1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2014 Integros [integros.com] 28 * Copyright (c) 2017 Datto Inc. 29 * Copyright 2019 Joyent, Inc. 30 * Copyright (c) 2017, Intel Corporation. 31 * Copyright 2020 Joyent, Inc. 32 * Copyright 2022 Oxide Computer Company 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/spa_impl.h> 37 #include <sys/spa_boot.h> 38 #include <sys/zio.h> 39 #include <sys/zio_checksum.h> 40 #include <sys/zio_compress.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/vdev_impl.h> 46 #include <sys/vdev_initialize.h> 47 #include <sys/vdev_trim.h> 48 #include <sys/vdev_raidz.h> 49 #include <sys/metaslab.h> 50 #include <sys/uberblock_impl.h> 51 #include <sys/txg.h> 52 #include <sys/avl.h> 53 #include <sys/unique.h> 54 #include <sys/dsl_pool.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_scan.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/arc.h> 61 #include <sys/ddt.h> 62 #include "zfs_prop.h" 63 #include "zfs_fletcher.h" 64 #include <sys/btree.h> 65 #include <sys/zfeature.h> 66 67 /* 68 * SPA locking 69 * 70 * There are three basic locks for managing spa_t structures: 71 * 72 * spa_namespace_lock (global mutex) 73 * 74 * This lock must be acquired to do any of the following: 75 * 76 * - Lookup a spa_t by name 77 * - Add or remove a spa_t from the namespace 78 * - Increase spa_refcount from non-zero 79 * - Check if spa_refcount is zero 80 * - Rename a spa_t 81 * - add/remove/attach/detach devices 82 * - Held for the duration of create/destroy/import/export 83 * 84 * It does not need to handle recursion. A create or destroy may 85 * reference objects (files or zvols) in other pools, but by 86 * definition they must have an existing reference, and will never need 87 * to lookup a spa_t by name. 88 * 89 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 90 * 91 * This reference count keep track of any active users of the spa_t. The 92 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 93 * the refcount is never really 'zero' - opening a pool implicitly keeps 94 * some references in the DMU. Internally we check against spa_minref, but 95 * present the image of a zero/non-zero value to consumers. 96 * 97 * spa_config_lock[] (per-spa array of rwlocks) 98 * 99 * This protects the spa_t from config changes, and must be held in 100 * the following circumstances: 101 * 102 * - RW_READER to perform I/O to the spa 103 * - RW_WRITER to change the vdev config 104 * 105 * The locking order is fairly straightforward: 106 * 107 * spa_namespace_lock -> spa_refcount 108 * 109 * The namespace lock must be acquired to increase the refcount from 0 110 * or to check if it is zero. 111 * 112 * spa_refcount -> spa_config_lock[] 113 * 114 * There must be at least one valid reference on the spa_t to acquire 115 * the config lock. 116 * 117 * spa_namespace_lock -> spa_config_lock[] 118 * 119 * The namespace lock must always be taken before the config lock. 120 * 121 * 122 * The spa_namespace_lock can be acquired directly and is globally visible. 123 * 124 * The namespace is manipulated using the following functions, all of which 125 * require the spa_namespace_lock to be held. 126 * 127 * spa_lookup() Lookup a spa_t by name. 128 * 129 * spa_add() Create a new spa_t in the namespace. 130 * 131 * spa_remove() Remove a spa_t from the namespace. This also 132 * frees up any memory associated with the spa_t. 133 * 134 * spa_next() Returns the next spa_t in the system, or the 135 * first if NULL is passed. 136 * 137 * spa_evict_all() Shutdown and remove all spa_t structures in 138 * the system. 139 * 140 * spa_guid_exists() Determine whether a pool/device guid exists. 141 * 142 * The spa_refcount is manipulated using the following functions: 143 * 144 * spa_open_ref() Adds a reference to the given spa_t. Must be 145 * called with spa_namespace_lock held if the 146 * refcount is currently zero. 147 * 148 * spa_close() Remove a reference from the spa_t. This will 149 * not free the spa_t or remove it from the 150 * namespace. No locking is required. 151 * 152 * spa_refcount_zero() Returns true if the refcount is currently 153 * zero. Must be called with spa_namespace_lock 154 * held. 155 * 156 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 157 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 158 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 159 * 160 * To read the configuration, it suffices to hold one of these locks as reader. 161 * To modify the configuration, you must hold all locks as writer. To modify 162 * vdev state without altering the vdev tree's topology (e.g. online/offline), 163 * you must hold SCL_STATE and SCL_ZIO as writer. 164 * 165 * We use these distinct config locks to avoid recursive lock entry. 166 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 167 * block allocations (SCL_ALLOC), which may require reading space maps 168 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 169 * 170 * The spa config locks cannot be normal rwlocks because we need the 171 * ability to hand off ownership. For example, SCL_ZIO is acquired 172 * by the issuing thread and later released by an interrupt thread. 173 * They do, however, obey the usual write-wanted semantics to prevent 174 * writer (i.e. system administrator) starvation. 175 * 176 * The lock acquisition rules are as follows: 177 * 178 * SCL_CONFIG 179 * Protects changes to the vdev tree topology, such as vdev 180 * add/remove/attach/detach. Protects the dirty config list 181 * (spa_config_dirty_list) and the set of spares and l2arc devices. 182 * 183 * SCL_STATE 184 * Protects changes to pool state and vdev state, such as vdev 185 * online/offline/fault/degrade/clear. Protects the dirty state list 186 * (spa_state_dirty_list) and global pool state (spa_state). 187 * 188 * SCL_ALLOC 189 * Protects changes to metaslab groups and classes. 190 * Held as reader by metaslab_alloc() and metaslab_claim(). 191 * 192 * SCL_ZIO 193 * Held by bp-level zios (those which have no io_vd upon entry) 194 * to prevent changes to the vdev tree. The bp-level zio implicitly 195 * protects all of its vdev child zios, which do not hold SCL_ZIO. 196 * 197 * SCL_FREE 198 * Protects changes to metaslab groups and classes. 199 * Held as reader by metaslab_free(). SCL_FREE is distinct from 200 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 201 * blocks in zio_done() while another i/o that holds either 202 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 203 * 204 * SCL_VDEV 205 * Held as reader to prevent changes to the vdev tree during trivial 206 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 207 * other locks, and lower than all of them, to ensure that it's safe 208 * to acquire regardless of caller context. 209 * 210 * In addition, the following rules apply: 211 * 212 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 213 * The lock ordering is SCL_CONFIG > spa_props_lock. 214 * 215 * (b) I/O operations on leaf vdevs. For any zio operation that takes 216 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 217 * or zio_write_phys() -- the caller must ensure that the config cannot 218 * cannot change in the interim, and that the vdev cannot be reopened. 219 * SCL_STATE as reader suffices for both. 220 * 221 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 222 * 223 * spa_vdev_enter() Acquire the namespace lock and the config lock 224 * for writing. 225 * 226 * spa_vdev_exit() Release the config lock, wait for all I/O 227 * to complete, sync the updated configs to the 228 * cache, and release the namespace lock. 229 * 230 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 231 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 232 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 233 */ 234 235 static avl_tree_t spa_namespace_avl; 236 kmutex_t spa_namespace_lock; 237 static kcondvar_t spa_namespace_cv; 238 static int spa_active_count; 239 int spa_max_replication_override = SPA_DVAS_PER_BP; 240 241 static kmutex_t spa_spare_lock; 242 static avl_tree_t spa_spare_avl; 243 static kmutex_t spa_l2cache_lock; 244 static avl_tree_t spa_l2cache_avl; 245 246 kmem_cache_t *spa_buffer_pool; 247 int spa_mode_global; 248 249 #ifdef ZFS_DEBUG 250 /* 251 * Everything except dprintf, spa, and indirect_remap is on by default 252 * in debug builds. 253 */ 254 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP); 255 #else 256 int zfs_flags = 0; 257 #endif 258 259 /* 260 * zfs_recover can be set to nonzero to attempt to recover from 261 * otherwise-fatal errors, typically caused by on-disk corruption. When 262 * set, calls to zfs_panic_recover() will turn into warning messages. 263 * This should only be used as a last resort, as it typically results 264 * in leaked space, or worse. 265 */ 266 boolean_t zfs_recover = B_FALSE; 267 268 /* 269 * If destroy encounters an EIO while reading metadata (e.g. indirect 270 * blocks), space referenced by the missing metadata can not be freed. 