xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 0b427924a934b5ebe2ecd53ed66d8e65892da75e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright (c) 2017 Datto Inc.
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_initialize.h>
43 #include <sys/metaslab.h>
44 #include <sys/uberblock_impl.h>
45 #include <sys/txg.h>
46 #include <sys/avl.h>
47 #include <sys/unique.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/dsl_dir.h>
50 #include <sys/dsl_prop.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/metaslab_impl.h>
54 #include <sys/arc.h>
55 #include <sys/ddt.h>
56 #include "zfs_prop.h"
57 #include <sys/zfeature.h>
58 
59 /*
60  * SPA locking
61  *
62  * There are four basic locks for managing spa_t structures:
63  *
64  * spa_namespace_lock (global mutex)
65  *
66  *	This lock must be acquired to do any of the following:
67  *
68  *		- Lookup a spa_t by name
69  *		- Add or remove a spa_t from the namespace
70  *		- Increase spa_refcount from non-zero
71  *		- Check if spa_refcount is zero
72  *		- Rename a spa_t
73  *		- add/remove/attach/detach devices
74  *		- Held for the duration of create/destroy/import/export
75  *
76  *	It does not need to handle recursion.  A create or destroy may
77  *	reference objects (files or zvols) in other pools, but by
78  *	definition they must have an existing reference, and will never need
79  *	to lookup a spa_t by name.
80  *
81  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
82  *
83  *	This reference count keep track of any active users of the spa_t.  The
84  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
85  *	the refcount is never really 'zero' - opening a pool implicitly keeps
86  *	some references in the DMU.  Internally we check against spa_minref, but
87  *	present the image of a zero/non-zero value to consumers.
88  *
89  * spa_config_lock[] (per-spa array of rwlocks)
90  *
91  *	This protects the spa_t from config changes, and must be held in
92  *	the following circumstances:
93  *
94  *		- RW_READER to perform I/O to the spa
95  *		- RW_WRITER to change the vdev config
96  *
97  * The locking order is fairly straightforward:
98  *
99  *		spa_namespace_lock	->	spa_refcount
100  *
101  *	The namespace lock must be acquired to increase the refcount from 0
102  *	or to check if it is zero.
103  *
104  *		spa_refcount		->	spa_config_lock[]
105  *
106  *	There must be at least one valid reference on the spa_t to acquire
107  *	the config lock.
108  *
109  *		spa_namespace_lock	->	spa_config_lock[]
110  *
111  *	The namespace lock must always be taken before the config lock.
112  *
113  *
114  * The spa_namespace_lock can be acquired directly and is globally visible.
115  *
116  * The namespace is manipulated using the following functions, all of which
117  * require the spa_namespace_lock to be held.
118  *
119  *	spa_lookup()		Lookup a spa_t by name.
120  *
121  *	spa_add()		Create a new spa_t in the namespace.
122  *
123  *	spa_remove()		Remove a spa_t from the namespace.  This also
124  *				frees up any memory associated with the spa_t.
125  *
126  *	spa_next()		Returns the next spa_t in the system, or the
127  *				first if NULL is passed.
128  *
129  *	spa_evict_all()		Shutdown and remove all spa_t structures in
130  *				the system.
131  *
132  *	spa_guid_exists()	Determine whether a pool/device guid exists.
133  *
134  * The spa_refcount is manipulated using the following functions:
135  *
136  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
137  *				called with spa_namespace_lock held if the
138  *				refcount is currently zero.
139  *
140  *	spa_close()		Remove a reference from the spa_t.  This will
141  *				not free the spa_t or remove it from the
142  *				namespace.  No locking is required.
143  *
144  *	spa_refcount_zero()	Returns true if the refcount is currently
145  *				zero.  Must be called with spa_namespace_lock
146  *				held.
147  *
148  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
149  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
150  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
151  *
152  * To read the configuration, it suffices to hold one of these locks as reader.
153  * To modify the configuration, you must hold all locks as writer.  To modify
154  * vdev state without altering the vdev tree's topology (e.g. online/offline),
155  * you must hold SCL_STATE and SCL_ZIO as writer.
156  *
157  * We use these distinct config locks to avoid recursive lock entry.
158  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
159  * block allocations (SCL_ALLOC), which may require reading space maps
160  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
161  *
162  * The spa config locks cannot be normal rwlocks because we need the
163  * ability to hand off ownership.  For example, SCL_ZIO is acquired
164  * by the issuing thread and later released by an interrupt thread.
165  * They do, however, obey the usual write-wanted semantics to prevent
166  * writer (i.e. system administrator) starvation.
167  *
168  * The lock acquisition rules are as follows:
169  *
170  * SCL_CONFIG
171  *	Protects changes to the vdev tree topology, such as vdev
172  *	add/remove/attach/detach.  Protects the dirty config list
173  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
174  *
175  * SCL_STATE
176  *	Protects changes to pool state and vdev state, such as vdev
177  *	online/offline/fault/degrade/clear.  Protects the dirty state list
178  *	(spa_state_dirty_list) and global pool state (spa_state).
179  *
180  * SCL_ALLOC
181  *	Protects changes to metaslab groups and classes.
182  *	Held as reader by metaslab_alloc() and metaslab_claim().
183  *
184  * SCL_ZIO
185  *	Held by bp-level zios (those which have no io_vd upon entry)
186  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
187  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
188  *
189  * SCL_FREE
190  *	Protects changes to metaslab groups and classes.
191  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
192  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
193  *	blocks in zio_done() while another i/o that holds either
194  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
195  *
196  * SCL_VDEV
197  *	Held as reader to prevent changes to the vdev tree during trivial
198  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
199  *	other locks, and lower than all of them, to ensure that it's safe
200  *	to acquire regardless of caller context.
201  *
202  * In addition, the following rules apply:
203  *
204  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
205  *	The lock ordering is SCL_CONFIG > spa_props_lock.
206  *
207  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
208  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
209  *	or zio_write_phys() -- the caller must ensure that the config cannot
210  *	cannot change in the interim, and that the vdev cannot be reopened.
211  *	SCL_STATE as reader suffices for both.
212  *
213  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
214  *
215  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
216  *				for writing.
217  *
218  *	spa_vdev_exit()		Release the config lock, wait for all I/O
219  *				to complete, sync the updated configs to the
220  *				cache, and release the namespace lock.
221  *
222  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
223  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
224  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
225  */
226 
227 static avl_tree_t spa_namespace_avl;
228 kmutex_t spa_namespace_lock;
229 static kcondvar_t spa_namespace_cv;
230 static int spa_active_count;
231 int spa_max_replication_override = SPA_DVAS_PER_BP;
232 
233 static kmutex_t spa_spare_lock;
234 static avl_tree_t spa_spare_avl;
235 static kmutex_t spa_l2cache_lock;
236 static avl_tree_t spa_l2cache_avl;
237 
238 kmem_cache_t *spa_buffer_pool;
239 int spa_mode_global;
240 
241 #ifdef ZFS_DEBUG
242 /*
243  * Everything except dprintf, spa, and indirect_remap is on by default
244  * in debug builds.
245  */
246 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP);
247 #else
248 int zfs_flags = 0;
249 #endif
250 
251 /*
252  * zfs_recover can be set to nonzero to attempt to recover from
253  * otherwise-fatal errors, typically caused by on-disk corruption.  When
254  * set, calls to zfs_panic_recover() will turn into warning messages.
255  * This should only be used as a last resort, as it typically results
256  * in leaked space, or worse.
257  */
258 boolean_t zfs_recover = B_FALSE;
259 
260 /*
261  * If destroy encounters an EIO while reading metadata (e.g. indirect
262  * blocks), space referenced by the missing metadata can not be freed.
263  * Normally this causes the background destroy to become "stalled", as
264  * it is unable to make forward progress.  While in this stalled state,
265  * all remaining space to free from the error-encountering filesystem is
266  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
267  * permanently leak the space from indirect blocks that can not be read,
268  * and continue to free everything else that it can.
