xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 2833423dc59f4c35fe4713dbb942950c82df0437)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright (c) 2017 Datto Inc.
29  * Copyright 2019 Joyent, Inc.
30  * Copyright (c) 2017, Intel Corporation.
31  * Copyright 2020 Joyent, Inc.
32  * Copyright 2022 Oxide Computer Company
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/spa_impl.h>
37 #include <sys/spa_boot.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/vdev_initialize.h>
47 #include <sys/vdev_trim.h>
48 #include <sys/vdev_raidz.h>
49 #include <sys/metaslab.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/unique.h>
54 #include <sys/dsl_pool.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/arc.h>
61 #include <sys/ddt.h>
62 #include "zfs_prop.h"
63 #include "zfs_fletcher.h"
64 #include <sys/btree.h>
65 #include <sys/zfeature.h>
66 
67 /*
68  * SPA locking
69  *
70  * There are three basic locks for managing spa_t structures:
71  *
72  * spa_namespace_lock (global mutex)
73  *
74  *	This lock must be acquired to do any of the following:
75  *
76  *		- Lookup a spa_t by name
77  *		- Add or remove a spa_t from the namespace
78  *		- Increase spa_refcount from non-zero
79  *		- Check if spa_refcount is zero
80  *		- Rename a spa_t
81  *		- add/remove/attach/detach devices
82  *		- Held for the duration of create/destroy/import/export
83  *
84  *	It does not need to handle recursion.  A create or destroy may
85  *	reference objects (files or zvols) in other pools, but by
86  *	definition they must have an existing reference, and will never need
87  *	to lookup a spa_t by name.
88  *
89  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
90  *
91  *	This reference count keep track of any active users of the spa_t.  The
92  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
93  *	the refcount is never really 'zero' - opening a pool implicitly keeps
94  *	some references in the DMU.  Internally we check against spa_minref, but
95  *	present the image of a zero/non-zero value to consumers.
96  *
97  * spa_config_lock[] (per-spa array of rwlocks)
98  *
99  *	This protects the spa_t from config changes, and must be held in
100  *	the following circumstances:
101  *
102  *		- RW_READER to perform I/O to the spa
103  *		- RW_WRITER to change the vdev config
104  *
105  * The locking order is fairly straightforward:
106  *
107  *		spa_namespace_lock	->	spa_refcount
108  *
109  *	The namespace lock must be acquired to increase the refcount from 0
110  *	or to check if it is zero.
111  *
112  *		spa_refcount		->	spa_config_lock[]
113  *
114  *	There must be at least one valid reference on the spa_t to acquire
115  *	the config lock.
116  *
117  *		spa_namespace_lock	->	spa_config_lock[]
118  *
119  *	The namespace lock must always be taken before the config lock.
120  *
121  *
122  * The spa_namespace_lock can be acquired directly and is globally visible.
123  *
124  * The namespace is manipulated using the following functions, all of which
125  * require the spa_namespace_lock to be held.
126  *
127  *	spa_lookup()		Lookup a spa_t by name.
128  *
129  *	spa_add()		Create a new spa_t in the namespace.
130  *
131  *	spa_remove()		Remove a spa_t from the namespace.  This also
132  *				frees up any memory associated with the spa_t.
133  *
134  *	spa_next()		Returns the next spa_t in the system, or the
135  *				first if NULL is passed.
136  *
137  *	spa_evict_all()		Shutdown and remove all spa_t structures in
138  *				the system.
139  *
140  *	spa_guid_exists()	Determine whether a pool/device guid exists.
141  *
142  * The spa_refcount is manipulated using the following functions:
143  *
144  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
145  *				called with spa_namespace_lock held if the
146  *				refcount is currently zero.
147  *
148  *	spa_close()		Remove a reference from the spa_t.  This will
149  *				not free the spa_t or remove it from the
150  *				namespace.  No locking is required.
151  *
152  *	spa_refcount_zero()	Returns true if the refcount is currently
153  *				zero.  Must be called with spa_namespace_lock
154  *				held.
155  *
156  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
157  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
158  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
159  *
160  * To read the configuration, it suffices to hold one of these locks as reader.
161  * To modify the configuration, you must hold all locks as writer.  To modify
162  * vdev state without altering the vdev tree's topology (e.g. online/offline),
163  * you must hold SCL_STATE and SCL_ZIO as writer.
164  *
165  * We use these distinct config locks to avoid recursive lock entry.
166  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
167  * block allocations (SCL_ALLOC), which may require reading space maps
168  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
169  *
170  * The spa config locks cannot be normal rwlocks because we need the
171  * ability to hand off ownership.  For example, SCL_ZIO is acquired
172  * by the issuing thread and later released by an interrupt thread.
173  * They do, however, obey the usual write-wanted semantics to prevent
174  * writer (i.e. system administrator) starvation.
175  *
176  * The lock acquisition rules are as follows:
177  *
178  * SCL_CONFIG
179  *	Protects changes to the vdev tree topology, such as vdev
180  *	add/remove/attach/detach.  Protects the dirty config list
181  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
182  *
183  * SCL_STATE
184  *	Protects changes to pool state and vdev state, such as vdev
185  *	online/offline/fault/degrade/clear.  Protects the dirty state list
186  *	(spa_state_dirty_list) and global pool state (spa_state).
187  *
188  * SCL_ALLOC
189  *	Protects changes to metaslab groups and classes.
190  *	Held as reader by metaslab_alloc() and metaslab_claim().
191  *
192  * SCL_ZIO
193  *	Held by bp-level zios (those which have no io_vd upon entry)
194  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
195  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
196  *
197  * SCL_FREE
198  *	Protects changes to metaslab groups and classes.
199  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
200  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
201  *	blocks in zio_done() while another i/o that holds either
202  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
203  *
204  * SCL_VDEV
205  *	Held as reader to prevent changes to the vdev tree during trivial
206  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
207  *	other locks, and lower than all of them, to ensure that it's safe
208  *	to acquire regardless of caller context.
209  *
210  * In addition, the following rules apply:
211  *
212  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
213  *	The lock ordering is SCL_CONFIG > spa_props_lock.
214  *
215  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
216  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
217  *	or zio_write_phys() -- the caller must ensure that the config cannot
218  *	cannot change in the interim, and that the vdev cannot be reopened.
219  *	SCL_STATE as reader suffices for both.
220  *
221  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
222  *
223  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
224  *				for writing.
225  *
226  *	spa_vdev_exit()		Release the config lock, wait for all I/O
227  *				to complete, sync the updated configs to the
228  *				cache, and release the namespace lock.
229  *
230  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
231  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
232  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
233  */
234 
235 static avl_tree_t spa_namespace_avl;
236 kmutex_t spa_namespace_lock;
237 static kcondvar_t spa_namespace_cv;
238 static int spa_active_count;
239 int spa_max_replication_override = SPA_DVAS_PER_BP;
240 
241 static kmutex_t spa_spare_lock;
242 static avl_tree_t spa_spare_avl;
243 static kmutex_t spa_l2cache_lock;
244 static avl_tree_t spa_l2cache_avl;
245 
246 kmem_cache_t *spa_buffer_pool;
247 int spa_mode_global;
248 
249 #ifdef ZFS_DEBUG
250 /*
251  * Everything except dprintf, spa, and indirect_remap is on by default
252  * in debug builds.
253  */
254 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP);
255 #else
256 int zfs_flags = 0;
257 #endif
258 
259 /*
260  * zfs_recover can be set to nonzero to attempt to recover from
261  * otherwise-fatal errors, typically caused by on-disk corruption.  When
262  * set, calls to zfs_panic_recover() will turn into warning messages.
263  * This should only be used as a last resort, as it typically results
264  * in leaked space, or worse.
265  */
266 boolean_t zfs_recover = B_FALSE;
267 
268 /*
269  * If destroy encounters an EIO while reading metadata (e.g. indirect
270  * blocks), space referenced by the missing metadata can not be freed.
271  * Normally this causes the background destroy to become "stalled", as
272  * it is unable to make forward progress.  While in this stalled state,
273  * all remaining space to free from the error-encountering filesystem is
274  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
275  * permanently leak the space from indirect blocks that can not be read,
276  * and continue to free everything else that it can.
277  *
278  * The default, "stalling" behavior is useful if the storage partially
279  * fails (i.e. some but not all i/os fail), and then later recovers.  In
280  * this case, we will be able to continue pool operations while it is
281  * partially failed, and when it recovers, we can continue to free the
282  * space, with no leaks.  However, note that this case is actually
283  * fairly rare.
284  *
285  * Typically pools either (a) fail completely (but perhaps temporarily,
286  * e.g. a top-level vdev going offline), or (b) have localized,
287  * permanent errors (e.g. disk returns the wrong data due to bit flip or
288  * firmware bug).  In case (a), this setting does not matter because the
289  * pool will be suspended and the sync thread will not be able to make
290  * forward progress regardless.  In case (b), because the error is
291  * permanent, the best we can do is leak the minimum amount of space,
292  * which is what setting this flag will do.  Therefore, it is reasonable
293  * for this flag to normally be set, but we chose the more conservative
294  * approach of not setting it, so that there is no possibility of
295  * leaking space in the "partial temporary" failure case.
296  */
297 boolean_t zfs_free_leak_on_eio = B_FALSE;
298 
299 /*
300  * Expiration time in milliseconds. This value has two meanings. First it is
301  * used to determine when the spa_deadman() logic should fire. By default the
302  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
303  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
304  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
305  * in a system panic.
306  */
307 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
308 
309 /*
310  * Check time in milliseconds. This defines the frequency at which we check
311  * for hung I/O.
312  */
313 uint64_t zfs_deadman_checktime_ms = 5000ULL;
314 
315 /*
316  * Override the zfs deadman behavior via /etc/system. By default the
317  * deadman is enabled except on VMware and sparc deployments.
