xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 1128e05efc1f8d851258698732d30c54ae0fcb69)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/sunddi.h>
47 #include <sys/arc.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against spa_minref, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock[] (per-spa array of rwlocks)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * The locking order is fairly straightforward:
89  *
90  *		spa_namespace_lock	->	spa_refcount
91  *
92  *	The namespace lock must be acquired to increase the refcount from 0
93  *	or to check if it is zero.
94  *
95  *		spa_refcount		->	spa_config_lock[]
96  *
97  *	There must be at least one valid reference on the spa_t to acquire
98  *	the config lock.
99  *
100  *		spa_namespace_lock	->	spa_config_lock[]
101  *
102  *	The namespace lock must always be taken before the config lock.
103  *
104  *
105  * The spa_namespace_lock can be acquired directly and is globally visible.
106  *
107  * The namespace is manipulated using the following functions, all of which
108  * require the spa_namespace_lock to be held.
109  *
110  *	spa_lookup()		Lookup a spa_t by name.
111  *
112  *	spa_add()		Create a new spa_t in the namespace.
113  *
114  *	spa_remove()		Remove a spa_t from the namespace.  This also
115  *				frees up any memory associated with the spa_t.
116  *
117  *	spa_next()		Returns the next spa_t in the system, or the
118  *				first if NULL is passed.
119  *
120  *	spa_evict_all()		Shutdown and remove all spa_t structures in
121  *				the system.
122  *
123  *	spa_guid_exists()	Determine whether a pool/device guid exists.
124  *
125  * The spa_refcount is manipulated using the following functions:
126  *
127  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
128  *				called with spa_namespace_lock held if the
129  *				refcount is currently zero.
130  *
131  *	spa_close()		Remove a reference from the spa_t.  This will
132  *				not free the spa_t or remove it from the
133  *				namespace.  No locking is required.
134  *
135  *	spa_refcount_zero()	Returns true if the refcount is currently
136  *				zero.  Must be called with spa_namespace_lock
137  *				held.
138  *
139  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142  *
143  * To read the configuration, it suffices to hold one of these locks as reader.
144  * To modify the configuration, you must hold all locks as writer.  To modify
145  * vdev state without altering the vdev tree's topology (e.g. online/offline),
146  * you must hold SCL_STATE and SCL_ZIO as writer.
147  *
148  * We use these distinct config locks to avoid recursive lock entry.
149  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150  * block allocations (SCL_ALLOC), which may require reading space maps
151  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152  *
153  * The spa config locks cannot be normal rwlocks because we need the
154  * ability to hand off ownership.  For example, SCL_ZIO is acquired
155  * by the issuing thread and later released by an interrupt thread.
156  * They do, however, obey the usual write-wanted semantics to prevent
157  * writer (i.e. system administrator) starvation.
158  *
159  * The lock acquisition rules are as follows:
160  *
161  * SCL_CONFIG
162  *	Protects changes to the vdev tree topology, such as vdev
163  *	add/remove/attach/detach.  Protects the dirty config list
164  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
165  *
166  * SCL_STATE
167  *	Protects changes to pool state and vdev state, such as vdev
168  *	online/offline/fault/degrade/clear.  Protects the dirty state list
169  *	(spa_state_dirty_list) and global pool state (spa_state).
170  *
171  * SCL_ALLOC
172  *	Protects changes to metaslab groups and classes.
173  *	Held as reader by metaslab_alloc() and metaslab_claim().
174  *
175  * SCL_ZIO
176  *	Held by bp-level zios (those which have no io_vd upon entry)
177  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
178  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
179  *
180  * SCL_FREE
181  *	Protects changes to metaslab groups and classes.
182  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
183  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184  *	blocks in zio_done() while another i/o that holds either
185  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186  *
187  * SCL_VDEV
188  *	Held as reader to prevent changes to the vdev tree during trivial
189  *	inquiries such as bp_get_dasize().  SCL_VDEV is distinct from the
190  *	other locks, and lower than all of them, to ensure that it's safe
191  *	to acquire regardless of caller context.
192  *
193  * In addition, the following rules apply:
194  *
195  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
196  *	The lock ordering is SCL_CONFIG > spa_props_lock.
197  *
198  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
199  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200  *	or zio_write_phys() -- the caller must ensure that the config cannot
201  *	cannot change in the interim, and that the vdev cannot be reopened.
202  *	SCL_STATE as reader suffices for both.
203  *
204  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205  *
206  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
207  *				for writing.
208  *
209  *	spa_vdev_exit()		Release the config lock, wait for all I/O
210  *				to complete, sync the updated configs to the
211  *				cache, and release the namespace lock.
212  *
213  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216  *
217  * spa_rename() is also implemented within this file since is requires
218  * manipulation of the namespace.