271 * Normally this causes the background destroy to become "stalled", as 272 * it is unable to make forward progress. While in this stalled state, 273 * all remaining space to free from the error-encountering filesystem is 274 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 275 * permanently leak the space from indirect blocks that can not be read, 276 * and continue to free everything else that it can. 277 * 278 * The default, "stalling" behavior is useful if the storage partially 279 * fails (i.e. some but not all i/os fail), and then later recovers. In 280 * this case, we will be able to continue pool operations while it is 281 * partially failed, and when it recovers, we can continue to free the 282 * space, with no leaks. However, note that this case is actually 283 * fairly rare. 284 * 285 * Typically pools either (a) fail completely (but perhaps temporarily, 286 * e.g. a top-level vdev going offline), or (b) have localized, 287 * permanent errors (e.g. disk returns the wrong data due to bit flip or 288 * firmware bug). In case (a), this setting does not matter because the 289 * pool will be suspended and the sync thread will not be able to make 290 * forward progress regardless. In case (b), because the error is 291 * permanent, the best we can do is leak the minimum amount of space, 292 * which is what setting this flag will do. Therefore, it is reasonable 293 * for this flag to normally be set, but we chose the more conservative 294 * approach of not setting it, so that there is no possibility of 295 * leaking space in the "partial temporary" failure case. 296 */ 297 boolean_t zfs_free_leak_on_eio = B_FALSE; 298 299 /* 300 * Expiration time in milliseconds. This value has two meanings. First it is 301 * used to determine when the spa_deadman() logic should fire. By default the 302 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. 303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 305 * in a system panic. 306 */ 307 uint64_t zfs_deadman_synctime_ms = 1000000ULL; 308 309 /* 310 * Check time in milliseconds. This defines the frequency at which we check 311 * for hung I/O. 312 */ 313 uint64_t zfs_deadman_checktime_ms = 5000ULL; 314 315 /* 316 * Override the zfs deadman behavior via /etc/system. By default the 317 * deadman is enabled except on VMware and sparc deployments. 318 */ 319 int zfs_deadman_enabled = -1; 320 321 #if defined(__amd64__) || defined(__i386__) 322 /* 323 * Should we allow the use of mechanisms that depend on saving and restoring 324 * the FPU state? This was disabled initially due to stability issues in 325 * the kernel FPU routines; see bug 13717. As of the fixes for 13902 and 326 * 13915, it has once again been enabled. 327 */ 328 int zfs_fpu_enabled = 1; 329 #endif 330 331 /* 332 * The worst case is single-sector max-parity RAID-Z blocks, in which 333 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 334 * times the size; so just assume that. Add to this the fact that 335 * we can have up to 3 DVAs per bp, and one more factor of 2 because 336 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 337 * the worst case is: 338 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 339 */ 340 int spa_asize_inflation = 24; 341 342 /* 343 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 344 * the pool to be consumed. This ensures that we don't run the pool 345 * completely out of space, due to unaccounted changes (e.g. to the MOS). 346 * It also limits the worst-case time to allocate space. If we have 347 * less than this amount of free space, most ZPL operations (e.g. write, 348 * create) will return ENOSPC. 349 * 350 * Certain operations (e.g. file removal, most administrative actions) can 351 * use half the slop space. They will only return ENOSPC if less than half 352 * the slop space is free. Typically, once the pool has less than the slop 353 * space free, the user will use these operations to free up space in the pool. 354 * These are the operations that call dsl_pool_adjustedsize() with the netfree 355 * argument set to TRUE. 356 * 357 * Operations that are almost guaranteed to free up space in the absence of 358 * a pool checkpoint can use up to three quarters of the slop space 359 * (e.g zfs destroy). 360 * 361 * A very restricted set of operations are always permitted, regardless of 362 * the amount of free space. These are the operations that call 363 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 364 * increase in the amount of space used, it is possible to run the pool 365 * completely out of space, causing it to be permanently read-only. 366 * 367 * Note that on very small pools, the slop space will be larger than 368 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 369 * but we never allow it to be more than half the pool size. 370 * 371 * See also the comments in zfs_space_check_t. 372 */ 373 int spa_slop_shift = 5; 374 uint64_t spa_min_slop = 128 * 1024 * 1024; 375 376 int spa_allocators = 4; 377 378 /*PRINTFLIKE2*/ 379 void 380 spa_load_failed(spa_t *spa, const char *fmt, ...) 381 { 382 va_list adx; 383 char buf[256]; 384 385 va_start(adx, fmt); 386 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 387 va_end(adx); 388 389 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 390 spa->spa_trust_config ? "trusted" : "untrusted", buf); 391 } 392 393 /*PRINTFLIKE2*/ 394 void 395 spa_load_note(spa_t *spa, const char *fmt, ...) 396 { 397 va_list adx; 398 char buf[256]; 399 400 va_start(adx, fmt); 401 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 402 va_end(adx); 403 404 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 405 spa->spa_trust_config ? "trusted" : "untrusted", buf); 406 } 407 408 /* 409 * By default dedup and user data indirects land in the special class 410 */ 411 int zfs_ddt_data_is_special = B_TRUE; 412 int zfs_user_indirect_is_special = B_TRUE; 413 414 /* 415 * The percentage of special class final space reserved for metadata only. 416 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 417 * let metadata into the class. 418 */ 419 int zfs_special_class_metadata_reserve_pct = 25; 420 421 /* 422 * ========================================================================== 423 * SPA config locking 424 * ========================================================================== 425 */ 426 static void 427 spa_config_lock_init(spa_t *spa) 428 { 429 for (int i = 0; i < SCL_LOCKS; i++) { 430 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 431 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 432 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 433 zfs_refcount_create_untracked(&scl->scl_count); 434 scl->scl_writer = NULL; 435 scl->scl_write_wanted = 0; 436 } 437 } 438 439 static void 440 spa_config_lock_destroy(spa_t *spa) 441 { 442 for (int i = 0; i < SCL_LOCKS; i++) { 443 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 444 mutex_destroy(&scl->scl_lock); 445 cv_destroy(&scl->scl_cv); 446 zfs_refcount_destroy(&scl->scl_count); 447 ASSERT(scl->scl_writer == NULL); 448 ASSERT(scl->scl_write_wanted == 0); 449 } 450 } 451 452 int 453 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 454 { 455 for (int i = 0; i < SCL_LOCKS; i++) { 456 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 457 if (!(locks & (1 << i))) 458 continue; 459 mutex_enter(&scl->scl_lock); 460 if (rw == RW_READER) { 461 if (scl->scl_writer || scl->scl_write_wanted) { 462 mutex_exit(&scl->scl_lock); 463 spa_config_exit(spa, locks & ((1 << i) - 1), 464 tag); 465 return (0); 466 } 467 } else { 468 ASSERT(scl->scl_writer != curthread); 469 if (!zfs_refcount_is_zero(&scl->scl_count)) { 470 mutex_exit(&scl->scl_lock); 471 spa_config_exit(spa, locks & ((1 << i) - 1), 472 tag); 473 return (0); 474 } 475 scl->scl_writer = curthread; 476 } 477 (void) zfs_refcount_add(&scl->scl_count, tag); 478 mutex_exit(&scl->scl_lock); 479 } 480 return (1); 481 } 482 483 void 484 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 485 { 486 int wlocks_held = 0; 487 488 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 489 490 for (int i = 0; i < SCL_LOCKS; i++) { 491 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 492 if (scl->scl_writer == curthread) 493 wlocks_held |= (1 << i); 494 if (!(locks & (1 << i))) 495 continue; 496 mutex_enter(&scl->scl_lock); 497 if (rw == RW_READER) { 498 while (scl->scl_writer || scl->scl_write_wanted) { 499 cv_wait(&scl->scl_cv, &scl->scl_lock); 500 } 501 } else { 502 ASSERT(scl->scl_writer != curthread); 503 while (!zfs_refcount_is_zero(&scl->scl_count)) { 504 scl->scl_write_wanted++; 505 cv_wait(&scl->scl_cv, &scl->scl_lock); 506 scl->scl_write_wanted--; 507 } 508 scl->scl_writer = curthread; 509 } 510 (void) zfs_refcount_add(&scl->scl_count, tag); 511 mutex_exit(&scl->scl_lock); 512 } 513 ASSERT3U(wlocks_held, <=, locks); 514 } 515 516 void 517 spa_config_exit(spa_t *spa, int locks, void *tag) 518 { 519 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 520 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 521 if (!(locks & (1 << i))) 522 continue; 523 mutex_enter(&scl->scl_lock); 524 ASSERT(!zfs_refcount_is_zero(&scl->scl_count)); 525 if (zfs_refcount_remove(&scl->scl_count, tag) == 0) { 526 ASSERT(scl->scl_writer == NULL || 527 scl->scl_writer == curthread); 528 scl->scl_writer = NULL; /* OK in either case */ 529 cv_broadcast(&scl->scl_cv); 530 } 531 mutex_exit(&scl->scl_lock); 532 } 533 } 534 535 int 536 spa_config_held(spa_t *spa, int locks, krw_t rw) 537 { 538 int locks_held = 0; 539 540 for (int i = 0; i < SCL_LOCKS; i++) { 541 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 542 if (!(locks & (1 << i))) 543 continue; 544 if ((rw == RW_READER && 545 !zfs_refcount_is_zero(&scl->scl_count)) || 546 (rw == RW_WRITER && scl->scl_writer == curthread)) 547 locks_held |= 1 << i; 548 } 549 550 return (locks_held); 551 } 552 553 /* 554 * ========================================================================== 555 * SPA namespace functions 556 * ========================================================================== 557 */ 558 559 /* 560 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 561 * Returns NULL if no matching spa_t is found. 