318  */
319 int zfs_deadman_enabled = -1;
320 
321 #if defined(__amd64__) || defined(__i386__)
322 /*
323  * Should we allow the use of mechanisms that depend on saving and restoring
324  * the FPU state?  This was disabled initially due to stability issues in
325  * the kernel FPU routines; see bug 13717. As of the fixes for 13902 and
326  * 13915, it has once again been enabled.
327  */
328 int zfs_fpu_enabled = 1;
329 #endif
330 
331 /*
332  * The worst case is single-sector max-parity RAID-Z blocks, in which
333  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
334  * times the size; so just assume that.  Add to this the fact that
335  * we can have up to 3 DVAs per bp, and one more factor of 2 because
336  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
337  * the worst case is:
338  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
339  */
340 int spa_asize_inflation = 24;
341 
342 /*
343  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
344  * the pool to be consumed.  This ensures that we don't run the pool
345  * completely out of space, due to unaccounted changes (e.g. to the MOS).
346  * It also limits the worst-case time to allocate space.  If we have
347  * less than this amount of free space, most ZPL operations (e.g. write,
348  * create) will return ENOSPC.
349  *
350  * Certain operations (e.g. file removal, most administrative actions) can
351  * use half the slop space.  They will only return ENOSPC if less than half
352  * the slop space is free.  Typically, once the pool has less than the slop
353  * space free, the user will use these operations to free up space in the pool.
354  * These are the operations that call dsl_pool_adjustedsize() with the netfree
355  * argument set to TRUE.
356  *
357  * Operations that are almost guaranteed to free up space in the absence of
358  * a pool checkpoint can use up to three quarters of the slop space
359  * (e.g zfs destroy).
360  *
361  * A very restricted set of operations are always permitted, regardless of
362  * the amount of free space.  These are the operations that call
363  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
364  * increase in the amount of space used, it is possible to run the pool
365  * completely out of space, causing it to be permanently read-only.
366  *
367  * Note that on very small pools, the slop space will be larger than
368  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
369  * but we never allow it to be more than half the pool size.
370  *
371  * See also the comments in zfs_space_check_t.
372  */
373 int spa_slop_shift = 5;
374 uint64_t spa_min_slop = 128 * 1024 * 1024;
375 
376 int spa_allocators = 4;
377 
378 /*PRINTFLIKE2*/
379 void
380 spa_load_failed(spa_t *spa, const char *fmt, ...)
381 {
382 	va_list adx;
383 	char buf[256];
384 
385 	va_start(adx, fmt);
386 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
387 	va_end(adx);
388 
389 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
390 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
391 }
392 
393 /*PRINTFLIKE2*/
394 void
395 spa_load_note(spa_t *spa, const char *fmt, ...)
396 {
397 	va_list adx;
398 	char buf[256];
399 
400 	va_start(adx, fmt);
401 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
402 	va_end(adx);
403 
404 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
405 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
406 }
407 
408 /*
409  * By default dedup and user data indirects land in the special class
410  */
411 int zfs_ddt_data_is_special = B_TRUE;
412 int zfs_user_indirect_is_special = B_TRUE;
413 
414 /*
415  * The percentage of special class final space reserved for metadata only.
416  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
417  * let metadata into the class.
418  */
419 int zfs_special_class_metadata_reserve_pct = 25;
420 
421 /*
422  * ==========================================================================
423  * SPA config locking
424  * ==========================================================================
425  */
426 static void
427 spa_config_lock_init(spa_t *spa)
428 {
429 	for (int i = 0; i < SCL_LOCKS; i++) {
430 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
431 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
432 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
433 		zfs_refcount_create_untracked(&scl->scl_count);
434 		scl->scl_writer = NULL;
435 		scl->scl_write_wanted = 0;
436 	}
437 }
438 
439 static void
440 spa_config_lock_destroy(spa_t *spa)
441 {
442 	for (int i = 0; i < SCL_LOCKS; i++) {
443 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
444 		mutex_destroy(&scl->scl_lock);
445 		cv_destroy(&scl->scl_cv);
446 		zfs_refcount_destroy(&scl->scl_count);
447 		ASSERT(scl->scl_writer == NULL);
448 		ASSERT(scl->scl_write_wanted == 0);
449 	}
450 }
451 
452 int
453 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
454 {
455 	for (int i = 0; i < SCL_LOCKS; i++) {
456 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
457 		if (!(locks & (1 << i)))
458 			continue;
459 		mutex_enter(&scl->scl_lock);
460 		if (rw == RW_READER) {
461 			if (scl->scl_writer || scl->scl_write_wanted) {
462 				mutex_exit(&scl->scl_lock);
463 				spa_config_exit(spa, locks & ((1 << i) - 1),
464 				    tag);
465 				return (0);
466 			}
467 		} else {
468 			ASSERT(scl->scl_writer != curthread);
469 			if (!zfs_refcount_is_zero(&scl->scl_count)) {
470 				mutex_exit(&scl->scl_lock);
471 				spa_config_exit(spa, locks & ((1 << i) - 1),
472 				    tag);
473 				return (0);
474 			}
475 			scl->scl_writer = curthread;
476 		}
477 		(void) zfs_refcount_add(&scl->scl_count, tag);
478 		mutex_exit(&scl->scl_lock);
479 	}
480 	return (1);
481 }
482 
483 void
484 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
485 {
486 	int wlocks_held = 0;
487 
488 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
489 
490 	for (int i = 0; i < SCL_LOCKS; i++) {
491 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
492 		if (scl->scl_writer == curthread)
493 			wlocks_held |= (1 << i);
494 		if (!(locks & (1 << i)))
495 			continue;
496 		mutex_enter(&scl->scl_lock);
497 		if (rw == RW_READER) {
498 			while (scl->scl_writer || scl->scl_write_wanted) {
499 				cv_wait(&scl->scl_cv, &scl->scl_lock);
500 			}
501 		} else {
502 			ASSERT(scl->scl_writer != curthread);
503 			while (!zfs_refcount_is_zero(&scl->scl_count)) {
504 				scl->scl_write_wanted++;
505 				cv_wait(&scl->scl_cv, &scl->scl_lock);
506 				scl->scl_write_wanted--;
507 			}
508 			scl->scl_writer = curthread;
509 		}
510 		(void) zfs_refcount_add(&scl->scl_count, tag);
511 		mutex_exit(&scl->scl_lock);
512 	}
513 	ASSERT3U(wlocks_held, <=, locks);
514 }
515 
516 void
517 spa_config_exit(spa_t *spa, int locks, void *tag)
518 {
519 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
520 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
521 		if (!(locks & (1 << i)))
522 			continue;
523 		mutex_enter(&scl->scl_lock);
524 		ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
525 		if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
526 			ASSERT(scl->scl_writer == NULL ||
527 			    scl->scl_writer == curthread);
528 			scl->scl_writer = NULL;	/* OK in either case */
529 			cv_broadcast(&scl->scl_cv);
530 		}
531 		mutex_exit(&scl->scl_lock);
532 	}
533 }
534 
535 int
536 spa_config_held(spa_t *spa, int locks, krw_t rw)
537 {
538 	int locks_held = 0;
539 
540 	for (int i = 0; i < SCL_LOCKS; i++) {
541 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
542 		if (!(locks & (1 << i)))
543 			continue;
544 		if ((rw == RW_READER &&
545 		    !zfs_refcount_is_zero(&scl->scl_count)) ||
546 		    (rw == RW_WRITER && scl->scl_writer == curthread))
547 			locks_held |= 1 << i;
548 	}
549 
550 	return (locks_held);
551 }
552 
553 /*
554  * ==========================================================================
555  * SPA namespace functions
556  * ==========================================================================
557  */
558 
559 /*
560  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
561  * Returns NULL if no matching spa_t is found.
562  */
563 spa_t *
564 spa_lookup(const char *name)
565 {
566 	static spa_t search;	/* spa_t is large; don't allocate on stack */
567 	spa_t *spa;
568 	avl_index_t where;
569 	char *cp;
570 
571 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
572 
573 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
574 
575 	/*
576 	 * If it's a full dataset name, figure out the pool name and
577 	 * just use that.
578 	 */
579 	cp = strpbrk(search.spa_name, "/@#");
580 	if (cp != NULL)
581 		*cp = '\0';
582 
583 	spa = avl_find(&spa_namespace_avl, &search, &where);
584 
585 	return (spa);
586 }
587 
588 /*
589  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
590  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
591  * looking for potentially hung I/Os.
592  */
593 void
594 spa_deadman(void *arg)
595 {
596 	spa_t *spa = arg;
597 
598 	/*
599 	 * Disable the deadman timer if the pool is suspended.
600 	 */
601 	if (spa_suspended(spa)) {
602 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
603 		return;
604 	}
605 
606 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
607 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
608 	    ++spa->spa_deadman_calls);
609 	if (zfs_deadman_enabled)
610 		vdev_deadman(spa->spa_root_vdev);
611 }
612 
613 int
614 spa_log_sm_sort_by_txg(const void *va, const void *vb)
615 {
616 	const spa_log_sm_t *a = va;
617 	const spa_log_sm_t *b = vb;
618 
619 	return (TREE_CMP(a->sls_txg, b->sls_txg));
620 }
621 
622 /*
623  * Create an uninitialized spa_t with the given name.  Requires
624  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
625  * exist by calling spa_lookup() first.
