xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 334edc4840d12dfd25a5559468cdd15a375cd111)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/metaslab_impl.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against SPA_MINREF, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock (per-spa read-priority rwlock)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * spa_config_cache_lock (per-spa mutex)
89  *
90  *	This mutex prevents the spa_config nvlist from being updated.  No
91  *      other locks are required to obtain this lock, although implicitly you
92  *      must have the namespace lock or non-zero refcount to have any kind
93  *      of spa_t pointer at all.
94  *
95  * The locking order is fairly straightforward:
96  *
97  *		spa_namespace_lock	->	spa_refcount
98  *
99  *	The namespace lock must be acquired to increase the refcount from 0
100  *	or to check if it is zero.
101  *
102  *		spa_refcount		->	spa_config_lock
103  *
104  *	There must be at least one valid reference on the spa_t to acquire
105  *	the config lock.
106  *
107  *		spa_namespace_lock	->	spa_config_lock
108  *
109  *	The namespace lock must always be taken before the config lock.
110  *
111  *
112  * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and
113  * are globally visible.
114  *
115  * The namespace is manipulated using the following functions, all which require
116  * the spa_namespace_lock to be held.
117  *
118  *	spa_lookup()		Lookup a spa_t by name.
119  *
120  *	spa_add()		Create a new spa_t in the namespace.
121  *
122  *	spa_remove()		Remove a spa_t from the namespace.  This also
123  *				frees up any memory associated with the spa_t.
124  *
125  *	spa_next()		Returns the next spa_t in the system, or the
126  *				first if NULL is passed.
127  *
128  *	spa_evict_all()		Shutdown and remove all spa_t structures in
129  *				the system.
130  *
131  *	spa_guid_exists()	Determine whether a pool/device guid exists.
132  *
133  * The spa_refcount is manipulated using the following functions:
134  *
135  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
136  *				called with spa_namespace_lock held if the
137  *				refcount is currently zero.
138  *
139  *	spa_close()		Remove a reference from the spa_t.  This will
140  *				not free the spa_t or remove it from the
141  *				namespace.  No locking is required.
142  *
143  *	spa_refcount_zero()	Returns true if the refcount is currently
144  *				zero.  Must be called with spa_namespace_lock
145  *				held.
146  *
147  * The spa_config_lock is a form of rwlock.  It must be held as RW_READER
148  * to perform I/O to the pool, and as RW_WRITER to change the vdev config.
149  * The spa_config_lock is manipulated with spa_config_{enter,exit,held}().
150  *
151  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
152  *
153  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
154  *				for writing.
155  *
156  *	spa_vdev_exit()		Release the config lock, wait for all I/O
157  *				to complete, sync the updated configs to the
158  *				cache, and release the namespace lock.
159  *
160  * The spa_name() function also requires either the spa_namespace_lock
161  * or the spa_config_lock, as both are needed to do a rename.  spa_rename() is
162  * also implemented within this file since is requires manipulation of the
163  * namespace.
164  */
165 
166 static avl_tree_t spa_namespace_avl;
167 kmutex_t spa_namespace_lock;
168 static kcondvar_t spa_namespace_cv;
169 static int spa_active_count;
170 int spa_max_replication_override = SPA_DVAS_PER_BP;
171 
172 static kmutex_t spa_spare_lock;
173 static avl_tree_t spa_spare_avl;
174 static kmutex_t spa_l2cache_lock;
175 static avl_tree_t spa_l2cache_avl;
176 
177 kmem_cache_t *spa_buffer_pool;
178 int spa_mode;
179 
180 #ifdef ZFS_DEBUG
181 /* Everything except dprintf is on by default in debug builds */
182 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
183 #else
184 int zfs_flags = 0;
185 #endif
186 
187 /*
188  * zfs_recover can be set to nonzero to attempt to recover from
189  * otherwise-fatal errors, typically caused by on-disk corruption.  When
190  * set, calls to zfs_panic_recover() will turn into warning messages.
