xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 2b987d42b0ad07d74e39b18a2498709e5195d7e3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright (c) 2017 Datto Inc.
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_initialize.h>
43 #include <sys/metaslab.h>
44 #include <sys/uberblock_impl.h>
45 #include <sys/txg.h>
46 #include <sys/avl.h>
47 #include <sys/unique.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/dsl_dir.h>
50 #include <sys/dsl_prop.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/metaslab_impl.h>
54 #include <sys/arc.h>
55 #include <sys/ddt.h>
56 #include "zfs_prop.h"
57 #include <sys/zfeature.h>
58 
59 /*
60  * SPA locking
61  *
62  * There are four basic locks for managing spa_t structures:
63  *
64  * spa_namespace_lock (global mutex)
65  *
66  *	This lock must be acquired to do any of the following:
67  *
68  *		- Lookup a spa_t by name
69  *		- Add or remove a spa_t from the namespace
70  *		- Increase spa_refcount from non-zero
71  *		- Check if spa_refcount is zero
72  *		- Rename a spa_t
73  *		- add/remove/attach/detach devices
74  *		- Held for the duration of create/destroy/import/export
75  *
76  *	It does not need to handle recursion.  A create or destroy may
77  *	reference objects (files or zvols) in other pools, but by
78  *	definition they must have an existing reference, and will never need
79  *	to lookup a spa_t by name.
80  *
81  * spa_refcount (per-spa refcount_t protected by mutex)
82  *
83  *	This reference count keep track of any active users of the spa_t.  The
84  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
85  *	the refcount is never really 'zero' - opening a pool implicitly keeps
86  *	some references in the DMU.  Internally we check against spa_minref, but
87  *	present the image of a zero/non-zero value to consumers.
88  *
89  * spa_config_lock[] (per-spa array of rwlocks)
90  *
91  *	This protects the spa_t from config changes, and must be held in
92  *	the following circumstances:
93  *
94  *		- RW_READER to perform I/O to the spa
95  *		- RW_WRITER to change the vdev config
96  *
97  * The locking order is fairly straightforward:
98  *
99  *		spa_namespace_lock	->	spa_refcount
100  *
101  *	The namespace lock must be acquired to increase the refcount from 0
102  *	or to check if it is zero.
103  *
104  *		spa_refcount		->	spa_config_lock[]
105  *
106  *	There must be at least one valid reference on the spa_t to acquire
107  *	the config lock.
108  *
109  *		spa_namespace_lock	->	spa_config_lock[]
110  *
111  *	The namespace lock must always be taken before the config lock.
112  *
113  *
114  * The spa_namespace_lock can be acquired directly and is globally visible.
115  *
116  * The namespace is manipulated using the following functions, all of which
117  * require the spa_namespace_lock to be held.
118  *
119  *	spa_lookup()		Lookup a spa_t by name.
120  *
121  *	spa_add()		Create a new spa_t in the namespace.
122  *
123  *	spa_remove()		Remove a spa_t from the namespace.  This also
124  *				frees up any memory associated with the spa_t.
125  *
126  *	spa_next()		Returns the next spa_t in the system, or the
127  *				first if NULL is passed.
128  *
129  *	spa_evict_all()		Shutdown and remove all spa_t structures in
130  *				the system.
131  *
132  *	spa_guid_exists()	Determine whether a pool/device guid exists.
133  *
134  * The spa_refcount is manipulated using the following functions:
135  *
136  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
137  *				called with spa_namespace_lock held if the
138  *				refcount is currently zero.
139  *
140  *	spa_close()		Remove a reference from the spa_t.  This will
141  *				not free the spa_t or remove it from the
142  *				namespace.  No locking is required.
143  *
144  *	spa_refcount_zero()	Returns true if the refcount is currently
145  *				zero.  Must be called with spa_namespace_lock
146  *				held.
147  *
148  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
149  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
150  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
151  *
152  * To read the configuration, it suffices to hold one of these locks as reader.
153  * To modify the configuration, you must hold all locks as writer.  To modify
154  * vdev state without altering the vdev tree's topology (e.g. online/offline),
155  * you must hold SCL_STATE and SCL_ZIO as writer.
156  *
157  * We use these distinct config locks to avoid recursive lock entry.
158  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
159  * block allocations (SCL_ALLOC), which may require reading space maps
160  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
161  *
162  * The spa config locks cannot be normal rwlocks because we need the
163  * ability to hand off ownership.  For example, SCL_ZIO is acquired
164  * by the issuing thread and later released by an interrupt thread.
165  * They do, however, obey the usual write-wanted semantics to prevent
166  * writer (i.e. system administrator) starvation.
167  *
168  * The lock acquisition rules are as follows:
169  *
170  * SCL_CONFIG
171  *	Protects changes to the vdev tree topology, such as vdev
172  *	add/remove/attach/detach.  Protects the dirty config list
173  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
174  *
175  * SCL_STATE
176  *	Protects changes to pool state and vdev state, such as vdev
177  *	online/offline/fault/degrade/clear.  Protects the dirty state list
178  *	(spa_state_dirty_list) and global pool state (spa_state).
179  *
180  * SCL_ALLOC
181  *	Protects changes to metaslab groups and classes.
182  *	Held as reader by metaslab_alloc() and metaslab_claim().
183  *
184  * SCL_ZIO
185  *	Held by bp-level zios (those which have no io_vd upon entry)
186  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
187  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
188  *
189  * SCL_FREE
190  *	Protects changes to metaslab groups and classes.
191  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
192  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
193  *	blocks in zio_done() while another i/o that holds either
194  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
195  *
196  * SCL_VDEV
197  *	Held as reader to prevent changes to the vdev tree during trivial
198  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
199  *	other locks, and lower than all of them, to ensure that it's safe
200  *	to acquire regardless of caller context.
201  *
202  * In addition, the following rules apply:
203  *
204  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
205  *	The lock ordering is SCL_CONFIG > spa_props_lock.
206  *
207  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
208  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
209  *	or zio_write_phys() -- the caller must ensure that the config cannot
210  *	cannot change in the interim, and that the vdev cannot be reopened.
211  *	SCL_STATE as reader suffices for both.
212  *
213  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
214  *
215  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
216  *				for writing.
217  *
218  *	spa_vdev_exit()		Release the config lock, wait for all I/O
219  *				to complete, sync the updated configs to the
220  *				cache, and release the namespace lock.
221  *
222  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
223  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
224  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
225  */
226 
227 static avl_tree_t spa_namespace_avl;
228 kmutex_t spa_namespace_lock;
229 static kcondvar_t spa_namespace_cv;
230 static int spa_active_count;
231 int spa_max_replication_override = SPA_DVAS_PER_BP;
232 
233 static kmutex_t spa_spare_lock;
234 static avl_tree_t spa_spare_avl;
235 static kmutex_t spa_l2cache_lock;
236 static avl_tree_t spa_l2cache_avl;
237 
238 kmem_cache_t *spa_buffer_pool;
239 int spa_mode_global;
240 
241 #ifdef ZFS_DEBUG
242 /*
243  * Everything except dprintf, spa, and indirect_remap is on by default
244  * in debug builds.
245  */
246 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP);
247 #else
248 int zfs_flags = 0;
249 #endif
250 
251 /*
252  * zfs_recover can be set to nonzero to attempt to recover from
253  * otherwise-fatal errors, typically caused by on-disk corruption.  When
254  * set, calls to zfs_panic_recover() will turn into warning messages.
255  * This should only be used as a last resort, as it typically results
256  * in leaked space, or worse.
257  */
258 boolean_t zfs_recover = B_FALSE;
259 
260 /*
261  * If destroy encounters an EIO while reading metadata (e.g. indirect
262  * blocks), space referenced by the missing metadata can not be freed.
263  * Normally this causes the background destroy to become "stalled", as
264  * it is unable to make forward progress.  While in this stalled state,
265  * all remaining space to free from the error-encountering filesystem is
266  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
267  * permanently leak the space from indirect blocks that can not be read,
268  * and continue to free everything else that it can.
