - A spare in use in any pool can only be the source of a replacement if 1011 * the target is a spare in the same pool. 1012 * 1013 * We keep track of all spares on the system through the use of a reference 1014 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1015 * spare, then we bump the reference count in the AVL tree. In addition, we set 1016 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1017 * inactive). When a spare is made active (used to replace a device in the 1018 * pool), we also keep track of which pool its been made a part of. 1019 * 1020 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1021 * called under the spa_namespace lock as part of vdev reconfiguration. The 1022 * separate spare lock exists for the status query path, which does not need to 1023 * be completely consistent with respect to other vdev configuration changes. 1024 */ 1025 1026 static int 1027 spa_spare_compare(const void *a, const void *b) 1028 { 1029 return (spa_aux_compare(a, b)); 1030 } 1031 1032 void 1033 spa_spare_add(vdev_t *vd) 1034 { 1035 mutex_enter(&spa_spare_lock); 1036 ASSERT(!vd->vdev_isspare); 1037 spa_aux_add(vd, &spa_spare_avl); 1038 vd->vdev_isspare = B_TRUE; 1039 mutex_exit(&spa_spare_lock); 1040 } 1041 1042 void 1043 spa_spare_remove(vdev_t *vd) 1044 { 1045 mutex_enter(&spa_spare_lock); 1046 ASSERT(vd->vdev_isspare); 1047 spa_aux_remove(vd, &spa_spare_avl); 1048 vd->vdev_isspare = B_FALSE; 1049 mutex_exit(&spa_spare_lock); 1050 } 1051 1052 boolean_t 1053 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1054 { 1055 boolean_t found; 1056 1057 mutex_enter(&spa_spare_lock); 1058 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1059 mutex_exit(&spa_spare_lock); 1060 1061 return (found); 1062 } 1063 1064 void 1065 spa_spare_activate(vdev_t *vd) 1066 { 1067 mutex_enter(&spa_spare_lock); 1068 ASSERT(vd->vdev_isspare); 1069 spa_aux_activate(vd, &spa_spare_avl); 1070 mutex_exit(&spa_spare_lock); 1071 } 1072 1073 /* 1074 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1075 * Cache devices currently only support one pool per cache device, and so 1076 * for these devices the aux reference count is currently unused beyond 1. 1077 */ 1078 1079 static int 1080 spa_l2cache_compare(const void *a, const void *b) 1081 { 1082 return (spa_aux_compare(a, b)); 1083 } 1084 1085 void 1086 spa_l2cache_add(vdev_t *vd) 1087 { 1088 mutex_enter(&spa_l2cache_lock); 1089 ASSERT(!vd->vdev_isl2cache); 1090 spa_aux_add(vd, &spa_l2cache_avl); 1091 vd->vdev_isl2cache = B_TRUE; 1092 mutex_exit(&spa_l2cache_lock); 1093 } 1094 1095 void 1096 spa_l2cache_remove(vdev_t *vd) 1097 { 1098 mutex_enter(&spa_l2cache_lock); 1099 ASSERT(vd->vdev_isl2cache); 1100 spa_aux_remove(vd, &spa_l2cache_avl); 1101 vd->vdev_isl2cache = B_FALSE; 1102 mutex_exit(&spa_l2cache_lock); 1103 } 1104 1105 boolean_t 1106 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1107 { 1108 boolean_t found; 1109 1110 mutex_enter(&spa_l2cache_lock); 1111 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1112 mutex_exit(&spa_l2cache_lock); 1113 1114 return (found); 1115 } 1116 1117 void 1118 spa_l2cache_activate(vdev_t *vd) 1119 { 1120 mutex_enter(&spa_l2cache_lock); 1121 ASSERT(vd->vdev_isl2cache); 1122 spa_aux_activate(vd, &spa_l2cache_avl); 1123 mutex_exit(&spa_l2cache_lock); 1124 } 1125 1126 /* 1127 * ========================================================================== 1128 * SPA vdev locking 1129 * ========================================================================== 1130 */ 1131 1132 /* 1133 * Lock the given spa_t for the purpose of adding or removing a vdev. 1134 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1135 * It returns the next transaction group for the spa_t. 1136 */ 1137 uint64_t 1138 spa_vdev_enter(spa_t *spa) 1139 { 1140 mutex_enter(&spa->spa_vdev_top_lock); 1141 mutex_enter(&spa_namespace_lock); 1142 return (spa_vdev_config_enter(spa)); 1143 } 1144 1145 /* 1146 * Internal implementation for spa_vdev_enter(). Used when a vdev 1147 * operation requires multiple syncs (i.e. removing a device) while 1148 * keeping the spa_namespace_lock held. 1149 */ 1150 uint64_t 1151 spa_vdev_config_enter(spa_t *spa) 1152 { 1153 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1154 1155 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1156 1157 return (spa_last_synced_txg(spa) + 1); 1158 } 1159 1160 /* 1161 * Used in combination with spa_vdev_config_enter() to allow the syncing 1162 * of multiple transactions without releasing the spa_namespace_lock. 1163 */ 1164 void 1165 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1166 { 1167 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1168 1169 int config_changed = B_FALSE; 1170 1171 ASSERT(txg > spa_last_synced_txg(spa)); 1172 1173 spa->spa_pending_vdev = NULL; 1174 1175 /* 1176 * Reassess the DTLs. 1177 */ 1178 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 1179 1180 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1181 config_changed = B_TRUE; 1182 spa->spa_config_generation++; 1183 } 1184 1185 /* 1186 * Verify the metaslab classes. 