269  *
270  * The default, "stalling" behavior is useful if the storage partially
271  * fails (i.e. some but not all i/os fail), and then later recovers.  In
272  * this case, we will be able to continue pool operations while it is
273  * partially failed, and when it recovers, we can continue to free the
274  * space, with no leaks.  However, note that this case is actually
275  * fairly rare.
276  *
277  * Typically pools either (a) fail completely (but perhaps temporarily,
278  * e.g. a top-level vdev going offline), or (b) have localized,
279  * permanent errors (e.g. disk returns the wrong data due to bit flip or
280  * firmware bug).  In case (a), this setting does not matter because the
281  * pool will be suspended and the sync thread will not be able to make
282  * forward progress regardless.  In case (b), because the error is
283  * permanent, the best we can do is leak the minimum amount of space,
284  * which is what setting this flag will do.  Therefore, it is reasonable
285  * for this flag to normally be set, but we chose the more conservative
286  * approach of not setting it, so that there is no possibility of
287  * leaking space in the "partial temporary" failure case.
288  */
289 boolean_t zfs_free_leak_on_eio = B_FALSE;
290 
291 /*
292  * Expiration time in milliseconds. This value has two meanings. First it is
293  * used to determine when the spa_deadman() logic should fire. By default the
294  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
295  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
296  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
297  * in a system panic.
298  */
299 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
300 
301 /*
302  * Check time in milliseconds. This defines the frequency at which we check
303  * for hung I/O.
304  */
305 uint64_t zfs_deadman_checktime_ms = 5000ULL;
306 
307 /*
308  * Override the zfs deadman behavior via /etc/system. By default the
309  * deadman is enabled except on VMware and sparc deployments.
310  */
311 int zfs_deadman_enabled = -1;
312 
313 /*
314  * The worst case is single-sector max-parity RAID-Z blocks, in which
315  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
316  * times the size; so just assume that.  Add to this the fact that
317  * we can have up to 3 DVAs per bp, and one more factor of 2 because
318  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
319  * the worst case is:
320  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
321  */
322 int spa_asize_inflation = 24;
323 
324 /*
325  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
326  * the pool to be consumed.  This ensures that we don't run the pool
327  * completely out of space, due to unaccounted changes (e.g. to the MOS).
328  * It also limits the worst-case time to allocate space.  If we have
329  * less than this amount of free space, most ZPL operations (e.g. write,
330  * create) will return ENOSPC.
331  *
332  * Certain operations (e.g. file removal, most administrative actions) can
333  * use half the slop space.  They will only return ENOSPC if less than half
334  * the slop space is free.  Typically, once the pool has less than the slop
335  * space free, the user will use these operations to free up space in the pool.
336  * These are the operations that call dsl_pool_adjustedsize() with the netfree
337  * argument set to TRUE.
338  *
339  * Operations that are almost guaranteed to free up space in the absence of
340  * a pool checkpoint can use up to three quarters of the slop space
341  * (e.g zfs destroy).
342  *
343  * A very restricted set of operations are always permitted, regardless of
344  * the amount of free space.  These are the operations that call
345  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
346  * increase in the amount of space used, it is possible to run the pool
347  * completely out of space, causing it to be permanently read-only.
348  *
349  * Note that on very small pools, the slop space will be larger than
350  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
351  * but we never allow it to be more than half the pool size.
352  *
353  * See also the comments in zfs_space_check_t.
354  */
355 int spa_slop_shift = 5;
356 uint64_t spa_min_slop = 128 * 1024 * 1024;
357 
358 int spa_allocators = 4;
359 
360 /*PRINTFLIKE2*/
361 void
362 spa_load_failed(spa_t *spa, const char *fmt, ...)
363 {
364 	va_list adx;
365 	char buf[256];
366 
367 	va_start(adx, fmt);
368 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
369 	va_end(adx);
370 
371 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
372 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
373 }
374 
375 /*PRINTFLIKE2*/
376 void
377 spa_load_note(spa_t *spa, const char *fmt, ...)
378 {
379 	va_list adx;
380 	char buf[256];
381 
382 	va_start(adx, fmt);
383 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
384 	va_end(adx);
385 
386 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
387 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
388 }
389 
390 /*
391  * ==========================================================================
392  * SPA config locking
393  * ==========================================================================
394  */
395 static void
396 spa_config_lock_init(spa_t *spa)
397 {
398 	for (int i = 0; i < SCL_LOCKS; i++) {
399 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
400 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
401 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
402 		zfs_refcount_create_untracked(&scl->scl_count);
403 		scl->scl_writer = NULL;
404 		scl->scl_write_wanted = 0;
405 	}
406 }
407 
408 static void
409 spa_config_lock_destroy(spa_t *spa)
410 {
411 	for (int i = 0; i < SCL_LOCKS; i++) {
412 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
413 		mutex_destroy(&scl->scl_lock);
414 		cv_destroy(&scl->scl_cv);
415 		zfs_refcount_destroy(&scl->scl_count);
416 		ASSERT(scl->scl_writer == NULL);
417 		ASSERT(scl->scl_write_wanted == 0);
418 	}
419 }
420 
421 int
422 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
423 {
424 	for (int i = 0; i < SCL_LOCKS; i++) {
425 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
426 		if (!(locks & (1 << i)))
427 			continue;
428 		mutex_enter(&scl->scl_lock);
429 		if (rw == RW_READER) {
430 			if (scl->scl_writer || scl->scl_write_wanted) {
431 				mutex_exit(&scl->scl_lock);
432 				spa_config_exit(spa, locks & ((1 << i) - 1),
433 				    tag);
434 				return (0);
435 			}
436 		} else {
437 			ASSERT(scl->scl_writer != curthread);
438 			if (!zfs_refcount_is_zero(&scl->scl_count)) {
439 				mutex_exit(&scl->scl_lock);
440 				spa_config_exit(spa, locks & ((1 << i) - 1),
441 				    tag);
442 				return (0);
443 			}
444 			scl->scl_writer = curthread;
445 		}
446 		(void) zfs_refcount_add(&scl->scl_count, tag);
447 		mutex_exit(&scl->scl_lock);
448 	}
449 	return (1);
450 }
451 
452 void
453 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
454 {
455 	int wlocks_held = 0;
456 
457 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
458 
459 	for (int i = 0; i < SCL_LOCKS; i++) {
460 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
461 		if (scl->scl_writer == curthread)
462 			wlocks_held |= (1 << i);
463 		if (!(locks & (1 << i)))
464 			continue;
465 		mutex_enter(&scl->scl_lock);
466 		if (rw == RW_READER) {
467 			while (scl->scl_writer || scl->scl_write_wanted) {
468 				cv_wait(&scl->scl_cv, &scl->scl_lock);
469 			}
470 		} else {
471 			ASSERT(scl->scl_writer != curthread);
472 			while (!zfs_refcount_is_zero(&scl->scl_count)) {
473 				scl->scl_write_wanted++;
474 				cv_wait(&scl->scl_cv, &scl->scl_lock);
475 				scl->scl_write_wanted--;
476 			}
477 			scl->scl_writer = curthread;
478 		}
479 		(void) zfs_refcount_add(&scl->scl_count, tag);
480 		mutex_exit(&scl->scl_lock);
481 	}
482 	ASSERT3U(wlocks_held, <=, locks);
483 }
484 
485 void
486 spa_config_exit(spa_t *spa, int locks, void *tag)
487 {
488 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
489 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
490 		if (!(locks & (1 << i)))
491 			continue;
492 		mutex_enter(&scl->scl_lock);
493 		ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
494 		if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
495 			ASSERT(scl->scl_writer == NULL ||
496 			    scl->scl_writer == curthread);
497 			scl->scl_writer = NULL;	/* OK in either case */
498 			cv_broadcast(&scl->scl_cv);
499 		}
500 		mutex_exit(&scl->scl_lock);
501 	}
502 }
503 
504 int
505 spa_config_held(spa_t *spa, int locks, krw_t rw)
506 {
507 	int locks_held = 0;
508 
509 	for (int i = 0; i < SCL_LOCKS; i++) {
510 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
511 		if (!(locks & (1 << i)))
512 			continue;
513 		if ((rw == RW_READER &&
514 		    !zfs_refcount_is_zero(&scl->scl_count)) ||
515 		    (rw == RW_WRITER && scl->scl_writer == curthread))
516 			locks_held |= 1 << i;
517 	}
518 
519 	return (locks_held);
520 }
521 
522 /*
523  * ==========================================================================
524  * SPA namespace functions
525  * ==========================================================================
526  */
527 
528 /*
529  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
530  * Returns NULL if no matching spa_t is found.