269  *
270  * The default, "stalling" behavior is useful if the storage partially
271  * fails (i.e. some but not all i/os fail), and then later recovers.  In
272  * this case, we will be able to continue pool operations while it is
273  * partially failed, and when it recovers, we can continue to free the
274  * space, with no leaks.  However, note that this case is actually
275  * fairly rare.
276  *
277  * Typically pools either (a) fail completely (but perhaps temporarily,
278  * e.g. a top-level vdev going offline), or (b) have localized,
279  * permanent errors (e.g. disk returns the wrong data due to bit flip or
280  * firmware bug).  In case (a), this setting does not matter because the
281  * pool will be suspended and the sync thread will not be able to make
282  * forward progress regardless.  In case (b), because the error is
283  * permanent, the best we can do is leak the minimum amount of space,
284  * which is what setting this flag will do.  Therefore, it is reasonable
285  * for this flag to normally be set, but we chose the more conservative
286  * approach of not setting it, so that there is no possibility of
287  * leaking space in the "partial temporary" failure case.
288  */
289 boolean_t zfs_free_leak_on_eio = B_FALSE;
290 
291 /*
292  * Expiration time in milliseconds. This value has two meanings. First it is
293  * used to determine when the spa_deadman() logic should fire. By default the
294  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
295  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
296  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
297  * in a system panic.
298  */
299 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
300 
301 /*
302  * Check time in milliseconds. This defines the frequency at which we check
303  * for hung I/O.
304  */
305 uint64_t zfs_deadman_checktime_ms = 5000ULL;
306 
307 /*
308  * Override the zfs deadman behavior via /etc/system. By default the
309  * deadman is enabled except on VMware and sparc deployments.
310  */
311 int zfs_deadman_enabled = -1;
312 
313 /*
314  * The worst case is single-sector max-parity RAID-Z blocks, in which
315  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
316  * times the size; so just assume that.  Add to this the fact that
317  * we can have up to 3 DVAs per bp, and one more factor of 2 because
318  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
319  * the worst case is:
320  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
321  */
322 int spa_asize_inflation = 24;
323 
324 /*
325  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
326  * the pool to be consumed.  This ensures that we don't run the pool
327  * completely out of space, due to unaccounted changes (e.g. to the MOS).
328  * It also limits the worst-case time to allocate space.  If we have
329  * less than this amount of free space, most ZPL operations (e.g. write,
330  * create) will return ENOSPC.
331  *
332  * Certain operations (e.g. file removal, most administrative actions) can
333  * use half the slop space.  They will only return ENOSPC if less than half
334  * the slop space is free.  Typically, once the pool has less than the slop
335  * space free, the user will use these operations to free up space in the pool.
336  * These are the operations that call dsl_pool_adjustedsize() with the netfree
337  * argument set to TRUE.
338  *
339  * Operations that are almost guaranteed to free up space in the absence of
340  * a pool checkpoint can use up to three quarters of the slop space
341  * (e.g zfs destroy).
342  *
343  * A very restricted set of operations are always permitted, regardless of
344  * the amount of free space.  These are the operations that call
345  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
346  * increase in the amount of space used, it is possible to run the pool
347  * completely out of space, causing it to be permanently read-only.
348  *
349  * Note that on very small pools, the slop space will be larger than
350  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
351  * but we never allow it to be more than half the pool size.
352  *
353  * See also the comments in zfs_space_check_t.
354  */
355 int spa_slop_shift = 5;
356 uint64_t spa_min_slop = 128 * 1024 * 1024;
357 
358 int spa_allocators = 4;
359 
360 /*PRINTFLIKE2*/
361 void
362 spa_load_failed(spa_t *spa, const char *fmt, ...)
363 {
364 	va_list adx;
365 	char buf[256];
366 
367 	va_start(adx, fmt);
368 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
369 	va_end(adx);
370 
371 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
372 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
373 }
374 
375 /*PRINTFLIKE2*/
376 void
377 spa_load_note(spa_t *spa, const char *fmt, ...)
378 {
379 	va_list adx;
380 	char buf[256];
381 
382 	va_start(adx, fmt);
383 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
384 	va_end(adx);
385 
386 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
387 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
388 }
389 
390 /*
391  * ==========================================================================
392  * SPA config locking
393  * ==========================================================================
394  */
395 static void
396 spa_config_lock_init(spa_t *spa)
397 {
398 	for (int i = 0; i < SCL_LOCKS; i++) {
399 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
400 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
401 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
402 		refcount_create_untracked(&scl->scl_count);
403 		scl->scl_writer = NULL;
404 		scl->scl_write_wanted = 0;
405 	}
406 }
407 
408 static void
409 spa_config_lock_destroy(spa_t *spa)
410 {
411 	for (int i = 0; i < SCL_LOCKS; i++) {
412 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
413 		mutex_destroy(&scl->scl_lock);
414 		cv_destroy(&scl->scl_cv);
415 		refcount_destroy(&scl->scl_count);
416 		ASSERT(scl->scl_writer == NULL);
417 		ASSERT(scl->scl_write_wanted == 0);
418 	}
419 }
420 
421 int
422 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
423 {
424 	for (int i = 0; i < SCL_LOCKS; i++) {
425 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
426 		if (!(locks & (1 << i)))
427 			continue;
428 		mutex_enter(&scl->scl_lock);
429 		if (rw == RW_READER) {
430 			if (scl->scl_writer || scl->scl_write_wanted) {
431 				mutex_exit(&scl->scl_lock);
432 				spa_config_exit(spa, locks & ((1 << i) - 1),
433 				    tag);
434 				return (0);
435 			}
436 		} else {
437 			ASSERT(scl->scl_writer != curthread);
438 			if (!refcount_is_zero(&scl->scl_count)) {
439 				mutex_exit(&scl->scl_lock);
440 				spa_config_exit(spa, locks & ((1 << i) - 1),
441 				    tag);
442 				return (0);
443 			}
444 			scl->scl_writer = curthread;
445 		}
446 		(void) refcount_add(&scl->scl_count, tag);
447 		mutex_exit(&scl->scl_lock);
448 	}
449 	return (1);
450 }
451 
452 void
453 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
454 {
455 	int wlocks_held = 0;
456 
457 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
458 
459 	for (int i = 0; i < SCL_LOCKS; i++) {
460 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
461 		if (scl->scl_writer == curthread)
462 			wlocks_held |= (1 << i);
463 		if (!(locks & (1 << i)))
464 			continue;
465 		mutex_enter(&scl->scl_lock);
466 		if (rw == RW_READER) {
467 			while (scl->scl_writer || scl->scl_write_wanted) {
468 				cv_wait(&scl->scl_cv, &scl->scl_lock);
469 			}
470 		} else {
471 			ASSERT(scl->scl_writer != curthread);
472 			while (!refcount_is_zero(&scl->scl_count)) {
473 				scl->scl_write_wanted++;
474 				cv_wait(&scl->scl_cv, &scl->scl_lock);
475 				scl->scl_write_wanted--;
476 			}
477 			scl->scl_writer = curthread;
478 		}
479 		(void) refcount_add(&scl->scl_count, tag);
480 		mutex_exit(&scl->scl_lock);
481 	}
482 	ASSERT3U(wlocks_held, <=, locks);
483 }
484 
485 void
486 spa_config_exit(spa_t *spa, int locks, void *tag)
487 {
488 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
489 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
490 		if (!(locks & (1 << i)))
491 			continue;
492 		mutex_enter(&scl->scl_lock);
493 		ASSERT(!refcount_is_zero(&scl->scl_count));
494 		if (refcount_remove(&scl->scl_count, tag) == 0) {
495 			ASSERT(scl->scl_writer == NULL ||
496 			    scl->scl_writer == curthread);
497 			scl->scl_writer = NULL;	/* OK in either case */
498 			cv_broadcast(&scl->scl_cv);
499 		}
500 		mutex_exit(&scl->scl_lock);
501 	}
502 }
503 
504 int
505 spa_config_held(spa_t *spa, int locks, krw_t rw)
506 {
507 	int locks_held = 0;
508 
509 	for (int i = 0; i < SCL_LOCKS; i++) {
510 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
511 		if (!(locks & (1 << i)))
512 			continue;
513 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
514 		    (rw == RW_WRITER && scl->scl_writer == curthread))
515 			locks_held |= 1 << i;
516 	}
517 
518 	return (locks_held);
519 }
520 
521 /*
522  * ==========================================================================
523  * SPA namespace functions
524  * ==========================================================================
525  */
526 
527 /*
528  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
529  * Returns NULL if no matching spa_t is found.
