xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 533affcbc7fc4d0c8132976ea454aaa715fe2307)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright (c) 2017 Datto Inc.
29  * Copyright 2019 Joyent, Inc.
30  * Copyright (c) 2017, Intel Corporation.
31  * Copyright 2020 Joyent, Inc.
32  * Copyright 2022 Oxide Computer Company
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/spa_impl.h>
37 #include <sys/spa_boot.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/vdev_initialize.h>
47 #include <sys/vdev_trim.h>
48 #include <sys/vdev_raidz.h>
49 #include <sys/metaslab.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/unique.h>
54 #include <sys/dsl_pool.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/arc.h>
61 #include <sys/ddt.h>
62 #include "zfs_prop.h"
63 #include <sys/btree.h>
64 #include <sys/zfeature.h>
65 
66 /*
67  * SPA locking
68  *
69  * There are three basic locks for managing spa_t structures:
70  *
71  * spa_namespace_lock (global mutex)
72  *
73  *	This lock must be acquired to do any of the following:
74  *
75  *		- Lookup a spa_t by name
76  *		- Add or remove a spa_t from the namespace
77  *		- Increase spa_refcount from non-zero
78  *		- Check if spa_refcount is zero
79  *		- Rename a spa_t
80  *		- add/remove/attach/detach devices
81  *		- Held for the duration of create/destroy/import/export
82  *
83  *	It does not need to handle recursion.  A create or destroy may
84  *	reference objects (files or zvols) in other pools, but by
85  *	definition they must have an existing reference, and will never need
86  *	to lookup a spa_t by name.
87  *
88  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
89  *
90  *	This reference count keep track of any active users of the spa_t.  The
91  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
92  *	the refcount is never really 'zero' - opening a pool implicitly keeps
93  *	some references in the DMU.  Internally we check against spa_minref, but
94  *	present the image of a zero/non-zero value to consumers.
95  *
96  * spa_config_lock[] (per-spa array of rwlocks)
97  *
98  *	This protects the spa_t from config changes, and must be held in
99  *	the following circumstances:
100  *
101  *		- RW_READER to perform I/O to the spa
102  *		- RW_WRITER to change the vdev config
103  *
104  * The locking order is fairly straightforward:
105  *
106  *		spa_namespace_lock	->	spa_refcount
107  *
108  *	The namespace lock must be acquired to increase the refcount from 0
109  *	or to check if it is zero.
110  *
111  *		spa_refcount		->	spa_config_lock[]
112  *
113  *	There must be at least one valid reference on the spa_t to acquire
114  *	the config lock.
115  *
116  *		spa_namespace_lock	->	spa_config_lock[]
117  *
118  *	The namespace lock must always be taken before the config lock.
119  *
120  *
121  * The spa_namespace_lock can be acquired directly and is globally visible.
122  *
123  * The namespace is manipulated using the following functions, all of which
124  * require the spa_namespace_lock to be held.
125  *
126  *	spa_lookup()		Lookup a spa_t by name.
127  *
128  *	spa_add()		Create a new spa_t in the namespace.
129  *
130  *	spa_remove()		Remove a spa_t from the namespace.  This also
131  *				frees up any memory associated with the spa_t.
132  *
133  *	spa_next()		Returns the next spa_t in the system, or the
134  *				first if NULL is passed.
135  *
136  *	spa_evict_all()		Shutdown and remove all spa_t structures in
137  *				the system.
138  *
139  *	spa_guid_exists()	Determine whether a pool/device guid exists.
140  *
141  * The spa_refcount is manipulated using the following functions:
142  *
143  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
144  *				called with spa_namespace_lock held if the
145  *				refcount is currently zero.
146  *
147  *	spa_close()		Remove a reference from the spa_t.  This will
148  *				not free the spa_t or remove it from the
149  *				namespace.  No locking is required.
150  *
151  *	spa_refcount_zero()	Returns true if the refcount is currently
152  *				zero.  Must be called with spa_namespace_lock
153  *				held.
154  *
155  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
156  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
157  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
158  *
159  * To read the configuration, it suffices to hold one of these locks as reader.
160  * To modify the configuration, you must hold all locks as writer.  To modify
161  * vdev state without altering the vdev tree's topology (e.g. online/offline),
162  * you must hold SCL_STATE and SCL_ZIO as writer.
163  *
164  * We use these distinct config locks to avoid recursive lock entry.
165  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
166  * block allocations (SCL_ALLOC), which may require reading space maps
167  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
168  *
169  * The spa config locks cannot be normal rwlocks because we need the
170  * ability to hand off ownership.  For example, SCL_ZIO is acquired
171  * by the issuing thread and later released by an interrupt thread.
172  * They do, however, obey the usual write-wanted semantics to prevent
173  * writer (i.e. system administrator) starvation.
174  *
175  * The lock acquisition rules are as follows:
176  *
177  * SCL_CONFIG
178  *	Protects changes to the vdev tree topology, such as vdev
179  *	add/remove/attach/detach.  Protects the dirty config list
180  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
181  *
182  * SCL_STATE
183  *	Protects changes to pool state and vdev state, such as vdev
184  *	online/offline/fault/degrade/clear.  Protects the dirty state list
185  *	(spa_state_dirty_list) and global pool state (spa_state).
186  *
187  * SCL_ALLOC
188  *	Protects changes to metaslab groups and classes.
189  *	Held as reader by metaslab_alloc() and metaslab_claim().
190  *
191  * SCL_ZIO
192  *	Held by bp-level zios (those which have no io_vd upon entry)
193  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
194  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
195  *
196  * SCL_FREE
197  *	Protects changes to metaslab groups and classes.
198  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
199  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
200  *	blocks in zio_done() while another i/o that holds either
201  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
202  *
203  * SCL_VDEV
204  *	Held as reader to prevent changes to the vdev tree during trivial
205  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
206  *	other locks, and lower than all of them, to ensure that it's safe
207  *	to acquire regardless of caller context.
208  *
209  * In addition, the following rules apply:
210  *
211  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
212  *	The lock ordering is SCL_CONFIG > spa_props_lock.
213  *
214  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
215  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
216  *	or zio_write_phys() -- the caller must ensure that the config cannot
217  *	cannot change in the interim, and that the vdev cannot be reopened.
218  *	SCL_STATE as reader suffices for both.
219  *
220  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
221  *
222  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
223  *				for writing.
224  *
225  *	spa_vdev_exit()		Release the config lock, wait for all I/O
226  *				to complete, sync the updated configs to the
227  *				cache, and release the namespace lock.
228  *
229  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
230  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
231  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
232  */
233 
234 static avl_tree_t spa_namespace_avl;
235 kmutex_t spa_namespace_lock;
236 static kcondvar_t spa_namespace_cv;
237 static int spa_active_count;
238 int spa_max_replication_override = SPA_DVAS_PER_BP;
239 
240 static kmutex_t spa_spare_lock;
241 static avl_tree_t spa_spare_avl;
242 static kmutex_t spa_l2cache_lock;
243 static avl_tree_t spa_l2cache_avl;
244 
245 kmem_cache_t *spa_buffer_pool;
246 int spa_mode_global;
247 
248 #ifdef ZFS_DEBUG
249 /*
250  * Everything except dprintf, spa, and indirect_remap is on by default
251  * in debug builds.
252  */
253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP);
254 #else
255 int zfs_flags = 0;
256 #endif
257 
258 /*
259  * zfs_recover can be set to nonzero to attempt to recover from
260  * otherwise-fatal errors, typically caused by on-disk corruption.  When
261  * set, calls to zfs_panic_recover() will turn into warning messages.
262  * This should only be used as a last resort, as it typically results
263  * in leaked space, or worse.
264  */
265 boolean_t zfs_recover = B_FALSE;
266 
267 /*
268  * If destroy encounters an EIO while reading metadata (e.g. indirect
269  * blocks), space referenced by the missing metadata can not be freed.
270  * Normally this causes the background destroy to become "stalled", as
271  * it is unable to make forward progress.  While in this stalled state,
272  * all remaining space to free from the error-encountering filesystem is
273  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
274  * permanently leak the space from indirect blocks that can not be read,
275  * and continue to free everything else that it can.
276  *
277  * The default, "stalling" behavior is useful if the storage partially
278  * fails (i.e. some but not all i/os fail), and then later recovers.  In
279  * this case, we will be able to continue pool operations while it is
280  * partially failed, and when it recovers, we can continue to free the
281  * space, with no leaks.  However, note that this case is actually
282  * fairly rare.
283  *
284  * Typically pools either (a) fail completely (but perhaps temporarily,
285  * e.g. a top-level vdev going offline), or (b) have localized,
286  * permanent errors (e.g. disk returns the wrong data due to bit flip or
287  * firmware bug).  In case (a), this setting does not matter because the
288  * pool will be suspended and the sync thread will not be able to make
289  * forward progress regardless.  In case (b), because the error is
290  * permanent, the best we can do is leak the minimum amount of space,
291  * which is what setting this flag will do.  Therefore, it is reasonable
292  * for this flag to normally be set, but we chose the more conservative
293  * approach of not setting it, so that there is no possibility of
294  * leaking space in the "partial temporary" failure case.
295  */
296 boolean_t zfs_free_leak_on_eio = B_FALSE;
297 
298 /*
299  * Expiration time in milliseconds. This value has two meanings. First it is
300  * used to determine when the spa_deadman() logic should fire. By default the
301  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
302  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
303  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
304  * in a system panic.
305  */
306 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
307 
308 /*
309  * Check time in milliseconds. This defines the frequency at which we check
310  * for hung I/O.
311  */
312 uint64_t zfs_deadman_checktime_ms = 5000ULL;
313 
314 /*
315  * Override the zfs deadman behavior via /etc/system. By default the
316  * deadman is enabled except on VMware and sparc deployments.
