1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2014 Integros [integros.com] 28 * Copyright (c) 2017 Datto Inc. 29 * Copyright 2019 Joyent, Inc. 30 * Copyright (c) 2017, Intel Corporation. 31 * Copyright 2020 Joyent, Inc. 32 * Copyright 2022 Oxide Computer Company 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/spa_impl.h> 37 #include <sys/spa_boot.h> 38 #include <sys/zio.h> 39 #include <sys/zio_checksum.h> 40 #include <sys/zio_compress.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/vdev_impl.h> 46 #include <sys/vdev_initialize.h> 47 #include <sys/vdev_trim.h> 48 #include <sys/vdev_raidz.h> 49 #include <sys/metaslab.h> 50 #include <sys/uberblock_impl.h> 51 #include <sys/txg.h> 52 #include <sys/avl.h> 53 #include <sys/unique.h> 54 #include <sys/dsl_pool.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_scan.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/arc.h> 61 #include <sys/ddt.h> 62 #include "zfs_prop.h" 63 #include <sys/btree.h> 64 #include <sys/zfeature.h> 65 66 /* 67 * SPA locking 68 * 69 * There are three basic locks for managing spa_t structures: 70 * 71 * spa_namespace_lock (global mutex) 72 * 73 * This lock must be acquired to do any of the following: 74 * 75 * - Lookup a spa_t by name 76 * - Add or remove a spa_t from the namespace 77 * - Increase spa_refcount from non-zero 78 * - Check if spa_refcount is zero 79 * - Rename a spa_t 80 * - add/remove/attach/detach devices 81 * - Held for the duration of create/destroy/import/export 82 * 83 * It does not need to handle recursion. A create or destroy may 84 * reference objects (files or zvols) in other pools, but by 85 * definition they must have an existing reference, and will never need 86 * to lookup a spa_t by name. 87 * 88 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 89 * 90 * This reference count keep track of any active users of the spa_t. The 91 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 92 * the refcount is never really 'zero' - opening a pool implicitly keeps 93 * some references in the DMU. Internally we check against spa_minref, but 94 * present the image of a zero/non-zero value to consumers. 95 * 96 * spa_config_lock[] (per-spa array of rwlocks) 97 * 98 * This protects the spa_t from config changes, and must be held in 99 * the following circumstances: 100 * 101 * - RW_READER to perform I/O to the spa 102 * - RW_WRITER to change the vdev config 103 * 104 * The locking order is fairly straightforward: 105 * 106 * spa_namespace_lock -> spa_refcount 107 * 108 * The namespace lock must be acquired to increase the refcount from 0 109 * or to check if it is zero. 110 * 111 * spa_refcount -> spa_config_lock[] 112 * 113 * There must be at least one valid reference on the spa_t to acquire 114 * the config lock. 115 * 116 * spa_namespace_lock -> spa_config_lock[] 117 * 118 * The namespace lock must always be taken before the config lock. 119 * 120 * 121 * The spa_namespace_lock can be acquired directly and is globally visible. 122 * 123 * The namespace is manipulated using the following functions, all of which 124 * require the spa_namespace_lock to be held. 125 * 126 * spa_lookup() Lookup a spa_t by name. 127 * 128 * spa_add() Create a new spa_t in the namespace. 129 * 130 * spa_remove() Remove a spa_t from the namespace. This also 131 * frees up any memory associated with the spa_t. 132 * 133 * spa_next() Returns the next spa_t in the system, or the 134 * first if NULL is passed. 135 * 136 * spa_evict_all() Shutdown and remove all spa_t structures in 137 * the system. 138 * 139 * spa_guid_exists() Determine whether a pool/device guid exists. 140 * 141 * The spa_refcount is manipulated using the following functions: 142 * 143 * spa_open_ref() Adds a reference to the given spa_t. Must be 144 * called with spa_namespace_lock held if the 145 * refcount is currently zero. 146 * 147 * spa_close() Remove a reference from the spa_t. This will 148 * not free the spa_t or remove it from the 149 * namespace. No locking is required. 150 * 151 * spa_refcount_zero() Returns true if the refcount is currently 152 * zero. Must be called with spa_namespace_lock 153 * held. 154 * 155 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 156 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 157 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 158 * 159 * To read the configuration, it suffices to hold one of these locks as reader. 160 * To modify the configuration, you must hold all locks as writer. To modify 161 * vdev state without altering the vdev tree's topology (e.g. online/offline), 162 * you must hold SCL_STATE and SCL_ZIO as writer. 163 * 164 * We use these distinct config locks to avoid recursive lock entry. 165 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 166 * block allocations (SCL_ALLOC), which may require reading space maps 167 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 168 * 169 * The spa config locks cannot be normal rwlocks because we need the 170 * ability to hand off ownership. For example, SCL_ZIO is acquired 171 * by the issuing thread and later released by an interrupt thread. 172 * They do, however, obey the usual write-wanted semantics to prevent 173 * writer (i.e. system administrator) starvation. 174 * 175 * The lock acquisition rules are as follows: 176 * 177 * SCL_CONFIG 178 * Protects changes to the vdev tree topology, such as vdev 179 * add/remove/attach/detach. Protects the dirty config list 180 * (spa_config_dirty_list) and the set of spares and l2arc devices. 181 * 182 * SCL_STATE 183 * Protects changes to pool state and vdev state, such as vdev 184 * online/offline/fault/degrade/clear. Protects the dirty state list 185 * (spa_state_dirty_list) and global pool state (spa_state). 186 * 187 * SCL_ALLOC 188 * Protects changes to metaslab groups and classes. 189 * Held as reader by metaslab_alloc() and metaslab_claim(). 190 * 191 * SCL_ZIO 192 * Held by bp-level zios (those which have no io_vd upon entry) 193 * to prevent changes to the vdev tree. The bp-level zio implicitly 194 * protects all of its vdev child zios, which do not hold SCL_ZIO. 195 * 196 * SCL_FREE 197 * Protects changes to metaslab groups and classes. 198 * Held as reader by metaslab_free(). SCL_FREE is distinct from 199 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 200 * blocks in zio_done() while another i/o that holds either 201 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 202 * 203 * SCL_VDEV 204 * Held as reader to prevent changes to the vdev tree during trivial 205 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 206 * other locks, and lower than all of them, to ensure that it's safe 207 * to acquire regardless of caller context. 208 * 209 * In addition, the following rules apply: 210 * 211 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 212 * The lock ordering is SCL_CONFIG > spa_props_lock. 213 * 214 * (b) I/O operations on leaf vdevs. For any zio operation that takes 215 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 216 * or zio_write_phys() -- the caller must ensure that the config cannot 217 * cannot change in the interim, and that the vdev cannot be reopened. 218 * SCL_STATE as reader suffices for both. 219 * 220 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 221 * 222 * spa_vdev_enter() Acquire the namespace lock and the config lock 223 * for writing. 224 * 225 * spa_vdev_exit() Release the config lock, wait for all I/O 226 * to complete, sync the updated configs to the 227 * cache, and release the namespace lock. 228 * 229 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 230 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 231 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 232 */ 233 234 static avl_tree_t spa_namespace_avl; 235 kmutex_t spa_namespace_lock; 236 static kcondvar_t spa_namespace_cv; 237 static int spa_active_count; 238 int spa_max_replication_override = SPA_DVAS_PER_BP; 239 240 static kmutex_t spa_spare_lock; 241 static avl_tree_t spa_spare_avl; 242 static kmutex_t spa_l2cache_lock; 243 static avl_tree_t spa_l2cache_avl; 244 245 kmem_cache_t *spa_buffer_pool; 246 int spa_mode_global; 247 248 #ifdef ZFS_DEBUG 249 /* 250 * Everything except dprintf, spa, and indirect_remap is on by default 251 * in debug builds. 252 */ 253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP); 254 #else 255 int zfs_flags = 0; 256 #endif 257 258 /* 259 * zfs_recover can be set to nonzero to attempt to recover from 260 * otherwise-fatal errors, typically caused by on-disk corruption. When 261 * set, calls to zfs_panic_recover() will turn into warning messages. 262 * This should only be used as a last resort, as it typically results 263 * in leaked space, or worse. 264 */ 265 boolean_t zfs_recover = B_FALSE; 266 267 /* 268 * If destroy encounters an EIO while reading metadata (e.g. indirect 269 * blocks), space referenced by the missing metadata can not be freed. 