530  */
531 spa_t *
532 spa_lookup(const char *name)
533 {
534 	static spa_t search;	/* spa_t is large; don't allocate on stack */
535 	spa_t *spa;
536 	avl_index_t where;
537 	char *cp;
538 
539 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
540 
541 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
542 
543 	/*
544 	 * If it's a full dataset name, figure out the pool name and
545 	 * just use that.
546 	 */
547 	cp = strpbrk(search.spa_name, "/@#");
548 	if (cp != NULL)
549 		*cp = '\0';
550 
551 	spa = avl_find(&spa_namespace_avl, &search, &where);
552 
553 	return (spa);
554 }
555 
556 /*
557  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
558  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
559  * looking for potentially hung I/Os.
560  */
561 void
562 spa_deadman(void *arg)
563 {
564 	spa_t *spa = arg;
565 
566 	/*
567 	 * Disable the deadman timer if the pool is suspended.
568 	 */
569 	if (spa_suspended(spa)) {
570 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
571 		return;
572 	}
573 
574 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
575 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
576 	    ++spa->spa_deadman_calls);
577 	if (zfs_deadman_enabled)
578 		vdev_deadman(spa->spa_root_vdev);
579 }
580 
581 /*
582  * Create an uninitialized spa_t with the given name.  Requires
583  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
584  * exist by calling spa_lookup() first.
585  */
586 spa_t *
587 spa_add(const char *name, nvlist_t *config, const char *altroot)
588 {
589 	spa_t *spa;
590 	spa_config_dirent_t *dp;
591 	cyc_handler_t hdlr;
592 	cyc_time_t when;
593 
594 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
595 
596 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
597 
598 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
599 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
600 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
601 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
602 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
603 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
604 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
605 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
606 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
607 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
608 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
609 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
610 
611 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
612 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
613 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
614 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
615 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
616 
617 	for (int t = 0; t < TXG_SIZE; t++)
618 		bplist_create(&spa->spa_free_bplist[t]);
619 
620 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
621 	spa->spa_state = POOL_STATE_UNINITIALIZED;
622 	spa->spa_freeze_txg = UINT64_MAX;
623 	spa->spa_final_txg = UINT64_MAX;
624 	spa->spa_load_max_txg = UINT64_MAX;
625 	spa->spa_proc = &p0;
626 	spa->spa_proc_state = SPA_PROC_NONE;
627 	spa->spa_trust_config = B_TRUE;
628 
629 	hdlr.cyh_func = spa_deadman;
630 	hdlr.cyh_arg = spa;
631 	hdlr.cyh_level = CY_LOW_LEVEL;
632 
633 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
634 
635 	/*
636 	 * This determines how often we need to check for hung I/Os after
637 	 * the cyclic has already fired. Since checking for hung I/Os is
638 	 * an expensive operation we don't want to check too frequently.
639 	 * Instead wait for 5 seconds before checking again.
640 	 */
641 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
642 	when.cyt_when = CY_INFINITY;
643 	mutex_enter(&cpu_lock);
644 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
645 	mutex_exit(&cpu_lock);
646 
647 	refcount_create(&spa->spa_refcount);
648 	spa_config_lock_init(spa);
649 
650 	avl_add(&spa_namespace_avl, spa);
651 
652 	/*
653 	 * Set the alternate root, if there is one.
654 	 */
655 	if (altroot) {
656 		spa->spa_root = spa_strdup(altroot);
657 		spa_active_count++;
658 	}
659 
660 	spa->spa_alloc_count = spa_allocators;
661 	spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
662 	    sizeof (kmutex_t), KM_SLEEP);
663 	spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
664 	    sizeof (avl_tree_t), KM_SLEEP);
665 	for (int i = 0; i < spa->spa_alloc_count; i++) {
666 		mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
667 		avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
668 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
669 	}
670 
671 	/*
672 	 * Every pool starts with the default cachefile
673 	 */
674 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
675 	    offsetof(spa_config_dirent_t, scd_link));
676 
677 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
678 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
679 	list_insert_head(&spa->spa_config_list, dp);
680 
681 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
682 	    KM_SLEEP) == 0);
683 
684 	if (config != NULL) {
685 		nvlist_t *features;
686 
687 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
688 		    &features) == 0) {
689 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
690 			    0) == 0);
691 		}
692 
693 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
694 	}
695 
696 	if (spa->spa_label_features == NULL) {
697 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
698 		    KM_SLEEP) == 0);
699 	}
700 
701 	spa->spa_iokstat = kstat_create("zfs", 0, name,
702 	    "disk", KSTAT_TYPE_IO, 1, 0);
703 	if (spa->spa_iokstat) {
704 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
705 		kstat_install(spa->spa_iokstat);
706 	}
707 
708 	spa->spa_min_ashift = INT_MAX;
709 	spa->spa_max_ashift = 0;
710 
711 	/*
712 	 * As a pool is being created, treat all features as disabled by
713 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
714 	 * refcount cache.
715 	 */
716 	for (int i = 0; i < SPA_FEATURES; i++) {
717 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
718 	}
719 
720 	return (spa);
721 }
722 
723 /*
724  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
725  * spa_namespace_lock.  This is called only after the spa_t has been closed and
726  * deactivated.
727  */
728 void
729 spa_remove(spa_t *spa)
730 {
731 	spa_config_dirent_t *dp;
732 
733 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
734 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
735 	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
736 
737 	nvlist_free(spa->spa_config_splitting);
738 
739 	avl_remove(&spa_namespace_avl, spa);
740 	cv_broadcast(&spa_namespace_cv);
741 
742 	if (spa->spa_root) {
743 		spa_strfree(spa->spa_root);
744 		spa_active_count--;
745 	}
746 
747 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
748 		list_remove(&spa->spa_config_list, dp);
749 		if (dp->scd_path != NULL)
750 			spa_strfree(dp->scd_path);
751 		kmem_free(dp, sizeof (spa_config_dirent_t));
752 	}
753 
754 	for (int i = 0; i < spa->spa_alloc_count; i++) {
755 		avl_destroy(&spa->spa_alloc_trees[i]);
756 		mutex_destroy(&spa->spa_alloc_locks[i]);
757 	}
758 	kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
759 	    sizeof (kmutex_t));
760 	kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
761 	    sizeof (avl_tree_t));
762 
763 	list_destroy(&spa->spa_config_list);
764 
765 	nvlist_free(spa->spa_label_features);
766 	nvlist_free(spa->spa_load_info);
767 	spa_config_set(spa, NULL);
768 
769 	mutex_enter(&cpu_lock);
770 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
771 		cyclic_remove(spa->spa_deadman_cycid);
772 	mutex_exit(&cpu_lock);
773 	spa->spa_deadman_cycid = CYCLIC_NONE;
774 
775 	refcount_destroy(&spa->spa_refcount);
776 
777 	spa_config_lock_destroy(spa);
778 
779 	kstat_delete(spa->spa_iokstat);
780 	spa->spa_iokstat = NULL;
781 
782 	for (int t = 0; t < TXG_SIZE; t++)
783 		bplist_destroy(&spa->spa_free_bplist[t]);
784 
785 	zio_checksum_templates_free(spa);
786 
787 	cv_destroy(&spa->spa_async_cv);
788 	cv_destroy(&spa->spa_evicting_os_cv);
789 	cv_destroy(&spa->spa_proc_cv);
790 	cv_destroy(&spa->spa_scrub_io_cv);
791 	cv_destroy(&spa->spa_suspend_cv);
792 
793 	mutex_destroy(&spa->spa_async_lock);
794 	mutex_destroy(&spa->spa_errlist_lock);
795 	mutex_destroy(&spa->spa_errlog_lock);
796 	mutex_destroy(&spa->spa_evicting_os_lock);
797 	mutex_destroy(&spa->spa_history_lock);
798 	mutex_destroy(&spa->spa_proc_lock);
799 	mutex_destroy(&spa->spa_props_lock);
800 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
801 	mutex_destroy(&spa->spa_scrub_lock);
802 	mutex_destroy(&spa->spa_suspend_lock);
803 	mutex_destroy(&spa->spa_vdev_top_lock);
804 	mutex_destroy(&spa->spa_iokstat_lock);
805 
806 	kmem_free(spa, sizeof (spa_t));
807 }
808 
809 /*
810  * Given a pool, return the next pool in the namespace, or NULL if there is
811  * none.  If 'prev' is NULL, return the first pool.