1187 */ 1188 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1189 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1190 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1191 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1192 1193 spa_config_exit(spa, SCL_ALL, spa); 1194 1195 /* 1196 * Panic the system if the specified tag requires it. This 1197 * is useful for ensuring that configurations are updated 1198 * transactionally. 1199 */ 1200 if (zio_injection_enabled) 1201 zio_handle_panic_injection(spa, tag, 0); 1202 1203 /* 1204 * Note: this txg_wait_synced() is important because it ensures 1205 * that there won't be more than one config change per txg. 1206 * This allows us to use the txg as the generation number. 1207 */ 1208 if (error == 0) 1209 txg_wait_synced(spa->spa_dsl_pool, txg); 1210 1211 if (vd != NULL) { 1212 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1213 if (vd->vdev_ops->vdev_op_leaf) { 1214 mutex_enter(&vd->vdev_initialize_lock); 1215 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED); 1216 mutex_exit(&vd->vdev_initialize_lock); 1217 } 1218 1219 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1220 vdev_free(vd); 1221 spa_config_exit(spa, SCL_ALL, spa); 1222 } 1223 1224 /* 1225 * If the config changed, update the config cache. 1226 */ 1227 if (config_changed) 1228 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1229 } 1230 1231 /* 1232 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1233 * locking of spa_vdev_enter(), we also want make sure the transactions have 1234 * synced to disk, and then update the global configuration cache with the new 1235 * information. 1236 */ 1237 int 1238 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1239 { 1240 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1241 mutex_exit(&spa_namespace_lock); 1242 mutex_exit(&spa->spa_vdev_top_lock); 1243 1244 return (error); 1245 } 1246 1247 /* 1248 * Lock the given spa_t for the purpose of changing vdev state. 1249 */ 1250 void 1251 spa_vdev_state_enter(spa_t *spa, int oplocks) 1252 { 1253 int locks = SCL_STATE_ALL | oplocks; 1254 1255 /* 1256 * Root pools may need to read of the underlying devfs filesystem 1257 * when opening up a vdev. Unfortunately if we're holding the 1258 * SCL_ZIO lock it will result in a deadlock when we try to issue 1259 * the read from the root filesystem. Instead we "prefetch" 1260 * the associated vnodes that we need prior to opening the 1261 * underlying devices and cache them so that we can prevent 1262 * any I/O when we are doing the actual open. 1263 */ 1264 if (spa_is_root(spa)) { 1265 int low = locks & ~(SCL_ZIO - 1); 1266 int high = locks & ~low; 1267 1268 spa_config_enter(spa, high, spa, RW_WRITER); 1269 vdev_hold(spa->spa_root_vdev); 1270 spa_config_enter(spa, low, spa, RW_WRITER); 1271 } else { 1272 spa_config_enter(spa, locks, spa, RW_WRITER); 1273 } 1274 spa->spa_vdev_locks = locks; 1275 } 1276 1277 int 1278 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1279 { 1280 boolean_t config_changed = B_FALSE; 1281 1282 if (vd != NULL || error == 0) 1283 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1284 0, 0, B_FALSE); 1285 1286 if (vd != NULL) { 1287 vdev_state_dirty(vd->vdev_top); 1288 config_changed = B_TRUE; 1289 spa->spa_config_generation++; 1290 } 1291 1292 if (spa_is_root(spa)) 1293 vdev_rele(spa->spa_root_vdev); 1294 1295 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1296 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1297 1298 /* 1299 * If anything changed, wait for it to sync. This ensures that, 1300 * from the system administrator's perspective, zpool(1M) commands 1301 * are synchronous. This is important for things like zpool offline: 1302 * when the command completes, you expect no further I/O from ZFS. 1303 */ 1304 if (vd != NULL) 1305 txg_wait_synced(spa->spa_dsl_pool, 0); 1306 1307 /* 1308 * If the config changed, update the config cache. 