1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 26 * Copyright 2017 Joyent, Inc. 27 */ 28 29 #include <sys/spa.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa_impl.h> 32 #include <sys/nvpair.h> 33 #include <sys/uio.h> 34 #include <sys/fs/zfs.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/zfs_ioctl.h> 37 #include <sys/utsname.h> 38 #include <sys/systeminfo.h> 39 #include <sys/sunddi.h> 40 #include <sys/zfeature.h> 41 #ifdef _KERNEL 42 #include <sys/kobj.h> 43 #include <sys/zone.h> 44 #endif 45 46 /* 47 * Pool configuration repository. 48 * 49 * Pool configuration is stored as a packed nvlist on the filesystem. By 50 * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot 51 * (when the ZFS module is loaded). Pools can also have the 'cachefile' 52 * property set that allows them to be stored in an alternate location until 53 * the control of external software. 54 * 55 * For each cache file, we have a single nvlist which holds all the 56 * configuration information. When the module loads, we read this information 57 * from /etc/zfs/zpool.cache and populate the SPA namespace. This namespace is 58 * maintained independently in spa.c. Whenever the namespace is modified, or 59 * the configuration of a pool is changed, we call spa_write_cachefile(), which 60 * walks through all the active pools and writes the configuration to disk. 61 */ 62 63 static uint64_t spa_config_generation = 1; 64 65 /* 66 * This can be overridden in userland to preserve an alternate namespace for 67 * userland pools when doing testing. 68 */ 69 const char *spa_config_path = ZPOOL_CACHE; 70 71 /* 72 * Called when the module is first loaded, this routine loads the configuration 73 * file into the SPA namespace. It does not actually open or load the pools; it 74 * only populates the namespace. 75 */ 76 void 77 spa_config_load(void) 78 { 79 void *buf = NULL; 80 nvlist_t *nvlist, *child; 81 nvpair_t *nvpair; 82 char *pathname; 83 struct _buf *file; 84 uint64_t fsize; 85 86 /* 87 * Open the configuration file. 88 */ 89 pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 90 91 (void) snprintf(pathname, MAXPATHLEN, "%s%s", 92 (rootdir != NULL) ? "./" : "", spa_config_path); 93 94 file = kobj_open_file(pathname); 95 96 kmem_free(pathname, MAXPATHLEN); 97 98 if (file == (struct _buf *)-1) 99 return; 100 101 if (kobj_get_filesize(file, &fsize) != 0) 102 goto out; 103 104 buf = kmem_alloc(fsize, KM_SLEEP); 105 106 /* 107 * Read the nvlist from the file. 108 */ 109 if (kobj_read_file(file, buf, fsize, 0) < 0) 110 goto out; 111 112 /* 113 * Unpack the nvlist. 114 */ 115 if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0) 116 goto out; 117 118 /* 119 * Iterate over all elements in the nvlist, creating a new spa_t for 120 * each one with the specified configuration. 121 */ 122 mutex_enter(&spa_namespace_lock); 123 nvpair = NULL; 124 while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) { 125 if (nvpair_type(nvpair) != DATA_TYPE_NVLIST) 126 continue; 127 128 child = fnvpair_value_nvlist(nvpair); 129 130 if (spa_lookup(nvpair_name(nvpair)) != NULL) 131 continue; 132 (void) spa_add(nvpair_name(nvpair), child, NULL); 133 } 134 mutex_exit(&spa_namespace_lock); 135 136 nvlist_free(nvlist); 137 138 out: 139 if (buf != NULL) 140 kmem_free(buf, fsize); 141 142 kobj_close_file(file); 143 } 144 145 static int 146 spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl) 147 { 148 size_t buflen; 149 char *buf; 150 vnode_t *vp; 151 int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX; 152 char *temp; 153 int err; 154 155 /* 156 * If the nvlist is empty (NULL), then remove the old cachefile. 157 */ 158 if (nvl == NULL) { 159 err = vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE); 160 return (err); 161 } 162 163 /* 164 * Pack the configuration into a buffer. 