562 */ 563 spa_t * 564 spa_lookup(const char *name) 565 { 566 static spa_t search; /* spa_t is large; don't allocate on stack */ 567 spa_t *spa; 568 avl_index_t where; 569 char *cp; 570 571 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 572 573 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 574 575 /* 576 * If it's a full dataset name, figure out the pool name and 577 * just use that. 578 */ 579 cp = strpbrk(search.spa_name, "/@#"); 580 if (cp != NULL) 581 *cp = '\0'; 582 583 spa = avl_find(&spa_namespace_avl, &search, &where); 584 585 return (spa); 586 } 587 588 /* 589 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 590 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 591 * looking for potentially hung I/Os. 592 */ 593 void 594 spa_deadman(void *arg) 595 { 596 spa_t *spa = arg; 597 598 /* 599 * Disable the deadman timer if the pool is suspended. 600 */ 601 if (spa_suspended(spa)) { 602 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 603 return; 604 } 605 606 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 607 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 608 ++spa->spa_deadman_calls); 609 if (zfs_deadman_enabled) 610 vdev_deadman(spa->spa_root_vdev); 611 } 612 613 int 614 spa_log_sm_sort_by_txg(const void *va, const void *vb) 615 { 616 const spa_log_sm_t *a = va; 617 const spa_log_sm_t *b = vb; 618 619 return (TREE_CMP(a->sls_txg, b->sls_txg)); 620 } 621 622 /* 623 * Create an uninitialized spa_t with the given name. Requires 624 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 625 * exist by calling spa_lookup() first. 626 */ 627 spa_t * 628 spa_add(const char *name, nvlist_t *config, const char *altroot) 629 { 630 spa_t *spa; 631 spa_config_dirent_t *dp; 632 cyc_handler_t hdlr; 633 cyc_time_t when; 634 635 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 636 637 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 638 639 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 640 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 641 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 642 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 643 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 644 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 645 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 646 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 647 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 648 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 649 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 650 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 651 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 652 mutex_init(&spa->spa_imp_kstat_lock, NULL, MUTEX_DEFAULT, NULL); 653 654 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 655 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 656 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 657 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 658 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 659 660 for (int t = 0; t < TXG_SIZE; t++) 661 bplist_create(&spa->spa_free_bplist[t]); 662 663 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 664 spa->spa_state = POOL_STATE_UNINITIALIZED; 665 spa->spa_freeze_txg = UINT64_MAX; 666 spa->spa_final_txg = UINT64_MAX; 667 spa->spa_load_max_txg = UINT64_MAX; 668 spa->spa_proc = &p0; 669 spa->spa_proc_state = SPA_PROC_NONE; 670 spa->spa_trust_config = B_TRUE; 671 672 hdlr.cyh_func = spa_deadman; 673 hdlr.cyh_arg = spa; 674 hdlr.cyh_level = CY_LOW_LEVEL; 675 676 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 677 678 /* 679 * This determines how often we need to check for hung I/Os after 680 * the cyclic has already fired. Since checking for hung I/Os is 681 * an expensive operation we don't want to check too frequently. 682 * Instead wait for 5 seconds before checking again. 683 */ 684 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); 685 when.cyt_when = CY_INFINITY; 686 mutex_enter(&cpu_lock); 687 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 688 mutex_exit(&cpu_lock); 689 690 zfs_refcount_create(&spa->spa_refcount); 691 spa_config_lock_init(spa); 692 693 avl_add(&spa_namespace_avl, spa); 694 695 /* 696 * Set the alternate root, if there is one. 697 */ 698 if (altroot) { 699 spa->spa_root = spa_strdup(altroot); 700 spa_active_count++; 701 } 702 703 spa->spa_alloc_count = spa_allocators; 704 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count * 705 sizeof (kmutex_t), KM_SLEEP); 706 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count * 707 sizeof (avl_tree_t), KM_SLEEP); 708 for (int i = 0; i < spa->spa_alloc_count; i++) { 709 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL); 710 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare, 711 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 712 } 713 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 714 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 715 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 716 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 717 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 718 offsetof(log_summary_entry_t, lse_node)); 719 720 /* 721 * Every pool starts with the default cachefile 722 */ 723 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 724 offsetof(spa_config_dirent_t, scd_link)); 725 726 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 727 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 728 list_insert_head(&spa->spa_config_list, dp); 729 730 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 731 KM_SLEEP) == 0); 732 733 if (config != NULL) { 734 nvlist_t *features; 735 736 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 737 &features) == 0) { 738 VERIFY(nvlist_dup(features, &spa->spa_label_features, 739 0) == 0); 740 } 741 742 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 743 } 744 745 if (spa->spa_label_features == NULL) { 746 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 747 KM_SLEEP) == 0); 748 } 749 750 spa->spa_iokstat = kstat_create("zfs", 0, name, 751 "disk", KSTAT_TYPE_IO, 1, 0); 752 if (spa->spa_iokstat) { 753 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 754 kstat_install(spa->spa_iokstat); 755 } 756 757 spa->spa_min_ashift = INT_MAX; 758 spa->spa_max_ashift = 0; 759 760 /* 761 * As a pool is being created, treat all features as disabled by 762 * setting SPA_FEATURE_DISABLED for all entries in the feature 763 * refcount cache. 764 */ 765 for (int i = 0; i < SPA_FEATURES; i++) { 766 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 767 } 768 769 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 770 offsetof(vdev_t, vdev_leaf_node)); 771 772 return (spa); 773 } 774 775 /* 776 * Removes a spa_t from the namespace, freeing up any memory used. Requires 777 * spa_namespace_lock. This is called only after the spa_t has been closed and 778 * deactivated. 779 */ 780 void 781 spa_remove(spa_t *spa) 782 { 783 spa_config_dirent_t *dp; 784 785 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 786 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 787 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 788 789 nvlist_free(spa->spa_config_splitting); 790 791 avl_remove(&spa_namespace_avl, spa); 792 cv_broadcast(&spa_namespace_cv); 793 794 if (spa->spa_root) { 795 spa_strfree(spa->spa_root); 796 spa_active_count--; 797 } 798 799 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 800 list_remove(&spa->spa_config_list, dp); 801 if (dp->scd_path != NULL) 802 spa_strfree(dp->scd_path); 803 kmem_free(dp, sizeof (spa_config_dirent_t)); 804 } 805 806 for (int i = 0; i < spa->spa_alloc_count; i++) { 807 avl_destroy(&spa->spa_alloc_trees[i]); 808 mutex_destroy(&spa->spa_alloc_locks[i]); 809 } 810 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count * 811 sizeof (kmutex_t)); 812 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count * 813 sizeof (avl_tree_t)); 814 815 avl_destroy(&spa->spa_metaslabs_by_flushed); 816 avl_destroy(&spa->spa_sm_logs_by_txg); 817 list_destroy(&spa->spa_log_summary); 818 list_destroy(&spa->spa_config_list); 819 list_destroy(&spa->spa_leaf_list); 820 821 nvlist_free(spa->spa_label_features); 822 nvlist_free(spa->spa_load_info); 823 spa_config_set(spa, NULL); 824 825 mutex_enter(&cpu_lock); 826 if (spa->spa_deadman_cycid != CYCLIC_NONE) 827 cyclic_remove(spa->spa_deadman_cycid); 828 mutex_exit(&cpu_lock); 829 spa->spa_deadman_cycid = CYCLIC_NONE; 830 831 zfs_refcount_destroy(&spa->spa_refcount); 832 833 spa_config_lock_destroy(spa); 834 835 kstat_delete(spa->spa_iokstat); 836 spa->spa_iokstat = NULL; 837 838 for (int t = 0; t < TXG_SIZE; t++) 839 bplist_destroy(&spa->spa_free_bplist[t]); 840 841 zio_checksum_templates_free(spa); 842 843 cv_destroy(&spa->spa_async_cv); 844 cv_destroy(&spa->spa_evicting_os_cv); 845 cv_destroy(&spa->spa_proc_cv); 846 cv_destroy(&spa->spa_scrub_io_cv); 847 cv_destroy(&spa->spa_suspend_cv); 848 849 mutex_destroy(&spa->spa_flushed_ms_lock); 850 mutex_destroy(&spa->spa_async_lock); 851 mutex_destroy(&spa->spa_errlist_lock); 852 mutex_destroy(&spa->spa_errlog_lock); 853 mutex_destroy(&spa->spa_evicting_os_lock); 854 mutex_destroy(&spa->spa_history_lock); 855 mutex_destroy(&spa->spa_proc_lock); 856 mutex_destroy(&spa->spa_props_lock); 857 