219  */
220 
221 static avl_tree_t spa_namespace_avl;
222 kmutex_t spa_namespace_lock;
223 static kcondvar_t spa_namespace_cv;
224 static int spa_active_count;
225 int spa_max_replication_override = SPA_DVAS_PER_BP;
226 
227 static kmutex_t spa_spare_lock;
228 static avl_tree_t spa_spare_avl;
229 static kmutex_t spa_l2cache_lock;
230 static avl_tree_t spa_l2cache_avl;
231 
232 kmem_cache_t *spa_buffer_pool;
233 int spa_mode;
234 
235 #ifdef ZFS_DEBUG
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238 #else
239 int zfs_flags = 0;
240 #endif
241 
242 /*
243  * zfs_recover can be set to nonzero to attempt to recover from
244  * otherwise-fatal errors, typically caused by on-disk corruption.  When
245  * set, calls to zfs_panic_recover() will turn into warning messages.
246  */
247 int zfs_recover = 0;
248 
249 
250 /*
251  * ==========================================================================
252  * SPA config locking
253  * ==========================================================================
254  */
255 static void
256 spa_config_lock_init(spa_t *spa)
257 {
258 	for (int i = 0; i < SCL_LOCKS; i++) {
259 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 		refcount_create(&scl->scl_count);
263 		scl->scl_writer = NULL;
264 		scl->scl_write_wanted = 0;
265 	}
266 }
267 
268 static void
269 spa_config_lock_destroy(spa_t *spa)
270 {
271 	for (int i = 0; i < SCL_LOCKS; i++) {
272 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 		mutex_destroy(&scl->scl_lock);
274 		cv_destroy(&scl->scl_cv);
275 		refcount_destroy(&scl->scl_count);
276 		ASSERT(scl->scl_writer == NULL);
277 		ASSERT(scl->scl_write_wanted == 0);
278 	}
279 }
280 
281 int
282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283 {
284 	for (int i = 0; i < SCL_LOCKS; i++) {
285 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 		if (!(locks & (1 << i)))
287 			continue;
288 		mutex_enter(&scl->scl_lock);
289 		if (rw == RW_READER) {
290 			if (scl->scl_writer || scl->scl_write_wanted) {
291 				mutex_exit(&scl->scl_lock);
292 				spa_config_exit(spa, locks ^ (1 << i), tag);
293 				return (0);
294 			}
295 		} else {
296 			ASSERT(scl->scl_writer != curthread);
297 			if (!refcount_is_zero(&scl->scl_count)) {
298 				mutex_exit(&scl->scl_lock);
299 				spa_config_exit(spa, locks ^ (1 << i), tag);
300 				return (0);
301 			}
302 			scl->scl_writer = curthread;
303 		}
304 		(void) refcount_add(&scl->scl_count, tag);
305 		mutex_exit(&scl->scl_lock);
306 	}
307 	return (1);
308 }
309 
310 void
311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312 {
313 	for (int i = 0; i < SCL_LOCKS; i++) {
314 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
315 		if (!(locks & (1 << i)))
316 			continue;
317 		mutex_enter(&scl->scl_lock);
318 		if (rw == RW_READER) {
319 			while (scl->scl_writer || scl->scl_write_wanted) {
320 				cv_wait(&scl->scl_cv, &scl->scl_lock);
321 			}
322 		} else {
323 			ASSERT(scl->scl_writer != curthread);
324 			while (!refcount_is_zero(&scl->scl_count)) {
325 				scl->scl_write_wanted++;
326 				cv_wait(&scl->scl_cv, &scl->scl_lock);
327 				scl->scl_write_wanted--;
328 			}
329 			scl->scl_writer = curthread;
330 		}
331 		(void) refcount_add(&scl->scl_count, tag);
332 		mutex_exit(&scl->scl_lock);
333 	}
334 }
335 
336 void
337 spa_config_exit(spa_t *spa, int locks, void *tag)
338 {
339 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
340 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
341 		if (!(locks & (1 << i)))
342 			continue;
343 		mutex_enter(&scl->scl_lock);
344 		ASSERT(!refcount_is_zero(&scl->scl_count));
345 		if (refcount_remove(&scl->scl_count, tag) == 0) {
346 			ASSERT(scl->scl_writer == NULL ||
347 			    scl->scl_writer == curthread);
348 			scl->scl_writer = NULL;	/* OK in either case */
349 			cv_broadcast(&scl->scl_cv);
350 		}
351 		mutex_exit(&scl->scl_lock);
352 	}
353 }
354 
355 int
356 spa_config_held(spa_t *spa, int locks, krw_t rw)
357 {
358 	int locks_held = 0;
359 
360 	for (int i = 0; i < SCL_LOCKS; i++) {
361 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
362 		if (!(locks & (1 << i)))
363 			continue;
364 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
365 		    (rw == RW_WRITER && scl->scl_writer == curthread))
366 			locks_held |= 1 << i;
367 	}
368 
369 	return (locks_held);
370 }
371 
372 /*
373  * ==========================================================================
374  * SPA namespace functions
375  * ==========================================================================
376  */
377 
378 /*
379  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
380  * Returns NULL if no matching spa_t is found.
