xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 5328fc53d11d7151861fa272e4fb0248b8f0e145)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright (c) 2017 Datto Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/spa_impl.h>
34 #include <sys/spa_boot.h>
35 #include <sys/zio.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/zio_compress.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/zap.h>
41 #include <sys/zil.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/vdev_initialize.h>
44 #include <sys/vdev_trim.h>
45 #include <sys/metaslab.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/unique.h>
50 #include <sys/dsl_pool.h>
51 #include <sys/dsl_dir.h>
52 #include <sys/dsl_prop.h>
53 #include <sys/dsl_scan.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/metaslab_impl.h>
56 #include <sys/arc.h>
57 #include <sys/ddt.h>
58 #include "zfs_prop.h"
59 #include <sys/zfeature.h>
60 
61 /*
62  * SPA locking
63  *
64  * There are three basic locks for managing spa_t structures:
65  *
66  * spa_namespace_lock (global mutex)
67  *
68  *	This lock must be acquired to do any of the following:
69  *
70  *		- Lookup a spa_t by name
71  *		- Add or remove a spa_t from the namespace
72  *		- Increase spa_refcount from non-zero
73  *		- Check if spa_refcount is zero
74  *		- Rename a spa_t
75  *		- add/remove/attach/detach devices
76  *		- Held for the duration of create/destroy/import/export
77  *
78  *	It does not need to handle recursion.  A create or destroy may
79  *	reference objects (files or zvols) in other pools, but by
80  *	definition they must have an existing reference, and will never need
81  *	to lookup a spa_t by name.
82  *
83  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
84  *
85  *	This reference count keep track of any active users of the spa_t.  The
86  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
87  *	the refcount is never really 'zero' - opening a pool implicitly keeps
88  *	some references in the DMU.  Internally we check against spa_minref, but
89  *	present the image of a zero/non-zero value to consumers.
90  *
91  * spa_config_lock[] (per-spa array of rwlocks)
92  *
93  *	This protects the spa_t from config changes, and must be held in
94  *	the following circumstances:
95  *
96  *		- RW_READER to perform I/O to the spa
97  *		- RW_WRITER to change the vdev config
98  *
99  * The locking order is fairly straightforward:
100  *
101  *		spa_namespace_lock	->	spa_refcount
102  *
103  *	The namespace lock must be acquired to increase the refcount from 0
104  *	or to check if it is zero.
105  *
106  *		spa_refcount		->	spa_config_lock[]
107  *
108  *	There must be at least one valid reference on the spa_t to acquire
109  *	the config lock.
110  *
111  *		spa_namespace_lock	->	spa_config_lock[]
112  *
113  *	The namespace lock must always be taken before the config lock.
114  *
115  *
116  * The spa_namespace_lock can be acquired directly and is globally visible.
117  *
118  * The namespace is manipulated using the following functions, all of which
119  * require the spa_namespace_lock to be held.
120  *
121  *	spa_lookup()		Lookup a spa_t by name.
122  *
123  *	spa_add()		Create a new spa_t in the namespace.
124  *
125  *	spa_remove()		Remove a spa_t from the namespace.  This also
126  *				frees up any memory associated with the spa_t.
127  *
128  *	spa_next()		Returns the next spa_t in the system, or the
129  *				first if NULL is passed.
130  *
131  *	spa_evict_all()		Shutdown and remove all spa_t structures in
132  *				the system.
133  *
134  *	spa_guid_exists()	Determine whether a pool/device guid exists.
135  *
136  * The spa_refcount is manipulated using the following functions:
137  *
138  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
139  *				called with spa_namespace_lock held if the
140  *				refcount is currently zero.
141  *
142  *	spa_close()		Remove a reference from the spa_t.  This will
143  *				not free the spa_t or remove it from the
144  *				namespace.  No locking is required.
145  *
146  *	spa_refcount_zero()	Returns true if the refcount is currently
147  *				zero.  Must be called with spa_namespace_lock
148  *				held.
149  *
150  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
151  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
152  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
153  *
154  * To read the configuration, it suffices to hold one of these locks as reader.
155  * To modify the configuration, you must hold all locks as writer.  To modify
156  * vdev state without altering the vdev tree's topology (e.g. online/offline),
157  * you must hold SCL_STATE and SCL_ZIO as writer.
158  *
159  * We use these distinct config locks to avoid recursive lock entry.
160  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
161  * block allocations (SCL_ALLOC), which may require reading space maps
162  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
163  *
164  * The spa config locks cannot be normal rwlocks because we need the
165  * ability to hand off ownership.  For example, SCL_ZIO is acquired
166  * by the issuing thread and later released by an interrupt thread.
167  * They do, however, obey the usual write-wanted semantics to prevent
168  * writer (i.e. system administrator) starvation.
169  *
170  * The lock acquisition rules are as follows:
171  *
172  * SCL_CONFIG
173  *	Protects changes to the vdev tree topology, such as vdev
174  *	add/remove/attach/detach.  Protects the dirty config list
175  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
176  *
177  * SCL_STATE
178  *	Protects changes to pool state and vdev state, such as vdev
179  *	online/offline/fault/degrade/clear.  Protects the dirty state list
180  *	(spa_state_dirty_list) and global pool state (spa_state).
181  *
182  * SCL_ALLOC
183  *	Protects changes to metaslab groups and classes.
184  *	Held as reader by metaslab_alloc() and metaslab_claim().
185  *
186  * SCL_ZIO
187  *	Held by bp-level zios (those which have no io_vd upon entry)
188  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
189  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
190  *
191  * SCL_FREE
192  *	Protects changes to metaslab groups and classes.
193  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
194  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
195  *	blocks in zio_done() while another i/o that holds either
196  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
197  *
198  * SCL_VDEV
199  *	Held as reader to prevent changes to the vdev tree during trivial
200  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
201  *	other locks, and lower than all of them, to ensure that it's safe
202  *	to acquire regardless of caller context.
203  *
204  * In addition, the following rules apply:
205  *
206  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
207  *	The lock ordering is SCL_CONFIG > spa_props_lock.
208  *
209  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
210  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
211  *	or zio_write_phys() -- the caller must ensure that the config cannot
212  *	cannot change in the interim, and that the vdev cannot be reopened.
213  *	SCL_STATE as reader suffices for both.
214  *
215  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
216  *
217  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
218  *				for writing.
219  *
220  *	spa_vdev_exit()		Release the config lock, wait for all I/O
221  *				to complete, sync the updated configs to the
222  *				cache, and release the namespace lock.
223  *
224  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
225  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
226  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
227  */
228 
229 static avl_tree_t spa_namespace_avl;
230 kmutex_t spa_namespace_lock;
231 static kcondvar_t spa_namespace_cv;
232 static int spa_active_count;
233 int spa_max_replication_override = SPA_DVAS_PER_BP;
234 
235 static kmutex_t spa_spare_lock;
236 static avl_tree_t spa_spare_avl;
237 static kmutex_t spa_l2cache_lock;
238 static avl_tree_t spa_l2cache_avl;
239 
240 kmem_cache_t *spa_buffer_pool;
241 int spa_mode_global;
242 
243 #ifdef ZFS_DEBUG
244 /*
245  * Everything except dprintf, spa, and indirect_remap is on by default
246  * in debug builds.
247  */
248 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP);
249 #else
250 int zfs_flags = 0;
251 #endif
252 
253 /*
254  * zfs_recover can be set to nonzero to attempt to recover from
255  * otherwise-fatal errors, typically caused by on-disk corruption.  When
256  * set, calls to zfs_panic_recover() will turn into warning messages.
257  * This should only be used as a last resort, as it typically results
258  * in leaked space, or worse.
259  */
260 boolean_t zfs_recover = B_FALSE;
261 
262 /*
263  * If destroy encounters an EIO while reading metadata (e.g. indirect
264  * blocks), space referenced by the missing metadata can not be freed.
265  * Normally this causes the background destroy to become "stalled", as
266  * it is unable to make forward progress.  While in this stalled state,
267  * all remaining space to free from the error-encountering filesystem is
268  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
269  * permanently leak the space from indirect blocks that can not be read,
270  * and continue to free everything else that it can.
271  *
272  * The default, "stalling" behavior is useful if the storage partially
273  * fails (i.e. some but not all i/os fail), and then later recovers.  In
274  * this case, we will be able to continue pool operations while it is
275  * partially failed, and when it recovers, we can continue to free the
276  * space, with no leaks.  However, note that this case is actually
277  * fairly rare.