191  */
192 int zfs_recover = 0;
193 
194 #define	SPA_MINREF	5	/* spa_refcnt for an open-but-idle pool */
195 
196 /*
197  * ==========================================================================
198  * SPA config locking
199  * ==========================================================================
200  */
201 static void
202 spa_config_lock_init(spa_config_lock_t *scl)
203 {
204 	mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
205 	scl->scl_writer = NULL;
206 	cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
207 	refcount_create(&scl->scl_count);
208 }
209 
210 static void
211 spa_config_lock_destroy(spa_config_lock_t *scl)
212 {
213 	mutex_destroy(&scl->scl_lock);
214 	ASSERT(scl->scl_writer == NULL);
215 	cv_destroy(&scl->scl_cv);
216 	refcount_destroy(&scl->scl_count);
217 }
218 
219 void
220 spa_config_enter(spa_t *spa, krw_t rw, void *tag)
221 {
222 	spa_config_lock_t *scl = &spa->spa_config_lock;
223 
224 	mutex_enter(&scl->scl_lock);
225 
226 	if (rw == RW_READER) {
227 		while (scl->scl_writer != NULL && scl->scl_writer != curthread)
228 			cv_wait(&scl->scl_cv, &scl->scl_lock);
229 	} else {
230 		while (!refcount_is_zero(&scl->scl_count) &&
231 		    scl->scl_writer != curthread)
232 			cv_wait(&scl->scl_cv, &scl->scl_lock);
233 		scl->scl_writer = curthread;
234 	}
235 
236 	(void) refcount_add(&scl->scl_count, tag);
237 
238 	mutex_exit(&scl->scl_lock);
239 }
240 
241 void
242 spa_config_exit(spa_t *spa, void *tag)
243 {
244 	spa_config_lock_t *scl = &spa->spa_config_lock;
245 
246 	mutex_enter(&scl->scl_lock);
247 
248 	ASSERT(!refcount_is_zero(&scl->scl_count));
249 
250 	if (refcount_remove(&scl->scl_count, tag) == 0) {
251 		cv_broadcast(&scl->scl_cv);
252 		ASSERT(scl->scl_writer == NULL || scl->scl_writer == curthread);
253 		scl->scl_writer = NULL;  /* OK in either case */
254 	}
255 
256 	mutex_exit(&scl->scl_lock);
257 }
258 
259 boolean_t
260 spa_config_held(spa_t *spa, krw_t rw)
261 {
262 	spa_config_lock_t *scl = &spa->spa_config_lock;
263 
264 	if (rw == RW_READER)
265 		return (!refcount_is_zero(&scl->scl_count));
266 	else
267 		return (scl->scl_writer == curthread);
268 }
269 
270 /*
271  * ==========================================================================
272  * SPA namespace functions
273  * ==========================================================================
274  */
275 
276 /*
277  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
278  * Returns NULL if no matching spa_t is found.
279  */
280 spa_t *
281 spa_lookup(const char *name)
282 {
283 	spa_t search, *spa;
284 	avl_index_t where;
285 	char c;
286 	char *cp;
287 
288 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
289 
290 	/*
291 	 * If it's a full dataset name, figure out the pool name and
292 	 * just use that.
293 	 */
294 	cp = strpbrk(name, "/@");
295 	if (cp) {
296 		c = *cp;
297 		*cp = '\0';
298 	}
299 
300 	search.spa_name = (char *)name;
301 	spa = avl_find(&spa_namespace_avl, &search, &where);
302 
303 	if (cp)
304 		*cp = c;
305 
306 	return (spa);
307 }
308 
309 /*
310  * Create an uninitialized spa_t with the given name.  Requires
311  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
312  * exist by calling spa_lookup() first.
313  */
314 spa_t *
315 spa_add(const char *name, const char *altroot)
316 {
317 	spa_t *spa;
318 
319 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
320 
321 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
322 
323 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
324 
325 	mutex_init(&spa->spa_uberblock_lock, NULL, MUTEX_DEFAULT, NULL);
326 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
327 	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
328 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
329 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
330 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
331 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
332 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
333 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
334 
335 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
336 	cv_init(&spa->spa_scrub_cv, NULL, CV_DEFAULT, NULL);
337 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
338 
339 	spa->spa_name = spa_strdup(name);
340 	spa->spa_state = POOL_STATE_UNINITIALIZED;
341 	spa->spa_freeze_txg = UINT64_MAX;
342 	spa->spa_final_txg = UINT64_MAX;
343 
344 	refcount_create(&spa->spa_refcount);
345 	spa_config_lock_init(&spa->spa_config_lock);
346 
347 	avl_add(&spa_namespace_avl, spa);
348 
349 	mutex_init(&spa->spa_zio_lock, NULL, MUTEX_DEFAULT, NULL);
350 
351 	/*
352 	 * Set the alternate root, if there is one.