270 * Normally this causes the background destroy to become "stalled", as 271 * it is unable to make forward progress. While in this stalled state, 272 * all remaining space to free from the error-encountering filesystem is 273 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 274 * permanently leak the space from indirect blocks that can not be read, 275 * and continue to free everything else that it can. 276 * 277 * The default, "stalling" behavior is useful if the storage partially 278 * fails (i.e. some but not all i/os fail), and then later recovers. In 279 * this case, we will be able to continue pool operations while it is 280 * partially failed, and when it recovers, we can continue to free the 281 * space, with no leaks. However, note that this case is actually 282 * fairly rare. 283 * 284 * Typically pools either (a) fail completely (but perhaps temporarily, 285 * e.g. a top-level vdev going offline), or (b) have localized, 286 * permanent errors (e.g. disk returns the wrong data due to bit flip or 287 * firmware bug). In case (a), this setting does not matter because the 288 * pool will be suspended and the sync thread will not be able to make 289 * forward progress regardless. In case (b), because the error is 290 * permanent, the best we can do is leak the minimum amount of space, 291 * which is what setting this flag will do. Therefore, it is reasonable 292 * for this flag to normally be set, but we chose the more conservative 293 * approach of not setting it, so that there is no possibility of 294 * leaking space in the "partial temporary" failure case. 295 */ 296 boolean_t zfs_free_leak_on_eio = B_FALSE; 297 298 /* 299 * Expiration time in milliseconds. This value has two meanings. First it is 300 * used to determine when the spa_deadman() logic should fire. By default the 301 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. 302 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 303 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 304 * in a system panic. 305 */ 306 uint64_t zfs_deadman_synctime_ms = 1000000ULL; 307 308 /* 309 * Check time in milliseconds. This defines the frequency at which we check 310 * for hung I/O. 311 */ 312 uint64_t zfs_deadman_checktime_ms = 5000ULL; 313 314 /* 315 * Override the zfs deadman behavior via /etc/system. By default the 316 * deadman is enabled except on VMware and sparc deployments. 317 */ 318 int zfs_deadman_enabled = -1; 319 320 #if defined(__amd64__) || defined(__i386__) 321 /* 322 * Should we allow the use of mechanisms that depend on saving and restoring 323 * the FPU state? This was disabled initially due to stability issues in 324 * the kernel FPU routines; see bug 13717. As of the fixes for 13902 and 325 * 13915, it has once again been enabled. 326 */ 327 int zfs_fpu_enabled = 1; 328 #endif 329 330 /* 331 * The worst case is single-sector max-parity RAID-Z blocks, in which 332 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 333 * times the size; so just assume that. Add to this the fact that 334 * we can have up to 3 DVAs per bp, and one more factor of 2 because 335 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 336 * the worst case is: 337 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 338 */ 339 int spa_asize_inflation = 24; 340 341 /* 342 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 343 * the pool to be consumed. This ensures that we don't run the pool 344 * completely out of space, due to unaccounted changes (e.g. to the MOS). 345 * It also limits the worst-case time to allocate space. If we have 346 * less than this amount of free space, most ZPL operations (e.g. write, 347 * create) will return ENOSPC. 348 * 349 * Certain operations (e.g. file removal, most administrative actions) can 350 * use half the slop space. They will only return ENOSPC if less than half 351 * the slop space is free. Typically, once the pool has less than the slop 352 * space free, the user will use these operations to free up space in the pool. 353 * These are the operations that call dsl_pool_adjustedsize() with the netfree 354 * argument set to TRUE. 355 * 356 * Operations that are almost guaranteed to free up space in the absence of 357 * a pool checkpoint can use up to three quarters of the slop space 358 * (e.g zfs destroy). 359 * 360 * A very restricted set of operations are always permitted, regardless of 361 * the amount of free space. These are the operations that call 362 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 363 * increase in the amount of space used, it is possible to run the pool 364 * completely out of space, causing it to be permanently read-only. 365 * 366 * Note that on very small pools, the slop space will be larger than 367 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 368 * but we never allow it to be more than half the pool size. 369 * 370 * See also the comments in zfs_space_check_t. 371 */ 372 int spa_slop_shift = 5; 373 uint64_t spa_min_slop = 128 * 1024 * 1024; 374 375 int spa_allocators = 4; 376 377 /*PRINTFLIKE2*/ 378 void 379 spa_load_failed(spa_t *spa, const char *fmt, ...) 380 { 381 va_list adx; 382 char buf[256]; 383 384 va_start(adx, fmt); 385 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 386 va_end(adx); 387 388 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 389 spa->spa_trust_config ? "trusted" : "untrusted", buf); 390 } 391 392 /*PRINTFLIKE2*/ 393 void 394 spa_load_note(spa_t *spa, const char *fmt, ...) 395 { 396 va_list adx; 397 char buf[256]; 398 399 va_start(adx, fmt); 400 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 401 va_end(adx); 402 403 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 404 spa->spa_trust_config ? "trusted" : "untrusted", buf); 405 } 406 407 /* 408 * By default dedup and user data indirects land in the special class 409 */ 410 int zfs_ddt_data_is_special = B_TRUE; 411 int zfs_user_indirect_is_special = B_TRUE; 412 413 /* 414 * The percentage of special class final space reserved for metadata only. 415 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 416 * let metadata into the class. 417 */ 418 int zfs_special_class_metadata_reserve_pct = 25; 419 420 /* 421 * ========================================================================== 422 * SPA config locking 423 * ========================================================================== 424 */ 425 static void 426 spa_config_lock_init(spa_t *spa) 427 { 428 for (int i = 0; i < SCL_LOCKS; i++) { 429 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 430 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 431 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 432 zfs_refcount_create_untracked(&scl->scl_count); 433 scl->scl_writer = NULL; 434 scl->scl_write_wanted = 0; 435 } 436 } 437 438 static void 439 spa_config_lock_destroy(spa_t *spa) 440 { 441 for (int i = 0; i < SCL_LOCKS; i++) { 442 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 443 mutex_destroy(&scl->scl_lock); 444 cv_destroy(&scl->scl_cv); 445 zfs_refcount_destroy(&scl->scl_count); 446 ASSERT(scl->scl_writer == NULL); 447 ASSERT(scl->scl_write_wanted == 0); 448 } 449 } 450 451 int 452 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 453 { 454 for (int i = 0; i < SCL_LOCKS; i++) { 455 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 456 if (!(locks & (1 << i))) 457 continue; 458 mutex_enter(&scl->scl_lock); 459 if (rw == RW_READER) { 460 if (scl->scl_writer || scl->scl_write_wanted) { 461 mutex_exit(&scl->scl_lock); 462 spa_config_exit(spa, locks & ((1 << i) - 1), 463 tag); 464 return (0); 465 } 466 } else { 467 ASSERT(scl->scl_writer != curthread); 468 if (!zfs_refcount_is_zero(&scl->scl_count)) { 469 mutex_exit(&scl->scl_lock); 470 spa_config_exit(spa, locks & ((1 << i) - 1), 471 tag); 472 return (0); 473 } 474 scl->scl_writer = curthread; 475 } 476 (void) zfs_refcount_add(&scl->scl_count, tag); 477 mutex_exit(&scl->scl_lock); 478 } 479 return (1); 480 } 481 482 void 483 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 484 { 485 int wlocks_held = 0; 486 487 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 488 489 for (int i = 0; i < SCL_LOCKS; i++) { 490 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 491 if (scl->scl_writer == curthread) 492 wlocks_held |= (1 << i); 493 if (!(locks & (1 << i))) 494 continue; 495 mutex_enter(&scl->scl_lock); 496 if (rw == RW_READER) { 497 while (scl->scl_writer || scl->scl_write_wanted) { 498 cv_wait(&scl->scl_cv, &scl->scl_lock); 499 } 500 } else { 501 ASSERT(scl->scl_writer != curthread); 502 while (!zfs_refcount_is_zero(&scl->scl_count)) { 503 scl->scl_write_wanted++; 504 cv_wait(&scl->scl_cv, &scl->scl_lock); 505 scl->scl_write_wanted--; 506 } 507 scl->scl_writer = curthread; 508 } 509 (void) zfs_refcount_add(&scl->scl_count, tag); 510 mutex_exit(&scl->scl_lock); 511 } 512 ASSERT3U(wlocks_held, <=, locks); 513 } 514 515 void 516 spa_config_exit(spa_t *spa, int locks, void *tag) 517 { 518 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 519 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 520 if (!(locks & (1 << i))) 521 continue; 522 mutex_enter(&scl->scl_lock); 523 ASSERT(!zfs_refcount_is_zero(&scl->scl_count)); 524 if (zfs_refcount_remove(&scl->scl_count, tag) == 0) { 525 ASSERT(scl->scl_writer == NULL || 526 scl->scl_writer == curthread); 527 scl->scl_writer = NULL; /* OK in either case */ 528 cv_broadcast(&scl->scl_cv); 529 } 530 mutex_exit(&scl->scl_lock); 531 } 532 } 533 534 int 535 spa_config_held(spa_t *spa, int locks, krw_t rw) 536 { 537 int locks_held = 0; 538 539 for (int i = 0; i < SCL_LOCKS; i++) { 540 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 541 if (!(locks & (1 << i))) 542 continue; 543 if ((rw == RW_READER && 544 !zfs_refcount_is_zero(&scl->scl_count)) || 545 (rw == RW_WRITER && scl->scl_writer == curthread)) 546 locks_held |= 1 << i; 547 } 548 549 return (locks_held); 550 } 551 552 /* 553 * ========================================================================== 554 * SPA namespace functions 555 * ========================================================================== 556 */ 557 558 /* 559 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 560 * Returns NULL if no matching spa_t is found. 