1309 */ 1310 if (config_changed) { 1311 mutex_enter(&spa_namespace_lock); 1312 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1313 mutex_exit(&spa_namespace_lock); 1314 } 1315 1316 return (error); 1317 } 1318 1319 /* 1320 * ========================================================================== 1321 * Miscellaneous functions 1322 * ========================================================================== 1323 */ 1324 1325 void 1326 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1327 { 1328 if (!nvlist_exists(spa->spa_label_features, feature)) { 1329 fnvlist_add_boolean(spa->spa_label_features, feature); 1330 /* 1331 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1332 * dirty the vdev config because lock SCL_CONFIG is not held. 1333 * Thankfully, in this case we don't need to dirty the config 1334 * because it will be written out anyway when we finish 1335 * creating the pool. 1336 */ 1337 if (tx->tx_txg != TXG_INITIAL) 1338 vdev_config_dirty(spa->spa_root_vdev); 1339 } 1340 } 1341 1342 void 1343 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1344 { 1345 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1346 vdev_config_dirty(spa->spa_root_vdev); 1347 } 1348 1349 /* 1350 * Return the spa_t associated with given pool_guid, if it exists. If 1351 * device_guid is non-zero, determine whether the pool exists *and* contains 1352 * a device with the specified device_guid. 1353 */ 1354 spa_t * 1355 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1356 { 1357 spa_t *spa; 1358 avl_tree_t *t = &spa_namespace_avl; 1359 1360 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1361 1362 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1363 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1364 continue; 1365 if (spa->spa_root_vdev == NULL) 1366 continue; 1367 if (spa_guid(spa) == pool_guid) { 1368 if (device_guid == 0) 1369 break; 1370 1371 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1372 device_guid) != NULL) 1373 break; 1374 1375 /* 1376 * Check any devices we may be in the process of adding. 1377 */ 1378 if (spa->spa_pending_vdev) { 1379 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1380 device_guid) != NULL) 1381 break; 1382 } 1383 } 1384 } 1385 1386 return (spa); 1387 } 1388 1389 /* 1390 * Determine whether a pool with the given pool_guid exists. 1391 */ 1392 boolean_t 1393 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1394 { 1395 return (spa_by_guid(pool_guid, device_guid) != NULL); 1396 } 1397 1398 char * 1399 spa_strdup(const char *s) 1400 { 1401 size_t len; 1402 char *new; 1403 1404 len = strlen(s); 1405 new = kmem_alloc(len + 1, KM_SLEEP); 1406 bcopy(s, new, len); 1407 new[len] = '\0'; 1408 1409 return (new); 1410 } 1411 1412 void 1413 spa_strfree(char *s) 1414 { 1415 kmem_free(s, strlen(s) + 1); 1416 } 1417 1418 uint64_t 1419 spa_get_random(uint64_t range) 1420 { 1421 uint64_t r; 1422 1423 ASSERT(range != 0); 1424 1425 if (range == 1) 1426 return (0); 1427 1428 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1429 1430 return (r % range); 1431 } 1432 1433 uint64_t 1434 spa_generate_guid(spa_t *spa) 1435 { 1436 uint64_t guid = spa_get_random(-1ULL); 1437 1438 if (spa != NULL) { 1439 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1440 guid = spa_get_random(-1ULL); 1441 } else { 1442 while (guid == 0 || spa_guid_exists(guid, 0)) 1443 guid = spa_get_random(-1ULL); 1444 } 1445 1446 return (guid); 1447 } 1448 1449 void 1450 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1451 { 1452 char type[256]; 1453 char *checksum = NULL; 1454 char *compress = NULL; 1455 1456 if (bp != NULL) { 1457 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1458 dmu_object_byteswap_t bswap = 1459 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1460 (void) snprintf(type, sizeof (type), "bswap %s %s", 1461 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1462 "metadata" : "data", 1463 dmu_ot_byteswap[bswap].ob_name); 1464 } else { 1465 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1466 sizeof (type)); 1467 } 1468 if (!BP_IS_EMBEDDED(bp)) { 1469 checksum = 1470 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1471 } 1472 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1473 } 1474 1475 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1476 compress); 1477 } 1478 1479 void 1480 spa_freeze(spa_t *spa) 1481 { 1482 uint64_t freeze_txg = 0; 1483 1484 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1485 if (spa->spa_freeze_txg == UINT64_MAX) { 1486 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1487 spa->spa_freeze_txg = freeze_txg; 1488 } 1489 spa_config_exit(spa, SCL_ALL, FTAG); 1490 if (freeze_txg != 0) 1491 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1492 } 1493 1494 void 1495 zfs_panic_recover(const char *fmt, ...) 