xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision d840867f3a8b0ba209ef90762b3f9c72a5f92cc5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/callb.h>
60 #include <sys/systeminfo.h>
61 #include <sys/sunddi.h>
62 
63 int zio_taskq_threads = 8;
64 
65 /*
66  * ==========================================================================
67  * SPA state manipulation (open/create/destroy/import/export)
68  * ==========================================================================
69  */
70 
71 static int
72 spa_error_entry_compare(const void *a, const void *b)
73 {
74 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
75 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
76 	int ret;
77 
78 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
79 	    sizeof (zbookmark_t));
80 
81 	if (ret < 0)
82 		return (-1);
83 	else if (ret > 0)
84 		return (1);
85 	else
86 		return (0);
87 }
88 
89 /*
90  * Utility function which retrieves copies of the current logs and
91  * re-initializes them in the process.
92  */
93 void
94 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
95 {
96 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
97 
98 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
99 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
100 
101 	avl_create(&spa->spa_errlist_scrub,
102 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
103 	    offsetof(spa_error_entry_t, se_avl));
104 	avl_create(&spa->spa_errlist_last,
105 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
106 	    offsetof(spa_error_entry_t, se_avl));
107 }
108 
109 /*
110  * Activate an uninitialized pool.
111  */
112 static void
113 spa_activate(spa_t *spa)
114 {
115 	int t;
116 
117 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
118 
119 	spa->spa_state = POOL_STATE_ACTIVE;
120 
121 	spa->spa_normal_class = metaslab_class_create();
122 	spa->spa_log_class = metaslab_class_create();
123 
124 	for (t = 0; t < ZIO_TYPES; t++) {
125 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
126 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
127 		    TASKQ_PREPOPULATE);
128 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
129 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
130 		    TASKQ_PREPOPULATE);
131 	}
132 
133 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
134 
135 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
136 	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
137 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
138 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
139 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
140 	mutex_init(&spa->spa_config_lock.scl_lock, NULL, MUTEX_DEFAULT, NULL);
141 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
142 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
143 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
144 
145 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
146 	    offsetof(vdev_t, vdev_dirty_node));
147 
148 	txg_list_create(&spa->spa_vdev_txg_list,
149 	    offsetof(struct vdev, vdev_txg_node));
150 
151 	avl_create(&spa->spa_errlist_scrub,
152 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
153 	    offsetof(spa_error_entry_t, se_avl));
154 	avl_create(&spa->spa_errlist_last,
155 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
156 	    offsetof(spa_error_entry_t, se_avl));
157 }
158 
159 /*
160  * Opposite of spa_activate().
161  */
162 static void
163 spa_deactivate(spa_t *spa)
164 {
165 	int t;
166 
167 	ASSERT(spa->spa_sync_on == B_FALSE);
168 	ASSERT(spa->spa_dsl_pool == NULL);
169 	ASSERT(spa->spa_root_vdev == NULL);
170 
171 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
172 
173 	txg_list_destroy(&spa->spa_vdev_txg_list);
174 
175 	list_destroy(&spa->spa_dirty_list);
176 
177 	rw_destroy(&spa->spa_traverse_lock);
178 
179 	for (t = 0; t < ZIO_TYPES; t++) {
180 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
181 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
182 		spa->spa_zio_issue_taskq[t] = NULL;
183 		spa->spa_zio_intr_taskq[t] = NULL;
184 	}
185 
186 	metaslab_class_destroy(spa->spa_normal_class);
187 	spa->spa_normal_class = NULL;
188 
189 	metaslab_class_destroy(spa->spa_log_class);
190 	spa->spa_log_class = NULL;
191 
192 	/*
193 	 * If this was part of an import or the open otherwise failed, we may
194 	 * still have errors left in the queues.  Empty them just in case.
195 	 */
196 	spa_errlog_drain(spa);
197 
198 	avl_destroy(&spa->spa_errlist_scrub);
199 	avl_destroy(&spa->spa_errlist_last);
200 
201 	spa->spa_state = POOL_STATE_UNINITIALIZED;
202 }
203 
204 /*
205  * Verify a pool configuration, and construct the vdev tree appropriately.  This
206  * will create all the necessary vdevs in the appropriate layout, with each vdev
207  * in the CLOSED state.  This will prep the pool before open/creation/import.
208  * All vdev validation is done by the vdev_alloc() routine.
209  */
210 static int
211 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
212     uint_t id, int atype)
213 {
214 	nvlist_t **child;
215 	uint_t c, children;
216 	int error;
217 
218 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
219 		return (error);
220 
221 	if ((*vdp)->vdev_ops->vdev_op_leaf)
222 		return (0);
223 
224 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
225 	    &child, &children) != 0) {
226 		vdev_free(*vdp);
227 		*vdp = NULL;
228 		return (EINVAL);
229 	}
230 
231 	for (c = 0; c < children; c++) {
232 		vdev_t *vd;
233 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
234 		    atype)) != 0) {
235 			vdev_free(*vdp);
236 			*vdp = NULL;
237 			return (error);
238 		}
239 	}
240 
241 	ASSERT(*vdp != NULL);
242 
243 	return (0);
244 }
245 
246 /*
247  * Opposite of spa_load().
248  */
249 static void
250 spa_unload(spa_t *spa)
251 {
252 	int i;
253 
254 	/*
255 	 * Stop async tasks.
256 	 */
257 	spa_async_suspend(spa);
258 
259 	/*
260 	 * Stop syncing.
261 	 */
262 	if (spa->spa_sync_on) {
263 		txg_sync_stop(spa->spa_dsl_pool);
264 		spa->spa_sync_on = B_FALSE;
265 	}
266 
267 	/*
268 	 * Wait for any outstanding prefetch I/O to complete.
269 	 */
270 	spa_config_enter(spa, RW_WRITER, FTAG);
271 	spa_config_exit(spa, FTAG);
272 
273 	/*
274 	 * Close the dsl pool.
275 	 */
276 	if (spa->spa_dsl_pool) {
277 		dsl_pool_close(spa->spa_dsl_pool);
278 		spa->spa_dsl_pool = NULL;
279 	}
280 
281 	/*
282 	 * Close all vdevs.