561 */ 562 spa_t * 563 spa_lookup(const char *name) 564 { 565 static spa_t search; /* spa_t is large; don't allocate on stack */ 566 spa_t *spa; 567 avl_index_t where; 568 char *cp; 569 570 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 571 572 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 573 574 /* 575 * If it's a full dataset name, figure out the pool name and 576 * just use that. 577 */ 578 cp = strpbrk(search.spa_name, "/@#"); 579 if (cp != NULL) 580 *cp = '\0'; 581 582 spa = avl_find(&spa_namespace_avl, &search, &where); 583 584 return (spa); 585 } 586 587 /* 588 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 589 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 590 * looking for potentially hung I/Os. 591 */ 592 void 593 spa_deadman(void *arg) 594 { 595 spa_t *spa = arg; 596 597 /* 598 * Disable the deadman timer if the pool is suspended. 599 */ 600 if (spa_suspended(spa)) { 601 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 602 return; 603 } 604 605 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 606 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 607 ++spa->spa_deadman_calls); 608 if (zfs_deadman_enabled) 609 vdev_deadman(spa->spa_root_vdev); 610 } 611 612 int 613 spa_log_sm_sort_by_txg(const void *va, const void *vb) 614 { 615 const spa_log_sm_t *a = va; 616 const spa_log_sm_t *b = vb; 617 618 return (TREE_CMP(a->sls_txg, b->sls_txg)); 619 } 620 621 /* 622 * Create an uninitialized spa_t with the given name. Requires 623 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 624 * exist by calling spa_lookup() first. 625 */ 626 spa_t * 627 spa_add(const char *name, nvlist_t *config, const char *altroot) 628 { 629 spa_t *spa; 630 spa_config_dirent_t *dp; 631 cyc_handler_t hdlr; 632 cyc_time_t when; 633 634 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 635 636 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 637 638 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 639 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 640 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 641 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 642 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 643 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 644 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 645 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 646 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 647 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 648 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 649 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 650 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 651 mutex_init(&spa->spa_imp_kstat_lock, NULL, MUTEX_DEFAULT, NULL); 652 653 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 654 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 655 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 656 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 657 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 658 659 for (int t = 0; t < TXG_SIZE; t++) 660 bplist_create(&spa->spa_free_bplist[t]); 661 662 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 663 spa->spa_state = POOL_STATE_UNINITIALIZED; 664 spa->spa_freeze_txg = UINT64_MAX; 665 spa->spa_final_txg = UINT64_MAX; 666 spa->spa_load_max_txg = UINT64_MAX; 667 spa->spa_proc = &p0; 668 spa->spa_proc_state = SPA_PROC_NONE; 669 spa->spa_trust_config = B_TRUE; 670 671 hdlr.cyh_func = spa_deadman; 672 hdlr.cyh_arg = spa; 673 hdlr.cyh_level = CY_LOW_LEVEL; 674 675 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 676 677 /* 678 * This determines how often we need to check for hung I/Os after 679 * the cyclic has already fired. Since checking for hung I/Os is 680 * an expensive operation we don't want to check too frequently. 681 * Instead wait for 5 seconds before checking again. 682 */ 683 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); 684 when.cyt_when = CY_INFINITY; 685 mutex_enter(&cpu_lock); 686 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 687 mutex_exit(&cpu_lock); 688 689 zfs_refcount_create(&spa->spa_refcount); 690 spa_config_lock_init(spa); 691 692 avl_add(&spa_namespace_avl, spa); 693 694 /* 695 * Set the alternate root, if there is one. 696 */ 697 if (altroot) { 698 spa->spa_root = spa_strdup(altroot); 699 spa_active_count++; 700 } 701 702 spa->spa_alloc_count = spa_allocators; 703 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count * 704 sizeof (kmutex_t), KM_SLEEP); 705 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count * 706 sizeof (avl_tree_t), KM_SLEEP); 707 for (int i = 0; i < spa->spa_alloc_count; i++) { 708 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL); 709 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare, 710 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 711 } 712 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 713 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 714 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 715 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 716 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 717 offsetof(log_summary_entry_t, lse_node)); 718 719 /* 720 * Every pool starts with the default cachefile 721 */ 722 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 723 offsetof(spa_config_dirent_t, scd_link)); 724 725 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 726 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 727 list_insert_head(&spa->spa_config_list, dp); 728 729 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 730 KM_SLEEP) == 0); 731 732 if (config != NULL) { 733 nvlist_t *features; 734 735 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 736 &features) == 0) { 737 VERIFY(nvlist_dup(features, &spa->spa_label_features, 738 0) == 0); 739 } 740 741 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 742 } 743 744 if (spa->spa_label_features == NULL) { 745 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 746 KM_SLEEP) == 0); 747 } 748 749 spa->spa_iokstat = kstat_create("zfs", 0, name, 750 "disk", KSTAT_TYPE_IO, 1, 0); 751 if (spa->spa_iokstat) { 752 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 753 kstat_install(spa->spa_iokstat); 754 } 755 756 spa->spa_min_ashift = INT_MAX; 757 spa->spa_max_ashift = 0; 758 759 /* 760 * As a pool is being created, treat all features as disabled by 761 * setting SPA_FEATURE_DISABLED for all entries in the feature 762 * refcount cache. 763 */ 764 for (int i = 0; i < SPA_FEATURES; i++) { 765 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 766 } 767 768 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 769 offsetof(vdev_t, vdev_leaf_node)); 770 771 return (spa); 772 } 773 774 /* 775 * Removes a spa_t from the namespace, freeing up any memory used. Requires 776 * spa_namespace_lock. This is called only after the spa_t has been closed and 777 * deactivated. 778 */ 779 void 780 spa_remove(spa_t *spa) 781 { 782 spa_config_dirent_t *dp; 783 784 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 785 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 786 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 787 788 nvlist_free(spa->spa_config_splitting); 789 790 avl_remove(&spa_namespace_avl, spa); 791 cv_broadcast(&spa_namespace_cv); 792 793 if (spa->spa_root) { 794 spa_strfree(spa->spa_root); 795 spa_active_count--; 796 } 797 798 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 799 list_remove(&spa->spa_config_list, dp); 800 if (dp->scd_path != NULL) 801 spa_strfree(dp->scd_path); 802 kmem_free(dp, sizeof (spa_config_dirent_t)); 803 } 804 805 for (int i = 0; i < spa->spa_alloc_count; i++) { 806 avl_destroy(&spa->spa_alloc_trees[i]); 807 mutex_destroy(&spa->spa_alloc_locks[i]); 808 } 809 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count * 810 sizeof (kmutex_t)); 811 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count * 812 sizeof (avl_tree_t)); 813 814 avl_destroy(&spa->spa_metaslabs_by_flushed); 815 avl_destroy(&spa->spa_sm_logs_by_txg); 816 list_destroy(&spa->spa_log_summary); 817 list_destroy(&spa->spa_config_list); 818 list_destroy(&spa->spa_leaf_list); 819 820 nvlist_free(spa->spa_label_features); 821 nvlist_free(spa->spa_load_info); 822 spa_config_set(spa, NULL); 823 824 mutex_enter(&cpu_lock); 825 if (spa->spa_deadman_cycid != CYCLIC_NONE) 826 cyclic_remove(spa->spa_deadman_cycid); 827 mutex_exit(&cpu_lock); 828 spa->spa_deadman_cycid = CYCLIC_NONE; 829 830 zfs_refcount_destroy(&spa->spa_refcount); 831 832 spa_config_lock_destroy(spa); 833 834 kstat_delete(spa->spa_iokstat); 835 spa->spa_iokstat = NULL; 836 837 for (int t = 0; t < TXG_SIZE; t++) 838 bplist_destroy(&spa->spa_free_bplist[t]); 839 840 zio_checksum_templates_free(spa); 841 842 cv_destroy(&spa->spa_async_cv); 843 cv_destroy(&spa->spa_evicting_os_cv); 844 cv_destroy(&spa->spa_proc_cv); 845 cv_destroy(&spa->spa_scrub_io_cv); 846 cv_destroy(&spa->spa_suspend_cv); 847 848 mutex_destroy(&spa->spa_flushed_ms_lock); 849 mutex_destroy(&spa->spa_async_lock); 850 mutex_destroy(&spa->spa_errlist_lock); 851 mutex_destroy(&spa->spa_errlog_lock); 852 mutex_destroy(&spa->spa_evicting_os_lock); 853 mutex_destroy(&spa->spa_history_lock); 854 mutex_destroy(&spa->spa_proc_lock); 855 