531  */
532 spa_t *
533 spa_lookup(const char *name)
534 {
535 	static spa_t search;	/* spa_t is large; don't allocate on stack */
536 	spa_t *spa;
537 	avl_index_t where;
538 	char *cp;
539 
540 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
541 
542 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
543 
544 	/*
545 	 * If it's a full dataset name, figure out the pool name and
546 	 * just use that.
547 	 */
548 	cp = strpbrk(search.spa_name, "/@#");
549 	if (cp != NULL)
550 		*cp = '\0';
551 
552 	spa = avl_find(&spa_namespace_avl, &search, &where);
553 
554 	return (spa);
555 }
556 
557 /*
558  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
559  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
560  * looking for potentially hung I/Os.
561  */
562 void
563 spa_deadman(void *arg)
564 {
565 	spa_t *spa = arg;
566 
567 	/*
568 	 * Disable the deadman timer if the pool is suspended.
569 	 */
570 	if (spa_suspended(spa)) {
571 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
572 		return;
573 	}
574 
575 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
576 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
577 	    ++spa->spa_deadman_calls);
578 	if (zfs_deadman_enabled)
579 		vdev_deadman(spa->spa_root_vdev);
580 }
581 
582 /*
583  * Create an uninitialized spa_t with the given name.  Requires
584  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
585  * exist by calling spa_lookup() first.
586  */
587 spa_t *
588 spa_add(const char *name, nvlist_t *config, const char *altroot)
589 {
590 	spa_t *spa;
591 	spa_config_dirent_t *dp;
592 	cyc_handler_t hdlr;
593 	cyc_time_t when;
594 
595 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
596 
597 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
598 
599 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
600 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
601 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
602 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
603 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
604 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
605 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
606 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
607 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
608 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
609 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
610 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
611 
612 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
613 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
614 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
615 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
616 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
617 
618 	for (int t = 0; t < TXG_SIZE; t++)
619 		bplist_create(&spa->spa_free_bplist[t]);
620 
621 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
622 	spa->spa_state = POOL_STATE_UNINITIALIZED;
623 	spa->spa_freeze_txg = UINT64_MAX;
624 	spa->spa_final_txg = UINT64_MAX;
625 	spa->spa_load_max_txg = UINT64_MAX;
626 	spa->spa_proc = &p0;
627 	spa->spa_proc_state = SPA_PROC_NONE;
628 	spa->spa_trust_config = B_TRUE;
629 
630 	hdlr.cyh_func = spa_deadman;
631 	hdlr.cyh_arg = spa;
632 	hdlr.cyh_level = CY_LOW_LEVEL;
633 
634 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
635 
636 	/*
637 	 * This determines how often we need to check for hung I/Os after
638 	 * the cyclic has already fired. Since checking for hung I/Os is
639 	 * an expensive operation we don't want to check too frequently.
640 	 * Instead wait for 5 seconds before checking again.
641 	 */
642 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
643 	when.cyt_when = CY_INFINITY;
644 	mutex_enter(&cpu_lock);
645 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
646 	mutex_exit(&cpu_lock);
647 
648 	zfs_refcount_create(&spa->spa_refcount);
649 	spa_config_lock_init(spa);
650 
651 	avl_add(&spa_namespace_avl, spa);
652 
653 	/*
654 	 * Set the alternate root, if there is one.
655 	 */
656 	if (altroot) {
657 		spa->spa_root = spa_strdup(altroot);
658 		spa_active_count++;
659 	}
660 
661 	spa->spa_alloc_count = spa_allocators;
662 	spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
663 	    sizeof (kmutex_t), KM_SLEEP);
664 	spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
665 	    sizeof (avl_tree_t), KM_SLEEP);
666 	for (int i = 0; i < spa->spa_alloc_count; i++) {
667 		mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
668 		avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
669 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
670 	}
671 
672 	/*
673 	 * Every pool starts with the default cachefile
674 	 */
675 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
676 	    offsetof(spa_config_dirent_t, scd_link));
677 
678 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
679 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
680 	list_insert_head(&spa->spa_config_list, dp);
681 
682 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
683 	    KM_SLEEP) == 0);
684 
685 	if (config != NULL) {
686 		nvlist_t *features;
687 
688 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
689 		    &features) == 0) {
690 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
691 			    0) == 0);
692 		}
693 
694 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
695 	}
696 
697 	if (spa->spa_label_features == NULL) {
698 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
699 		    KM_SLEEP) == 0);
700 	}
701 
702 	spa->spa_iokstat = kstat_create("zfs", 0, name,
703 	    "disk", KSTAT_TYPE_IO, 1, 0);
704 	if (spa->spa_iokstat) {
705 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
706 		kstat_install(spa->spa_iokstat);
707 	}
708 
709 	spa->spa_min_ashift = INT_MAX;
710 	spa->spa_max_ashift = 0;
711 
712 	/*
713 	 * As a pool is being created, treat all features as disabled by
714 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
715 	 * refcount cache.
716 	 */
717 	for (int i = 0; i < SPA_FEATURES; i++) {
718 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
719 	}
720 
721 	return (spa);
722 }
723 
724 /*
725  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
726  * spa_namespace_lock.  This is called only after the spa_t has been closed and
727  * deactivated.
728  */
729 void
730 spa_remove(spa_t *spa)
731 {
732 	spa_config_dirent_t *dp;
733 
734 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
735 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
736 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
737 
738 	nvlist_free(spa->spa_config_splitting);
739 
740 	avl_remove(&spa_namespace_avl, spa);
741 	cv_broadcast(&spa_namespace_cv);
742 
743 	if (spa->spa_root) {
744 		spa_strfree(spa->spa_root);
745 		spa_active_count--;
746 	}
747 
748 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
749 		list_remove(&spa->spa_config_list, dp);
750 		if (dp->scd_path != NULL)
751 			spa_strfree(dp->scd_path);
752 		kmem_free(dp, sizeof (spa_config_dirent_t));
753 	}
754 
755 	for (int i = 0; i < spa->spa_alloc_count; i++) {
756 		avl_destroy(&spa->spa_alloc_trees[i]);
757 		mutex_destroy(&spa->spa_alloc_locks[i]);
758 	}
759 	kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
760 	    sizeof (kmutex_t));
761 	kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
762 	    sizeof (avl_tree_t));
763 
764 	list_destroy(&spa->spa_config_list);
765 
766 	nvlist_free(spa->spa_label_features);
767 	nvlist_free(spa->spa_load_info);
768 	spa_config_set(spa, NULL);
769 
770 	mutex_enter(&cpu_lock);
771 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
772 		cyclic_remove(spa->spa_deadman_cycid);
773 	mutex_exit(&cpu_lock);
774 	spa->spa_deadman_cycid = CYCLIC_NONE;
775 
776 	zfs_refcount_destroy(&spa->spa_refcount);
777 
778 	spa_config_lock_destroy(spa);
779 
780 	kstat_delete(spa->spa_iokstat);
781 	spa->spa_iokstat = NULL;
782 
783 	for (int t = 0; t < TXG_SIZE; t++)
784 		bplist_destroy(&spa->spa_free_bplist[t]);
785 
786 	zio_checksum_templates_free(spa);
787 
788 	cv_destroy(&spa->spa_async_cv);
789 	cv_destroy(&spa->spa_evicting_os_cv);
790 	cv_destroy(&spa->spa_proc_cv);
791 	cv_destroy(&spa->spa_scrub_io_cv);
792 	cv_destroy(&spa->spa_suspend_cv);
793 
794 	mutex_destroy(&spa->spa_async_lock);
795 	mutex_destroy(&spa->spa_errlist_lock);
796 	mutex_destroy(&spa->spa_errlog_lock);
797 	mutex_destroy(&spa->spa_evicting_os_lock);
798 	mutex_destroy(&spa->spa_history_lock);
799 	mutex_destroy(&spa->spa_proc_lock);
800 	mutex_destroy(&spa->spa_props_lock);
801 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
802 	mutex_destroy(&spa->spa_scrub_lock);
803 	mutex_destroy(&spa->spa_suspend_lock);
804 	mutex_destroy(&spa->spa_vdev_top_lock);
805 	mutex_destroy(&spa->spa_iokstat_lock);
806 
807 	kmem_free(spa, sizeof (spa_t));
808 }
809 
810 /*
811  * Given a pool, return the next pool in the namespace, or NULL if there is
812  * none.  If 'prev' is NULL, return the first pool.