165 */ 166 buf = fnvlist_pack(nvl, &buflen); 167 temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 168 169 /* 170 * Write the configuration to disk. We need to do the traditional 171 * 'write to temporary file, sync, move over original' to make sure we 172 * always have a consistent view of the data. 173 */ 174 (void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path); 175 176 err = vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0); 177 if (err == 0) { 178 err = vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE, 179 0, RLIM64_INFINITY, kcred, NULL); 180 if (err == 0) 181 err = VOP_FSYNC(vp, FSYNC, kcred, NULL); 182 if (err == 0) 183 err = vn_rename(temp, dp->scd_path, UIO_SYSSPACE); 184 (void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL); 185 VN_RELE(vp); 186 } 187 188 (void) vn_remove(temp, UIO_SYSSPACE, RMFILE); 189 190 fnvlist_pack_free(buf, buflen); 191 kmem_free(temp, MAXPATHLEN); 192 return (err); 193 } 194 195 /* 196 * Synchronize pool configuration to disk. This must be called with the 197 * namespace lock held. Synchronizing the pool cache is typically done after 198 * the configuration has been synced to the MOS. This exposes a window where 199 * the MOS config will have been updated but the cache file has not. If 200 * the system were to crash at that instant then the cached config may not 201 * contain the correct information to open the pool and an explicit import 202 * would be required. 203 */ 204 void 205 spa_write_cachefile(spa_t *target, boolean_t removing, boolean_t postsysevent) 206 { 207 spa_config_dirent_t *dp, *tdp; 208 nvlist_t *nvl; 209 boolean_t ccw_failure; 210 int error; 211 212 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 213 214 if (rootdir == NULL || !(spa_mode_global & FWRITE)) 215 return; 216 217 /* 218 * Iterate over all cachefiles for the pool, past or present. When the 219 * cachefile is changed, the new one is pushed onto this list, allowing 220 * us to update previous cachefiles that no longer contain this pool. 221 */ 222 ccw_failure = B_FALSE; 223 for (dp = list_head(&target->spa_config_list); dp != NULL; 224 dp = list_next(&target->spa_config_list, dp)) { 225 spa_t *spa = NULL; 226 if (dp->scd_path == NULL) 227 continue; 228 229 /* 230 * Iterate over all pools, adding any matching pools to 'nvl'. 231 */ 232 nvl = NULL; 233 while ((spa = spa_next(spa)) != NULL) { 234 /* 235 * Skip over our own pool if we're about to remove 236 * ourselves from the spa namespace or any pool that 237 * is readonly. Since we cannot guarantee that a 238 * readonly pool would successfully import upon reboot, 239 * we don't allow them to be written to the cache file. 240 */ 241 if ((spa == target && removing) || 242 !spa_writeable(spa)) 243 continue; 244 245 mutex_enter(&spa->spa_props_lock); 246 tdp = list_head(&spa->spa_config_list); 247 if (spa->spa_config == NULL || 248 tdp->scd_path == NULL || 249 strcmp(tdp->scd_path, dp->scd_path) != 0) { 250 mutex_exit(&spa->spa_props_lock); 251 continue; 252 } 253 254 if (nvl == NULL) 255 nvl = fnvlist_alloc(); 256 257 fnvlist_add_nvlist(nvl, spa->spa_name, 258 spa->spa_config); 259 mutex_exit(&spa->spa_props_lock); 260 } 261 262 error = spa_config_write(dp, nvl); 263 if (error != 0) 264 ccw_failure = B_TRUE; 265 nvlist_free(nvl); 266 } 267 268 if (ccw_failure) { 269 /* 270 * Keep trying so that configuration data is 271 * written if/when any temporary filesystem 272 * resource issues are resolved. 273 */ 274 if (target->spa_ccw_fail_time == 0) { 275 zfs_ereport_post(FM_EREPORT_ZFS_CONFIG_CACHE_WRITE, 276 target, NULL, NULL, 0, 0); 277 } 278 target->spa_ccw_fail_time = gethrtime(); 279 spa_async_request(target, SPA_ASYNC_CONFIG_UPDATE); 280 } else { 281 /* 282 * Do not rate limit future attempts to update 283 * the config cache. 