mutex_destroy(&spa->spa_props_lock); 856 mutex_destroy(&spa->spa_cksum_tmpls_lock); 857 mutex_destroy(&spa->spa_scrub_lock); 858 mutex_destroy(&spa->spa_suspend_lock); 859 mutex_destroy(&spa->spa_vdev_top_lock); 860 mutex_destroy(&spa->spa_iokstat_lock); 861 mutex_destroy(&spa->spa_imp_kstat_lock); 862 863 kmem_free(spa, sizeof (spa_t)); 864 } 865 866 /* 867 * Given a pool, return the next pool in the namespace, or NULL if there is 868 * none. If 'prev' is NULL, return the first pool. 869 */ 870 spa_t * 871 spa_next(spa_t *prev) 872 { 873 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 874 875 if (prev) 876 return (AVL_NEXT(&spa_namespace_avl, prev)); 877 else 878 return (avl_first(&spa_namespace_avl)); 879 } 880 881 /* 882 * ========================================================================== 883 * SPA refcount functions 884 * ========================================================================== 885 */ 886 887 /* 888 * Add a reference to the given spa_t. Must have at least one reference, or 889 * have the namespace lock held. 890 */ 891 void 892 spa_open_ref(spa_t *spa, void *tag) 893 { 894 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 895 MUTEX_HELD(&spa_namespace_lock)); 896 (void) zfs_refcount_add(&spa->spa_refcount, tag); 897 } 898 899 /* 900 * Remove a reference to the given spa_t. Must have at least one reference, or 901 * have the namespace lock held. 902 */ 903 void 904 spa_close(spa_t *spa, void *tag) 905 { 906 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 907 MUTEX_HELD(&spa_namespace_lock)); 908 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 909 } 910 911 /* 912 * Remove a reference to the given spa_t held by a dsl dir that is 913 * being asynchronously released. Async releases occur from a taskq 914 * performing eviction of dsl datasets and dirs. The namespace lock 915 * isn't held and the hold by the object being evicted may contribute to 916 * spa_minref (e.g. dataset or directory released during pool export), 917 * so the asserts in spa_close() do not apply. 918 */ 919 void 920 spa_async_close(spa_t *spa, void *tag) 921 { 922 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 923 } 924 925 /* 926 * Check to see if the spa refcount is zero. Must be called with 927 * spa_namespace_lock held. We really compare against spa_minref, which is the 928 * number of references acquired when opening a pool 929 */ 930 boolean_t 931 spa_refcount_zero(spa_t *spa) 932 { 933 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 934 935 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 936 } 937 938 /* 939 * ========================================================================== 940 * SPA spare and l2cache tracking 941 * ========================================================================== 942 */ 943 944 /* 945 * Hot spares and cache devices are tracked using the same code below, 946 * for 'auxiliary' devices. 947 */ 948 949 typedef struct spa_aux { 950 uint64_t aux_guid; 951 uint64_t aux_pool; 952 avl_node_t aux_avl; 953 int aux_count; 954 } spa_aux_t; 955 956 static inline int 957 spa_aux_compare(const void *a, const void *b) 958 { 959 const spa_aux_t *sa = (const spa_aux_t *)a; 960 const spa_aux_t *sb = (const spa_aux_t *)b; 961 962 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 963 } 964 965 void 966 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 967 { 968 avl_index_t where; 969 spa_aux_t search; 970 spa_aux_t *aux; 971 972 search.aux_guid = vd->vdev_guid; 973 if ((aux = avl_find(avl, &search, &where)) != NULL) { 974 aux->aux_count++; 975 } else { 976 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 977 aux->aux_guid = vd->vdev_guid; 978 aux->aux_count = 1; 979 avl_insert(avl, aux, where); 980 } 981 } 982 983 void 984 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 985 { 986 spa_aux_t search; 987 spa_aux_t *aux; 988 avl_index_t where; 989 990 search.aux_guid = vd->vdev_guid; 991 aux = avl_find(avl, &search, &where); 992 993 ASSERT(aux != NULL); 994 995 if (--aux->aux_count == 0) { 996 avl_remove(avl, aux); 997 kmem_free(aux, sizeof (spa_aux_t)); 998 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 999 aux->aux_pool = 0ULL; 1000 } 1001 } 1002 1003 boolean_t 1004 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 1005 { 1006 spa_aux_t search, *found; 1007 1008 search.aux_guid = guid; 1009 found = avl_find(avl, &search, NULL); 1010 1011 if (pool) { 1012 if (found) 1013 *pool = found->aux_pool; 1014 else 1015 *pool = 0ULL; 1016 } 1017 1018 if (refcnt) { 1019 if (found) 1020 *refcnt = found->aux_count; 1021 else 1022 *refcnt = 0; 1023 } 1024 1025 return (found != NULL); 1026 } 1027 1028 void 1029 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1030 { 1031 spa_aux_t search, *found; 1032 avl_index_t where; 1033 1034 search.aux_guid = vd->vdev_guid; 1035 found = avl_find(avl, &search, &where); 1036 ASSERT(found != NULL); 1037 ASSERT(found->aux_pool == 0ULL); 1038 1039 found->aux_pool = spa_guid(vd->vdev_spa); 1040 } 1041 1042 /* 1043 * Spares are tracked globally due to the following constraints: 1044 * 1045 * - A spare may be part of multiple pools. 1046 * - A spare may be added to a pool even if it's actively in use within 1047 * another pool. 1048 * - A spare in use in any pool can only be the source of a replacement if 1049 * the target is a spare in the same pool. 1050 * 1051 * We keep track of all spares on the system through the use of a reference 1052 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1053 * spare, then we bump the reference count in the AVL tree. In addition, we set 1054 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1055 * inactive). When a spare is made active (used to replace a device in the 1056 * pool), we also keep track of which pool its been made a part of. 1057 * 1058 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1059 * called under the spa_namespace lock as part of vdev reconfiguration. The 1060 * separate spare lock exists for the status query path, which does not need to 1061 * be completely consistent with respect to other vdev configuration changes. 1062 */ 1063 1064 /* 1065 * Poll the spare vdevs to make sure they are not faulty. 1066 * 1067 * The probe operation will raise an ENXIO error and create an FM ereport if the 1068 * probe fails. 1069 */ 1070 void 1071 spa_spare_poll(spa_t *spa) 1072 { 1073 boolean_t async_request = B_FALSE; 1074 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 1075 for (int i = 0; i < spa->spa_spares.sav_count; i++) { 1076 spa_aux_t search, *found; 1077 vdev_t *vd = spa->spa_spares.sav_vdevs[i]; 1078 1079 search.aux_guid = vd->vdev_guid; 1080 1081 mutex_enter(&spa_spare_lock); 1082 found = avl_find(&spa_spare_avl, &search, NULL); 1083 /* This spare is in use by a pool. */ 1084 if (found != NULL && found->aux_pool != 0) { 1085 mutex_exit(&spa_spare_lock); 1086 continue; 1087 } 1088 mutex_exit(&spa_spare_lock); 1089 1090 vd->vdev_probe_wanted = B_TRUE; 1091 async_request = B_TRUE; 1092 } 1093 if (async_request) 1094 spa_async_request(spa, SPA_ASYNC_PROBE); 1095 1096 spa_config_exit(spa, SCL_STATE, FTAG); 1097 } 1098 1099 static int 1100 spa_spare_compare(const void *a, const void *b) 1101 { 1102 return (spa_aux_compare(a, b)); 1103 } 1104 1105 void 1106 spa_spare_add(vdev_t *vd) 1107 { 1108 mutex_enter(&spa_spare_lock); 1109 ASSERT(!vd->vdev_isspare); 1110 spa_aux_add(vd, &spa_spare_avl); 1111 vd->vdev_isspare = B_TRUE; 1112 mutex_exit(&spa_spare_lock); 1113 } 1114 1115 void 1116 spa_spare_remove(vdev_t *vd) 1117 { 1118 mutex_enter(&spa_spare_lock); 1119 ASSERT(vd->vdev_isspare); 1120 spa_aux_remove(vd, &spa_spare_avl); 1121 vd->vdev_isspare = B_FALSE; 1122 mutex_exit(&spa_spare_lock); 1123 } 1124 1125 boolean_t 1126 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1127 { 1128 boolean_t found; 1129 1130 mutex_enter(&spa_spare_lock); 1131 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1132 mutex_exit(&spa_spare_lock); 1133 1134 return (found); 1135 } 1136 1137 void 1138 spa_spare_activate(vdev_t *vd) 1139 { 1140 mutex_enter(&spa_spare_lock); 1141 ASSERT(vd->vdev_isspare); 1142 spa_aux_activate(vd, &spa_spare_avl); 1143 mutex_exit(&spa_spare_lock); 1144 } 1145 1146 /* 1147 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1148 * Cache devices currently only support one pool per cache device, and so 1149 * for these devices the aux reference count is currently unused beyond 1. 