353 	 */
354 	if (altroot) {
355 		spa->spa_root = spa_strdup(altroot);
356 		spa_active_count++;
357 	}
358 
359 	return (spa);
360 }
361 
362 /*
363  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
364  * spa_namespace_lock.  This is called only after the spa_t has been closed and
365  * deactivated.
366  */
367 void
368 spa_remove(spa_t *spa)
369 {
370 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
371 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
372 	ASSERT(spa->spa_scrub_thread == NULL);
373 
374 	avl_remove(&spa_namespace_avl, spa);
375 	cv_broadcast(&spa_namespace_cv);
376 
377 	if (spa->spa_root) {
378 		spa_strfree(spa->spa_root);
379 		spa_active_count--;
380 	}
381 
382 	if (spa->spa_name)
383 		spa_strfree(spa->spa_name);
384 
385 	if (spa->spa_config_dir)
386 		spa_strfree(spa->spa_config_dir);
387 	if (spa->spa_config_file)
388 		spa_strfree(spa->spa_config_file);
389 
390 	spa_config_set(spa, NULL);
391 
392 	refcount_destroy(&spa->spa_refcount);
393 
394 	spa_config_lock_destroy(&spa->spa_config_lock);
395 
396 	rw_destroy(&spa->spa_traverse_lock);
397 
398 	cv_destroy(&spa->spa_async_cv);
399 	cv_destroy(&spa->spa_scrub_cv);
400 	cv_destroy(&spa->spa_scrub_io_cv);
401 
402 	mutex_destroy(&spa->spa_uberblock_lock);
403 	mutex_destroy(&spa->spa_async_lock);
404 	mutex_destroy(&spa->spa_config_cache_lock);
405 	mutex_destroy(&spa->spa_scrub_lock);
406 	mutex_destroy(&spa->spa_errlog_lock);
407 	mutex_destroy(&spa->spa_errlist_lock);
408 	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
409 	mutex_destroy(&spa->spa_history_lock);
410 	mutex_destroy(&spa->spa_props_lock);
411 	mutex_destroy(&spa->spa_zio_lock);
412 
413 	kmem_free(spa, sizeof (spa_t));
414 }
415 
416 /*
417  * Given a pool, return the next pool in the namespace, or NULL if there is
418  * none.  If 'prev' is NULL, return the first pool.
419  */
420 spa_t *
421 spa_next(spa_t *prev)
422 {
423 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
424 
425 	if (prev)
426 		return (AVL_NEXT(&spa_namespace_avl, prev));
427 	else
428 		return (avl_first(&spa_namespace_avl));
429 }
430 
431 /*
432  * ==========================================================================
433  * SPA refcount functions
434  * ==========================================================================
435  */
436 
437 /*
438  * Add a reference to the given spa_t.  Must have at least one reference, or
439  * have the namespace lock held.
440  */
441 void
442 spa_open_ref(spa_t *spa, void *tag)
443 {
444 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
445 	    MUTEX_HELD(&spa_namespace_lock));
446 
447 	(void) refcount_add(&spa->spa_refcount, tag);
448 }
449 
450 /*
451  * Remove a reference to the given spa_t.  Must have at least one reference, or
452  * have the namespace lock held.
453  */
454 void
455 spa_close(spa_t *spa, void *tag)
456 {
457 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
458 	    MUTEX_HELD(&spa_namespace_lock));
459 
460 	(void) refcount_remove(&spa->spa_refcount, tag);
461 }
462 
463 /*
464  * Check to see if the spa refcount is zero.  Must be called with
465  * spa_namespace_lock held.  We really compare against SPA_MINREF, which is the
466  * number of references acquired when opening a pool
467  */
468 boolean_t
469 spa_refcount_zero(spa_t *spa)
470 {
471 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
472 
473 	return (refcount_count(&spa->spa_refcount) == SPA_MINREF);
474 }
475 
476 /*
477  * ==========================================================================
478  * SPA spare and l2cache tracking
479  * ==========================================================================
480  */
481 
482 /*
483  * Hot spares and cache devices are tracked using the same code below,
484  * for 'auxiliary' devices.