381  */
382 spa_t *
383 spa_lookup(const char *name)
384 {
385 	static spa_t search;	/* spa_t is large; don't allocate on stack */
386 	spa_t *spa;
387 	avl_index_t where;
388 	char c;
389 	char *cp;
390 
391 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
392 
393 	/*
394 	 * If it's a full dataset name, figure out the pool name and
395 	 * just use that.
396 	 */
397 	cp = strpbrk(name, "/@");
398 	if (cp) {
399 		c = *cp;
400 		*cp = '\0';
401 	}
402 
403 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
404 	spa = avl_find(&spa_namespace_avl, &search, &where);
405 
406 	if (cp)
407 		*cp = c;
408 
409 	return (spa);
410 }
411 
412 /*
413  * Create an uninitialized spa_t with the given name.  Requires
414  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
415  * exist by calling spa_lookup() first.
416  */
417 spa_t *
418 spa_add(const char *name, const char *altroot)
419 {
420 	spa_t *spa;
421 	spa_config_dirent_t *dp;
422 
423 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
424 
425 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
426 
427 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
428 	mutex_init(&spa->spa_async_root_lock, NULL, MUTEX_DEFAULT, NULL);
429 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
430 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
431 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
432 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
433 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
434 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
435 
436 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
437 	cv_init(&spa->spa_async_root_cv, NULL, CV_DEFAULT, NULL);
438 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
439 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
440 
441 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
442 	spa->spa_state = POOL_STATE_UNINITIALIZED;
443 	spa->spa_freeze_txg = UINT64_MAX;
444 	spa->spa_final_txg = UINT64_MAX;
445 
446 	refcount_create(&spa->spa_refcount);
447 	spa_config_lock_init(spa);
448 
449 	avl_add(&spa_namespace_avl, spa);
450 
451 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
452 
453 	/*
454 	 * Set the alternate root, if there is one.
455 	 */
456 	if (altroot) {
457 		spa->spa_root = spa_strdup(altroot);
458 		spa_active_count++;
459 	}
460 
461 	/*
462 	 * Every pool starts with the default cachefile
463 	 */
464 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
465 	    offsetof(spa_config_dirent_t, scd_link));
466 
467 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
468 	dp->scd_path = spa_strdup(spa_config_path);
469 	list_insert_head(&spa->spa_config_list, dp);
470 
471 	return (spa);
472 }
473 
474 /*
475  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
476  * spa_namespace_lock.  This is called only after the spa_t has been closed and
477  * deactivated.
478  */
479 void
480 spa_remove(spa_t *spa)
481 {
482 	spa_config_dirent_t *dp;
483 
484 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
485 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
486 
487 	avl_remove(&spa_namespace_avl, spa);
488 	cv_broadcast(&spa_namespace_cv);
489 
490 	if (spa->spa_root) {
491 		spa_strfree(spa->spa_root);
492 		spa_active_count--;
493 	}
494 
495 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
496 		list_remove(&spa->spa_config_list, dp);
497 		if (dp->scd_path != NULL)
498 			spa_strfree(dp->scd_path);
499 		kmem_free(dp, sizeof (spa_config_dirent_t));
500 	}
501 
502 	list_destroy(&spa->spa_config_list);
503 
504 	spa_config_set(spa, NULL);
505 
506 	refcount_destroy(&spa->spa_refcount);
507 
508 	spa_config_lock_destroy(spa);
509 
510 	cv_destroy(&spa->spa_async_cv);
511 	cv_destroy(&spa->spa_async_root_cv);
512 	cv_destroy(&spa->spa_scrub_io_cv);
513 	cv_destroy(&spa->spa_suspend_cv);
514 
515 	mutex_destroy(&spa->spa_async_lock);
516 	mutex_destroy(&spa->spa_async_root_lock);
517 	mutex_destroy(&spa->spa_scrub_lock);
518 	mutex_destroy(&spa->spa_errlog_lock);
519 	mutex_destroy(&spa->spa_errlist_lock);
520 	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
521 	mutex_destroy(&spa->spa_history_lock);
522 	mutex_destroy(&spa->spa_props_lock);
523 	mutex_destroy(&spa->spa_suspend_lock);
524 
525 	kmem_free(spa, sizeof (spa_t));
526 }
527 
528 /*
529  * Given a pool, return the next pool in the namespace, or NULL if there is
530  * none.  If 'prev' is NULL, return the first pool.