283 	 */
284 	if (spa->spa_root_vdev)
285 		vdev_free(spa->spa_root_vdev);
286 	ASSERT(spa->spa_root_vdev == NULL);
287 
288 	for (i = 0; i < spa->spa_nspares; i++)
289 		vdev_free(spa->spa_spares[i]);
290 	if (spa->spa_spares) {
291 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
292 		spa->spa_spares = NULL;
293 	}
294 	if (spa->spa_sparelist) {
295 		nvlist_free(spa->spa_sparelist);
296 		spa->spa_sparelist = NULL;
297 	}
298 
299 	spa->spa_async_suspended = 0;
300 }
301 
302 /*
303  * Load (or re-load) the current list of vdevs describing the active spares for
304  * this pool.  When this is called, we have some form of basic information in
305  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
306  * re-generate a more complete list including status information.
307  */
308 static void
309 spa_load_spares(spa_t *spa)
310 {
311 	nvlist_t **spares;
312 	uint_t nspares;
313 	int i;
314 	vdev_t *vd, *tvd;
315 
316 	/*
317 	 * First, close and free any existing spare vdevs.
318 	 */
319 	for (i = 0; i < spa->spa_nspares; i++) {
320 		vd = spa->spa_spares[i];
321 
322 		/* Undo the call to spa_activate() below */
323 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL &&
324 		    tvd->vdev_isspare)
325 			spa_spare_remove(tvd);
326 		vdev_close(vd);
327 		vdev_free(vd);
328 	}
329 
330 	if (spa->spa_spares)
331 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
332 
333 	if (spa->spa_sparelist == NULL)
334 		nspares = 0;
335 	else
336 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
337 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
338 
339 	spa->spa_nspares = (int)nspares;
340 	spa->spa_spares = NULL;
341 
342 	if (nspares == 0)
343 		return;
344 
345 	/*
346 	 * Construct the array of vdevs, opening them to get status in the
347 	 * process.   For each spare, there is potentially two different vdev_t
348 	 * structures associated with it: one in the list of spares (used only
349 	 * for basic validation purposes) and one in the active vdev
350 	 * configuration (if it's spared in).  During this phase we open and
351 	 * validate each vdev on the spare list.  If the vdev also exists in the
352 	 * active configuration, then we also mark this vdev as an active spare.
353 	 */
354 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
355 	for (i = 0; i < spa->spa_nspares; i++) {
356 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
357 		    VDEV_ALLOC_SPARE) == 0);
358 		ASSERT(vd != NULL);
359 
360 		spa->spa_spares[i] = vd;
361 
362 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) {
363 			if (!tvd->vdev_isspare)
364 				spa_spare_add(tvd);
365 
366 			/*
367 			 * We only mark the spare active if we were successfully
368 			 * able to load the vdev.  Otherwise, importing a pool
369 			 * with a bad active spare would result in strange
370 			 * behavior, because multiple pool would think the spare
371 			 * is actively in use.
372 			 *
373 			 * There is a vulnerability here to an equally bizarre
374 			 * circumstance, where a dead active spare is later
375 			 * brought back to life (onlined or otherwise).  Given
376 			 * the rarity of this scenario, and the extra complexity
377 			 * it adds, we ignore the possibility.
378 			 */
379 			if (!vdev_is_dead(tvd))
380 				spa_spare_activate(tvd);
381 		}
382 
383 		if (vdev_open(vd) != 0)
384 			continue;
385 
386 		vd->vdev_top = vd;
387 		(void) vdev_validate_spare(vd);
388 	}
389 
390 	/*
391 	 * Recompute the stashed list of spares, with status information
392 	 * this time.
393 	 */
394 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
395 	    DATA_TYPE_NVLIST_ARRAY) == 0);
396 
397 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
398 	for (i = 0; i < spa->spa_nspares; i++)
399 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
400 		    B_TRUE, B_TRUE);
401 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
402 	    spares, spa->spa_nspares) == 0);
403 	for (i = 0; i < spa->spa_nspares; i++)
404 		nvlist_free(spares[i]);
405 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
406 }
407 
408 static int
409 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
410 {
411 	dmu_buf_t *db;
412 	char *packed = NULL;
413 	size_t nvsize = 0;
414 	int error;
415 	*value = NULL;
416 
417 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
418 	nvsize = *(uint64_t *)db->db_data;
419 	dmu_buf_rele(db, FTAG);
420 
421 	packed = kmem_alloc(nvsize, KM_SLEEP);
422 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
423 	if (error == 0)
424 		error = nvlist_unpack(packed, nvsize, value, 0);
425 	kmem_free(packed, nvsize);
426 
427 	return (error);
428 }
429 
430 /*
431  * Checks to see if the given vdev could not be opened, in which case we post a
432  * sysevent to notify the autoreplace code that the device has been removed.
433  */
434 static void
435 spa_check_removed(vdev_t *vd)
436 {
437 	int c;
438 
439 	for (c = 0; c < vd->vdev_children; c++)
440 		spa_check_removed(vd->vdev_child[c]);
441 
442 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
443 		zfs_post_autoreplace(vd->vdev_spa, vd);
444 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
445 	}
446 }
447 
448 /*
449  * Load an existing storage pool, using the pool's builtin spa_config as a
450  * source of configuration information.
451  */
452 static int
453 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
454 {
455 	int error = 0;
456 	nvlist_t *nvroot = NULL;
457 	vdev_t *rvd;
458 	uberblock_t *ub = &spa->spa_uberblock;
459 	uint64_t config_cache_txg = spa->spa_config_txg;
460 	uint64_t pool_guid;
461 	uint64_t version;
462 	zio_t *zio;
463 	uint64_t autoreplace = 0;
464 
465 	spa->spa_load_state = state;
466 
467 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
468 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
469 		error = EINVAL;
470 		goto out;
471 	}
472 
473 	/*
474 	 * Versioning wasn't explicitly added to the label until later, so if
475 	 * it's not present treat it as the initial version.