485  */
486 
487 typedef struct spa_aux {
488 	uint64_t	aux_guid;
489 	uint64_t	aux_pool;
490 	avl_node_t	aux_avl;
491 	int		aux_count;
492 } spa_aux_t;
493 
494 static int
495 spa_aux_compare(const void *a, const void *b)
496 {
497 	const spa_aux_t *sa = a;
498 	const spa_aux_t *sb = b;
499 
500 	if (sa->aux_guid < sb->aux_guid)
501 		return (-1);
502 	else if (sa->aux_guid > sb->aux_guid)
503 		return (1);
504 	else
505 		return (0);
506 }
507 
508 void
509 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
510 {
511 	avl_index_t where;
512 	spa_aux_t search;
513 	spa_aux_t *aux;
514 
515 	search.aux_guid = vd->vdev_guid;
516 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
517 		aux->aux_count++;
518 	} else {
519 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
520 		aux->aux_guid = vd->vdev_guid;
521 		aux->aux_count = 1;
522 		avl_insert(avl, aux, where);
523 	}
524 }
525 
526 void
527 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
528 {
529 	spa_aux_t search;
530 	spa_aux_t *aux;
531 	avl_index_t where;
532 
533 	search.aux_guid = vd->vdev_guid;
534 	aux = avl_find(avl, &search, &where);
535 
536 	ASSERT(aux != NULL);
537 
538 	if (--aux->aux_count == 0) {
539 		avl_remove(avl, aux);
540 		kmem_free(aux, sizeof (spa_aux_t));
541 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
542 		aux->aux_pool = 0ULL;
543 	}
544 }
545 
546 boolean_t
547 spa_aux_exists(uint64_t guid, uint64_t *pool, avl_tree_t *avl)
548 {
549 	spa_aux_t search, *found;
550 	avl_index_t where;
551 
552 	search.aux_guid = guid;
553 	found = avl_find(avl, &search, &where);
554 
555 	if (pool) {
556 		if (found)
557 			*pool = found->aux_pool;
558 		else
559 			*pool = 0ULL;
560 	}
561 
562 	return (found != NULL);
563 }
564 
565 void
566 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
567 {
568 	spa_aux_t search, *found;
569 	avl_index_t where;
570 
571 	search.aux_guid = vd->vdev_guid;
572 	found = avl_find(avl, &search, &where);
573 	ASSERT(found != NULL);
574 	ASSERT(found->aux_pool == 0ULL);
575 
576 	found->aux_pool = spa_guid(vd->vdev_spa);
577 }
578 
579 /*
580  * Spares are tracked globally due to the following constraints:
581  *
582  * 	- A spare may be part of multiple pools.
583  * 	- A spare may be added to a pool even if it's actively in use within
584  *	  another pool.
585  * 	- A spare in use in any pool can only be the source of a replacement if
586  *	  the target is a spare in the same pool.
587  *
588  * We keep track of all spares on the system through the use of a reference
589  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
590  * spare, then we bump the reference count in the AVL tree.  In addition, we set
591  * the 'vdev_isspare' member to indicate that the device is a spare (active or
592  * inactive).  When a spare is made active (used to replace a device in the
593  * pool), we also keep track of which pool its been made a part of.
594  *
595  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
596  * called under the spa_namespace lock as part of vdev reconfiguration.  The
597  * separate spare lock exists for the status query path, which does not need to
598  * be completely consistent with respect to other vdev configuration changes.
599  */
600 
601 static int
602 spa_spare_compare(const void *a, const void *b)
603 {
604 	return (spa_aux_compare(a, b));
605 }
606 
607 void
608 spa_spare_add(vdev_t *vd)
609 {
610 	mutex_enter(&spa_spare_lock);
611 	ASSERT(!vd->vdev_isspare);
612 	spa_aux_add(vd, &spa_spare_avl);
613 	vd->vdev_isspare = B_TRUE;
614 	mutex_exit(&spa_spare_lock);
615 }
616 
617 void
618 spa_spare_remove(vdev_t *vd)
619 {
620 	mutex_enter(&spa_spare_lock);
621 	ASSERT(vd->vdev_isspare);
622 	spa_aux_remove(vd, &spa_spare_avl);
623 	vd->vdev_isspare = B_FALSE;
624 	mutex_exit(&spa_spare_lock);
625 }
626 
627 boolean_t
628 spa_spare_exists(uint64_t guid, uint64_t *pool)
629 {
630 	boolean_t found;
631 
632 	mutex_enter(&spa_spare_lock);
633 	found = spa_aux_exists(guid, pool, &spa_spare_avl);
634 	mutex_exit(&spa_spare_lock);
635 
636 	return (found);
637 }
638 
639 void
640 spa_spare_activate(vdev_t *vd)
641 {
642 	mutex_enter(&spa_spare_lock);
643 	ASSERT(vd->vdev_isspare);
644 	spa_aux_activate(vd, &spa_spare_avl);
645 	mutex_exit(&spa_spare_lock);
646 }
647 
648 /*
649  * Level 2 ARC devices are tracked globally for the same reasons as spares.