531  */
532 spa_t *
533 spa_next(spa_t *prev)
534 {
535 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
536 
537 	if (prev)
538 		return (AVL_NEXT(&spa_namespace_avl, prev));
539 	else
540 		return (avl_first(&spa_namespace_avl));
541 }
542 
543 /*
544  * ==========================================================================
545  * SPA refcount functions
546  * ==========================================================================
547  */
548 
549 /*
550  * Add a reference to the given spa_t.  Must have at least one reference, or
551  * have the namespace lock held.
552  */
553 void
554 spa_open_ref(spa_t *spa, void *tag)
555 {
556 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
557 	    MUTEX_HELD(&spa_namespace_lock));
558 	(void) refcount_add(&spa->spa_refcount, tag);
559 }
560 
561 /*
562  * Remove a reference to the given spa_t.  Must have at least one reference, or
563  * have the namespace lock held.
564  */
565 void
566 spa_close(spa_t *spa, void *tag)
567 {
568 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
569 	    MUTEX_HELD(&spa_namespace_lock));
570 	(void) refcount_remove(&spa->spa_refcount, tag);
571 }
572 
573 /*
574  * Check to see if the spa refcount is zero.  Must be called with
575  * spa_namespace_lock held.  We really compare against spa_minref, which is the
576  * number of references acquired when opening a pool
577  */
578 boolean_t
579 spa_refcount_zero(spa_t *spa)
580 {
581 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
582 
583 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
584 }
585 
586 /*
587  * ==========================================================================
588  * SPA spare and l2cache tracking
589  * ==========================================================================
590  */
591 
592 /*
593  * Hot spares and cache devices are tracked using the same code below,
594  * for 'auxiliary' devices.
595  */
596 
597 typedef struct spa_aux {
598 	uint64_t	aux_guid;
599 	uint64_t	aux_pool;
600 	avl_node_t	aux_avl;
601 	int		aux_count;
602 } spa_aux_t;
603 
604 static int
605 spa_aux_compare(const void *a, const void *b)
606 {
607 	const spa_aux_t *sa = a;
608 	const spa_aux_t *sb = b;
609 
610 	if (sa->aux_guid < sb->aux_guid)
611 		return (-1);
612 	else if (sa->aux_guid > sb->aux_guid)
613 		return (1);
614 	else
615 		return (0);
616 }
617 
618 void
619 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
620 {
621 	avl_index_t where;
622 	spa_aux_t search;
623 	spa_aux_t *aux;
624 
625 	search.aux_guid = vd->vdev_guid;
626 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
627 		aux->aux_count++;
628 	} else {
629 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
630 		aux->aux_guid = vd->vdev_guid;
631 		aux->aux_count = 1;
632 		avl_insert(avl, aux, where);
633 	}
634 }
635 
636 void
637 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
638 {
639 	spa_aux_t search;
640 	spa_aux_t *aux;
641 	avl_index_t where;
642 
643 	search.aux_guid = vd->vdev_guid;
644 	aux = avl_find(avl, &search, &where);
645 
646 	ASSERT(aux != NULL);
647 
648 	if (--aux->aux_count == 0) {
649 		avl_remove(avl, aux);
650 		kmem_free(aux, sizeof (spa_aux_t));
651 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
652 		aux->aux_pool = 0ULL;
653 	}
654 }
655 
656 boolean_t
657 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
658 {
659 	spa_aux_t search, *found;
660 
661 	search.aux_guid = guid;
662 	found = avl_find(avl, &search, NULL);
663 
664 	if (pool) {
665 		if (found)
666 			*pool = found->aux_pool;
667 		else
668 			*pool = 0ULL;
669 	}
670 
671 	if (refcnt) {
672 		if (found)
673 			*refcnt = found->aux_count;
674 		else
675 			*refcnt = 0;
676 	}
677 
678 	return (found != NULL);
679 }
680 
681 void
682 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
683 {
684 	spa_aux_t search, *found;
685 	avl_index_t where;
686 
687 	search.aux_guid = vd->vdev_guid;
688 	found = avl_find(avl, &search, &where);
689 	ASSERT(found != NULL);
690 	ASSERT(found->aux_pool == 0ULL);
691 
692 	found->aux_pool = spa_guid(vd->vdev_spa);
693 }
694 
695 /*
696  * Spares are tracked globally due to the following constraints:
697  *
698  * 	- A spare may be part of multiple pools.
699  * 	- A spare may be added to a pool even if it's actively in use within
700  *	  another pool.
701  * 	- A spare in use in any pool can only be the source of a replacement if
702  *	  the target is a spare in the same pool.
703  *
704  * We keep track of all spares on the system through the use of a reference
705  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
706  * spare, then we bump the reference count in the AVL tree.  In addition, we set
707  * the 'vdev_isspare' member to indicate that the device is a spare (active or
708  * inactive).  When a spare is made active (used to replace a device in the
709  * pool), we also keep track of which pool its been made a part of.