476 	 */
477 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
478 		version = SPA_VERSION_INITIAL;
479 
480 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
481 	    &spa->spa_config_txg);
482 
483 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
484 	    spa_guid_exists(pool_guid, 0)) {
485 		error = EEXIST;
486 		goto out;
487 	}
488 
489 	spa->spa_load_guid = pool_guid;
490 
491 	/*
492 	 * Parse the configuration into a vdev tree.  We explicitly set the
493 	 * value that will be returned by spa_version() since parsing the
494 	 * configuration requires knowing the version number.
495 	 */
496 	spa_config_enter(spa, RW_WRITER, FTAG);
497 	spa->spa_ubsync.ub_version = version;
498 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
499 	spa_config_exit(spa, FTAG);
500 
501 	if (error != 0)
502 		goto out;
503 
504 	ASSERT(spa->spa_root_vdev == rvd);
505 	ASSERT(spa_guid(spa) == pool_guid);
506 
507 	/*
508 	 * Try to open all vdevs, loading each label in the process.
509 	 */
510 	error = vdev_open(rvd);
511 	if (error != 0)
512 		goto out;
513 
514 	/*
515 	 * Validate the labels for all leaf vdevs.  We need to grab the config
516 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
517 	 * flag.
518 	 */
519 	spa_config_enter(spa, RW_READER, FTAG);
520 	error = vdev_validate(rvd);
521 	spa_config_exit(spa, FTAG);
522 
523 	if (error != 0)
524 		goto out;
525 
526 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
527 		error = ENXIO;
528 		goto out;
529 	}
530 
531 	/*
532 	 * Find the best uberblock.
533 	 */
534 	bzero(ub, sizeof (uberblock_t));
535 
536 	zio = zio_root(spa, NULL, NULL,
537 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
538 	vdev_uberblock_load(zio, rvd, ub);
539 	error = zio_wait(zio);
540 
541 	/*
542 	 * If we weren't able to find a single valid uberblock, return failure.
543 	 */
544 	if (ub->ub_txg == 0) {
545 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
546 		    VDEV_AUX_CORRUPT_DATA);
547 		error = ENXIO;
548 		goto out;
549 	}
550 
551 	/*
552 	 * If the pool is newer than the code, we can't open it.
553 	 */
554 	if (ub->ub_version > SPA_VERSION) {
555 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
556 		    VDEV_AUX_VERSION_NEWER);
557 		error = ENOTSUP;
558 		goto out;
559 	}
560 
561 	/*
562 	 * If the vdev guid sum doesn't match the uberblock, we have an
563 	 * incomplete configuration.
564 	 */
565 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
566 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
567 		    VDEV_AUX_BAD_GUID_SUM);
568 		error = ENXIO;
569 		goto out;
570 	}
571 
572 	/*
573 	 * Initialize internal SPA structures.
574 	 */
575 	spa->spa_state = POOL_STATE_ACTIVE;
576 	spa->spa_ubsync = spa->spa_uberblock;
577 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
578 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
579 	if (error) {
580 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
581 		    VDEV_AUX_CORRUPT_DATA);
582 		goto out;
583 	}
584 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
585 
586 	if (zap_lookup(spa->spa_meta_objset,
587 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
588 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
589 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
590 		    VDEV_AUX_CORRUPT_DATA);
591 		error = EIO;
592 		goto out;
593 	}
594 
595 	if (!mosconfig) {
596 		nvlist_t *newconfig;
597 		uint64_t hostid;
598 
599 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
600 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
601 			    VDEV_AUX_CORRUPT_DATA);
602 			error = EIO;
603 			goto out;
604 		}
605 
606 		if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
607 		    &hostid) == 0) {
608 			char *hostname;
609 			unsigned long myhostid = 0;
610 
611 			VERIFY(nvlist_lookup_string(newconfig,
612 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
613 
614 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
615 			if (hostid != 0 && myhostid != 0 &&
616 			    (unsigned long)hostid != myhostid) {
617 				cmn_err(CE_WARN, "pool '%s' could not be "
618 				    "loaded as it was last accessed by "
619 				    "another system (host: %s hostid: 0x%lx).  "
620 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
621 				    spa->spa_name, hostname,
622 				    (unsigned long)hostid);
623 				error = EBADF;
624 				goto out;
625 			}
626 		}
627 
628 		spa_config_set(spa, newconfig);
629 		spa_unload(spa);
630 		spa_deactivate(spa);
631 		spa_activate(spa);
632 
633 		return (spa_load(spa, newconfig, state, B_TRUE));
634 	}
635 
636 	if (zap_lookup(spa->spa_meta_objset,
637 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
638 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
639 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
640 		    VDEV_AUX_CORRUPT_DATA);
641 		error = EIO;
642 		goto out;
643 	}
644 
645 	/*
646 	 * Load the bit that tells us to use the new accounting function
647 	 * (raid-z deflation).  If we have an older pool, this will not
648 	 * be present.
649 	 */
650 	error = zap_lookup(spa->spa_meta_objset,
651 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
652 	    sizeof (uint64_t), 1, &spa->spa_deflate);
653 	if (error != 0 && error != ENOENT) {
654 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
655 		    VDEV_AUX_CORRUPT_DATA);
656 		error = EIO;
657 		goto out;
658 	}
659 
660 	/*
661 	 * Load the persistent error log.  If we have an older pool, this will
662 	 * not be present.
663 	 */
664 	error = zap_lookup(spa->spa_meta_objset,
665 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
666 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
667 	if (error != 0 && error != ENOENT) {
668 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
669 		    VDEV_AUX_CORRUPT_DATA);
670 		error = EIO;
671 		goto out;
672 	}
673 
674 	error = zap_lookup(spa->spa_meta_objset,
675 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
676 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
677 	if (error != 0 && error != ENOENT) {
678 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
679 		    VDEV_AUX_CORRUPT_DATA);
680 		error = EIO;
681 		goto out;
682 	}
683 
684 	/*
685 	 * Load the history object.  If we have an older pool, this
686 	 * will not be present.