650  * Cache devices currently only support one pool per cache device, and so
651  * for these devices the aux reference count is currently unused beyond 1.
652  */
653 
654 static int
655 spa_l2cache_compare(const void *a, const void *b)
656 {
657 	return (spa_aux_compare(a, b));
658 }
659 
660 void
661 spa_l2cache_add(vdev_t *vd)
662 {
663 	mutex_enter(&spa_l2cache_lock);
664 	ASSERT(!vd->vdev_isl2cache);
665 	spa_aux_add(vd, &spa_l2cache_avl);
666 	vd->vdev_isl2cache = B_TRUE;
667 	mutex_exit(&spa_l2cache_lock);
668 }
669 
670 void
671 spa_l2cache_remove(vdev_t *vd)
672 {
673 	mutex_enter(&spa_l2cache_lock);
674 	ASSERT(vd->vdev_isl2cache);
675 	spa_aux_remove(vd, &spa_l2cache_avl);
676 	vd->vdev_isl2cache = B_FALSE;
677 	mutex_exit(&spa_l2cache_lock);
678 }
679 
680 boolean_t
681 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
682 {
683 	boolean_t found;
684 
685 	mutex_enter(&spa_l2cache_lock);
686 	found = spa_aux_exists(guid, pool, &spa_l2cache_avl);
687 	mutex_exit(&spa_l2cache_lock);
688 
689 	return (found);
690 }
691 
692 void
693 spa_l2cache_activate(vdev_t *vd)
694 {
695 	mutex_enter(&spa_l2cache_lock);
696 	ASSERT(vd->vdev_isl2cache);
697 	spa_aux_activate(vd, &spa_l2cache_avl);
698 	mutex_exit(&spa_l2cache_lock);
699 }
700 
701 void
702 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc)
703 {
704 	vdev_space_update(vd, space, alloc, B_FALSE);
705 }
706 
707 /*
708  * ==========================================================================
709  * SPA vdev locking
710  * ==========================================================================
711  */
712 
713 /*
714  * Lock the given spa_t for the purpose of adding or removing a vdev.
715  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
716  * It returns the next transaction group for the spa_t.
717  */
718 uint64_t
719 spa_vdev_enter(spa_t *spa)
720 {
721 	mutex_enter(&spa_namespace_lock);
722 
723 	/*
724 	 * Suspend scrub activity while we mess with the config.  We must do
725 	 * this after acquiring the namespace lock to avoid a 3-way deadlock
726 	 * with spa_scrub_stop() and the scrub thread.
727 	 */
728 	spa_scrub_suspend(spa);
729 
730 	spa_config_enter(spa, RW_WRITER, spa);
731 
732 	return (spa_last_synced_txg(spa) + 1);
733 }
734 
735 /*
736  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
737  * locking of spa_vdev_enter(), we also want make sure the transactions have
738  * synced to disk, and then update the global configuration cache with the new
739  * information.
740  */
741 int
742 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
743 {
744 	int config_changed = B_FALSE;
745 
746 	ASSERT(txg > spa_last_synced_txg(spa));
747 
748 	/*
749 	 * Reassess the DTLs.
750 	 */
751 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
752 
753 	/*
754 	 * If the config changed, notify the scrub thread that it must restart.
755 	 */
756 	if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) {
757 		config_changed = B_TRUE;
758 		spa_scrub_restart(spa, txg);
759 	}
760 
761 	spa_config_exit(spa, spa);
762 
763 	/*
764 	 * Allow scrubbing to resume.
765 	 */
766 	spa_scrub_resume(spa);
767 
768 	/*
769 	 * Note: this txg_wait_synced() is important because it ensures
770 	 * that there won't be more than one config change per txg.
771 	 * This allows us to use the txg as the generation number.
772 	 */
773 	if (error == 0)
774 		txg_wait_synced(spa->spa_dsl_pool, txg);
775 
776 	if (vd != NULL) {
777 		ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
778 		vdev_free(vd);
779 	}
780 
781 	/*
782 	 * If the config changed, update the config cache.