278  *
279  * Typically pools either (a) fail completely (but perhaps temporarily,
280  * e.g. a top-level vdev going offline), or (b) have localized,
281  * permanent errors (e.g. disk returns the wrong data due to bit flip or
282  * firmware bug).  In case (a), this setting does not matter because the
283  * pool will be suspended and the sync thread will not be able to make
284  * forward progress regardless.  In case (b), because the error is
285  * permanent, the best we can do is leak the minimum amount of space,
286  * which is what setting this flag will do.  Therefore, it is reasonable
287  * for this flag to normally be set, but we chose the more conservative
288  * approach of not setting it, so that there is no possibility of
289  * leaking space in the "partial temporary" failure case.
290  */
291 boolean_t zfs_free_leak_on_eio = B_FALSE;
292 
293 /*
294  * Expiration time in milliseconds. This value has two meanings. First it is
295  * used to determine when the spa_deadman() logic should fire. By default the
296  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
297  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
298  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
299  * in a system panic.
300  */
301 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
302 
303 /*
304  * Check time in milliseconds. This defines the frequency at which we check
305  * for hung I/O.
306  */
307 uint64_t zfs_deadman_checktime_ms = 5000ULL;
308 
309 /*
310  * Override the zfs deadman behavior via /etc/system. By default the
311  * deadman is enabled except on VMware and sparc deployments.
312  */
313 int zfs_deadman_enabled = -1;
314 
315 /*
316  * The worst case is single-sector max-parity RAID-Z blocks, in which
317  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
318  * times the size; so just assume that.  Add to this the fact that
319  * we can have up to 3 DVAs per bp, and one more factor of 2 because
320  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
321  * the worst case is:
322  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
323  */
324 int spa_asize_inflation = 24;
325 
326 /*
327  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
328  * the pool to be consumed.  This ensures that we don't run the pool
329  * completely out of space, due to unaccounted changes (e.g. to the MOS).
330  * It also limits the worst-case time to allocate space.  If we have
331  * less than this amount of free space, most ZPL operations (e.g. write,
332  * create) will return ENOSPC.
333  *
334  * Certain operations (e.g. file removal, most administrative actions) can
335  * use half the slop space.  They will only return ENOSPC if less than half
336  * the slop space is free.  Typically, once the pool has less than the slop
337  * space free, the user will use these operations to free up space in the pool.
338  * These are the operations that call dsl_pool_adjustedsize() with the netfree
339  * argument set to TRUE.
340  *
341  * Operations that are almost guaranteed to free up space in the absence of
342  * a pool checkpoint can use up to three quarters of the slop space
343  * (e.g zfs destroy).
344  *
345  * A very restricted set of operations are always permitted, regardless of
346  * the amount of free space.  These are the operations that call
347  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
348  * increase in the amount of space used, it is possible to run the pool
349  * completely out of space, causing it to be permanently read-only.
350  *
351  * Note that on very small pools, the slop space will be larger than
352  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
353  * but we never allow it to be more than half the pool size.
354  *
355  * See also the comments in zfs_space_check_t.
356  */
357 int spa_slop_shift = 5;
358 uint64_t spa_min_slop = 128 * 1024 * 1024;
359 
360 int spa_allocators = 4;
361 
362 /*PRINTFLIKE2*/
363 void
364 spa_load_failed(spa_t *spa, const char *fmt, ...)
365 {
366 	va_list adx;
367 	char buf[256];
368 
369 	va_start(adx, fmt);
370 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
371 	va_end(adx);
372 
373 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
374 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
375 }
376 
377 /*PRINTFLIKE2*/
378 void
379 spa_load_note(spa_t *spa, const char *fmt, ...)
380 {
381 	va_list adx;
382 	char buf[256];
383 
384 	va_start(adx, fmt);
385 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
386 	va_end(adx);
387 
388 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
389 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
390 }
391 
392 /*
393  * By default dedup and user data indirects land in the special class
394  */
395 int zfs_ddt_data_is_special = B_TRUE;
396 int zfs_user_indirect_is_special = B_TRUE;
397 
398 /*
399  * The percentage of special class final space reserved for metadata only.
400  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
401  * let metadata into the class.
402  */
403 int zfs_special_class_metadata_reserve_pct = 25;
404 
405 /*
406  * ==========================================================================
407  * SPA config locking
408  * ==========================================================================
409  */
410 static void
411 spa_config_lock_init(spa_t *spa)
412 {
413 	for (int i = 0; i < SCL_LOCKS; i++) {
414 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
415 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
416 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
417 		zfs_refcount_create_untracked(&scl->scl_count);
418 		scl->scl_writer = NULL;
419 		scl->scl_write_wanted = 0;
420 	}
421 }
422 
423 static void
424 spa_config_lock_destroy(spa_t *spa)
425 {
426 	for (int i = 0; i < SCL_LOCKS; i++) {
427 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
428 		mutex_destroy(&scl->scl_lock);
429 		cv_destroy(&scl->scl_cv);
430 		zfs_refcount_destroy(&scl->scl_count);
431 		ASSERT(scl->scl_writer == NULL);
432 		ASSERT(scl->scl_write_wanted == 0);
433 	}
434 }
435 
436 int
437 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
438 {
439 	for (int i = 0; i < SCL_LOCKS; i++) {
440 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
441 		if (!(locks & (1 << i)))
442 			continue;
443 		mutex_enter(&scl->scl_lock);
444 		if (rw == RW_READER) {
445 			if (scl->scl_writer || scl->scl_write_wanted) {
446 				mutex_exit(&scl->scl_lock);
447 				spa_config_exit(spa, locks & ((1 << i) - 1),
448 				    tag);
449 				return (0);
450 			}
451 		} else {
452 			ASSERT(scl->scl_writer != curthread);
453 			if (!zfs_refcount_is_zero(&scl->scl_count)) {
454 				mutex_exit(&scl->scl_lock);
455 				spa_config_exit(spa, locks & ((1 << i) - 1),
456 				    tag);
457 				return (0);
458 			}
459 			scl->scl_writer = curthread;
460 		}
461 		(void) zfs_refcount_add(&scl->scl_count, tag);
462 		mutex_exit(&scl->scl_lock);
463 	}
464 	return (1);
465 }
466 
467 void
468 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
469 {
470 	int wlocks_held = 0;
471 
472 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
473 
474 	for (int i = 0; i < SCL_LOCKS; i++) {
475 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
476 		if (scl->scl_writer == curthread)
477 			wlocks_held |= (1 << i);
478 		if (!(locks & (1 << i)))
479 			continue;
480 		mutex_enter(&scl->scl_lock);
481 		if (rw == RW_READER) {
482 			while (scl->scl_writer || scl->scl_write_wanted) {
483 				cv_wait(&scl->scl_cv, &scl->scl_lock);
484 			}
485 		} else {
486 			ASSERT(scl->scl_writer != curthread);
487 			while (!zfs_refcount_is_zero(&scl->scl_count)) {
488 				scl->scl_write_wanted++;
489 				cv_wait(&scl->scl_cv, &scl->scl_lock);
490 				scl->scl_write_wanted--;
491 			}
492 			scl->scl_writer = curthread;
493 		}
494 		(void) zfs_refcount_add(&scl->scl_count, tag);
495 		mutex_exit(&scl->scl_lock);
496 	}
497 	ASSERT3U(wlocks_held, <=, locks);
498 }
499 
500 void
501 spa_config_exit(spa_t *spa, int locks, void *tag)
502 {
503 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
504 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
505 		if (!(locks & (1 << i)))
506 			continue;
507 		mutex_enter(&scl->scl_lock);
508 		ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
509 		if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
510 			ASSERT(scl->scl_writer == NULL ||
511 			    scl->scl_writer == curthread);
512 			scl->scl_writer = NULL;	/* OK in either case */
513 			cv_broadcast(&scl->scl_cv);
514 		}
515 		mutex_exit(&scl->scl_lock);
516 	}
517 }
518 
519 int
520 spa_config_held(spa_t *spa, int locks, krw_t rw)
521 {
522 	int locks_held = 0;
523 
524 	for (int i = 0; i < SCL_LOCKS; i++) {
525 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
526 		if (!(locks & (1 << i)))
527 			continue;
528 		if ((rw == RW_READER &&
529 		    !zfs_refcount_is_zero(&scl->scl_count)) ||
530 		    (rw == RW_WRITER && scl->scl_writer == curthread))
531 			locks_held |= 1 << i;
532 	}
533 
534 	return (locks_held);
535 }
536 
537 /*
538  * ==========================================================================
539  * SPA namespace functions
540  * ==========================================================================
541  */
542 
543 /*
544  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
545  * Returns NULL if no matching spa_t is found.
546  */
547 spa_t *
548 spa_lookup(const char *name)
549 {
550 	static spa_t search;	/* spa_t is large; don't allocate on stack */
551 	spa_t *spa;
552 	avl_index_t where;
553 	char *cp;
554 
555 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
556 
557 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
558 
559 	/*
560 	 * If it's a full dataset name, figure out the pool name and
561 	 * just use that.