813  */
814 spa_t *
815 spa_next(spa_t *prev)
816 {
817 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
818 
819 	if (prev)
820 		return (AVL_NEXT(&spa_namespace_avl, prev));
821 	else
822 		return (avl_first(&spa_namespace_avl));
823 }
824 
825 /*
826  * ==========================================================================
827  * SPA refcount functions
828  * ==========================================================================
829  */
830 
831 /*
832  * Add a reference to the given spa_t.  Must have at least one reference, or
833  * have the namespace lock held.
834  */
835 void
836 spa_open_ref(spa_t *spa, void *tag)
837 {
838 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
839 	    MUTEX_HELD(&spa_namespace_lock));
840 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
841 }
842 
843 /*
844  * Remove a reference to the given spa_t.  Must have at least one reference, or
845  * have the namespace lock held.
846  */
847 void
848 spa_close(spa_t *spa, void *tag)
849 {
850 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
851 	    MUTEX_HELD(&spa_namespace_lock));
852 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
853 }
854 
855 /*
856  * Remove a reference to the given spa_t held by a dsl dir that is
857  * being asynchronously released.  Async releases occur from a taskq
858  * performing eviction of dsl datasets and dirs.  The namespace lock
859  * isn't held and the hold by the object being evicted may contribute to
860  * spa_minref (e.g. dataset or directory released during pool export),
861  * so the asserts in spa_close() do not apply.
862  */
863 void
864 spa_async_close(spa_t *spa, void *tag)
865 {
866 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
867 }
868 
869 /*
870  * Check to see if the spa refcount is zero.  Must be called with
871  * spa_namespace_lock held.  We really compare against spa_minref, which is the
872  * number of references acquired when opening a pool
873  */
874 boolean_t
875 spa_refcount_zero(spa_t *spa)
876 {
877 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
878 
879 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
880 }
881 
882 /*
883  * ==========================================================================
884  * SPA spare and l2cache tracking
885  * ==========================================================================
886  */
887 
888 /*
889  * Hot spares and cache devices are tracked using the same code below,
890  * for 'auxiliary' devices.
891  */
892 
893 typedef struct spa_aux {
894 	uint64_t	aux_guid;
895 	uint64_t	aux_pool;
896 	avl_node_t	aux_avl;
897 	int		aux_count;
898 } spa_aux_t;
899 
900 static int
901 spa_aux_compare(const void *a, const void *b)
902 {
903 	const spa_aux_t *sa = a;
904 	const spa_aux_t *sb = b;
905 
906 	if (sa->aux_guid < sb->aux_guid)
907 		return (-1);
908 	else if (sa->aux_guid > sb->aux_guid)
909 		return (1);
910 	else
911 		return (0);
912 }
913 
914 void
915 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
916 {
917 	avl_index_t where;
918 	spa_aux_t search;
919 	spa_aux_t *aux;
920 
921 	search.aux_guid = vd->vdev_guid;
922 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
923 		aux->aux_count++;
924 	} else {
925 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
926 		aux->aux_guid = vd->vdev_guid;
927 		aux->aux_count = 1;
928 		avl_insert(avl, aux, where);
929 	}
930 }
931 
932 void
933 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
934 {
935 	spa_aux_t search;
936 	spa_aux_t *aux;
937 	avl_index_t where;
938 
939 	search.aux_guid = vd->vdev_guid;
940 	aux = avl_find(avl, &search, &where);
941 
942 	ASSERT(aux != NULL);
943 
944 	if (--aux->aux_count == 0) {
945 		avl_remove(avl, aux);
946 		kmem_free(aux, sizeof (spa_aux_t));
947 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
948 		aux->aux_pool = 0ULL;
949 	}
950 }
951 
952 boolean_t
953 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
954 {
955 	spa_aux_t search, *found;
956 
957 	search.aux_guid = guid;
958 	found = avl_find(avl, &search, NULL);
959 
960 	if (pool) {
961 		if (found)
962 			*pool = found->aux_pool;
963 		else
964 			*pool = 0ULL;
965 	}
966 
967 	if (refcnt) {
968 		if (found)
969 			*refcnt = found->aux_count;
970 		else
971 			*refcnt = 0;
972 	}
973 
974 	return (found != NULL);
975 }
976 
977 void
978 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
979 {
980 	spa_aux_t search, *found;
981 	avl_index_t where;
982 
983 	search.aux_guid = vd->vdev_guid;
984 	found = avl_find(avl, &search, &where);
985 	ASSERT(found != NULL);
986 	ASSERT(found->aux_pool == 0ULL);
987 
988 	found->aux_pool = spa_guid(vd->vdev_spa);
989 }
990 
991 /*
992  * Spares are tracked globally due to the following constraints:
993  *
994  *	- A spare may be part of multiple pools.
995  *	- A spare may be added to a pool even if it's actively in use within
996  *	  another pool.
997  *	- A spare in use in any pool can only be the source of a replacement if
998  *	  the target is a spare in the same pool.
999  *
1000  * We keep track of all spares on the system through the use of a reference
1001  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1002  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1003  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1004  * inactive).  When a spare is made active (used to replace a device in the
1005  * pool), we also keep track of which pool its been made a part of.
1006  *
1007  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1008  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1009  * separate spare lock exists for the status query path, which does not need to
1010  * be completely consistent with respect to other vdev configuration changes.
1011  */
1012 
1013 static int
1014 spa_spare_compare(const void *a, const void *b)
1015 {
1016 	return (spa_aux_compare(a, b));
1017 }
1018 
1019 void
1020 spa_spare_add(vdev_t *vd)
1021 {
1022 	mutex_enter(&spa_spare_lock);
1023 	ASSERT(!vd->vdev_isspare);
1024 	spa_aux_add(vd, &spa_spare_avl);
1025 	vd->vdev_isspare = B_TRUE;
1026 	mutex_exit(&spa_spare_lock);
1027 }
1028 
1029 void
1030 spa_spare_remove(vdev_t *vd)
1031 {
1032 	mutex_enter(&spa_spare_lock);
1033 	ASSERT(vd->vdev_isspare);
1034 	spa_aux_remove(vd, &spa_spare_avl);
1035 	vd->vdev_isspare = B_FALSE;
1036 	mutex_exit(&spa_spare_lock);
1037 }
1038 
1039 boolean_t
1040 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1041 {
1042 	boolean_t found;
1043 
1044 	mutex_enter(&spa_spare_lock);
1045 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1046 	mutex_exit(&spa_spare_lock);
1047 
1048 	return (found);
1049 }
1050 
1051 void
1052 spa_spare_activate(vdev_t *vd)
1053 {
1054 	mutex_enter(&spa_spare_lock);
1055 	ASSERT(vd->vdev_isspare);
1056 	spa_aux_activate(vd, &spa_spare_avl);
1057 	mutex_exit(&spa_spare_lock);
1058 }
1059 
1060 /*
1061  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1062  * Cache devices currently only support one pool per cache device, and so
1063  * for these devices the aux reference count is currently unused beyond 1.