783 	 */
784 	if (config_changed)
785 		spa_config_sync();
786 
787 	mutex_exit(&spa_namespace_lock);
788 
789 	return (error);
790 }
791 
792 /*
793  * ==========================================================================
794  * Miscellaneous functions
795  * ==========================================================================
796  */
797 
798 /*
799  * Rename a spa_t.
800  */
801 int
802 spa_rename(const char *name, const char *newname)
803 {
804 	spa_t *spa;
805 	int err;
806 
807 	/*
808 	 * Lookup the spa_t and grab the config lock for writing.  We need to
809 	 * actually open the pool so that we can sync out the necessary labels.
810 	 * It's OK to call spa_open() with the namespace lock held because we
811 	 * allow recursive calls for other reasons.
812 	 */
813 	mutex_enter(&spa_namespace_lock);
814 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
815 		mutex_exit(&spa_namespace_lock);
816 		return (err);
817 	}
818 
819 	spa_config_enter(spa, RW_WRITER, FTAG);
820 
821 	avl_remove(&spa_namespace_avl, spa);
822 	spa_strfree(spa->spa_name);
823 	spa->spa_name = spa_strdup(newname);
824 	avl_add(&spa_namespace_avl, spa);
825 
826 	/*
827 	 * Sync all labels to disk with the new names by marking the root vdev
828 	 * dirty and waiting for it to sync.  It will pick up the new pool name
829 	 * during the sync.
830 	 */
831 	vdev_config_dirty(spa->spa_root_vdev);
832 
833 	spa_config_exit(spa, FTAG);
834 
835 	txg_wait_synced(spa->spa_dsl_pool, 0);
836 
837 	/*
838 	 * Sync the updated config cache.
839 	 */
840 	spa_config_sync();
841 
842 	spa_close(spa, FTAG);
843 
844 	mutex_exit(&spa_namespace_lock);
845 
846 	return (0);
847 }
848 
849 
850 /*
851  * Determine whether a pool with given pool_guid exists.  If device_guid is
852  * non-zero, determine whether the pool exists *and* contains a device with the
853  * specified device_guid.
854  */
855 boolean_t
856 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
857 {
858 	spa_t *spa;
859 	avl_tree_t *t = &spa_namespace_avl;
860 
861 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
862 
863 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
864 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
865 			continue;
866 		if (spa->spa_root_vdev == NULL)
867 			continue;
868 		if (spa_guid(spa) == pool_guid) {
869 			if (device_guid == 0)
870 				break;
871 
872 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
873 			    device_guid) != NULL)
874 				break;
875 
876 			/*
877 			 * Check any devices we may be in the process of adding.
878 			 */
879 			if (spa->spa_pending_vdev) {
880 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
881 				    device_guid) != NULL)
882 					break;
883 			}
884 		}
885 	}
886 
887 	return (spa != NULL);
888 }
889 
890 char *
891 spa_strdup(const char *s)
892 {
893 	size_t len;
894 	char *new;
895 
896 	len = strlen(s);
897 	new = kmem_alloc(len + 1, KM_SLEEP);
898 	bcopy(s, new, len);
899 	new[len] = '\0';
900 
901 	return (new);
902 }
903 
904 void
905 spa_strfree(char *s)
906 {
907 	kmem_free(s, strlen(s) + 1);
908 }
909 
910 uint64_t
911 spa_get_random(uint64_t range)
912 {
913 	uint64_t r;
914 
915 	ASSERT(range != 0);
916 
917 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
918 
919 	return (r % range);
920 }
921 
922 void
923 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
924 {
925 	int d;
926 
927 	if (bp == NULL) {
928 		(void) snprintf(buf, len, "<NULL>");
929 		return;
930 	}
931 
932 	if (BP_IS_HOLE(bp)) {
933 		(void) snprintf(buf, len, "<hole>");
934 		return;
935 	}
936 
937 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
938 	    (u_longlong_t)BP_GET_LEVEL(bp),
939 	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
940 	    (u_longlong_t)BP_GET_LSIZE(bp),
941 	    (u_longlong_t)BP_GET_PSIZE(bp));
942 
943 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
944 		const dva_t *dva = &bp->blk_dva[d];
945 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
946 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
947 		    (u_longlong_t)DVA_GET_VDEV(dva),
948 		    (u_longlong_t)DVA_GET_OFFSET(dva),
949 		    (u_longlong_t)DVA_GET_ASIZE(dva));
950 	}
951 
952 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
953 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
954 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
955 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
956 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
957 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
958 	    (u_longlong_t)bp->blk_birth,
959 	    (u_longlong_t)bp->blk_fill,
960 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
961 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
962 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
963 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
964 }
965 
966 void
967 spa_freeze(spa_t *spa)
968 {
969 	uint64_t freeze_txg = 0;
970 
971 	spa_config_enter(spa, RW_WRITER, FTAG);
972 	if (spa->spa_freeze_txg == UINT64_MAX) {
973 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
974 		spa->spa_freeze_txg = freeze_txg;
975 	}
976 	spa_config_exit(spa, FTAG);
977 	if (freeze_txg != 0)
978 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
979 }
980 
981 void
982 zfs_panic_recover(const char *fmt, ...)