687 	 */
688 	error = zap_lookup(spa->spa_meta_objset,
689 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
690 	    sizeof (uint64_t), 1, &spa->spa_history);
691 	if (error != 0 && error != ENOENT) {
692 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
693 		    VDEV_AUX_CORRUPT_DATA);
694 		error = EIO;
695 		goto out;
696 	}
697 
698 	/*
699 	 * Load any hot spares for this pool.
700 	 */
701 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
702 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
703 	if (error != 0 && error != ENOENT) {
704 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
705 		    VDEV_AUX_CORRUPT_DATA);
706 		error = EIO;
707 		goto out;
708 	}
709 	if (error == 0) {
710 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
711 		if (load_nvlist(spa, spa->spa_spares_object,
712 		    &spa->spa_sparelist) != 0) {
713 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
714 			    VDEV_AUX_CORRUPT_DATA);
715 			error = EIO;
716 			goto out;
717 		}
718 
719 		spa_config_enter(spa, RW_WRITER, FTAG);
720 		spa_load_spares(spa);
721 		spa_config_exit(spa, FTAG);
722 	}
723 
724 	spa->spa_delegation = zfs_prop_default_numeric(ZPOOL_PROP_DELEGATION);
725 
726 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
727 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
728 
729 	if (error && error != ENOENT) {
730 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
731 		    VDEV_AUX_CORRUPT_DATA);
732 		error = EIO;
733 		goto out;
734 	}
735 
736 	if (error == 0) {
737 		(void) zap_lookup(spa->spa_meta_objset,
738 		    spa->spa_pool_props_object,
739 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
740 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
741 		(void) zap_lookup(spa->spa_meta_objset,
742 		    spa->spa_pool_props_object,
743 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
744 		    sizeof (uint64_t), 1, &autoreplace);
745 		(void) zap_lookup(spa->spa_meta_objset,
746 		    spa->spa_pool_props_object,
747 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
748 		    sizeof (uint64_t), 1, &spa->spa_delegation);
749 	}
750 
751 	/*
752 	 * If the 'autoreplace' property is set, then post a resource notifying
753 	 * the ZFS DE that it should not issue any faults for unopenable
754 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
755 	 * unopenable vdevs so that the normal autoreplace handler can take
756 	 * over.
757 	 */
758 	if (autoreplace)
759 		spa_check_removed(spa->spa_root_vdev);
760 
761 	/*
762 	 * Load the vdev state for all toplevel vdevs.
763 	 */
764 	vdev_load(rvd);
765 
766 	/*
767 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
768 	 */
769 	spa_config_enter(spa, RW_WRITER, FTAG);
770 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
771 	spa_config_exit(spa, FTAG);
772 
773 	/*
774 	 * Check the state of the root vdev.  If it can't be opened, it
775 	 * indicates one or more toplevel vdevs are faulted.
776 	 */
777 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
778 		error = ENXIO;
779 		goto out;
780 	}
781 
782 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
783 		dmu_tx_t *tx;
784 		int need_update = B_FALSE;
785 		int c;
786 
787 		/*
788 		 * Claim log blocks that haven't been committed yet.
789 		 * This must all happen in a single txg.
790 		 */
791 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
792 		    spa_first_txg(spa));
793 		(void) dmu_objset_find(spa->spa_name,
794 		    zil_claim, tx, DS_FIND_CHILDREN);
795 		dmu_tx_commit(tx);
796 
797 		spa->spa_sync_on = B_TRUE;
798 		txg_sync_start(spa->spa_dsl_pool);
799 
800 		/*
801 		 * Wait for all claims to sync.
802 		 */
803 		txg_wait_synced(spa->spa_dsl_pool, 0);
804 
805 		/*
806 		 * If the config cache is stale, or we have uninitialized
807 		 * metaslabs (see spa_vdev_add()), then update the config.
808 		 */
809 		if (config_cache_txg != spa->spa_config_txg ||
810 		    state == SPA_LOAD_IMPORT)
811 			need_update = B_TRUE;
812 
813 		for (c = 0; c < rvd->vdev_children; c++)
814 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
815 				need_update = B_TRUE;
816 
817 		/*
818 		 * Update the config cache asychronously in case we're the
819 		 * root pool, in which case the config cache isn't writable yet.
820 		 */
821 		if (need_update)
822 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
823 	}
824 
825 	error = 0;
826 out:
827 	if (error && error != EBADF)
828 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
829 	spa->spa_load_state = SPA_LOAD_NONE;
830 	spa->spa_ena = 0;
831 
832 	return (error);
833 }
834 
835 /*
836  * Pool Open/Import
837  *
838  * The import case is identical to an open except that the configuration is sent
839  * down from userland, instead of grabbed from the configuration cache.  For the
840  * case of an open, the pool configuration will exist in the
841  * POOL_STATE_UNINITIALIZED state.
842  *
843  * The stats information (gen/count/ustats) is used to gather vdev statistics at
844  * the same time open the pool, without having to keep around the spa_t in some
845  * ambiguous state.
846  */
847 static int
848 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
849 {
850 	spa_t *spa;
851 	int error;
852 	int loaded = B_FALSE;
853 	int locked = B_FALSE;
854 
855 	*spapp = NULL;
856 
857 	/*
858 	 * As disgusting as this is, we need to support recursive calls to this
859 	 * function because dsl_dir_open() is called during spa_load(), and ends
860 	 * up calling spa_open() again.  The real fix is to figure out how to
861 	 * avoid dsl_dir_open() calling this in the first place.
862 	 */
863 	if (mutex_owner(&spa_namespace_lock) != curthread) {
864 		mutex_enter(&spa_namespace_lock);
865 		locked = B_TRUE;
866 	}
867 
868 	if ((spa = spa_lookup(pool)) == NULL) {
869 		if (locked)
870 			mutex_exit(&spa_namespace_lock);
871 		return (ENOENT);
872 	}
873 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
874 
875 		spa_activate(spa);
876 
877 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
878 
879 		if (error == EBADF) {
880 			/*
881 			 * If vdev_validate() returns failure (indicated by
882 			 * EBADF), it indicates that one of the vdevs indicates
883 			 * that the pool has been exported or destroyed.  If
884 			 * this is the case, the config cache is out of sync and
885 			 * we should remove the pool from the namespace.
