xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 44a646f1952df7a26e3bea7984f7a6c05d45eb0a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/spa_boot.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/arc.h>
50 #include <sys/ddt.h>
51 #include "zfs_prop.h"
52 #include "zfeature_common.h"
53 
54 /*
55  * SPA locking
56  *
57  * There are four basic locks for managing spa_t structures:
58  *
59  * spa_namespace_lock (global mutex)
60  *
61  *	This lock must be acquired to do any of the following:
62  *
63  *		- Lookup a spa_t by name
64  *		- Add or remove a spa_t from the namespace
65  *		- Increase spa_refcount from non-zero
66  *		- Check if spa_refcount is zero
67  *		- Rename a spa_t
68  *		- add/remove/attach/detach devices
69  *		- Held for the duration of create/destroy/import/export
70  *
71  *	It does not need to handle recursion.  A create or destroy may
72  *	reference objects (files or zvols) in other pools, but by
73  *	definition they must have an existing reference, and will never need
74  *	to lookup a spa_t by name.
75  *
76  * spa_refcount (per-spa refcount_t protected by mutex)
77  *
78  *	This reference count keep track of any active users of the spa_t.  The
79  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
80  *	the refcount is never really 'zero' - opening a pool implicitly keeps
81  *	some references in the DMU.  Internally we check against spa_minref, but
82  *	present the image of a zero/non-zero value to consumers.
83  *
84  * spa_config_lock[] (per-spa array of rwlocks)
85  *
86  *	This protects the spa_t from config changes, and must be held in
87  *	the following circumstances:
88  *
89  *		- RW_READER to perform I/O to the spa
90  *		- RW_WRITER to change the vdev config
91  *
92  * The locking order is fairly straightforward:
93  *
94  *		spa_namespace_lock	->	spa_refcount
95  *
96  *	The namespace lock must be acquired to increase the refcount from 0
97  *	or to check if it is zero.
98  *
99  *		spa_refcount		->	spa_config_lock[]
100  *
101  *	There must be at least one valid reference on the spa_t to acquire
102  *	the config lock.
103  *
104  *		spa_namespace_lock	->	spa_config_lock[]
105  *
106  *	The namespace lock must always be taken before the config lock.
107  *
108  *
109  * The spa_namespace_lock can be acquired directly and is globally visible.
110  *
111  * The namespace is manipulated using the following functions, all of which
112  * require the spa_namespace_lock to be held.
113  *
114  *	spa_lookup()		Lookup a spa_t by name.
115  *
116  *	spa_add()		Create a new spa_t in the namespace.
117  *
118  *	spa_remove()		Remove a spa_t from the namespace.  This also
119  *				frees up any memory associated with the spa_t.
120  *
121  *	spa_next()		Returns the next spa_t in the system, or the
122  *				first if NULL is passed.
123  *
124  *	spa_evict_all()		Shutdown and remove all spa_t structures in
125  *				the system.
126  *
127  *	spa_guid_exists()	Determine whether a pool/device guid exists.
128  *
129  * The spa_refcount is manipulated using the following functions:
130  *
131  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
132  *				called with spa_namespace_lock held if the
133  *				refcount is currently zero.
134  *
135  *	spa_close()		Remove a reference from the spa_t.  This will
136  *				not free the spa_t or remove it from the
137  *				namespace.  No locking is required.
138  *
139  *	spa_refcount_zero()	Returns true if the refcount is currently
140  *				zero.  Must be called with spa_namespace_lock
141  *				held.
142  *
143  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
144  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
145  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
146  *
147  * To read the configuration, it suffices to hold one of these locks as reader.
148  * To modify the configuration, you must hold all locks as writer.  To modify
149  * vdev state without altering the vdev tree's topology (e.g. online/offline),
150  * you must hold SCL_STATE and SCL_ZIO as writer.
151  *
152  * We use these distinct config locks to avoid recursive lock entry.
153  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
154  * block allocations (SCL_ALLOC), which may require reading space maps
155  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
156  *
157  * The spa config locks cannot be normal rwlocks because we need the
158  * ability to hand off ownership.  For example, SCL_ZIO is acquired
159  * by the issuing thread and later released by an interrupt thread.
160  * They do, however, obey the usual write-wanted semantics to prevent
161  * writer (i.e. system administrator) starvation.
162  *
163  * The lock acquisition rules are as follows:
164  *
165  * SCL_CONFIG
166  *	Protects changes to the vdev tree topology, such as vdev
167  *	add/remove/attach/detach.  Protects the dirty config list
168  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
169  *
170  * SCL_STATE
171  *	Protects changes to pool state and vdev state, such as vdev
172  *	online/offline/fault/degrade/clear.  Protects the dirty state list
173  *	(spa_state_dirty_list) and global pool state (spa_state).
174  *
175  * SCL_ALLOC
176  *	Protects changes to metaslab groups and classes.
177  *	Held as reader by metaslab_alloc() and metaslab_claim().
178  *
179  * SCL_ZIO
180  *	Held by bp-level zios (those which have no io_vd upon entry)
181  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
182  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
183  *
184  * SCL_FREE
185  *	Protects changes to metaslab groups and classes.
186  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
187  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
188  *	blocks in zio_done() while another i/o that holds either
189  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
190  *
191  * SCL_VDEV
192  *	Held as reader to prevent changes to the vdev tree during trivial
193  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
194  *	other locks, and lower than all of them, to ensure that it's safe
195  *	to acquire regardless of caller context.
196  *
197  * In addition, the following rules apply:
198  *
199  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
200  *	The lock ordering is SCL_CONFIG > spa_props_lock.
201  *
202  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
203  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
204  *	or zio_write_phys() -- the caller must ensure that the config cannot
205  *	cannot change in the interim, and that the vdev cannot be reopened.
206  *	SCL_STATE as reader suffices for both.
207  *
208  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
209  *
210  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
211  *				for writing.
212  *
213  *	spa_vdev_exit()		Release the config lock, wait for all I/O
214  *				to complete, sync the updated configs to the
215  *				cache, and release the namespace lock.
216  *
217  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
218  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
219  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
220  *
221  * spa_rename() is also implemented within this file since it requires
222  * manipulation of the namespace.