983 {
984 	va_list adx;
985 
986 	va_start(adx, fmt);
987 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
988 	va_end(adx);
989 }
990 
991 /*
992  * ==========================================================================
993  * Accessor functions
994  * ==========================================================================
995  */
996 
997 krwlock_t *
998 spa_traverse_rwlock(spa_t *spa)
999 {
1000 	return (&spa->spa_traverse_lock);
1001 }
1002 
1003 int
1004 spa_traverse_wanted(spa_t *spa)
1005 {
1006 	return (spa->spa_traverse_wanted);
1007 }
1008 
1009 dsl_pool_t *
1010 spa_get_dsl(spa_t *spa)
1011 {
1012 	return (spa->spa_dsl_pool);
1013 }
1014 
1015 blkptr_t *
1016 spa_get_rootblkptr(spa_t *spa)
1017 {
1018 	return (&spa->spa_ubsync.ub_rootbp);
1019 }
1020 
1021 void
1022 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1023 {
1024 	spa->spa_uberblock.ub_rootbp = *bp;
1025 }
1026 
1027 void
1028 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1029 {
1030 	if (spa->spa_root == NULL)
1031 		buf[0] = '\0';
1032 	else
1033 		(void) strncpy(buf, spa->spa_root, buflen);
1034 }
1035 
1036 int
1037 spa_sync_pass(spa_t *spa)
1038 {
1039 	return (spa->spa_sync_pass);
1040 }
1041 
1042 char *
1043 spa_name(spa_t *spa)
1044 {
1045 	/*
1046 	 * Accessing the name requires holding either the namespace lock or the
1047 	 * config lock, both of which are required to do a rename.
1048 	 */
1049 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1050 	    spa_config_held(spa, RW_READER));
1051 
1052 	return (spa->spa_name);
1053 }
1054 
1055 uint64_t
1056 spa_guid(spa_t *spa)
1057 {
1058 	/*
1059 	 * If we fail to parse the config during spa_load(), we can go through
1060 	 * the error path (which posts an ereport) and end up here with no root
1061 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1062 	 * this case.
1063 	 */
1064 	if (spa->spa_root_vdev != NULL)
1065 		return (spa->spa_root_vdev->vdev_guid);
1066 	else
1067 		return (spa->spa_load_guid);
1068 }
1069 
1070 uint64_t
1071 spa_last_synced_txg(spa_t *spa)
1072 {
1073 	return (spa->spa_ubsync.ub_txg);
1074 }
1075 
1076 uint64_t
1077 spa_first_txg(spa_t *spa)
1078 {
1079 	return (spa->spa_first_txg);
1080 }
1081 
1082 int
1083 spa_state(spa_t *spa)
1084 {
1085 	return (spa->spa_state);
1086 }
1087 
1088 uint64_t
1089 spa_freeze_txg(spa_t *spa)
1090 {
1091 	return (spa->spa_freeze_txg);
1092 }
1093 
1094 /*
1095  * Return how much space is allocated in the pool (ie. sum of all asize)
1096  */
1097 uint64_t
1098 spa_get_alloc(spa_t *spa)
1099 {
1100 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
1101 }
1102 
1103 /*
1104  * Return how much (raid-z inflated) space there is in the pool.
1105  */
1106 uint64_t
1107 spa_get_space(spa_t *spa)
1108 {
1109 	return (spa->spa_root_vdev->vdev_stat.vs_space);
1110 }
1111 
1112 /*
1113  * Return the amount of raid-z-deflated space in the pool.