1064  */
1065 
1066 static int
1067 spa_l2cache_compare(const void *a, const void *b)
1068 {
1069 	return (spa_aux_compare(a, b));
1070 }
1071 
1072 void
1073 spa_l2cache_add(vdev_t *vd)
1074 {
1075 	mutex_enter(&spa_l2cache_lock);
1076 	ASSERT(!vd->vdev_isl2cache);
1077 	spa_aux_add(vd, &spa_l2cache_avl);
1078 	vd->vdev_isl2cache = B_TRUE;
1079 	mutex_exit(&spa_l2cache_lock);
1080 }
1081 
1082 void
1083 spa_l2cache_remove(vdev_t *vd)
1084 {
1085 	mutex_enter(&spa_l2cache_lock);
1086 	ASSERT(vd->vdev_isl2cache);
1087 	spa_aux_remove(vd, &spa_l2cache_avl);
1088 	vd->vdev_isl2cache = B_FALSE;
1089 	mutex_exit(&spa_l2cache_lock);
1090 }
1091 
1092 boolean_t
1093 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1094 {
1095 	boolean_t found;
1096 
1097 	mutex_enter(&spa_l2cache_lock);
1098 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1099 	mutex_exit(&spa_l2cache_lock);
1100 
1101 	return (found);
1102 }
1103 
1104 void
1105 spa_l2cache_activate(vdev_t *vd)
1106 {
1107 	mutex_enter(&spa_l2cache_lock);
1108 	ASSERT(vd->vdev_isl2cache);
1109 	spa_aux_activate(vd, &spa_l2cache_avl);
1110 	mutex_exit(&spa_l2cache_lock);
1111 }
1112 
1113 /*
1114  * ==========================================================================
1115  * SPA vdev locking
1116  * ==========================================================================
1117  */
1118 
1119 /*
1120  * Lock the given spa_t for the purpose of adding or removing a vdev.
1121  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1122  * It returns the next transaction group for the spa_t.
1123  */
1124 uint64_t
1125 spa_vdev_enter(spa_t *spa)
1126 {
1127 	mutex_enter(&spa->spa_vdev_top_lock);
1128 	mutex_enter(&spa_namespace_lock);
1129 	return (spa_vdev_config_enter(spa));
1130 }
1131 
1132 /*
1133  * Internal implementation for spa_vdev_enter().  Used when a vdev
1134  * operation requires multiple syncs (i.e. removing a device) while
1135  * keeping the spa_namespace_lock held.
1136  */
1137 uint64_t
1138 spa_vdev_config_enter(spa_t *spa)
1139 {
1140 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1141 
1142 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1143 
1144 	return (spa_last_synced_txg(spa) + 1);
1145 }
1146 
1147 /*
1148  * Used in combination with spa_vdev_config_enter() to allow the syncing
1149  * of multiple transactions without releasing the spa_namespace_lock.
1150  */
1151 void
1152 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1153 {
1154 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1155 
1156 	int config_changed = B_FALSE;
1157 
1158 	ASSERT(txg > spa_last_synced_txg(spa));
1159 
1160 	spa->spa_pending_vdev = NULL;
1161 
1162 	/*
1163 	 * Reassess the DTLs.
1164 	 */
1165 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1166 
1167 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1168 		config_changed = B_TRUE;
1169 		spa->spa_config_generation++;
1170 	}
1171 
1172 	/*
1173 	 * Verify the metaslab classes.
1174 	 */
1175 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1176 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1177 
1178 	spa_config_exit(spa, SCL_ALL, spa);
1179 
1180 	/*
1181 	 * Panic the system if the specified tag requires it.  This
1182 	 * is useful for ensuring that configurations are updated
1183 	 * transactionally.
1184 	 */
1185 	if (zio_injection_enabled)
1186 		zio_handle_panic_injection(spa, tag, 0);
1187 
1188 	/*
1189 	 * Note: this txg_wait_synced() is important because it ensures
1190 	 * that there won't be more than one config change per txg.
1191 	 * This allows us to use the txg as the generation number.
1192 	 */
1193 	if (error == 0)
1194 		txg_wait_synced(spa->spa_dsl_pool, txg);
1195 
1196 	if (vd != NULL) {
1197 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1198 		if (vd->vdev_ops->vdev_op_leaf) {
1199 			mutex_enter(&vd->vdev_initialize_lock);
1200 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED);
1201 			mutex_exit(&vd->vdev_initialize_lock);
1202 		}
1203 
1204 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1205 		vdev_free(vd);
1206 		spa_config_exit(spa, SCL_ALL, spa);
1207 	}
1208 
1209 	/*
1210 	 * If the config changed, update the config cache.
1211 	 */
1212 	if (config_changed)
1213 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1214 }
1215 
1216 /*
1217  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1218  * locking of spa_vdev_enter(), we also want make sure the transactions have
1219  * synced to disk, and then update the global configuration cache with the new
1220  * information.
1221  */
1222 int
1223 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1224 {
1225 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1226 	mutex_exit(&spa_namespace_lock);
1227 	mutex_exit(&spa->spa_vdev_top_lock);
1228 
1229 	return (error);
1230 }
1231 
1232 /*
1233  * Lock the given spa_t for the purpose of changing vdev state.
1234  */
1235 void
1236 spa_vdev_state_enter(spa_t *spa, int oplocks)
1237 {
1238 	int locks = SCL_STATE_ALL | oplocks;
1239 
1240 	/*
1241 	 * Root pools may need to read of the underlying devfs filesystem
1242 	 * when opening up a vdev.  Unfortunately if we're holding the
1243 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1244 	 * the read from the root filesystem.  Instead we "prefetch"
1245 	 * the associated vnodes that we need prior to opening the
1246 	 * underlying devices and cache them so that we can prevent
1247 	 * any I/O when we are doing the actual open.
1248 	 */
1249 	if (spa_is_root(spa)) {
1250 		int low = locks & ~(SCL_ZIO - 1);
1251 		int high = locks & ~low;
1252 
1253 		spa_config_enter(spa, high, spa, RW_WRITER);
1254 		vdev_hold(spa->spa_root_vdev);
1255 		spa_config_enter(spa, low, spa, RW_WRITER);
1256 	} else {
1257 		spa_config_enter(spa, locks, spa, RW_WRITER);
1258 	}
1259 	spa->spa_vdev_locks = locks;
1260 }
1261 
1262 int
1263 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1264 {
1265 	boolean_t config_changed = B_FALSE;
1266 
1267 	if (vd != NULL || error == 0)
1268 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1269 		    0, 0, B_FALSE);
1270 
1271 	if (vd != NULL) {
1272 		vdev_state_dirty(vd->vdev_top);
1273 		config_changed = B_TRUE;
1274 		spa->spa_config_generation++;
1275 	}
1276 
1277 	if (spa_is_root(spa))
1278 		vdev_rele(spa->spa_root_vdev);
1279 
1280 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1281 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1282 
1283 	/*
1284 	 * If anything changed, wait for it to sync.  This ensures that,
1285 	 * from the system administrator's perspective, zpool(1M) commands
1286 	 * are synchronous.  This is important for things like zpool offline:
1287 	 * when the command completes, you expect no further I/O from ZFS.
1288 	 */
1289 	if (vd != NULL)
1290 		txg_wait_synced(spa->spa_dsl_pool, 0);
1291 
1292 	/*
1293 	 * If the config changed, update the config cache.
1294 	 */
1295 	if (config_changed) {
1296 		mutex_enter(&spa_namespace_lock);
1297 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1298 		mutex_exit(&spa_namespace_lock);
1299 	}
1300 
1301 	return (error);
1302 }
1303 
1304 /*
1305  * ==========================================================================
1306  * Miscellaneous functions
1307  * ==========================================================================
1308  */
1309 
1310 void
1311 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1312 {
1313 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1314 		fnvlist_add_boolean(spa->spa_label_features, feature);
1315 		/*
1316 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1317 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1318 		 * Thankfully, in this case we don't need to dirty the config
1319 		 * because it will be written out anyway when we finish
1320 		 * creating the pool.