626  */
627 spa_t *
628 spa_add(const char *name, nvlist_t *config, const char *altroot)
629 {
630 	spa_t *spa;
631 	spa_config_dirent_t *dp;
632 	cyc_handler_t hdlr;
633 	cyc_time_t when;
634 
635 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
636 
637 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
638 
639 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
640 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
641 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
642 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
643 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
644 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
645 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
646 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
647 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
648 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
649 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
650 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
651 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
652 	mutex_init(&spa->spa_imp_kstat_lock, NULL, MUTEX_DEFAULT, NULL);
653 
654 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
655 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
656 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
657 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
658 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
659 
660 	for (int t = 0; t < TXG_SIZE; t++)
661 		bplist_create(&spa->spa_free_bplist[t]);
662 
663 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
664 	spa->spa_state = POOL_STATE_UNINITIALIZED;
665 	spa->spa_freeze_txg = UINT64_MAX;
666 	spa->spa_final_txg = UINT64_MAX;
667 	spa->spa_load_max_txg = UINT64_MAX;
668 	spa->spa_proc = &p0;
669 	spa->spa_proc_state = SPA_PROC_NONE;
670 	spa->spa_trust_config = B_TRUE;
671 
672 	hdlr.cyh_func = spa_deadman;
673 	hdlr.cyh_arg = spa;
674 	hdlr.cyh_level = CY_LOW_LEVEL;
675 
676 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
677 
678 	/*
679 	 * This determines how often we need to check for hung I/Os after
680 	 * the cyclic has already fired. Since checking for hung I/Os is
681 	 * an expensive operation we don't want to check too frequently.
682 	 * Instead wait for 5 seconds before checking again.
683 	 */
684 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
685 	when.cyt_when = CY_INFINITY;
686 	mutex_enter(&cpu_lock);
687 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
688 	mutex_exit(&cpu_lock);
689 
690 	zfs_refcount_create(&spa->spa_refcount);
691 	spa_config_lock_init(spa);
692 
693 	avl_add(&spa_namespace_avl, spa);
694 
695 	/*
696 	 * Set the alternate root, if there is one.
697 	 */
698 	if (altroot) {
699 		spa->spa_root = spa_strdup(altroot);
700 		spa_active_count++;
701 	}
702 
703 	spa->spa_alloc_count = spa_allocators;
704 	spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
705 	    sizeof (kmutex_t), KM_SLEEP);
706 	spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
707 	    sizeof (avl_tree_t), KM_SLEEP);
708 	for (int i = 0; i < spa->spa_alloc_count; i++) {
709 		mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
710 		avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
711 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
712 	}
713 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
714 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
715 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
716 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
717 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
718 	    offsetof(log_summary_entry_t, lse_node));
719 
720 	/*
721 	 * Every pool starts with the default cachefile
722 	 */
723 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
724 	    offsetof(spa_config_dirent_t, scd_link));
725 
726 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
727 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
728 	list_insert_head(&spa->spa_config_list, dp);
729 
730 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
731 	    KM_SLEEP) == 0);
732 
733 	if (config != NULL) {
734 		nvlist_t *features;
735 
736 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
737 		    &features) == 0) {
738 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
739 			    0) == 0);
740 		}
741 
742 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
743 	}
744 
745 	if (spa->spa_label_features == NULL) {
746 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
747 		    KM_SLEEP) == 0);
748 	}
749 
750 	spa->spa_iokstat = kstat_create("zfs", 0, name,
751 	    "disk", KSTAT_TYPE_IO, 1, 0);
752 	if (spa->spa_iokstat) {
753 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
754 		kstat_install(spa->spa_iokstat);
755 	}
756 
757 	spa->spa_min_ashift = INT_MAX;
758 	spa->spa_max_ashift = 0;
759 
760 	/*
761 	 * As a pool is being created, treat all features as disabled by
762 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
763 	 * refcount cache.
764 	 */
765 	for (int i = 0; i < SPA_FEATURES; i++) {
766 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
767 	}
768 
769 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
770 	    offsetof(vdev_t, vdev_leaf_node));
771 
772 	return (spa);
773 }
774 
775 /*
776  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
777  * spa_namespace_lock.  This is called only after the spa_t has been closed and
778  * deactivated.
779  */
780 void
781 spa_remove(spa_t *spa)
782 {
783 	spa_config_dirent_t *dp;
784 
785 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
786 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
787 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
788 
789 	nvlist_free(spa->spa_config_splitting);
790 
791 	avl_remove(&spa_namespace_avl, spa);
792 	cv_broadcast(&spa_namespace_cv);
793 
794 	if (spa->spa_root) {
795 		spa_strfree(spa->spa_root);
796 		spa_active_count--;
797 	}
798 
799 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
800 		list_remove(&spa->spa_config_list, dp);
801 		if (dp->scd_path != NULL)
802 			spa_strfree(dp->scd_path);
803 		kmem_free(dp, sizeof (spa_config_dirent_t));
804 	}
805 
806 	for (int i = 0; i < spa->spa_alloc_count; i++) {
807 		avl_destroy(&spa->spa_alloc_trees[i]);
808 		mutex_destroy(&spa->spa_alloc_locks[i]);
809 	}
810 	kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
811 	    sizeof (kmutex_t));
812 	kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
813 	    sizeof (avl_tree_t));
814 
815 	avl_destroy(&spa->spa_metaslabs_by_flushed);
816 	avl_destroy(&spa->spa_sm_logs_by_txg);
817 	list_destroy(&spa->spa_log_summary);
818 	list_destroy(&spa->spa_config_list);
819 	list_destroy(&spa->spa_leaf_list);
820 
821 	nvlist_free(spa->spa_label_features);
822 	nvlist_free(spa->spa_load_info);
823 	spa_config_set(spa, NULL);
824 
825 	mutex_enter(&cpu_lock);
826 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
827 		cyclic_remove(spa->spa_deadman_cycid);
828 	mutex_exit(&cpu_lock);
829 	spa->spa_deadman_cycid = CYCLIC_NONE;
830 
831 	zfs_refcount_destroy(&spa->spa_refcount);
832 
833 	spa_config_lock_destroy(spa);
834 
835 	kstat_delete(spa->spa_iokstat);
836 	spa->spa_iokstat = NULL;
837 
838 	for (int t = 0; t < TXG_SIZE; t++)
839 		bplist_destroy(&spa->spa_free_bplist[t]);
840 
841 	zio_checksum_templates_free(spa);
842 
843 	cv_destroy(&spa->spa_async_cv);
844 	cv_destroy(&spa->spa_evicting_os_cv);
845 	cv_destroy(&spa->spa_proc_cv);
846 	cv_destroy(&spa->spa_scrub_io_cv);
847 	cv_destroy(&spa->spa_suspend_cv);
848 
849 	mutex_destroy(&spa->spa_flushed_ms_lock);
850 	mutex_destroy(&spa->spa_async_lock);
851 	mutex_destroy(&spa->spa_errlist_lock);
852 	mutex_destroy(&spa->spa_errlog_lock);
853 	mutex_destroy(&spa->spa_evicting_os_lock);
854 	mutex_destroy(&spa->spa_history_lock);
855 	mutex_destroy(&spa->spa_proc_lock);
856 	mutex_destroy(&spa->spa_props_lock);
857 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
858 	mutex_destroy(&spa->spa_scrub_lock);
859 	mutex_destroy(&spa->spa_suspend_lock);
860 	mutex_destroy(&spa->spa_vdev_top_lock);
861 	mutex_destroy(&spa->spa_iokstat_lock);
862 	mutex_destroy(&spa->spa_imp_kstat_lock);
863 
864 	kmem_free(spa, sizeof (spa_t));
865 }
866 
867 /*
868  * Given a pool, return the next pool in the namespace, or NULL if there is
869  * none.  If 'prev' is NULL, return the first pool.
870  */
871 spa_t *
872 spa_next(spa_t *prev)
873 {
874 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
875 
876 	if (prev)
877 		return (AVL_NEXT(&spa_namespace_avl, prev));
878 	else
879 		return (avl_first(&spa_namespace_avl));
880 }
881 
882 /*
883  * ==========================================================================
884  * SPA refcount functions
885  * ==========================================================================
886  */
887 
888 /*
889  * Add a reference to the given spa_t.  Must have at least one reference, or
890  * have the namespace lock held.
891  */
892 void
893 spa_open_ref(spa_t *spa, void *tag)
894 {
895 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
896 	    MUTEX_HELD(&spa_namespace_lock));
897 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
898 }
899 
900 /*
901  * Remove a reference to the given spa_t.  Must have at least one reference, or
902  * have the namespace lock held.
903  */
904 void
905 spa_close(spa_t *spa, void *tag)
906 {
907 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
908 	    MUTEX_HELD(&spa_namespace_lock));
909 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
910 }
911 
912 /*
913  * Remove a reference to the given spa_t held by a dsl dir that is
914  * being asynchronously released.  Async releases occur from a taskq
915  * performing eviction of dsl datasets and dirs.  The namespace lock
916  * isn't held and the hold by the object being evicted may contribute to
917  * spa_minref (e.g. dataset or directory released during pool export),
918  * so the asserts in spa_close() do not apply.
919  */
920 void
921 spa_async_close(spa_t *spa, void *tag)
922 {
923 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
924 }
925 
926 /*
927  * Check to see if the spa refcount is zero.  Must be called with
928  * spa_namespace_lock held.  We really compare against spa_minref, which is the
929  * number of references acquired when opening a pool
930  */
931 boolean_t
932 spa_refcount_zero(spa_t *spa)
933 {
934 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
935 
936 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
937 }
938 
939 /*
940  * ==========================================================================
941  * SPA spare and l2cache tracking
942  * ==========================================================================
943  */
944 
945 /*
946  * Hot spares and cache devices are tracked using the same code below,
947  * for 'auxiliary' devices.