223  */
224 
225 static avl_tree_t spa_namespace_avl;
226 kmutex_t spa_namespace_lock;
227 static kcondvar_t spa_namespace_cv;
228 static int spa_active_count;
229 int spa_max_replication_override = SPA_DVAS_PER_BP;
230 
231 static kmutex_t spa_spare_lock;
232 static avl_tree_t spa_spare_avl;
233 static kmutex_t spa_l2cache_lock;
234 static avl_tree_t spa_l2cache_avl;
235 
236 kmem_cache_t *spa_buffer_pool;
237 int spa_mode_global;
238 
239 #ifdef ZFS_DEBUG
240 /* Everything except dprintf and spa is on by default in debug builds */
241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
242 #else
243 int zfs_flags = 0;
244 #endif
245 
246 /*
247  * zfs_recover can be set to nonzero to attempt to recover from
248  * otherwise-fatal errors, typically caused by on-disk corruption.  When
249  * set, calls to zfs_panic_recover() will turn into warning messages.
250  */
251 int zfs_recover = 0;
252 
253 /*
254  * Expiration time in milliseconds. This value has two meanings. First it is
255  * used to determine when the spa_deadman() logic should fire. By default the
256  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
257  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
258  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
259  * in a system panic.
260  */
261 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
262 
263 /*
264  * Check time in milliseconds. This defines the frequency at which we check
265  * for hung I/O.
266  */
267 uint64_t zfs_deadman_checktime_ms = 5000ULL;
268 
269 /*
270  * Override the zfs deadman behavior via /etc/system. By default the
271  * deadman is enabled except on VMware and sparc deployments.
272  */
273 int zfs_deadman_enabled = -1;
274 
275 /*
276  * The worst case is single-sector max-parity RAID-Z blocks, in which
277  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
278  * times the size; so just assume that.  Add to this the fact that
279  * we can have up to 3 DVAs per bp, and one more factor of 2 because
280  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
281  * the worst case is:
282  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
283  */
284 int spa_asize_inflation = 24;
285 
286 /*
287  * ==========================================================================
288  * SPA config locking
289  * ==========================================================================
290  */
291 static void
292 spa_config_lock_init(spa_t *spa)
293 {
294 	for (int i = 0; i < SCL_LOCKS; i++) {
295 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
296 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
297 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
298 		refcount_create_untracked(&scl->scl_count);
299 		scl->scl_writer = NULL;
300 		scl->scl_write_wanted = 0;
301 	}
302 }
303 
304 static void
305 spa_config_lock_destroy(spa_t *spa)
306 {
307 	for (int i = 0; i < SCL_LOCKS; i++) {
308 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
309 		mutex_destroy(&scl->scl_lock);
310 		cv_destroy(&scl->scl_cv);
311 		refcount_destroy(&scl->scl_count);
312 		ASSERT(scl->scl_writer == NULL);
313 		ASSERT(scl->scl_write_wanted == 0);
314 	}
315 }
316 
317 int
318 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
319 {
320 	for (int i = 0; i < SCL_LOCKS; i++) {
321 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
322 		if (!(locks & (1 << i)))
323 			continue;
324 		mutex_enter(&scl->scl_lock);
325 		if (rw == RW_READER) {
326 			if (scl->scl_writer || scl->scl_write_wanted) {
327 				mutex_exit(&scl->scl_lock);
328 				spa_config_exit(spa, locks ^ (1 << i), tag);
329 				return (0);
330 			}
331 		} else {
332 			ASSERT(scl->scl_writer != curthread);
333 			if (!refcount_is_zero(&scl->scl_count)) {
334 				mutex_exit(&scl->scl_lock);
335 				spa_config_exit(spa, locks ^ (1 << i), tag);
336 				return (0);
337 			}
338 			scl->scl_writer = curthread;
339 		}
340 		(void) refcount_add(&scl->scl_count, tag);
341 		mutex_exit(&scl->scl_lock);
342 	}
343 	return (1);
344 }
345 
346 void
347 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
348 {
349 	int wlocks_held = 0;
350 
351 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
352 
353 	for (int i = 0; i < SCL_LOCKS; i++) {
354 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
355 		if (scl->scl_writer == curthread)
356 			wlocks_held |= (1 << i);
357 		if (!(locks & (1 << i)))
358 			continue;
359 		mutex_enter(&scl->scl_lock);
360 		if (rw == RW_READER) {
361 			while (scl->scl_writer || scl->scl_write_wanted) {
362 				cv_wait(&scl->scl_cv, &scl->scl_lock);
363 			}
364 		} else {
365 			ASSERT(scl->scl_writer != curthread);
366 			while (!refcount_is_zero(&scl->scl_count)) {
367 				scl->scl_write_wanted++;
368 				cv_wait(&scl->scl_cv, &scl->scl_lock);
369 				scl->scl_write_wanted--;
370 			}
371 			scl->scl_writer = curthread;
372 		}
373 		(void) refcount_add(&scl->scl_count, tag);
374 		mutex_exit(&scl->scl_lock);
375 	}
376 	ASSERT(wlocks_held <= locks);
377 }
378 
379 void
380 spa_config_exit(spa_t *spa, int locks, void *tag)
381 {
382 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
383 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
384 		if (!(locks & (1 << i)))
385 			continue;
386 		mutex_enter(&scl->scl_lock);
387 		ASSERT(!refcount_is_zero(&scl->scl_count));
388 		if (refcount_remove(&scl->scl_count, tag) == 0) {
389 			ASSERT(scl->scl_writer == NULL ||
390 			    scl->scl_writer == curthread);
391 			scl->scl_writer = NULL;	/* OK in either case */
392 			cv_broadcast(&scl->scl_cv);
393 		}
394 		mutex_exit(&scl->scl_lock);
395 	}
396 }
397 
398 int
399 spa_config_held(spa_t *spa, int locks, krw_t rw)
400 {
401 	int locks_held = 0;
402 
403 	for (int i = 0; i < SCL_LOCKS; i++) {
404 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
405 		if (!(locks & (1 << i)))
406 			continue;
407 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
408 		    (rw == RW_WRITER && scl->scl_writer == curthread))
409 			locks_held |= 1 << i;
410 	}
411 
412 	return (locks_held);
413 }
414 
415 /*
416  * ==========================================================================
417  * SPA namespace functions
418  * ==========================================================================
419  */
420 
421 /*
422  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
423  * Returns NULL if no matching spa_t is found.
424  */
425 spa_t *
426 spa_lookup(const char *name)
427 {
428 	static spa_t search;	/* spa_t is large; don't allocate on stack */
429 	spa_t *spa;
430 	avl_index_t where;
431 	char *cp;
432 
433 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
434 
435 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
436 
437 	/*
438 	 * If it's a full dataset name, figure out the pool name and
439 	 * just use that.
440 	 */
441 	cp = strpbrk(search.spa_name, "/@");
442 	if (cp != NULL)
443 		*cp = '\0';
444 
445 	spa = avl_find(&spa_namespace_avl, &search, &where);
446 
447 	return (spa);
448 }
449 
450 /*
451  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
452  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
453  * looking for potentially hung I/Os.