317  */
318 int zfs_deadman_enabled = -1;
319 
320 #if defined(__amd64__) || defined(__i386__)
321 /*
322  * Should we allow the use of mechanisms that depend on saving and restoring
323  * the FPU state?  This was disabled initially due to stability issues in
324  * the kernel FPU routines; see bug 13717. As of the fixes for 13902 and
325  * 13915, it has once again been enabled.
326  */
327 int zfs_fpu_enabled = 1;
328 #endif
329 
330 /*
331  * The worst case is single-sector max-parity RAID-Z blocks, in which
332  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
333  * times the size; so just assume that.  Add to this the fact that
334  * we can have up to 3 DVAs per bp, and one more factor of 2 because
335  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
336  * the worst case is:
337  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
338  */
339 int spa_asize_inflation = 24;
340 
341 /*
342  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
343  * the pool to be consumed.  This ensures that we don't run the pool
344  * completely out of space, due to unaccounted changes (e.g. to the MOS).
345  * It also limits the worst-case time to allocate space.  If we have
346  * less than this amount of free space, most ZPL operations (e.g. write,
347  * create) will return ENOSPC.
348  *
349  * Certain operations (e.g. file removal, most administrative actions) can
350  * use half the slop space.  They will only return ENOSPC if less than half
351  * the slop space is free.  Typically, once the pool has less than the slop
352  * space free, the user will use these operations to free up space in the pool.
353  * These are the operations that call dsl_pool_adjustedsize() with the netfree
354  * argument set to TRUE.
355  *
356  * Operations that are almost guaranteed to free up space in the absence of
357  * a pool checkpoint can use up to three quarters of the slop space
358  * (e.g zfs destroy).
359  *
360  * A very restricted set of operations are always permitted, regardless of
361  * the amount of free space.  These are the operations that call
362  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
363  * increase in the amount of space used, it is possible to run the pool
364  * completely out of space, causing it to be permanently read-only.
365  *
366  * Note that on very small pools, the slop space will be larger than
367  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
368  * but we never allow it to be more than half the pool size.
369  *
370  * See also the comments in zfs_space_check_t.
371  */
372 int spa_slop_shift = 5;
373 uint64_t spa_min_slop = 128 * 1024 * 1024;
374 
375 int spa_allocators = 4;
376 
377 /*PRINTFLIKE2*/
378 void
379 spa_load_failed(spa_t *spa, const char *fmt, ...)
380 {
381 	va_list adx;
382 	char buf[256];
383 
384 	va_start(adx, fmt);
385 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
386 	va_end(adx);
387 
388 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
389 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
390 }
391 
392 /*PRINTFLIKE2*/
393 void
394 spa_load_note(spa_t *spa, const char *fmt, ...)
395 {
396 	va_list adx;
397 	char buf[256];
398 
399 	va_start(adx, fmt);
400 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
401 	va_end(adx);
402 
403 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
404 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
405 }
406 
407 /*
408  * By default dedup and user data indirects land in the special class
409  */
410 int zfs_ddt_data_is_special = B_TRUE;
411 int zfs_user_indirect_is_special = B_TRUE;
412 
413 /*
414  * The percentage of special class final space reserved for metadata only.
415  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
416  * let metadata into the class.
417  */
418 int zfs_special_class_metadata_reserve_pct = 25;
419 
420 /*
421  * ==========================================================================
422  * SPA config locking
423  * ==========================================================================
424  */
425 static void
426 spa_config_lock_init(spa_t *spa)
427 {
428 	for (int i = 0; i < SCL_LOCKS; i++) {
429 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
430 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
431 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
432 		zfs_refcount_create_untracked(&scl->scl_count);
433 		scl->scl_writer = NULL;
434 		scl->scl_write_wanted = 0;
435 	}
436 }
437 
438 static void
439 spa_config_lock_destroy(spa_t *spa)
440 {
441 	for (int i = 0; i < SCL_LOCKS; i++) {
442 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
443 		mutex_destroy(&scl->scl_lock);
444 		cv_destroy(&scl->scl_cv);
445 		zfs_refcount_destroy(&scl->scl_count);
446 		ASSERT(scl->scl_writer == NULL);
447 		ASSERT(scl->scl_write_wanted == 0);
448 	}
449 }
450 
451 int
452 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
453 {
454 	for (int i = 0; i < SCL_LOCKS; i++) {
455 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
456 		if (!(locks & (1 << i)))
457 			continue;
458 		mutex_enter(&scl->scl_lock);
459 		if (rw == RW_READER) {
460 			if (scl->scl_writer || scl->scl_write_wanted) {
461 				mutex_exit(&scl->scl_lock);
462 				spa_config_exit(spa, locks & ((1 << i) - 1),
463 				    tag);
464 				return (0);
465 			}
466 		} else {
467 			ASSERT(scl->scl_writer != curthread);
468 			if (!zfs_refcount_is_zero(&scl->scl_count)) {
469 				mutex_exit(&scl->scl_lock);
470 				spa_config_exit(spa, locks & ((1 << i) - 1),
471 				    tag);
472 				return (0);
473 			}
474 			scl->scl_writer = curthread;
475 		}
476 		(void) zfs_refcount_add(&scl->scl_count, tag);
477 		mutex_exit(&scl->scl_lock);
478 	}
479 	return (1);
480 }
481 
482 void
483 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
484 {
485 	int wlocks_held = 0;
486 
487 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
488 
489 	for (int i = 0; i < SCL_LOCKS; i++) {
490 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
491 		if (scl->scl_writer == curthread)
492 			wlocks_held |= (1 << i);
493 		if (!(locks & (1 << i)))
494 			continue;
495 		mutex_enter(&scl->scl_lock);
496 		if (rw == RW_READER) {
497 			while (scl->scl_writer || scl->scl_write_wanted) {
498 				cv_wait(&scl->scl_cv, &scl->scl_lock);
499 			}
500 		} else {
501 			ASSERT(scl->scl_writer != curthread);
502 			while (!zfs_refcount_is_zero(&scl->scl_count)) {
503 				scl->scl_write_wanted++;
504 				cv_wait(&scl->scl_cv, &scl->scl_lock);
505 				scl->scl_write_wanted--;
506 			}
507 			scl->scl_writer = curthread;
508 		}
509 		(void) zfs_refcount_add(&scl->scl_count, tag);
510 		mutex_exit(&scl->scl_lock);
511 	}
512 	ASSERT3U(wlocks_held, <=, locks);
513 }
514 
515 void
516 spa_config_exit(spa_t *spa, int locks, void *tag)
517 {
518 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
519 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
520 		if (!(locks & (1 << i)))
521 			continue;
522 		mutex_enter(&scl->scl_lock);
523 		ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
524 		if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
525 			ASSERT(scl->scl_writer == NULL ||
526 			    scl->scl_writer == curthread);
527 			scl->scl_writer = NULL;	/* OK in either case */
528 			cv_broadcast(&scl->scl_cv);
529 		}
530 		mutex_exit(&scl->scl_lock);
531 	}
532 }
533 
534 int
535 spa_config_held(spa_t *spa, int locks, krw_t rw)
536 {
537 	int locks_held = 0;
538 
539 	for (int i = 0; i < SCL_LOCKS; i++) {
540 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
541 		if (!(locks & (1 << i)))
542 			continue;
543 		if ((rw == RW_READER &&
544 		    !zfs_refcount_is_zero(&scl->scl_count)) ||
545 		    (rw == RW_WRITER && scl->scl_writer == curthread))
546 			locks_held |= 1 << i;
547 	}
548 
549 	return (locks_held);
550 }
551 
552 /*
553  * ==========================================================================
554  * SPA namespace functions
555  * ==========================================================================
556  */
557 
558 /*
559  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
560  * Returns NULL if no matching spa_t is found.
561  */
562 spa_t *
563 spa_lookup(const char *name)
564 {
565 	static spa_t search;	/* spa_t is large; don't allocate on stack */
566 	spa_t *spa;
567 	avl_index_t where;
568 	char *cp;
569 
570 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
571 
572 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
573 
574 	/*
575 	 * If it's a full dataset name, figure out the pool name and
576 	 * just use that.
577 	 */
578 	cp = strpbrk(search.spa_name, "/@#");
579 	if (cp != NULL)
580 		*cp = '\0';
581 
582 	spa = avl_find(&spa_namespace_avl, &search, &where);
583 
584 	return (spa);
585 }
586 
587 /*
588  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
589  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
590  * looking for potentially hung I/Os.
591  */
592 void
593 spa_deadman(void *arg)
594 {
595 	spa_t *spa = arg;
596 
597 	/*
598 	 * Disable the deadman timer if the pool is suspended.
599 	 */
600 	if (spa_suspended(spa)) {
601 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
602 		return;
603 	}
604 
605 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
606 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
607 	    ++spa->spa_deadman_calls);
608 	if (zfs_deadman_enabled)
609 		vdev_deadman(spa->spa_root_vdev);
610 }
611 
612 int
613 spa_log_sm_sort_by_txg(const void *va, const void *vb)
614 {
615 	const spa_log_sm_t *a = va;
616 	const spa_log_sm_t *b = vb;
617 
618 	return (TREE_CMP(a->sls_txg, b->sls_txg));
619 }
620 
621 /*
622  * Create an uninitialized spa_t with the given name.  Requires
623  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
624  * exist by calling spa_lookup() first.