1496 { 1497 va_list adx; 1498 1499 va_start(adx, fmt); 1500 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1501 va_end(adx); 1502 } 1503 1504 /* 1505 * This is a stripped-down version of strtoull, suitable only for converting 1506 * lowercase hexadecimal numbers that don't overflow. 1507 */ 1508 uint64_t 1509 zfs_strtonum(const char *str, char **nptr) 1510 { 1511 uint64_t val = 0; 1512 char c; 1513 int digit; 1514 1515 while ((c = *str) != '\0') { 1516 if (c >= '0' && c <= '9') 1517 digit = c - '0'; 1518 else if (c >= 'a' && c <= 'f') 1519 digit = 10 + c - 'a'; 1520 else 1521 break; 1522 1523 val *= 16; 1524 val += digit; 1525 1526 str++; 1527 } 1528 1529 if (nptr) 1530 *nptr = (char *)str; 1531 1532 return (val); 1533 } 1534 1535 void 1536 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1537 { 1538 /* 1539 * We bump the feature refcount for each special vdev added to the pool 1540 */ 1541 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1542 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1543 } 1544 1545 /* 1546 * ========================================================================== 1547 * Accessor functions 1548 * ========================================================================== 1549 */ 1550 1551 boolean_t 1552 spa_shutting_down(spa_t *spa) 1553 { 1554 return (spa->spa_async_suspended); 1555 } 1556 1557 dsl_pool_t * 1558 spa_get_dsl(spa_t *spa) 1559 { 1560 return (spa->spa_dsl_pool); 1561 } 1562 1563 boolean_t 1564 spa_is_initializing(spa_t *spa) 1565 { 1566 return (spa->spa_is_initializing); 1567 } 1568 1569 boolean_t 1570 spa_indirect_vdevs_loaded(spa_t *spa) 1571 { 1572 return (spa->spa_indirect_vdevs_loaded); 1573 } 1574 1575 blkptr_t * 1576 spa_get_rootblkptr(spa_t *spa) 1577 { 1578 return (&spa->spa_ubsync.ub_rootbp); 1579 } 1580 1581 void 1582 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1583 { 1584 spa->spa_uberblock.ub_rootbp = *bp; 1585 } 1586 1587 void 1588 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1589 { 1590 if (spa->spa_root == NULL) 1591 buf[0] = '\0'; 1592 else 1593 (void) strncpy(buf, spa->spa_root, buflen); 1594 } 1595 1596 int 1597 spa_sync_pass(spa_t *spa) 1598 { 1599 return (spa->spa_sync_pass); 1600 } 1601 1602 char * 1603 spa_name(spa_t *spa) 1604 { 1605 return (spa->spa_name); 1606 } 1607 1608 uint64_t 1609 spa_guid(spa_t *spa) 1610 { 1611 dsl_pool_t *dp = spa_get_dsl(spa); 1612 uint64_t guid; 1613 1614 /* 1615 * If we fail to parse the config during spa_load(), we can go through 1616 * the error path (which posts an ereport) and end up here with no root 1617 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1618 * this case. 1619 */ 1620 if (spa->spa_root_vdev == NULL) 1621 return (spa->spa_config_guid); 1622 1623 guid = spa->spa_last_synced_guid != 0 ? 1624 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1625 1626 /* 1627 * Return the most recently synced out guid unless we're 1628 * in syncing context. 1629 */ 1630 if (dp && dsl_pool_sync_context(dp)) 1631 return (spa->spa_root_vdev->vdev_guid); 1632 else 1633 return (guid); 1634 } 1635 1636 uint64_t 1637 spa_load_guid(spa_t *spa) 1638 { 1639 /* 1640 * This is a GUID that exists solely as a reference for the 1641 * purposes of the arc. It is generated at load time, and 1642 * is never written to persistent storage. 1643 */ 1644 return (spa->spa_load_guid); 1645 } 1646 1647 uint64_t 1648 spa_last_synced_txg(spa_t *spa) 1649 { 1650 return (spa->spa_ubsync.ub_txg); 1651 } 1652 1653 uint64_t 1654 spa_first_txg(spa_t *spa) 1655 { 1656 return (spa->spa_first_txg); 1657 } 1658 1659 uint64_t 1660 spa_syncing_txg(spa_t *spa) 1661 { 1662 return (spa->spa_syncing_txg); 1663 } 1664 1665 /* 1666 * Return the last txg where data can be dirtied. The final txgs 1667 * will be used to just clear out any deferred frees that remain. 