886 			 */
887 			zfs_post_ok(spa, NULL);
888 			spa_unload(spa);
889 			spa_deactivate(spa);
890 			spa_remove(spa);
891 			spa_config_sync();
892 			if (locked)
893 				mutex_exit(&spa_namespace_lock);
894 			return (ENOENT);
895 		}
896 
897 		if (error) {
898 			/*
899 			 * We can't open the pool, but we still have useful
900 			 * information: the state of each vdev after the
901 			 * attempted vdev_open().  Return this to the user.
902 			 */
903 			if (config != NULL && spa->spa_root_vdev != NULL) {
904 				spa_config_enter(spa, RW_READER, FTAG);
905 				*config = spa_config_generate(spa, NULL, -1ULL,
906 				    B_TRUE);
907 				spa_config_exit(spa, FTAG);
908 			}
909 			spa_unload(spa);
910 			spa_deactivate(spa);
911 			spa->spa_last_open_failed = B_TRUE;
912 			if (locked)
913 				mutex_exit(&spa_namespace_lock);
914 			*spapp = NULL;
915 			return (error);
916 		} else {
917 			zfs_post_ok(spa, NULL);
918 			spa->spa_last_open_failed = B_FALSE;
919 		}
920 
921 		loaded = B_TRUE;
922 	}
923 
924 	spa_open_ref(spa, tag);
925 
926 	/*
927 	 * If we just loaded the pool, resilver anything that's out of date.
928 	 */
929 	if (loaded && (spa_mode & FWRITE))
930 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
931 
932 	if (locked)
933 		mutex_exit(&spa_namespace_lock);
934 
935 	*spapp = spa;
936 
937 	if (config != NULL) {
938 		spa_config_enter(spa, RW_READER, FTAG);
939 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
940 		spa_config_exit(spa, FTAG);
941 	}
942 
943 	return (0);
944 }
945 
946 int
947 spa_open(const char *name, spa_t **spapp, void *tag)
948 {
949 	return (spa_open_common(name, spapp, tag, NULL));
950 }
951 
952 /*
953  * Lookup the given spa_t, incrementing the inject count in the process,
954  * preventing it from being exported or destroyed.
955  */
956 spa_t *
957 spa_inject_addref(char *name)
958 {
959 	spa_t *spa;
960 
961 	mutex_enter(&spa_namespace_lock);
962 	if ((spa = spa_lookup(name)) == NULL) {
963 		mutex_exit(&spa_namespace_lock);
964 		return (NULL);
965 	}
966 	spa->spa_inject_ref++;
967 	mutex_exit(&spa_namespace_lock);
968 
969 	return (spa);
970 }
971 
972 void
973 spa_inject_delref(spa_t *spa)
974 {
975 	mutex_enter(&spa_namespace_lock);
976 	spa->spa_inject_ref--;
977 	mutex_exit(&spa_namespace_lock);
978 }
979 
980 static void
981 spa_add_spares(spa_t *spa, nvlist_t *config)
982 {
983 	nvlist_t **spares;
984 	uint_t i, nspares;
985 	nvlist_t *nvroot;
986 	uint64_t guid;
987 	vdev_stat_t *vs;
988 	uint_t vsc;
989 	uint64_t pool;
990 
991 	if (spa->spa_nspares == 0)
992 		return;
993 
994 	VERIFY(nvlist_lookup_nvlist(config,
995 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
996 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
997 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
998 	if (nspares != 0) {
999 		VERIFY(nvlist_add_nvlist_array(nvroot,
1000 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1001 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1002 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1003 
1004 		/*
1005 		 * Go through and find any spares which have since been
1006 		 * repurposed as an active spare.  If this is the case, update
1007 		 * their status appropriately.
1008 		 */
1009 		for (i = 0; i < nspares; i++) {
1010 			VERIFY(nvlist_lookup_uint64(spares[i],
1011 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1012 			if (spa_spare_exists(guid, &pool) && pool != 0ULL) {
1013 				VERIFY(nvlist_lookup_uint64_array(
1014 				    spares[i], ZPOOL_CONFIG_STATS,
1015 				    (uint64_t **)&vs, &vsc) == 0);
1016 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1017 				vs->vs_aux = VDEV_AUX_SPARED;
1018 			}
1019 		}
1020 	}
1021 }
1022 
1023 int
1024 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1025 {
1026 	int error;
1027 	spa_t *spa;
1028 
1029 	*config = NULL;
1030 	error = spa_open_common(name, &spa, FTAG, config);
1031 
1032 	if (spa && *config != NULL) {
1033 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1034 		    spa_get_errlog_size(spa)) == 0);
1035 
1036 		spa_add_spares(spa, *config);
1037 	}
1038 
1039 	/*
1040 	 * We want to get the alternate root even for faulted pools, so we cheat
1041 	 * and call spa_lookup() directly.
1042 	 */
1043 	if (altroot) {
1044 		if (spa == NULL) {
1045 			mutex_enter(&spa_namespace_lock);
1046 			spa = spa_lookup(name);
1047 			if (spa)
1048 				spa_altroot(spa, altroot, buflen);
1049 			else
1050 				altroot[0] = '\0';
1051 			spa = NULL;
1052 			mutex_exit(&spa_namespace_lock);
1053 		} else {
1054 			spa_altroot(spa, altroot, buflen);
1055 		}
1056 	}
1057 
1058 	if (spa != NULL)
1059 		spa_close(spa, FTAG);
1060 
1061 	return (error);
1062 }
1063 
1064 /*
1065  * Validate that the 'spares' array is well formed.  We must have an array of
1066  * nvlists, each which describes a valid leaf vdev.  If this is an import (mode
1067  * is VDEV_ALLOC_SPARE), then we allow corrupted spares to be specified, as long
1068  * as they are well-formed.
1069  */
1070 static int
1071 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1072 {
1073 	nvlist_t **spares;
1074 	uint_t i, nspares;
1075 	vdev_t *vd;
1076 	int error;
1077 
1078 	/*
1079 	 * It's acceptable to have no spares specified.