mutex_destroy(&spa->spa_cksum_tmpls_lock); 858 mutex_destroy(&spa->spa_scrub_lock); 859 mutex_destroy(&spa->spa_suspend_lock); 860 mutex_destroy(&spa->spa_vdev_top_lock); 861 mutex_destroy(&spa->spa_iokstat_lock); 862 mutex_destroy(&spa->spa_imp_kstat_lock); 863 864 kmem_free(spa, sizeof (spa_t)); 865 } 866 867 /* 868 * Given a pool, return the next pool in the namespace, or NULL if there is 869 * none. If 'prev' is NULL, return the first pool. 870 */ 871 spa_t * 872 spa_next(spa_t *prev) 873 { 874 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 875 876 if (prev) 877 return (AVL_NEXT(&spa_namespace_avl, prev)); 878 else 879 return (avl_first(&spa_namespace_avl)); 880 } 881 882 /* 883 * ========================================================================== 884 * SPA refcount functions 885 * ========================================================================== 886 */ 887 888 /* 889 * Add a reference to the given spa_t. Must have at least one reference, or 890 * have the namespace lock held. 891 */ 892 void 893 spa_open_ref(spa_t *spa, void *tag) 894 { 895 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 896 MUTEX_HELD(&spa_namespace_lock)); 897 (void) zfs_refcount_add(&spa->spa_refcount, tag); 898 } 899 900 /* 901 * Remove a reference to the given spa_t. Must have at least one reference, or 902 * have the namespace lock held. 903 */ 904 void 905 spa_close(spa_t *spa, void *tag) 906 { 907 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 908 MUTEX_HELD(&spa_namespace_lock)); 909 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 910 } 911 912 /* 913 * Remove a reference to the given spa_t held by a dsl dir that is 914 * being asynchronously released. Async releases occur from a taskq 915 * performing eviction of dsl datasets and dirs. The namespace lock 916 * isn't held and the hold by the object being evicted may contribute to 917 * spa_minref (e.g. dataset or directory released during pool export), 918 * so the asserts in spa_close() do not apply. 919 */ 920 void 921 spa_async_close(spa_t *spa, void *tag) 922 { 923 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 924 } 925 926 /* 927 * Check to see if the spa refcount is zero. Must be called with 928 * spa_namespace_lock held. We really compare against spa_minref, which is the 929 * number of references acquired when opening a pool 930 */ 931 boolean_t 932 spa_refcount_zero(spa_t *spa) 933 { 934 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 935 936 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 937 } 938 939 /* 940 * ========================================================================== 941 * SPA spare and l2cache tracking 942 * ========================================================================== 943 */ 944 945 /* 946 * Hot spares and cache devices are tracked using the same code below, 947 * for 'auxiliary' devices. 948 */ 949 950 typedef struct spa_aux { 951 uint64_t aux_guid; 952 uint64_t aux_pool; 953 avl_node_t aux_avl; 954 int aux_count; 955 } spa_aux_t; 956 957 static inline int 958 spa_aux_compare(const void *a, const void *b) 959 { 960 const spa_aux_t *sa = (const spa_aux_t *)a; 961 const spa_aux_t *sb = (const spa_aux_t *)b; 962 963 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 964 } 965 966 void 967 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 968 { 969 avl_index_t where; 970 spa_aux_t search; 971 spa_aux_t *aux; 972 973 search.aux_guid = vd->vdev_guid; 974 if ((aux = avl_find(avl, &search, &where)) != NULL) { 975 aux->aux_count++; 976 } else { 977 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 978 aux->aux_guid = vd->vdev_guid; 979 aux->aux_count = 1; 980 avl_insert(avl, aux, where); 981 } 982 } 983 984 void 985 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 986 { 987 spa_aux_t search; 988 spa_aux_t *aux; 989 avl_index_t where; 990 991 search.aux_guid = vd->vdev_guid; 992 aux = avl_find(avl, &search, &where); 993 994 ASSERT(aux != NULL); 995 996 if (--aux->aux_count == 0) { 997 avl_remove(avl, aux); 998 kmem_free(aux, sizeof (spa_aux_t)); 999 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 1000 aux->aux_pool = 0ULL; 1001 } 1002 } 1003 1004 boolean_t 1005 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 1006 { 1007 spa_aux_t search, *found; 1008 1009 search.aux_guid = guid; 1010 found = avl_find(avl, &search, NULL); 1011 1012 if (pool) { 1013 if (found) 1014 *pool = found->aux_pool; 1015 else 1016 *pool = 0ULL; 1017 } 1018 1019 if (refcnt) { 1020 if (found) 1021 *refcnt = found->aux_count; 1022 else 1023 *refcnt = 0; 1024 } 1025 1026 return (found != NULL); 1027 } 1028 1029 void 1030 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1031 { 1032 spa_aux_t search, *found; 1033 avl_index_t where; 1034 1035 search.aux_guid = vd->vdev_guid; 1036 found = avl_find(avl, &search, &where); 1037 ASSERT(found != NULL); 1038 ASSERT(found->aux_pool == 0ULL); 1039 1040 found->aux_pool = spa_guid(vd->vdev_spa); 1041 } 1042 1043 /* 1044 * Spares are tracked globally due to the following constraints: 1045 * 1046 * - A spare may be part of multiple pools. 1047 * - A spare may be added to a pool even if it's actively in use within 1048 * another pool. 1049 * - A spare in use in any pool can only be the source of a replacement if 1050 * the target is a spare in the same pool. 1051 * 1052 * We keep track of all spares on the system through the use of a reference 1053 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1054 * spare, then we bump the reference count in the AVL tree. In addition, we set 1055 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1056 * inactive). When a spare is made active (used to replace a device in the 1057 * pool), we also keep track of which pool its been made a part of. 1058 * 1059 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1060 * called under the spa_namespace lock as part of vdev reconfiguration. The 1061 * separate spare lock exists for the status query path, which does not need to 1062 * be completely consistent with respect to other vdev configuration changes. 1063 */ 1064 1065 /* 1066 * Poll the spare vdevs to make sure they are not faulty. 1067 * 1068 * The probe operation will raise an ENXIO error and create an FM ereport if the 1069 * probe fails. 1070 */ 1071 void 1072 spa_spare_poll(spa_t *spa) 1073 { 1074 boolean_t async_request = B_FALSE; 1075 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 1076 for (int i = 0; i < spa->spa_spares.sav_count; i++) { 1077 spa_aux_t search, *found; 1078 vdev_t *vd = spa->spa_spares.sav_vdevs[i]; 1079 1080 search.aux_guid = vd->vdev_guid; 1081 1082 mutex_enter(&spa_spare_lock); 1083 found = avl_find(&spa_spare_avl, &search, NULL); 1084 /* This spare is in use by a pool. */ 1085 if (found != NULL && found->aux_pool != 0) { 1086 mutex_exit(&spa_spare_lock); 1087 continue; 1088 } 1089 mutex_exit(&spa_spare_lock); 1090 1091 vd->vdev_probe_wanted = B_TRUE; 1092 async_request = B_TRUE; 1093 } 1094 if (async_request) 1095 spa_async_request(spa, SPA_ASYNC_PROBE); 1096 1097 spa_config_exit(spa, SCL_STATE, FTAG); 1098 } 1099 1100 static int 1101 spa_spare_compare(const void *a, const void *b) 1102 { 1103 return (spa_aux_compare(a, b)); 1104 } 1105 1106 void 1107 spa_spare_add(vdev_t *vd) 1108 { 1109 mutex_enter(&spa_spare_lock); 1110 ASSERT(!vd->vdev_isspare); 1111 spa_aux_add(vd, &spa_spare_avl); 1112 vd->vdev_isspare = B_TRUE; 1113 mutex_exit(&spa_spare_lock); 1114 } 1115 1116 void 1117 spa_spare_remove(vdev_t *vd) 1118 { 1119 mutex_enter(&spa_spare_lock); 1120 ASSERT(vd->vdev_isspare); 1121 spa_aux_remove(vd, &spa_spare_avl); 1122 vd->vdev_isspare = B_FALSE; 1123 mutex_exit(&spa_spare_lock); 1124 } 1125 1126 boolean_t 1127 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1128 { 1129 boolean_t found; 1130 1131 mutex_enter(&spa_spare_lock); 1132 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1133 mutex_exit(&spa_spare_lock); 1134 1135 return (found); 1136 } 1137 1138 void 1139 spa_spare_activate(vdev_t *vd) 1140 { 1141 mutex_enter(&spa_spare_lock); 1142 ASSERT(vd->vdev_isspare); 1143 spa_aux_activate(vd, &spa_spare_avl); 1144 mutex_exit(&spa_spare_lock); 1145 } 1146 1147 /* 1148 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1149 * Cache devices currently only support one pool per cache device, and so 1150 * for these devices the aux reference count is currently unused beyond 1. 