1668 */ 1669 uint64_t 1670 spa_final_dirty_txg(spa_t *spa) 1671 { 1672 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1673 } 1674 1675 pool_state_t 1676 spa_state(spa_t *spa) 1677 { 1678 return (spa->spa_state); 1679 } 1680 1681 spa_load_state_t 1682 spa_load_state(spa_t *spa) 1683 { 1684 return (spa->spa_load_state); 1685 } 1686 1687 uint64_t 1688 spa_freeze_txg(spa_t *spa) 1689 { 1690 return (spa->spa_freeze_txg); 1691 } 1692 1693 /* ARGSUSED */ 1694 uint64_t 1695 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1696 { 1697 return (lsize * spa_asize_inflation); 1698 } 1699 1700 /* 1701 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%), 1702 * or at least 128MB, unless that would cause it to be more than half the 1703 * pool size. 1704 * 1705 * See the comment above spa_slop_shift for details. 1706 */ 1707 uint64_t 1708 spa_get_slop_space(spa_t *spa) 1709 { 1710 uint64_t space = spa_get_dspace(spa); 1711 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop))); 1712 } 1713 1714 uint64_t 1715 spa_get_dspace(spa_t *spa) 1716 { 1717 return (spa->spa_dspace); 1718 } 1719 1720 uint64_t 1721 spa_get_checkpoint_space(spa_t *spa) 1722 { 1723 return (spa->spa_checkpoint_info.sci_dspace); 1724 } 1725 1726 void 1727 spa_update_dspace(spa_t *spa) 1728 { 1729 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1730 ddt_get_dedup_dspace(spa); 1731 if (spa->spa_vdev_removal != NULL) { 1732 /* 1733 * We can't allocate from the removing device, so 1734 * subtract its size. This prevents the DMU/DSL from 1735 * filling up the (now smaller) pool while we are in the 1736 * middle of removing the device. 1737 * 1738 * Note that the DMU/DSL doesn't actually know or care 1739 * how much space is allocated (it does its own tracking 1740 * of how much space has been logically used). So it 1741 * doesn't matter that the data we are moving may be 1742 * allocated twice (on the old device and the new 1743 * device). 1744 */ 1745 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1746 vdev_t *vd = 1747 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1748 spa->spa_dspace -= spa_deflate(spa) ? 1749 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1750 spa_config_exit(spa, SCL_VDEV, FTAG); 1751 } 1752 } 1753 1754 /* 1755 * Return the failure mode that has been set to this pool. The default 1756 * behavior will be to block all I/Os when a complete failure occurs. 1757 */ 1758 uint8_t 1759 spa_get_failmode(spa_t *spa) 1760 { 1761 return (spa->spa_failmode); 1762 } 1763 1764 boolean_t 1765 spa_suspended(spa_t *spa) 1766 { 1767 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1768 } 1769 1770 uint64_t 1771 spa_version(spa_t *spa) 1772 { 1773 return (spa->spa_ubsync.ub_version); 1774 } 1775 1776 boolean_t 1777 spa_deflate(spa_t *spa) 1778 { 1779 return (spa->spa_deflate); 1780 } 1781 1782 metaslab_class_t * 1783 spa_normal_class(spa_t *spa) 1784 { 1785 return (spa->spa_normal_class); 1786 } 1787 1788 metaslab_class_t * 1789 spa_log_class(spa_t *spa) 1790 { 1791 return (spa->spa_log_class); 1792 } 1793 1794 metaslab_class_t * 1795 spa_special_class(spa_t *spa) 1796 { 1797 return (spa->spa_special_class); 1798 } 1799 1800 metaslab_class_t * 1801 spa_dedup_class(spa_t *spa) 1802 { 1803 return (spa->spa_dedup_class); 1804 } 1805 1806 /* 1807 * Locate an appropriate allocation class 1808 */ 1809 metaslab_class_t * 1810 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1811 uint_t level, uint_t special_smallblk) 1812 { 1813 if (DMU_OT_IS_ZIL(objtype)) { 1814 if (spa->spa_log_class->mc_groups != 0) 1815 return (spa_log_class(spa)); 1816 else 1817 return (spa_normal_class(spa)); 1818 } 1819 1820 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1821 1822 if (DMU_OT_IS_DDT(objtype)) { 1823 if (spa->spa_dedup_class->mc_groups != 0) 1824 return (spa_dedup_class(spa)); 1825 else if (has_special_class && zfs_ddt_data_is_special) 1826 return (spa_special_class(spa)); 1827 else 1828 return (spa_normal_class(spa)); 1829 } 1830 1831 /* Indirect blocks for user data can land in special if allowed */ 1832 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 1833 if (has_special_class && zfs_user_indirect_is_special) 1834 return (spa_special_class(spa)); 1835 else 1836 return (spa_normal_class(spa)); 1837 } 1838 1839 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 1840 if (has_special_class) 1841 return (spa_special_class(spa)); 1842 else 1843 return (spa_normal_class(spa)); 1844 } 1845 1846 /* 1847 * Allow small file blocks