625  */
626 spa_t *
627 spa_add(const char *name, nvlist_t *config, const char *altroot)
628 {
629 	spa_t *spa;
630 	spa_config_dirent_t *dp;
631 	cyc_handler_t hdlr;
632 	cyc_time_t when;
633 
634 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
635 
636 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
637 
638 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
639 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
640 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
641 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
642 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
643 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
644 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
645 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
646 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
647 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
648 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
649 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
650 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
651 	mutex_init(&spa->spa_imp_kstat_lock, NULL, MUTEX_DEFAULT, NULL);
652 
653 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
654 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
655 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
656 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
657 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
658 
659 	for (int t = 0; t < TXG_SIZE; t++)
660 		bplist_create(&spa->spa_free_bplist[t]);
661 
662 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
663 	spa->spa_state = POOL_STATE_UNINITIALIZED;
664 	spa->spa_freeze_txg = UINT64_MAX;
665 	spa->spa_final_txg = UINT64_MAX;
666 	spa->spa_load_max_txg = UINT64_MAX;
667 	spa->spa_proc = &p0;
668 	spa->spa_proc_state = SPA_PROC_NONE;
669 	spa->spa_trust_config = B_TRUE;
670 
671 	hdlr.cyh_func = spa_deadman;
672 	hdlr.cyh_arg = spa;
673 	hdlr.cyh_level = CY_LOW_LEVEL;
674 
675 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
676 
677 	/*
678 	 * This determines how often we need to check for hung I/Os after
679 	 * the cyclic has already fired. Since checking for hung I/Os is
680 	 * an expensive operation we don't want to check too frequently.
681 	 * Instead wait for 5 seconds before checking again.
682 	 */
683 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
684 	when.cyt_when = CY_INFINITY;
685 	mutex_enter(&cpu_lock);
686 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
687 	mutex_exit(&cpu_lock);
688 
689 	zfs_refcount_create(&spa->spa_refcount);
690 	spa_config_lock_init(spa);
691 
692 	avl_add(&spa_namespace_avl, spa);
693 
694 	/*
695 	 * Set the alternate root, if there is one.
696 	 */
697 	if (altroot) {
698 		spa->spa_root = spa_strdup(altroot);
699 		spa_active_count++;
700 	}
701 
702 	spa->spa_alloc_count = spa_allocators;
703 	spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
704 	    sizeof (kmutex_t), KM_SLEEP);
705 	spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
706 	    sizeof (avl_tree_t), KM_SLEEP);
707 	for (int i = 0; i < spa->spa_alloc_count; i++) {
708 		mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
709 		avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
710 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
711 	}
712 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
713 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
714 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
715 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
716 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
717 	    offsetof(log_summary_entry_t, lse_node));
718 
719 	/*
720 	 * Every pool starts with the default cachefile
721 	 */
722 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
723 	    offsetof(spa_config_dirent_t, scd_link));
724 
725 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
726 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
727 	list_insert_head(&spa->spa_config_list, dp);
728 
729 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
730 	    KM_SLEEP) == 0);
731 
732 	if (config != NULL) {
733 		nvlist_t *features;
734 
735 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
736 		    &features) == 0) {
737 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
738 			    0) == 0);
739 		}
740 
741 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
742 	}
743 
744 	if (spa->spa_label_features == NULL) {
745 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
746 		    KM_SLEEP) == 0);
747 	}
748 
749 	spa->spa_iokstat = kstat_create("zfs", 0, name,
750 	    "disk", KSTAT_TYPE_IO, 1, 0);
751 	if (spa->spa_iokstat) {
752 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
753 		kstat_install(spa->spa_iokstat);
754 	}
755 
756 	spa->spa_min_ashift = INT_MAX;
757 	spa->spa_max_ashift = 0;
758 
759 	/*
760 	 * As a pool is being created, treat all features as disabled by
761 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
762 	 * refcount cache.
763 	 */
764 	for (int i = 0; i < SPA_FEATURES; i++) {
765 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
766 	}
767 
768 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
769 	    offsetof(vdev_t, vdev_leaf_node));
770 
771 	return (spa);
772 }
773 
774 /*
775  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
776  * spa_namespace_lock.  This is called only after the spa_t has been closed and
777  * deactivated.
778  */
779 void
780 spa_remove(spa_t *spa)
781 {
782 	spa_config_dirent_t *dp;
783 
784 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
785 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
786 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
787 
788 	nvlist_free(spa->spa_config_splitting);
789 
790 	avl_remove(&spa_namespace_avl, spa);
791 	cv_broadcast(&spa_namespace_cv);
792 
793 	if (spa->spa_root) {
794 		spa_strfree(spa->spa_root);
795 		spa_active_count--;
796 	}
797 
798 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
799 		list_remove(&spa->spa_config_list, dp);
800 		if (dp->scd_path != NULL)
801 			spa_strfree(dp->scd_path);
802 		kmem_free(dp, sizeof (spa_config_dirent_t));
803 	}
804 
805 	for (int i = 0; i < spa->spa_alloc_count; i++) {
806 		avl_destroy(&spa->spa_alloc_trees[i]);
807 		mutex_destroy(&spa->spa_alloc_locks[i]);
808 	}
809 	kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
810 	    sizeof (kmutex_t));
811 	kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
812 	    sizeof (avl_tree_t));
813 
814 	avl_destroy(&spa->spa_metaslabs_by_flushed);
815 	avl_destroy(&spa->spa_sm_logs_by_txg);
816 	list_destroy(&spa->spa_log_summary);
817 	list_destroy(&spa->spa_config_list);
818 	list_destroy(&spa->spa_leaf_list);
819 
820 	nvlist_free(spa->spa_label_features);
821 	nvlist_free(spa->spa_load_info);
822 	spa_config_set(spa, NULL);
823 
824 	mutex_enter(&cpu_lock);
825 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
826 		cyclic_remove(spa->spa_deadman_cycid);
827 	mutex_exit(&cpu_lock);
828 	spa->spa_deadman_cycid = CYCLIC_NONE;
829 
830 	zfs_refcount_destroy(&spa->spa_refcount);
831 
832 	spa_config_lock_destroy(spa);
833 
834 	kstat_delete(spa->spa_iokstat);
835 	spa->spa_iokstat = NULL;
836 
837 	for (int t = 0; t < TXG_SIZE; t++)
838 		bplist_destroy(&spa->spa_free_bplist[t]);
839 
840 	zio_checksum_templates_free(spa);
841 
842 	cv_destroy(&spa->spa_async_cv);
843 	cv_destroy(&spa->spa_evicting_os_cv);
844 	cv_destroy(&spa->spa_proc_cv);
845 	cv_destroy(&spa->spa_scrub_io_cv);
846 	cv_destroy(&spa->spa_suspend_cv);
847 
848 	mutex_destroy(&spa->spa_flushed_ms_lock);
849 	mutex_destroy(&spa->spa_async_lock);
850 	mutex_destroy(&spa->spa_errlist_lock);
851 	mutex_destroy(&spa->spa_errlog_lock);
852 	mutex_destroy(&spa->spa_evicting_os_lock);
853 	mutex_destroy(&spa->spa_history_lock);
854 	mutex_destroy(&spa->spa_proc_lock);
855 	mutex_destroy(&spa->spa_props_lock);
856 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
857 	mutex_destroy(&spa->spa_scrub_lock);
858 	mutex_destroy(&spa->spa_suspend_lock);
859 	mutex_destroy(&spa->spa_vdev_top_lock);
860 	mutex_destroy(&spa->spa_iokstat_lock);
861 	mutex_destroy(&spa->spa_imp_kstat_lock);
862 
863 	kmem_free(spa, sizeof (spa_t));
864 }
865 
866 /*
867  * Given a pool, return the next pool in the namespace, or NULL if there is
868  * none.  If 'prev' is NULL, return the first pool.
869  */
870 spa_t *
871 spa_next(spa_t *prev)
872 {
873 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
874 
875 	if (prev)
876 		return (AVL_NEXT(&spa_namespace_avl, prev));
877 	else
878 		return (avl_first(&spa_namespace_avl));
879 }
880 
881 /*
882  * ==========================================================================
883  * SPA refcount functions
884  * ==========================================================================
885  */
886 
887 /*
888  * Add a reference to the given spa_t.  Must have at least one reference, or
889  * have the namespace lock held.
890  */
891 void
892 spa_open_ref(spa_t *spa, void *tag)
893 {
894 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
895 	    MUTEX_HELD(&spa_namespace_lock));
896 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
897 }
898 
899 /*
900  * Remove a reference to the given spa_t.  Must have at least one reference, or
901  * have the namespace lock held.
902  */
903 void
904 spa_close(spa_t *spa, void *tag)
905 {
906 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
907 	    MUTEX_HELD(&spa_namespace_lock));
908 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
909 }
910 
911 /*
912  * Remove a reference to the given spa_t held by a dsl dir that is
913  * being asynchronously released.  Async releases occur from a taskq
914  * performing eviction of dsl datasets and dirs.  The namespace lock
915  * isn't held and the hold by the object being evicted may contribute to
916  * spa_minref (e.g. dataset or directory released during pool export),
917  * so the asserts in spa_close() do not apply.
918  */
919 void
920 spa_async_close(spa_t *spa, void *tag)
921 {
922 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
923 }
924 
925 /*
926  * Check to see if the spa refcount is zero.  Must be called with
927  * spa_namespace_lock held.  We really compare against spa_minref, which is the
928  * number of references acquired when opening a pool
929  */
930 boolean_t
931 spa_refcount_zero(spa_t *spa)
932 {
933 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
934 
935 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
936 }
937 
938 /*
939  * ==========================================================================
940  * SPA spare and l2cache tracking
941  * ==========================================================================
942  */
943 
944 /*
945  * Hot spares and cache devices are tracked using the same code below,
946  * for 'auxiliary' devices.