562 	 */
563 	cp = strpbrk(search.spa_name, "/@#");
564 	if (cp != NULL)
565 		*cp = '\0';
566 
567 	spa = avl_find(&spa_namespace_avl, &search, &where);
568 
569 	return (spa);
570 }
571 
572 /*
573  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
574  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
575  * looking for potentially hung I/Os.
576  */
577 void
578 spa_deadman(void *arg)
579 {
580 	spa_t *spa = arg;
581 
582 	/*
583 	 * Disable the deadman timer if the pool is suspended.
584 	 */
585 	if (spa_suspended(spa)) {
586 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
587 		return;
588 	}
589 
590 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
591 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
592 	    ++spa->spa_deadman_calls);
593 	if (zfs_deadman_enabled)
594 		vdev_deadman(spa->spa_root_vdev);
595 }
596 
597 int
598 spa_log_sm_sort_by_txg(const void *va, const void *vb)
599 {
600 	const spa_log_sm_t *a = va;
601 	const spa_log_sm_t *b = vb;
602 
603 	return (AVL_CMP(a->sls_txg, b->sls_txg));
604 }
605 
606 /*
607  * Create an uninitialized spa_t with the given name.  Requires
608  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
609  * exist by calling spa_lookup() first.
610  */
611 spa_t *
612 spa_add(const char *name, nvlist_t *config, const char *altroot)
613 {
614 	spa_t *spa;
615 	spa_config_dirent_t *dp;
616 	cyc_handler_t hdlr;
617 	cyc_time_t when;
618 
619 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
620 
621 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
622 
623 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
624 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
625 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
626 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
627 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
628 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
629 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
630 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
631 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
632 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
633 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
634 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
635 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
636 
637 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
638 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
639 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
640 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
641 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
642 
643 	for (int t = 0; t < TXG_SIZE; t++)
644 		bplist_create(&spa->spa_free_bplist[t]);
645 
646 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
647 	spa->spa_state = POOL_STATE_UNINITIALIZED;
648 	spa->spa_freeze_txg = UINT64_MAX;
649 	spa->spa_final_txg = UINT64_MAX;
650 	spa->spa_load_max_txg = UINT64_MAX;
651 	spa->spa_proc = &p0;
652 	spa->spa_proc_state = SPA_PROC_NONE;
653 	spa->spa_trust_config = B_TRUE;
654 
655 	hdlr.cyh_func = spa_deadman;
656 	hdlr.cyh_arg = spa;
657 	hdlr.cyh_level = CY_LOW_LEVEL;
658 
659 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
660 
661 	/*
662 	 * This determines how often we need to check for hung I/Os after
663 	 * the cyclic has already fired. Since checking for hung I/Os is
664 	 * an expensive operation we don't want to check too frequently.
665 	 * Instead wait for 5 seconds before checking again.
666 	 */
667 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
668 	when.cyt_when = CY_INFINITY;
669 	mutex_enter(&cpu_lock);
670 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
671 	mutex_exit(&cpu_lock);
672 
673 	zfs_refcount_create(&spa->spa_refcount);
674 	spa_config_lock_init(spa);
675 
676 	avl_add(&spa_namespace_avl, spa);
677 
678 	/*
679 	 * Set the alternate root, if there is one.
680 	 */
681 	if (altroot) {
682 		spa->spa_root = spa_strdup(altroot);
683 		spa_active_count++;
684 	}
685 
686 	spa->spa_alloc_count = spa_allocators;
687 	spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
688 	    sizeof (kmutex_t), KM_SLEEP);
689 	spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
690 	    sizeof (avl_tree_t), KM_SLEEP);
691 	for (int i = 0; i < spa->spa_alloc_count; i++) {
692 		mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
693 		avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
694 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
695 	}
696 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
697 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
698 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
699 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
700 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
701 	    offsetof(log_summary_entry_t, lse_node));
702 
703 	/*
704 	 * Every pool starts with the default cachefile
705 	 */
706 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
707 	    offsetof(spa_config_dirent_t, scd_link));
708 
709 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
710 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
711 	list_insert_head(&spa->spa_config_list, dp);
712 
713 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
714 	    KM_SLEEP) == 0);
715 
716 	if (config != NULL) {
717 		nvlist_t *features;
718 
719 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
720 		    &features) == 0) {
721 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
722 			    0) == 0);
723 		}
724 
725 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
726 	}
727 
728 	if (spa->spa_label_features == NULL) {
729 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
730 		    KM_SLEEP) == 0);
731 	}
732 
733 	spa->spa_iokstat = kstat_create("zfs", 0, name,
734 	    "disk", KSTAT_TYPE_IO, 1, 0);
735 	if (spa->spa_iokstat) {
736 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
737 		kstat_install(spa->spa_iokstat);
738 	}
739 
740 	spa->spa_min_ashift = INT_MAX;
741 	spa->spa_max_ashift = 0;
742 
743 	/*
744 	 * As a pool is being created, treat all features as disabled by
745 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
746 	 * refcount cache.
747 	 */
748 	for (int i = 0; i < SPA_FEATURES; i++) {
749 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
750 	}
751 
752 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
753 	    offsetof(vdev_t, vdev_leaf_node));
754 
755 	return (spa);
756 }
757 
758 /*
759  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
760  * spa_namespace_lock.  This is called only after the spa_t has been closed and
761  * deactivated.
762  */
763 void
764 spa_remove(spa_t *spa)
765 {
766 	spa_config_dirent_t *dp;
767 
768 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
769 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
770 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
771 
772 	nvlist_free(spa->spa_config_splitting);
773 
774 	avl_remove(&spa_namespace_avl, spa);
775 	cv_broadcast(&spa_namespace_cv);
776 
777 	if (spa->spa_root) {
778 		spa_strfree(spa->spa_root);
779 		spa_active_count--;
780 	}
781 
782 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
783 		list_remove(&spa->spa_config_list, dp);
784 		if (dp->scd_path != NULL)
785 			spa_strfree(dp->scd_path);
786 		kmem_free(dp, sizeof (spa_config_dirent_t));
787 	}
788 
789 	for (int i = 0; i < spa->spa_alloc_count; i++) {
790 		avl_destroy(&spa->spa_alloc_trees[i]);
791 		mutex_destroy(&spa->spa_alloc_locks[i]);
792 	}
793 	kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
794 	    sizeof (kmutex_t));
795 	kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
796 	    sizeof (avl_tree_t));
797 
798 	avl_destroy(&spa->spa_metaslabs_by_flushed);
799 	avl_destroy(&spa->spa_sm_logs_by_txg);
800 	list_destroy(&spa->spa_log_summary);
801 	list_destroy(&spa->spa_config_list);
802 	list_destroy(&spa->spa_leaf_list);
803 
804 	nvlist_free(spa->spa_label_features);
805 	nvlist_free(spa->spa_load_info);
806 	spa_config_set(spa, NULL);
807 
808 	mutex_enter(&cpu_lock);
809 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
810 		cyclic_remove(spa->spa_deadman_cycid);
811 	mutex_exit(&cpu_lock);
812 	spa->spa_deadman_cycid = CYCLIC_NONE;
813 
814 	zfs_refcount_destroy(&spa->spa_refcount);
815 
816 	spa_config_lock_destroy(spa);
817 
818 	kstat_delete(spa->spa_iokstat);
819 	spa->spa_iokstat = NULL;
820 
821 	for (int t = 0; t < TXG_SIZE; t++)
822 		bplist_destroy(&spa->spa_free_bplist[t]);
823 
824 	zio_checksum_templates_free(spa);
825 
826 	cv_destroy(&spa->spa_async_cv);
827 	cv_destroy(&spa->spa_evicting_os_cv);
828 	cv_destroy(&spa->spa_proc_cv);
829 	cv_destroy(&spa->spa_scrub_io_cv);
830 	cv_destroy(&spa->spa_suspend_cv);
831 
832 	mutex_destroy(&spa->spa_flushed_ms_lock);
833 	mutex_destroy(&spa->spa_async_lock);
834 	mutex_destroy(&spa->spa_errlist_lock);
835 	mutex_destroy(&spa->spa_errlog_lock);
836 	mutex_destroy(&spa->spa_evicting_os_lock);
837 	mutex_destroy(&spa->spa_history_lock);
838 	mutex_destroy(&spa->spa_proc_lock);
839 	mutex_destroy(&spa->spa_props_lock);
840 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
841 	mutex_destroy(&spa->spa_scrub_lock);
842 	mutex_destroy(&spa->spa_suspend_lock);
843 	mutex_destroy(&spa->spa_vdev_top_lock);
844 	mutex_destroy(&spa->spa_iokstat_lock);
845 
846 	kmem_free(spa, sizeof (spa_t));
847 }
848 
849 /*
850  * Given a pool, return the next pool in the namespace, or NULL if there is
851  * none.  If 'prev' is NULL, return the first pool.