812  */
813 spa_t *
814 spa_next(spa_t *prev)
815 {
816 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
817 
818 	if (prev)
819 		return (AVL_NEXT(&spa_namespace_avl, prev));
820 	else
821 		return (avl_first(&spa_namespace_avl));
822 }
823 
824 /*
825  * ==========================================================================
826  * SPA refcount functions
827  * ==========================================================================
828  */
829 
830 /*
831  * Add a reference to the given spa_t.  Must have at least one reference, or
832  * have the namespace lock held.
833  */
834 void
835 spa_open_ref(spa_t *spa, void *tag)
836 {
837 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
838 	    MUTEX_HELD(&spa_namespace_lock));
839 	(void) refcount_add(&spa->spa_refcount, tag);
840 }
841 
842 /*
843  * Remove a reference to the given spa_t.  Must have at least one reference, or
844  * have the namespace lock held.
845  */
846 void
847 spa_close(spa_t *spa, void *tag)
848 {
849 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
850 	    MUTEX_HELD(&spa_namespace_lock));
851 	(void) refcount_remove(&spa->spa_refcount, tag);
852 }
853 
854 /*
855  * Remove a reference to the given spa_t held by a dsl dir that is
856  * being asynchronously released.  Async releases occur from a taskq
857  * performing eviction of dsl datasets and dirs.  The namespace lock
858  * isn't held and the hold by the object being evicted may contribute to
859  * spa_minref (e.g. dataset or directory released during pool export),
860  * so the asserts in spa_close() do not apply.
861  */
862 void
863 spa_async_close(spa_t *spa, void *tag)
864 {
865 	(void) refcount_remove(&spa->spa_refcount, tag);
866 }
867 
868 /*
869  * Check to see if the spa refcount is zero.  Must be called with
870  * spa_namespace_lock held.  We really compare against spa_minref, which is the
871  * number of references acquired when opening a pool
872  */
873 boolean_t
874 spa_refcount_zero(spa_t *spa)
875 {
876 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
877 
878 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
879 }
880 
881 /*
882  * ==========================================================================
883  * SPA spare and l2cache tracking
884  * ==========================================================================
885  */
886 
887 /*
888  * Hot spares and cache devices are tracked using the same code below,
889  * for 'auxiliary' devices.
890  */
891 
892 typedef struct spa_aux {
893 	uint64_t	aux_guid;
894 	uint64_t	aux_pool;
895 	avl_node_t	aux_avl;
896 	int		aux_count;
897 } spa_aux_t;
898 
899 static int
900 spa_aux_compare(const void *a, const void *b)
901 {
902 	const spa_aux_t *sa = a;
903 	const spa_aux_t *sb = b;
904 
905 	if (sa->aux_guid < sb->aux_guid)
906 		return (-1);
907 	else if (sa->aux_guid > sb->aux_guid)
908 		return (1);
909 	else
910 		return (0);
911 }
912 
913 void
914 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
915 {
916 	avl_index_t where;
917 	spa_aux_t search;
918 	spa_aux_t *aux;
919 
920 	search.aux_guid = vd->vdev_guid;
921 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
922 		aux->aux_count++;
923 	} else {
924 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
925 		aux->aux_guid = vd->vdev_guid;
926 		aux->aux_count = 1;
927 		avl_insert(avl, aux, where);
928 	}
929 }
930 
931 void
932 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
933 {
934 	spa_aux_t search;
935 	spa_aux_t *aux;
936 	avl_index_t where;
937 
938 	search.aux_guid = vd->vdev_guid;
939 	aux = avl_find(avl, &search, &where);
940 
941 	ASSERT(aux != NULL);
942 
943 	if (--aux->aux_count == 0) {
944 		avl_remove(avl, aux);
945 		kmem_free(aux, sizeof (spa_aux_t));
946 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
947 		aux->aux_pool = 0ULL;
948 	}
949 }
950 
951 boolean_t
952 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
953 {
954 	spa_aux_t search, *found;
955 
956 	search.aux_guid = guid;
957 	found = avl_find(avl, &search, NULL);
958 
959 	if (pool) {
960 		if (found)
961 			*pool = found->aux_pool;
962 		else
963 			*pool = 0ULL;
964 	}
965 
966 	if (refcnt) {
967 		if (found)
968 			*refcnt = found->aux_count;
969 		else
970 			*refcnt = 0;
971 	}
972 
973 	return (found != NULL);
974 }
975 
976 void
977 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
978 {
979 	spa_aux_t search, *found;
980 	avl_index_t where;
981 
982 	search.aux_guid = vd->vdev_guid;
983 	found = avl_find(avl, &search, &where);
984 	ASSERT(found != NULL);
985 	ASSERT(found->aux_pool == 0ULL);
986 
987 	found->aux_pool = spa_guid(vd->vdev_spa);
988 }
989 
990 /*
991  * Spares are tracked globally due to the following constraints:
992  *
993  * 	- A spare may be part of multiple pools.
994  * 	- A spare may be added to a pool even if it's actively in use within
995  *	  another pool.
996  * 	- A spare in use in any pool can only be the source of a replacement if
997  *	  the target is a spare in the same pool.
998  *
999  * We keep track of all spares on the system through the use of a reference
1000  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1001  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1002  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1003  * inactive).  When a spare is made active (used to replace a device in the
1004  * pool), we also keep track of which pool its been made a part of.
1005  *
1006  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1007  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1008  * separate spare lock exists for the status query path, which does not need to
1009  * be completely consistent with respect to other vdev configuration changes.
1010  */
1011 
1012 static int
1013 spa_spare_compare(const void *a, const void *b)
1014 {
1015 	return (spa_aux_compare(a, b));
1016 }
1017 
1018 void
1019 spa_spare_add(vdev_t *vd)
1020 {
1021 	mutex_enter(&spa_spare_lock);
1022 	ASSERT(!vd->vdev_isspare);
1023 	spa_aux_add(vd, &spa_spare_avl);
1024 	vd->vdev_isspare = B_TRUE;
1025 	mutex_exit(&spa_spare_lock);
1026 }
1027 
1028 void
1029 spa_spare_remove(vdev_t *vd)
1030 {
1031 	mutex_enter(&spa_spare_lock);
1032 	ASSERT(vd->vdev_isspare);
1033 	spa_aux_remove(vd, &spa_spare_avl);
1034 	vd->vdev_isspare = B_FALSE;
1035 	mutex_exit(&spa_spare_lock);
1036 }
1037 
1038 boolean_t
1039 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1040 {
1041 	boolean_t found;
1042 
1043 	mutex_enter(&spa_spare_lock);
1044 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1045 	mutex_exit(&spa_spare_lock);
1046 
1047 	return (found);
1048 }
1049 
1050 void
1051 spa_spare_activate(vdev_t *vd)
1052 {
1053 	mutex_enter(&spa_spare_lock);
1054 	ASSERT(vd->vdev_isspare);
1055 	spa_aux_activate(vd, &spa_spare_avl);
1056 	mutex_exit(&spa_spare_lock);
1057 }
1058 
1059 /*
1060  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1061  * Cache devices currently only support one pool per cache device, and so
1062  * for these devices the aux reference count is currently unused beyond 1.