1080 	 */
1081 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1082 	    &spares, &nspares) != 0)
1083 		return (0);
1084 
1085 	if (nspares == 0)
1086 		return (EINVAL);
1087 
1088 	/*
1089 	 * Make sure the pool is formatted with a version that supports hot
1090 	 * spares.
1091 	 */
1092 	if (spa_version(spa) < SPA_VERSION_SPARES)
1093 		return (ENOTSUP);
1094 
1095 	/*
1096 	 * Set the pending spare list so we correctly handle device in-use
1097 	 * checking.
1098 	 */
1099 	spa->spa_pending_spares = spares;
1100 	spa->spa_pending_nspares = nspares;
1101 
1102 	for (i = 0; i < nspares; i++) {
1103 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
1104 		    mode)) != 0)
1105 			goto out;
1106 
1107 		if (!vd->vdev_ops->vdev_op_leaf) {
1108 			vdev_free(vd);
1109 			error = EINVAL;
1110 			goto out;
1111 		}
1112 
1113 		vd->vdev_top = vd;
1114 
1115 		if ((error = vdev_open(vd)) == 0 &&
1116 		    (error = vdev_label_init(vd, crtxg,
1117 		    VDEV_LABEL_SPARE)) == 0) {
1118 			VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
1119 			    vd->vdev_guid) == 0);
1120 		}
1121 
1122 		vdev_free(vd);
1123 
1124 		if (error && mode != VDEV_ALLOC_SPARE)
1125 			goto out;
1126 		else
1127 			error = 0;
1128 	}
1129 
1130 out:
1131 	spa->spa_pending_spares = NULL;
1132 	spa->spa_pending_nspares = 0;
1133 	return (error);
1134 }
1135 
1136 /*
1137  * Pool Creation
1138  */
1139 int
1140 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot,
1141     const char *history_str)
1142 {
1143 	spa_t *spa;
1144 	vdev_t *rvd;
1145 	dsl_pool_t *dp;
1146 	dmu_tx_t *tx;
1147 	int c, error = 0;
1148 	uint64_t txg = TXG_INITIAL;
1149 	nvlist_t **spares;
1150 	uint_t nspares;
1151 
1152 	/*
1153 	 * If this pool already exists, return failure.
1154 	 */
1155 	mutex_enter(&spa_namespace_lock);
1156 	if (spa_lookup(pool) != NULL) {
1157 		mutex_exit(&spa_namespace_lock);
1158 		return (EEXIST);
1159 	}
1160 
1161 	/*
1162 	 * Allocate a new spa_t structure.
1163 	 */
1164 	spa = spa_add(pool, altroot);
1165 	spa_activate(spa);
1166 
1167 	spa->spa_uberblock.ub_txg = txg - 1;
1168 	spa->spa_uberblock.ub_version = SPA_VERSION;
1169 	spa->spa_ubsync = spa->spa_uberblock;
1170 
1171 	/*
1172 	 * Create the root vdev.
1173 	 */
1174 	spa_config_enter(spa, RW_WRITER, FTAG);
1175 
1176 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1177 
1178 	ASSERT(error != 0 || rvd != NULL);
1179 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1180 
1181 	if (error == 0 && rvd->vdev_children == 0)
1182 		error = EINVAL;
1183 
1184 	if (error == 0 &&
1185 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1186 	    (error = spa_validate_spares(spa, nvroot, txg,
1187 	    VDEV_ALLOC_ADD)) == 0) {
1188 		for (c = 0; c < rvd->vdev_children; c++)
1189 			vdev_init(rvd->vdev_child[c], txg);
1190 		vdev_config_dirty(rvd);
1191 	}
1192 
1193 	spa_config_exit(spa, FTAG);
1194 
1195 	if (error != 0) {
1196 		spa_unload(spa);
1197 		spa_deactivate(spa);
1198 		spa_remove(spa);
1199 		mutex_exit(&spa_namespace_lock);
1200 		return (error);
1201 	}
1202 
1203 	/*
1204 	 * Get the list of spares, if specified.
1205 	 */
1206 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1207 	    &spares, &nspares) == 0) {
1208 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1209 		    KM_SLEEP) == 0);
1210 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1211 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1212 		spa_config_enter(spa, RW_WRITER, FTAG);
1213 		spa_load_spares(spa);
1214 		spa_config_exit(spa, FTAG);
1215 		spa->spa_sync_spares = B_TRUE;
1216 	}
1217 
1218 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1219 	spa->spa_meta_objset = dp->dp_meta_objset;
1220 
1221 	tx = dmu_tx_create_assigned(dp, txg);
1222 
1223 	/*
1224 	 * Create the pool config object.
1225 	 */
1226 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1227 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1228 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1229 
1230 	if (zap_add(spa->spa_meta_objset,
1231 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1232 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1233 		cmn_err(CE_PANIC, "failed to add pool config");
1234 	}
1235 
1236 	/* Newly created pools are always deflated. */
1237 	spa->spa_deflate = TRUE;
1238 	if (zap_add(spa->spa_meta_objset,
1239 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1240 	    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1241 		cmn_err(CE_PANIC, "failed to add deflate");
1242 	}
1243 
1244 	/*
1245 	 * Create the deferred-free bplist object.  Turn off compression
1246 	 * because sync-to-convergence takes longer if the blocksize
1247 	 * keeps changing.
1248 	 */
1249 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1250 	    1 << 14, tx);
1251 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1252 	    ZIO_COMPRESS_OFF, tx);
1253 
1254 	if (zap_add(spa->spa_meta_objset,
1255 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1256 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1257 		cmn_err(CE_PANIC, "failed to add bplist");
1258 	}
1259 
1260 	/*
1261 	 * Create the pool's history object.
1262 	 */
1263 	spa_history_create_obj(spa, tx);
1264 
1265 	dmu_tx_commit(tx);
1266 
1267 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
1268 	spa->spa_delegation = zfs_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1269 	spa->spa_sync_on = B_TRUE;
1270 	txg_sync_start(spa->spa_dsl_pool);
1271 
1272 	/*
1273 	 * We explicitly wait for the first transaction to complete so that our
1274 	 * bean counters are appropriately updated.