284 */ 285 target->spa_ccw_fail_time = 0; 286 } 287 288 /* 289 * Remove any config entries older than the current one. 290 */ 291 dp = list_head(&target->spa_config_list); 292 while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) { 293 list_remove(&target->spa_config_list, tdp); 294 if (tdp->scd_path != NULL) 295 spa_strfree(tdp->scd_path); 296 kmem_free(tdp, sizeof (spa_config_dirent_t)); 297 } 298 299 spa_config_generation++; 300 301 if (postsysevent) 302 spa_event_notify(target, NULL, NULL, ESC_ZFS_CONFIG_SYNC); 303 } 304 305 /* 306 * Sigh. Inside a local zone, we don't have access to /etc/zfs/zpool.cache, 307 * and we don't want to allow the local zone to see all the pools anyway. 308 * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration 309 * information for all pool visible within the zone. 310 */ 311 nvlist_t * 312 spa_all_configs(uint64_t *generation) 313 { 314 nvlist_t *pools; 315 spa_t *spa = NULL; 316 317 if (*generation == spa_config_generation) 318 return (NULL); 319 320 pools = fnvlist_alloc(); 321 322 mutex_enter(&spa_namespace_lock); 323 while ((spa = spa_next(spa)) != NULL) { 324 if (INGLOBALZONE(curproc) || 325 zone_dataset_visible(spa_name(spa), NULL)) { 326 mutex_enter(&spa->spa_props_lock); 327 fnvlist_add_nvlist(pools, spa_name(spa), 328 spa->spa_config); 329 mutex_exit(&spa->spa_props_lock); 330 } 331 } 332 *generation = spa_config_generation; 333 mutex_exit(&spa_namespace_lock); 334 335 return (pools); 336 } 337 338 void 339 spa_config_set(spa_t *spa, nvlist_t *config) 340 { 341 mutex_enter(&spa->spa_props_lock); 342 if (spa->spa_config != NULL && spa->spa_config != config) 343 nvlist_free(spa->spa_config); 344 spa->spa_config = config; 345 mutex_exit(&spa->spa_props_lock); 346 } 347 348 /* 349 * Generate the pool's configuration based on the current in-core state. 350 * 351 * We infer whether to generate a complete config or just one top-level config 352 * based on whether vd is the root vdev. 353 */ 354 nvlist_t * 355 spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats) 356 { 357 nvlist_t *config, *nvroot; 358 vdev_t *rvd = spa->spa_root_vdev; 359 unsigned long hostid = 0; 360 boolean_t locked = B_FALSE; 361 uint64_t split_guid; 362 363 if (vd == NULL) { 364 vd = rvd; 365 locked = B_TRUE; 366 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 367 } 368 369 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) == 370 (SCL_CONFIG | SCL_STATE)); 371 372 /* 373 * If txg is -1, report the current value of spa->spa_config_txg. 374 */ 375 if (txg == -1ULL) 376 txg = spa->spa_config_txg; 377 378 config = fnvlist_alloc(); 379 380 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)); 381 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, spa_name(spa)); 382 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, spa_state(spa)); 383 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, txg); 384 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa)); 385 if (spa->spa_comment != NULL) { 386 fnvlist_add_string(config, ZPOOL_CONFIG_COMMENT, 387 spa->spa_comment); 388 } 389 390 hostid = zone_get_hostid(NULL); 391 392 if (hostid != 0) { 393 fnvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid); 394 } 395 fnvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, utsname.nodename); 396 397 int config_gen_flags = 0; 398 if (vd != rvd) { 399 fnvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID, 400 vd->vdev_top->vdev_guid); 401 fnvlist_add_uint64(config, ZPOOL_CONFIG_GUID, 402 vd->vdev_guid); 403 if (vd->vdev_isspare) { 404 fnvlist_add_uint64(config, 405 ZPOOL_CONFIG_IS_SPARE, 1ULL); 406 } 407 if (vd->vdev_islog) { 408 fnvlist_add_uint64(config, 409 ZPOOL_CONFIG_IS_LOG, 1ULL); 410 } 411 vd = vd->vdev_top; /* label contains top config */ 412 } else { 413 /* 414 * Only add the (potentially large) split information 415 * in the mos config, and not in the vdev labels 416 */ 417 if (spa->spa_config_splitting != NULL) 418 fnvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT, 419 spa->spa_config_splitting); 420 fnvlist_add_boolean(config, 421 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS); 422 423 config_gen_flags |= VDEV_CONFIG_MOS; 424 } 425 426 /* 427 * Add the top-level config. We even add this on pools which 428 * don't support holes in the namespace. 