852  */
853 spa_t *
854 spa_next(spa_t *prev)
855 {
856 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
857 
858 	if (prev)
859 		return (AVL_NEXT(&spa_namespace_avl, prev));
860 	else
861 		return (avl_first(&spa_namespace_avl));
862 }
863 
864 /*
865  * ==========================================================================
866  * SPA refcount functions
867  * ==========================================================================
868  */
869 
870 /*
871  * Add a reference to the given spa_t.  Must have at least one reference, or
872  * have the namespace lock held.
873  */
874 void
875 spa_open_ref(spa_t *spa, void *tag)
876 {
877 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
878 	    MUTEX_HELD(&spa_namespace_lock));
879 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
880 }
881 
882 /*
883  * Remove a reference to the given spa_t.  Must have at least one reference, or
884  * have the namespace lock held.
885  */
886 void
887 spa_close(spa_t *spa, void *tag)
888 {
889 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
890 	    MUTEX_HELD(&spa_namespace_lock));
891 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
892 }
893 
894 /*
895  * Remove a reference to the given spa_t held by a dsl dir that is
896  * being asynchronously released.  Async releases occur from a taskq
897  * performing eviction of dsl datasets and dirs.  The namespace lock
898  * isn't held and the hold by the object being evicted may contribute to
899  * spa_minref (e.g. dataset or directory released during pool export),
900  * so the asserts in spa_close() do not apply.
901  */
902 void
903 spa_async_close(spa_t *spa, void *tag)
904 {
905 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
906 }
907 
908 /*
909  * Check to see if the spa refcount is zero.  Must be called with
910  * spa_namespace_lock held.  We really compare against spa_minref, which is the
911  * number of references acquired when opening a pool
912  */
913 boolean_t
914 spa_refcount_zero(spa_t *spa)
915 {
916 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
917 
918 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
919 }
920 
921 /*
922  * ==========================================================================
923  * SPA spare and l2cache tracking
924  * ==========================================================================
925  */
926 
927 /*
928  * Hot spares and cache devices are tracked using the same code below,
929  * for 'auxiliary' devices.
930  */
931 
932 typedef struct spa_aux {
933 	uint64_t	aux_guid;
934 	uint64_t	aux_pool;
935 	avl_node_t	aux_avl;
936 	int		aux_count;
937 } spa_aux_t;
938 
939 static inline int
940 spa_aux_compare(const void *a, const void *b)
941 {
942 	const spa_aux_t *sa = (const spa_aux_t *)a;
943 	const spa_aux_t *sb = (const spa_aux_t *)b;
944 
945 	return (AVL_CMP(sa->aux_guid, sb->aux_guid));
946 }
947 
948 void
949 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
950 {
951 	avl_index_t where;
952 	spa_aux_t search;
953 	spa_aux_t *aux;
954 
955 	search.aux_guid = vd->vdev_guid;
956 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
957 		aux->aux_count++;
958 	} else {
959 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
960 		aux->aux_guid = vd->vdev_guid;
961 		aux->aux_count = 1;
962 		avl_insert(avl, aux, where);
963 	}
964 }
965 
966 void
967 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
968 {
969 	spa_aux_t search;
970 	spa_aux_t *aux;
971 	avl_index_t where;
972 
973 	search.aux_guid = vd->vdev_guid;
974 	aux = avl_find(avl, &search, &where);
975 
976 	ASSERT(aux != NULL);
977 
978 	if (--aux->aux_count == 0) {
979 		avl_remove(avl, aux);
980 		kmem_free(aux, sizeof (spa_aux_t));
981 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
982 		aux->aux_pool = 0ULL;
983 	}
984 }
985 
986 boolean_t
987 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
988 {
989 	spa_aux_t search, *found;
990 
991 	search.aux_guid = guid;
992 	found = avl_find(avl, &search, NULL);
993 
994 	if (pool) {
995 		if (found)
996 			*pool = found->aux_pool;
997 		else
998 			*pool = 0ULL;
999 	}
1000 
1001 	if (refcnt) {
1002 		if (found)
1003 			*refcnt = found->aux_count;
1004 		else
1005 			*refcnt = 0;
1006 	}
1007 
1008 	return (found != NULL);
1009 }
1010 
1011 void
1012 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1013 {
1014 	spa_aux_t search, *found;
1015 	avl_index_t where;
1016 
1017 	search.aux_guid = vd->vdev_guid;
1018 	found = avl_find(avl, &search, &where);
1019 	ASSERT(found != NULL);
1020 	ASSERT(found->aux_pool == 0ULL);
1021 
1022 	found->aux_pool = spa_guid(vd->vdev_spa);
1023 }
1024 
1025 /*
1026  * Spares are tracked globally due to the following constraints:
1027  *
1028  *	- A spare may be part of multiple pools.
1029  *	- A spare may be added to a pool even if it's actively in use within
1030  *	  another pool.
1031  *	- A spare in use in any pool can only be the source of a replacement if
1032  *	  the target is a spare in the same pool.
1033  *
1034  * We keep track of all spares on the system through the use of a reference
1035  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1036  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1037  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1038  * inactive).  When a spare is made active (used to replace a device in the
1039  * pool), we also keep track of which pool its been made a part of.
1040  *
1041  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1042  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1043  * separate spare lock exists for the status query path, which does not need to
1044  * be completely consistent with respect to other vdev configuration changes.
1045  */
1046 
1047 static int
1048 spa_spare_compare(const void *a, const void *b)
1049 {
1050 	return (spa_aux_compare(a, b));
1051 }
1052 
1053 void
1054 spa_spare_add(vdev_t *vd)
1055 {
1056 	mutex_enter(&spa_spare_lock);
1057 	ASSERT(!vd->vdev_isspare);
1058 	spa_aux_add(vd, &spa_spare_avl);
1059 	vd->vdev_isspare = B_TRUE;
1060 	mutex_exit(&spa_spare_lock);
1061 }
1062 
1063 void
1064 spa_spare_remove(vdev_t *vd)
1065 {
1066 	mutex_enter(&spa_spare_lock);
1067 	ASSERT(vd->vdev_isspare);
1068 	spa_aux_remove(vd, &spa_spare_avl);
1069 	vd->vdev_isspare = B_FALSE;
1070 	mutex_exit(&spa_spare_lock);
1071 }
1072 
1073 boolean_t
1074 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1075 {
1076 	boolean_t found;
1077 
1078 	mutex_enter(&spa_spare_lock);
1079 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1080 	mutex_exit(&spa_spare_lock);
1081 
1082 	return (found);
1083 }
1084 
1085 void
1086 spa_spare_activate(vdev_t *vd)
1087 {
1088 	mutex_enter(&spa_spare_lock);
1089 	ASSERT(vd->vdev_isspare);
1090 	spa_aux_activate(vd, &spa_spare_avl);
1091 	mutex_exit(&spa_spare_lock);
1092 }
1093 
1094 /*
1095  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1096  * Cache devices currently only support one pool per cache device, and so
1097  * for these devices the aux reference count is currently unused beyond 1.
1098  */
1099 
1100 static int
1101 spa_l2cache_compare(const void *a, const void *b)
1102 {
1103 	return (spa_aux_compare(a, b));
1104 }
1105 
1106 void
1107 spa_l2cache_add(vdev_t *vd)
1108 {
1109 	mutex_enter(&spa_l2cache_lock);
1110 	ASSERT(!vd->vdev_isl2cache);
1111 	spa_aux_add(vd, &spa_l2cache_avl);
1112 	vd->vdev_isl2cache = B_TRUE;
1113 	mutex_exit(&spa_l2cache_lock);
1114 }
1115 
1116 void
1117 spa_l2cache_remove(vdev_t *vd)
1118 {
1119 	mutex_enter(&spa_l2cache_lock);
1120 	ASSERT(vd->vdev_isl2cache);
1121 	spa_aux_remove(vd, &spa_l2cache_avl);
1122 	vd->vdev_isl2cache = B_FALSE;
1123 	mutex_exit(&spa_l2cache_lock);
1124 }
1125 
1126 boolean_t
1127 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1128 {
1129 	boolean_t found;
1130 
1131 	mutex_enter(&spa_l2cache_lock);
1132 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1133 	mutex_exit(&spa_l2cache_lock);
1134 
1135 	return (found);
1136 }
1137 
1138 void
1139 spa_l2cache_activate(vdev_t *vd)
1140 {
1141 	mutex_enter(&spa_l2cache_lock);
1142 	ASSERT(vd->vdev_isl2cache);
1143 	spa_aux_activate(vd, &spa_l2cache_avl);
1144 	mutex_exit(&spa_l2cache_lock);
1145 }
1146 
1147 /*
1148  * ==========================================================================
1149  * SPA vdev locking
1150  * ==========================================================================
1151  */
1152 
1153 /*
1154  * Lock the given spa_t for the purpose of adding or removing a vdev.