1150 */ 1151 1152 static int 1153 spa_l2cache_compare(const void *a, const void *b) 1154 { 1155 return (spa_aux_compare(a, b)); 1156 } 1157 1158 void 1159 spa_l2cache_add(vdev_t *vd) 1160 { 1161 mutex_enter(&spa_l2cache_lock); 1162 ASSERT(!vd->vdev_isl2cache); 1163 spa_aux_add(vd, &spa_l2cache_avl); 1164 vd->vdev_isl2cache = B_TRUE; 1165 mutex_exit(&spa_l2cache_lock); 1166 } 1167 1168 void 1169 spa_l2cache_remove(vdev_t *vd) 1170 { 1171 mutex_enter(&spa_l2cache_lock); 1172 ASSERT(vd->vdev_isl2cache); 1173 spa_aux_remove(vd, &spa_l2cache_avl); 1174 vd->vdev_isl2cache = B_FALSE; 1175 mutex_exit(&spa_l2cache_lock); 1176 } 1177 1178 boolean_t 1179 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1180 { 1181 boolean_t found; 1182 1183 mutex_enter(&spa_l2cache_lock); 1184 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1185 mutex_exit(&spa_l2cache_lock); 1186 1187 return (found); 1188 } 1189 1190 void 1191 spa_l2cache_activate(vdev_t *vd) 1192 { 1193 mutex_enter(&spa_l2cache_lock); 1194 ASSERT(vd->vdev_isl2cache); 1195 spa_aux_activate(vd, &spa_l2cache_avl); 1196 mutex_exit(&spa_l2cache_lock); 1197 } 1198 1199 /* 1200 * ========================================================================== 1201 * SPA vdev locking 1202 * ========================================================================== 1203 */ 1204 1205 /* 1206 * Lock the given spa_t for the purpose of adding or removing a vdev. 1207 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1208 * It returns the next transaction group for the spa_t. 1209 */ 1210 uint64_t 1211 spa_vdev_enter(spa_t *spa) 1212 { 1213 mutex_enter(&spa->spa_vdev_top_lock); 1214 mutex_enter(&spa_namespace_lock); 1215 1216 vdev_autotrim_stop_all(spa); 1217 1218 return (spa_vdev_config_enter(spa)); 1219 } 1220 1221 /* 1222 * Internal implementation for spa_vdev_enter(). Used when a vdev 1223 * operation requires multiple syncs (i.e. removing a device) while 1224 * keeping the spa_namespace_lock held. 1225 */ 1226 uint64_t 1227 spa_vdev_config_enter(spa_t *spa) 1228 { 1229 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1230 1231 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1232 1233 return (spa_last_synced_txg(spa) + 1); 1234 } 1235 1236 /* 1237 * Used in combination with spa_vdev_config_enter() to allow the syncing 1238 * of multiple transactions without releasing the spa_namespace_lock. 1239 */ 1240 void 1241 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1242 { 1243 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1244 1245 int config_changed = B_FALSE; 1246 1247 ASSERT(txg > spa_last_synced_txg(spa)); 1248 1249 spa->spa_pending_vdev = NULL; 1250 1251 /* 1252 * Reassess the DTLs. 1253 */ 1254 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 1255 1256 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1257 config_changed = B_TRUE; 1258 spa->spa_config_generation++; 1259 } 1260 1261 /* 1262 * Verify the metaslab classes. 1263 */ 1264 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1265 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1266 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1267 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1268 1269 spa_config_exit(spa, SCL_ALL, spa); 1270 1271 /* 1272 * Panic the system if the specified tag requires it. This 1273 * is useful for ensuring that configurations are updated 1274 * transactionally. 1275 */ 1276 if (zio_injection_enabled) 1277 zio_handle_panic_injection(spa, tag, 0); 1278 1279 /* 1280 * Note: this txg_wait_synced() is important because it ensures 1281 * that there won't be more than one config change per txg. 1282 * This allows us to use the txg as the generation number. 1283 */ 1284 if (error == 0) 1285 txg_wait_synced(spa->spa_dsl_pool, txg); 1286 1287 if (vd != NULL) { 1288 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1289 if (vd->vdev_ops->vdev_op_leaf) { 1290 mutex_enter(&vd->vdev_initialize_lock); 1291 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1292 NULL); 1293 mutex_exit(&vd->vdev_initialize_lock); 1294 1295 mutex_enter(&vd->vdev_trim_lock); 1296 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1297 mutex_exit(&vd->vdev_trim_lock); 1298 } 1299 1300 /* 1301 * The vdev may be both a leaf and top-level device. 1302 */ 1303 vdev_autotrim_stop_wait(vd); 1304 1305 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1306 vdev_free(vd); 1307 spa_config_exit(spa, SCL_ALL, spa); 1308 } 1309 1310 /* 1311 * If the config changed, update the config cache. 1312 */ 1313 if (config_changed) 1314 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1315 } 1316 1317 /* 1318 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1319 * locking of spa_vdev_enter(), we also want make sure the transactions have 1320 * synced to disk, and then update the global configuration cache with the new 1321 * information. 1322 */ 1323 int 1324 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1325 { 1326 vdev_autotrim_restart(spa); 1327 1328 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1329 mutex_exit(&spa_namespace_lock); 1330 mutex_exit(&spa->spa_vdev_top_lock); 1331 1332 return (error); 1333 } 1334 1335 /* 1336 * Lock the given spa_t for the purpose of changing vdev state. 1337 */ 1338 void 1339 spa_vdev_state_enter(spa_t *spa, int oplocks) 1340 { 1341 int locks = SCL_STATE_ALL | oplocks; 1342 1343 /* 1344 * Root pools may need to read of the underlying devfs filesystem 1345 * when opening up a vdev. Unfortunately if we're holding the 1346 * SCL_ZIO lock it will result in a deadlock when we try to issue 1347 * the read from the root filesystem. Instead we "prefetch" 1348 * the associated vnodes that we need prior to opening the 1349 * underlying devices and cache them so that we can prevent 1350 * any I/O when we are doing the actual open. 1351 */ 1352 if (spa_is_root(spa)) { 1353 int low = locks & ~(SCL_ZIO - 1); 1354 int high = locks & ~low; 1355 1356 spa_config_enter(spa, high, spa, RW_WRITER); 1357 vdev_hold(spa->spa_root_vdev); 1358 spa_config_enter(spa, low, spa, RW_WRITER); 1359 } else { 1360 spa_config_enter(spa, locks, spa, RW_WRITER); 1361 } 1362 spa->spa_vdev_locks = locks; 1363 } 1364 1365 int 1366 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1367 { 1368 boolean_t config_changed = B_FALSE; 1369 1370 if (vd != NULL || error == 0) 1371 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1372 0, 0, B_FALSE); 1373 1374 if (vd != NULL) { 1375 vdev_state_dirty(vd->vdev_top); 1376 config_changed = B_TRUE; 1377 spa->spa_config_generation++; 1378 } 1379 1380 if (spa_is_root(spa)) 1381 vdev_rele(spa->spa_root_vdev); 1382 1383 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1384 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1385 1386 /* 1387 * If anything changed, wait for it to sync. This ensures that, 1388 * from the system administrator's perspective, zpool(8) commands 1389 * are synchronous. This is important for things like zpool offline: 1390 * when the command completes, you expect no further I/O from ZFS. 1391 */ 1392 if (vd != NULL) 1393 txg_wait_synced(spa->spa_dsl_pool, 0); 1394 1395 /* 1396 * If the config changed, update the config cache. 1397 */ 1398 if (config_changed) { 1399 mutex_enter(&spa_namespace_lock); 1400 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1401 mutex_exit(&spa_namespace_lock); 1402 } 1403 1404 return (error); 1405 } 1406 1407 /* 1408 * ========================================================================== 1409 * Miscellaneous functions 1410 * ========================================================================== 1411 */ 1412 1413 void 1414 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1415 { 1416 if (!nvlist_exists(spa->spa_label_features, feature)) { 1417 fnvlist_add_boolean(spa->spa_label_features, feature); 1418 /* 1419 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1420 * dirty the vdev config because lock SCL_CONFIG is not held. 1421 * Thankfully, in this case we don't need to dirty the config 1422 * because it will be written out anyway when we finish 1423 * creating the pool. 1424 */ 1425 if (tx->tx_txg != TXG_INITIAL) 1426 vdev_config_dirty(spa->spa_root_vdev); 1427 } 1428 } 1429 1430 void 1431 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1432 { 1433 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1434 vdev_config_dirty(spa->spa_root_vdev); 1435 } 1436 1437 /* 1438 * Return the spa_t associated with given pool_guid, if it exists. If 1439 * device_guid is non-zero, determine whether the pool exists *and* contains 1440 * a device with the specified device_guid. 1441 */ 1442 spa_t * 1443 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1444 { 1445 spa_t *spa; 1446 avl_tree_t *t = &spa_namespace_avl; 1447 1448 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1449 1450 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1451 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1452 continue; 1453 if (spa->spa_root_vdev == NULL) 1454 continue; 1455 if (spa_guid(spa) == pool_guid) { 1456 if (device_guid == 0) 1457 break; 1458 1459 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1460 device_guid) != NULL) 1461 break; 1462 1463 /* 1464 * Check any devices we may be in the process of adding. 1465 */ 1466 if (spa->spa_pending_vdev) { 1467 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1468 device_guid) != NULL) 1469 break; 1470 } 1471 } 1472 } 1473 1474 return (spa); 1475 } 1476 1477 /* 1478 * Determine whether a pool with the given pool_guid exists. 