1151 */ 1152 1153 static int 1154 spa_l2cache_compare(const void *a, const void *b) 1155 { 1156 return (spa_aux_compare(a, b)); 1157 } 1158 1159 void 1160 spa_l2cache_add(vdev_t *vd) 1161 { 1162 mutex_enter(&spa_l2cache_lock); 1163 ASSERT(!vd->vdev_isl2cache); 1164 spa_aux_add(vd, &spa_l2cache_avl); 1165 vd->vdev_isl2cache = B_TRUE; 1166 mutex_exit(&spa_l2cache_lock); 1167 } 1168 1169 void 1170 spa_l2cache_remove(vdev_t *vd) 1171 { 1172 mutex_enter(&spa_l2cache_lock); 1173 ASSERT(vd->vdev_isl2cache); 1174 spa_aux_remove(vd, &spa_l2cache_avl); 1175 vd->vdev_isl2cache = B_FALSE; 1176 mutex_exit(&spa_l2cache_lock); 1177 } 1178 1179 boolean_t 1180 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1181 { 1182 boolean_t found; 1183 1184 mutex_enter(&spa_l2cache_lock); 1185 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1186 mutex_exit(&spa_l2cache_lock); 1187 1188 return (found); 1189 } 1190 1191 void 1192 spa_l2cache_activate(vdev_t *vd) 1193 { 1194 mutex_enter(&spa_l2cache_lock); 1195 ASSERT(vd->vdev_isl2cache); 1196 spa_aux_activate(vd, &spa_l2cache_avl); 1197 mutex_exit(&spa_l2cache_lock); 1198 } 1199 1200 /* 1201 * ========================================================================== 1202 * SPA vdev locking 1203 * ========================================================================== 1204 */ 1205 1206 /* 1207 * Lock the given spa_t for the purpose of adding or removing a vdev. 1208 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1209 * It returns the next transaction group for the spa_t. 1210 */ 1211 uint64_t 1212 spa_vdev_enter(spa_t *spa) 1213 { 1214 mutex_enter(&spa->spa_vdev_top_lock); 1215 mutex_enter(&spa_namespace_lock); 1216 1217 vdev_autotrim_stop_all(spa); 1218 1219 return (spa_vdev_config_enter(spa)); 1220 } 1221 1222 /* 1223 * Internal implementation for spa_vdev_enter(). Used when a vdev 1224 * operation requires multiple syncs (i.e. removing a device) while 1225 * keeping the spa_namespace_lock held. 1226 */ 1227 uint64_t 1228 spa_vdev_config_enter(spa_t *spa) 1229 { 1230 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1231 1232 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1233 1234 return (spa_last_synced_txg(spa) + 1); 1235 } 1236 1237 /* 1238 * Used in combination with spa_vdev_config_enter() to allow the syncing 1239 * of multiple transactions without releasing the spa_namespace_lock. 1240 */ 1241 void 1242 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1243 { 1244 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1245 1246 int config_changed = B_FALSE; 1247 1248 ASSERT(txg > spa_last_synced_txg(spa)); 1249 1250 spa->spa_pending_vdev = NULL; 1251 1252 /* 1253 * Reassess the DTLs. 1254 */ 1255 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 1256 1257 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1258 config_changed = B_TRUE; 1259 spa->spa_config_generation++; 1260 } 1261 1262 /* 1263 * Verify the metaslab classes. 1264 */ 1265 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1266 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1267 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1268 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1269 1270 spa_config_exit(spa, SCL_ALL, spa); 1271 1272 /* 1273 * Panic the system if the specified tag requires it. This 1274 * is useful for ensuring that configurations are updated 1275 * transactionally. 1276 */ 1277 if (zio_injection_enabled) 1278 zio_handle_panic_injection(spa, tag, 0); 1279 1280 /* 1281 * Note: this txg_wait_synced() is important because it ensures 1282 * that there won't be more than one config change per txg. 1283 * This allows us to use the txg as the generation number. 1284 */ 1285 if (error == 0) 1286 txg_wait_synced(spa->spa_dsl_pool, txg); 1287 1288 if (vd != NULL) { 1289 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1290 if (vd->vdev_ops->vdev_op_leaf) { 1291 mutex_enter(&vd->vdev_initialize_lock); 1292 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1293 NULL); 1294 mutex_exit(&vd->vdev_initialize_lock); 1295 1296 mutex_enter(&vd->vdev_trim_lock); 1297 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1298 mutex_exit(&vd->vdev_trim_lock); 1299 } 1300 1301 /* 1302 * The vdev may be both a leaf and top-level device. 1303 */ 1304 vdev_autotrim_stop_wait(vd); 1305 1306 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1307 vdev_free(vd); 1308 spa_config_exit(spa, SCL_ALL, spa); 1309 } 1310 1311 /* 1312 * If the config changed, update the config cache. 1313 */ 1314 if (config_changed) 1315 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1316 } 1317 1318 /* 1319 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1320 * locking of spa_vdev_enter(), we also want make sure the transactions have 1321 * synced to disk, and then update the global configuration cache with the new 1322 * information. 1323 */ 1324 int 1325 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1326 { 1327 vdev_autotrim_restart(spa); 1328 1329 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1330 mutex_exit(&spa_namespace_lock); 1331 mutex_exit(&spa->spa_vdev_top_lock); 1332 1333 return (error); 1334 } 1335 1336 /* 1337 * Lock the given spa_t for the purpose of changing vdev state. 1338 */ 1339 void 1340 spa_vdev_state_enter(spa_t *spa, int oplocks) 1341 { 1342 int locks = SCL_STATE_ALL | oplocks; 1343 1344 /* 1345 * Root pools may need to read of the underlying devfs filesystem 1346 * when opening up a vdev. Unfortunately if we're holding the 1347 * SCL_ZIO lock it will result in a deadlock when we try to issue 1348 * the read from the root filesystem. Instead we "prefetch" 1349 * the associated vnodes that we need prior to opening the 1350 * underlying devices and cache them so that we can prevent 1351 * any I/O when we are doing the actual open. 1352 */ 1353 if (spa_is_root(spa)) { 1354 int low = locks & ~(SCL_ZIO - 1); 1355 int high = locks & ~low; 1356 1357 spa_config_enter(spa, high, spa, RW_WRITER); 1358 vdev_hold(spa->spa_root_vdev); 1359 spa_config_enter(spa, low, spa, RW_WRITER); 1360 } else { 1361 spa_config_enter(spa, locks, spa, RW_WRITER); 1362 } 1363 spa->spa_vdev_locks = locks; 1364 } 1365 1366 int 1367 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1368 { 1369 boolean_t config_changed = B_FALSE; 1370 1371 if (vd != NULL || error == 0) 1372 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1373 0, 0, B_FALSE); 1374 1375 if (vd != NULL) { 1376 vdev_state_dirty(vd->vdev_top); 1377 config_changed = B_TRUE; 1378 spa->spa_config_generation++; 1379 } 1380 1381 if (spa_is_root(spa)) 1382 vdev_rele(spa->spa_root_vdev); 1383 1384 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1385 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1386 1387 /* 1388 * If anything changed, wait for it to sync. This ensures that, 1389 * from the system administrator's perspective, zpool(8) commands 1390 * are synchronous. This is important for things like zpool offline: 1391 * when the command completes, you expect no further I/O from ZFS. 1392 */ 1393 if (vd != NULL) 1394 txg_wait_synced(spa->spa_dsl_pool, 0); 1395 1396 /* 1397 * If the config changed, update the config cache. 1398 */ 1399 if (config_changed) { 1400 mutex_enter(&spa_namespace_lock); 1401 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1402 mutex_exit(&spa_namespace_lock); 1403 } 1404 1405 return (error); 1406 } 1407 1408 /* 1409 * ========================================================================== 1410 * Miscellaneous functions 1411 * ========================================================================== 1412 */ 1413 1414 void 1415 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1416 { 1417 if (!nvlist_exists(spa->spa_label_features, feature)) { 1418 fnvlist_add_boolean(spa->spa_label_features, feature); 1419 /* 1420 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1421 * dirty the vdev config because lock SCL_CONFIG is not held. 1422 * Thankfully, in this case we don't need to dirty the config 1423 * because it will be written out anyway when we finish 1424 * creating the pool. 1425 */ 1426 if (tx->tx_txg != TXG_INITIAL) 1427 vdev_config_dirty(spa->spa_root_vdev); 1428 } 1429 } 1430 1431 void 1432 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1433 { 1434 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1435 vdev_config_dirty(spa->spa_root_vdev); 1436 } 1437 1438 /* 1439 * Return the spa_t associated with given pool_guid, if it exists. If 1440 * device_guid is non-zero, determine whether the pool exists *and* contains 1441 * a device with the specified device_guid. 1442 */ 1443 spa_t * 1444 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1445 { 1446 spa_t *spa; 1447 avl_tree_t *t = &spa_namespace_avl; 1448 1449 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1450 1451 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1452 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1453 continue; 1454 if (spa->spa_root_vdev == NULL) 1455 continue; 1456 if (spa_guid(spa) == pool_guid) { 1457 if (device_guid == 0) 1458 break; 1459 1460 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1461 device_guid) != NULL) 1462 break; 1463 1464 /* 1465 * Check any devices we may be in the process of adding. 1466 */ 1467 if (spa->spa_pending_vdev) { 1468 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1469 device_guid) != NULL) 1470 break; 1471 } 1472 } 1473 } 1474 1475 return (spa); 1476 } 1477 1478 /* 1479 * Determine whether a pool with the given pool_guid exists. 