948  */
949 
950 typedef struct spa_aux {
951 	uint64_t	aux_guid;
952 	uint64_t	aux_pool;
953 	avl_node_t	aux_avl;
954 	int		aux_count;
955 } spa_aux_t;
956 
957 static inline int
958 spa_aux_compare(const void *a, const void *b)
959 {
960 	const spa_aux_t *sa = (const spa_aux_t *)a;
961 	const spa_aux_t *sb = (const spa_aux_t *)b;
962 
963 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
964 }
965 
966 void
967 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
968 {
969 	avl_index_t where;
970 	spa_aux_t search;
971 	spa_aux_t *aux;
972 
973 	search.aux_guid = vd->vdev_guid;
974 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
975 		aux->aux_count++;
976 	} else {
977 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
978 		aux->aux_guid = vd->vdev_guid;
979 		aux->aux_count = 1;
980 		avl_insert(avl, aux, where);
981 	}
982 }
983 
984 void
985 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
986 {
987 	spa_aux_t search;
988 	spa_aux_t *aux;
989 	avl_index_t where;
990 
991 	search.aux_guid = vd->vdev_guid;
992 	aux = avl_find(avl, &search, &where);
993 
994 	ASSERT(aux != NULL);
995 
996 	if (--aux->aux_count == 0) {
997 		avl_remove(avl, aux);
998 		kmem_free(aux, sizeof (spa_aux_t));
999 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1000 		aux->aux_pool = 0ULL;
1001 	}
1002 }
1003 
1004 boolean_t
1005 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1006 {
1007 	spa_aux_t search, *found;
1008 
1009 	search.aux_guid = guid;
1010 	found = avl_find(avl, &search, NULL);
1011 
1012 	if (pool) {
1013 		if (found)
1014 			*pool = found->aux_pool;
1015 		else
1016 			*pool = 0ULL;
1017 	}
1018 
1019 	if (refcnt) {
1020 		if (found)
1021 			*refcnt = found->aux_count;
1022 		else
1023 			*refcnt = 0;
1024 	}
1025 
1026 	return (found != NULL);
1027 }
1028 
1029 void
1030 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1031 {
1032 	spa_aux_t search, *found;
1033 	avl_index_t where;
1034 
1035 	search.aux_guid = vd->vdev_guid;
1036 	found = avl_find(avl, &search, &where);
1037 	ASSERT(found != NULL);
1038 	ASSERT(found->aux_pool == 0ULL);
1039 
1040 	found->aux_pool = spa_guid(vd->vdev_spa);
1041 }
1042 
1043 /*
1044  * Spares are tracked globally due to the following constraints:
1045  *
1046  *	- A spare may be part of multiple pools.
1047  *	- A spare may be added to a pool even if it's actively in use within
1048  *	  another pool.
1049  *	- A spare in use in any pool can only be the source of a replacement if
1050  *	  the target is a spare in the same pool.
1051  *
1052  * We keep track of all spares on the system through the use of a reference
1053  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1054  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1055  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1056  * inactive).  When a spare is made active (used to replace a device in the
1057  * pool), we also keep track of which pool its been made a part of.
1058  *
1059  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1060  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1061  * separate spare lock exists for the status query path, which does not need to
1062  * be completely consistent with respect to other vdev configuration changes.
1063  */
1064 
1065 /*
1066  * Poll the spare vdevs to make sure they are not faulty.
1067  *
1068  * The probe operation will raise an ENXIO error and create an FM ereport if the
1069  * probe fails.
1070  */
1071 void
1072 spa_spare_poll(spa_t *spa)
1073 {
1074 	boolean_t async_request = B_FALSE;
1075 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1076 	for (int i = 0; i < spa->spa_spares.sav_count; i++) {
1077 		spa_aux_t search, *found;
1078 		vdev_t *vd = spa->spa_spares.sav_vdevs[i];
1079 
1080 		search.aux_guid = vd->vdev_guid;
1081 
1082 		mutex_enter(&spa_spare_lock);
1083 		found = avl_find(&spa_spare_avl, &search, NULL);
1084 		/* This spare is in use by a pool. */
1085 		if (found != NULL && found->aux_pool != 0) {
1086 			mutex_exit(&spa_spare_lock);
1087 			continue;
1088 		}
1089 		mutex_exit(&spa_spare_lock);
1090 
1091 		vd->vdev_probe_wanted = B_TRUE;
1092 		async_request = B_TRUE;
1093 	}
1094 	if (async_request)
1095 		spa_async_request(spa, SPA_ASYNC_PROBE);
1096 
1097 	spa_config_exit(spa, SCL_STATE, FTAG);
1098 }
1099 
1100 static int
1101 spa_spare_compare(const void *a, const void *b)
1102 {
1103 	return (spa_aux_compare(a, b));
1104 }
1105 
1106 void
1107 spa_spare_add(vdev_t *vd)
1108 {
1109 	mutex_enter(&spa_spare_lock);
1110 	ASSERT(!vd->vdev_isspare);
1111 	spa_aux_add(vd, &spa_spare_avl);
1112 	vd->vdev_isspare = B_TRUE;
1113 	mutex_exit(&spa_spare_lock);
1114 }
1115 
1116 void
1117 spa_spare_remove(vdev_t *vd)
1118 {
1119 	mutex_enter(&spa_spare_lock);
1120 	ASSERT(vd->vdev_isspare);
1121 	spa_aux_remove(vd, &spa_spare_avl);
1122 	vd->vdev_isspare = B_FALSE;
1123 	mutex_exit(&spa_spare_lock);
1124 }
1125 
1126 boolean_t
1127 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1128 {
1129 	boolean_t found;
1130 
1131 	mutex_enter(&spa_spare_lock);
1132 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1133 	mutex_exit(&spa_spare_lock);
1134 
1135 	return (found);
1136 }
1137 
1138 void
1139 spa_spare_activate(vdev_t *vd)
1140 {
1141 	mutex_enter(&spa_spare_lock);
1142 	ASSERT(vd->vdev_isspare);
1143 	spa_aux_activate(vd, &spa_spare_avl);
1144 	mutex_exit(&spa_spare_lock);
1145 }
1146 
1147 /*
1148  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1149  * Cache devices currently only support one pool per cache device, and so
1150  * for these devices the aux reference count is currently unused beyond 1.
1151  */
1152 
1153 static int
1154 spa_l2cache_compare(const void *a, const void *b)
1155 {
1156 	return (spa_aux_compare(a, b));
1157 }
1158 
1159 void
1160 spa_l2cache_add(vdev_t *vd)
1161 {
1162 	mutex_enter(&spa_l2cache_lock);
1163 	ASSERT(!vd->vdev_isl2cache);
1164 	spa_aux_add(vd, &spa_l2cache_avl);
1165 	vd->vdev_isl2cache = B_TRUE;
1166 	mutex_exit(&spa_l2cache_lock);
1167 }
1168 
1169 void
1170 spa_l2cache_remove(vdev_t *vd)
1171 {
1172 	mutex_enter(&spa_l2cache_lock);
1173 	ASSERT(vd->vdev_isl2cache);
1174 	spa_aux_remove(vd, &spa_l2cache_avl);
1175 	vd->vdev_isl2cache = B_FALSE;
1176 	mutex_exit(&spa_l2cache_lock);
1177 }
1178 
1179 boolean_t
1180 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1181 {
1182 	boolean_t found;
1183 
1184 	mutex_enter(&spa_l2cache_lock);
1185 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1186 	mutex_exit(&spa_l2cache_lock);
1187 
1188 	return (found);
1189 }
1190 
1191 void
1192 spa_l2cache_activate(vdev_t *vd)
1193 {
1194 	mutex_enter(&spa_l2cache_lock);
1195 	ASSERT(vd->vdev_isl2cache);
1196 	spa_aux_activate(vd, &spa_l2cache_avl);
1197 	mutex_exit(&spa_l2cache_lock);
1198 }
1199 
1200 /*
1201  * ==========================================================================
1202  * SPA vdev locking
1203  * ==========================================================================
1204  */
1205 
1206 /*
1207  * Lock the given spa_t for the purpose of adding or removing a vdev.
1208  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1209  * It returns the next transaction group for the spa_t.
1210  */
1211 uint64_t
1212 spa_vdev_enter(spa_t *spa)
1213 {
1214 	mutex_enter(&spa->spa_vdev_top_lock);
1215 	mutex_enter(&spa_namespace_lock);
1216 
1217 	vdev_autotrim_stop_all(spa);
1218 
1219 	return (spa_vdev_config_enter(spa));
1220 }
1221 
1222 /*
1223  * Internal implementation for spa_vdev_enter().  Used when a vdev
1224  * operation requires multiple syncs (i.e. removing a device) while
1225  * keeping the spa_namespace_lock held.
1226  */
1227 uint64_t
1228 spa_vdev_config_enter(spa_t *spa)
1229 {
1230 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1231 
1232 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1233 
1234 	return (spa_last_synced_txg(spa) + 1);
1235 }
1236 
1237 /*
1238  * Used in combination with spa_vdev_config_enter() to allow the syncing
1239  * of multiple transactions without releasing the spa_namespace_lock.
1240  */
1241 void
1242 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1243 {
1244 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1245 
1246 	int config_changed = B_FALSE;
1247 
1248 	ASSERT(txg > spa_last_synced_txg(spa));
1249 
1250 	spa->spa_pending_vdev = NULL;
1251 
1252 	/*
1253 	 * Reassess the DTLs.
1254 	 */
1255 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1256 
1257 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1258 		config_changed = B_TRUE;
1259 		spa->spa_config_generation++;
1260 	}
1261 
1262 	/*
1263 	 * Verify the metaslab classes.
1264 	 */
1265 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1266 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1267 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1268 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1269 
1270 	spa_config_exit(spa, SCL_ALL, spa);
1271 
1272 	/*
1273 	 * Panic the system if the specified tag requires it.  This
1274 	 * is useful for ensuring that configurations are updated
1275 	 * transactionally.
1276 	 */
1277 	if (zio_injection_enabled)
1278 		zio_handle_panic_injection(spa, tag, 0);
1279 
1280 	/*
1281 	 * Note: this txg_wait_synced() is important because it ensures
1282 	 * that there won't be more than one config change per txg.
1283 	 * This allows us to use the txg as the generation number.