947  */
948 
949 typedef struct spa_aux {
950 	uint64_t	aux_guid;
951 	uint64_t	aux_pool;
952 	avl_node_t	aux_avl;
953 	int		aux_count;
954 } spa_aux_t;
955 
956 static inline int
957 spa_aux_compare(const void *a, const void *b)
958 {
959 	const spa_aux_t *sa = (const spa_aux_t *)a;
960 	const spa_aux_t *sb = (const spa_aux_t *)b;
961 
962 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
963 }
964 
965 void
966 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
967 {
968 	avl_index_t where;
969 	spa_aux_t search;
970 	spa_aux_t *aux;
971 
972 	search.aux_guid = vd->vdev_guid;
973 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
974 		aux->aux_count++;
975 	} else {
976 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
977 		aux->aux_guid = vd->vdev_guid;
978 		aux->aux_count = 1;
979 		avl_insert(avl, aux, where);
980 	}
981 }
982 
983 void
984 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
985 {
986 	spa_aux_t search;
987 	spa_aux_t *aux;
988 	avl_index_t where;
989 
990 	search.aux_guid = vd->vdev_guid;
991 	aux = avl_find(avl, &search, &where);
992 
993 	ASSERT(aux != NULL);
994 
995 	if (--aux->aux_count == 0) {
996 		avl_remove(avl, aux);
997 		kmem_free(aux, sizeof (spa_aux_t));
998 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
999 		aux->aux_pool = 0ULL;
1000 	}
1001 }
1002 
1003 boolean_t
1004 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1005 {
1006 	spa_aux_t search, *found;
1007 
1008 	search.aux_guid = guid;
1009 	found = avl_find(avl, &search, NULL);
1010 
1011 	if (pool) {
1012 		if (found)
1013 			*pool = found->aux_pool;
1014 		else
1015 			*pool = 0ULL;
1016 	}
1017 
1018 	if (refcnt) {
1019 		if (found)
1020 			*refcnt = found->aux_count;
1021 		else
1022 			*refcnt = 0;
1023 	}
1024 
1025 	return (found != NULL);
1026 }
1027 
1028 void
1029 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1030 {
1031 	spa_aux_t search, *found;
1032 	avl_index_t where;
1033 
1034 	search.aux_guid = vd->vdev_guid;
1035 	found = avl_find(avl, &search, &where);
1036 	ASSERT(found != NULL);
1037 	ASSERT(found->aux_pool == 0ULL);
1038 
1039 	found->aux_pool = spa_guid(vd->vdev_spa);
1040 }
1041 
1042 /*
1043  * Spares are tracked globally due to the following constraints:
1044  *
1045  *	- A spare may be part of multiple pools.
1046  *	- A spare may be added to a pool even if it's actively in use within
1047  *	  another pool.
1048  *	- A spare in use in any pool can only be the source of a replacement if
1049  *	  the target is a spare in the same pool.
1050  *
1051  * We keep track of all spares on the system through the use of a reference
1052  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1053  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1054  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1055  * inactive).  When a spare is made active (used to replace a device in the
1056  * pool), we also keep track of which pool its been made a part of.
1057  *
1058  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1059  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1060  * separate spare lock exists for the status query path, which does not need to
1061  * be completely consistent with respect to other vdev configuration changes.
1062  */
1063 
1064 /*
1065  * Poll the spare vdevs to make sure they are not faulty.
1066  *
1067  * The probe operation will raise an ENXIO error and create an FM ereport if the
1068  * probe fails.
1069  */
1070 void
1071 spa_spare_poll(spa_t *spa)
1072 {
1073 	boolean_t async_request = B_FALSE;
1074 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1075 	for (int i = 0; i < spa->spa_spares.sav_count; i++) {
1076 		spa_aux_t search, *found;
1077 		vdev_t *vd = spa->spa_spares.sav_vdevs[i];
1078 
1079 		search.aux_guid = vd->vdev_guid;
1080 
1081 		mutex_enter(&spa_spare_lock);
1082 		found = avl_find(&spa_spare_avl, &search, NULL);
1083 		/* This spare is in use by a pool. */
1084 		if (found != NULL && found->aux_pool != 0) {
1085 			mutex_exit(&spa_spare_lock);
1086 			continue;
1087 		}
1088 		mutex_exit(&spa_spare_lock);
1089 
1090 		vd->vdev_probe_wanted = B_TRUE;
1091 		async_request = B_TRUE;
1092 	}
1093 	if (async_request)
1094 		spa_async_request(spa, SPA_ASYNC_PROBE);
1095 
1096 	spa_config_exit(spa, SCL_STATE, FTAG);
1097 }
1098 
1099 static int
1100 spa_spare_compare(const void *a, const void *b)
1101 {
1102 	return (spa_aux_compare(a, b));
1103 }
1104 
1105 void
1106 spa_spare_add(vdev_t *vd)
1107 {
1108 	mutex_enter(&spa_spare_lock);
1109 	ASSERT(!vd->vdev_isspare);
1110 	spa_aux_add(vd, &spa_spare_avl);
1111 	vd->vdev_isspare = B_TRUE;
1112 	mutex_exit(&spa_spare_lock);
1113 }
1114 
1115 void
1116 spa_spare_remove(vdev_t *vd)
1117 {
1118 	mutex_enter(&spa_spare_lock);
1119 	ASSERT(vd->vdev_isspare);
1120 	spa_aux_remove(vd, &spa_spare_avl);
1121 	vd->vdev_isspare = B_FALSE;
1122 	mutex_exit(&spa_spare_lock);
1123 }
1124 
1125 boolean_t
1126 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1127 {
1128 	boolean_t found;
1129 
1130 	mutex_enter(&spa_spare_lock);
1131 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1132 	mutex_exit(&spa_spare_lock);
1133 
1134 	return (found);
1135 }
1136 
1137 void
1138 spa_spare_activate(vdev_t *vd)
1139 {
1140 	mutex_enter(&spa_spare_lock);
1141 	ASSERT(vd->vdev_isspare);
1142 	spa_aux_activate(vd, &spa_spare_avl);
1143 	mutex_exit(&spa_spare_lock);
1144 }
1145 
1146 /*
1147  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1148  * Cache devices currently only support one pool per cache device, and so
1149  * for these devices the aux reference count is currently unused beyond 1.
1150  */
1151 
1152 static int
1153 spa_l2cache_compare(const void *a, const void *b)
1154 {
1155 	return (spa_aux_compare(a, b));
1156 }
1157 
1158 void
1159 spa_l2cache_add(vdev_t *vd)
1160 {
1161 	mutex_enter(&spa_l2cache_lock);
1162 	ASSERT(!vd->vdev_isl2cache);
1163 	spa_aux_add(vd, &spa_l2cache_avl);
1164 	vd->vdev_isl2cache = B_TRUE;
1165 	mutex_exit(&spa_l2cache_lock);
1166 }
1167 
1168 void
1169 spa_l2cache_remove(vdev_t *vd)
1170 {
1171 	mutex_enter(&spa_l2cache_lock);
1172 	ASSERT(vd->vdev_isl2cache);
1173 	spa_aux_remove(vd, &spa_l2cache_avl);
1174 	vd->vdev_isl2cache = B_FALSE;
1175 	mutex_exit(&spa_l2cache_lock);
1176 }
1177 
1178 boolean_t
1179 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1180 {
1181 	boolean_t found;
1182 
1183 	mutex_enter(&spa_l2cache_lock);
1184 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1185 	mutex_exit(&spa_l2cache_lock);
1186 
1187 	return (found);
1188 }
1189 
1190 void
1191 spa_l2cache_activate(vdev_t *vd)
1192 {
1193 	mutex_enter(&spa_l2cache_lock);
1194 	ASSERT(vd->vdev_isl2cache);
1195 	spa_aux_activate(vd, &spa_l2cache_avl);
1196 	mutex_exit(&spa_l2cache_lock);
1197 }
1198 
1199 /*
1200  * ==========================================================================
1201  * SPA vdev locking
1202  * ==========================================================================
1203  */
1204 
1205 /*
1206  * Lock the given spa_t for the purpose of adding or removing a vdev.
1207  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1208  * It returns the next transaction group for the spa_t.
1209  */
1210 uint64_t
1211 spa_vdev_enter(spa_t *spa)
1212 {
1213 	mutex_enter(&spa->spa_vdev_top_lock);
1214 	mutex_enter(&spa_namespace_lock);
1215 
1216 	vdev_autotrim_stop_all(spa);
1217 
1218 	return (spa_vdev_config_enter(spa));
1219 }
1220 
1221 /*
1222  * Internal implementation for spa_vdev_enter().  Used when a vdev
1223  * operation requires multiple syncs (i.e. removing a device) while
1224  * keeping the spa_namespace_lock held.
1225  */
1226 uint64_t
1227 spa_vdev_config_enter(spa_t *spa)
1228 {
1229 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1230 
1231 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1232 
1233 	return (spa_last_synced_txg(spa) + 1);
1234 }
1235 
1236 /*
1237  * Used in combination with spa_vdev_config_enter() to allow the syncing
1238  * of multiple transactions without releasing the spa_namespace_lock.
1239  */
1240 void
1241 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1242 {
1243 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1244 
1245 	int config_changed = B_FALSE;
1246 
1247 	ASSERT(txg > spa_last_synced_txg(spa));
1248 
1249 	spa->spa_pending_vdev = NULL;
1250 
1251 	/*
1252 	 * Reassess the DTLs.
1253 	 */
1254 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1255 
1256 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1257 		config_changed = B_TRUE;
1258 		spa->spa_config_generation++;
1259 	}
1260 
1261 	/*
1262 	 * Verify the metaslab classes.
1263 	 */
1264 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1265 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1266 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1267 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1268 
1269 	spa_config_exit(spa, SCL_ALL, spa);
1270 
1271 	/*
1272 	 * Panic the system if the specified tag requires it.  This
1273 	 * is useful for ensuring that configurations are updated
1274 	 * transactionally.
1275 	 */
1276 	if (zio_injection_enabled)
1277 		zio_handle_panic_injection(spa, tag, 0);
1278 
1279 	/*
1280 	 * Note: this txg_wait_synced() is important because it ensures
1281 	 * that there won't be more than one config change per txg.
1282 	 * This allows us to use the txg as the generation number.