1155  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1156  * It returns the next transaction group for the spa_t.
1157  */
1158 uint64_t
1159 spa_vdev_enter(spa_t *spa)
1160 {
1161 	mutex_enter(&spa->spa_vdev_top_lock);
1162 	mutex_enter(&spa_namespace_lock);
1163 
1164 	vdev_autotrim_stop_all(spa);
1165 
1166 	return (spa_vdev_config_enter(spa));
1167 }
1168 
1169 /*
1170  * Internal implementation for spa_vdev_enter().  Used when a vdev
1171  * operation requires multiple syncs (i.e. removing a device) while
1172  * keeping the spa_namespace_lock held.
1173  */
1174 uint64_t
1175 spa_vdev_config_enter(spa_t *spa)
1176 {
1177 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1178 
1179 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1180 
1181 	return (spa_last_synced_txg(spa) + 1);
1182 }
1183 
1184 /*
1185  * Used in combination with spa_vdev_config_enter() to allow the syncing
1186  * of multiple transactions without releasing the spa_namespace_lock.
1187  */
1188 void
1189 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1190 {
1191 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1192 
1193 	int config_changed = B_FALSE;
1194 
1195 	ASSERT(txg > spa_last_synced_txg(spa));
1196 
1197 	spa->spa_pending_vdev = NULL;
1198 
1199 	/*
1200 	 * Reassess the DTLs.
1201 	 */
1202 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1203 
1204 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1205 		config_changed = B_TRUE;
1206 		spa->spa_config_generation++;
1207 	}
1208 
1209 	/*
1210 	 * Verify the metaslab classes.
1211 	 */
1212 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1213 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1214 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1215 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1216 
1217 	spa_config_exit(spa, SCL_ALL, spa);
1218 
1219 	/*
1220 	 * Panic the system if the specified tag requires it.  This
1221 	 * is useful for ensuring that configurations are updated
1222 	 * transactionally.
1223 	 */
1224 	if (zio_injection_enabled)
1225 		zio_handle_panic_injection(spa, tag, 0);
1226 
1227 	/*
1228 	 * Note: this txg_wait_synced() is important because it ensures
1229 	 * that there won't be more than one config change per txg.
1230 	 * This allows us to use the txg as the generation number.
1231 	 */
1232 	if (error == 0)
1233 		txg_wait_synced(spa->spa_dsl_pool, txg);
1234 
1235 	if (vd != NULL) {
1236 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1237 		if (vd->vdev_ops->vdev_op_leaf) {
1238 			mutex_enter(&vd->vdev_initialize_lock);
1239 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1240 			    NULL);
1241 			mutex_exit(&vd->vdev_initialize_lock);
1242 
1243 			mutex_enter(&vd->vdev_trim_lock);
1244 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1245 			mutex_exit(&vd->vdev_trim_lock);
1246 		}
1247 
1248 		/*
1249 		 * The vdev may be both a leaf and top-level device.
1250 		 */
1251 		vdev_autotrim_stop_wait(vd);
1252 
1253 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1254 		vdev_free(vd);
1255 		spa_config_exit(spa, SCL_ALL, spa);
1256 	}
1257 
1258 	/*
1259 	 * If the config changed, update the config cache.
1260 	 */
1261 	if (config_changed)
1262 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1263 }
1264 
1265 /*
1266  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1267  * locking of spa_vdev_enter(), we also want make sure the transactions have
1268  * synced to disk, and then update the global configuration cache with the new
1269  * information.
1270  */
1271 int
1272 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1273 {
1274 	vdev_autotrim_restart(spa);
1275 
1276 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1277 	mutex_exit(&spa_namespace_lock);
1278 	mutex_exit(&spa->spa_vdev_top_lock);
1279 
1280 	return (error);
1281 }
1282 
1283 /*
1284  * Lock the given spa_t for the purpose of changing vdev state.
1285  */
1286 void
1287 spa_vdev_state_enter(spa_t *spa, int oplocks)
1288 {
1289 	int locks = SCL_STATE_ALL | oplocks;
1290 
1291 	/*
1292 	 * Root pools may need to read of the underlying devfs filesystem
1293 	 * when opening up a vdev.  Unfortunately if we're holding the
1294 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1295 	 * the read from the root filesystem.  Instead we "prefetch"
1296 	 * the associated vnodes that we need prior to opening the
1297 	 * underlying devices and cache them so that we can prevent
1298 	 * any I/O when we are doing the actual open.
1299 	 */
1300 	if (spa_is_root(spa)) {
1301 		int low = locks & ~(SCL_ZIO - 1);
1302 		int high = locks & ~low;
1303 
1304 		spa_config_enter(spa, high, spa, RW_WRITER);
1305 		vdev_hold(spa->spa_root_vdev);
1306 		spa_config_enter(spa, low, spa, RW_WRITER);
1307 	} else {
1308 		spa_config_enter(spa, locks, spa, RW_WRITER);
1309 	}
1310 	spa->spa_vdev_locks = locks;
1311 }
1312 
1313 int
1314 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1315 {
1316 	boolean_t config_changed = B_FALSE;
1317 
1318 	if (vd != NULL || error == 0)
1319 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1320 		    0, 0, B_FALSE);
1321 
1322 	if (vd != NULL) {
1323 		vdev_state_dirty(vd->vdev_top);
1324 		config_changed = B_TRUE;
1325 		spa->spa_config_generation++;
1326 	}
1327 
1328 	if (spa_is_root(spa))
1329 		vdev_rele(spa->spa_root_vdev);
1330 
1331 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1332 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1333 
1334 	/*
1335 	 * If anything changed, wait for it to sync.  This ensures that,
1336 	 * from the system administrator's perspective, zpool(1M) commands
1337 	 * are synchronous.  This is important for things like zpool offline:
1338 	 * when the command completes, you expect no further I/O from ZFS.
1339 	 */
1340 	if (vd != NULL)
1341 		txg_wait_synced(spa->spa_dsl_pool, 0);
1342 
1343 	/*
1344 	 * If the config changed, update the config cache.
1345 	 */
1346 	if (config_changed) {
1347 		mutex_enter(&spa_namespace_lock);
1348 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1349 		mutex_exit(&spa_namespace_lock);
1350 	}
1351 
1352 	return (error);
1353 }
1354 
1355 /*
1356  * ==========================================================================
1357  * Miscellaneous functions
1358  * ==========================================================================
1359  */
1360 
1361 void
1362 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1363 {
1364 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1365 		fnvlist_add_boolean(spa->spa_label_features, feature);
1366 		/*
1367 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1368 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1369 		 * Thankfully, in this case we don't need to dirty the config
1370 		 * because it will be written out anyway when we finish
1371 		 * creating the pool.
1372 		 */
1373 		if (tx->tx_txg != TXG_INITIAL)
1374 			vdev_config_dirty(spa->spa_root_vdev);
1375 	}
1376 }
1377 
1378 void
1379 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1380 {
1381 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1382 		vdev_config_dirty(spa->spa_root_vdev);
1383 }
1384 
1385 /*
1386  * Return the spa_t associated with given pool_guid, if it exists.  If
1387  * device_guid is non-zero, determine whether the pool exists *and* contains
1388  * a device with the specified device_guid.
1389  */
1390 spa_t *
1391 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1392 {
1393 	spa_t *spa;
1394 	avl_tree_t *t = &spa_namespace_avl;
1395 
1396 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1397 
1398 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1399 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1400 			continue;
1401 		if (spa->spa_root_vdev == NULL)
1402 			continue;
1403 		if (spa_guid(spa) == pool_guid) {
1404 			if (device_guid == 0)
1405 				break;
1406 
1407 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1408 			    device_guid) != NULL)
1409 				break;
1410 
1411 			/*
1412 			 * Check any devices we may be in the process of adding.
1413 			 */
1414 			if (spa->spa_pending_vdev) {
1415 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1416 				    device_guid) != NULL)
1417 					break;
1418 			}
1419 		}
1420 	}
1421 
1422 	return (spa);
1423 }
1424 
1425 /*
1426  * Determine whether a pool with the given pool_guid exists.