1480 */ 1481 boolean_t 1482 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1483 { 1484 return (spa_by_guid(pool_guid, device_guid) != NULL); 1485 } 1486 1487 char * 1488 spa_strdup(const char *s) 1489 { 1490 size_t len; 1491 char *new; 1492 1493 len = strlen(s); 1494 new = kmem_alloc(len + 1, KM_SLEEP); 1495 bcopy(s, new, len); 1496 new[len] = '\0'; 1497 1498 return (new); 1499 } 1500 1501 void 1502 spa_strfree(char *s) 1503 { 1504 kmem_free(s, strlen(s) + 1); 1505 } 1506 1507 uint64_t 1508 spa_get_random(uint64_t range) 1509 { 1510 uint64_t r; 1511 1512 ASSERT(range != 0); 1513 1514 if (range == 1) 1515 return (0); 1516 1517 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1518 1519 return (r % range); 1520 } 1521 1522 uint64_t 1523 spa_generate_guid(spa_t *spa) 1524 { 1525 uint64_t guid = spa_get_random(-1ULL); 1526 1527 if (spa != NULL) { 1528 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1529 guid = spa_get_random(-1ULL); 1530 } else { 1531 while (guid == 0 || spa_guid_exists(guid, 0)) 1532 guid = spa_get_random(-1ULL); 1533 } 1534 1535 return (guid); 1536 } 1537 1538 void 1539 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1540 { 1541 char type[256]; 1542 char *checksum = NULL; 1543 char *compress = NULL; 1544 1545 if (bp != NULL) { 1546 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1547 dmu_object_byteswap_t bswap = 1548 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1549 (void) snprintf(type, sizeof (type), "bswap %s %s", 1550 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1551 "metadata" : "data", 1552 dmu_ot_byteswap[bswap].ob_name); 1553 } else { 1554 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1555 sizeof (type)); 1556 } 1557 if (!BP_IS_EMBEDDED(bp)) { 1558 checksum = 1559 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1560 } 1561 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1562 } 1563 1564 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1565 compress); 1566 } 1567 1568 void 1569 spa_freeze(spa_t *spa) 1570 { 1571 uint64_t freeze_txg = 0; 1572 1573 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1574 if (spa->spa_freeze_txg == UINT64_MAX) { 1575 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1576 spa->spa_freeze_txg = freeze_txg; 1577 } 1578 spa_config_exit(spa, SCL_ALL, FTAG); 1579 if (freeze_txg != 0) 1580 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1581 } 1582 1583 void 1584 zfs_panic_recover(const char *fmt, ...) 1585 { 1586 va_list adx; 1587 1588 va_start(adx, fmt); 1589 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1590 va_end(adx); 1591 } 1592 1593 /* 1594 * This is a stripped-down version of strtoull, suitable only for converting 1595 * lowercase hexadecimal numbers that don't overflow. 1596 */ 1597 uint64_t 1598 zfs_strtonum(const char *str, char **nptr) 1599 { 1600 uint64_t val = 0; 1601 char c; 1602 int digit; 1603 1604 while ((c = *str) != '\0') { 1605 if (c >= '0' && c <= '9') 1606 digit = c - '0'; 1607 else if (c >= 'a' && c <= 'f') 1608 digit = 10 + c - 'a'; 1609 else 1610 break; 1611 1612 val *= 16; 1613 val += digit; 1614 1615 str++; 1616 } 1617 1618 if (nptr) 1619 *nptr = (char *)str; 1620 1621 return (val); 1622 } 1623 1624 void 1625 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1626 { 1627 /* 1628 * We bump the feature refcount for each special vdev added to the pool 1629 */ 1630 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1631 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1632 } 1633 1634 /* 1635 * ========================================================================== 1636 * Accessor functions 1637 * ========================================================================== 1638 */ 1639 1640 boolean_t 1641 spa_shutting_down(spa_t *spa) 1642 { 1643 return (spa->spa_async_suspended); 1644 } 1645 1646 dsl_pool_t * 1647 spa_get_dsl(spa_t *spa) 1648 { 1649 return (spa->spa_dsl_pool); 1650 } 1651 1652 boolean_t 1653 spa_is_initializing(spa_t *spa) 1654 { 1655 return (spa->spa_is_initializing); 1656 } 1657 1658 boolean_t 1659 spa_indirect_vdevs_loaded(spa_t *spa) 1660 { 1661 return (spa->spa_indirect_vdevs_loaded); 1662 } 1663 1664 blkptr_t * 1665 spa_get_rootblkptr(spa_t *spa) 1666 { 1667 return (&spa->spa_ubsync.ub_rootbp); 1668 } 1669 1670 void 1671 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1672 { 1673 spa->spa_uberblock.ub_rootbp = *bp; 1674 } 1675 1676 void 1677 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1678 { 1679 if (spa->spa_root == NULL) 1680 buf[0] = '\0'; 1681 else 1682 (void) strncpy(buf, spa->spa_root, buflen); 1683 } 1684 1685 int 1686 spa_sync_pass(spa_t *spa) 1687 { 1688 return (spa->spa_sync_pass); 1689 } 1690 1691 char * 1692 spa_name(spa_t *spa) 1693 { 1694 return (spa->spa_name); 1695 } 1696 1697 uint64_t 1698 spa_guid(spa_t *spa) 1699 { 1700 dsl_pool_t *dp = spa_get_dsl(spa); 1701 uint64_t guid; 1702 1703 /* 1704 * If we fail to parse the config during spa_load(), we can go through 1705 * the error path (which posts an ereport) and end up here with no root 1706 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1707 * this case. 1708 */ 1709 if (spa->spa_root_vdev == NULL) 1710 return (spa->spa_config_guid); 1711 1712 guid = spa->spa_last_synced_guid != 0 ? 1713 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1714 1715 /* 1716 * Return the most recently synced out guid unless we're 1717 * in syncing context. 1718 */ 1719 if (dp && dsl_pool_sync_context(dp)) 1720 return (spa->spa_root_vdev->vdev_guid); 1721 else 1722 return (guid); 1723 } 1724 1725 uint64_t 1726 spa_load_guid(spa_t *spa) 1727 { 1728 /* 1729 * This is a GUID that exists solely as a reference for the 1730 * purposes of the arc. It is generated at load time, and 1731 * is never written to persistent storage. 1732 */ 1733 return (spa->spa_load_guid); 1734 } 1735 1736 uint64_t 1737 spa_last_synced_txg(spa_t *spa) 1738 { 1739 return (spa->spa_ubsync.ub_txg); 1740 } 1741 1742 uint64_t 1743 spa_first_txg(spa_t *spa) 1744 { 1745 return (spa->spa_first_txg); 1746 } 1747 1748 uint64_t 1749 spa_syncing_txg(spa_t *spa) 1750 { 1751 return (spa->spa_syncing_txg); 1752 } 1753 1754 /* 1755 * Return the last txg where data can be dirtied. The final txgs 1756 * will be used to just clear out any deferred frees that remain. 1757 */ 1758 uint64_t 1759 spa_final_dirty_txg(spa_t *spa) 1760 { 1761 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1762 } 1763 1764 pool_state_t 1765 spa_state(spa_t *spa) 1766 { 1767 return (spa->spa_state); 1768 } 1769 1770 spa_load_state_t 1771 spa_load_state(spa_t *spa) 1772 { 1773 return (spa->spa_load_state); 1774 } 1775 1776 uint64_t 1777 spa_freeze_txg(spa_t *spa) 1778 { 1779 return (spa->spa_freeze_txg); 1780 } 1781 1782 /* ARGSUSED */ 1783 uint64_t 1784 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1785 { 1786 return (lsize * spa_asize_inflation); 1787 } 1788 1789 /* 1790 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%), 1791 * or at least 128MB, unless that would cause it to be more than half the 1792 * pool size. 1793 * 1794 * See the comment above spa_slop_shift for details. 1795 */ 1796 uint64_t 1797 spa_get_slop_space(spa_t *spa) 1798 { 1799 uint64_t space = spa_get_dspace(spa); 1800 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop))); 1801 } 1802 1803 uint64_t 1804 spa_get_dspace(spa_t *spa) 1805 { 1806 return (spa->spa_dspace); 1807 } 1808 1809 uint64_t 1810 spa_get_checkpoint_space(spa_t *spa) 1811 { 1812 return (spa->spa_checkpoint_info.sci_dspace); 1813 } 1814 1815 void 1816 spa_update_dspace(spa_t *spa) 1817 { 1818 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1819 ddt_get_dedup_dspace(spa); 1820 if (spa->spa_vdev_removal != NULL) { 1821 /* 1822 * We can't allocate from the removing device, so 1823 * subtract its size. This prevents the DMU/DSL from 1824 * filling up the (now smaller) pool while we are in the 1825 * middle of removing the device. 1826 * 1827 * Note that the DMU/DSL doesn't actually know or care 1828 * how much space is allocated (it does its own tracking 1829 * of how much space has been logically used). So it 1830 * doesn't matter that the data we are moving may be 1831 * allocated twice (on the old device and the new 1832 * device). 1833 */ 1834 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1835 vdev_t *vd = 1836 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1837 spa->spa_dspace -= spa_deflate(spa) ? 1838 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1839 spa_config_exit(spa, SCL_VDEV, FTAG); 1840 } 1841 } 1842 1843 /* 1844 * Return the failure mode that has been set to this pool. The default 1845 * behavior will be to block all I/Os when a complete failure occurs. 1846 */ 1847 uint8_t 1848 spa_get_failmode(spa_t *spa) 1849 { 1850 return (spa->spa_failmode); 1851 } 1852 1853 boolean_t 1854 spa_suspended(spa_t *spa) 1855 { 1856 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1857 } 1858 1859 uint64_t 1860 spa_version(spa_t *spa) 1861 { 1862 return (spa->spa_ubsync.ub_version); 1863 } 1864 1865 boolean_t 1866 spa_deflate(spa_t *spa) 1867 { 1868 return (spa->spa_deflate); 1869 } 1870 1871 metaslab_class_t * 1872 spa_normal_class(spa_t *spa) 1873 { 1874 return (spa->spa_normal_class); 1875 } 1876 1877 metaslab_class_t * 1878 spa_log_class(spa_t *spa) 1879 { 1880 return (spa->spa_log_class); 1881 } 1882 1883 metaslab_class_t * 1884 spa_special_class(spa_t *spa) 1885 { 1886 return (spa->spa_special_class); 1887 } 1888 1889 metaslab_class_t * 1890 spa_dedup_class(spa_t *spa) 1891 { 1892 return (spa->spa_dedup_class); 1893 } 1894 1895 /* 1896 * Locate an appropriate allocation class 1897 */ 1898 metaslab_class_t * 1899 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1900 uint_t level, uint_t special_smallblk) 1901 { 1902 if (DMU_OT_IS_ZIL(objtype)) { 1903 if (spa->spa_log_class->mc_groups != 0) 1904 return (spa_log_class(spa)); 1905 else 1906 return (spa_normal_class(spa)); 1907 } 1908 1909 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1910 1911 if (DMU_OT_IS_DDT(objtype)) { 1912 if (spa->spa_dedup_class->mc_groups != 0) 1913 return (spa_dedup_class(spa)); 1914 else if (has_special_class && zfs_ddt_data_is_special) 1915 return (spa_special_class(spa)); 1916 else 1917 return (spa_normal_class(spa)); 1918 } 1919 1920 /* Indirect blocks for user data can land in special if allowed */ 1921 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 1922 if (has_special_class && zfs_user_indirect_is_special) 1923 return (spa_special_class(spa)); 1924 else 1925 return (spa_normal_class(spa)); 1926 } 1927 1928 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 1929 if (has_special_class) 1930 return (spa_special_class(spa)); 1931 else 1932 return (spa_normal_class(spa)); 1933 } 1934 1935 /* 1936 * Allow small file blocks in special class in some cases (like 1937 * for the dRAID vdev feature). But always leave a reserve of 1938 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 1939 */ 1940 if (DMU_OT_IS_FILE(objtype) && 1941 has_special_class && size <= special_smallblk) { 1942 metaslab_class_t *special = spa_special_class(spa); 1943 uint64_t alloc = metaslab_class_get_alloc(special); 1944 uint64_t space = metaslab_class_get_space(special); 1945 uint64_t limit = 1946 (space * (100 - zfs_special_class_metadata_reserve_pct)) 1947 / 100; 1948 1949 if (alloc < limit) 1950 return (special); 1951 } 1952 1953 return (spa_normal_class(spa)); 1954 } 1955 1956 void 1957 spa_evicting_os_register(spa_t *spa, objset_t *os) 1958 { 1959 mutex_enter(&spa->spa_evicting_os_lock); 1960 list_insert_head(&spa->spa_evicting_os_list, os); 1961 mutex_exit(&spa->spa_evicting_os_lock); 1962 } 1963 1964 void 1965 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 1966 { 1967 mutex_enter(&spa->spa_evicting_os_lock); 1968 list_remove(&spa->spa_evicting_os_list, os); 1969 cv_broadcast(&spa->spa_evicting_os_cv); 1970 mutex_exit(&spa->spa_evicting_os_lock); 1971 } 1972 1973 void 1974 spa_evicting_os_wait(spa_t *spa) 1975 { 1976 mutex_enter(&spa->spa_evicting_os_lock); 1977 while (!list_is_empty(&spa->spa_evicting_os_list)) 1978 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 1979 mutex_exit(&spa->spa_evicting_os_lock); 1980 1981 dmu_buf_user_evict_wait(); 1982 } 1983 1984 int 1985 spa_max_replication(spa_t *spa) 1986 { 1987 /* 1988 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1989 * handle BPs with more than one DVA allocated. Set our max 1990 * replication level accordingly. 1991 */ 1992 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1993 return (1); 1994 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1995 } 1996 1997 int 1998 spa_prev_software_version(spa_t *spa) 1999 { 2000 return (spa->spa_prev_software_version); 2001 } 2002 2003 uint64_t 2004 spa_deadman_synctime(spa_t *spa) 2005 { 2006 return (spa->spa_deadman_synctime); 2007 } 2008 2009 spa_autotrim_t 2010 spa_get_autotrim(spa_t *spa) 2011 { 2012 return (spa->spa_autotrim); 2013 } 2014 2015 uint64_t 2016 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2017 { 2018 uint64_t asize = DVA_GET_ASIZE(dva); 2019 uint64_t dsize = asize; 2020 2021 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2022 2023 if (asize != 0 && spa->spa_deflate) { 2024 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2025 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 2026 } 2027 2028 return (dsize); 2029 } 2030 2031 uint64_t 2032 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2033 { 2034 uint64_t dsize = 0; 2035 2036 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2037 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2038 2039 return (dsize); 2040 } 2041 2042 uint64_t 2043 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2044 { 2045 uint64_t dsize = 0; 2046 2047 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2048 2049 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2050 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2051 2052 spa_config_exit(spa, SCL_VDEV, FTAG); 2053 2054 return (dsize); 2055 } 2056 2057 uint64_t 2058 spa_dirty_data(spa_t *spa) 2059 { 2060 return (spa->spa_dsl_pool->dp_dirty_total); 2061 } 2062 2063 /* 2064 * ========================================================================== 2065 * SPA Import Progress Routines 2066 * The illumos implementation of these are different from OpenZFS. OpenZFS 2067 * uses the Linux /proc fs, whereas we use a kstat on the spa. 2068 * ========================================================================== 2069 */ 2070 2071 typedef struct spa_import_progress { 2072 kstat_named_t sip_load_state; 2073 kstat_named_t sip_mmp_sec_remaining; /* MMP activity check */ 2074 kstat_named_t sip_load_max_txg; /* rewind txg */ 2075 } spa_import_progress_t; 2076 2077 static void 2078 spa_import_progress_init(void) 2079 { 2080 } 2081 2082 static void 2083 spa_import_progress_destroy(void) 2084 { 2085 } 2086 2087 void spa_import_progress_add(spa_t *); 2088 2089 int 2090 spa_import_progress_set_state(spa_t *spa, spa_load_state_t load_state) 2091 { 2092 if (spa->spa_imp_kstat == NULL) 2093 spa_import_progress_add(spa); 2094 2095 mutex_enter(&spa->spa_imp_kstat_lock); 2096 if (spa->spa_imp_kstat != NULL) { 2097 spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data; 2098 if (sip != NULL) 2099 sip->sip_load_state.value.ui64 = (uint64_t)load_state; 2100 } 2101 mutex_exit(&spa->spa_imp_kstat_lock); 2102 2103 return (0); 2104 } 2105 2106 int 2107 spa_import_progress_set_max_txg(spa_t *spa, uint64_t load_max_txg) 2108 { 2109 if (spa->spa_imp_kstat == NULL) 2110 spa_import_progress_add(spa); 2111 2112 mutex_enter(&spa->spa_imp_kstat_lock); 2113 if (spa->spa_imp_kstat != NULL) { 2114 spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data; 2115 if (sip != NULL) 2116 sip->sip_load_max_txg.value.ui64 = load_max_txg; 2117 } 2118 mutex_exit(&spa->spa_imp_kstat_lock); 2119 2120 return (0); 2121 } 2122 2123 int 2124 spa_import_progress_set_mmp_check(spa_t *spa, uint64_t mmp_sec_remaining) 2125 { 2126 if (spa->spa_imp_kstat == NULL) 2127 spa_import_progress_add(spa); 2128 2129 mutex_enter(&spa->spa_imp_kstat_lock); 2130 if (spa->spa_imp_kstat != NULL) { 2131 spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data; 2132 if (sip != NULL) 2133 sip->sip_mmp_sec_remaining.value.ui64 = 2134 mmp_sec_remaining; 2135 } 2136 mutex_exit(&spa->spa_imp_kstat_lock); 2137 2138 return (0); 2139 } 2140 2141 /* 2142 * A new import is in progress. Add an entry. 2143 */ 2144 void 2145 spa_import_progress_add(spa_t *spa) 2146 { 2147 char *poolname = NULL; 2148 spa_import_progress_t *sip; 2149 2150 mutex_enter(&spa->spa_imp_kstat_lock); 2151 if (spa->spa_imp_kstat != NULL) { 2152 sip = spa->spa_imp_kstat->ks_data; 2153 sip->sip_load_state.value.ui64 = (uint64_t)spa_load_state(spa); 2154 mutex_exit(&spa->spa_imp_kstat_lock); 2155 return; 2156 } 2157 2158 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2159 &poolname); 2160 if (poolname == NULL) 2161 poolname = spa_name(spa); 2162 2163 spa->spa_imp_kstat = kstat_create("zfs_import", 0, poolname, 2164 "zfs_misc", KSTAT_TYPE_NAMED, 2165 sizeof (spa_import_progress_t) / sizeof (kstat_named_t), 2166 KSTAT_FLAG_VIRTUAL); 2167 if (spa->spa_imp_kstat != NULL) { 2168 sip = kmem_alloc(sizeof (spa_import_progress_t), KM_SLEEP); 2169 spa->spa_imp_kstat->ks_data = sip; 2170 2171 sip->sip_load_state.value.ui64 = (uint64_t)spa_load_state(spa); 2172 2173 kstat_named_init(&sip->sip_load_state, 2174 "spa_load_state", KSTAT_DATA_UINT64); 2175 kstat_named_init(&sip->sip_mmp_sec_remaining, 2176 "mmp_sec_remaining", KSTAT_DATA_UINT64); 2177 kstat_named_init(&sip->sip_load_max_txg, 2178 "spa_load_max_txg", KSTAT_DATA_UINT64); 2179 spa->spa_imp_kstat->ks_lock = &spa->spa_imp_kstat_lock; 2180 kstat_install(spa->spa_imp_kstat); 2181 } 2182 mutex_exit(&spa->spa_imp_kstat_lock); 2183 } 2184 2185 void 2186 spa_import_progress_remove(spa_t *spa) 2187 { 2188 if (spa->spa_imp_kstat != NULL) { 2189 void *data = spa->spa_imp_kstat->ks_data; 2190 2191 kstat_delete(spa->spa_imp_kstat); 2192 spa->spa_imp_kstat = NULL; 2193 kmem_free(data, sizeof (spa_import_progress_t)); 2194 } 2195 } 2196 2197 /* 2198 * ========================================================================== 2199 * Initialization and Termination 2200 * ========================================================================== 2201 */ 2202 2203 static int 2204 spa_name_compare(const void *a1, const void *a2) 2205 { 2206 const spa_t *s1 = a1; 2207 const spa_t *s2 = a2; 2208 int s; 2209 2210 s = strcmp(s1->spa_name, s2->spa_name); 2211 2212 return (TREE_ISIGN(s)); 2213 } 2214 2215 int 2216 spa_busy(void) 2217 { 2218 return (spa_active_count); 2219 } 2220 2221 void 2222 spa_boot_init() 2223 { 2224 spa_config_load(); 2225 } 2226 2227 void 2228 spa_init(int mode) 2229 { 2230 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2231 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2232 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2233 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2234 2235 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2236 offsetof(spa_t, spa_avl)); 2237 2238 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2239 offsetof(spa_aux_t, aux_avl)); 2240 2241 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2242 offsetof(spa_aux_t, aux_avl)); 2243 2244 spa_mode_global = mode; 2245 2246 #ifdef _KERNEL 2247 spa_arch_init(); 2248 #else 2249 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 2250 arc_procfd = open("/proc/self/ctl", O_WRONLY); 2251 if (arc_procfd == -1) { 2252 perror("could not enable watchpoints: " 2253 "opening /proc/self/ctl failed: "); 2254 } else { 2255 arc_watch = B_TRUE; 2256 } 2257 } 2258 #endif 2259 2260 zfs_refcount_init(); 2261 unique_init(); 2262 zfs_btree_init(); 2263 metaslab_stat_init(); 2264 zio_init(); 2265 dmu_init(); 2266 zil_init(); 2267 vdev_cache_stat_init(); 2268 vdev_mirror_stat_init(); 2269 vdev_raidz_math_init(); 2270 fletcher_4_init(); 2271 zfs_prop_init(); 2272 zpool_prop_init(); 2273 zpool_feature_init(); 2274 spa_config_load(); 2275 l2arc_start(); 2276 scan_init(); 2277 spa_import_progress_init(); 2278 } 2279 2280 void 2281 spa_fini(void) 2282 { 2283 l2arc_stop(); 2284 2285 spa_evict_all(); 2286 2287 vdev_cache_stat_fini(); 2288 vdev_mirror_stat_fini(); 2289 vdev_raidz_math_fini(); 2290 fletcher_4_fini(); 2291 zil_fini(); 2292 dmu_fini(); 2293 zio_fini(); 2294 metaslab_stat_fini(); 2295 zfs_btree_fini(); 2296 unique_fini(); 2297 zfs_refcount_fini(); 2298 scan_fini(); 2299 spa_import_progress_destroy(); 2300 2301 avl_destroy(&spa_namespace_avl); 2302 avl_destroy(&spa_spare_avl); 2303 avl_destroy(&spa_l2cache_avl); 2304 2305 cv_destroy(&spa_namespace_cv); 2306 mutex_destroy(&spa_namespace_lock); 2307 mutex_destroy(&spa_spare_lock); 2308 mutex_destroy(&spa_l2cache_lock); 2309 } 2310 2311 /* 2312 * Return whether this pool has slogs. No locking needed. 