454  */
455 void
456 spa_deadman(void *arg)
457 {
458 	spa_t *spa = arg;
459 
460 	/*
461 	 * Disable the deadman timer if the pool is suspended.
462 	 */
463 	if (spa_suspended(spa)) {
464 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
465 		return;
466 	}
467 
468 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
469 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
470 	    ++spa->spa_deadman_calls);
471 	if (zfs_deadman_enabled)
472 		vdev_deadman(spa->spa_root_vdev);
473 }
474 
475 /*
476  * Create an uninitialized spa_t with the given name.  Requires
477  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
478  * exist by calling spa_lookup() first.
479  */
480 spa_t *
481 spa_add(const char *name, nvlist_t *config, const char *altroot)
482 {
483 	spa_t *spa;
484 	spa_config_dirent_t *dp;
485 	cyc_handler_t hdlr;
486 	cyc_time_t when;
487 
488 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
489 
490 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
491 
492 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
493 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
494 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
495 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
496 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
497 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
498 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
499 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
500 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
501 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
502 
503 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
504 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
505 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
506 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
507 
508 	for (int t = 0; t < TXG_SIZE; t++)
509 		bplist_create(&spa->spa_free_bplist[t]);
510 
511 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
512 	spa->spa_state = POOL_STATE_UNINITIALIZED;
513 	spa->spa_freeze_txg = UINT64_MAX;
514 	spa->spa_final_txg = UINT64_MAX;
515 	spa->spa_load_max_txg = UINT64_MAX;
516 	spa->spa_proc = &p0;
517 	spa->spa_proc_state = SPA_PROC_NONE;
518 
519 	hdlr.cyh_func = spa_deadman;
520 	hdlr.cyh_arg = spa;
521 	hdlr.cyh_level = CY_LOW_LEVEL;
522 
523 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
524 
525 	/*
526 	 * This determines how often we need to check for hung I/Os after
527 	 * the cyclic has already fired. Since checking for hung I/Os is
528 	 * an expensive operation we don't want to check too frequently.
529 	 * Instead wait for 5 seconds before checking again.
530 	 */
531 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
532 	when.cyt_when = CY_INFINITY;
533 	mutex_enter(&cpu_lock);
534 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
535 	mutex_exit(&cpu_lock);
536 
537 	refcount_create(&spa->spa_refcount);
538 	spa_config_lock_init(spa);
539 
540 	avl_add(&spa_namespace_avl, spa);
541 
542 	/*
543 	 * Set the alternate root, if there is one.
544 	 */
545 	if (altroot) {
546 		spa->spa_root = spa_strdup(altroot);
547 		spa_active_count++;
548 	}
549 
550 	/*
551 	 * Every pool starts with the default cachefile
552 	 */
553 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
554 	    offsetof(spa_config_dirent_t, scd_link));
555 
556 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
557 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
558 	list_insert_head(&spa->spa_config_list, dp);
559 
560 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
561 	    KM_SLEEP) == 0);
562 
563 	if (config != NULL) {
564 		nvlist_t *features;
565 
566 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
567 		    &features) == 0) {
568 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
569 			    0) == 0);
570 		}
571 
572 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
573 	}
574 
575 	if (spa->spa_label_features == NULL) {
576 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
577 		    KM_SLEEP) == 0);
578 	}
579 
580 	spa->spa_iokstat = kstat_create("zfs", 0, name,
581 	    "disk", KSTAT_TYPE_IO, 1, 0);
582 	if (spa->spa_iokstat) {
583 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
584 		kstat_install(spa->spa_iokstat);
585 	}
586 
587 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
588 
589 	return (spa);
590 }
591 
592 /*
593  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
594  * spa_namespace_lock.  This is called only after the spa_t has been closed and
595  * deactivated.
596  */
597 void
598 spa_remove(spa_t *spa)
599 {
600 	spa_config_dirent_t *dp;
601 
602 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
603 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
604 
605 	nvlist_free(spa->spa_config_splitting);
606 
607 	avl_remove(&spa_namespace_avl, spa);
608 	cv_broadcast(&spa_namespace_cv);
609 
610 	if (spa->spa_root) {
611 		spa_strfree(spa->spa_root);
612 		spa_active_count--;
613 	}
614 
615 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
616 		list_remove(&spa->spa_config_list, dp);
617 		if (dp->scd_path != NULL)
618 			spa_strfree(dp->scd_path);
619 		kmem_free(dp, sizeof (spa_config_dirent_t));
620 	}
621 
622 	list_destroy(&spa->spa_config_list);
623 
624 	nvlist_free(spa->spa_label_features);
625 	nvlist_free(spa->spa_load_info);
626 	spa_config_set(spa, NULL);
627 
628 	mutex_enter(&cpu_lock);
629 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
630 		cyclic_remove(spa->spa_deadman_cycid);
631 	mutex_exit(&cpu_lock);
632 	spa->spa_deadman_cycid = CYCLIC_NONE;
633 
634 	refcount_destroy(&spa->spa_refcount);
635 
636 	spa_config_lock_destroy(spa);
637 
638 	kstat_delete(spa->spa_iokstat);
639 	spa->spa_iokstat = NULL;
640 
641 	for (int t = 0; t < TXG_SIZE; t++)
642 		bplist_destroy(&spa->spa_free_bplist[t]);
643 
644 	cv_destroy(&spa->spa_async_cv);
645 	cv_destroy(&spa->spa_proc_cv);
646 	cv_destroy(&spa->spa_scrub_io_cv);
647 	cv_destroy(&spa->spa_suspend_cv);
648 
649 	mutex_destroy(&spa->spa_async_lock);
650 	mutex_destroy(&spa->spa_errlist_lock);
651 	mutex_destroy(&spa->spa_errlog_lock);
652 	mutex_destroy(&spa->spa_history_lock);
653 	mutex_destroy(&spa->spa_proc_lock);
654 	mutex_destroy(&spa->spa_props_lock);
655 	mutex_destroy(&spa->spa_scrub_lock);
656 	mutex_destroy(&spa->spa_suspend_lock);
657 	mutex_destroy(&spa->spa_vdev_top_lock);
658 	mutex_destroy(&spa->spa_iokstat_lock);
659 
660 	kmem_free(spa, sizeof (spa_t));
661 }
662 
663 /*
664  * Given a pool, return the next pool in the namespace, or NULL if there is
665  * none.  If 'prev' is NULL, return the first pool.