710  *
711  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
712  * called under the spa_namespace lock as part of vdev reconfiguration.  The
713  * separate spare lock exists for the status query path, which does not need to
714  * be completely consistent with respect to other vdev configuration changes.
715  */
716 
717 static int
718 spa_spare_compare(const void *a, const void *b)
719 {
720 	return (spa_aux_compare(a, b));
721 }
722 
723 void
724 spa_spare_add(vdev_t *vd)
725 {
726 	mutex_enter(&spa_spare_lock);
727 	ASSERT(!vd->vdev_isspare);
728 	spa_aux_add(vd, &spa_spare_avl);
729 	vd->vdev_isspare = B_TRUE;
730 	mutex_exit(&spa_spare_lock);
731 }
732 
733 void
734 spa_spare_remove(vdev_t *vd)
735 {
736 	mutex_enter(&spa_spare_lock);
737 	ASSERT(vd->vdev_isspare);
738 	spa_aux_remove(vd, &spa_spare_avl);
739 	vd->vdev_isspare = B_FALSE;
740 	mutex_exit(&spa_spare_lock);
741 }
742 
743 boolean_t
744 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
745 {
746 	boolean_t found;
747 
748 	mutex_enter(&spa_spare_lock);
749 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
750 	mutex_exit(&spa_spare_lock);
751 
752 	return (found);
753 }
754 
755 void
756 spa_spare_activate(vdev_t *vd)
757 {
758 	mutex_enter(&spa_spare_lock);
759 	ASSERT(vd->vdev_isspare);
760 	spa_aux_activate(vd, &spa_spare_avl);
761 	mutex_exit(&spa_spare_lock);
762 }
763 
764 /*
765  * Level 2 ARC devices are tracked globally for the same reasons as spares.
766  * Cache devices currently only support one pool per cache device, and so
767  * for these devices the aux reference count is currently unused beyond 1.
768  */
769 
770 static int
771 spa_l2cache_compare(const void *a, const void *b)
772 {
773 	return (spa_aux_compare(a, b));
774 }
775 
776 void
777 spa_l2cache_add(vdev_t *vd)
778 {
779 	mutex_enter(&spa_l2cache_lock);
780 	ASSERT(!vd->vdev_isl2cache);
781 	spa_aux_add(vd, &spa_l2cache_avl);
782 	vd->vdev_isl2cache = B_TRUE;
783 	mutex_exit(&spa_l2cache_lock);
784 }
785 
786 void
787 spa_l2cache_remove(vdev_t *vd)
788 {
789 	mutex_enter(&spa_l2cache_lock);
790 	ASSERT(vd->vdev_isl2cache);
791 	spa_aux_remove(vd, &spa_l2cache_avl);
792 	vd->vdev_isl2cache = B_FALSE;
793 	mutex_exit(&spa_l2cache_lock);
794 }
795 
796 boolean_t
797 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
798 {
799 	boolean_t found;
800 
801 	mutex_enter(&spa_l2cache_lock);
802 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
803 	mutex_exit(&spa_l2cache_lock);
804 
805 	return (found);
806 }
807 
808 void
809 spa_l2cache_activate(vdev_t *vd)
810 {
811 	mutex_enter(&spa_l2cache_lock);
812 	ASSERT(vd->vdev_isl2cache);
813 	spa_aux_activate(vd, &spa_l2cache_avl);
814 	mutex_exit(&spa_l2cache_lock);
815 }
816 
817 void
818 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc)
819 {
820 	vdev_space_update(vd, space, alloc, B_FALSE);
821 }
822 
823 /*
824  * ==========================================================================
825  * SPA vdev locking
826  * ==========================================================================
827  */
828 
829 /*
830  * Lock the given spa_t for the purpose of adding or removing a vdev.
831  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
832  * It returns the next transaction group for the spa_t.
833  */
834 uint64_t
835 spa_vdev_enter(spa_t *spa)
836 {
837 	mutex_enter(&spa_namespace_lock);
838 
839 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
840 
841 	return (spa_last_synced_txg(spa) + 1);
842 }
843 
844 /*
845  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
846  * locking of spa_vdev_enter(), we also want make sure the transactions have
847  * synced to disk, and then update the global configuration cache with the new
848  * information.
849  */
850 int
851 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
852 {
853 	int config_changed = B_FALSE;
854 
855 	ASSERT(txg > spa_last_synced_txg(spa));
856 
857 	spa->spa_pending_vdev = NULL;
858 
859 	/*
860 	 * Reassess the DTLs.
861 	 */
862 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
863 
864 	/*
865 	 * If the config changed, notify the scrub thread that it must restart.