1063  */
1064 
1065 static int
1066 spa_l2cache_compare(const void *a, const void *b)
1067 {
1068 	return (spa_aux_compare(a, b));
1069 }
1070 
1071 void
1072 spa_l2cache_add(vdev_t *vd)
1073 {
1074 	mutex_enter(&spa_l2cache_lock);
1075 	ASSERT(!vd->vdev_isl2cache);
1076 	spa_aux_add(vd, &spa_l2cache_avl);
1077 	vd->vdev_isl2cache = B_TRUE;
1078 	mutex_exit(&spa_l2cache_lock);
1079 }
1080 
1081 void
1082 spa_l2cache_remove(vdev_t *vd)
1083 {
1084 	mutex_enter(&spa_l2cache_lock);
1085 	ASSERT(vd->vdev_isl2cache);
1086 	spa_aux_remove(vd, &spa_l2cache_avl);
1087 	vd->vdev_isl2cache = B_FALSE;
1088 	mutex_exit(&spa_l2cache_lock);
1089 }
1090 
1091 boolean_t
1092 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1093 {
1094 	boolean_t found;
1095 
1096 	mutex_enter(&spa_l2cache_lock);
1097 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1098 	mutex_exit(&spa_l2cache_lock);
1099 
1100 	return (found);
1101 }
1102 
1103 void
1104 spa_l2cache_activate(vdev_t *vd)
1105 {
1106 	mutex_enter(&spa_l2cache_lock);
1107 	ASSERT(vd->vdev_isl2cache);
1108 	spa_aux_activate(vd, &spa_l2cache_avl);
1109 	mutex_exit(&spa_l2cache_lock);
1110 }
1111 
1112 /*
1113  * ==========================================================================
1114  * SPA vdev locking
1115  * ==========================================================================
1116  */
1117 
1118 /*
1119  * Lock the given spa_t for the purpose of adding or removing a vdev.
1120  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1121  * It returns the next transaction group for the spa_t.
1122  */
1123 uint64_t
1124 spa_vdev_enter(spa_t *spa)
1125 {
1126 	mutex_enter(&spa->spa_vdev_top_lock);
1127 	mutex_enter(&spa_namespace_lock);
1128 	return (spa_vdev_config_enter(spa));
1129 }
1130 
1131 /*
1132  * Internal implementation for spa_vdev_enter().  Used when a vdev
1133  * operation requires multiple syncs (i.e. removing a device) while
1134  * keeping the spa_namespace_lock held.
1135  */
1136 uint64_t
1137 spa_vdev_config_enter(spa_t *spa)
1138 {
1139 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1140 
1141 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1142 
1143 	return (spa_last_synced_txg(spa) + 1);
1144 }
1145 
1146 /*
1147  * Used in combination with spa_vdev_config_enter() to allow the syncing
1148  * of multiple transactions without releasing the spa_namespace_lock.
1149  */
1150 void
1151 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1152 {
1153 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1154 
1155 	int config_changed = B_FALSE;
1156 
1157 	ASSERT(txg > spa_last_synced_txg(spa));
1158 
1159 	spa->spa_pending_vdev = NULL;
1160 
1161 	/*
1162 	 * Reassess the DTLs.
1163 	 */
1164 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1165 
1166 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1167 		config_changed = B_TRUE;
1168 		spa->spa_config_generation++;
1169 	}
1170 
1171 	/*
1172 	 * Verify the metaslab classes.
1173 	 */
1174 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1175 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1176 
1177 	spa_config_exit(spa, SCL_ALL, spa);
1178 
1179 	/*
1180 	 * Panic the system if the specified tag requires it.  This
1181 	 * is useful for ensuring that configurations are updated
1182 	 * transactionally.
1183 	 */
1184 	if (zio_injection_enabled)
1185 		zio_handle_panic_injection(spa, tag, 0);
1186 
1187 	/*
1188 	 * Note: this txg_wait_synced() is important because it ensures
1189 	 * that there won't be more than one config change per txg.
1190 	 * This allows us to use the txg as the generation number.
1191 	 */
1192 	if (error == 0)
1193 		txg_wait_synced(spa->spa_dsl_pool, txg);
1194 
1195 	if (vd != NULL) {
1196 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1197 		if (vd->vdev_ops->vdev_op_leaf) {
1198 			mutex_enter(&vd->vdev_initialize_lock);
1199 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED);
1200 			mutex_exit(&vd->vdev_initialize_lock);
1201 		}
1202 
1203 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1204 		vdev_free(vd);
1205 		spa_config_exit(spa, SCL_ALL, spa);
1206 	}
1207 
1208 	/*
1209 	 * If the config changed, update the config cache.
1210 	 */
1211 	if (config_changed)
1212 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1213 }
1214 
1215 /*
1216  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1217  * locking of spa_vdev_enter(), we also want make sure the transactions have
1218  * synced to disk, and then update the global configuration cache with the new
1219  * information.
1220  */
1221 int
1222 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1223 {
1224 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1225 	mutex_exit(&spa_namespace_lock);
1226 	mutex_exit(&spa->spa_vdev_top_lock);
1227 
1228 	return (error);
1229 }
1230 
1231 /*
1232  * Lock the given spa_t for the purpose of changing vdev state.
1233  */
1234 void
1235 spa_vdev_state_enter(spa_t *spa, int oplocks)
1236 {
1237 	int locks = SCL_STATE_ALL | oplocks;
1238 
1239 	/*
1240 	 * Root pools may need to read of the underlying devfs filesystem
1241 	 * when opening up a vdev.  Unfortunately if we're holding the
1242 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1243 	 * the read from the root filesystem.  Instead we "prefetch"
1244 	 * the associated vnodes that we need prior to opening the
1245 	 * underlying devices and cache them so that we can prevent
1246 	 * any I/O when we are doing the actual open.
1247 	 */
1248 	if (spa_is_root(spa)) {
1249 		int low = locks & ~(SCL_ZIO - 1);
1250 		int high = locks & ~low;
1251 
1252 		spa_config_enter(spa, high, spa, RW_WRITER);
1253 		vdev_hold(spa->spa_root_vdev);
1254 		spa_config_enter(spa, low, spa, RW_WRITER);
1255 	} else {
1256 		spa_config_enter(spa, locks, spa, RW_WRITER);
1257 	}
1258 	spa->spa_vdev_locks = locks;
1259 }
1260 
1261 int
1262 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1263 {
1264 	boolean_t config_changed = B_FALSE;
1265 
1266 	if (vd != NULL || error == 0)
1267 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1268 		    0, 0, B_FALSE);
1269 
1270 	if (vd != NULL) {
1271 		vdev_state_dirty(vd->vdev_top);
1272 		config_changed = B_TRUE;
1273 		spa->spa_config_generation++;
1274 	}
1275 
1276 	if (spa_is_root(spa))
1277 		vdev_rele(spa->spa_root_vdev);
1278 
1279 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1280 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1281 
1282 	/*
1283 	 * If anything changed, wait for it to sync.  This ensures that,
1284 	 * from the system administrator's perspective, zpool(1M) commands
1285 	 * are synchronous.  This is important for things like zpool offline:
1286 	 * when the command completes, you expect no further I/O from ZFS.
1287 	 */
1288 	if (vd != NULL)
1289 		txg_wait_synced(spa->spa_dsl_pool, 0);
1290 
1291 	/*
1292 	 * If the config changed, update the config cache.
1293 	 */
1294 	if (config_changed) {
1295 		mutex_enter(&spa_namespace_lock);
1296 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1297 		mutex_exit(&spa_namespace_lock);
1298 	}
1299 
1300 	return (error);
1301 }
1302 
1303 /*
1304  * ==========================================================================
1305  * Miscellaneous functions
1306  * ==========================================================================
1307  */
1308 
1309 void
1310 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1311 {
1312 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1313 		fnvlist_add_boolean(spa->spa_label_features, feature);
1314 		/*
1315 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1316 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1317 		 * Thankfully, in this case we don't need to dirty the config
1318 		 * because it will be written out anyway when we finish
1319 		 * creating the pool.