1321 		 */
1322 		if (tx->tx_txg != TXG_INITIAL)
1323 			vdev_config_dirty(spa->spa_root_vdev);
1324 	}
1325 }
1326 
1327 void
1328 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1329 {
1330 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1331 		vdev_config_dirty(spa->spa_root_vdev);
1332 }
1333 
1334 /*
1335  * Return the spa_t associated with given pool_guid, if it exists.  If
1336  * device_guid is non-zero, determine whether the pool exists *and* contains
1337  * a device with the specified device_guid.
1338  */
1339 spa_t *
1340 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1341 {
1342 	spa_t *spa;
1343 	avl_tree_t *t = &spa_namespace_avl;
1344 
1345 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1346 
1347 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1348 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1349 			continue;
1350 		if (spa->spa_root_vdev == NULL)
1351 			continue;
1352 		if (spa_guid(spa) == pool_guid) {
1353 			if (device_guid == 0)
1354 				break;
1355 
1356 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1357 			    device_guid) != NULL)
1358 				break;
1359 
1360 			/*
1361 			 * Check any devices we may be in the process of adding.
1362 			 */
1363 			if (spa->spa_pending_vdev) {
1364 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1365 				    device_guid) != NULL)
1366 					break;
1367 			}
1368 		}
1369 	}
1370 
1371 	return (spa);
1372 }
1373 
1374 /*
1375  * Determine whether a pool with the given pool_guid exists.
1376  */
1377 boolean_t
1378 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1379 {
1380 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1381 }
1382 
1383 char *
1384 spa_strdup(const char *s)
1385 {
1386 	size_t len;
1387 	char *new;
1388 
1389 	len = strlen(s);
1390 	new = kmem_alloc(len + 1, KM_SLEEP);
1391 	bcopy(s, new, len);
1392 	new[len] = '\0';
1393 
1394 	return (new);
1395 }
1396 
1397 void
1398 spa_strfree(char *s)
1399 {
1400 	kmem_free(s, strlen(s) + 1);
1401 }
1402 
1403 uint64_t
1404 spa_get_random(uint64_t range)
1405 {
1406 	uint64_t r;
1407 
1408 	ASSERT(range != 0);
1409 
1410 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1411 
1412 	return (r % range);
1413 }
1414 
1415 uint64_t
1416 spa_generate_guid(spa_t *spa)
1417 {
1418 	uint64_t guid = spa_get_random(-1ULL);
1419 
1420 	if (spa != NULL) {
1421 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1422 			guid = spa_get_random(-1ULL);
1423 	} else {
1424 		while (guid == 0 || spa_guid_exists(guid, 0))
1425 			guid = spa_get_random(-1ULL);
1426 	}
1427 
1428 	return (guid);
1429 }
1430 
1431 void
1432 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1433 {
1434 	char type[256];
1435 	char *checksum = NULL;
1436 	char *compress = NULL;
1437 
1438 	if (bp != NULL) {
1439 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1440 			dmu_object_byteswap_t bswap =
1441 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1442 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1443 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1444 			    "metadata" : "data",
1445 			    dmu_ot_byteswap[bswap].ob_name);
1446 		} else {
1447 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1448 			    sizeof (type));
1449 		}
1450 		if (!BP_IS_EMBEDDED(bp)) {
1451 			checksum =
1452 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1453 		}
1454 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1455 	}
1456 
1457 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1458 	    compress);
1459 }
1460 
1461 void
1462 spa_freeze(spa_t *spa)
1463 {
1464 	uint64_t freeze_txg = 0;
1465 
1466 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1467 	if (spa->spa_freeze_txg == UINT64_MAX) {
1468 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1469 		spa->spa_freeze_txg = freeze_txg;
1470 	}
1471 	spa_config_exit(spa, SCL_ALL, FTAG);
1472 	if (freeze_txg != 0)
1473 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1474 }
1475 
1476 void
1477 zfs_panic_recover(const char *fmt, ...)
1478 {
1479 	va_list adx;
1480 
1481 	va_start(adx, fmt);
1482 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1483 	va_end(adx);
1484 }
1485 
1486 /*
1487  * This is a stripped-down version of strtoull, suitable only for converting
1488  * lowercase hexadecimal numbers that don't overflow.
1489  */
1490 uint64_t
1491 zfs_strtonum(const char *str, char **nptr)
1492 {
1493 	uint64_t val = 0;
1494 	char c;
1495 	int digit;
1496 
1497 	while ((c = *str) != '\0') {
1498 		if (c >= '0' && c <= '9')
1499 			digit = c - '0';
1500 		else if (c >= 'a' && c <= 'f')
1501 			digit = 10 + c - 'a';
1502 		else
1503 			break;
1504 
1505 		val *= 16;
1506 		val += digit;
1507 
1508 		str++;
1509 	}
1510 
1511 	if (nptr)
1512 		*nptr = (char *)str;
1513 
1514 	return (val);
1515 }
1516 
1517 /*
1518  * ==========================================================================
1519  * Accessor functions
1520  * ==========================================================================
1521  */
1522 
1523 boolean_t
1524 spa_shutting_down(spa_t *spa)
1525 {
1526 	return (spa->spa_async_suspended);
1527 }
1528 
1529 dsl_pool_t *
1530 spa_get_dsl(spa_t *spa)
1531 {
1532 	return (spa->spa_dsl_pool);
1533 }
1534 
1535 boolean_t
1536 spa_is_initializing(spa_t *spa)
1537 {
1538 	return (spa->spa_is_initializing);
1539 }
1540 
1541 boolean_t
1542 spa_indirect_vdevs_loaded(spa_t *spa)
1543 {
1544 	return (spa->spa_indirect_vdevs_loaded);
1545 }
1546 
1547 blkptr_t *
1548 spa_get_rootblkptr(spa_t *spa)
1549 {
1550 	return (&spa->spa_ubsync.ub_rootbp);
1551 }
1552 
1553 void
1554 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1555 {
1556 	spa->spa_uberblock.ub_rootbp = *bp;
1557 }
1558 
1559 void
1560 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1561 {
1562 	if (spa->spa_root == NULL)
1563 		buf[0] = '\0';
1564 	else
1565 		(void) strncpy(buf, spa->spa_root, buflen);
1566 }
1567 
1568 int
1569 spa_sync_pass(spa_t *spa)
1570 {
1571 	return (spa->spa_sync_pass);
1572 }
1573 
1574 char *
1575 spa_name(spa_t *spa)
1576 {
1577 	return (spa->spa_name);
1578 }
1579 
1580 uint64_t
1581 spa_guid(spa_t *spa)
1582 {
1583 	dsl_pool_t *dp = spa_get_dsl(spa);
1584 	uint64_t guid;
1585 
1586 	/*
1587 	 * If we fail to parse the config during spa_load(), we can go through
1588 	 * the error path (which posts an ereport) and end up here with no root
1589 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1590 	 * this case.
1591 	 */
1592 	if (spa->spa_root_vdev == NULL)
1593 		return (spa->spa_config_guid);
1594 
1595 	guid = spa->spa_last_synced_guid != 0 ?
1596 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1597 
1598 	/*
1599 	 * Return the most recently synced out guid unless we're
1600 	 * in syncing context.
1601 	 */
1602 	if (dp && dsl_pool_sync_context(dp))
1603 		return (spa->spa_root_vdev->vdev_guid);
1604 	else
1605 		return (guid);
1606 }
1607 
1608 uint64_t
1609 spa_load_guid(spa_t *spa)
1610 {
1611 	/*
1612 	 * This is a GUID that exists solely as a reference for the
1613 	 * purposes of the arc.  It is generated at load time, and
1614 	 * is never written to persistent storage.
1615 	 */
1616 	return (spa->spa_load_guid);
1617 }
1618 
1619 uint64_t
1620 spa_last_synced_txg(spa_t *spa)
1621 {
1622 	return (spa->spa_ubsync.ub_txg);
1623 }
1624 
1625 uint64_t
1626 spa_first_txg(spa_t *spa)
1627 {
1628 	return (spa->spa_first_txg);
1629 }
1630 
1631 uint64_t
1632 spa_syncing_txg(spa_t *spa)
1633 {
1634 	return (spa->spa_syncing_txg);
1635 }
1636 
1637 /*
1638  * Return the last txg where data can be dirtied. The final txgs
1639  * will be used to just clear out any deferred frees that remain.