1284 	 */
1285 	if (error == 0)
1286 		txg_wait_synced(spa->spa_dsl_pool, txg);
1287 
1288 	if (vd != NULL) {
1289 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1290 		if (vd->vdev_ops->vdev_op_leaf) {
1291 			mutex_enter(&vd->vdev_initialize_lock);
1292 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1293 			    NULL);
1294 			mutex_exit(&vd->vdev_initialize_lock);
1295 
1296 			mutex_enter(&vd->vdev_trim_lock);
1297 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1298 			mutex_exit(&vd->vdev_trim_lock);
1299 		}
1300 
1301 		/*
1302 		 * The vdev may be both a leaf and top-level device.
1303 		 */
1304 		vdev_autotrim_stop_wait(vd);
1305 
1306 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1307 		vdev_free(vd);
1308 		spa_config_exit(spa, SCL_ALL, spa);
1309 	}
1310 
1311 	/*
1312 	 * If the config changed, update the config cache.
1313 	 */
1314 	if (config_changed)
1315 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1316 }
1317 
1318 /*
1319  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1320  * locking of spa_vdev_enter(), we also want make sure the transactions have
1321  * synced to disk, and then update the global configuration cache with the new
1322  * information.
1323  */
1324 int
1325 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1326 {
1327 	vdev_autotrim_restart(spa);
1328 
1329 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1330 	mutex_exit(&spa_namespace_lock);
1331 	mutex_exit(&spa->spa_vdev_top_lock);
1332 
1333 	return (error);
1334 }
1335 
1336 /*
1337  * Lock the given spa_t for the purpose of changing vdev state.
1338  */
1339 void
1340 spa_vdev_state_enter(spa_t *spa, int oplocks)
1341 {
1342 	int locks = SCL_STATE_ALL | oplocks;
1343 
1344 	/*
1345 	 * Root pools may need to read of the underlying devfs filesystem
1346 	 * when opening up a vdev.  Unfortunately if we're holding the
1347 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1348 	 * the read from the root filesystem.  Instead we "prefetch"
1349 	 * the associated vnodes that we need prior to opening the
1350 	 * underlying devices and cache them so that we can prevent
1351 	 * any I/O when we are doing the actual open.
1352 	 */
1353 	if (spa_is_root(spa)) {
1354 		int low = locks & ~(SCL_ZIO - 1);
1355 		int high = locks & ~low;
1356 
1357 		spa_config_enter(spa, high, spa, RW_WRITER);
1358 		vdev_hold(spa->spa_root_vdev);
1359 		spa_config_enter(spa, low, spa, RW_WRITER);
1360 	} else {
1361 		spa_config_enter(spa, locks, spa, RW_WRITER);
1362 	}
1363 	spa->spa_vdev_locks = locks;
1364 }
1365 
1366 int
1367 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1368 {
1369 	boolean_t config_changed = B_FALSE;
1370 
1371 	if (vd != NULL || error == 0)
1372 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1373 		    0, 0, B_FALSE);
1374 
1375 	if (vd != NULL) {
1376 		vdev_state_dirty(vd->vdev_top);
1377 		config_changed = B_TRUE;
1378 		spa->spa_config_generation++;
1379 	}
1380 
1381 	if (spa_is_root(spa))
1382 		vdev_rele(spa->spa_root_vdev);
1383 
1384 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1385 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1386 
1387 	/*
1388 	 * If anything changed, wait for it to sync.  This ensures that,
1389 	 * from the system administrator's perspective, zpool(8) commands
1390 	 * are synchronous.  This is important for things like zpool offline:
1391 	 * when the command completes, you expect no further I/O from ZFS.
1392 	 */
1393 	if (vd != NULL)
1394 		txg_wait_synced(spa->spa_dsl_pool, 0);
1395 
1396 	/*
1397 	 * If the config changed, update the config cache.
1398 	 */
1399 	if (config_changed) {
1400 		mutex_enter(&spa_namespace_lock);
1401 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1402 		mutex_exit(&spa_namespace_lock);
1403 	}
1404 
1405 	return (error);
1406 }
1407 
1408 /*
1409  * ==========================================================================
1410  * Miscellaneous functions
1411  * ==========================================================================
1412  */
1413 
1414 void
1415 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1416 {
1417 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1418 		fnvlist_add_boolean(spa->spa_label_features, feature);
1419 		/*
1420 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1421 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1422 		 * Thankfully, in this case we don't need to dirty the config
1423 		 * because it will be written out anyway when we finish
1424 		 * creating the pool.
1425 		 */
1426 		if (tx->tx_txg != TXG_INITIAL)
1427 			vdev_config_dirty(spa->spa_root_vdev);
1428 	}
1429 }
1430 
1431 void
1432 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1433 {
1434 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1435 		vdev_config_dirty(spa->spa_root_vdev);
1436 }
1437 
1438 /*
1439  * Return the spa_t associated with given pool_guid, if it exists.  If
1440  * device_guid is non-zero, determine whether the pool exists *and* contains
1441  * a device with the specified device_guid.
1442  */
1443 spa_t *
1444 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1445 {
1446 	spa_t *spa;
1447 	avl_tree_t *t = &spa_namespace_avl;
1448 
1449 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1450 
1451 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1452 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1453 			continue;
1454 		if (spa->spa_root_vdev == NULL)
1455 			continue;
1456 		if (spa_guid(spa) == pool_guid) {
1457 			if (device_guid == 0)
1458 				break;
1459 
1460 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1461 			    device_guid) != NULL)
1462 				break;
1463 
1464 			/*
1465 			 * Check any devices we may be in the process of adding.
1466 			 */
1467 			if (spa->spa_pending_vdev) {
1468 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1469 				    device_guid) != NULL)
1470 					break;
1471 			}
1472 		}
1473 	}
1474 
1475 	return (spa);
1476 }
1477 
1478 /*
1479  * Determine whether a pool with the given pool_guid exists.
1480  */
1481 boolean_t
1482 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1483 {
1484 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1485 }
1486 
1487 char *
1488 spa_strdup(const char *s)
1489 {
1490 	size_t len;
1491 	char *new;
1492 
1493 	len = strlen(s);
1494 	new = kmem_alloc(len + 1, KM_SLEEP);
1495 	bcopy(s, new, len);
1496 	new[len] = '\0';
1497 
1498 	return (new);
1499 }
1500 
1501 void
1502 spa_strfree(char *s)
1503 {
1504 	kmem_free(s, strlen(s) + 1);
1505 }
1506 
1507 uint64_t
1508 spa_get_random(uint64_t range)
1509 {
1510 	uint64_t r;
1511 
1512 	ASSERT(range != 0);
1513 
1514 	if (range == 1)
1515 		return (0);
1516 
1517 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1518 
1519 	return (r % range);
1520 }
1521 
1522 uint64_t
1523 spa_generate_guid(spa_t *spa)
1524 {
1525 	uint64_t guid = spa_get_random(-1ULL);
1526 
1527 	if (spa != NULL) {
1528 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1529 			guid = spa_get_random(-1ULL);
1530 	} else {
1531 		while (guid == 0 || spa_guid_exists(guid, 0))
1532 			guid = spa_get_random(-1ULL);
1533 	}
1534 
1535 	return (guid);
1536 }
1537 
1538 void
1539 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1540 {
1541 	char type[256];
1542 	char *checksum = NULL;
1543 	char *compress = NULL;
1544 
1545 	if (bp != NULL) {
1546 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1547 			dmu_object_byteswap_t bswap =
1548 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1549 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1550 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1551 			    "metadata" : "data",
1552 			    dmu_ot_byteswap[bswap].ob_name);
1553 		} else {
1554 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1555 			    sizeof (type));
1556 		}
1557 		if (!BP_IS_EMBEDDED(bp)) {
1558 			checksum =
1559 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1560 		}
1561 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1562 	}
1563 
1564 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1565 	    compress);
1566 }
1567 
1568 void
1569 spa_freeze(spa_t *spa)
1570 {
1571 	uint64_t freeze_txg = 0;
1572 
1573 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1574 	if (spa->spa_freeze_txg == UINT64_MAX) {
1575 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1576 		spa->spa_freeze_txg = freeze_txg;
1577 	}
1578 	spa_config_exit(spa, SCL_ALL, FTAG);
1579 	if (freeze_txg != 0)
1580 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1581 }
1582 
1583 void
1584 zfs_panic_recover(const char *fmt, ...)
1585 {
1586 	va_list adx;
1587 
1588 	va_start(adx, fmt);
1589 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1590 	va_end(adx);
1591 }
1592 
1593 /*
1594  * This is a stripped-down version of strtoull, suitable only for converting
1595  * lowercase hexadecimal numbers that don't overflow.