1320 		 */
1321 		if (tx->tx_txg != TXG_INITIAL)
1322 			vdev_config_dirty(spa->spa_root_vdev);
1323 	}
1324 }
1325 
1326 void
1327 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1328 {
1329 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1330 		vdev_config_dirty(spa->spa_root_vdev);
1331 }
1332 
1333 /*
1334  * Return the spa_t associated with given pool_guid, if it exists.  If
1335  * device_guid is non-zero, determine whether the pool exists *and* contains
1336  * a device with the specified device_guid.
1337  */
1338 spa_t *
1339 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1340 {
1341 	spa_t *spa;
1342 	avl_tree_t *t = &spa_namespace_avl;
1343 
1344 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1345 
1346 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1347 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1348 			continue;
1349 		if (spa->spa_root_vdev == NULL)
1350 			continue;
1351 		if (spa_guid(spa) == pool_guid) {
1352 			if (device_guid == 0)
1353 				break;
1354 
1355 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1356 			    device_guid) != NULL)
1357 				break;
1358 
1359 			/*
1360 			 * Check any devices we may be in the process of adding.
1361 			 */
1362 			if (spa->spa_pending_vdev) {
1363 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1364 				    device_guid) != NULL)
1365 					break;
1366 			}
1367 		}
1368 	}
1369 
1370 	return (spa);
1371 }
1372 
1373 /*
1374  * Determine whether a pool with the given pool_guid exists.
1375  */
1376 boolean_t
1377 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1378 {
1379 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1380 }
1381 
1382 char *
1383 spa_strdup(const char *s)
1384 {
1385 	size_t len;
1386 	char *new;
1387 
1388 	len = strlen(s);
1389 	new = kmem_alloc(len + 1, KM_SLEEP);
1390 	bcopy(s, new, len);
1391 	new[len] = '\0';
1392 
1393 	return (new);
1394 }
1395 
1396 void
1397 spa_strfree(char *s)
1398 {
1399 	kmem_free(s, strlen(s) + 1);
1400 }
1401 
1402 uint64_t
1403 spa_get_random(uint64_t range)
1404 {
1405 	uint64_t r;
1406 
1407 	ASSERT(range != 0);
1408 
1409 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1410 
1411 	return (r % range);
1412 }
1413 
1414 uint64_t
1415 spa_generate_guid(spa_t *spa)
1416 {
1417 	uint64_t guid = spa_get_random(-1ULL);
1418 
1419 	if (spa != NULL) {
1420 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1421 			guid = spa_get_random(-1ULL);
1422 	} else {
1423 		while (guid == 0 || spa_guid_exists(guid, 0))
1424 			guid = spa_get_random(-1ULL);
1425 	}
1426 
1427 	return (guid);
1428 }
1429 
1430 void
1431 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1432 {
1433 	char type[256];
1434 	char *checksum = NULL;
1435 	char *compress = NULL;
1436 
1437 	if (bp != NULL) {
1438 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1439 			dmu_object_byteswap_t bswap =
1440 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1441 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1442 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1443 			    "metadata" : "data",
1444 			    dmu_ot_byteswap[bswap].ob_name);
1445 		} else {
1446 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1447 			    sizeof (type));
1448 		}
1449 		if (!BP_IS_EMBEDDED(bp)) {
1450 			checksum =
1451 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1452 		}
1453 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1454 	}
1455 
1456 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1457 	    compress);
1458 }
1459 
1460 void
1461 spa_freeze(spa_t *spa)
1462 {
1463 	uint64_t freeze_txg = 0;
1464 
1465 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1466 	if (spa->spa_freeze_txg == UINT64_MAX) {
1467 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1468 		spa->spa_freeze_txg = freeze_txg;
1469 	}
1470 	spa_config_exit(spa, SCL_ALL, FTAG);
1471 	if (freeze_txg != 0)
1472 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1473 }
1474 
1475 void
1476 zfs_panic_recover(const char *fmt, ...)
1477 {
1478 	va_list adx;
1479 
1480 	va_start(adx, fmt);
1481 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1482 	va_end(adx);
1483 }
1484 
1485 /*
1486  * This is a stripped-down version of strtoull, suitable only for converting
1487  * lowercase hexadecimal numbers that don't overflow.
1488  */
1489 uint64_t
1490 zfs_strtonum(const char *str, char **nptr)
1491 {
1492 	uint64_t val = 0;
1493 	char c;
1494 	int digit;
1495 
1496 	while ((c = *str) != '\0') {
1497 		if (c >= '0' && c <= '9')
1498 			digit = c - '0';
1499 		else if (c >= 'a' && c <= 'f')
1500 			digit = 10 + c - 'a';
1501 		else
1502 			break;
1503 
1504 		val *= 16;
1505 		val += digit;
1506 
1507 		str++;
1508 	}
1509 
1510 	if (nptr)
1511 		*nptr = (char *)str;
1512 
1513 	return (val);
1514 }
1515 
1516 /*
1517  * ==========================================================================
1518  * Accessor functions
1519  * ==========================================================================
1520  */
1521 
1522 boolean_t
1523 spa_shutting_down(spa_t *spa)
1524 {
1525 	return (spa->spa_async_suspended);
1526 }
1527 
1528 dsl_pool_t *
1529 spa_get_dsl(spa_t *spa)
1530 {
1531 	return (spa->spa_dsl_pool);
1532 }
1533 
1534 boolean_t
1535 spa_is_initializing(spa_t *spa)
1536 {
1537 	return (spa->spa_is_initializing);
1538 }
1539 
1540 boolean_t
1541 spa_indirect_vdevs_loaded(spa_t *spa)
1542 {
1543 	return (spa->spa_indirect_vdevs_loaded);
1544 }
1545 
1546 blkptr_t *
1547 spa_get_rootblkptr(spa_t *spa)
1548 {
1549 	return (&spa->spa_ubsync.ub_rootbp);
1550 }
1551 
1552 void
1553 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1554 {
1555 	spa->spa_uberblock.ub_rootbp = *bp;
1556 }
1557 
1558 void
1559 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1560 {
1561 	if (spa->spa_root == NULL)
1562 		buf[0] = '\0';
1563 	else
1564 		(void) strncpy(buf, spa->spa_root, buflen);
1565 }
1566 
1567 int
1568 spa_sync_pass(spa_t *spa)
1569 {
1570 	return (spa->spa_sync_pass);
1571 }
1572 
1573 char *
1574 spa_name(spa_t *spa)
1575 {
1576 	return (spa->spa_name);
1577 }
1578 
1579 uint64_t
1580 spa_guid(spa_t *spa)
1581 {
1582 	dsl_pool_t *dp = spa_get_dsl(spa);
1583 	uint64_t guid;
1584 
1585 	/*
1586 	 * If we fail to parse the config during spa_load(), we can go through
1587 	 * the error path (which posts an ereport) and end up here with no root
1588 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1589 	 * this case.
1590 	 */
1591 	if (spa->spa_root_vdev == NULL)
1592 		return (spa->spa_config_guid);
1593 
1594 	guid = spa->spa_last_synced_guid != 0 ?
1595 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1596 
1597 	/*
1598 	 * Return the most recently synced out guid unless we're
1599 	 * in syncing context.
1600 	 */
1601 	if (dp && dsl_pool_sync_context(dp))
1602 		return (spa->spa_root_vdev->vdev_guid);
1603 	else
1604 		return (guid);
1605 }
1606 
1607 uint64_t
1608 spa_load_guid(spa_t *spa)
1609 {
1610 	/*
1611 	 * This is a GUID that exists solely as a reference for the
1612 	 * purposes of the arc.  It is generated at load time, and
1613 	 * is never written to persistent storage.
1614 	 */
1615 	return (spa->spa_load_guid);
1616 }
1617 
1618 uint64_t
1619 spa_last_synced_txg(spa_t *spa)
1620 {
1621 	return (spa->spa_ubsync.ub_txg);
1622 }
1623 
1624 uint64_t
1625 spa_first_txg(spa_t *spa)
1626 {
1627 	return (spa->spa_first_txg);
1628 }
1629 
1630 uint64_t
1631 spa_syncing_txg(spa_t *spa)
1632 {
1633 	return (spa->spa_syncing_txg);
1634 }
1635 
1636 /*
1637  * Return the last txg where data can be dirtied. The final txgs
1638  * will be used to just clear out any deferred frees that remain.