1283 	 */
1284 	if (error == 0)
1285 		txg_wait_synced(spa->spa_dsl_pool, txg);
1286 
1287 	if (vd != NULL) {
1288 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1289 		if (vd->vdev_ops->vdev_op_leaf) {
1290 			mutex_enter(&vd->vdev_initialize_lock);
1291 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1292 			    NULL);
1293 			mutex_exit(&vd->vdev_initialize_lock);
1294 
1295 			mutex_enter(&vd->vdev_trim_lock);
1296 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1297 			mutex_exit(&vd->vdev_trim_lock);
1298 		}
1299 
1300 		/*
1301 		 * The vdev may be both a leaf and top-level device.
1302 		 */
1303 		vdev_autotrim_stop_wait(vd);
1304 
1305 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1306 		vdev_free(vd);
1307 		spa_config_exit(spa, SCL_ALL, spa);
1308 	}
1309 
1310 	/*
1311 	 * If the config changed, update the config cache.
1312 	 */
1313 	if (config_changed)
1314 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1315 }
1316 
1317 /*
1318  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1319  * locking of spa_vdev_enter(), we also want make sure the transactions have
1320  * synced to disk, and then update the global configuration cache with the new
1321  * information.
1322  */
1323 int
1324 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1325 {
1326 	vdev_autotrim_restart(spa);
1327 
1328 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1329 	mutex_exit(&spa_namespace_lock);
1330 	mutex_exit(&spa->spa_vdev_top_lock);
1331 
1332 	return (error);
1333 }
1334 
1335 /*
1336  * Lock the given spa_t for the purpose of changing vdev state.
1337  */
1338 void
1339 spa_vdev_state_enter(spa_t *spa, int oplocks)
1340 {
1341 	int locks = SCL_STATE_ALL | oplocks;
1342 
1343 	/*
1344 	 * Root pools may need to read of the underlying devfs filesystem
1345 	 * when opening up a vdev.  Unfortunately if we're holding the
1346 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1347 	 * the read from the root filesystem.  Instead we "prefetch"
1348 	 * the associated vnodes that we need prior to opening the
1349 	 * underlying devices and cache them so that we can prevent
1350 	 * any I/O when we are doing the actual open.
1351 	 */
1352 	if (spa_is_root(spa)) {
1353 		int low = locks & ~(SCL_ZIO - 1);
1354 		int high = locks & ~low;
1355 
1356 		spa_config_enter(spa, high, spa, RW_WRITER);
1357 		vdev_hold(spa->spa_root_vdev);
1358 		spa_config_enter(spa, low, spa, RW_WRITER);
1359 	} else {
1360 		spa_config_enter(spa, locks, spa, RW_WRITER);
1361 	}
1362 	spa->spa_vdev_locks = locks;
1363 }
1364 
1365 int
1366 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1367 {
1368 	boolean_t config_changed = B_FALSE;
1369 
1370 	if (vd != NULL || error == 0)
1371 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1372 		    0, 0, B_FALSE);
1373 
1374 	if (vd != NULL) {
1375 		vdev_state_dirty(vd->vdev_top);
1376 		config_changed = B_TRUE;
1377 		spa->spa_config_generation++;
1378 	}
1379 
1380 	if (spa_is_root(spa))
1381 		vdev_rele(spa->spa_root_vdev);
1382 
1383 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1384 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1385 
1386 	/*
1387 	 * If anything changed, wait for it to sync.  This ensures that,
1388 	 * from the system administrator's perspective, zpool(8) commands
1389 	 * are synchronous.  This is important for things like zpool offline:
1390 	 * when the command completes, you expect no further I/O from ZFS.
1391 	 */
1392 	if (vd != NULL)
1393 		txg_wait_synced(spa->spa_dsl_pool, 0);
1394 
1395 	/*
1396 	 * If the config changed, update the config cache.
1397 	 */
1398 	if (config_changed) {
1399 		mutex_enter(&spa_namespace_lock);
1400 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1401 		mutex_exit(&spa_namespace_lock);
1402 	}
1403 
1404 	return (error);
1405 }
1406 
1407 /*
1408  * ==========================================================================
1409  * Miscellaneous functions
1410  * ==========================================================================
1411  */
1412 
1413 void
1414 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1415 {
1416 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1417 		fnvlist_add_boolean(spa->spa_label_features, feature);
1418 		/*
1419 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1420 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1421 		 * Thankfully, in this case we don't need to dirty the config
1422 		 * because it will be written out anyway when we finish
1423 		 * creating the pool.
1424 		 */
1425 		if (tx->tx_txg != TXG_INITIAL)
1426 			vdev_config_dirty(spa->spa_root_vdev);
1427 	}
1428 }
1429 
1430 void
1431 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1432 {
1433 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1434 		vdev_config_dirty(spa->spa_root_vdev);
1435 }
1436 
1437 /*
1438  * Return the spa_t associated with given pool_guid, if it exists.  If
1439  * device_guid is non-zero, determine whether the pool exists *and* contains
1440  * a device with the specified device_guid.
1441  */
1442 spa_t *
1443 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1444 {
1445 	spa_t *spa;
1446 	avl_tree_t *t = &spa_namespace_avl;
1447 
1448 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1449 
1450 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1451 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1452 			continue;
1453 		if (spa->spa_root_vdev == NULL)
1454 			continue;
1455 		if (spa_guid(spa) == pool_guid) {
1456 			if (device_guid == 0)
1457 				break;
1458 
1459 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1460 			    device_guid) != NULL)
1461 				break;
1462 
1463 			/*
1464 			 * Check any devices we may be in the process of adding.
1465 			 */
1466 			if (spa->spa_pending_vdev) {
1467 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1468 				    device_guid) != NULL)
1469 					break;
1470 			}
1471 		}
1472 	}
1473 
1474 	return (spa);
1475 }
1476 
1477 /*
1478  * Determine whether a pool with the given pool_guid exists.
1479  */
1480 boolean_t
1481 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1482 {
1483 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1484 }
1485 
1486 char *
1487 spa_strdup(const char *s)
1488 {
1489 	size_t len;
1490 	char *new;
1491 
1492 	len = strlen(s);
1493 	new = kmem_alloc(len + 1, KM_SLEEP);
1494 	bcopy(s, new, len);
1495 	new[len] = '\0';
1496 
1497 	return (new);
1498 }
1499 
1500 void
1501 spa_strfree(char *s)
1502 {
1503 	kmem_free(s, strlen(s) + 1);
1504 }
1505 
1506 uint64_t
1507 spa_get_random(uint64_t range)
1508 {
1509 	uint64_t r;
1510 
1511 	ASSERT(range != 0);
1512 
1513 	if (range == 1)
1514 		return (0);
1515 
1516 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1517 
1518 	return (r % range);
1519 }
1520 
1521 uint64_t
1522 spa_generate_guid(spa_t *spa)
1523 {
1524 	uint64_t guid = spa_get_random(-1ULL);
1525 
1526 	if (spa != NULL) {
1527 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1528 			guid = spa_get_random(-1ULL);
1529 	} else {
1530 		while (guid == 0 || spa_guid_exists(guid, 0))
1531 			guid = spa_get_random(-1ULL);
1532 	}
1533 
1534 	return (guid);
1535 }
1536 
1537 void
1538 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1539 {
1540 	char type[256];
1541 	char *checksum = NULL;
1542 	char *compress = NULL;
1543 
1544 	if (bp != NULL) {
1545 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1546 			dmu_object_byteswap_t bswap =
1547 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1548 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1549 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1550 			    "metadata" : "data",
1551 			    dmu_ot_byteswap[bswap].ob_name);
1552 		} else {
1553 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1554 			    sizeof (type));
1555 		}
1556 		if (!BP_IS_EMBEDDED(bp)) {
1557 			checksum =
1558 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1559 		}
1560 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1561 	}
1562 
1563 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1564 	    compress);
1565 }
1566 
1567 void
1568 spa_freeze(spa_t *spa)
1569 {
1570 	uint64_t freeze_txg = 0;
1571 
1572 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1573 	if (spa->spa_freeze_txg == UINT64_MAX) {
1574 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1575 		spa->spa_freeze_txg = freeze_txg;
1576 	}
1577 	spa_config_exit(spa, SCL_ALL, FTAG);
1578 	if (freeze_txg != 0)
1579 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1580 }
1581 
1582 void
1583 zfs_panic_recover(const char *fmt, ...)
1584 {
1585 	va_list adx;
1586 
1587 	va_start(adx, fmt);
1588 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1589 	va_end(adx);
1590 }
1591 
1592 /*
1593  * This is a stripped-down version of strtoull, suitable only for converting
1594  * lowercase hexadecimal numbers that don't overflow.