1479 */ 1480 boolean_t 1481 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1482 { 1483 return (spa_by_guid(pool_guid, device_guid) != NULL); 1484 } 1485 1486 char * 1487 spa_strdup(const char *s) 1488 { 1489 size_t len; 1490 char *new; 1491 1492 len = strlen(s); 1493 new = kmem_alloc(len + 1, KM_SLEEP); 1494 bcopy(s, new, len); 1495 new[len] = '\0'; 1496 1497 return (new); 1498 } 1499 1500 void 1501 spa_strfree(char *s) 1502 { 1503 kmem_free(s, strlen(s) + 1); 1504 } 1505 1506 uint64_t 1507 spa_get_random(uint64_t range) 1508 { 1509 uint64_t r; 1510 1511 ASSERT(range != 0); 1512 1513 if (range == 1) 1514 return (0); 1515 1516 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1517 1518 return (r % range); 1519 } 1520 1521 uint64_t 1522 spa_generate_guid(spa_t *spa) 1523 { 1524 uint64_t guid = spa_get_random(-1ULL); 1525 1526 if (spa != NULL) { 1527 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1528 guid = spa_get_random(-1ULL); 1529 } else { 1530 while (guid == 0 || spa_guid_exists(guid, 0)) 1531 guid = spa_get_random(-1ULL); 1532 } 1533 1534 return (guid); 1535 } 1536 1537 void 1538 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1539 { 1540 char type[256]; 1541 char *checksum = NULL; 1542 char *compress = NULL; 1543 1544 if (bp != NULL) { 1545 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1546 dmu_object_byteswap_t bswap = 1547 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1548 (void) snprintf(type, sizeof (type), "bswap %s %s", 1549 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1550 "metadata" : "data", 1551 dmu_ot_byteswap[bswap].ob_name); 1552 } else { 1553 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1554 sizeof (type)); 1555 } 1556 if (!BP_IS_EMBEDDED(bp)) { 1557 checksum = 1558 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1559 } 1560 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1561 } 1562 1563 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1564 compress); 1565 } 1566 1567 void 1568 spa_freeze(spa_t *spa) 1569 { 1570 uint64_t freeze_txg = 0; 1571 1572 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1573 if (spa->spa_freeze_txg == UINT64_MAX) { 1574 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1575 spa->spa_freeze_txg = freeze_txg; 1576 } 1577 spa_config_exit(spa, SCL_ALL, FTAG); 1578 if (freeze_txg != 0) 1579 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1580 } 1581 1582 void 1583 zfs_panic_recover(const char *fmt, ...) 1584 { 1585 va_list adx; 1586 1587 va_start(adx, fmt); 1588 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1589 va_end(adx); 1590 } 1591 1592 /* 1593 * This is a stripped-down version of strtoull, suitable only for converting 1594 * lowercase hexadecimal numbers that don't overflow. 1595 */ 1596 uint64_t 1597 zfs_strtonum(const char *str, char **nptr) 1598 { 1599 uint64_t val = 0; 1600 char c; 1601 int digit; 1602 1603 while ((c = *str) != '\0') { 1604 if (c >= '0' && c <= '9') 1605 digit = c - '0'; 1606 else if (c >= 'a' && c <= 'f') 1607 digit = 10 + c - 'a'; 1608 else 1609 break; 1610 1611 val *= 16; 1612 val += digit; 1613 1614 str++; 1615 } 1616 1617 if (nptr) 1618 *nptr = (char *)str; 1619 1620 return (val); 1621 } 1622 1623 void 1624 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1625 { 1626 /* 1627 * We bump the feature refcount for each special vdev added to the pool 1628 */ 1629 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1630 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1631 } 1632 1633 /* 1634 * ========================================================================== 1635 * Accessor functions 1636 * ========================================================================== 1637 */ 1638 1639 boolean_t 1640 spa_shutting_down(spa_t *spa) 1641 { 1642 return (spa->spa_async_suspended); 1643 } 1644 1645 dsl_pool_t * 1646 spa_get_dsl(spa_t *spa) 1647 { 1648 return (spa->spa_dsl_pool); 1649 } 1650 1651 boolean_t 1652 spa_is_initializing(spa_t *spa) 1653 { 1654 return (spa->spa_is_initializing); 1655 } 1656 1657 boolean_t 1658 spa_indirect_vdevs_loaded(spa_t *spa) 1659 { 1660 return (spa->spa_indirect_vdevs_loaded); 1661 } 1662 1663 blkptr_t * 1664 spa_get_rootblkptr(spa_t *spa) 1665 { 1666 return (&spa->spa_ubsync.ub_rootbp); 1667 } 1668 1669 void 1670 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1671 { 1672 spa->spa_uberblock.ub_rootbp = *bp; 1673 } 1674 1675 void 1676 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1677 { 1678 if (spa->spa_root == NULL) 1679 buf[0] = '\0'; 1680 else 1681 (void) strncpy(buf, spa->spa_root, buflen); 1682 } 1683 1684 int 1685 spa_sync_pass(spa_t *spa) 1686 { 1687 return (spa->spa_sync_pass); 1688 } 1689 1690 char * 1691 spa_name(spa_t *spa) 1692 { 1693 return (spa->spa_name); 1694 } 1695 1696 uint64_t 1697 spa_guid(spa_t *spa) 1698 { 1699 dsl_pool_t *dp = spa_get_dsl(spa); 1700 uint64_t guid; 1701 1702 /* 1703 * If we fail to parse the config during spa_load(), we can go through 1704 * the error path (which posts an ereport) and end up here with no root 1705 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1706 * this case. 1707 */ 1708 if (spa->spa_root_vdev == NULL) 1709 return (spa->spa_config_guid); 1710 1711 guid = spa->spa_last_synced_guid != 0 ? 1712 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1713 1714 /* 1715 * Return the most recently synced out guid unless we're 1716 * in syncing context. 1717 */ 1718 if (dp && dsl_pool_sync_context(dp)) 1719 return (spa->spa_root_vdev->vdev_guid); 1720 else 1721 return (guid); 1722 } 1723 1724 uint64_t 1725 spa_load_guid(spa_t *spa) 1726 { 1727 /* 1728 * This is a GUID that exists solely as a reference for the 1729 * purposes of the arc. It is generated at load time, and 1730 * is never written to persistent storage. 1731 */ 1732 return (spa->spa_load_guid); 1733 } 1734 1735 uint64_t 1736 spa_last_synced_txg(spa_t *spa) 1737 { 1738 return (spa->spa_ubsync.ub_txg); 1739 } 1740 1741 uint64_t 1742 spa_first_txg(spa_t *spa) 1743 { 1744 return (spa->spa_first_txg); 1745 } 1746 1747 uint64_t 1748 spa_syncing_txg(spa_t *spa) 1749 { 1750 return (spa->spa_syncing_txg); 1751 } 1752 1753 /* 1754 * Return the last txg where data can be dirtied. The final txgs 1755 * will be used to just clear out any deferred frees that remain. 1756 */ 1757 uint64_t 1758 spa_final_dirty_txg(spa_t *spa) 1759 { 1760 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1761 } 1762 1763 pool_state_t 1764 spa_state(spa_t *spa) 1765 { 1766 return (spa->spa_state); 1767 } 1768 1769 spa_load_state_t 1770 spa_load_state(spa_t *spa) 1771 { 1772 return (spa->spa_load_state); 1773 } 1774 1775 uint64_t 1776 spa_freeze_txg(spa_t *spa) 1777 { 1778 return (spa->spa_freeze_txg); 1779 } 1780 1781 /* ARGSUSED */ 1782 uint64_t 1783 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1784 { 1785 return (lsize * spa_asize_inflation); 1786 } 1787 1788 /* 1789 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%), 1790 * or at least 128MB, unless that would cause it to be more than half the 1791 * pool size. 1792 * 1793 * See the comment above spa_slop_shift for details. 1794 */ 1795 uint64_t 1796 spa_get_slop_space(spa_t *spa) 1797 { 1798 uint64_t space = spa_get_dspace(spa); 1799 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop))); 1800 } 1801 1802 uint64_t 1803 spa_get_dspace(spa_t *spa) 1804 { 1805 return (spa->spa_dspace); 1806 } 1807 1808 uint64_t 1809 spa_get_checkpoint_space(spa_t *spa) 1810 { 1811 return (spa->spa_checkpoint_info.sci_dspace); 1812 } 1813 1814 void 1815 spa_update_dspace(spa_t *spa) 1816 { 1817 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1818 ddt_get_dedup_dspace(spa); 1819 if (spa->spa_vdev_removal != NULL) { 1820 /* 1821 * We can't allocate from the removing device, so 1822 * subtract its size. This prevents the DMU/DSL from 1823 * filling up the (now smaller) pool while we are in the 1824 * middle of removing the device. 1825 * 1826 * Note that the DMU/DSL doesn't actually know or care 1827 * how much space is allocated (it does its own tracking 1828 * of how much space has been logically used). So it 1829 * doesn't matter that the data we are moving may be 1830 * allocated twice (on the old device and the new 1831 * device). 1832 */ 1833 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1834 vdev_t *vd = 1835 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1836 spa->spa_dspace -= spa_deflate(spa) ? 1837 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1838 spa_config_exit(spa, SCL_VDEV, FTAG); 1839 } 1840 } 1841 1842 /* 1843 * Return the failure mode that has been set to this pool. The default 1844 * behavior will be to block all I/Os when a complete failure occurs. 1845 */ 1846 uint8_t 1847 spa_get_failmode(spa_t *spa) 1848 { 1849 return (spa->spa_failmode); 1850 } 1851 1852 boolean_t 1853 spa_suspended(spa_t *spa) 1854 { 1855 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1856 } 1857 1858 uint64_t 1859 spa_version(spa_t *spa) 1860 { 1861 return (spa->spa_ubsync.ub_version); 1862 } 1863 1864 boolean_t 1865 spa_deflate(spa_t *spa) 1866 { 1867 return (spa->spa_deflate); 1868 } 1869 1870 metaslab_class_t * 1871 spa_normal_class(spa_t *spa) 1872 { 1873 return (spa->spa_normal_class); 1874 } 1875 1876 metaslab_class_t * 1877 spa_log_class(spa_t *spa) 1878 { 1879 return (spa->spa_log_class); 1880 } 1881 1882 metaslab_class_t * 1883 spa_special_class(spa_t *spa) 1884 { 1885 return (spa->spa_special_class); 1886 } 1887 1888 metaslab_class_t * 1889 spa_dedup_class(spa_t *spa) 1890 { 1891 return (spa->spa_dedup_class); 1892 } 1893 1894 /* 1895 * Locate an appropriate allocation class 1896 */ 1897 metaslab_class_t * 1898 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1899 uint_t level, uint_t special_smallblk) 1900 { 1901 if (DMU_OT_IS_ZIL(objtype)) { 1902 if (spa->spa_log_class->mc_groups != 0) 1903 return (spa_log_class(spa)); 1904 else 1905 return (spa_normal_class(spa)); 1906 } 1907 1908 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1909 1910 if (DMU_OT_IS_DDT(objtype)) { 1911 if (spa->spa_dedup_class->mc_groups != 0) 1912 return (spa_dedup_class(spa)); 1913 else if (has_special_class && zfs_ddt_data_is_special) 1914 return (spa_special_class(spa)); 1915 else 1916 return (spa_normal_class(spa)); 1917 } 1918 1919 /* Indirect blocks for user data can land in special if allowed */ 1920 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 1921 if (has_special_class && zfs_user_indirect_is_special) 1922 return (spa_special_class(spa)); 