1639  */
1640 uint64_t
1641 spa_final_dirty_txg(spa_t *spa)
1642 {
1643 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1644 }
1645 
1646 pool_state_t
1647 spa_state(spa_t *spa)
1648 {
1649 	return (spa->spa_state);
1650 }
1651 
1652 spa_load_state_t
1653 spa_load_state(spa_t *spa)
1654 {
1655 	return (spa->spa_load_state);
1656 }
1657 
1658 uint64_t
1659 spa_freeze_txg(spa_t *spa)
1660 {
1661 	return (spa->spa_freeze_txg);
1662 }
1663 
1664 /* ARGSUSED */
1665 uint64_t
1666 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1667 {
1668 	return (lsize * spa_asize_inflation);
1669 }
1670 
1671 /*
1672  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1673  * or at least 128MB, unless that would cause it to be more than half the
1674  * pool size.
1675  *
1676  * See the comment above spa_slop_shift for details.
1677  */
1678 uint64_t
1679 spa_get_slop_space(spa_t *spa)
1680 {
1681 	uint64_t space = spa_get_dspace(spa);
1682 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1683 }
1684 
1685 uint64_t
1686 spa_get_dspace(spa_t *spa)
1687 {
1688 	return (spa->spa_dspace);
1689 }
1690 
1691 uint64_t
1692 spa_get_checkpoint_space(spa_t *spa)
1693 {
1694 	return (spa->spa_checkpoint_info.sci_dspace);
1695 }
1696 
1697 void
1698 spa_update_dspace(spa_t *spa)
1699 {
1700 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1701 	    ddt_get_dedup_dspace(spa);
1702 	if (spa->spa_vdev_removal != NULL) {
1703 		/*
1704 		 * We can't allocate from the removing device, so
1705 		 * subtract its size.  This prevents the DMU/DSL from
1706 		 * filling up the (now smaller) pool while we are in the
1707 		 * middle of removing the device.
1708 		 *
1709 		 * Note that the DMU/DSL doesn't actually know or care
1710 		 * how much space is allocated (it does its own tracking
1711 		 * of how much space has been logically used).  So it
1712 		 * doesn't matter that the data we are moving may be
1713 		 * allocated twice (on the old device and the new
1714 		 * device).
1715 		 */
1716 		spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1717 		vdev_t *vd =
1718 		    vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1719 		spa->spa_dspace -= spa_deflate(spa) ?
1720 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1721 		spa_config_exit(spa, SCL_VDEV, FTAG);
1722 	}
1723 }
1724 
1725 /*
1726  * Return the failure mode that has been set to this pool. The default
1727  * behavior will be to block all I/Os when a complete failure occurs.
1728  */
1729 uint8_t
1730 spa_get_failmode(spa_t *spa)
1731 {
1732 	return (spa->spa_failmode);
1733 }
1734 
1735 boolean_t
1736 spa_suspended(spa_t *spa)
1737 {
1738 	return (spa->spa_suspended);
1739 }
1740 
1741 uint64_t
1742 spa_version(spa_t *spa)
1743 {
1744 	return (spa->spa_ubsync.ub_version);
1745 }
1746 
1747 boolean_t
1748 spa_deflate(spa_t *spa)
1749 {
1750 	return (spa->spa_deflate);
1751 }
1752 
1753 metaslab_class_t *
1754 spa_normal_class(spa_t *spa)
1755 {
1756 	return (spa->spa_normal_class);
1757 }
1758 
1759 metaslab_class_t *
1760 spa_log_class(spa_t *spa)
1761 {
1762 	return (spa->spa_log_class);
1763 }
1764 
1765 void
1766 spa_evicting_os_register(spa_t *spa, objset_t *os)
1767 {
1768 	mutex_enter(&spa->spa_evicting_os_lock);
1769 	list_insert_head(&spa->spa_evicting_os_list, os);
1770 	mutex_exit(&spa->spa_evicting_os_lock);
1771 }
1772 
1773 void
1774 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1775 {
1776 	mutex_enter(&spa->spa_evicting_os_lock);
1777 	list_remove(&spa->spa_evicting_os_list, os);
1778 	cv_broadcast(&spa->spa_evicting_os_cv);
1779 	mutex_exit(&spa->spa_evicting_os_lock);
1780 }
1781 
1782 void
1783 spa_evicting_os_wait(spa_t *spa)
1784 {
1785 	mutex_enter(&spa->spa_evicting_os_lock);
1786 	while (!list_is_empty(&spa->spa_evicting_os_list))
1787 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1788 	mutex_exit(&spa->spa_evicting_os_lock);
1789 
1790 	dmu_buf_user_evict_wait();
1791 }
1792 
1793 int
1794 spa_max_replication(spa_t *spa)
1795 {
1796 	/*
1797 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1798 	 * handle BPs with more than one DVA allocated.  Set our max
1799 	 * replication level accordingly.
1800 	 */
1801 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1802 		return (1);
1803 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1804 }
1805 
1806 int
1807 spa_prev_software_version(spa_t *spa)
1808 {
1809 	return (spa->spa_prev_software_version);
1810 }
1811 
1812 uint64_t
1813 spa_deadman_synctime(spa_t *spa)
1814 {
1815 	return (spa->spa_deadman_synctime);
1816 }
1817 
1818 uint64_t
1819 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1820 {
1821 	uint64_t asize = DVA_GET_ASIZE(dva);
1822 	uint64_t dsize = asize;
1823 
1824 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1825 
1826 	if (asize != 0 && spa->spa_deflate) {
1827 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1828 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1829 	}
1830 
1831 	return (dsize);
1832 }
1833 
1834 uint64_t
1835 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1836 {
1837 	uint64_t dsize = 0;
1838 
1839 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1840 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1841 
1842 	return (dsize);
1843 }
1844 
1845 uint64_t
1846 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1847 {
1848 	uint64_t dsize = 0;
1849 
1850 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1851 
1852 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1853 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1854 
1855 	spa_config_exit(spa, SCL_VDEV, FTAG);
1856 
1857 	return (dsize);
1858 }
1859 
1860 uint64_t
1861 spa_dirty_data(spa_t *spa)
1862 {
1863 	return (spa->spa_dsl_pool->dp_dirty_total);
1864 }
1865 
1866 /*
1867  * ==========================================================================
1868  * Initialization and Termination
1869  * ==========================================================================
1870  */
1871 
1872 static int
1873 spa_name_compare(const void *a1, const void *a2)
1874 {
1875 	const spa_t *s1 = a1;
1876 	const spa_t *s2 = a2;
1877 	int s;
1878 
1879 	s = strcmp(s1->spa_name, s2->spa_name);
1880 	if (s > 0)
1881 		return (1);
1882 	if (s < 0)
1883 		return (-1);
1884 	return (0);
1885 }
1886 
1887 int
1888 spa_busy(void)
1889 {
1890 	return (spa_active_count);
1891 }
1892 
1893 void
1894 spa_boot_init()
1895 {
1896 	spa_config_load();
1897 }
1898 
1899 void
1900 spa_init(int mode)
1901 {
1902 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1903 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1904 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1905 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1906 
1907 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1908 	    offsetof(spa_t, spa_avl));
1909 
1910 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1911 	    offsetof(spa_aux_t, aux_avl));
1912 
1913 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1914 	    offsetof(spa_aux_t, aux_avl));
1915 
1916 	spa_mode_global = mode;
1917 
1918 #ifdef _KERNEL
1919 	spa_arch_init();
1920 #else
1921 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1922 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1923 		if (arc_procfd == -1) {
1924 			perror("could not enable watchpoints: "
1925 			    "opening /proc/self/ctl failed: ");
1926 		} else {
1927 			arc_watch = B_TRUE;
1928 		}
1929 	}
1930 #endif
1931 
1932 	refcount_init();
1933 	unique_init();
1934 	range_tree_init();
1935 	metaslab_alloc_trace_init();
1936 	zio_init();
1937 	dmu_init();
1938 	zil_init();
1939 	vdev_cache_stat_init();
1940 	zfs_prop_init();
1941 	zpool_prop_init();
1942 	zpool_feature_init();
1943 	spa_config_load();
1944 	l2arc_start();
1945 }
1946 
1947 void
1948 spa_fini(void)
1949 {
1950 	l2arc_stop();
1951 
1952 	spa_evict_all();
1953 
1954 	vdev_cache_stat_fini();
1955 	zil_fini();
1956 	dmu_fini();
1957 	zio_fini();
1958 	metaslab_alloc_trace_fini();
1959 	range_tree_fini();
1960 	unique_fini();
1961 	refcount_fini();
1962 
1963 	avl_destroy(&spa_namespace_avl);
1964 	avl_destroy(&spa_spare_avl);
1965 	avl_destroy(&spa_l2cache_avl);
1966 
1967 	cv_destroy(&spa_namespace_cv);
1968 	mutex_destroy(&spa_namespace_lock);
1969 	mutex_destroy(&spa_spare_lock);
1970 	mutex_destroy(&spa_l2cache_lock);
1971 }
1972 
1973 /*
1974  * Return whether this pool has slogs. No locking needed.