1114  */
1115 uint64_t
1116 spa_get_dspace(spa_t *spa)
1117 {
1118 	if (spa->spa_deflate)
1119 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
1120 	else
1121 		return (spa->spa_root_vdev->vdev_stat.vs_space);
1122 }
1123 
1124 /* ARGSUSED */
1125 uint64_t
1126 spa_get_asize(spa_t *spa, uint64_t lsize)
1127 {
1128 	/*
1129 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
1130 	 * case the space requirement is exactly 2x; so just assume that.
1131 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
1132 	 * we have to multiply by a total of 6x.
1133 	 */
1134 	return (lsize * 6);
1135 }
1136 
1137 /*
1138  * Return the failure mode that has been set to this pool. The default
1139  * behavior will be to block all I/Os when a complete failure occurs.
1140  */
1141 uint8_t
1142 spa_get_failmode(spa_t *spa)
1143 {
1144 	return (spa->spa_failmode);
1145 }
1146 
1147 uint64_t
1148 spa_version(spa_t *spa)
1149 {
1150 	return (spa->spa_ubsync.ub_version);
1151 }
1152 
1153 int
1154 spa_max_replication(spa_t *spa)
1155 {
1156 	/*
1157 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1158 	 * handle BPs with more than one DVA allocated.  Set our max
1159 	 * replication level accordingly.
1160 	 */
1161 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1162 		return (1);
1163 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1164 }
1165 
1166 uint64_t
1167 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1168 {
1169 	int sz = 0, i;
1170 
1171 	if (!spa->spa_deflate)
1172 		return (BP_GET_ASIZE(bp));
1173 
1174 	spa_config_enter(spa, RW_READER, FTAG);
1175 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1176 		vdev_t *vd =
1177 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1178 		if (vd)
1179 			sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >>
1180 			    SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1181 	}
1182 	spa_config_exit(spa, FTAG);
1183 	return (sz);
1184 }
1185 
1186 /*
1187  * ==========================================================================
1188  * Initialization and Termination
1189  * ==========================================================================
1190  */
1191 
1192 static int
1193 spa_name_compare(const void *a1, const void *a2)
1194 {
1195 	const spa_t *s1 = a1;
1196 	const spa_t *s2 = a2;
1197 	int s;
1198 
1199 	s = strcmp(s1->spa_name, s2->spa_name);
1200 	if (s > 0)
1201 		return (1);
1202 	if (s < 0)
1203 		return (-1);
1204 	return (0);
1205 }
1206 
1207 int
1208 spa_busy(void)
1209 {
1210 	return (spa_active_count);
1211 }
1212 
1213 void
1214 spa_init(int mode)
1215 {
1216 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1217 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1218 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1219 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1220 
1221 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1222 	    offsetof(spa_t, spa_avl));
1223 
1224 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1225 	    offsetof(spa_aux_t, aux_avl));
1226 
1227 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1228 	    offsetof(spa_aux_t, aux_avl));
1229 
1230 	spa_mode = mode;
1231 
1232 	refcount_init();
1233 	unique_init();
1234 	zio_init();
1235 	dmu_init();
1236 	zil_init();
1237 	vdev_cache_stat_init();
1238 	zfs_prop_init();
1239 	zpool_prop_init();
1240 	spa_config_load();
1241 }
1242 
1243 void
1244 spa_fini(void)
1245 {
1246 	spa_evict_all();
1247 
1248 	vdev_cache_stat_fini();
1249 	zil_fini();
1250 	dmu_fini();
1251 	zio_fini();
1252 	unique_fini();
1253 	refcount_fini();
1254 
1255 	avl_destroy(&spa_namespace_avl);
1256 	avl_destroy(&spa_spare_avl);
1257 	avl_destroy(&spa_l2cache_avl);
1258 
1259 	cv_destroy(&spa_namespace_cv);
1260 	mutex_destroy(&spa_namespace_lock);
1261 	mutex_destroy(&spa_spare_lock);
1262 	mutex_destroy(&spa_l2cache_lock);
1263 }
1264 
1265 /*
1266  * Return whether this pool has slogs. No locking needed.
1267  * It's not a problem if the wrong answer is returned as it's only for
1268  * performance and not correctness
1269  */
1270 boolean_t
1271 spa_has_slogs(spa_t *spa)
1272 {
1273 	return (spa->spa_log_class->mc_rotor != NULL);
1274 }
1275