866 	 */
867 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
868 		dsl_pool_scrub_restart(spa->spa_dsl_pool);
869 		config_changed = B_TRUE;
870 	}
871 
872 	spa_config_exit(spa, SCL_ALL, spa);
873 
874 	/*
875 	 * Note: this txg_wait_synced() is important because it ensures
876 	 * that there won't be more than one config change per txg.
877 	 * This allows us to use the txg as the generation number.
878 	 */
879 	if (error == 0)
880 		txg_wait_synced(spa->spa_dsl_pool, txg);
881 
882 	if (vd != NULL) {
883 		ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
884 		vdev_free(vd);
885 	}
886 
887 	/*
888 	 * If the config changed, update the config cache.
889 	 */
890 	if (config_changed)
891 		spa_config_sync(spa, B_FALSE, B_TRUE);
892 
893 	mutex_exit(&spa_namespace_lock);
894 
895 	return (error);
896 }
897 
898 /*
899  * Lock the given spa_t for the purpose of changing vdev state.
900  */
901 void
902 spa_vdev_state_enter(spa_t *spa)
903 {
904 	spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
905 }
906 
907 int
908 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
909 {
910 	if (vd != NULL)
911 		vdev_state_dirty(vd->vdev_top);
912 
913 	spa_config_exit(spa, SCL_STATE_ALL, spa);
914 
915 	return (error);
916 }
917 
918 /*
919  * ==========================================================================
920  * Miscellaneous functions
921  * ==========================================================================
922  */
923 
924 /*
925  * Rename a spa_t.
926  */
927 int
928 spa_rename(const char *name, const char *newname)
929 {
930 	spa_t *spa;
931 	int err;
932 
933 	/*
934 	 * Lookup the spa_t and grab the config lock for writing.  We need to
935 	 * actually open the pool so that we can sync out the necessary labels.
936 	 * It's OK to call spa_open() with the namespace lock held because we
937 	 * allow recursive calls for other reasons.
938 	 */
939 	mutex_enter(&spa_namespace_lock);
940 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
941 		mutex_exit(&spa_namespace_lock);
942 		return (err);
943 	}
944 
945 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
946 
947 	avl_remove(&spa_namespace_avl, spa);
948 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
949 	avl_add(&spa_namespace_avl, spa);
950 
951 	/*
952 	 * Sync all labels to disk with the new names by marking the root vdev
953 	 * dirty and waiting for it to sync.  It will pick up the new pool name
954 	 * during the sync.
955 	 */
956 	vdev_config_dirty(spa->spa_root_vdev);
957 
958 	spa_config_exit(spa, SCL_ALL, FTAG);
959 
960 	txg_wait_synced(spa->spa_dsl_pool, 0);
961 
962 	/*
963 	 * Sync the updated config cache.
964 	 */
965 	spa_config_sync(spa, B_FALSE, B_TRUE);
966 
967 	spa_close(spa, FTAG);
968 
969 	mutex_exit(&spa_namespace_lock);
970 
971 	return (0);
972 }
973 
974 
975 /*
976  * Determine whether a pool with given pool_guid exists.  If device_guid is
977  * non-zero, determine whether the pool exists *and* contains a device with the
978  * specified device_guid.
979  */
980 boolean_t
981 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
982 {
983 	spa_t *spa;
984 	avl_tree_t *t = &spa_namespace_avl;
985 
986 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
987 
988 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
989 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
990 			continue;
991 		if (spa->spa_root_vdev == NULL)
992 			continue;
993 		if (spa_guid(spa) == pool_guid) {
994 			if (device_guid == 0)
995 				break;
996 
997 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
998 			    device_guid) != NULL)
999 				break;
1000 
1001 			/*
1002 			 * Check any devices we may be in the process of adding.