in special class in some cases (like 1848 * for the dRAID vdev feature). But always leave a reserve of 1849 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 1850 */ 1851 if (DMU_OT_IS_FILE(objtype) && 1852 has_special_class && size <= special_smallblk) { 1853 metaslab_class_t *special = spa_special_class(spa); 1854 uint64_t alloc = metaslab_class_get_alloc(special); 1855 uint64_t space = metaslab_class_get_space(special); 1856 uint64_t limit = 1857 (space * (100 - zfs_special_class_metadata_reserve_pct)) 1858 / 100; 1859 1860 if (alloc < limit) 1861 return (special); 1862 } 1863 1864 return (spa_normal_class(spa)); 1865 } 1866 1867 void 1868 spa_evicting_os_register(spa_t *spa, objset_t *os) 1869 { 1870 mutex_enter(&spa->spa_evicting_os_lock); 1871 list_insert_head(&spa->spa_evicting_os_list, os); 1872 mutex_exit(&spa->spa_evicting_os_lock); 1873 } 1874 1875 void 1876 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 1877 { 1878 mutex_enter(&spa->spa_evicting_os_lock); 1879 list_remove(&spa->spa_evicting_os_list, os); 1880 cv_broadcast(&spa->spa_evicting_os_cv); 1881 mutex_exit(&spa->spa_evicting_os_lock); 1882 } 1883 1884 void 1885 spa_evicting_os_wait(spa_t *spa) 1886 { 1887 mutex_enter(&spa->spa_evicting_os_lock); 1888 while (!list_is_empty(&spa->spa_evicting_os_list)) 1889 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 1890 mutex_exit(&spa->spa_evicting_os_lock); 1891 1892 dmu_buf_user_evict_wait(); 1893 } 1894 1895 int 1896 spa_max_replication(spa_t *spa) 1897 { 1898 /* 1899 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1900 * handle BPs with more than one DVA allocated. Set our max 1901 * replication level accordingly. 1902 */ 1903 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1904 return (1); 1905 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1906 } 1907 1908 int 1909 spa_prev_software_version(spa_t *spa) 1910 { 1911 return (spa->spa_prev_software_version); 1912 } 1913 1914 uint64_t 1915 spa_deadman_synctime(spa_t *spa) 1916 { 1917 return (spa->spa_deadman_synctime); 1918 } 1919 1920 uint64_t 1921 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1922 { 1923 uint64_t asize = DVA_GET_ASIZE(dva); 1924 uint64_t dsize = asize; 1925 1926 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1927 1928 if (asize != 0 && spa->spa_deflate) { 1929 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1930 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1931 } 1932 1933 return (dsize); 1934 } 1935 1936 uint64_t 1937 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1938 { 1939 uint64_t dsize = 0; 1940 1941 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 1942 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1943 1944 return (dsize); 1945 } 1946 1947 uint64_t 1948 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1949 { 1950 uint64_t dsize = 0; 1951 1952 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1953 1954 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 1955 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1956 1957 spa_config_exit(spa, SCL_VDEV, FTAG); 1958 1959 return (dsize); 1960 } 1961 1962 uint64_t 1963 spa_dirty_data(spa_t *spa) 1964 { 1965 return (spa->spa_dsl_pool->dp_dirty_total); 1966 } 1967 1968 /* 1969 * ========================================================================== 1970 * Initialization and Termination 1971 * ========================================================================== 1972 */ 1973 1974 static int 1975 spa_name_compare(const void *a1, const void *a2) 1976 { 1977 const spa_t *s1 = a1; 1978 const spa_t *s2 = a2; 1979 int s; 1980 1981 s = strcmp(s1->spa_name, s2->spa_name); 1982 1983 return (AVL_ISIGN(s)); 1984 } 1985 1986 int 1987 spa_busy(void) 1988 { 1989 return (spa_active_count); 1990 } 1991 1992 void 1993 spa_boot_init() 1994 { 1995 spa_config_load(); 1996 } 1997 1998 void 1999 spa_init(int mode) 2000 { 2001 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2002 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2003 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2004 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2005 2006 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2007 offsetof(spa_t, spa_avl)); 2008 2009 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2010 offsetof(spa_aux_t, aux_avl)); 2011 2012 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2013 offsetof(spa_aux_t, aux_avl)); 2014 2015 