1640  */
1641 uint64_t
1642 spa_final_dirty_txg(spa_t *spa)
1643 {
1644 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1645 }
1646 
1647 pool_state_t
1648 spa_state(spa_t *spa)
1649 {
1650 	return (spa->spa_state);
1651 }
1652 
1653 spa_load_state_t
1654 spa_load_state(spa_t *spa)
1655 {
1656 	return (spa->spa_load_state);
1657 }
1658 
1659 uint64_t
1660 spa_freeze_txg(spa_t *spa)
1661 {
1662 	return (spa->spa_freeze_txg);
1663 }
1664 
1665 /* ARGSUSED */
1666 uint64_t
1667 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1668 {
1669 	return (lsize * spa_asize_inflation);
1670 }
1671 
1672 /*
1673  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1674  * or at least 128MB, unless that would cause it to be more than half the
1675  * pool size.
1676  *
1677  * See the comment above spa_slop_shift for details.
1678  */
1679 uint64_t
1680 spa_get_slop_space(spa_t *spa)
1681 {
1682 	uint64_t space = spa_get_dspace(spa);
1683 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1684 }
1685 
1686 uint64_t
1687 spa_get_dspace(spa_t *spa)
1688 {
1689 	return (spa->spa_dspace);
1690 }
1691 
1692 uint64_t
1693 spa_get_checkpoint_space(spa_t *spa)
1694 {
1695 	return (spa->spa_checkpoint_info.sci_dspace);
1696 }
1697 
1698 void
1699 spa_update_dspace(spa_t *spa)
1700 {
1701 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1702 	    ddt_get_dedup_dspace(spa);
1703 	if (spa->spa_vdev_removal != NULL) {
1704 		/*
1705 		 * We can't allocate from the removing device, so
1706 		 * subtract its size.  This prevents the DMU/DSL from
1707 		 * filling up the (now smaller) pool while we are in the
1708 		 * middle of removing the device.
1709 		 *
1710 		 * Note that the DMU/DSL doesn't actually know or care
1711 		 * how much space is allocated (it does its own tracking
1712 		 * of how much space has been logically used).  So it
1713 		 * doesn't matter that the data we are moving may be
1714 		 * allocated twice (on the old device and the new
1715 		 * device).
1716 		 */
1717 		spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1718 		vdev_t *vd =
1719 		    vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1720 		spa->spa_dspace -= spa_deflate(spa) ?
1721 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1722 		spa_config_exit(spa, SCL_VDEV, FTAG);
1723 	}
1724 }
1725 
1726 /*
1727  * Return the failure mode that has been set to this pool. The default
1728  * behavior will be to block all I/Os when a complete failure occurs.
1729  */
1730 uint8_t
1731 spa_get_failmode(spa_t *spa)
1732 {
1733 	return (spa->spa_failmode);
1734 }
1735 
1736 boolean_t
1737 spa_suspended(spa_t *spa)
1738 {
1739 	return (spa->spa_suspended);
1740 }
1741 
1742 uint64_t
1743 spa_version(spa_t *spa)
1744 {
1745 	return (spa->spa_ubsync.ub_version);
1746 }
1747 
1748 boolean_t
1749 spa_deflate(spa_t *spa)
1750 {
1751 	return (spa->spa_deflate);
1752 }
1753 
1754 metaslab_class_t *
1755 spa_normal_class(spa_t *spa)
1756 {
1757 	return (spa->spa_normal_class);
1758 }
1759 
1760 metaslab_class_t *
1761 spa_log_class(spa_t *spa)
1762 {
1763 	return (spa->spa_log_class);
1764 }
1765 
1766 void
1767 spa_evicting_os_register(spa_t *spa, objset_t *os)
1768 {
1769 	mutex_enter(&spa->spa_evicting_os_lock);
1770 	list_insert_head(&spa->spa_evicting_os_list, os);
1771 	mutex_exit(&spa->spa_evicting_os_lock);
1772 }
1773 
1774 void
1775 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1776 {
1777 	mutex_enter(&spa->spa_evicting_os_lock);
1778 	list_remove(&spa->spa_evicting_os_list, os);
1779 	cv_broadcast(&spa->spa_evicting_os_cv);
1780 	mutex_exit(&spa->spa_evicting_os_lock);
1781 }
1782 
1783 void
1784 spa_evicting_os_wait(spa_t *spa)
1785 {
1786 	mutex_enter(&spa->spa_evicting_os_lock);
1787 	while (!list_is_empty(&spa->spa_evicting_os_list))
1788 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1789 	mutex_exit(&spa->spa_evicting_os_lock);
1790 
1791 	dmu_buf_user_evict_wait();
1792 }
1793 
1794 int
1795 spa_max_replication(spa_t *spa)
1796 {
1797 	/*
1798 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1799 	 * handle BPs with more than one DVA allocated.  Set our max
1800 	 * replication level accordingly.
1801 	 */
1802 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1803 		return (1);
1804 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1805 }
1806 
1807 int
1808 spa_prev_software_version(spa_t *spa)
1809 {
1810 	return (spa->spa_prev_software_version);
1811 }
1812 
1813 uint64_t
1814 spa_deadman_synctime(spa_t *spa)
1815 {
1816 	return (spa->spa_deadman_synctime);
1817 }
1818 
1819 uint64_t
1820 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1821 {
1822 	uint64_t asize = DVA_GET_ASIZE(dva);
1823 	uint64_t dsize = asize;
1824 
1825 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1826 
1827 	if (asize != 0 && spa->spa_deflate) {
1828 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1829 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1830 	}
1831 
1832 	return (dsize);
1833 }
1834 
1835 uint64_t
1836 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1837 {
1838 	uint64_t dsize = 0;
1839 
1840 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1841 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1842 
1843 	return (dsize);
1844 }
1845 
1846 uint64_t
1847 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1848 {
1849 	uint64_t dsize = 0;
1850 
1851 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1852 
1853 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1854 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1855 
1856 	spa_config_exit(spa, SCL_VDEV, FTAG);
1857 
1858 	return (dsize);
1859 }
1860 
1861 uint64_t
1862 spa_dirty_data(spa_t *spa)
1863 {
1864 	return (spa->spa_dsl_pool->dp_dirty_total);
1865 }
1866 
1867 /*
1868  * ==========================================================================
1869  * Initialization and Termination
1870  * ==========================================================================
1871  */
1872 
1873 static int
1874 spa_name_compare(const void *a1, const void *a2)
1875 {
1876 	const spa_t *s1 = a1;
1877 	const spa_t *s2 = a2;
1878 	int s;
1879 
1880 	s = strcmp(s1->spa_name, s2->spa_name);
1881 	if (s > 0)
1882 		return (1);
1883 	if (s < 0)
1884 		return (-1);
1885 	return (0);
1886 }
1887 
1888 int
1889 spa_busy(void)
1890 {
1891 	return (spa_active_count);
1892 }
1893 
1894 void
1895 spa_boot_init()
1896 {
1897 	spa_config_load();
1898 }
1899 
1900 void
1901 spa_init(int mode)
1902 {
1903 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1904 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1905 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1906 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1907 
1908 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1909 	    offsetof(spa_t, spa_avl));
1910 
1911 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1912 	    offsetof(spa_aux_t, aux_avl));
1913 
1914 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1915 	    offsetof(spa_aux_t, aux_avl));
1916 
1917 	spa_mode_global = mode;
1918 
1919 #ifdef _KERNEL
1920 	spa_arch_init();
1921 #else
1922 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1923 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1924 		if (arc_procfd == -1) {
1925 			perror("could not enable watchpoints: "
1926 			    "opening /proc/self/ctl failed: ");
1927 		} else {
1928 			arc_watch = B_TRUE;
1929 		}
1930 	}
1931 #endif
1932 
1933 	zfs_refcount_init();
1934 	unique_init();
1935 	range_tree_init();
1936 	metaslab_alloc_trace_init();
1937 	zio_init();
1938 	dmu_init();
1939 	zil_init();
1940 	vdev_cache_stat_init();
1941 	zfs_prop_init();
1942 	zpool_prop_init();
1943 	zpool_feature_init();
1944 	spa_config_load();
1945 	l2arc_start();
1946 }
1947 
1948 void
1949 spa_fini(void)
1950 {
1951 	l2arc_stop();
1952 
1953 	spa_evict_all();
1954 
1955 	vdev_cache_stat_fini();
1956 	zil_fini();
1957 	dmu_fini();
1958 	zio_fini();
1959 	metaslab_alloc_trace_fini();
1960 	range_tree_fini();
1961 	unique_fini();
1962 	zfs_refcount_fini();
1963 
1964 	avl_destroy(&spa_namespace_avl);
1965 	avl_destroy(&spa_spare_avl);
1966 	avl_destroy(&spa_l2cache_avl);
1967 
1968 	cv_destroy(&spa_namespace_cv);
1969 	mutex_destroy(&spa_namespace_lock);
1970 	mutex_destroy(&spa_spare_lock);
1971 	mutex_destroy(&spa_l2cache_lock);
1972 }
1973 
1974 /*
1975  * Return whether this pool has slogs. No locking needed.