1275 	 */
1276 	txg_wait_synced(spa->spa_dsl_pool, txg);
1277 
1278 	spa_config_sync();
1279 
1280 	if (history_str != NULL)
1281 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
1282 
1283 	mutex_exit(&spa_namespace_lock);
1284 
1285 	return (0);
1286 }
1287 
1288 /*
1289  * Import the given pool into the system.  We set up the necessary spa_t and
1290  * then call spa_load() to do the dirty work.
1291  */
1292 int
1293 spa_import(const char *pool, nvlist_t *config, const char *altroot)
1294 {
1295 	spa_t *spa;
1296 	int error;
1297 	nvlist_t *nvroot;
1298 	nvlist_t **spares;
1299 	uint_t nspares;
1300 
1301 	/*
1302 	 * If a pool with this name exists, return failure.
1303 	 */
1304 	mutex_enter(&spa_namespace_lock);
1305 	if (spa_lookup(pool) != NULL) {
1306 		mutex_exit(&spa_namespace_lock);
1307 		return (EEXIST);
1308 	}
1309 
1310 	/*
1311 	 * Create and initialize the spa structure.
1312 	 */
1313 	spa = spa_add(pool, altroot);
1314 	spa_activate(spa);
1315 
1316 	/*
1317 	 * Pass off the heavy lifting to spa_load().
1318 	 * Pass TRUE for mosconfig because the user-supplied config
1319 	 * is actually the one to trust when doing an import.
1320 	 */
1321 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1322 
1323 	spa_config_enter(spa, RW_WRITER, FTAG);
1324 	/*
1325 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1326 	 * and conflicts with spa_has_spare().
1327 	 */
1328 	if (spa->spa_sparelist) {
1329 		nvlist_free(spa->spa_sparelist);
1330 		spa->spa_sparelist = NULL;
1331 		spa_load_spares(spa);
1332 	}
1333 
1334 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1335 	    &nvroot) == 0);
1336 	if (error == 0)
1337 		error = spa_validate_spares(spa, nvroot, -1ULL,
1338 		    VDEV_ALLOC_SPARE);
1339 	spa_config_exit(spa, FTAG);
1340 
1341 	if (error != 0) {
1342 		spa_unload(spa);
1343 		spa_deactivate(spa);
1344 		spa_remove(spa);
1345 		mutex_exit(&spa_namespace_lock);
1346 		return (error);
1347 	}
1348 
1349 	/*
1350 	 * Override any spares as specified by the user, as these may have
1351 	 * correct device names/devids, etc.
1352 	 */
1353 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1354 	    &spares, &nspares) == 0) {
1355 		if (spa->spa_sparelist)
1356 			VERIFY(nvlist_remove(spa->spa_sparelist,
1357 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1358 		else
1359 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1360 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1361 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1362 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1363 		spa_config_enter(spa, RW_WRITER, FTAG);
1364 		spa_load_spares(spa);
1365 		spa_config_exit(spa, FTAG);
1366 		spa->spa_sync_spares = B_TRUE;
1367 	}
1368 
1369 	/*
1370 	 * Update the config cache to include the newly-imported pool.
1371 	 */
1372 	if (spa_mode & FWRITE)
1373 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1374 
1375 	/*
1376 	 * Resilver anything that's out of date.
1377 	 */
1378 	if (spa_mode & FWRITE)
1379 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1380 
1381 	mutex_exit(&spa_namespace_lock);
1382 
1383 	return (0);
1384 }
1385 
1386 /*
1387  * This (illegal) pool name is used when temporarily importing a spa_t in order
1388  * to get the vdev stats associated with the imported devices.
1389  */
1390 #define	TRYIMPORT_NAME	"$import"
1391 
1392 nvlist_t *
1393 spa_tryimport(nvlist_t *tryconfig)
1394 {
1395 	nvlist_t *config = NULL;
1396 	char *poolname;
1397 	spa_t *spa;
1398 	uint64_t state;
1399 
1400 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1401 		return (NULL);
1402 
1403 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1404 		return (NULL);
1405 
1406 	/*
1407 	 * Create and initialize the spa structure.
1408 	 */
1409 	mutex_enter(&spa_namespace_lock);
1410 	spa = spa_add(TRYIMPORT_NAME, NULL);
1411 	spa_activate(spa);
1412 
1413 	/*
1414 	 * Pass off the heavy lifting to spa_load().
1415 	 * Pass TRUE for mosconfig because the user-supplied config
1416 	 * is actually the one to trust when doing an import.
1417 	 */
1418 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1419 
1420 	/*
1421 	 * If 'tryconfig' was at least parsable, return the current config.
1422 	 */
1423 	if (spa->spa_root_vdev != NULL) {
1424 		spa_config_enter(spa, RW_READER, FTAG);
1425 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1426 		spa_config_exit(spa, FTAG);
1427 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1428 		    poolname) == 0);
1429 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1430 		    state) == 0);
1431 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
1432 		    spa->spa_uberblock.ub_timestamp) == 0);
1433 
1434 		/*
1435 		 * Add the list of hot spares.
1436 		 */
1437 		spa_add_spares(spa, config);
1438 	}
1439 
1440 	spa_unload(spa);
1441 	spa_deactivate(spa);
1442 	spa_remove(spa);
1443 	mutex_exit(&spa_namespace_lock);
1444 
1445 	return (config);
1446 }
1447 
1448 /*
1449  * Pool export/destroy
1450  *
1451  * The act of destroying or exporting a pool is very simple.  We make sure there
1452  * is no more pending I/O and any references to the pool are gone.  Then, we
1453  * update the pool state and sync all the labels to disk, removing the
1454  * configuration from the cache afterwards.