1975  * It's not a problem if the wrong answer is returned as it's only for
1976  * performance and not correctness
1977  */
1978 boolean_t
1979 spa_has_slogs(spa_t *spa)
1980 {
1981 	return (spa->spa_log_class->mc_rotor != NULL);
1982 }
1983 
1984 spa_log_state_t
1985 spa_get_log_state(spa_t *spa)
1986 {
1987 	return (spa->spa_log_state);
1988 }
1989 
1990 void
1991 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1992 {
1993 	spa->spa_log_state = state;
1994 }
1995 
1996 boolean_t
1997 spa_is_root(spa_t *spa)
1998 {
1999 	return (spa->spa_is_root);
2000 }
2001 
2002 boolean_t
2003 spa_writeable(spa_t *spa)
2004 {
2005 	return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2006 }
2007 
2008 /*
2009  * Returns true if there is a pending sync task in any of the current
2010  * syncing txg, the current quiescing txg, or the current open txg.
2011  */
2012 boolean_t
2013 spa_has_pending_synctask(spa_t *spa)
2014 {
2015 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2016 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2017 }
2018 
2019 int
2020 spa_mode(spa_t *spa)
2021 {
2022 	return (spa->spa_mode);
2023 }
2024 
2025 uint64_t
2026 spa_bootfs(spa_t *spa)
2027 {
2028 	return (spa->spa_bootfs);
2029 }
2030 
2031 uint64_t
2032 spa_delegation(spa_t *spa)
2033 {
2034 	return (spa->spa_delegation);
2035 }
2036 
2037 objset_t *
2038 spa_meta_objset(spa_t *spa)
2039 {
2040 	return (spa->spa_meta_objset);
2041 }
2042 
2043 enum zio_checksum
2044 spa_dedup_checksum(spa_t *spa)
2045 {
2046 	return (spa->spa_dedup_checksum);
2047 }
2048 
2049 /*
2050  * Reset pool scan stat per scan pass (or reboot).
2051  */
2052 void
2053 spa_scan_stat_init(spa_t *spa)
2054 {
2055 	/* data not stored on disk */
2056 	spa->spa_scan_pass_start = gethrestime_sec();
2057 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2058 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2059 	else
2060 		spa->spa_scan_pass_scrub_pause = 0;
2061 	spa->spa_scan_pass_scrub_spent_paused = 0;
2062 	spa->spa_scan_pass_exam = 0;
2063 	vdev_scan_stat_init(spa->spa_root_vdev);
2064 }
2065 
2066 /*
2067  * Get scan stats for zpool status reports
2068  */
2069 int
2070 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2071 {
2072 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2073 
2074 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2075 		return (SET_ERROR(ENOENT));
2076 	bzero(ps, sizeof (pool_scan_stat_t));
2077 
2078 	/* data stored on disk */
2079 	ps->pss_func = scn->scn_phys.scn_func;
2080 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2081 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2082 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2083 	ps->pss_examined = scn->scn_phys.scn_examined;
2084 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2085 	ps->pss_processed = scn->scn_phys.scn_processed;
2086 	ps->pss_errors = scn->scn_phys.scn_errors;
2087 	ps->pss_state = scn->scn_phys.scn_state;
2088 
2089 	/* data not stored on disk */
2090 	ps->pss_pass_start = spa->spa_scan_pass_start;
2091 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2092 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2093 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2094 
2095 	return (0);
2096 }
2097 
2098 int
2099 spa_maxblocksize(spa_t *spa)
2100 {
2101 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2102 		return (SPA_MAXBLOCKSIZE);
2103 	else
2104 		return (SPA_OLD_MAXBLOCKSIZE);
2105 }
2106 
2107 /*
2108  * Returns the txg that the last device removal completed. No indirect mappings
2109  * have been added since this txg.
2110  */
2111 uint64_t
2112 spa_get_last_removal_txg(spa_t *spa)
2113 {
2114 	uint64_t vdevid;
2115 	uint64_t ret = -1ULL;
2116 
2117 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2118 	/*
2119 	 * sr_prev_indirect_vdev is only modified while holding all the
2120 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2121 	 * examining it.
2122 	 */
2123 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2124 
2125 	while (vdevid != -1ULL) {
2126 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2127 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2128 
2129 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2130 
2131 		/*
2132 		 * If the removal did not remap any data, we don't care.
2133 		 */
2134 		if (vdev_indirect_births_count(vib) != 0) {
2135 			ret = vdev_indirect_births_last_entry_txg(vib);
2136 			break;
2137 		}
2138 
2139 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2140 	}
2141 	spa_config_exit(spa, SCL_VDEV, FTAG);
2142 
2143 	IMPLY(ret != -1ULL,
2144 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2145 
2146 	return (ret);
2147 }
2148 
2149 boolean_t
2150 spa_trust_config(spa_t *spa)
2151 {
2152 	return (spa->spa_trust_config);
2153 }
2154 
2155 uint64_t
2156 spa_missing_tvds_allowed(spa_t *spa)
2157 {
2158 	return (spa->spa_missing_tvds_allowed);
2159 }
2160 
2161 void
2162 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2163 {
2164 	spa->spa_missing_tvds = missing;
2165 }
2166 
2167 boolean_t
2168 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2169 {
2170 	vdev_t *rvd = spa->spa_root_vdev;
2171 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2172 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2173 			return (B_FALSE);
2174 	}
2175 	return (B_TRUE);
2176 }
2177 
2178 boolean_t
2179 spa_has_checkpoint(spa_t *spa)
2180 {
2181 	return (spa->spa_checkpoint_txg != 0);
2182 }
2183 
2184 boolean_t
2185 spa_importing_readonly_checkpoint(spa_t *spa)
2186 {
2187 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2188 	    spa->spa_mode == FREAD);
2189 }
2190 
2191 uint64_t
2192 spa_min_claim_txg(spa_t *spa)
2193 {
2194 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2195 
2196 	if (checkpoint_txg != 0)
2197 		return (checkpoint_txg + 1);
2198 
2199 	return (spa->spa_first_txg);
2200 }
2201 
2202 /*
2203  * If there is a checkpoint, async destroys may consume more space from
2204  * the pool instead of freeing it. In an attempt to save the pool from
2205  * getting suspended when it is about to run out of space, we stop
2206  * processing async destroys.
2207  */
2208 boolean_t
2209 spa_suspend_async_destroy(spa_t *spa)
2210 {
2211 	dsl_pool_t *dp = spa_get_dsl(spa);
2212 
2213 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2214 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2215 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2216 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2217 
2218 	if (spa_has_checkpoint(spa) && avail == 0)
2219 		return (B_TRUE);
2220 
2221 	return (B_FALSE);
2222 }
2223