666  */
667 spa_t *
668 spa_next(spa_t *prev)
669 {
670 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
671 
672 	if (prev)
673 		return (AVL_NEXT(&spa_namespace_avl, prev));
674 	else
675 		return (avl_first(&spa_namespace_avl));
676 }
677 
678 /*
679  * ==========================================================================
680  * SPA refcount functions
681  * ==========================================================================
682  */
683 
684 /*
685  * Add a reference to the given spa_t.  Must have at least one reference, or
686  * have the namespace lock held.
687  */
688 void
689 spa_open_ref(spa_t *spa, void *tag)
690 {
691 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
692 	    MUTEX_HELD(&spa_namespace_lock));
693 	(void) refcount_add(&spa->spa_refcount, tag);
694 }
695 
696 /*
697  * Remove a reference to the given spa_t.  Must have at least one reference, or
698  * have the namespace lock held.
699  */
700 void
701 spa_close(spa_t *spa, void *tag)
702 {
703 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
704 	    MUTEX_HELD(&spa_namespace_lock));
705 	(void) refcount_remove(&spa->spa_refcount, tag);
706 }
707 
708 /*
709  * Check to see if the spa refcount is zero.  Must be called with
710  * spa_namespace_lock held.  We really compare against spa_minref, which is the
711  * number of references acquired when opening a pool
712  */
713 boolean_t
714 spa_refcount_zero(spa_t *spa)
715 {
716 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
717 
718 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
719 }
720 
721 /*
722  * ==========================================================================
723  * SPA spare and l2cache tracking
724  * ==========================================================================
725  */
726 
727 /*
728  * Hot spares and cache devices are tracked using the same code below,
729  * for 'auxiliary' devices.
730  */
731 
732 typedef struct spa_aux {
733 	uint64_t	aux_guid;
734 	uint64_t	aux_pool;
735 	avl_node_t	aux_avl;
736 	int		aux_count;
737 } spa_aux_t;
738 
739 static int
740 spa_aux_compare(const void *a, const void *b)
741 {
742 	const spa_aux_t *sa = a;
743 	const spa_aux_t *sb = b;
744 
745 	if (sa->aux_guid < sb->aux_guid)
746 		return (-1);
747 	else if (sa->aux_guid > sb->aux_guid)
748 		return (1);
749 	else
750 		return (0);
751 }
752 
753 void
754 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
755 {
756 	avl_index_t where;
757 	spa_aux_t search;
758 	spa_aux_t *aux;
759 
760 	search.aux_guid = vd->vdev_guid;
761 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
762 		aux->aux_count++;
763 	} else {
764 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
765 		aux->aux_guid = vd->vdev_guid;
766 		aux->aux_count = 1;
767 		avl_insert(avl, aux, where);
768 	}
769 }
770 
771 void
772 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
773 {
774 	spa_aux_t search;
775 	spa_aux_t *aux;
776 	avl_index_t where;
777 
778 	search.aux_guid = vd->vdev_guid;
779 	aux = avl_find(avl, &search, &where);
780 
781 	ASSERT(aux != NULL);
782 
783 	if (--aux->aux_count == 0) {
784 		avl_remove(avl, aux);
785 		kmem_free(aux, sizeof (spa_aux_t));
786 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
787 		aux->aux_pool = 0ULL;
788 	}
789 }
790 
791 boolean_t
792 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
793 {
794 	spa_aux_t search, *found;
795 
796 	search.aux_guid = guid;
797 	found = avl_find(avl, &search, NULL);
798 
799 	if (pool) {
800 		if (found)
801 			*pool = found->aux_pool;
802 		else
803 			*pool = 0ULL;
804 	}
805 
806 	if (refcnt) {
807 		if (found)
808 			*refcnt = found->aux_count;
809 		else
810 			*refcnt = 0;
811 	}
812 
813 	return (found != NULL);
814 }
815 
816 void
817 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
818 {
819 	spa_aux_t search, *found;
820 	avl_index_t where;
821 
822 	search.aux_guid = vd->vdev_guid;
823 	found = avl_find(avl, &search, &where);
824 	ASSERT(found != NULL);
825 	ASSERT(found->aux_pool == 0ULL);
826 
827 	found->aux_pool = spa_guid(vd->vdev_spa);
828 }
829 
830 /*
831  * Spares are tracked globally due to the following constraints:
832  *
833  * 	- A spare may be part of multiple pools.
834  * 	- A spare may be added to a pool even if it's actively in use within
835  *	  another pool.
836  * 	- A spare in use in any pool can only be the source of a replacement if
837  *	  the target is a spare in the same pool.
838  *
839  * We keep track of all spares on the system through the use of a reference
840  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
841  * spare, then we bump the reference count in the AVL tree.  In addition, we set
842  * the 'vdev_isspare' member to indicate that the device is a spare (active or
843  * inactive).  When a spare is made active (used to replace a device in the
844  * pool), we also keep track of which pool its been made a part of.
845  *
846  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
847  * called under the spa_namespace lock as part of vdev reconfiguration.  The
848  * separate spare lock exists for the status query path, which does not need to
849  * be completely consistent with respect to other vdev configuration changes.
850  */
851 
852 static int
853 spa_spare_compare(const void *a, const void *b)
854 {
855 	return (spa_aux_compare(a, b));
856 }
857 
858 void
859 spa_spare_add(vdev_t *vd)
860 {
861 	mutex_enter(&spa_spare_lock);
862 	ASSERT(!vd->vdev_isspare);
863 	spa_aux_add(vd, &spa_spare_avl);
864 	vd->vdev_isspare = B_TRUE;
865 	mutex_exit(&spa_spare_lock);
866 }
867 
868 void
869 spa_spare_remove(vdev_t *vd)
870 {
871 	mutex_enter(&spa_spare_lock);
872 	ASSERT(vd->vdev_isspare);
873 	spa_aux_remove(vd, &spa_spare_avl);
874 	vd->vdev_isspare = B_FALSE;
875 	mutex_exit(&spa_spare_lock);
876 }
877 
878 boolean_t
879 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
880 {
881 	boolean_t found;
882 
883 	mutex_enter(&spa_spare_lock);
884 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
885 	mutex_exit(&spa_spare_lock);
886 
887 	return (found);
888 }
889 
890 void
891 spa_spare_activate(vdev_t *vd)
892 {
893 	mutex_enter(&spa_spare_lock);
894 	ASSERT(vd->vdev_isspare);
895 	spa_aux_activate(vd, &spa_spare_avl);
896 	mutex_exit(&spa_spare_lock);
897 }
898 
899 /*
900  * Level 2 ARC devices are tracked globally for the same reasons as spares.
901  * Cache devices currently only support one pool per cache device, and so
902  * for these devices the aux reference count is currently unused beyond 1.