1003 			 */
1004 			if (spa->spa_pending_vdev) {
1005 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1006 				    device_guid) != NULL)
1007 					break;
1008 			}
1009 		}
1010 	}
1011 
1012 	return (spa != NULL);
1013 }
1014 
1015 char *
1016 spa_strdup(const char *s)
1017 {
1018 	size_t len;
1019 	char *new;
1020 
1021 	len = strlen(s);
1022 	new = kmem_alloc(len + 1, KM_SLEEP);
1023 	bcopy(s, new, len);
1024 	new[len] = '\0';
1025 
1026 	return (new);
1027 }
1028 
1029 void
1030 spa_strfree(char *s)
1031 {
1032 	kmem_free(s, strlen(s) + 1);
1033 }
1034 
1035 uint64_t
1036 spa_get_random(uint64_t range)
1037 {
1038 	uint64_t r;
1039 
1040 	ASSERT(range != 0);
1041 
1042 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1043 
1044 	return (r % range);
1045 }
1046 
1047 void
1048 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
1049 {
1050 	int d;
1051 
1052 	if (bp == NULL) {
1053 		(void) snprintf(buf, len, "<NULL>");
1054 		return;
1055 	}
1056 
1057 	if (BP_IS_HOLE(bp)) {
1058 		(void) snprintf(buf, len, "<hole>");
1059 		return;
1060 	}
1061 
1062 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
1063 	    (u_longlong_t)BP_GET_LEVEL(bp),
1064 	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
1065 	    (u_longlong_t)BP_GET_LSIZE(bp),
1066 	    (u_longlong_t)BP_GET_PSIZE(bp));
1067 
1068 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
1069 		const dva_t *dva = &bp->blk_dva[d];
1070 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
1071 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
1072 		    (u_longlong_t)DVA_GET_VDEV(dva),
1073 		    (u_longlong_t)DVA_GET_OFFSET(dva),
1074 		    (u_longlong_t)DVA_GET_ASIZE(dva));
1075 	}
1076 
1077 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
1078 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
1079 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
1080 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
1081 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
1082 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
1083 	    (u_longlong_t)bp->blk_birth,
1084 	    (u_longlong_t)bp->blk_fill,
1085 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
1086 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
1087 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
1088 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
1089 }
1090 
1091 void
1092 spa_freeze(spa_t *spa)
1093 {
1094 	uint64_t freeze_txg = 0;
1095 
1096 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1097 	if (spa->spa_freeze_txg == UINT64_MAX) {
1098 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1099 		spa->spa_freeze_txg = freeze_txg;
1100 	}
1101 	spa_config_exit(spa, SCL_ALL, FTAG);
1102 	if (freeze_txg != 0)
1103 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1104 }
1105 
1106 void
1107 zfs_panic_recover(const char *fmt, ...)
1108 {
1109 	va_list adx;
1110 
1111 	va_start(adx, fmt);
1112 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1113 	va_end(adx);
1114 }
1115 
1116 /*
1117  * ==========================================================================
1118  * Accessor functions
1119  * ==========================================================================
1120  */
1121 
1122 boolean_t
1123 spa_shutting_down(spa_t *spa)
1124 {
1125 	return (spa->spa_async_suspended);
1126 }
1127 
1128 dsl_pool_t *
1129 spa_get_dsl(spa_t *spa)
1130 {
1131 	return (spa->spa_dsl_pool);
1132 }
1133 
1134 blkptr_t *
1135 spa_get_rootblkptr(spa_t *spa)
1136 {
1137 	return (&spa->spa_ubsync.ub_rootbp);
1138 }
1139 
1140 void
1141 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1142 {
1143 	spa->spa_uberblock.ub_rootbp = *bp;
1144 }
1145 
1146 void
1147 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1148 {
1149 	if (spa->spa_root == NULL)
1150 		buf[0] = '\0';
1151 	else
1152 		(void) strncpy(buf, spa->spa_root, buflen);
1153 }
1154 
1155 int
1156 spa_sync_pass(spa_t *spa)
1157 {
1158 	return (spa->spa_sync_pass);
1159 }
1160 
1161 char *
1162 spa_name(spa_t *spa)
1163 {
1164 	return (spa->spa_name);
1165 }
1166 
1167 uint64_t
1168 spa_guid(spa_t *spa)
1169 {
1170 	/*
1171 	 * If we fail to parse the config during spa_load(), we can go through
1172 	 * the error path (which posts an ereport) and end up here with no root
1173 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1174 	 * this case.
1175 	 */
1176 	if (spa->spa_root_vdev != NULL)
1177 		return (spa->spa_root_vdev->vdev_guid);
1178 	else
1179 		return (spa->spa_load_guid);
1180 }
1181 
1182 uint64_t
1183 spa_last_synced_txg(spa_t *spa)
1184 {
1185 	return (spa->spa_ubsync.ub_txg);
1186 }
1187 
1188 uint64_t
1189 spa_first_txg(spa_t *spa)
1190 {
1191 	return (spa->spa_first_txg);
1192 }
1193 
1194 pool_state_t
1195 spa_state(spa_t *spa)
1196 {
1197 	return (spa->spa_state);
1198 }
1199 
1200 uint64_t
1201 spa_freeze_txg(spa_t *spa)
1202 {
1203 	return (spa->spa_freeze_txg);
1204 }
1205 
1206 /*
1207  * Return how much space is allocated in the pool (ie. sum of all asize)
1208  */
1209 uint64_t
1210 spa_get_alloc(spa_t *spa)
1211 {
1212 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
1213 }
1214 
1215 /*
1216  * Return how much (raid-z inflated) space there is in the pool.
1217  */
1218 uint64_t
1219 spa_get_space(spa_t *spa)
1220 {
1221 	return (spa->spa_root_vdev->vdev_stat.vs_space);
1222 }
1223 
1224 /*
1225  * Return the amount of raid-z-deflated space in the pool.