1596  */
1597 uint64_t
1598 zfs_strtonum(const char *str, char **nptr)
1599 {
1600 	uint64_t val = 0;
1601 	char c;
1602 	int digit;
1603 
1604 	while ((c = *str) != '\0') {
1605 		if (c >= '0' && c <= '9')
1606 			digit = c - '0';
1607 		else if (c >= 'a' && c <= 'f')
1608 			digit = 10 + c - 'a';
1609 		else
1610 			break;
1611 
1612 		val *= 16;
1613 		val += digit;
1614 
1615 		str++;
1616 	}
1617 
1618 	if (nptr)
1619 		*nptr = (char *)str;
1620 
1621 	return (val);
1622 }
1623 
1624 void
1625 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1626 {
1627 	/*
1628 	 * We bump the feature refcount for each special vdev added to the pool
1629 	 */
1630 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1631 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1632 }
1633 
1634 /*
1635  * ==========================================================================
1636  * Accessor functions
1637  * ==========================================================================
1638  */
1639 
1640 boolean_t
1641 spa_shutting_down(spa_t *spa)
1642 {
1643 	return (spa->spa_async_suspended);
1644 }
1645 
1646 dsl_pool_t *
1647 spa_get_dsl(spa_t *spa)
1648 {
1649 	return (spa->spa_dsl_pool);
1650 }
1651 
1652 boolean_t
1653 spa_is_initializing(spa_t *spa)
1654 {
1655 	return (spa->spa_is_initializing);
1656 }
1657 
1658 boolean_t
1659 spa_indirect_vdevs_loaded(spa_t *spa)
1660 {
1661 	return (spa->spa_indirect_vdevs_loaded);
1662 }
1663 
1664 blkptr_t *
1665 spa_get_rootblkptr(spa_t *spa)
1666 {
1667 	return (&spa->spa_ubsync.ub_rootbp);
1668 }
1669 
1670 void
1671 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1672 {
1673 	spa->spa_uberblock.ub_rootbp = *bp;
1674 }
1675 
1676 void
1677 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1678 {
1679 	if (spa->spa_root == NULL)
1680 		buf[0] = '\0';
1681 	else
1682 		(void) strncpy(buf, spa->spa_root, buflen);
1683 }
1684 
1685 int
1686 spa_sync_pass(spa_t *spa)
1687 {
1688 	return (spa->spa_sync_pass);
1689 }
1690 
1691 char *
1692 spa_name(spa_t *spa)
1693 {
1694 	return (spa->spa_name);
1695 }
1696 
1697 uint64_t
1698 spa_guid(spa_t *spa)
1699 {
1700 	dsl_pool_t *dp = spa_get_dsl(spa);
1701 	uint64_t guid;
1702 
1703 	/*
1704 	 * If we fail to parse the config during spa_load(), we can go through
1705 	 * the error path (which posts an ereport) and end up here with no root
1706 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1707 	 * this case.
1708 	 */
1709 	if (spa->spa_root_vdev == NULL)
1710 		return (spa->spa_config_guid);
1711 
1712 	guid = spa->spa_last_synced_guid != 0 ?
1713 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1714 
1715 	/*
1716 	 * Return the most recently synced out guid unless we're
1717 	 * in syncing context.
1718 	 */
1719 	if (dp && dsl_pool_sync_context(dp))
1720 		return (spa->spa_root_vdev->vdev_guid);
1721 	else
1722 		return (guid);
1723 }
1724 
1725 uint64_t
1726 spa_load_guid(spa_t *spa)
1727 {
1728 	/*
1729 	 * This is a GUID that exists solely as a reference for the
1730 	 * purposes of the arc.  It is generated at load time, and
1731 	 * is never written to persistent storage.
1732 	 */
1733 	return (spa->spa_load_guid);
1734 }
1735 
1736 uint64_t
1737 spa_last_synced_txg(spa_t *spa)
1738 {
1739 	return (spa->spa_ubsync.ub_txg);
1740 }
1741 
1742 uint64_t
1743 spa_first_txg(spa_t *spa)
1744 {
1745 	return (spa->spa_first_txg);
1746 }
1747 
1748 uint64_t
1749 spa_syncing_txg(spa_t *spa)
1750 {
1751 	return (spa->spa_syncing_txg);
1752 }
1753 
1754 /*
1755  * Return the last txg where data can be dirtied. The final txgs
1756  * will be used to just clear out any deferred frees that remain.
1757  */
1758 uint64_t
1759 spa_final_dirty_txg(spa_t *spa)
1760 {
1761 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1762 }
1763 
1764 pool_state_t
1765 spa_state(spa_t *spa)
1766 {
1767 	return (spa->spa_state);
1768 }
1769 
1770 spa_load_state_t
1771 spa_load_state(spa_t *spa)
1772 {
1773 	return (spa->spa_load_state);
1774 }
1775 
1776 uint64_t
1777 spa_freeze_txg(spa_t *spa)
1778 {
1779 	return (spa->spa_freeze_txg);
1780 }
1781 
1782 /* ARGSUSED */
1783 uint64_t
1784 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1785 {
1786 	return (lsize * spa_asize_inflation);
1787 }
1788 
1789 /*
1790  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1791  * or at least 128MB, unless that would cause it to be more than half the
1792  * pool size.
1793  *
1794  * See the comment above spa_slop_shift for details.
1795  */
1796 uint64_t
1797 spa_get_slop_space(spa_t *spa)
1798 {
1799 	uint64_t space = spa_get_dspace(spa);
1800 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1801 }
1802 
1803 uint64_t
1804 spa_get_dspace(spa_t *spa)
1805 {
1806 	return (spa->spa_dspace);
1807 }
1808 
1809 uint64_t
1810 spa_get_checkpoint_space(spa_t *spa)
1811 {
1812 	return (spa->spa_checkpoint_info.sci_dspace);
1813 }
1814 
1815 void
1816 spa_update_dspace(spa_t *spa)
1817 {
1818 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1819 	    ddt_get_dedup_dspace(spa);
1820 	if (spa->spa_vdev_removal != NULL) {
1821 		/*
1822 		 * We can't allocate from the removing device, so
1823 		 * subtract its size.  This prevents the DMU/DSL from
1824 		 * filling up the (now smaller) pool while we are in the
1825 		 * middle of removing the device.
1826 		 *
1827 		 * Note that the DMU/DSL doesn't actually know or care
1828 		 * how much space is allocated (it does its own tracking
1829 		 * of how much space has been logically used).  So it
1830 		 * doesn't matter that the data we are moving may be
1831 		 * allocated twice (on the old device and the new
1832 		 * device).
1833 		 */
1834 		spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1835 		vdev_t *vd =
1836 		    vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1837 		spa->spa_dspace -= spa_deflate(spa) ?
1838 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1839 		spa_config_exit(spa, SCL_VDEV, FTAG);
1840 	}
1841 }
1842 
1843 /*
1844  * Return the failure mode that has been set to this pool. The default
1845  * behavior will be to block all I/Os when a complete failure occurs.
1846  */
1847 uint8_t
1848 spa_get_failmode(spa_t *spa)
1849 {
1850 	return (spa->spa_failmode);
1851 }
1852 
1853 boolean_t
1854 spa_suspended(spa_t *spa)
1855 {
1856 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1857 }
1858 
1859 uint64_t
1860 spa_version(spa_t *spa)
1861 {
1862 	return (spa->spa_ubsync.ub_version);
1863 }
1864 
1865 boolean_t
1866 spa_deflate(spa_t *spa)
1867 {
1868 	return (spa->spa_deflate);
1869 }
1870 
1871 metaslab_class_t *
1872 spa_normal_class(spa_t *spa)
1873 {
1874 	return (spa->spa_normal_class);
1875 }
1876 
1877 metaslab_class_t *
1878 spa_log_class(spa_t *spa)
1879 {
1880 	return (spa->spa_log_class);
1881 }
1882 
1883 metaslab_class_t *
1884 spa_special_class(spa_t *spa)
1885 {
1886 	return (spa->spa_special_class);
1887 }
1888 
1889 metaslab_class_t *
1890 spa_dedup_class(spa_t *spa)
1891 {
1892 	return (spa->spa_dedup_class);
1893 }
1894 
1895 /*
1896  * Locate an appropriate allocation class
1897  */
1898 metaslab_class_t *
1899 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1900     uint_t level, uint_t special_smallblk)
1901 {
1902 	if (DMU_OT_IS_ZIL(objtype)) {
1903 		if (spa->spa_log_class->mc_groups != 0)
1904 			return (spa_log_class(spa));
1905 		else
1906 			return (spa_normal_class(spa));
1907 	}
1908 
1909 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1910 
1911 	if (DMU_OT_IS_DDT(objtype)) {
1912 		if (spa->spa_dedup_class->mc_groups != 0)
1913 			return (spa_dedup_class(spa));
1914 		else if (has_special_class && zfs_ddt_data_is_special)
1915 			return (spa_special_class(spa));
1916 		else
1917 			return (spa_normal_class(spa));
1918 	}
1919 
1920 	/* Indirect blocks for user data can land in special if allowed */
1921 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1922 		if (has_special_class && zfs_user_indirect_is_special)
1923 			return (spa_special_class(spa));
1924 		else
1925 			return (spa_normal_class(spa));
1926 	}
1927 
1928 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1929 		if (has_special_class)
1930 			return (spa_special_class(spa));
1931 		else
1932 			return (spa_normal_class(spa));
1933 	}
1934 
1935 	/*
1936 	 * Allow small file blocks in special class in some cases (like
1937 	 * for the dRAID vdev feature). But always leave a reserve of
1938 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1939 	 */
1940 	if (DMU_OT_IS_FILE(objtype) &&
1941 	    has_special_class && size <= special_smallblk) {
1942 		metaslab_class_t *special = spa_special_class(spa);
1943 		uint64_t alloc = metaslab_class_get_alloc(special);
1944 		uint64_t space = metaslab_class_get_space(special);
1945 		uint64_t limit =
1946 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
1947 		    / 100;
1948 
1949 		if (alloc < limit)
1950 			return (special);
1951 	}
1952 
1953 	return (spa_normal_class(spa));
1954 }
1955 
1956 void
1957 spa_evicting_os_register(spa_t *spa, objset_t *os)
1958 {
1959 	mutex_enter(&spa->spa_evicting_os_lock);
1960 	list_insert_head(&spa->spa_evicting_os_list, os);
1961 	mutex_exit(&spa->spa_evicting_os_lock);
1962 }
1963 
1964 void
1965 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1966 {
1967 	mutex_enter(&spa->spa_evicting_os_lock);
1968 	list_remove(&spa->spa_evicting_os_list, os);
1969 	cv_broadcast(&spa->spa_evicting_os_cv);
1970 	mutex_exit(&spa->spa_evicting_os_lock);
1971 }
1972 
1973 void
1974 spa_evicting_os_wait(spa_t *spa)
1975 {
1976 	mutex_enter(&spa->spa_evicting_os_lock);
1977 	while (!list_is_empty(&spa->spa_evicting_os_list))
1978 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1979 	mutex_exit(&spa->spa_evicting_os_lock);
1980 
1981 	dmu_buf_user_evict_wait();
1982 }
1983 
1984 int
1985 spa_max_replication(spa_t *spa)
1986 {
1987 	/*
1988 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1989 	 * handle BPs with more than one DVA allocated.  Set our max
1990 	 * replication level accordingly.