1923 else 1924 return (spa_normal_class(spa)); 1925 } 1926 1927 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 1928 if (has_special_class) 1929 return (spa_special_class(spa)); 1930 else 1931 return (spa_normal_class(spa)); 1932 } 1933 1934 /* 1935 * Allow small file blocks in special class in some cases (like 1936 * for the dRAID vdev feature). But always leave a reserve of 1937 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 1938 */ 1939 if (DMU_OT_IS_FILE(objtype) && 1940 has_special_class && size <= special_smallblk) { 1941 metaslab_class_t *special = spa_special_class(spa); 1942 uint64_t alloc = metaslab_class_get_alloc(special); 1943 uint64_t space = metaslab_class_get_space(special); 1944 uint64_t limit = 1945 (space * (100 - zfs_special_class_metadata_reserve_pct)) 1946 / 100; 1947 1948 if (alloc < limit) 1949 return (special); 1950 } 1951 1952 return (spa_normal_class(spa)); 1953 } 1954 1955 void 1956 spa_evicting_os_register(spa_t *spa, objset_t *os) 1957 { 1958 mutex_enter(&spa->spa_evicting_os_lock); 1959 list_insert_head(&spa->spa_evicting_os_list, os); 1960 mutex_exit(&spa->spa_evicting_os_lock); 1961 } 1962 1963 void 1964 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 1965 { 1966 mutex_enter(&spa->spa_evicting_os_lock); 1967 list_remove(&spa->spa_evicting_os_list, os); 1968 cv_broadcast(&spa->spa_evicting_os_cv); 1969 mutex_exit(&spa->spa_evicting_os_lock); 1970 } 1971 1972 void 1973 spa_evicting_os_wait(spa_t *spa) 1974 { 1975 mutex_enter(&spa->spa_evicting_os_lock); 1976 while (!list_is_empty(&spa->spa_evicting_os_list)) 1977 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 1978 mutex_exit(&spa->spa_evicting_os_lock); 1979 1980 dmu_buf_user_evict_wait(); 1981 } 1982 1983 int 1984 spa_max_replication(spa_t *spa) 1985 { 1986 /* 1987 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1988 * handle BPs with more than one DVA allocated. Set our max 1989 * replication level accordingly. 1990 */ 1991 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1992 return (1); 1993 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1994 } 1995 1996 int 1997 spa_prev_software_version(spa_t *spa) 1998 { 1999 return (spa->spa_prev_software_version); 2000 } 2001 2002 uint64_t 2003 spa_deadman_synctime(spa_t *spa) 2004 { 2005 return (spa->spa_deadman_synctime); 2006 } 2007 2008 spa_autotrim_t 2009 spa_get_autotrim(spa_t *spa) 2010 { 2011 return (spa->spa_autotrim); 2012 } 2013 2014 uint64_t 2015 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2016 { 2017 uint64_t asize = DVA_GET_ASIZE(dva); 2018 uint64_t dsize = asize; 2019 2020 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2021 2022 if (asize != 0 && spa->spa_deflate) { 2023 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2024 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 2025 } 2026 2027 return (dsize); 2028 } 2029 2030 uint64_t 2031 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2032 { 2033 uint64_t dsize = 0; 2034 2035 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2036 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2037 2038 return (dsize); 2039 } 2040 2041 uint64_t 2042 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2043 { 2044 uint64_t dsize = 0; 2045 2046 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2047 2048 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2049 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2050 2051 spa_config_exit(spa, SCL_VDEV, FTAG); 2052 2053 return (dsize); 2054 } 2055 2056 uint64_t 2057 spa_dirty_data(spa_t *spa) 2058 { 2059 return (spa->spa_dsl_pool->dp_dirty_total); 2060 } 2061 2062 /* 2063 * ========================================================================== 2064 * SPA Import Progress Routines 2065 * The illumos implementation of these are different from OpenZFS. OpenZFS 2066 * uses the Linux /proc fs, whereas we use a kstat on the spa. 2067 * ========================================================================== 2068 */ 2069 2070 typedef struct spa_import_progress { 2071 kstat_named_t sip_load_state; 2072 kstat_named_t sip_mmp_sec_remaining; /* MMP activity check */ 2073 kstat_named_t sip_load_max_txg; /* rewind txg */ 2074 } spa_import_progress_t; 2075 2076 static void 2077 spa_import_progress_init(void) 2078 { 2079 } 2080 2081 static void 2082 spa_import_progress_destroy(void) 2083 { 2084 } 2085 2086 void spa_import_progress_add(spa_t *); 2087 2088 int 2089 spa_import_progress_set_state(spa_t *spa, spa_load_state_t load_state) 2090 { 2091 if (spa->spa_imp_kstat == NULL) 2092 spa_import_progress_add(spa); 2093 2094 mutex_enter(&spa->spa_imp_kstat_lock); 2095 if (spa->spa_imp_kstat != NULL) { 2096 spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data; 2097 if (sip != NULL) 2098 sip->sip_load_state.value.ui64 = (uint64_t)load_state; 2099 } 2100 mutex_exit(&spa->spa_imp_kstat_lock); 2101 2102 return (0); 2103 } 2104 2105 int 2106 spa_import_progress_set_max_txg(spa_t *spa, uint64_t load_max_txg) 2107 { 2108 if (spa->spa_imp_kstat == NULL) 2109 spa_import_progress_add(spa); 2110 2111 mutex_enter(&spa->spa_imp_kstat_lock); 2112 if (spa->spa_imp_kstat != NULL) { 2113 spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data; 2114 if (sip != NULL) 2115 sip->sip_load_max_txg.value.ui64 = load_max_txg; 2116 } 2117 mutex_exit(&spa->spa_imp_kstat_lock); 2118 2119 return (0); 2120 } 2121 2122 int 2123 spa_import_progress_set_mmp_check(spa_t *spa, uint64_t mmp_sec_remaining) 2124 { 2125 if (spa->spa_imp_kstat == NULL) 2126 spa_import_progress_add(spa); 2127 2128 mutex_enter(&spa->spa_imp_kstat_lock); 2129 if (spa->spa_imp_kstat != NULL) { 2130 spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data; 2131 if (sip != NULL) 2132 sip->sip_mmp_sec_remaining.value.ui64 = 2133 mmp_sec_remaining; 2134 } 2135 mutex_exit(&spa->spa_imp_kstat_lock); 2136 2137 return (0); 2138 } 2139 2140 /* 2141 * A new import is in progress. Add an entry. 2142 */ 2143 void 2144 spa_import_progress_add(spa_t *spa) 2145 { 2146 char *poolname = NULL; 2147 spa_import_progress_t *sip; 2148 2149 mutex_enter(&spa->spa_imp_kstat_lock); 2150 if (spa->spa_imp_kstat != NULL) { 2151 sip = spa->spa_imp_kstat->ks_data; 2152 sip->sip_load_state.value.ui64 = (uint64_t)spa_load_state(spa); 2153 mutex_exit(&spa->spa_imp_kstat_lock); 2154 return; 2155 } 2156 2157 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2158 &poolname); 2159 if (poolname == NULL) 2160 poolname = spa_name(spa); 2161 2162 spa->spa_imp_kstat = kstat_create("zfs_import", 0, poolname, 2163 "zfs_misc", KSTAT_TYPE_NAMED, 2164 sizeof (spa_import_progress_t) / sizeof (kstat_named_t), 2165 KSTAT_FLAG_VIRTUAL); 2166 if (spa->spa_imp_kstat != NULL) { 2167 sip = kmem_alloc(sizeof (spa_import_progress_t), KM_SLEEP); 2168 spa->spa_imp_kstat->ks_data = sip; 2169 2170 sip->sip_load_state.value.ui64 = (uint64_t)spa_load_state(spa); 2171 2172 kstat_named_init(&sip->sip_load_state, 2173 "spa_load_state", KSTAT_DATA_UINT64); 2174 kstat_named_init(&sip->sip_mmp_sec_remaining, 2175 "mmp_sec_remaining", KSTAT_DATA_UINT64); 2176 kstat_named_init(&sip->sip_load_max_txg, 2177 "spa_load_max_txg", KSTAT_DATA_UINT64); 2178 spa->spa_imp_kstat->ks_lock = &spa->spa_imp_kstat_lock; 2179 kstat_install(spa->spa_imp_kstat); 2180 } 2181 mutex_exit(&spa->spa_imp_kstat_lock); 2182 } 2183 2184 void 2185 spa_import_progress_remove(spa_t *spa) 2186 { 2187 if (spa->spa_imp_kstat != NULL) { 2188 void *data = spa->spa_imp_kstat->ks_data; 2189 2190 kstat_delete(spa->spa_imp_kstat); 2191 spa->spa_imp_kstat = NULL; 2192 kmem_free(data, sizeof (spa_import_progress_t)); 2193 } 2194 } 2195 2196 /* 2197 * ========================================================================== 2198 * Initialization and Termination 2199 * ========================================================================== 2200 */ 2201 2202 static int 2203 spa_name_compare(const void *a1, const void *a2) 2204 { 2205 const spa_t *s1 = a1; 2206 const spa_t *s2 = a2; 2207 int s; 2208 2209 s = strcmp(s1->spa_name, s2->spa_name); 2210 2211 return (TREE_ISIGN(s)); 2212 } 2213 2214 int 2215 spa_busy(void) 2216 { 2217 return (spa_active_count); 2218 } 2219 2220 void 2221 spa_boot_init() 2222 { 2223 spa_config_load(); 2224 } 2225 2226 void 2227 spa_init(int mode) 2228 { 2229 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2230 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2231 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2232 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2233 2234 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2235 offsetof(spa_t, spa_avl)); 2236 2237 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2238 offsetof(spa_aux_t, aux_avl)); 2239 2240 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2241 offsetof(spa_aux_t, aux_avl)); 2242 2243 spa_mode_global = mode; 2244 2245 #ifdef _KERNEL 2246 spa_arch_init(); 2247 #else 2248 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 2249 arc_procfd = open("/proc/self/ctl", O_WRONLY); 2250 if (arc_procfd == -1) { 2251 perror("could not enable watchpoints: " 2252 "opening /proc/self/ctl failed: "); 2253 } else { 2254 arc_watch = B_TRUE; 2255 } 2256 } 2257 #endif 2258 2259 zfs_refcount_init(); 2260 unique_init(); 2261 zfs_btree_init(); 2262 metaslab_stat_init(); 2263 zio_init(); 2264 dmu_init(); 2265 zil_init(); 2266 vdev_cache_stat_init(); 2267 vdev_mirror_stat_init(); 2268 vdev_raidz_math_init(); 2269 zfs_prop_init(); 2270 zpool_prop_init(); 2271 zpool_feature_init(); 2272 spa_config_load(); 2273 l2arc_start(); 2274 scan_init(); 2275 spa_import_progress_init(); 2276 } 2277 2278 void 2279 spa_fini(void) 2280 { 2281 l2arc_stop(); 2282 2283 spa_evict_all(); 2284 2285 vdev_cache_stat_fini(); 2286 vdev_mirror_stat_fini(); 2287 vdev_raidz_math_fini(); 2288 zil_fini(); 2289 dmu_fini(); 2290 zio_fini(); 2291 metaslab_stat_fini(); 2292 zfs_btree_fini(); 2293 unique_fini(); 2294 zfs_refcount_fini(); 2295 scan_fini(); 2296 spa_import_progress_destroy(); 2297 2298 avl_destroy(&spa_namespace_avl); 2299 avl_destroy(&spa_spare_avl); 2300 avl_destroy(&spa_l2cache_avl); 2301 2302 cv_destroy(&spa_namespace_cv); 2303 mutex_destroy(&spa_namespace_lock); 2304 mutex_destroy(&spa_spare_lock); 2305 mutex_destroy(&spa_l2cache_lock); 2306 } 2307 2308 /* 2309 * Return whether this pool has slogs. No locking needed. 