1226  */
1227 uint64_t
1228 spa_get_dspace(spa_t *spa)
1229 {
1230 	if (spa->spa_deflate)
1231 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
1232 	else
1233 		return (spa->spa_root_vdev->vdev_stat.vs_space);
1234 }
1235 
1236 /* ARGSUSED */
1237 uint64_t
1238 spa_get_asize(spa_t *spa, uint64_t lsize)
1239 {
1240 	/*
1241 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
1242 	 * case the space requirement is exactly 2x; so just assume that.
1243 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
1244 	 * we have to multiply by a total of 6x.
1245 	 */
1246 	return (lsize * 6);
1247 }
1248 
1249 /*
1250  * Return the failure mode that has been set to this pool. The default
1251  * behavior will be to block all I/Os when a complete failure occurs.
1252  */
1253 uint8_t
1254 spa_get_failmode(spa_t *spa)
1255 {
1256 	return (spa->spa_failmode);
1257 }
1258 
1259 boolean_t
1260 spa_suspended(spa_t *spa)
1261 {
1262 	return (spa->spa_suspended);
1263 }
1264 
1265 uint64_t
1266 spa_version(spa_t *spa)
1267 {
1268 	return (spa->spa_ubsync.ub_version);
1269 }
1270 
1271 int
1272 spa_max_replication(spa_t *spa)
1273 {
1274 	/*
1275 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1276 	 * handle BPs with more than one DVA allocated.  Set our max
1277 	 * replication level accordingly.
1278 	 */
1279 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1280 		return (1);
1281 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1282 }
1283 
1284 uint64_t
1285 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1286 {
1287 	int sz = 0, i;
1288 
1289 	if (!spa->spa_deflate)
1290 		return (BP_GET_ASIZE(bp));
1291 
1292 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1293 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1294 		vdev_t *vd =
1295 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1296 		if (vd)
1297 			sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >>
1298 			    SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1299 	}
1300 	spa_config_exit(spa, SCL_VDEV, FTAG);
1301 	return (sz);
1302 }
1303 
1304 /*
1305  * ==========================================================================
1306  * Initialization and Termination
1307  * ==========================================================================
1308  */
1309 
1310 static int
1311 spa_name_compare(const void *a1, const void *a2)
1312 {
1313 	const spa_t *s1 = a1;
1314 	const spa_t *s2 = a2;
1315 	int s;
1316 
1317 	s = strcmp(s1->spa_name, s2->spa_name);
1318 	if (s > 0)
1319 		return (1);
1320 	if (s < 0)
1321 		return (-1);
1322 	return (0);
1323 }
1324 
1325 int
1326 spa_busy(void)
1327 {
1328 	return (spa_active_count);
1329 }
1330 
1331 void
1332 spa_boot_init()
1333 {
1334 	spa_config_load();
1335 }
1336 
1337 void
1338 spa_init(int mode)
1339 {
1340 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1341 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1342 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1343 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1344 
1345 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1346 	    offsetof(spa_t, spa_avl));
1347 
1348 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1349 	    offsetof(spa_aux_t, aux_avl));
1350 
1351 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1352 	    offsetof(spa_aux_t, aux_avl));
1353 
1354 	spa_mode = mode;
1355 
1356 	refcount_init();
1357 	unique_init();
1358 	zio_init();
1359 	dmu_init();
1360 	zil_init();
1361 	vdev_cache_stat_init();
1362 	zfs_prop_init();
1363 	zpool_prop_init();
1364 	spa_config_load();
1365 	l2arc_start();
1366 }
1367 
1368 void
1369 spa_fini(void)
1370 {
1371 	l2arc_stop();
1372 
1373 	spa_evict_all();
1374 
1375 	vdev_cache_stat_fini();
1376 	zil_fini();
1377 	dmu_fini();
1378 	zio_fini();
1379 	unique_fini();
1380 	refcount_fini();
1381 
1382 	avl_destroy(&spa_namespace_avl);
1383 	avl_destroy(&spa_spare_avl);
1384 	avl_destroy(&spa_l2cache_avl);
1385 
1386 	cv_destroy(&spa_namespace_cv);
1387 	mutex_destroy(&spa_namespace_lock);
1388 	mutex_destroy(&spa_spare_lock);
1389 	mutex_destroy(&spa_l2cache_lock);
1390 }
1391 
1392 /*
1393  * Return whether this pool has slogs. No locking needed.
1394  * It's not a problem if the wrong answer is returned as it's only for
1395  * performance and not correctness
1396  */
1397 boolean_t
1398 spa_has_slogs(spa_t *spa)
1399 {
1400 	return (spa->spa_log_class->mc_rotor != NULL);
1401 }
1402 
1403 /*
1404  * Return whether this pool is the root pool.
1405  */
1406 boolean_t
1407 spa_is_root(spa_t *spa)
1408 {
1409 	return (spa->spa_is_root);
1410 }
1411