903  */
904 
905 static int
906 spa_l2cache_compare(const void *a, const void *b)
907 {
908 	return (spa_aux_compare(a, b));
909 }
910 
911 void
912 spa_l2cache_add(vdev_t *vd)
913 {
914 	mutex_enter(&spa_l2cache_lock);
915 	ASSERT(!vd->vdev_isl2cache);
916 	spa_aux_add(vd, &spa_l2cache_avl);
917 	vd->vdev_isl2cache = B_TRUE;
918 	mutex_exit(&spa_l2cache_lock);
919 }
920 
921 void
922 spa_l2cache_remove(vdev_t *vd)
923 {
924 	mutex_enter(&spa_l2cache_lock);
925 	ASSERT(vd->vdev_isl2cache);
926 	spa_aux_remove(vd, &spa_l2cache_avl);
927 	vd->vdev_isl2cache = B_FALSE;
928 	mutex_exit(&spa_l2cache_lock);
929 }
930 
931 boolean_t
932 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
933 {
934 	boolean_t found;
935 
936 	mutex_enter(&spa_l2cache_lock);
937 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
938 	mutex_exit(&spa_l2cache_lock);
939 
940 	return (found);
941 }
942 
943 void
944 spa_l2cache_activate(vdev_t *vd)
945 {
946 	mutex_enter(&spa_l2cache_lock);
947 	ASSERT(vd->vdev_isl2cache);
948 	spa_aux_activate(vd, &spa_l2cache_avl);
949 	mutex_exit(&spa_l2cache_lock);
950 }
951 
952 /*
953  * ==========================================================================
954  * SPA vdev locking
955  * ==========================================================================
956  */
957 
958 /*
959  * Lock the given spa_t for the purpose of adding or removing a vdev.
960  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
961  * It returns the next transaction group for the spa_t.
962  */
963 uint64_t
964 spa_vdev_enter(spa_t *spa)
965 {
966 	mutex_enter(&spa->spa_vdev_top_lock);
967 	mutex_enter(&spa_namespace_lock);
968 	return (spa_vdev_config_enter(spa));
969 }
970 
971 /*
972  * Internal implementation for spa_vdev_enter().  Used when a vdev
973  * operation requires multiple syncs (i.e. removing a device) while
974  * keeping the spa_namespace_lock held.
975  */
976 uint64_t
977 spa_vdev_config_enter(spa_t *spa)
978 {
979 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
980 
981 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
982 
983 	return (spa_last_synced_txg(spa) + 1);
984 }
985 
986 /*
987  * Used in combination with spa_vdev_config_enter() to allow the syncing
988  * of multiple transactions without releasing the spa_namespace_lock.
989  */
990 void
991 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
992 {
993 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
994 
995 	int config_changed = B_FALSE;
996 
997 	ASSERT(txg > spa_last_synced_txg(spa));
998 
999 	spa->spa_pending_vdev = NULL;
1000 
1001 	/*
1002 	 * Reassess the DTLs.
1003 	 */
1004 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1005 
1006 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1007 		config_changed = B_TRUE;
1008 		spa->spa_config_generation++;
1009 	}
1010 
1011 	/*
1012 	 * Verify the metaslab classes.
1013 	 */
1014 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1015 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1016 
1017 	spa_config_exit(spa, SCL_ALL, spa);
1018 
1019 	/*
1020 	 * Panic the system if the specified tag requires it.  This
1021 	 * is useful for ensuring that configurations are updated
1022 	 * transactionally.
1023 	 */
1024 	if (zio_injection_enabled)
1025 		zio_handle_panic_injection(spa, tag, 0);
1026 
1027 	/*
1028 	 * Note: this txg_wait_synced() is important because it ensures
1029 	 * that there won't be more than one config change per txg.
1030 	 * This allows us to use the txg as the generation number.
1031 	 */
1032 	if (error == 0)
1033 		txg_wait_synced(spa->spa_dsl_pool, txg);
1034 
1035 	if (vd != NULL) {
1036 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1037 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1038 		vdev_free(vd);
1039 		spa_config_exit(spa, SCL_ALL, spa);
1040 	}
1041 
1042 	/*
1043 	 * If the config changed, update the config cache.
1044 	 */
1045 	if (config_changed)
1046 		spa_config_sync(spa, B_FALSE, B_TRUE);
1047 }
1048 
1049 /*
1050  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1051  * locking of spa_vdev_enter(), we also want make sure the transactions have
1052  * synced to disk, and then update the global configuration cache with the new
1053  * information.
1054  */
1055 int
1056 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1057 {
1058 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1059 	mutex_exit(&spa_namespace_lock);
1060 	mutex_exit(&spa->spa_vdev_top_lock);
1061 
1062 	return (error);
1063 }
1064 
1065 /*
1066  * Lock the given spa_t for the purpose of changing vdev state.
1067  */
1068 void
1069 spa_vdev_state_enter(spa_t *spa, int oplocks)
1070 {
1071 	int locks = SCL_STATE_ALL | oplocks;
1072 
1073 	/*
1074 	 * Root pools may need to read of the underlying devfs filesystem
1075 	 * when opening up a vdev.  Unfortunately if we're holding the
1076 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1077 	 * the read from the root filesystem.  Instead we "prefetch"
1078 	 * the associated vnodes that we need prior to opening the
1079 	 * underlying devices and cache them so that we can prevent
1080 	 * any I/O when we are doing the actual open.
1081 	 */
1082 	if (spa_is_root(spa)) {
1083 		int low = locks & ~(SCL_ZIO - 1);
1084 		int high = locks & ~low;
1085 
1086 		spa_config_enter(spa, high, spa, RW_WRITER);
1087 		vdev_hold(spa->spa_root_vdev);
1088 		spa_config_enter(spa, low, spa, RW_WRITER);
1089 	} else {
1090 		spa_config_enter(spa, locks, spa, RW_WRITER);
1091 	}
1092 	spa->spa_vdev_locks = locks;
1093 }
1094 
1095 int
1096 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1097 {
1098 	boolean_t config_changed = B_FALSE;
1099 
1100 	if (vd != NULL || error == 0)
1101 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1102 		    0, 0, B_FALSE);
1103 
1104 	if (vd != NULL) {
1105 		vdev_state_dirty(vd->vdev_top);
1106 		config_changed = B_TRUE;
1107 		spa->spa_config_generation++;
1108 	}
1109 
1110 	if (spa_is_root(spa))
1111 		vdev_rele(spa->spa_root_vdev);
1112 
1113 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1114 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1115 
1116 	/*
1117 	 * If anything changed, wait for it to sync.  This ensures that,
1118 	 * from the system administrator's perspective, zpool(1M) commands
1119 	 * are synchronous.  This is important for things like zpool offline:
1120 	 * when the command completes, you expect no further I/O from ZFS.