spa_mode_global = mode; 2016 2017 #ifdef _KERNEL 2018 spa_arch_init(); 2019 #else 2020 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 2021 arc_procfd = open("/proc/self/ctl", O_WRONLY); 2022 if (arc_procfd == -1) { 2023 perror("could not enable watchpoints: " 2024 "opening /proc/self/ctl failed: "); 2025 } else { 2026 arc_watch = B_TRUE; 2027 } 2028 } 2029 #endif 2030 2031 zfs_refcount_init(); 2032 unique_init(); 2033 range_tree_init(); 2034 metaslab_alloc_trace_init(); 2035 zio_init(); 2036 dmu_init(); 2037 zil_init(); 2038 vdev_cache_stat_init(); 2039 vdev_mirror_stat_init(); 2040 zfs_prop_init(); 2041 zpool_prop_init(); 2042 zpool_feature_init(); 2043 spa_config_load(); 2044 l2arc_start(); 2045 scan_init(); 2046 } 2047 2048 void 2049 spa_fini(void) 2050 { 2051 l2arc_stop(); 2052 2053 spa_evict_all(); 2054 2055 vdev_cache_stat_fini(); 2056 vdev_mirror_stat_fini(); 2057 zil_fini(); 2058 dmu_fini(); 2059 zio_fini(); 2060 metaslab_alloc_trace_fini(); 2061 range_tree_fini(); 2062 unique_fini(); 2063 zfs_refcount_fini(); 2064 scan_fini(); 2065 2066 avl_destroy(&spa_namespace_avl); 2067 avl_destroy(&spa_spare_avl); 2068 avl_destroy(&spa_l2cache_avl); 2069 2070 cv_destroy(&spa_namespace_cv); 2071 mutex_destroy(&spa_namespace_lock); 2072 mutex_destroy(&spa_spare_lock); 2073 mutex_destroy(&spa_l2cache_lock); 2074 } 2075 2076 /* 2077 * Return whether this pool has slogs. No locking needed. 2078 * It's not a problem if the wrong answer is returned as it's only for 2079 * performance and not correctness 2080 */ 2081 boolean_t 2082 spa_has_slogs(spa_t *spa) 2083 { 2084 return (spa->spa_log_class->mc_rotor != NULL); 2085 } 2086 2087 spa_log_state_t 2088 spa_get_log_state(spa_t *spa) 2089 { 2090 return (spa->spa_log_state); 2091 } 2092 2093 void 2094 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2095 { 2096 spa->spa_log_state = state; 2097 } 2098 2099 boolean_t 2100 spa_is_root(spa_t *spa) 2101 { 2102 return (spa->spa_is_root); 2103 } 2104 2105 boolean_t 2106 spa_writeable(spa_t *spa) 2107 { 2108 return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config); 2109 } 2110 2111 /* 2112 * Returns true if there is a pending sync task in any of the current 2113 * syncing txg, the current quiescing txg, or the current open txg. 2114 */ 2115 boolean_t 2116 spa_has_pending_synctask(spa_t *spa) 2117 { 2118 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2119 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2120 } 2121 2122 int 2123 spa_mode(spa_t *spa) 2124 { 2125 return (spa->spa_mode); 2126 } 2127 2128 uint64_t 2129 spa_bootfs(spa_t *spa) 2130 { 2131 return (spa->spa_bootfs); 2132 } 2133 2134 uint64_t 2135 spa_delegation(spa_t *spa) 2136 { 2137 return (spa->spa_delegation); 2138 } 2139 2140 objset_t * 2141 spa_meta_objset(spa_t *spa) 2142 { 2143 return (spa->spa_meta_objset); 2144 } 2145 2146 enum zio_checksum 2147 spa_dedup_checksum(spa_t *spa) 2148 { 2149 return (spa->spa_dedup_checksum); 2150 } 2151 2152 /* 2153 * Reset pool scan stat per scan pass (or reboot). 2154 */ 2155 void 2156 spa_scan_stat_init(spa_t *spa) 2157 { 2158 /* data not stored on disk */ 2159 spa->spa_scan_pass_start = gethrestime_sec(); 2160 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2161 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2162 else 2163 spa->spa_scan_pass_scrub_pause = 0; 2164 spa->spa_scan_pass_scrub_spent_paused = 0; 2165 spa->spa_scan_pass_exam = 0; 2166 spa->spa_scan_pass_issued = 0; 2167 vdev_scan_stat_init(spa->spa_root_vdev); 2168 } 2169 2170 /* 2171 * Get scan stats for zpool status reports 2172 */ 2173 int 2174 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2175 { 2176 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2177 2178 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 2179 return (SET_ERROR(ENOENT)); 2180 bzero(ps, sizeof (pool_scan_stat_t)); 2181 2182 /* data stored on disk */ 2183 ps->pss_func = scn->scn_phys.scn_func; 2184 ps->pss_state = scn->scn_phys.scn_state; 2185 ps->pss_start_time = scn->scn_phys.scn_start_time; 2186 ps->pss_end_time = scn->scn_phys.scn_end_time; 2187 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2188 ps->pss_to_process = scn->scn_phys.scn_to_process; 2189 ps->pss_processed = scn->scn_phys.scn_processed; 2190 ps->pss_errors = scn->scn_phys.scn_errors; 2191 ps->pss_examined = scn->scn_phys.scn_examined; 2192 ps->pss_issued = 2193 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2194 