1991 	 */
1992 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1993 		return (1);
1994 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1995 }
1996 
1997 int
1998 spa_prev_software_version(spa_t *spa)
1999 {
2000 	return (spa->spa_prev_software_version);
2001 }
2002 
2003 uint64_t
2004 spa_deadman_synctime(spa_t *spa)
2005 {
2006 	return (spa->spa_deadman_synctime);
2007 }
2008 
2009 spa_autotrim_t
2010 spa_get_autotrim(spa_t *spa)
2011 {
2012 	return (spa->spa_autotrim);
2013 }
2014 
2015 uint64_t
2016 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2017 {
2018 	uint64_t asize = DVA_GET_ASIZE(dva);
2019 	uint64_t dsize = asize;
2020 
2021 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2022 
2023 	if (asize != 0 && spa->spa_deflate) {
2024 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2025 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
2026 	}
2027 
2028 	return (dsize);
2029 }
2030 
2031 uint64_t
2032 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2033 {
2034 	uint64_t dsize = 0;
2035 
2036 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2037 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2038 
2039 	return (dsize);
2040 }
2041 
2042 uint64_t
2043 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2044 {
2045 	uint64_t dsize = 0;
2046 
2047 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2048 
2049 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2050 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2051 
2052 	spa_config_exit(spa, SCL_VDEV, FTAG);
2053 
2054 	return (dsize);
2055 }
2056 
2057 uint64_t
2058 spa_dirty_data(spa_t *spa)
2059 {
2060 	return (spa->spa_dsl_pool->dp_dirty_total);
2061 }
2062 
2063 /*
2064  * ==========================================================================
2065  * SPA Import Progress Routines
2066  * The illumos implementation of these are different from OpenZFS. OpenZFS
2067  * uses the Linux /proc fs, whereas we use a kstat on the spa.
2068  * ==========================================================================
2069  */
2070 
2071 typedef struct spa_import_progress {
2072 	kstat_named_t sip_load_state;
2073 	kstat_named_t sip_mmp_sec_remaining;	/* MMP activity check */
2074 	kstat_named_t sip_load_max_txg;		/* rewind txg */
2075 } spa_import_progress_t;
2076 
2077 static void
2078 spa_import_progress_init(void)
2079 {
2080 }
2081 
2082 static void
2083 spa_import_progress_destroy(void)
2084 {
2085 }
2086 
2087 void spa_import_progress_add(spa_t *);
2088 
2089 int
2090 spa_import_progress_set_state(spa_t *spa, spa_load_state_t load_state)
2091 {
2092 	if (spa->spa_imp_kstat == NULL)
2093 		spa_import_progress_add(spa);
2094 
2095 	mutex_enter(&spa->spa_imp_kstat_lock);
2096 	if (spa->spa_imp_kstat != NULL) {
2097 		spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data;
2098 		if (sip != NULL)
2099 			sip->sip_load_state.value.ui64 = (uint64_t)load_state;
2100 	}
2101 	mutex_exit(&spa->spa_imp_kstat_lock);
2102 
2103 	return (0);
2104 }
2105 
2106 int
2107 spa_import_progress_set_max_txg(spa_t *spa, uint64_t load_max_txg)
2108 {
2109 	if (spa->spa_imp_kstat == NULL)
2110 		spa_import_progress_add(spa);
2111 
2112 	mutex_enter(&spa->spa_imp_kstat_lock);
2113 	if (spa->spa_imp_kstat != NULL) {
2114 		spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data;
2115 		if (sip != NULL)
2116 			sip->sip_load_max_txg.value.ui64 = load_max_txg;
2117 	}
2118 	mutex_exit(&spa->spa_imp_kstat_lock);
2119 
2120 	return (0);
2121 }
2122 
2123 int
2124 spa_import_progress_set_mmp_check(spa_t *spa, uint64_t mmp_sec_remaining)
2125 {
2126 	if (spa->spa_imp_kstat == NULL)
2127 		spa_import_progress_add(spa);
2128 
2129 	mutex_enter(&spa->spa_imp_kstat_lock);
2130 	if (spa->spa_imp_kstat != NULL) {
2131 		spa_import_progress_t *sip = spa->spa_imp_kstat->ks_data;
2132 		if (sip != NULL)
2133 			sip->sip_mmp_sec_remaining.value.ui64 =
2134 			    mmp_sec_remaining;
2135 	}
2136 	mutex_exit(&spa->spa_imp_kstat_lock);
2137 
2138 	return (0);
2139 }
2140 
2141 /*
2142  * A new import is in progress. Add an entry.
2143  */
2144 void
2145 spa_import_progress_add(spa_t *spa)
2146 {
2147 	char *poolname = NULL;
2148 	spa_import_progress_t *sip;
2149 
2150 	mutex_enter(&spa->spa_imp_kstat_lock);
2151 	if (spa->spa_imp_kstat != NULL) {
2152 		sip = spa->spa_imp_kstat->ks_data;
2153 		sip->sip_load_state.value.ui64 = (uint64_t)spa_load_state(spa);
2154 		mutex_exit(&spa->spa_imp_kstat_lock);
2155 		return;
2156 	}
2157 
2158 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2159 	    &poolname);
2160 	if (poolname == NULL)
2161 		poolname = spa_name(spa);
2162 
2163 	spa->spa_imp_kstat = kstat_create("zfs_import", 0, poolname,
2164 	    "zfs_misc", KSTAT_TYPE_NAMED,
2165 	    sizeof (spa_import_progress_t) / sizeof (kstat_named_t),
2166 	    KSTAT_FLAG_VIRTUAL);
2167 	if (spa->spa_imp_kstat != NULL) {
2168 		sip = kmem_alloc(sizeof (spa_import_progress_t), KM_SLEEP);
2169 		spa->spa_imp_kstat->ks_data = sip;
2170 
2171 		sip->sip_load_state.value.ui64 = (uint64_t)spa_load_state(spa);
2172 
2173 		kstat_named_init(&sip->sip_load_state,
2174 		    "spa_load_state", KSTAT_DATA_UINT64);
2175 		kstat_named_init(&sip->sip_mmp_sec_remaining,
2176 		    "mmp_sec_remaining", KSTAT_DATA_UINT64);
2177 		kstat_named_init(&sip->sip_load_max_txg,
2178 		    "spa_load_max_txg", KSTAT_DATA_UINT64);
2179 		spa->spa_imp_kstat->ks_lock = &spa->spa_imp_kstat_lock;
2180 		kstat_install(spa->spa_imp_kstat);
2181 	}
2182 	mutex_exit(&spa->spa_imp_kstat_lock);
2183 }
2184 
2185 void
2186 spa_import_progress_remove(spa_t *spa)
2187 {
2188 	if (spa->spa_imp_kstat != NULL) {
2189 		void *data = spa->spa_imp_kstat->ks_data;
2190 
2191 		kstat_delete(spa->spa_imp_kstat);
2192 		spa->spa_imp_kstat = NULL;
2193 		kmem_free(data, sizeof (spa_import_progress_t));
2194 	}
2195 }
2196 
2197 /*
2198  * ==========================================================================
2199  * Initialization and Termination
2200  * ==========================================================================
2201  */
2202 
2203 static int
2204 spa_name_compare(const void *a1, const void *a2)
2205 {
2206 	const spa_t *s1 = a1;
2207 	const spa_t *s2 = a2;
2208 	int s;
2209 
2210 	s = strcmp(s1->spa_name, s2->spa_name);
2211 
2212 	return (TREE_ISIGN(s));
2213 }
2214 
2215 int
2216 spa_busy(void)
2217 {
2218 	return (spa_active_count);
2219 }
2220 
2221 void
2222 spa_boot_init()
2223 {
2224 	spa_config_load();
2225 }
2226 
2227 void
2228 spa_init(int mode)
2229 {
2230 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2231 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2232 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2233 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2234 
2235 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2236 	    offsetof(spa_t, spa_avl));
2237 
2238 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2239 	    offsetof(spa_aux_t, aux_avl));
2240 
2241 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2242 	    offsetof(spa_aux_t, aux_avl));
2243 
2244 	spa_mode_global = mode;
2245 
2246 #ifdef _KERNEL
2247 	spa_arch_init();
2248 #else
2249 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
2250 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
2251 		if (arc_procfd == -1) {
2252 			perror("could not enable watchpoints: "
2253 			    "opening /proc/self/ctl failed: ");
2254 		} else {
2255 			arc_watch = B_TRUE;
2256 		}
2257 	}
2258 #endif
2259 
2260 	zfs_refcount_init();
2261 	unique_init();
2262 	zfs_btree_init();
2263 	metaslab_stat_init();
2264 	zio_init();
2265 	dmu_init();
2266 	zil_init();
2267 	vdev_cache_stat_init();
2268 	vdev_mirror_stat_init();
2269 	vdev_raidz_math_init();
2270 	fletcher_4_init();
2271 	zfs_prop_init();
2272 	zpool_prop_init();
2273 	zpool_feature_init();
2274 	spa_config_load();
2275 	l2arc_start();
2276 	scan_init();
2277 	spa_import_progress_init();
2278 }
2279 
2280 void
2281 spa_fini(void)
2282 {
2283 	l2arc_stop();
2284 
2285 	spa_evict_all();
2286 
2287 	vdev_cache_stat_fini();
2288 	vdev_mirror_stat_fini();
2289 	vdev_raidz_math_fini();
2290 	fletcher_4_fini();
2291 	zil_fini();
2292 	dmu_fini();
2293 	zio_fini();
2294 	metaslab_stat_fini();
2295 	zfs_btree_fini();
2296 	unique_fini();
2297 	zfs_refcount_fini();
2298 	scan_fini();
2299 	spa_import_progress_destroy();
2300 
2301 	avl_destroy(&spa_namespace_avl);
2302 	avl_destroy(&spa_spare_avl);
2303 	avl_destroy(&spa_l2cache_avl);
2304 
2305 	cv_destroy(&spa_namespace_cv);
2306 	mutex_destroy(&spa_namespace_lock);
2307 	mutex_destroy(&spa_spare_lock);
2308 	mutex_destroy(&spa_l2cache_lock);
2309 }
2310 
2311 /*
2312  * Return whether this pool has slogs. No locking needed.