1427  */
1428 boolean_t
1429 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1430 {
1431 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1432 }
1433 
1434 char *
1435 spa_strdup(const char *s)
1436 {
1437 	size_t len;
1438 	char *new;
1439 
1440 	len = strlen(s);
1441 	new = kmem_alloc(len + 1, KM_SLEEP);
1442 	bcopy(s, new, len);
1443 	new[len] = '\0';
1444 
1445 	return (new);
1446 }
1447 
1448 void
1449 spa_strfree(char *s)
1450 {
1451 	kmem_free(s, strlen(s) + 1);
1452 }
1453 
1454 uint64_t
1455 spa_get_random(uint64_t range)
1456 {
1457 	uint64_t r;
1458 
1459 	ASSERT(range != 0);
1460 
1461 	if (range == 1)
1462 		return (0);
1463 
1464 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1465 
1466 	return (r % range);
1467 }
1468 
1469 uint64_t
1470 spa_generate_guid(spa_t *spa)
1471 {
1472 	uint64_t guid = spa_get_random(-1ULL);
1473 
1474 	if (spa != NULL) {
1475 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1476 			guid = spa_get_random(-1ULL);
1477 	} else {
1478 		while (guid == 0 || spa_guid_exists(guid, 0))
1479 			guid = spa_get_random(-1ULL);
1480 	}
1481 
1482 	return (guid);
1483 }
1484 
1485 void
1486 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1487 {
1488 	char type[256];
1489 	char *checksum = NULL;
1490 	char *compress = NULL;
1491 
1492 	if (bp != NULL) {
1493 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1494 			dmu_object_byteswap_t bswap =
1495 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1496 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1497 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1498 			    "metadata" : "data",
1499 			    dmu_ot_byteswap[bswap].ob_name);
1500 		} else {
1501 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1502 			    sizeof (type));
1503 		}
1504 		if (!BP_IS_EMBEDDED(bp)) {
1505 			checksum =
1506 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1507 		}
1508 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1509 	}
1510 
1511 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1512 	    compress);
1513 }
1514 
1515 void
1516 spa_freeze(spa_t *spa)
1517 {
1518 	uint64_t freeze_txg = 0;
1519 
1520 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1521 	if (spa->spa_freeze_txg == UINT64_MAX) {
1522 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1523 		spa->spa_freeze_txg = freeze_txg;
1524 	}
1525 	spa_config_exit(spa, SCL_ALL, FTAG);
1526 	if (freeze_txg != 0)
1527 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1528 }
1529 
1530 void
1531 zfs_panic_recover(const char *fmt, ...)
1532 {
1533 	va_list adx;
1534 
1535 	va_start(adx, fmt);
1536 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1537 	va_end(adx);
1538 }
1539 
1540 /*
1541  * This is a stripped-down version of strtoull, suitable only for converting
1542  * lowercase hexadecimal numbers that don't overflow.
1543  */
1544 uint64_t
1545 zfs_strtonum(const char *str, char **nptr)
1546 {
1547 	uint64_t val = 0;
1548 	char c;
1549 	int digit;
1550 
1551 	while ((c = *str) != '\0') {
1552 		if (c >= '0' && c <= '9')
1553 			digit = c - '0';
1554 		else if (c >= 'a' && c <= 'f')
1555 			digit = 10 + c - 'a';
1556 		else
1557 			break;
1558 
1559 		val *= 16;
1560 		val += digit;
1561 
1562 		str++;
1563 	}
1564 
1565 	if (nptr)
1566 		*nptr = (char *)str;
1567 
1568 	return (val);
1569 }
1570 
1571 void
1572 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1573 {
1574 	/*
1575 	 * We bump the feature refcount for each special vdev added to the pool
1576 	 */
1577 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1578 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1579 }
1580 
1581 /*
1582  * ==========================================================================
1583  * Accessor functions
1584  * ==========================================================================
1585  */
1586 
1587 boolean_t
1588 spa_shutting_down(spa_t *spa)
1589 {
1590 	return (spa->spa_async_suspended);
1591 }
1592 
1593 dsl_pool_t *
1594 spa_get_dsl(spa_t *spa)
1595 {
1596 	return (spa->spa_dsl_pool);
1597 }
1598 
1599 boolean_t
1600 spa_is_initializing(spa_t *spa)
1601 {
1602 	return (spa->spa_is_initializing);
1603 }
1604 
1605 boolean_t
1606 spa_indirect_vdevs_loaded(spa_t *spa)
1607 {
1608 	return (spa->spa_indirect_vdevs_loaded);
1609 }
1610 
1611 blkptr_t *
1612 spa_get_rootblkptr(spa_t *spa)
1613 {
1614 	return (&spa->spa_ubsync.ub_rootbp);
1615 }
1616 
1617 void
1618 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1619 {
1620 	spa->spa_uberblock.ub_rootbp = *bp;
1621 }
1622 
1623 void
1624 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1625 {
1626 	if (spa->spa_root == NULL)
1627 		buf[0] = '\0';
1628 	else
1629 		(void) strncpy(buf, spa->spa_root, buflen);
1630 }
1631 
1632 int
1633 spa_sync_pass(spa_t *spa)
1634 {
1635 	return (spa->spa_sync_pass);
1636 }
1637 
1638 char *
1639 spa_name(spa_t *spa)
1640 {
1641 	return (spa->spa_name);
1642 }
1643 
1644 uint64_t
1645 spa_guid(spa_t *spa)
1646 {
1647 	dsl_pool_t *dp = spa_get_dsl(spa);
1648 	uint64_t guid;
1649 
1650 	/*
1651 	 * If we fail to parse the config during spa_load(), we can go through
1652 	 * the error path (which posts an ereport) and end up here with no root
1653 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1654 	 * this case.
1655 	 */
1656 	if (spa->spa_root_vdev == NULL)
1657 		return (spa->spa_config_guid);
1658 
1659 	guid = spa->spa_last_synced_guid != 0 ?
1660 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1661 
1662 	/*
1663 	 * Return the most recently synced out guid unless we're
1664 	 * in syncing context.
1665 	 */
1666 	if (dp && dsl_pool_sync_context(dp))
1667 		return (spa->spa_root_vdev->vdev_guid);
1668 	else
1669 		return (guid);
1670 }
1671 
1672 uint64_t
1673 spa_load_guid(spa_t *spa)
1674 {
1675 	/*
1676 	 * This is a GUID that exists solely as a reference for the
1677 	 * purposes of the arc.  It is generated at load time, and
1678 	 * is never written to persistent storage.
1679 	 */
1680 	return (spa->spa_load_guid);
1681 }
1682 
1683 uint64_t
1684 spa_last_synced_txg(spa_t *spa)
1685 {
1686 	return (spa->spa_ubsync.ub_txg);
1687 }
1688 
1689 uint64_t
1690 spa_first_txg(spa_t *spa)
1691 {
1692 	return (spa->spa_first_txg);
1693 }
1694 
1695 uint64_t
1696 spa_syncing_txg(spa_t *spa)
1697 {
1698 	return (spa->spa_syncing_txg);
1699 }
1700 
1701 /*
1702  * Return the last txg where data can be dirtied. The final txgs
1703  * will be used to just clear out any deferred frees that remain.
1704  */
1705 uint64_t
1706 spa_final_dirty_txg(spa_t *spa)
1707 {
1708 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1709 }
1710 
1711 pool_state_t
1712 spa_state(spa_t *spa)
1713 {
1714 	return (spa->spa_state);
1715 }
1716 
1717 spa_load_state_t
1718 spa_load_state(spa_t *spa)
1719 {
1720 	return (spa->spa_load_state);
1721 }
1722 
1723 uint64_t
1724 spa_freeze_txg(spa_t *spa)
1725 {
1726 	return (spa->spa_freeze_txg);
1727 }
1728 
1729 /* ARGSUSED */
1730 uint64_t
1731 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1732 {
1733 	return (lsize * spa_asize_inflation);
1734 }
1735 
1736 /*
1737  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1738  * or at least 128MB, unless that would cause it to be more than half the
1739  * pool size.
1740  *
1741  * See the comment above spa_slop_shift for details.
1742  */
1743 uint64_t
1744 spa_get_slop_space(spa_t *spa)
1745 {
1746 	uint64_t space = spa_get_dspace(spa);
1747 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1748 }
1749 
1750 uint64_t
1751 spa_get_dspace(spa_t *spa)
1752 {
1753 	return (spa->spa_dspace);
1754 }
1755 
1756 uint64_t
1757 spa_get_checkpoint_space(spa_t *spa)
1758 {
1759 	return (spa->spa_checkpoint_info.sci_dspace);
1760 }
1761 
1762 void
1763 spa_update_dspace(spa_t *spa)
1764 {
1765 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1766 	    ddt_get_dedup_dspace(spa);
1767 	if (spa->spa_vdev_removal != NULL) {
1768 		/*
1769 		 * We can't allocate from the removing device, so
1770 		 * subtract its size.  This prevents the DMU/DSL from
1771 		 * filling up the (now smaller) pool while we are in the
1772 		 * middle of removing the device.