429 */ 430 vdev_top_config_generate(spa, config); 431 432 /* 433 * If we're splitting, record the original pool's guid. 434 */ 435 if (spa->spa_config_splitting != NULL && 436 nvlist_lookup_uint64(spa->spa_config_splitting, 437 ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) { 438 fnvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID, 439 split_guid); 440 } 441 442 nvroot = vdev_config_generate(spa, vd, getstats, config_gen_flags); 443 fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot); 444 nvlist_free(nvroot); 445 446 /* 447 * Store what's necessary for reading the MOS in the label. 448 */ 449 fnvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 450 spa->spa_label_features); 451 452 if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) { 453 ddt_histogram_t *ddh; 454 ddt_stat_t *dds; 455 ddt_object_t *ddo; 456 457 ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP); 458 ddt_get_dedup_histogram(spa, ddh); 459 fnvlist_add_uint64_array(config, 460 ZPOOL_CONFIG_DDT_HISTOGRAM, 461 (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)); 462 kmem_free(ddh, sizeof (ddt_histogram_t)); 463 464 ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP); 465 ddt_get_dedup_object_stats(spa, ddo); 466 fnvlist_add_uint64_array(config, 467 ZPOOL_CONFIG_DDT_OBJ_STATS, 468 (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)); 469 kmem_free(ddo, sizeof (ddt_object_t)); 470 471 dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP); 472 ddt_get_dedup_stats(spa, dds); 473 fnvlist_add_uint64_array(config, 474 ZPOOL_CONFIG_DDT_STATS, 475 (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)); 476 kmem_free(dds, sizeof (ddt_stat_t)); 477 } 478 479 if (locked) 480 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 481 482 return (config); 483 } 484 485 /* 486 * Update all disk labels, generate a fresh config based on the current 487 * in-core state, and sync the global config cache (do not sync the config 488 * cache if this is a booting rootpool). 489 */ 490 void 491 spa_config_update(spa_t *spa, int what) 492 { 493 vdev_t *rvd = spa->spa_root_vdev; 494 uint64_t txg; 495 int c; 496 497 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 498 499 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 500 txg = spa_last_synced_txg(spa) + 1; 501 if (what == SPA_CONFIG_UPDATE_POOL) { 502 vdev_config_dirty(rvd); 503 } else { 504 /* 505 * If we have top-level vdevs that were added but have 506 * not yet been prepared for allocation, do that now. 507 * (It's safe now because the config cache is up to date, 508 * so it will be able to translate the new DVAs.) 509 * See comments in spa_vdev_add() for full details. 510 */ 511 for (c = 0; c < rvd->vdev_children; c++) { 512 vdev_t *tvd = rvd->vdev_child[c]; 513 if (tvd->vdev_ms_array == 0) 514 vdev_metaslab_set_size(tvd); 515 vdev_expand(tvd, txg); 516 } 517 } 518 spa_config_exit(spa, SCL_ALL, FTAG); 519 520 /* 521 * Wait for the mosconfig to be regenerated and synced. 522 */ 523 txg_wait_synced(spa->spa_dsl_pool, txg); 524 525 /* 526 * Update the global config cache to reflect the new mosconfig. 527 */ 528 if (!spa->spa_is_root) { 529 spa_write_cachefile(spa, B_FALSE, 530 what != SPA_CONFIG_UPDATE_POOL); 531 } 532 533 if (what == SPA_CONFIG_UPDATE_POOL) 534 spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS); 535 } 536