1595  */
1596 uint64_t
1597 zfs_strtonum(const char *str, char **nptr)
1598 {
1599 	uint64_t val = 0;
1600 	char c;
1601 	int digit;
1602 
1603 	while ((c = *str) != '\0') {
1604 		if (c >= '0' && c <= '9')
1605 			digit = c - '0';
1606 		else if (c >= 'a' && c <= 'f')
1607 			digit = 10 + c - 'a';
1608 		else
1609 			break;
1610 
1611 		val *= 16;
1612 		val += digit;
1613 
1614 		str++;
1615 	}
1616 
1617 	if (nptr)
1618 		*nptr = (char *)str;
1619 
1620 	return (val);
1621 }
1622 
1623 void
1624 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1625 {
1626 	/*
1627 	 * We bump the feature refcount for each special vdev added to the pool
1628 	 */
1629 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1630 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1631 }
1632 
1633 /*
1634  * ==========================================================================
1635  * Accessor functions
1636  * ==========================================================================
1637  */
1638 
1639 boolean_t
1640 spa_shutting_down(spa_t *spa)
1641 {
1642 	return (spa->spa_async_suspended);
1643 }
1644 
1645 dsl_pool_t *
1646 spa_get_dsl(spa_t *spa)
1647 {
1648 	return (spa->spa_dsl_pool);
1649 }
1650 
1651 boolean_t
1652 spa_is_initializing(spa_t *spa)
1653 {
1654 	return (spa->spa_is_initializing);
1655 }
1656 
1657 boolean_t
1658 spa_indirect_vdevs_loaded(spa_t *spa)
1659 {
1660 	return (spa->spa_indirect_vdevs_loaded);
1661 }
1662 
1663 blkptr_t *
1664 spa_get_rootblkptr(spa_t *spa)
1665 {
1666 	return (&spa->spa_ubsync.ub_rootbp);
1667 }
1668 
1669 void
1670 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1671 {
1672 	spa->spa_uberblock.ub_rootbp = *bp;
1673 }
1674 
1675 void
1676 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1677 {
1678 	if (spa->spa_root == NULL)
1679 		buf[0] = '\0';
1680 	else
1681 		(void) strncpy(buf, spa->spa_root, buflen);
1682 }
1683 
1684 int
1685 spa_sync_pass(spa_t *spa)
1686 {
1687 	return (spa->spa_sync_pass);
1688 }
1689 
1690 char *
1691 spa_name(spa_t *spa)
1692 {
1693 	return (spa->spa_name);
1694 }
1695 
1696 uint64_t
1697 spa_guid(spa_t *spa)
1698 {
1699 	dsl_pool_t *dp = spa_get_dsl(spa);
1700 	uint64_t guid;
1701 
1702 	/*
1703 	 * If we fail to parse the config during spa_load(), we can go through
1704 	 * the error path (which posts an ereport) and end up here with no root
1705 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1706 	 * this case.
1707 	 */
1708 	if (spa->spa_root_vdev == NULL)
1709 		return (spa->spa_config_guid);
1710 
1711 	guid = spa->spa_last_synced_guid != 0 ?
1712 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1713 
1714 	/*
1715 	 * Return the most recently synced out guid unless we're
1716 	 * in syncing context.
1717 	 */
1718 	if (dp && dsl_pool_sync_context(dp))
1719 		return (spa->spa_root_vdev->vdev_guid);
1720 	else
1721 		return (guid);
1722 }
1723 
1724 uint64_t
1725 spa_load_guid(spa_t *spa)
1726 {
1727 	/*
1728 	 * This is a GUID that exists solely as a reference for the
1729 	 * purposes of the arc.  It is generated at load time, and
1730 	 * is never written to persistent storage.
1731 	 */
1732 	return (spa->spa_load_guid);
1733 }
1734 
1735 uint64_t
1736 spa_last_synced_txg(spa_t *spa)
1737 {
1738 	return (spa->spa_ubsync.ub_txg);
1739 }
1740 
1741 uint64_t
1742 spa_first_txg(spa_t *spa)
1743 {
1744 	return (spa->spa_first_txg);
1745 }
1746 
1747 uint64_t
1748 spa_syncing_txg(spa_t *spa)
1749 {
1750 	return (spa->spa_syncing_txg);
1751 }
1752 
1753 /*
1754  * Return the last txg where data can be dirtied. The final txgs
1755  * will be used to just clear out any deferred frees that remain.
1756  */
1757 uint64_t
1758 spa_final_dirty_txg(spa_t *spa)
1759 {
1760 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1761 }
1762 
1763 pool_state_t
1764 spa_state(spa_t *spa)
1765 {
1766 	return (spa->spa_state);
1767 }
1768 
1769 spa_load_state_t
1770 spa_load_state(spa_t *spa)
1771 {
1772 	return (spa->spa_load_state);
1773 }
1774 
1775 uint64_t
1776 spa_freeze_txg(spa_t *spa)
1777 {
1778 	return (spa->spa_freeze_txg);
1779 }
1780 
1781 /* ARGSUSED */
1782 uint64_t
1783 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1784 {
1785 	return (lsize * spa_asize_inflation);
1786 }
1787 
1788 /*
1789  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1790  * or at least 128MB, unless that would cause it to be more than half the
1791  * pool size.
1792  *
1793  * See the comment above spa_slop_shift for details.
1794  */
1795 uint64_t
1796 spa_get_slop_space(spa_t *spa)
1797 {
1798 	uint64_t space = spa_get_dspace(spa);
1799 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1800 }
1801 
1802 uint64_t
1803 spa_get_dspace(spa_t *spa)
1804 {
1805 	return (spa->spa_dspace);
1806 }
1807 
1808 uint64_t
1809 spa_get_checkpoint_space(spa_t *spa)
1810 {
1811 	return (spa->spa_checkpoint_info.sci_dspace);
1812 }
1813 
1814 void
1815 spa_update_dspace(spa_t *spa)
1816 {
1817 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1818 	    ddt_get_dedup_dspace(spa);
1819 	if (spa->spa_vdev_removal != NULL) {
1820 		/*
1821 		 * We can't allocate from the removing device, so
1822 		 * subtract its size.  This prevents the DMU/DSL from
1823 		 * filling up the (now smaller) pool while we are in the
1824 		 * middle of removing the device.
1825 		 *
1826 		 * Note that the DMU/DSL doesn't actually know or care
1827 		 * how much space is allocated (it does its own tracking
1828 		 * of how much space has been logically used).  So it
1829 		 * doesn't matter that the data we are moving may be
1830 		 * allocated twice (on the old device and the new
1831 		 * device).
1832 		 */
1833 		spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1834 		vdev_t *vd =
1835 		    vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1836 		spa->spa_dspace -= spa_deflate(spa) ?
1837 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1838 		spa_config_exit(spa, SCL_VDEV, FTAG);
1839 	}
1840 }
1841 
1842 /*
1843  * Return the failure mode that has been set to this pool. The default
1844  * behavior will be to block all I/Os when a complete failure occurs.
1845  */
1846 uint8_t
1847 spa_get_failmode(spa_t *spa)
1848 {
1849 	return (spa->spa_failmode);
1850 }
1851 
1852 boolean_t
1853 spa_suspended(spa_t *spa)
1854 {
1855 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1856 }
1857 
1858 uint64_t
1859 spa_version(spa_t *spa)
1860 {
1861 	return (spa->spa_ubsync.ub_version);
1862 }
1863 
1864 boolean_t
1865 spa_deflate(spa_t *spa)
1866 {
1867 	return (spa->spa_deflate);
1868 }
1869 
1870 metaslab_class_t *
1871 spa_normal_class(spa_t *spa)
1872 {
1873 	return (spa->spa_normal_class);
1874 }
1875 
1876 metaslab_class_t *
1877 spa_log_class(spa_t *spa)
1878 {
1879 	return (spa->spa_log_class);
1880 }
1881 
1882 metaslab_class_t *
1883 spa_special_class(spa_t *spa)
1884 {
1885 	return (spa->spa_special_class);
1886 }
1887 
1888 metaslab_class_t *
1889 spa_dedup_class(spa_t *spa)
1890 {
1891 	return (spa->spa_dedup_class);
1892 }
1893 
1894 /*
1895  * Locate an appropriate allocation class
1896  */
1897 metaslab_class_t *
1898 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1899     uint_t level, uint_t special_smallblk)
1900 {
1901 	if (DMU_OT_IS_ZIL(objtype)) {
1902 		if (spa->spa_log_class->mc_groups != 0)
1903 			return (spa_log_class(spa));
1904 		else
1905 			return (spa_normal_class(spa));
1906 	}
1907 
1908 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1909 
1910 	if (DMU_OT_IS_DDT(objtype)) {
1911 		if (spa->spa_dedup_class->mc_groups != 0)
1912 			return (spa_dedup_class(spa));
1913 		else if (has_special_class && zfs_ddt_data_is_special)
1914 			return (spa_special_class(spa));
1915 		else
1916 			return (spa_normal_class(spa));
1917 	}
1918 
1919 	/* Indirect blocks for user data can land in special if allowed */
1920 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1921 		if (has_special_class && zfs_user_indirect_is_special)
1922 			return (spa_special_class(spa));
1923 		else
1924 			return (spa_normal_class(spa));
1925 	}
1926 
1927 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1928 		if (has_special_class)
1929 			return (spa_special_class(spa));
1930 		else
1931 			return (spa_normal_class(spa));
1932 	}
1933 
1934 	/*
1935 	 * Allow small file blocks in special class in some cases (like
1936 	 * for the dRAID vdev feature). But always leave a reserve of
1937 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1938 	 */
1939 	if (DMU_OT_IS_FILE(objtype) &&
1940 	    has_special_class && size <= special_smallblk) {
1941 		metaslab_class_t *special = spa_special_class(spa);
1942 		uint64_t alloc = metaslab_class_get_alloc(special);
1943 		uint64_t space = metaslab_class_get_space(special);
1944 		uint64_t limit =
1945 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
1946 		    / 100;
1947 
1948 		if (alloc < limit)
1949 			return (special);
1950 	}
1951 
1952 	return (spa_normal_class(spa));
1953 }
1954 
1955 void
1956 spa_evicting_os_register(spa_t *spa, objset_t *os)
1957 {
1958 	mutex_enter(&spa->spa_evicting_os_lock);
1959 	list_insert_head(&spa->spa_evicting_os_list, os);
1960 	mutex_exit(&spa->spa_evicting_os_lock);
1961 }
1962 
1963 void
1964 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1965 {
1966 	mutex_enter(&spa->spa_evicting_os_lock);
1967 	list_remove(&spa->spa_evicting_os_list, os);
1968 	cv_broadcast(&spa->spa_evicting_os_cv);
1969 	mutex_exit(&spa->spa_evicting_os_lock);
1970 }
1971 
1972 void
1973 spa_evicting_os_wait(spa_t *spa)
1974 {
1975 	mutex_enter(&spa->spa_evicting_os_lock);
1976 	while (!list_is_empty(&spa->spa_evicting_os_list))
1977 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1978 	mutex_exit(&spa->spa_evicting_os_lock);
1979 
1980 	dmu_buf_user_evict_wait();
1981 }
1982 
1983 int
1984 spa_max_replication(spa_t *spa)
1985 {
1986 	/*
1987 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1988 	 * handle BPs with more than one DVA allocated.  Set our max
1989 	 * replication level accordingly.