2313 * It's not a problem if the wrong answer is returned as it's only for 2314 * performance and not correctness 2315 */ 2316 boolean_t 2317 spa_has_slogs(spa_t *spa) 2318 { 2319 return (spa->spa_log_class->mc_rotor != NULL); 2320 } 2321 2322 spa_log_state_t 2323 spa_get_log_state(spa_t *spa) 2324 { 2325 return (spa->spa_log_state); 2326 } 2327 2328 void 2329 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2330 { 2331 spa->spa_log_state = state; 2332 } 2333 2334 boolean_t 2335 spa_is_root(spa_t *spa) 2336 { 2337 return (spa->spa_is_root); 2338 } 2339 2340 boolean_t 2341 spa_writeable(spa_t *spa) 2342 { 2343 return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config); 2344 } 2345 2346 /* 2347 * Returns true if there is a pending sync task in any of the current 2348 * syncing txg, the current quiescing txg, or the current open txg. 2349 */ 2350 boolean_t 2351 spa_has_pending_synctask(spa_t *spa) 2352 { 2353 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2354 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2355 } 2356 2357 int 2358 spa_mode(spa_t *spa) 2359 { 2360 return (spa->spa_mode); 2361 } 2362 2363 uint64_t 2364 spa_bootfs(spa_t *spa) 2365 { 2366 return (spa->spa_bootfs); 2367 } 2368 2369 uint64_t 2370 spa_delegation(spa_t *spa) 2371 { 2372 return (spa->spa_delegation); 2373 } 2374 2375 objset_t * 2376 spa_meta_objset(spa_t *spa) 2377 { 2378 return (spa->spa_meta_objset); 2379 } 2380 2381 enum zio_checksum 2382 spa_dedup_checksum(spa_t *spa) 2383 { 2384 return (spa->spa_dedup_checksum); 2385 } 2386 2387 /* 2388 * Reset pool scan stat per scan pass (or reboot). 2389 */ 2390 void 2391 spa_scan_stat_init(spa_t *spa) 2392 { 2393 /* data not stored on disk */ 2394 spa->spa_scan_pass_start = gethrestime_sec(); 2395 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2396 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2397 else 2398 spa->spa_scan_pass_scrub_pause = 0; 2399 spa->spa_scan_pass_scrub_spent_paused = 0; 2400 spa->spa_scan_pass_exam = 0; 2401 spa->spa_scan_pass_issued = 0; 2402 vdev_scan_stat_init(spa->spa_root_vdev); 2403 } 2404 2405 /* 2406 * Get scan stats for zpool status reports 2407 */ 2408 int 2409 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2410 { 2411 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2412 2413 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 2414 return (SET_ERROR(ENOENT)); 2415 bzero(ps, sizeof (pool_scan_stat_t)); 2416 2417 /* data stored on disk */ 2418 ps->pss_func = scn->scn_phys.scn_func; 2419 ps->pss_state = scn->scn_phys.scn_state; 2420 ps->pss_start_time = scn->scn_phys.scn_start_time; 2421 ps->pss_end_time = scn->scn_phys.scn_end_time; 2422 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2423 ps->pss_to_process = scn->scn_phys.scn_to_process; 2424 ps->pss_processed = scn->scn_phys.scn_processed; 2425 ps->pss_errors = scn->scn_phys.scn_errors; 2426 ps->pss_examined = scn->scn_phys.scn_examined; 2427 ps->pss_issued = 2428 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2429 ps->pss_state = scn->scn_phys.scn_state; 2430 2431 /* data not stored on disk */ 2432 ps->pss_pass_start = spa->spa_scan_pass_start; 2433 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2434 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2435 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2436 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2437 2438 return (0); 2439 } 2440 2441 int 2442 spa_maxblocksize(spa_t *spa) 2443 { 2444 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2445 return (SPA_MAXBLOCKSIZE); 2446 else 2447 return (SPA_OLD_MAXBLOCKSIZE); 2448 } 2449 2450 int 2451 spa_maxdnodesize(spa_t *spa) 2452 { 2453 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2454 return (DNODE_MAX_SIZE); 2455 else 2456 return (DNODE_MIN_SIZE); 2457 } 2458 2459 boolean_t 2460 spa_multihost(spa_t *spa) 2461 { 2462 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2463 } 2464 2465 unsigned long 2466 spa_get_hostid(void) 2467 { 2468 unsigned long myhostid; 2469 2470 #ifdef _KERNEL 2471 myhostid = zone_get_hostid(NULL); 2472 #else /* _KERNEL */ 2473 /* 2474 * We're emulating the system's hostid in userland, so 2475 * we can't use zone_get_hostid(). 2476 */ 2477 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2478 #endif /* _KERNEL */ 2479 2480 return (myhostid); 2481 } 2482 2483 /* 2484 * Returns the txg that the last device removal completed. No indirect mappings 2485 * have been added since this txg. 2486 */ 2487 uint64_t 2488 spa_get_last_removal_txg(spa_t *spa) 2489 { 2490 uint64_t vdevid; 2491 uint64_t ret = -1ULL; 2492 2493 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2494 /* 2495 * sr_prev_indirect_vdev is only modified while holding all the 2496 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2497 * examining it. 2498 */ 2499 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2500 2501 while (vdevid != -1ULL) { 2502 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2503 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2504 2505 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2506 2507 /* 2508 * If the removal did not remap any data, we don't care. 2509 */ 2510 if (vdev_indirect_births_count(vib) != 0) { 2511 ret = vdev_indirect_births_last_entry_txg(vib); 2512 break; 2513 } 2514 2515 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2516 } 2517 spa_config_exit(spa, SCL_VDEV, FTAG); 2518 2519 IMPLY(ret != -1ULL, 2520 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2521 2522 return (ret); 2523 } 2524 2525 boolean_t 2526 spa_trust_config(spa_t *spa) 2527 { 2528 return (spa->spa_trust_config); 2529 } 2530 2531 uint64_t 2532 spa_missing_tvds_allowed(spa_t *spa) 2533 { 2534 return (spa->spa_missing_tvds_allowed); 2535 } 2536 2537 space_map_t * 2538 spa_syncing_log_sm(spa_t *spa) 2539 { 2540 return (spa->spa_syncing_log_sm); 2541 } 2542 2543 void 2544 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2545 { 2546 spa->spa_missing_tvds = missing; 2547 } 2548 2549 boolean_t 2550 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2551 { 2552 vdev_t *rvd = spa->spa_root_vdev; 2553 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2554 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2555 return (B_FALSE); 2556 } 2557 return (B_TRUE); 2558 } 2559 2560 boolean_t 2561 spa_has_checkpoint(spa_t *spa) 2562 { 2563 return (spa->spa_checkpoint_txg != 0); 2564 } 2565 2566 boolean_t 2567 spa_importing_readonly_checkpoint(spa_t *spa) 2568 { 2569 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2570 spa->spa_mode == FREAD); 2571 } 2572 2573 uint64_t 2574 spa_min_claim_txg(spa_t *spa) 2575 { 2576 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2577 2578 if (checkpoint_txg != 0) 2579 return (checkpoint_txg + 1); 2580 2581 return (spa->spa_first_txg); 2582 } 2583 2584 /* 2585 * If there is a checkpoint, async destroys may consume more space from 2586 * the pool instead of freeing it. In an attempt to save the pool from 2587 * getting suspended when it is about to run out of space, we stop 2588 * processing async destroys. 2589 */ 2590 boolean_t 2591 spa_suspend_async_destroy(spa_t *spa) 2592 { 2593 dsl_pool_t *dp = spa_get_dsl(spa); 2594 2595 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2596 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2597 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2598 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2599 2600 if (spa_has_checkpoint(spa) && avail == 0) 2601 return (B_TRUE); 2602 2603 return (B_FALSE); 2604 } 2605 2606 /* 2607 * Generate a LUN expansion event. This routine does not use 2608 * ddi_log_sysevent() because that would require a dev_info_t, and we may not 2609 * have one available. 2610 */ 2611 void 2612 zfs_post_dle_sysevent(const char *physpath) 2613 { 2614 #ifdef _KERNEL 2615 sysevent_t *ev = sysevent_alloc(EC_DEV_STATUS, ESC_DEV_DLE, 2616 SUNW_KERN_PUB "zfs", SE_SLEEP); 2617 sysevent_attr_list_t *attr = NULL; 2618 sysevent_id_t eid; 2619 2620 VERIFY(ev != NULL); 2621 2622 /* 2623 * The only attribute is the /devices path of the expanding device: 2624 */ 2625 sysevent_value_t value = { 2626 .value_type = SE_DATA_TYPE_STRING, 2627 .value = { 2628 .sv_string = (char *)physpath, 2629 }, 2630 }; 2631 if (sysevent_add_attr(&attr, DEV_PHYS_PATH, &value, SE_SLEEP) != 0) { 2632 sysevent_free(ev); 2633 return; 2634 } 2635 2636 if (sysevent_attach_attributes(ev, attr) != 0) { 2637 sysevent_free_attr(attr); 2638 sysevent_free(ev); 2639 return; 2640 } 2641 2642 (void) log_sysevent(ev, SE_SLEEP, &eid); 2643 sysevent_free(ev); 2644 #endif 2645 } 2646