2310 * It's not a problem if the wrong answer is returned as it's only for 2311 * performance and not correctness 2312 */ 2313 boolean_t 2314 spa_has_slogs(spa_t *spa) 2315 { 2316 return (spa->spa_log_class->mc_rotor != NULL); 2317 } 2318 2319 spa_log_state_t 2320 spa_get_log_state(spa_t *spa) 2321 { 2322 return (spa->spa_log_state); 2323 } 2324 2325 void 2326 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2327 { 2328 spa->spa_log_state = state; 2329 } 2330 2331 boolean_t 2332 spa_is_root(spa_t *spa) 2333 { 2334 return (spa->spa_is_root); 2335 } 2336 2337 boolean_t 2338 spa_writeable(spa_t *spa) 2339 { 2340 return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config); 2341 } 2342 2343 /* 2344 * Returns true if there is a pending sync task in any of the current 2345 * syncing txg, the current quiescing txg, or the current open txg. 2346 */ 2347 boolean_t 2348 spa_has_pending_synctask(spa_t *spa) 2349 { 2350 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2351 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2352 } 2353 2354 int 2355 spa_mode(spa_t *spa) 2356 { 2357 return (spa->spa_mode); 2358 } 2359 2360 uint64_t 2361 spa_bootfs(spa_t *spa) 2362 { 2363 return (spa->spa_bootfs); 2364 } 2365 2366 uint64_t 2367 spa_delegation(spa_t *spa) 2368 { 2369 return (spa->spa_delegation); 2370 } 2371 2372 objset_t * 2373 spa_meta_objset(spa_t *spa) 2374 { 2375 return (spa->spa_meta_objset); 2376 } 2377 2378 enum zio_checksum 2379 spa_dedup_checksum(spa_t *spa) 2380 { 2381 return (spa->spa_dedup_checksum); 2382 } 2383 2384 /* 2385 * Reset pool scan stat per scan pass (or reboot). 2386 */ 2387 void 2388 spa_scan_stat_init(spa_t *spa) 2389 { 2390 /* data not stored on disk */ 2391 spa->spa_scan_pass_start = gethrestime_sec(); 2392 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2393 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2394 else 2395 spa->spa_scan_pass_scrub_pause = 0; 2396 spa->spa_scan_pass_scrub_spent_paused = 0; 2397 spa->spa_scan_pass_exam = 0; 2398 spa->spa_scan_pass_issued = 0; 2399 vdev_scan_stat_init(spa->spa_root_vdev); 2400 } 2401 2402 /* 2403 * Get scan stats for zpool status reports 2404 */ 2405 int 2406 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2407 { 2408 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2409 2410 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 2411 return (SET_ERROR(ENOENT)); 2412 bzero(ps, sizeof (pool_scan_stat_t)); 2413 2414 /* data stored on disk */ 2415 ps->pss_func = scn->scn_phys.scn_func; 2416 ps->pss_state = scn->scn_phys.scn_state; 2417 ps->pss_start_time = scn->scn_phys.scn_start_time; 2418 ps->pss_end_time = scn->scn_phys.scn_end_time; 2419 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2420 ps->pss_to_process = scn->scn_phys.scn_to_process; 2421 ps->pss_processed = scn->scn_phys.scn_processed; 2422 ps->pss_errors = scn->scn_phys.scn_errors; 2423 ps->pss_examined = scn->scn_phys.scn_examined; 2424 ps->pss_issued = 2425 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2426 ps->pss_state = scn->scn_phys.scn_state; 2427 2428 /* data not stored on disk */ 2429 ps->pss_pass_start = spa->spa_scan_pass_start; 2430 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2431 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2432 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2433 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2434 2435 return (0); 2436 } 2437 2438 int 2439 spa_maxblocksize(spa_t *spa) 2440 { 2441 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2442 return (SPA_MAXBLOCKSIZE); 2443 else 2444 return (SPA_OLD_MAXBLOCKSIZE); 2445 } 2446 2447 int 2448 spa_maxdnodesize(spa_t *spa) 2449 { 2450 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2451 return (DNODE_MAX_SIZE); 2452 else 2453 return (DNODE_MIN_SIZE); 2454 } 2455 2456 boolean_t 2457 spa_multihost(spa_t *spa) 2458 { 2459 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2460 } 2461 2462 unsigned long 2463 spa_get_hostid(void) 2464 { 2465 unsigned long myhostid; 2466 2467 #ifdef _KERNEL 2468 myhostid = zone_get_hostid(NULL); 2469 #else /* _KERNEL */ 2470 /* 2471 * We're emulating the system's hostid in userland, so 2472 * we can't use zone_get_hostid(). 2473 */ 2474 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2475 #endif /* _KERNEL */ 2476 2477 return (myhostid); 2478 } 2479 2480 /* 2481 * Returns the txg that the last device removal completed. No indirect mappings 2482 * have been added since this txg. 2483 */ 2484 uint64_t 2485 spa_get_last_removal_txg(spa_t *spa) 2486 { 2487 uint64_t vdevid; 2488 uint64_t ret = -1ULL; 2489 2490 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2491 /* 2492 * sr_prev_indirect_vdev is only modified while holding all the 2493 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2494 * examining it. 2495 */ 2496 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2497 2498 while (vdevid != -1ULL) { 2499 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2500 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2501 2502 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2503 2504 /* 2505 * If the removal did not remap any data, we don't care. 2506 */ 2507 if (vdev_indirect_births_count(vib) != 0) { 2508 ret = vdev_indirect_births_last_entry_txg(vib); 2509 break; 2510 } 2511 2512 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2513 } 2514 spa_config_exit(spa, SCL_VDEV, FTAG); 2515 2516 IMPLY(ret != -1ULL, 2517 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2518 2519 return (ret); 2520 } 2521 2522 boolean_t 2523 spa_trust_config(spa_t *spa) 2524 { 2525 return (spa->spa_trust_config); 2526 } 2527 2528 uint64_t 2529 spa_missing_tvds_allowed(spa_t *spa) 2530 { 2531 return (spa->spa_missing_tvds_allowed); 2532 } 2533 2534 space_map_t * 2535 spa_syncing_log_sm(spa_t *spa) 2536 { 2537 return (spa->spa_syncing_log_sm); 2538 } 2539 2540 void 2541 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2542 { 2543 spa->spa_missing_tvds = missing; 2544 } 2545 2546 boolean_t 2547 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2548 { 2549 vdev_t *rvd = spa->spa_root_vdev; 2550 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2551 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2552 return (B_FALSE); 2553 } 2554 return (B_TRUE); 2555 } 2556 2557 boolean_t 2558 spa_has_checkpoint(spa_t *spa) 2559 { 2560 return (spa->spa_checkpoint_txg != 0); 2561 } 2562 2563 boolean_t 2564 spa_importing_readonly_checkpoint(spa_t *spa) 2565 { 2566 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2567 spa->spa_mode == FREAD); 2568 } 2569 2570 uint64_t 2571 spa_min_claim_txg(spa_t *spa) 2572 { 2573 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2574 2575 if (checkpoint_txg != 0) 2576 return (checkpoint_txg + 1); 2577 2578 return (spa->spa_first_txg); 2579 } 2580 2581 /* 2582 * If there is a checkpoint, async destroys may consume more space from 2583 * the pool instead of freeing it. In an attempt to save the pool from 2584 * getting suspended when it is about to run out of space, we stop 2585 * processing async destroys. 2586 */ 2587 boolean_t 2588 spa_suspend_async_destroy(spa_t *spa) 2589 { 2590 dsl_pool_t *dp = spa_get_dsl(spa); 2591 2592 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2593 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2594 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2595 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2596 2597 if (spa_has_checkpoint(spa) && avail == 0) 2598 return (B_TRUE); 2599 2600 return (B_FALSE); 2601 } 2602 2603 /* 2604 * Generate a LUN expansion event. This routine does not use 2605 * ddi_log_sysevent() because that would require a dev_info_t, and we may not 2606 * have one available. 2607 */ 2608 void 2609 zfs_post_dle_sysevent(const char *physpath) 2610 { 2611 #ifdef _KERNEL 2612 sysevent_t *ev = sysevent_alloc(EC_DEV_STATUS, ESC_DEV_DLE, 2613 SUNW_KERN_PUB "zfs", SE_SLEEP); 2614 sysevent_attr_list_t *attr = NULL; 2615 sysevent_id_t eid; 2616 2617 VERIFY(ev != NULL); 2618 2619 /* 2620 * The only attribute is the /devices path of the expanding device: 2621 */ 2622 sysevent_value_t value = { 2623 .value_type = SE_DATA_TYPE_STRING, 2624 .value = { 2625 .sv_string = (char *)physpath, 2626 }, 2627 }; 2628 if (sysevent_add_attr(&attr, DEV_PHYS_PATH, &value, SE_SLEEP) != 0) { 2629 sysevent_free(ev); 2630 return; 2631 } 2632 2633 if (sysevent_attach_attributes(ev, attr) != 0) { 2634 sysevent_free_attr(attr); 2635 sysevent_free(ev); 2636 return; 2637 } 2638 2639 (void) log_sysevent(ev, SE_SLEEP, &eid); 2640 sysevent_free(ev); 2641 #endif 2642 } 2643