1990 	 */
1991 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1992 		return (1);
1993 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1994 }
1995 
1996 int
1997 spa_prev_software_version(spa_t *spa)
1998 {
1999 	return (spa->spa_prev_software_version);
2000 }
2001 
2002 uint64_t
2003 spa_deadman_synctime(spa_t *spa)
2004 {
2005 	return (spa->spa_deadman_synctime);
2006 }
2007 
2008 spa_autotrim_t
2009 spa_get_autotrim(spa_t *spa)
2010 {
2011 	return (spa->spa_autotrim);
2012 }
2013 
2014 uint64_t
2015 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2016 {
2017 	uint64_t asize = DVA_GET_ASIZE(dva);
2018 	uint64_t dsize = asize;
2019 
2020 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2021 
2022 	if (asize != 0 && spa->spa_deflate) {
2023 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2024 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
2025 	}
2026 
2027 	return (dsize);
2028 }
2029 
2030 uint64_t
2031 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2032 {
2033 	uint64_t dsize = 0;
2034 
2035 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2036 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2037 
2038 	return (dsize);
2039 }
2040 
2041 uint64_t
2042 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2043 {
2044 	uint64_t dsize = 0;
2045 
2046 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2047 
2048 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2049 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2050 
2051 	spa_config_exit(spa, SCL_VDEV, FTAG);
2052 
2053 	return (dsize);
2054 }
2055 
2056 uint64_t
2057 spa_dirty_data(spa_t *spa)
2058 {
2059 	return (spa->spa_dsl_pool->dp_dirty_total);
2060 }
2061 
2062 /*
2063  * ==========================================================================
2064  * SPA Import Progress Routines
2065  * The illumos implementation of these are different from OpenZFS. OpenZFS
2066  * uses the Linux /proc fs, whereas we use a kstat on the spa.
2067  * ==========================================================================
2068  */
2069 
2070 typedef struct spa_import_progress {
2071 	kstat_named_t sip_load_state;
2072 	kstat_named_t sip_mmp_sec_remaining;	/* MMP activity check */
2073 	kstat_named_t sip_load_max_txg;		/* rewind txg */
2074 } spa_import_progress_t;
2075 
2076 static void
2077 spa_import_progress_init(void)
2078 {
2079 }
2080 
2081 static void
2082 spa_import_progress_destroy(void)
2083 {
2084 }
2085 
2086 void spa_import_progress_add(spa_t *);
2087 
2088 int
2089 spa_import_progress_set_state(spa_t *spa, spa_load_state_t load_state)
2090 {
2091 	if (spa->spa_imp_kstat == NULL)
2092 		spa_import_progress_add(spa);
2093 
2094 	mutex_enter(&spa->spa_imp_kstat_lock);
2095 	if (spa->spa_imp_kstat != NULL) {
2096 		spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data;
2097 		if (sip != NULL)
2098 			sip->sip_load_state.value.ui64 = (uint64_t)load_state;
2099 	}
2100 	mutex_exit(&spa->spa_imp_kstat_lock);
2101 
2102 	return (0);
2103 }
2104 
2105 int
2106 spa_import_progress_set_max_txg(spa_t *spa, uint64_t load_max_txg)
2107 {
2108 	if (spa->spa_imp_kstat == NULL)
2109 		spa_import_progress_add(spa);
2110 
2111 	mutex_enter(&spa->spa_imp_kstat_lock);
2112 	if (spa->spa_imp_kstat != NULL) {
2113 		spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data;
2114 		if (sip != NULL)
2115 			sip->sip_load_max_txg.value.ui64 = load_max_txg;
2116 	}
2117 	mutex_exit(&spa->spa_imp_kstat_lock);
2118 
2119 	return (0);
2120 }
2121 
2122 int
2123 spa_import_progress_set_mmp_check(spa_t *spa, uint64_t mmp_sec_remaining)
2124 {
2125 	if (spa->spa_imp_kstat == NULL)
2126 		spa_import_progress_add(spa);
2127 
2128 	mutex_enter(&spa->spa_imp_kstat_lock);
2129 	if (spa->spa_imp_kstat != NULL) {
2130 		spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data;
2131 		if (sip != NULL)
2132 			sip->sip_mmp_sec_remaining.value.ui64 =
2133 			    mmp_sec_remaining;
2134 	}
2135 	mutex_exit(&spa->spa_imp_kstat_lock);
2136 
2137 	return (0);
2138 }
2139 
2140 /*
2141  * A new import is in progress. Add an entry.
2142  */
2143 void
2144 spa_import_progress_add(spa_t *spa)
2145 {
2146 	char *poolname = NULL;
2147 	spa_import_progress_t *sip;
2148 
2149 	mutex_enter(&spa->spa_imp_kstat_lock);
2150 	if (spa->spa_imp_kstat != NULL) {
2151 		sip = spa->spa_imp_kstat->ks_data;
2152 		sip->sip_load_state.value.ui64 = (uint64_t)spa_load_state(spa);
2153 		mutex_exit(&spa->spa_imp_kstat_lock);
2154 		return;
2155 	}
2156 
2157 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2158 	    &poolname);
2159 	if (poolname == NULL)
2160 		poolname = spa_name(spa);
2161 
2162 	spa->spa_imp_kstat = kstat_create("zfs_import", 0, poolname,
2163 	    "zfs_misc", KSTAT_TYPE_NAMED,
2164 	    sizeof (spa_import_progress_t) / sizeof (kstat_named_t),
2165 	    KSTAT_FLAG_VIRTUAL);
2166 	if (spa->spa_imp_kstat != NULL) {
2167 		sip = kmem_alloc(sizeof (spa_import_progress_t), KM_SLEEP);
2168 		spa->spa_imp_kstat->ks_data = sip;
2169 
2170 		sip->sip_load_state.value.ui64 = (uint64_t)spa_load_state(spa);
2171 
2172 		kstat_named_init(&sip->sip_load_state,
2173 		    "spa_load_state", KSTAT_DATA_UINT64);
2174 		kstat_named_init(&sip->sip_mmp_sec_remaining,
2175 		    "mmp_sec_remaining", KSTAT_DATA_UINT64);
2176 		kstat_named_init(&sip->sip_load_max_txg,
2177 		    "spa_load_max_txg", KSTAT_DATA_UINT64);
2178 		spa->spa_imp_kstat->ks_lock = &spa->spa_imp_kstat_lock;
2179 		kstat_install(spa->spa_imp_kstat);
2180 	}
2181 	mutex_exit(&spa->spa_imp_kstat_lock);
2182 }
2183 
2184 void
2185 spa_import_progress_remove(spa_t *spa)
2186 {
2187 	if (spa->spa_imp_kstat != NULL) {
2188 		void *data = spa->spa_imp_kstat->ks_data;
2189 
2190 		kstat_delete(spa->spa_imp_kstat);
2191 		spa->spa_imp_kstat = NULL;
2192 		kmem_free(data, sizeof (spa_import_progress_t));
2193 	}
2194 }
2195 
2196 /*
2197  * ==========================================================================
2198  * Initialization and Termination
2199  * ==========================================================================
2200  */
2201 
2202 static int
2203 spa_name_compare(const void *a1, const void *a2)
2204 {
2205 	const spa_t *s1 = a1;
2206 	const spa_t *s2 = a2;
2207 	int s;
2208 
2209 	s = strcmp(s1->spa_name, s2->spa_name);
2210 
2211 	return (TREE_ISIGN(s));
2212 }
2213 
2214 int
2215 spa_busy(void)
2216 {
2217 	return (spa_active_count);
2218 }
2219 
2220 void
2221 spa_boot_init()
2222 {
2223 	spa_config_load();
2224 }
2225 
2226 void
2227 spa_init(int mode)
2228 {
2229 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2230 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2231 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2232 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2233 
2234 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2235 	    offsetof(spa_t, spa_avl));
2236 
2237 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2238 	    offsetof(spa_aux_t, aux_avl));
2239 
2240 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2241 	    offsetof(spa_aux_t, aux_avl));
2242 
2243 	spa_mode_global = mode;
2244 
2245 #ifdef _KERNEL
2246 	spa_arch_init();
2247 #else
2248 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
2249 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
2250 		if (arc_procfd == -1) {
2251 			perror("could not enable watchpoints: "
2252 			    "opening /proc/self/ctl failed: ");
2253 		} else {
2254 			arc_watch = B_TRUE;
2255 		}
2256 	}
2257 #endif
2258 
2259 	zfs_refcount_init();
2260 	unique_init();
2261 	zfs_btree_init();
2262 	metaslab_stat_init();
2263 	zio_init();
2264 	dmu_init();
2265 	zil_init();
2266 	vdev_cache_stat_init();
2267 	vdev_mirror_stat_init();
2268 	vdev_raidz_math_init();
2269 	zfs_prop_init();
2270 	zpool_prop_init();
2271 	zpool_feature_init();
2272 	spa_config_load();
2273 	l2arc_start();
2274 	scan_init();
2275 	spa_import_progress_init();
2276 }
2277 
2278 void
2279 spa_fini(void)
2280 {
2281 	l2arc_stop();
2282 
2283 	spa_evict_all();
2284 
2285 	vdev_cache_stat_fini();
2286 	vdev_mirror_stat_fini();
2287 	vdev_raidz_math_fini();
2288 	zil_fini();
2289 	dmu_fini();
2290 	zio_fini();
2291 	metaslab_stat_fini();
2292 	zfs_btree_fini();
2293 	unique_fini();
2294 	zfs_refcount_fini();
2295 	scan_fini();
2296 	spa_import_progress_destroy();
2297 
2298 	avl_destroy(&spa_namespace_avl);
2299 	avl_destroy(&spa_spare_avl);
2300 	avl_destroy(&spa_l2cache_avl);
2301 
2302 	cv_destroy(&spa_namespace_cv);
2303 	mutex_destroy(&spa_namespace_lock);
2304 	mutex_destroy(&spa_spare_lock);
2305 	mutex_destroy(&spa_l2cache_lock);
2306 }
2307 
2308 /*
2309  * Return whether this pool has slogs. No locking needed.