1121 	 */
1122 	if (vd != NULL)
1123 		txg_wait_synced(spa->spa_dsl_pool, 0);
1124 
1125 	/*
1126 	 * If the config changed, update the config cache.
1127 	 */
1128 	if (config_changed) {
1129 		mutex_enter(&spa_namespace_lock);
1130 		spa_config_sync(spa, B_FALSE, B_TRUE);
1131 		mutex_exit(&spa_namespace_lock);
1132 	}
1133 
1134 	return (error);
1135 }
1136 
1137 /*
1138  * ==========================================================================
1139  * Miscellaneous functions
1140  * ==========================================================================
1141  */
1142 
1143 void
1144 spa_activate_mos_feature(spa_t *spa, const char *feature)
1145 {
1146 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1147 		fnvlist_add_boolean(spa->spa_label_features, feature);
1148 		vdev_config_dirty(spa->spa_root_vdev);
1149 	}
1150 }
1151 
1152 void
1153 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1154 {
1155 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1156 		vdev_config_dirty(spa->spa_root_vdev);
1157 }
1158 
1159 /*
1160  * Rename a spa_t.
1161  */
1162 int
1163 spa_rename(const char *name, const char *newname)
1164 {
1165 	spa_t *spa;
1166 	int err;
1167 
1168 	/*
1169 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1170 	 * actually open the pool so that we can sync out the necessary labels.
1171 	 * It's OK to call spa_open() with the namespace lock held because we
1172 	 * allow recursive calls for other reasons.
1173 	 */
1174 	mutex_enter(&spa_namespace_lock);
1175 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1176 		mutex_exit(&spa_namespace_lock);
1177 		return (err);
1178 	}
1179 
1180 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1181 
1182 	avl_remove(&spa_namespace_avl, spa);
1183 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1184 	avl_add(&spa_namespace_avl, spa);
1185 
1186 	/*
1187 	 * Sync all labels to disk with the new names by marking the root vdev
1188 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1189 	 * during the sync.
1190 	 */
1191 	vdev_config_dirty(spa->spa_root_vdev);
1192 
1193 	spa_config_exit(spa, SCL_ALL, FTAG);
1194 
1195 	txg_wait_synced(spa->spa_dsl_pool, 0);
1196 
1197 	/*
1198 	 * Sync the updated config cache.
1199 	 */
1200 	spa_config_sync(spa, B_FALSE, B_TRUE);
1201 
1202 	spa_close(spa, FTAG);
1203 
1204 	mutex_exit(&spa_namespace_lock);
1205 
1206 	return (0);
1207 }
1208 
1209 /*
1210  * Return the spa_t associated with given pool_guid, if it exists.  If
1211  * device_guid is non-zero, determine whether the pool exists *and* contains
1212  * a device with the specified device_guid.
1213  */
1214 spa_t *
1215 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1216 {
1217 	spa_t *spa;
1218 	avl_tree_t *t = &spa_namespace_avl;
1219 
1220 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1221 
1222 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1223 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1224 			continue;
1225 		if (spa->spa_root_vdev == NULL)
1226 			continue;
1227 		if (spa_guid(spa) == pool_guid) {
1228 			if (device_guid == 0)
1229 				break;
1230 
1231 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1232 			    device_guid) != NULL)
1233 				break;
1234 
1235 			/*
1236 			 * Check any devices we may be in the process of adding.
1237 			 */
1238 			if (spa->spa_pending_vdev) {
1239 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1240 				    device_guid) != NULL)
1241 					break;
1242 			}
1243 		}
1244 	}
1245 
1246 	return (spa);
1247 }
1248 
1249 /*
1250  * Determine whether a pool with the given pool_guid exists.
1251  */
1252 boolean_t
1253 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1254 {
1255 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1256 }
1257 
1258 char *
1259 spa_strdup(const char *s)
1260 {
1261 	size_t len;
1262 	char *new;
1263 
1264 	len = strlen(s);
1265 	new = kmem_alloc(len + 1, KM_SLEEP);
1266 	bcopy(s, new, len);
1267 	new[len] = '\0';
1268 
1269 	return (new);
1270 }
1271 
1272 void
1273 spa_strfree(char *s)
1274 {
1275 	kmem_free(s, strlen(s) + 1);
1276 }
1277 
1278 uint64_t
1279 spa_get_random(uint64_t range)
1280 {
1281 	uint64_t r;
1282 
1283 	ASSERT(range != 0);
1284 
1285 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1286 
1287 	return (r % range);
1288 }
1289 
1290 uint64_t
1291 spa_generate_guid(spa_t *spa)
1292 {
1293 	uint64_t guid = spa_get_random(-1ULL);
1294 
1295 	if (spa != NULL) {
1296 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1297 			guid = spa_get_random(-1ULL);
1298 	} else {
1299 		while (guid == 0 || spa_guid_exists(guid, 0))
1300 			guid = spa_get_random(-1ULL);
1301 	}
1302 
1303 	return (guid);
1304 }
1305 
1306 void
1307 sprintf_blkptr(char *buf, const blkptr_t *bp)
1308 {
1309 	char type[256];
1310 	char *checksum = NULL;
1311 	char *compress = NULL;
1312 
1313 	if (bp != NULL) {
1314 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1315 			dmu_object_byteswap_t bswap =
1316 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1317 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1318 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1319 			    "metadata" : "data",
1320 			    dmu_ot_byteswap[bswap].ob_name);
1321 		} else {
1322 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1323 			    sizeof (type));
1324 		}
1325 		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1326 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1327 	}
1328 
1329 	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1330 }
1331 
1332 void
1333 spa_freeze(spa_t *spa)
1334 {
1335 	uint64_t freeze_txg = 0;
1336 
1337 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1338 	if (spa->spa_freeze_txg == UINT64_MAX) {
1339 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1340 		spa->spa_freeze_txg = freeze_txg;
1341 	}
1342 	spa_config_exit(spa, SCL_ALL, FTAG);
1343 	if (freeze_txg != 0)
1344 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1345 }
1346 
1347 void
1348 zfs_panic_recover(const char *fmt, ...)
1349 {
1350 	va_list adx;
1351 
1352 	va_start(adx, fmt);
1353 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1354 	va_end(adx);
1355 }
1356 
1357 /*
1358  * This is a stripped-down version of strtoull, suitable only for converting
1359  * lowercase hexadecimal numbers that don't overflow.