1976  * It's not a problem if the wrong answer is returned as it's only for
1977  * performance and not correctness
1978  */
1979 boolean_t
1980 spa_has_slogs(spa_t *spa)
1981 {
1982 	return (spa->spa_log_class->mc_rotor != NULL);
1983 }
1984 
1985 spa_log_state_t
1986 spa_get_log_state(spa_t *spa)
1987 {
1988 	return (spa->spa_log_state);
1989 }
1990 
1991 void
1992 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1993 {
1994 	spa->spa_log_state = state;
1995 }
1996 
1997 boolean_t
1998 spa_is_root(spa_t *spa)
1999 {
2000 	return (spa->spa_is_root);
2001 }
2002 
2003 boolean_t
2004 spa_writeable(spa_t *spa)
2005 {
2006 	return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2007 }
2008 
2009 /*
2010  * Returns true if there is a pending sync task in any of the current
2011  * syncing txg, the current quiescing txg, or the current open txg.
2012  */
2013 boolean_t
2014 spa_has_pending_synctask(spa_t *spa)
2015 {
2016 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2017 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2018 }
2019 
2020 int
2021 spa_mode(spa_t *spa)
2022 {
2023 	return (spa->spa_mode);
2024 }
2025 
2026 uint64_t
2027 spa_bootfs(spa_t *spa)
2028 {
2029 	return (spa->spa_bootfs);
2030 }
2031 
2032 uint64_t
2033 spa_delegation(spa_t *spa)
2034 {
2035 	return (spa->spa_delegation);
2036 }
2037 
2038 objset_t *
2039 spa_meta_objset(spa_t *spa)
2040 {
2041 	return (spa->spa_meta_objset);
2042 }
2043 
2044 enum zio_checksum
2045 spa_dedup_checksum(spa_t *spa)
2046 {
2047 	return (spa->spa_dedup_checksum);
2048 }
2049 
2050 /*
2051  * Reset pool scan stat per scan pass (or reboot).
2052  */
2053 void
2054 spa_scan_stat_init(spa_t *spa)
2055 {
2056 	/* data not stored on disk */
2057 	spa->spa_scan_pass_start = gethrestime_sec();
2058 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2059 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2060 	else
2061 		spa->spa_scan_pass_scrub_pause = 0;
2062 	spa->spa_scan_pass_scrub_spent_paused = 0;
2063 	spa->spa_scan_pass_exam = 0;
2064 	vdev_scan_stat_init(spa->spa_root_vdev);
2065 }
2066 
2067 /*
2068  * Get scan stats for zpool status reports
2069  */
2070 int
2071 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2072 {
2073 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2074 
2075 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2076 		return (SET_ERROR(ENOENT));
2077 	bzero(ps, sizeof (pool_scan_stat_t));
2078 
2079 	/* data stored on disk */
2080 	ps->pss_func = scn->scn_phys.scn_func;
2081 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2082 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2083 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2084 	ps->pss_examined = scn->scn_phys.scn_examined;
2085 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2086 	ps->pss_processed = scn->scn_phys.scn_processed;
2087 	ps->pss_errors = scn->scn_phys.scn_errors;
2088 	ps->pss_state = scn->scn_phys.scn_state;
2089 
2090 	/* data not stored on disk */
2091 	ps->pss_pass_start = spa->spa_scan_pass_start;
2092 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2093 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2094 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2095 
2096 	return (0);
2097 }
2098 
2099 int
2100 spa_maxblocksize(spa_t *spa)
2101 {
2102 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2103 		return (SPA_MAXBLOCKSIZE);
2104 	else
2105 		return (SPA_OLD_MAXBLOCKSIZE);
2106 }
2107 
2108 int
2109 spa_maxdnodesize(spa_t *spa)
2110 {
2111 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2112 		return (DNODE_MAX_SIZE);
2113 	else
2114 		return (DNODE_MIN_SIZE);
2115 }
2116 
2117 /*
2118  * Returns the txg that the last device removal completed. No indirect mappings
2119  * have been added since this txg.
2120  */
2121 uint64_t
2122 spa_get_last_removal_txg(spa_t *spa)
2123 {
2124 	uint64_t vdevid;
2125 	uint64_t ret = -1ULL;
2126 
2127 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2128 	/*
2129 	 * sr_prev_indirect_vdev is only modified while holding all the
2130 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2131 	 * examining it.
2132 	 */
2133 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2134 
2135 	while (vdevid != -1ULL) {
2136 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2137 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2138 
2139 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2140 
2141 		/*
2142 		 * If the removal did not remap any data, we don't care.
2143 		 */
2144 		if (vdev_indirect_births_count(vib) != 0) {
2145 			ret = vdev_indirect_births_last_entry_txg(vib);
2146 			break;
2147 		}
2148 
2149 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2150 	}
2151 	spa_config_exit(spa, SCL_VDEV, FTAG);
2152 
2153 	IMPLY(ret != -1ULL,
2154 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2155 
2156 	return (ret);
2157 }
2158 
2159 boolean_t
2160 spa_trust_config(spa_t *spa)
2161 {
2162 	return (spa->spa_trust_config);
2163 }
2164 
2165 uint64_t
2166 spa_missing_tvds_allowed(spa_t *spa)
2167 {
2168 	return (spa->spa_missing_tvds_allowed);
2169 }
2170 
2171 void
2172 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2173 {
2174 	spa->spa_missing_tvds = missing;
2175 }
2176 
2177 boolean_t
2178 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2179 {
2180 	vdev_t *rvd = spa->spa_root_vdev;
2181 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2182 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2183 			return (B_FALSE);
2184 	}
2185 	return (B_TRUE);
2186 }
2187 
2188 boolean_t
2189 spa_has_checkpoint(spa_t *spa)
2190 {
2191 	return (spa->spa_checkpoint_txg != 0);
2192 }
2193 
2194 boolean_t
2195 spa_importing_readonly_checkpoint(spa_t *spa)
2196 {
2197 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2198 	    spa->spa_mode == FREAD);
2199 }
2200 
2201 uint64_t
2202 spa_min_claim_txg(spa_t *spa)
2203 {
2204 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2205 
2206 	if (checkpoint_txg != 0)
2207 		return (checkpoint_txg + 1);
2208 
2209 	return (spa->spa_first_txg);
2210 }
2211 
2212 /*
2213  * If there is a checkpoint, async destroys may consume more space from
2214  * the pool instead of freeing it. In an attempt to save the pool from
2215  * getting suspended when it is about to run out of space, we stop
2216  * processing async destroys.
2217  */
2218 boolean_t
2219 spa_suspend_async_destroy(spa_t *spa)
2220 {
2221 	dsl_pool_t *dp = spa_get_dsl(spa);
2222 
2223 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2224 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2225 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2226 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2227 
2228 	if (spa_has_checkpoint(spa) && avail == 0)
2229 		return (B_TRUE);
2230 
2231 	return (B_FALSE);
2232 }
2233