2310  * It's not a problem if the wrong answer is returned as it's only for
2311  * performance and not correctness
2312  */
2313 boolean_t
2314 spa_has_slogs(spa_t *spa)
2315 {
2316 	return (spa->spa_log_class->mc_rotor != NULL);
2317 }
2318 
2319 spa_log_state_t
2320 spa_get_log_state(spa_t *spa)
2321 {
2322 	return (spa->spa_log_state);
2323 }
2324 
2325 void
2326 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2327 {
2328 	spa->spa_log_state = state;
2329 }
2330 
2331 boolean_t
2332 spa_is_root(spa_t *spa)
2333 {
2334 	return (spa->spa_is_root);
2335 }
2336 
2337 boolean_t
2338 spa_writeable(spa_t *spa)
2339 {
2340 	return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2341 }
2342 
2343 /*
2344  * Returns true if there is a pending sync task in any of the current
2345  * syncing txg, the current quiescing txg, or the current open txg.
2346  */
2347 boolean_t
2348 spa_has_pending_synctask(spa_t *spa)
2349 {
2350 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2351 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2352 }
2353 
2354 int
2355 spa_mode(spa_t *spa)
2356 {
2357 	return (spa->spa_mode);
2358 }
2359 
2360 uint64_t
2361 spa_bootfs(spa_t *spa)
2362 {
2363 	return (spa->spa_bootfs);
2364 }
2365 
2366 uint64_t
2367 spa_delegation(spa_t *spa)
2368 {
2369 	return (spa->spa_delegation);
2370 }
2371 
2372 objset_t *
2373 spa_meta_objset(spa_t *spa)
2374 {
2375 	return (spa->spa_meta_objset);
2376 }
2377 
2378 enum zio_checksum
2379 spa_dedup_checksum(spa_t *spa)
2380 {
2381 	return (spa->spa_dedup_checksum);
2382 }
2383 
2384 /*
2385  * Reset pool scan stat per scan pass (or reboot).
2386  */
2387 void
2388 spa_scan_stat_init(spa_t *spa)
2389 {
2390 	/* data not stored on disk */
2391 	spa->spa_scan_pass_start = gethrestime_sec();
2392 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2393 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2394 	else
2395 		spa->spa_scan_pass_scrub_pause = 0;
2396 	spa->spa_scan_pass_scrub_spent_paused = 0;
2397 	spa->spa_scan_pass_exam = 0;
2398 	spa->spa_scan_pass_issued = 0;
2399 	vdev_scan_stat_init(spa->spa_root_vdev);
2400 }
2401 
2402 /*
2403  * Get scan stats for zpool status reports
2404  */
2405 int
2406 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2407 {
2408 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2409 
2410 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2411 		return (SET_ERROR(ENOENT));
2412 	bzero(ps, sizeof (pool_scan_stat_t));
2413 
2414 	/* data stored on disk */
2415 	ps->pss_func = scn->scn_phys.scn_func;
2416 	ps->pss_state = scn->scn_phys.scn_state;
2417 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2418 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2419 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2420 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2421 	ps->pss_processed = scn->scn_phys.scn_processed;
2422 	ps->pss_errors = scn->scn_phys.scn_errors;
2423 	ps->pss_examined = scn->scn_phys.scn_examined;
2424 	ps->pss_issued =
2425 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2426 	ps->pss_state = scn->scn_phys.scn_state;
2427 
2428 	/* data not stored on disk */
2429 	ps->pss_pass_start = spa->spa_scan_pass_start;
2430 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2431 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2432 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2433 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2434 
2435 	return (0);
2436 }
2437 
2438 int
2439 spa_maxblocksize(spa_t *spa)
2440 {
2441 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2442 		return (SPA_MAXBLOCKSIZE);
2443 	else
2444 		return (SPA_OLD_MAXBLOCKSIZE);
2445 }
2446 
2447 int
2448 spa_maxdnodesize(spa_t *spa)
2449 {
2450 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2451 		return (DNODE_MAX_SIZE);
2452 	else
2453 		return (DNODE_MIN_SIZE);
2454 }
2455 
2456 boolean_t
2457 spa_multihost(spa_t *spa)
2458 {
2459 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2460 }
2461 
2462 unsigned long
2463 spa_get_hostid(void)
2464 {
2465 	unsigned long myhostid;
2466 
2467 #ifdef	_KERNEL
2468 	myhostid = zone_get_hostid(NULL);
2469 #else	/* _KERNEL */
2470 	/*
2471 	 * We're emulating the system's hostid in userland, so
2472 	 * we can't use zone_get_hostid().
2473 	 */
2474 	(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2475 #endif	/* _KERNEL */
2476 
2477 	return (myhostid);
2478 }
2479 
2480 /*
2481  * Returns the txg that the last device removal completed. No indirect mappings
2482  * have been added since this txg.
2483  */
2484 uint64_t
2485 spa_get_last_removal_txg(spa_t *spa)
2486 {
2487 	uint64_t vdevid;
2488 	uint64_t ret = -1ULL;
2489 
2490 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2491 	/*
2492 	 * sr_prev_indirect_vdev is only modified while holding all the
2493 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2494 	 * examining it.
2495 	 */
2496 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2497 
2498 	while (vdevid != -1ULL) {
2499 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2500 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2501 
2502 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2503 
2504 		/*
2505 		 * If the removal did not remap any data, we don't care.
2506 		 */
2507 		if (vdev_indirect_births_count(vib) != 0) {
2508 			ret = vdev_indirect_births_last_entry_txg(vib);
2509 			break;
2510 		}
2511 
2512 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2513 	}
2514 	spa_config_exit(spa, SCL_VDEV, FTAG);
2515 
2516 	IMPLY(ret != -1ULL,
2517 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2518 
2519 	return (ret);
2520 }
2521 
2522 boolean_t
2523 spa_trust_config(spa_t *spa)
2524 {
2525 	return (spa->spa_trust_config);
2526 }
2527 
2528 uint64_t
2529 spa_missing_tvds_allowed(spa_t *spa)
2530 {
2531 	return (spa->spa_missing_tvds_allowed);
2532 }
2533 
2534 space_map_t *
2535 spa_syncing_log_sm(spa_t *spa)
2536 {
2537 	return (spa->spa_syncing_log_sm);
2538 }
2539 
2540 void
2541 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2542 {
2543 	spa->spa_missing_tvds = missing;
2544 }
2545 
2546 boolean_t
2547 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2548 {
2549 	vdev_t *rvd = spa->spa_root_vdev;
2550 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2551 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2552 			return (B_FALSE);
2553 	}
2554 	return (B_TRUE);
2555 }
2556 
2557 boolean_t
2558 spa_has_checkpoint(spa_t *spa)
2559 {
2560 	return (spa->spa_checkpoint_txg != 0);
2561 }
2562 
2563 boolean_t
2564 spa_importing_readonly_checkpoint(spa_t *spa)
2565 {
2566 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2567 	    spa->spa_mode == FREAD);
2568 }
2569 
2570 uint64_t
2571 spa_min_claim_txg(spa_t *spa)
2572 {
2573 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2574 
2575 	if (checkpoint_txg != 0)
2576 		return (checkpoint_txg + 1);
2577 
2578 	return (spa->spa_first_txg);
2579 }
2580 
2581 /*
2582  * If there is a checkpoint, async destroys may consume more space from
2583  * the pool instead of freeing it. In an attempt to save the pool from
2584  * getting suspended when it is about to run out of space, we stop
2585  * processing async destroys.
2586  */
2587 boolean_t
2588 spa_suspend_async_destroy(spa_t *spa)
2589 {
2590 	dsl_pool_t *dp = spa_get_dsl(spa);
2591 
2592 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2593 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2594 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2595 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2596 
2597 	if (spa_has_checkpoint(spa) && avail == 0)
2598 		return (B_TRUE);
2599 
2600 	return (B_FALSE);
2601 }
2602 
2603 /*
2604  * Generate a LUN expansion event.  This routine does not use
2605  * ddi_log_sysevent() because that would require a dev_info_t, and we may not
2606  * have one available.
2607  */
2608 void
2609 zfs_post_dle_sysevent(const char *physpath)
2610 {
2611 #ifdef _KERNEL
2612 	sysevent_t *ev = sysevent_alloc(EC_DEV_STATUS, ESC_DEV_DLE,
2613 	    SUNW_KERN_PUB "zfs", SE_SLEEP);
2614 	sysevent_attr_list_t *attr = NULL;
2615 	sysevent_id_t eid;
2616 
2617 	VERIFY(ev != NULL);
2618 
2619 	/*
2620 	 * The only attribute is the /devices path of the expanding device:
2621 	 */
2622 	sysevent_value_t value = {
2623 		.value_type = SE_DATA_TYPE_STRING,
2624 		.value = {
2625 			.sv_string = (char *)physpath,
2626 		},
2627 	};
2628 	if (sysevent_add_attr(&attr, DEV_PHYS_PATH, &value, SE_SLEEP) != 0) {
2629 		sysevent_free(ev);
2630 		return;
2631 	}
2632 
2633 	if (sysevent_attach_attributes(ev, attr) != 0) {
2634 		sysevent_free_attr(attr);
2635 		sysevent_free(ev);
2636 		return;
2637 	}
2638 
2639 	(void) log_sysevent(ev, SE_SLEEP, &eid);
2640 	sysevent_free(ev);
2641 #endif
2642 }
2643