1360  */
1361 uint64_t
1362 strtonum(const char *str, char **nptr)
1363 {
1364 	uint64_t val = 0;
1365 	char c;
1366 	int digit;
1367 
1368 	while ((c = *str) != '\0') {
1369 		if (c >= '0' && c <= '9')
1370 			digit = c - '0';
1371 		else if (c >= 'a' && c <= 'f')
1372 			digit = 10 + c - 'a';
1373 		else
1374 			break;
1375 
1376 		val *= 16;
1377 		val += digit;
1378 
1379 		str++;
1380 	}
1381 
1382 	if (nptr)
1383 		*nptr = (char *)str;
1384 
1385 	return (val);
1386 }
1387 
1388 /*
1389  * ==========================================================================
1390  * Accessor functions
1391  * ==========================================================================
1392  */
1393 
1394 boolean_t
1395 spa_shutting_down(spa_t *spa)
1396 {
1397 	return (spa->spa_async_suspended);
1398 }
1399 
1400 dsl_pool_t *
1401 spa_get_dsl(spa_t *spa)
1402 {
1403 	return (spa->spa_dsl_pool);
1404 }
1405 
1406 boolean_t
1407 spa_is_initializing(spa_t *spa)
1408 {
1409 	return (spa->spa_is_initializing);
1410 }
1411 
1412 blkptr_t *
1413 spa_get_rootblkptr(spa_t *spa)
1414 {
1415 	return (&spa->spa_ubsync.ub_rootbp);
1416 }
1417 
1418 void
1419 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1420 {
1421 	spa->spa_uberblock.ub_rootbp = *bp;
1422 }
1423 
1424 void
1425 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1426 {
1427 	if (spa->spa_root == NULL)
1428 		buf[0] = '\0';
1429 	else
1430 		(void) strncpy(buf, spa->spa_root, buflen);
1431 }
1432 
1433 int
1434 spa_sync_pass(spa_t *spa)
1435 {
1436 	return (spa->spa_sync_pass);
1437 }
1438 
1439 char *
1440 spa_name(spa_t *spa)
1441 {
1442 	return (spa->spa_name);
1443 }
1444 
1445 uint64_t
1446 spa_guid(spa_t *spa)
1447 {
1448 	dsl_pool_t *dp = spa_get_dsl(spa);
1449 	uint64_t guid;
1450 
1451 	/*
1452 	 * If we fail to parse the config during spa_load(), we can go through
1453 	 * the error path (which posts an ereport) and end up here with no root
1454 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1455 	 * this case.
1456 	 */
1457 	if (spa->spa_root_vdev == NULL)
1458 		return (spa->spa_config_guid);
1459 
1460 	guid = spa->spa_last_synced_guid != 0 ?
1461 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1462 
1463 	/*
1464 	 * Return the most recently synced out guid unless we're
1465 	 * in syncing context.
1466 	 */
1467 	if (dp && dsl_pool_sync_context(dp))
1468 		return (spa->spa_root_vdev->vdev_guid);
1469 	else
1470 		return (guid);
1471 }
1472 
1473 uint64_t
1474 spa_load_guid(spa_t *spa)
1475 {
1476 	/*
1477 	 * This is a GUID that exists solely as a reference for the
1478 	 * purposes of the arc.  It is generated at load time, and
1479 	 * is never written to persistent storage.
1480 	 */
1481 	return (spa->spa_load_guid);
1482 }
1483 
1484 uint64_t
1485 spa_last_synced_txg(spa_t *spa)
1486 {
1487 	return (spa->spa_ubsync.ub_txg);
1488 }
1489 
1490 uint64_t
1491 spa_first_txg(spa_t *spa)
1492 {
1493 	return (spa->spa_first_txg);
1494 }
1495 
1496 uint64_t
1497 spa_syncing_txg(spa_t *spa)
1498 {
1499 	return (spa->spa_syncing_txg);
1500 }
1501 
1502 pool_state_t
1503 spa_state(spa_t *spa)
1504 {
1505 	return (spa->spa_state);
1506 }
1507 
1508 spa_load_state_t
1509 spa_load_state(spa_t *spa)
1510 {
1511 	return (spa->spa_load_state);
1512 }
1513 
1514 uint64_t
1515 spa_freeze_txg(spa_t *spa)
1516 {
1517 	return (spa->spa_freeze_txg);
1518 }
1519 
1520 /* ARGSUSED */
1521 uint64_t
1522 spa_get_asize(spa_t *spa, uint64_t lsize)
1523 {
1524 	return (lsize * spa_asize_inflation);
1525 }
1526 
1527 uint64_t
1528 spa_get_dspace(spa_t *spa)
1529 {
1530 	return (spa->spa_dspace);
1531 }
1532 
1533 void
1534 spa_update_dspace(spa_t *spa)
1535 {
1536 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1537 	    ddt_get_dedup_dspace(spa);
1538 }
1539 
1540 /*
1541  * Return the failure mode that has been set to this pool. The default
1542  * behavior will be to block all I/Os when a complete failure occurs.
1543  */
1544 uint8_t
1545 spa_get_failmode(spa_t *spa)
1546 {
1547 	return (spa->spa_failmode);
1548 }
1549 
1550 boolean_t
1551 spa_suspended(spa_t *spa)
1552 {
1553 	return (spa->spa_suspended);
1554 }
1555 
1556 uint64_t
1557 spa_version(spa_t *spa)
1558 {
1559 	return (spa->spa_ubsync.ub_version);
1560 }
1561 
1562 boolean_t
1563 spa_deflate(spa_t *spa)
1564 {
1565 	return (spa->spa_deflate);
1566 }
1567 
1568 metaslab_class_t *
1569 spa_normal_class(spa_t *spa)
1570 {
1571 	return (spa->spa_normal_class);
1572 }
1573 
1574 metaslab_class_t *
1575 spa_log_class(spa_t *spa)
1576 {
1577 	return (spa->spa_log_class);
1578 }
1579 
1580 int
1581 spa_max_replication(spa_t *spa)
1582 {
1583 	/*
1584 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1585 	 * handle BPs with more than one DVA allocated.  Set our max
1586 	 * replication level accordingly.