ps->pss_state = scn->scn_phys.scn_state; 2195 2196 /* data not stored on disk */ 2197 ps->pss_pass_start = spa->spa_scan_pass_start; 2198 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2199 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2200 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2201 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2202 2203 return (0); 2204 } 2205 2206 int 2207 spa_maxblocksize(spa_t *spa) 2208 { 2209 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2210 return (SPA_MAXBLOCKSIZE); 2211 else 2212 return (SPA_OLD_MAXBLOCKSIZE); 2213 } 2214 2215 int 2216 spa_maxdnodesize(spa_t *spa) 2217 { 2218 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2219 return (DNODE_MAX_SIZE); 2220 else 2221 return (DNODE_MIN_SIZE); 2222 } 2223 2224 boolean_t 2225 spa_multihost(spa_t *spa) 2226 { 2227 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2228 } 2229 2230 unsigned long 2231 spa_get_hostid(void) 2232 { 2233 unsigned long myhostid; 2234 2235 #ifdef _KERNEL 2236 myhostid = zone_get_hostid(NULL); 2237 #else /* _KERNEL */ 2238 /* 2239 * We're emulating the system's hostid in userland, so 2240 * we can't use zone_get_hostid(). 2241 */ 2242 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2243 #endif /* _KERNEL */ 2244 2245 return (myhostid); 2246 } 2247 2248 /* 2249 * Returns the txg that the last device removal completed. No indirect mappings 2250 * have been added since this txg. 2251 */ 2252 uint64_t 2253 spa_get_last_removal_txg(spa_t *spa) 2254 { 2255 uint64_t vdevid; 2256 uint64_t ret = -1ULL; 2257 2258 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2259 /* 2260 * sr_prev_indirect_vdev is only modified while holding all the 2261 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2262 * examining it. 2263 */ 2264 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2265 2266 while (vdevid != -1ULL) { 2267 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2268 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2269 2270 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2271 2272 /* 2273 * If the removal did not remap any data, we don't care. 2274 */ 2275 if (vdev_indirect_births_count(vib) != 0) { 2276 ret = vdev_indirect_births_last_entry_txg(vib); 2277 break; 2278 } 2279 2280 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2281 } 2282 spa_config_exit(spa, SCL_VDEV, FTAG); 2283 2284 IMPLY(ret != -1ULL, 2285 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2286 2287 return (ret); 2288 } 2289 2290 boolean_t 2291 spa_trust_config(spa_t *spa) 2292 { 2293 return (spa->spa_trust_config); 2294 } 2295 2296 uint64_t 2297 spa_missing_tvds_allowed(spa_t *spa) 2298 { 2299 return (spa->spa_missing_tvds_allowed); 2300 } 2301 2302 void 2303 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2304 { 2305 spa->spa_missing_tvds = missing; 2306 } 2307 2308 boolean_t 2309 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2310 { 2311 vdev_t *rvd = spa->spa_root_vdev; 2312 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2313 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2314 return (B_FALSE); 2315 } 2316 return (B_TRUE); 2317 } 2318 2319 boolean_t 2320 spa_has_checkpoint(spa_t *spa) 2321 { 2322 return (spa->spa_checkpoint_txg != 0); 2323 } 2324 2325 boolean_t 2326 spa_importing_readonly_checkpoint(spa_t *spa) 2327 { 2328 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2329 spa->spa_mode == FREAD); 2330 } 2331 2332 uint64_t 2333 spa_min_claim_txg(spa_t *spa) 2334 { 2335 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2336 2337 if (checkpoint_txg != 0) 2338 return (checkpoint_txg + 1); 2339 2340 return (spa->spa_first_txg); 2341 } 2342 2343 /* 2344 * If there is a checkpoint, async destroys may consume more space from 2345 * the pool instead of freeing it. In an attempt to save the pool from 2346 * getting suspended when it is about to run out of space, we stop 2347 * processing async destroys. 2348 */ 2349 boolean_t 2350 spa_suspend_async_destroy(spa_t *spa) 2351 { 2352 dsl_pool_t *dp = spa_get_dsl(spa); 2353 2354 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2355 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2356 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2357 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2358 2359 if (spa_has_checkpoint(spa) && avail == 0) 2360 return (B_TRUE); 2361 2362 return (B_FALSE); 2363 } 2364