2313  * It's not a problem if the wrong answer is returned as it's only for
2314  * performance and not correctness
2315  */
2316 boolean_t
2317 spa_has_slogs(spa_t *spa)
2318 {
2319 	return (spa->spa_log_class->mc_rotor != NULL);
2320 }
2321 
2322 spa_log_state_t
2323 spa_get_log_state(spa_t *spa)
2324 {
2325 	return (spa->spa_log_state);
2326 }
2327 
2328 void
2329 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2330 {
2331 	spa->spa_log_state = state;
2332 }
2333 
2334 boolean_t
2335 spa_is_root(spa_t *spa)
2336 {
2337 	return (spa->spa_is_root);
2338 }
2339 
2340 boolean_t
2341 spa_writeable(spa_t *spa)
2342 {
2343 	return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2344 }
2345 
2346 /*
2347  * Returns true if there is a pending sync task in any of the current
2348  * syncing txg, the current quiescing txg, or the current open txg.
2349  */
2350 boolean_t
2351 spa_has_pending_synctask(spa_t *spa)
2352 {
2353 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2354 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2355 }
2356 
2357 int
2358 spa_mode(spa_t *spa)
2359 {
2360 	return (spa->spa_mode);
2361 }
2362 
2363 uint64_t
2364 spa_bootfs(spa_t *spa)
2365 {
2366 	return (spa->spa_bootfs);
2367 }
2368 
2369 uint64_t
2370 spa_delegation(spa_t *spa)
2371 {
2372 	return (spa->spa_delegation);
2373 }
2374 
2375 objset_t *
2376 spa_meta_objset(spa_t *spa)
2377 {
2378 	return (spa->spa_meta_objset);
2379 }
2380 
2381 enum zio_checksum
2382 spa_dedup_checksum(spa_t *spa)
2383 {
2384 	return (spa->spa_dedup_checksum);
2385 }
2386 
2387 /*
2388  * Reset pool scan stat per scan pass (or reboot).
2389  */
2390 void
2391 spa_scan_stat_init(spa_t *spa)
2392 {
2393 	/* data not stored on disk */
2394 	spa->spa_scan_pass_start = gethrestime_sec();
2395 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2396 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2397 	else
2398 		spa->spa_scan_pass_scrub_pause = 0;
2399 	spa->spa_scan_pass_scrub_spent_paused = 0;
2400 	spa->spa_scan_pass_exam = 0;
2401 	spa->spa_scan_pass_issued = 0;
2402 	vdev_scan_stat_init(spa->spa_root_vdev);
2403 }
2404 
2405 /*
2406  * Get scan stats for zpool status reports
2407  */
2408 int
2409 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2410 {
2411 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2412 
2413 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2414 		return (SET_ERROR(ENOENT));
2415 	bzero(ps, sizeof (pool_scan_stat_t));
2416 
2417 	/* data stored on disk */
2418 	ps->pss_func = scn->scn_phys.scn_func;
2419 	ps->pss_state = scn->scn_phys.scn_state;
2420 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2421 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2422 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2423 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2424 	ps->pss_processed = scn->scn_phys.scn_processed;
2425 	ps->pss_errors = scn->scn_phys.scn_errors;
2426 	ps->pss_examined = scn->scn_phys.scn_examined;
2427 	ps->pss_issued =
2428 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2429 	ps->pss_state = scn->scn_phys.scn_state;
2430 
2431 	/* data not stored on disk */
2432 	ps->pss_pass_start = spa->spa_scan_pass_start;
2433 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2434 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2435 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2436 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2437 
2438 	return (0);
2439 }
2440 
2441 int
2442 spa_maxblocksize(spa_t *spa)
2443 {
2444 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2445 		return (SPA_MAXBLOCKSIZE);
2446 	else
2447 		return (SPA_OLD_MAXBLOCKSIZE);
2448 }
2449 
2450 int
2451 spa_maxdnodesize(spa_t *spa)
2452 {
2453 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2454 		return (DNODE_MAX_SIZE);
2455 	else
2456 		return (DNODE_MIN_SIZE);
2457 }
2458 
2459 boolean_t
2460 spa_multihost(spa_t *spa)
2461 {
2462 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2463 }
2464 
2465 unsigned long
2466 spa_get_hostid(void)
2467 {
2468 	unsigned long myhostid;
2469 
2470 #ifdef	_KERNEL
2471 	myhostid = zone_get_hostid(NULL);
2472 #else	/* _KERNEL */
2473 	/*
2474 	 * We're emulating the system's hostid in userland, so
2475 	 * we can't use zone_get_hostid().
2476 	 */
2477 	(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2478 #endif	/* _KERNEL */
2479 
2480 	return (myhostid);
2481 }
2482 
2483 /*
2484  * Returns the txg that the last device removal completed. No indirect mappings
2485  * have been added since this txg.
2486  */
2487 uint64_t
2488 spa_get_last_removal_txg(spa_t *spa)
2489 {
2490 	uint64_t vdevid;
2491 	uint64_t ret = -1ULL;
2492 
2493 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2494 	/*
2495 	 * sr_prev_indirect_vdev is only modified while holding all the
2496 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2497 	 * examining it.
2498 	 */
2499 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2500 
2501 	while (vdevid != -1ULL) {
2502 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2503 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2504 
2505 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2506 
2507 		/*
2508 		 * If the removal did not remap any data, we don't care.
2509 		 */
2510 		if (vdev_indirect_births_count(vib) != 0) {
2511 			ret = vdev_indirect_births_last_entry_txg(vib);
2512 			break;
2513 		}
2514 
2515 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2516 	}
2517 	spa_config_exit(spa, SCL_VDEV, FTAG);
2518 
2519 	IMPLY(ret != -1ULL,
2520 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2521 
2522 	return (ret);
2523 }
2524 
2525 boolean_t
2526 spa_trust_config(spa_t *spa)
2527 {
2528 	return (spa->spa_trust_config);
2529 }
2530 
2531 uint64_t
2532 spa_missing_tvds_allowed(spa_t *spa)
2533 {
2534 	return (spa->spa_missing_tvds_allowed);
2535 }
2536 
2537 space_map_t *
2538 spa_syncing_log_sm(spa_t *spa)
2539 {
2540 	return (spa->spa_syncing_log_sm);
2541 }
2542 
2543 void
2544 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2545 {
2546 	spa->spa_missing_tvds = missing;
2547 }
2548 
2549 boolean_t
2550 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2551 {
2552 	vdev_t *rvd = spa->spa_root_vdev;
2553 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2554 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2555 			return (B_FALSE);
2556 	}
2557 	return (B_TRUE);
2558 }
2559 
2560 boolean_t
2561 spa_has_checkpoint(spa_t *spa)
2562 {
2563 	return (spa->spa_checkpoint_txg != 0);
2564 }
2565 
2566 boolean_t
2567 spa_importing_readonly_checkpoint(spa_t *spa)
2568 {
2569 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2570 	    spa->spa_mode == FREAD);
2571 }
2572 
2573 uint64_t
2574 spa_min_claim_txg(spa_t *spa)
2575 {
2576 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2577 
2578 	if (checkpoint_txg != 0)
2579 		return (checkpoint_txg + 1);
2580 
2581 	return (spa->spa_first_txg);
2582 }
2583 
2584 /*
2585  * If there is a checkpoint, async destroys may consume more space from
2586  * the pool instead of freeing it. In an attempt to save the pool from
2587  * getting suspended when it is about to run out of space, we stop
2588  * processing async destroys.
2589  */
2590 boolean_t
2591 spa_suspend_async_destroy(spa_t *spa)
2592 {
2593 	dsl_pool_t *dp = spa_get_dsl(spa);
2594 
2595 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2596 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2597 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2598 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2599 
2600 	if (spa_has_checkpoint(spa) && avail == 0)
2601 		return (B_TRUE);
2602 
2603 	return (B_FALSE);
2604 }
2605 
2606 /*
2607  * Generate a LUN expansion event.  This routine does not use
2608  * ddi_log_sysevent() because that would require a dev_info_t, and we may not
2609  * have one available.
2610  */
2611 void
2612 zfs_post_dle_sysevent(const char *physpath)
2613 {
2614 #ifdef _KERNEL
2615 	sysevent_t *ev = sysevent_alloc(EC_DEV_STATUS, ESC_DEV_DLE,
2616 	    SUNW_KERN_PUB "zfs", SE_SLEEP);
2617 	sysevent_attr_list_t *attr = NULL;
2618 	sysevent_id_t eid;
2619 
2620 	VERIFY(ev != NULL);
2621 
2622 	/*
2623 	 * The only attribute is the /devices path of the expanding device:
2624 	 */
2625 	sysevent_value_t value = {
2626 		.value_type = SE_DATA_TYPE_STRING,
2627 		.value = {
2628 			.sv_string = (char *)physpath,
2629 		},
2630 	};
2631 	if (sysevent_add_attr(&attr, DEV_PHYS_PATH, &value, SE_SLEEP) != 0) {
2632 		sysevent_free(ev);
2633 		return;
2634 	}
2635 
2636 	if (sysevent_attach_attributes(ev, attr) != 0) {
2637 		sysevent_free_attr(attr);
2638 		sysevent_free(ev);
2639 		return;
2640 	}
2641 
2642 	(void) log_sysevent(ev, SE_SLEEP, &eid);
2643 	sysevent_free(ev);
2644 #endif
2645 }
2646