1587 	 */
1588 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1589 		return (1);
1590 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1591 }
1592 
1593 int
1594 spa_prev_software_version(spa_t *spa)
1595 {
1596 	return (spa->spa_prev_software_version);
1597 }
1598 
1599 uint64_t
1600 spa_deadman_synctime(spa_t *spa)
1601 {
1602 	return (spa->spa_deadman_synctime);
1603 }
1604 
1605 uint64_t
1606 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1607 {
1608 	uint64_t asize = DVA_GET_ASIZE(dva);
1609 	uint64_t dsize = asize;
1610 
1611 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1612 
1613 	if (asize != 0 && spa->spa_deflate) {
1614 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1615 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1616 	}
1617 
1618 	return (dsize);
1619 }
1620 
1621 uint64_t
1622 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1623 {
1624 	uint64_t dsize = 0;
1625 
1626 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1627 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1628 
1629 	return (dsize);
1630 }
1631 
1632 uint64_t
1633 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1634 {
1635 	uint64_t dsize = 0;
1636 
1637 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1638 
1639 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1640 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1641 
1642 	spa_config_exit(spa, SCL_VDEV, FTAG);
1643 
1644 	return (dsize);
1645 }
1646 
1647 /*
1648  * ==========================================================================
1649  * Initialization and Termination
1650  * ==========================================================================
1651  */
1652 
1653 static int
1654 spa_name_compare(const void *a1, const void *a2)
1655 {
1656 	const spa_t *s1 = a1;
1657 	const spa_t *s2 = a2;
1658 	int s;
1659 
1660 	s = strcmp(s1->spa_name, s2->spa_name);
1661 	if (s > 0)
1662 		return (1);
1663 	if (s < 0)
1664 		return (-1);
1665 	return (0);
1666 }
1667 
1668 int
1669 spa_busy(void)
1670 {
1671 	return (spa_active_count);
1672 }
1673 
1674 void
1675 spa_boot_init()
1676 {
1677 	spa_config_load();
1678 }
1679 
1680 void
1681 spa_init(int mode)
1682 {
1683 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1684 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1685 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1686 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1687 
1688 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1689 	    offsetof(spa_t, spa_avl));
1690 
1691 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1692 	    offsetof(spa_aux_t, aux_avl));
1693 
1694 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1695 	    offsetof(spa_aux_t, aux_avl));
1696 
1697 	spa_mode_global = mode;
1698 
1699 #ifdef _KERNEL
1700 	spa_arch_init();
1701 #else
1702 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1703 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1704 		if (arc_procfd == -1) {
1705 			perror("could not enable watchpoints: "
1706 			    "opening /proc/self/ctl failed: ");
1707 		} else {
1708 			arc_watch = B_TRUE;
1709 		}
1710 	}
1711 #endif
1712 
1713 	refcount_init();
1714 	unique_init();
1715 	range_tree_init();
1716 	zio_init();
1717 	dmu_init();
1718 	zil_init();
1719 	vdev_cache_stat_init();
1720 	zfs_prop_init();
1721 	zpool_prop_init();
1722 	zpool_feature_init();
1723 	spa_config_load();
1724 	l2arc_start();
1725 }
1726 
1727 void
1728 spa_fini(void)
1729 {
1730 	l2arc_stop();
1731 
1732 	spa_evict_all();
1733 
1734 	vdev_cache_stat_fini();
1735 	zil_fini();
1736 	dmu_fini();
1737 	zio_fini();
1738 	range_tree_fini();
1739 	unique_fini();
1740 	refcount_fini();
1741 
1742 	avl_destroy(&spa_namespace_avl);
1743 	avl_destroy(&spa_spare_avl);
1744 	avl_destroy(&spa_l2cache_avl);
1745 
1746 	cv_destroy(&spa_namespace_cv);
1747 	mutex_destroy(&spa_namespace_lock);
1748 	mutex_destroy(&spa_spare_lock);
1749 	mutex_destroy(&spa_l2cache_lock);
1750 }
1751 
1752 /*
1753  * Return whether this pool has slogs. No locking needed.
1754  * It's not a problem if the wrong answer is returned as it's only for
1755  * performance and not correctness
1756  */
1757 boolean_t
1758 spa_has_slogs(spa_t *spa)
1759 {
1760 	return (spa->spa_log_class->mc_rotor != NULL);
1761 }
1762 
1763 spa_log_state_t
1764 spa_get_log_state(spa_t *spa)
1765 {
1766 	return (spa->spa_log_state);
1767 }
1768 
1769 void
1770 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1771 {
1772 	spa->spa_log_state = state;
1773 }
1774 
1775 boolean_t
1776 spa_is_root(spa_t *spa)
1777 {
1778 	return (spa->spa_is_root);
1779 }
1780 
1781 boolean_t
1782 spa_writeable(spa_t *spa)
1783 {
1784 	return (!!(spa->spa_mode & FWRITE));
1785 }
1786 
1787 int
1788 spa_mode(spa_t *spa)
1789 {
1790 	return (spa->spa_mode);
1791 }
1792 
1793 uint64_t
1794 spa_bootfs(spa_t *spa)
1795 {
1796 	return (spa->spa_bootfs);
1797 }
1798 
1799 uint64_t
1800 spa_delegation(spa_t *spa)
1801 {
1802 	return (spa->spa_delegation);
1803 }
1804 
1805 objset_t *
1806 spa_meta_objset(spa_t *spa)
1807 {
1808 	return (spa->spa_meta_objset);
1809 }
1810 
1811 enum zio_checksum
1812 spa_dedup_checksum(spa_t *spa)
1813 {
1814 	return (spa->spa_dedup_checksum);
1815 }
1816 
1817 /*
1818  * Reset pool scan stat per scan pass (or reboot).
1819  */
1820 void
1821 spa_scan_stat_init(spa_t *spa)
1822 {
1823 	/* data not stored on disk */
1824 	spa->spa_scan_pass_start = gethrestime_sec();
1825 	spa->spa_scan_pass_exam = 0;
1826 	vdev_scan_stat_init(spa->spa_root_vdev);
1827 }
1828 
1829 /*
1830  * Get scan stats for zpool status reports
1831  */
1832 int
1833 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1834 {
1835 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1836 
1837 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1838 		return (SET_ERROR(ENOENT));
1839 	bzero(ps, sizeof (pool_scan_stat_t));
1840 
1841 	/* data stored on disk */
1842 	ps->pss_func = scn->scn_phys.scn_func;
1843 	ps->pss_start_time = scn->scn_phys.scn_start_time;
1844 	ps->pss_end_time = scn->scn_phys.scn_end_time;
1845 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1846 	ps->pss_examined = scn->scn_phys.scn_examined;
1847 	ps->pss_to_process = scn->scn_phys.scn_to_process;
1848 	ps->pss_processed = scn->scn_phys.scn_processed;
1849 	ps->pss_errors = scn->scn_phys.scn_errors;
1850 	ps->pss_state = scn->scn_phys.scn_state;
1851 
1852 	/* data not stored on disk */
1853 	ps->pss_pass_start = spa->spa_scan_pass_start;
1854 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1855 
1856 	return (0);
1857 }
1858 
1859 boolean_t
1860 spa_debug_enabled(spa_t *spa)
1861 {
1862 	return (spa->spa_debug);
1863 }
1864