1773 		 *
1774 		 * Note that the DMU/DSL doesn't actually know or care
1775 		 * how much space is allocated (it does its own tracking
1776 		 * of how much space has been logically used).  So it
1777 		 * doesn't matter that the data we are moving may be
1778 		 * allocated twice (on the old device and the new
1779 		 * device).
1780 		 */
1781 		spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1782 		vdev_t *vd =
1783 		    vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1784 		spa->spa_dspace -= spa_deflate(spa) ?
1785 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1786 		spa_config_exit(spa, SCL_VDEV, FTAG);
1787 	}
1788 }
1789 
1790 /*
1791  * Return the failure mode that has been set to this pool. The default
1792  * behavior will be to block all I/Os when a complete failure occurs.
1793  */
1794 uint8_t
1795 spa_get_failmode(spa_t *spa)
1796 {
1797 	return (spa->spa_failmode);
1798 }
1799 
1800 boolean_t
1801 spa_suspended(spa_t *spa)
1802 {
1803 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1804 }
1805 
1806 uint64_t
1807 spa_version(spa_t *spa)
1808 {
1809 	return (spa->spa_ubsync.ub_version);
1810 }
1811 
1812 boolean_t
1813 spa_deflate(spa_t *spa)
1814 {
1815 	return (spa->spa_deflate);
1816 }
1817 
1818 metaslab_class_t *
1819 spa_normal_class(spa_t *spa)
1820 {
1821 	return (spa->spa_normal_class);
1822 }
1823 
1824 metaslab_class_t *
1825 spa_log_class(spa_t *spa)
1826 {
1827 	return (spa->spa_log_class);
1828 }
1829 
1830 metaslab_class_t *
1831 spa_special_class(spa_t *spa)
1832 {
1833 	return (spa->spa_special_class);
1834 }
1835 
1836 metaslab_class_t *
1837 spa_dedup_class(spa_t *spa)
1838 {
1839 	return (spa->spa_dedup_class);
1840 }
1841 
1842 /*
1843  * Locate an appropriate allocation class
1844  */
1845 metaslab_class_t *
1846 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1847     uint_t level, uint_t special_smallblk)
1848 {
1849 	if (DMU_OT_IS_ZIL(objtype)) {
1850 		if (spa->spa_log_class->mc_groups != 0)
1851 			return (spa_log_class(spa));
1852 		else
1853 			return (spa_normal_class(spa));
1854 	}
1855 
1856 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1857 
1858 	if (DMU_OT_IS_DDT(objtype)) {
1859 		if (spa->spa_dedup_class->mc_groups != 0)
1860 			return (spa_dedup_class(spa));
1861 		else if (has_special_class && zfs_ddt_data_is_special)
1862 			return (spa_special_class(spa));
1863 		else
1864 			return (spa_normal_class(spa));
1865 	}
1866 
1867 	/* Indirect blocks for user data can land in special if allowed */
1868 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1869 		if (has_special_class && zfs_user_indirect_is_special)
1870 			return (spa_special_class(spa));
1871 		else
1872 			return (spa_normal_class(spa));
1873 	}
1874 
1875 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1876 		if (has_special_class)
1877 			return (spa_special_class(spa));
1878 		else
1879 			return (spa_normal_class(spa));
1880 	}
1881 
1882 	/*
1883 	 * Allow small file blocks in special class in some cases (like
1884 	 * for the dRAID vdev feature). But always leave a reserve of
1885 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1886 	 */
1887 	if (DMU_OT_IS_FILE(objtype) &&
1888 	    has_special_class && size <= special_smallblk) {
1889 		metaslab_class_t *special = spa_special_class(spa);
1890 		uint64_t alloc = metaslab_class_get_alloc(special);
1891 		uint64_t space = metaslab_class_get_space(special);
1892 		uint64_t limit =
1893 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
1894 		    / 100;
1895 
1896 		if (alloc < limit)
1897 			return (special);
1898 	}
1899 
1900 	return (spa_normal_class(spa));
1901 }
1902 
1903 void
1904 spa_evicting_os_register(spa_t *spa, objset_t *os)
1905 {
1906 	mutex_enter(&spa->spa_evicting_os_lock);
1907 	list_insert_head(&spa->spa_evicting_os_list, os);
1908 	mutex_exit(&spa->spa_evicting_os_lock);
1909 }
1910 
1911 void
1912 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1913 {
1914 	mutex_enter(&spa->spa_evicting_os_lock);
1915 	list_remove(&spa->spa_evicting_os_list, os);
1916 	cv_broadcast(&spa->spa_evicting_os_cv);
1917 	mutex_exit(&spa->spa_evicting_os_lock);
1918 }
1919 
1920 void
1921 spa_evicting_os_wait(spa_t *spa)
1922 {
1923 	mutex_enter(&spa->spa_evicting_os_lock);
1924 	while (!list_is_empty(&spa->spa_evicting_os_list))
1925 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1926 	mutex_exit(&spa->spa_evicting_os_lock);
1927 
1928 	dmu_buf_user_evict_wait();
1929 }
1930 
1931 int
1932 spa_max_replication(spa_t *spa)
1933 {
1934 	/*
1935 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1936 	 * handle BPs with more than one DVA allocated.  Set our max
1937 	 * replication level accordingly.
1938 	 */
1939 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1940 		return (1);
1941 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1942 }
1943 
1944 int
1945 spa_prev_software_version(spa_t *spa)
1946 {
1947 	return (spa->spa_prev_software_version);
1948 }
1949 
1950 uint64_t
1951 spa_deadman_synctime(spa_t *spa)
1952 {
1953 	return (spa->spa_deadman_synctime);
1954 }
1955 
1956 spa_autotrim_t
1957 spa_get_autotrim(spa_t *spa)
1958 {
1959 	return (spa->spa_autotrim);
1960 }
1961 
1962 uint64_t
1963 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1964 {
1965 	uint64_t asize = DVA_GET_ASIZE(dva);
1966 	uint64_t dsize = asize;
1967 
1968 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1969 
1970 	if (asize != 0 && spa->spa_deflate) {
1971 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1972 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1973 	}
1974 
1975 	return (dsize);
1976 }
1977 
1978 uint64_t
1979 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1980 {
1981 	uint64_t dsize = 0;
1982 
1983 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1984 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1985 
1986 	return (dsize);
1987 }
1988 
1989 uint64_t
1990 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1991 {
1992 	uint64_t dsize = 0;
1993 
1994 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1995 
1996 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1997 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1998 
1999 	spa_config_exit(spa, SCL_VDEV, FTAG);
2000 
2001 	return (dsize);
2002 }
2003 
2004 uint64_t
2005 spa_dirty_data(spa_t *spa)
2006 {
2007 	return (spa->spa_dsl_pool->dp_dirty_total);
2008 }
2009 
2010 /*
2011  * ==========================================================================
2012  * Initialization and Termination
2013  * ==========================================================================
2014  */
2015 
2016 static int
2017 spa_name_compare(const void *a1, const void *a2)
2018 {
2019 	const spa_t *s1 = a1;
2020 	const spa_t *s2 = a2;
2021 	int s;
2022 
2023 	s = strcmp(s1->spa_name, s2->spa_name);
2024 
2025 	return (AVL_ISIGN(s));
2026 }
2027 
2028 int
2029 spa_busy(void)
2030 {
2031 	return (spa_active_count);
2032 }
2033 
2034 void
2035 spa_boot_init()
2036 {
2037 	spa_config_load();
2038 }
2039 
2040 void
2041 spa_init(int mode)
2042 {
2043 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2044 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2045 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2046 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2047 
2048 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2049 	    offsetof(spa_t, spa_avl));
2050 
2051 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2052 	    offsetof(spa_aux_t, aux_avl));
2053 
2054 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2055 	    offsetof(spa_aux_t, aux_avl));
2056 
2057 	spa_mode_global = mode;
2058 
2059 #ifdef _KERNEL
2060 	spa_arch_init();
2061 #else
2062 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
2063 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
2064 		if (arc_procfd == -1) {
2065 			perror("could not enable watchpoints: "
2066 			    "opening /proc/self/ctl failed: ");
2067 		} else {
2068 			arc_watch = B_TRUE;
2069 		}
2070 	}
2071 #endif
2072 
2073 	zfs_refcount_init();
2074 	unique_init();
2075 	range_tree_init();
2076 	metaslab_alloc_trace_init();
2077 	zio_init();
2078 	dmu_init();
2079 	zil_init();
2080 	vdev_cache_stat_init();
2081 	vdev_mirror_stat_init();
2082 	zfs_prop_init();
2083 	zpool_prop_init();
2084 	zpool_feature_init();
2085 	spa_config_load();
2086 	l2arc_start();
2087 	scan_init();
2088 }
2089 
2090 void
2091 spa_fini(void)
2092 {
2093 	l2arc_stop();
2094 
2095 	spa_evict_all();
2096 
2097 	vdev_cache_stat_fini();
2098 	vdev_mirror_stat_fini();
2099 	zil_fini();
2100 	dmu_fini();
2101 	zio_fini();
2102 	metaslab_alloc_trace_fini();
2103 	range_tree_fini();
2104 	unique_fini();
2105 	zfs_refcount_fini();
2106 	scan_fini();
2107 
2108 	avl_destroy(&spa_namespace_avl);
2109 	avl_destroy(&spa_spare_avl);
2110 	avl_destroy(&spa_l2cache_avl);
2111 
2112 	cv_destroy(&spa_namespace_cv);
2113 	mutex_destroy(&spa_namespace_lock);
2114 	mutex_destroy(&spa_spare_lock);
2115 	mutex_destroy(&spa_l2cache_lock);
2116 }
2117 
2118 /*
2119  * Return whether this pool has slogs. No locking needed.
2120  * It's not a problem if the wrong answer is returned as it's only for
2121  * performance and not correctness
2122  */
2123 boolean_t
2124 spa_has_slogs(spa_t *spa)
2125 {
2126 	return (spa->spa_log_class->mc_rotor != NULL);
2127 }
2128 
2129 spa_log_state_t
2130 spa_get_log_state(spa_t *spa)
2131 {
2132 	return (spa->spa_log_state);
2133 }
2134 
2135 void
2136 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2137 {
2138 	spa->spa_log_state = state;
2139 }
2140 
2141 boolean_t
2142 spa_is_root(spa_t *spa)
2143 {
2144 	return (spa->spa_is_root);
2145 }
2146 
2147 boolean_t
2148 spa_writeable(spa_t *spa)
2149 {
2150 	return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2151 }
2152 
2153 /*
2154  * Returns true if there is a pending sync task in any of the current
2155  * syncing txg, the current quiescing txg, or the current open txg.
2156  */
2157 boolean_t
2158 spa_has_pending_synctask(spa_t *spa)
2159 {
2160 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2161 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2162 }
2163 
2164 int
2165 spa_mode(spa_t *spa)
2166 {
2167 	return (spa->spa_mode);
2168 }
2169 
2170 uint64_t
2171 spa_bootfs(spa_t *spa)
2172 {
2173 	return (spa->spa_bootfs);
2174 }
2175 
2176 uint64_t
2177 spa_delegation(spa_t *spa)
2178 {
2179 	return (spa->spa_delegation);
2180 }
2181 
2182 objset_t *
2183 spa_meta_objset(spa_t *spa)
2184 {
2185 	return (spa->spa_meta_objset);
2186 }
2187 
2188 enum zio_checksum
2189 spa_dedup_checksum(spa_t *spa)
2190 {
2191 	return (spa->spa_dedup_checksum);
2192 }
2193 
2194 /*
2195  * Reset pool scan stat per scan pass (or reboot).
2196  */
2197 void
2198 spa_scan_stat_init(spa_t *spa)
2199 {
2200 	/* data not stored on disk */
2201 	spa->spa_scan_pass_start = gethrestime_sec();
2202 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2203 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2204 	else
2205 		spa->spa_scan_pass_scrub_pause = 0;
2206 	spa->spa_scan_pass_scrub_spent_paused = 0;
2207 	spa->spa_scan_pass_exam = 0;
2208 	spa->spa_scan_pass_issued = 0;
2209 	vdev_scan_stat_init(spa->spa_root_vdev);
2210 }
2211 
2212 /*
2213  * Get scan stats for zpool status reports
2214  */
2215 int
2216 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2217 {
2218 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2219 
2220 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2221 		return (SET_ERROR(ENOENT));
2222 	bzero(ps, sizeof (pool_scan_stat_t));
2223 
2224 	/* data stored on disk */
2225 	ps->pss_func = scn->scn_phys.scn_func;
2226 	ps->pss_state = scn->scn_phys.scn_state;
2227 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2228 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2229 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2230 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2231 	ps->pss_processed = scn->scn_phys.scn_processed;
2232 	ps->pss_errors = scn->scn_phys.scn_errors;
2233 	ps->pss_examined = scn->scn_phys.scn_examined;
2234 	ps->pss_issued =
2235 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2236 	ps->pss_state = scn->scn_phys.scn_state;
2237 
2238 	/* data not stored on disk */
2239 	ps->pss_pass_start = spa->spa_scan_pass_start;
2240 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2241 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2242 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2243 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2244 
2245 	return (0);
2246 }
2247 
2248 int
2249 spa_maxblocksize(spa_t *spa)
2250 {
2251 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2252 		return (SPA_MAXBLOCKSIZE);
2253 	else
2254 		return (SPA_OLD_MAXBLOCKSIZE);
2255 }
2256 
2257 int
2258 spa_maxdnodesize(spa_t *spa)
2259 {
2260 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2261 		return (DNODE_MAX_SIZE);
2262 	else
2263 		return (DNODE_MIN_SIZE);
2264 }
2265 
2266 boolean_t
2267 spa_multihost(spa_t *spa)
2268 {
2269 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2270 }
2271 
2272 unsigned long
2273 spa_get_hostid(void)
2274 {
2275 	unsigned long myhostid;
2276 
2277 #ifdef	_KERNEL
2278 	myhostid = zone_get_hostid(NULL);
2279 #else	/* _KERNEL */
2280 	/*
2281 	 * We're emulating the system's hostid in userland, so
2282 	 * we can't use zone_get_hostid().
2283 	 */
2284 	(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2285 #endif	/* _KERNEL */
2286 
2287 	return (myhostid);
2288 }
2289 
2290 /*
2291  * Returns the txg that the last device removal completed. No indirect mappings
2292  * have been added since this txg.
2293  */
2294 uint64_t
2295 spa_get_last_removal_txg(spa_t *spa)
2296 {
2297 	uint64_t vdevid;
2298 	uint64_t ret = -1ULL;
2299 
2300 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2301 	/*
2302 	 * sr_prev_indirect_vdev is only modified while holding all the
2303 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2304 	 * examining it.
2305 	 */
2306 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2307 
2308 	while (vdevid != -1ULL) {
2309 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2310 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2311 
2312 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2313 
2314 		/*
2315 		 * If the removal did not remap any data, we don't care.
2316 		 */
2317 		if (vdev_indirect_births_count(vib) != 0) {
2318 			ret = vdev_indirect_births_last_entry_txg(vib);
2319 			break;
2320 		}
2321 
2322 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2323 	}
2324 	spa_config_exit(spa, SCL_VDEV, FTAG);
2325 
2326 	IMPLY(ret != -1ULL,
2327 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2328 
2329 	return (ret);
2330 }
2331 
2332 boolean_t
2333 spa_trust_config(spa_t *spa)
2334 {
2335 	return (spa->spa_trust_config);
2336 }
2337 
2338 uint64_t
2339 spa_missing_tvds_allowed(spa_t *spa)
2340 {
2341 	return (spa->spa_missing_tvds_allowed);
2342 }
2343 
2344 space_map_t *
2345 spa_syncing_log_sm(spa_t *spa)
2346 {
2347 	return (spa->spa_syncing_log_sm);
2348 }
2349 
2350 void
2351 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2352 {
2353 	spa->spa_missing_tvds = missing;
2354 }
2355 
2356 boolean_t
2357 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2358 {
2359 	vdev_t *rvd = spa->spa_root_vdev;
2360 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2361 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2362 			return (B_FALSE);
2363 	}
2364 	return (B_TRUE);
2365 }
2366 
2367 boolean_t
2368 spa_has_checkpoint(spa_t *spa)
2369 {
2370 	return (spa->spa_checkpoint_txg != 0);
2371 }
2372 
2373 boolean_t
2374 spa_importing_readonly_checkpoint(spa_t *spa)
2375 {
2376 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2377 	    spa->spa_mode == FREAD);
2378 }
2379 
2380 uint64_t
2381 spa_min_claim_txg(spa_t *spa)
2382 {
2383 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2384 
2385 	if (checkpoint_txg != 0)
2386 		return (checkpoint_txg + 1);
2387 
2388 	return (spa->spa_first_txg);
2389 }
2390 
2391 /*
2392  * If there is a checkpoint, async destroys may consume more space from
2393  * the pool instead of freeing it. In an attempt to save the pool from
2394  * getting suspended when it is about to run out of space, we stop
2395  * processing async destroys.
2396  */
2397 boolean_t
2398 spa_suspend_async_destroy(spa_t *spa)
2399 {
2400 	dsl_pool_t *dp = spa_get_dsl(spa);
2401 
2402 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2403 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2404 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2405 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2406 
2407 	if (spa_has_checkpoint(spa) && avail == 0)
2408 		return (B_TRUE);
2409 
2410 	return (B_FALSE);
2411 }
2412