1455  */
1456 static int
1457 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1458 {
1459 	spa_t *spa;
1460 
1461 	if (oldconfig)
1462 		*oldconfig = NULL;
1463 
1464 	if (!(spa_mode & FWRITE))
1465 		return (EROFS);
1466 
1467 	mutex_enter(&spa_namespace_lock);
1468 	if ((spa = spa_lookup(pool)) == NULL) {
1469 		mutex_exit(&spa_namespace_lock);
1470 		return (ENOENT);
1471 	}
1472 
1473 	/*
1474 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1475 	 * reacquire the namespace lock, and see if we can export.
1476 	 */
1477 	spa_open_ref(spa, FTAG);
1478 	mutex_exit(&spa_namespace_lock);
1479 	spa_async_suspend(spa);
1480 	mutex_enter(&spa_namespace_lock);
1481 	spa_close(spa, FTAG);
1482 
1483 	/*
1484 	 * The pool will be in core if it's openable,
1485 	 * in which case we can modify its state.
1486 	 */
1487 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1488 		/*
1489 		 * Objsets may be open only because they're dirty, so we
1490 		 * have to force it to sync before checking spa_refcnt.
1491 		 */
1492 		spa_scrub_suspend(spa);
1493 		txg_wait_synced(spa->spa_dsl_pool, 0);
1494 
1495 		/*
1496 		 * A pool cannot be exported or destroyed if there are active
1497 		 * references.  If we are resetting a pool, allow references by
1498 		 * fault injection handlers.
1499 		 */
1500 		if (!spa_refcount_zero(spa) ||
1501 		    (spa->spa_inject_ref != 0 &&
1502 		    new_state != POOL_STATE_UNINITIALIZED)) {
1503 			spa_scrub_resume(spa);
1504 			spa_async_resume(spa);
1505 			mutex_exit(&spa_namespace_lock);
1506 			return (EBUSY);
1507 		}
1508 
1509 		spa_scrub_resume(spa);
1510 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1511 
1512 		/*
1513 		 * We want this to be reflected on every label,
1514 		 * so mark them all dirty.  spa_unload() will do the
1515 		 * final sync that pushes these changes out.
1516 		 */
1517 		if (new_state != POOL_STATE_UNINITIALIZED) {
1518 			spa_config_enter(spa, RW_WRITER, FTAG);
1519 			spa->spa_state = new_state;
1520 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1521 			vdev_config_dirty(spa->spa_root_vdev);
1522 			spa_config_exit(spa, FTAG);
1523 		}
1524 	}
1525 
1526 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
1527 
1528 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1529 		spa_unload(spa);
1530 		spa_deactivate(spa);
1531 	}
1532 
1533 	if (oldconfig && spa->spa_config)
1534 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1535 
1536 	if (new_state != POOL_STATE_UNINITIALIZED) {
1537 		spa_remove(spa);
1538 		spa_config_sync();
1539 	}
1540 	mutex_exit(&spa_namespace_lock);
1541 
1542 	return (0);
1543 }
1544 
1545 /*
1546  * Destroy a storage pool.
1547  */
1548 int
1549 spa_destroy(char *pool)
1550 {
1551 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1552 }
1553 
1554 /*
1555  * Export a storage pool.
1556  */
1557 int
1558 spa_export(char *pool, nvlist_t **oldconfig)
1559 {
1560 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1561 }
1562 
1563 /*
1564  * Similar to spa_export(), this unloads the spa_t without actually removing it
1565  * from the namespace in any way.
1566  */
1567 int
1568 spa_reset(char *pool)
1569 {
1570 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1571 }
1572 
1573 
1574 /*
1575  * ==========================================================================
1576  * Device manipulation
1577  * ==========================================================================
1578  */
1579 
1580 /*
1581  * Add a device to a storage pool.
1582  */
1583 int
1584 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1585 {
1586 	uint64_t txg;
1587 	int c, error;
1588 	vdev_t *rvd = spa->spa_root_vdev;
1589 	vdev_t *vd, *tvd;
1590 	nvlist_t **spares;
1591 	uint_t i, nspares;
1592 
1593 	txg = spa_vdev_enter(spa);
1594 
1595 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1596 	    VDEV_ALLOC_ADD)) != 0)
1597 		return (spa_vdev_exit(spa, NULL, txg, error));
1598 
1599 	spa->spa_pending_vdev = vd;
1600 
1601 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1602 	    &spares, &nspares) != 0)
1603 		nspares = 0;
1604 
1605 	if (vd->vdev_children == 0 && nspares == 0) {
1606 		spa->spa_pending_vdev = NULL;
1607 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1608 	}
1609 
1610 	if (vd->vdev_children != 0) {
1611 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
1612 			spa->spa_pending_vdev = NULL;
1613 			return (spa_vdev_exit(spa, vd, txg, error));
1614 		}
1615 	}
1616 
1617 	/*
1618 	 * We must validate the spares after checking the children.  Otherwise,
1619 	 * vdev_inuse() will blindly overwrite the spare.
1620 	 */
1621 	if ((error = spa_validate_spares(spa, nvroot, txg,
1622 	    VDEV_ALLOC_ADD)) != 0) {
1623 		spa->spa_pending_vdev = NULL;
1624 		return (spa_vdev_exit(spa, vd, txg, error));
1625 	}
1626 
1627 	spa->spa_pending_vdev = NULL;
1628 
1629 	/*
1630 	 * Transfer each new top-level vdev from vd to rvd.
1631 	 */
1632 	for (c = 0; c < vd->vdev_children; c++) {
1633 		tvd = vd->vdev_child[c];
1634 		vdev_remove_child(vd, tvd);
1635 		tvd->vdev_id = rvd->vdev_children;
1636 		vdev_add_child(rvd, tvd);
1637 		vdev_config_dirty(tvd);
1638 	}
1639 
1640 	if (nspares != 0) {
1641 		if (spa->spa_sparelist != NULL) {
1642 			nvlist_t **oldspares;
1643 			uint_t oldnspares;
1644 			nvlist_t **newspares;
1645 
1646 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1647 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
1648 
1649 			newspares = kmem_alloc(sizeof (void *) *
1650 			    (nspares + oldnspares), KM_SLEEP);
1651 			for (i = 0; i < oldnspares; i++)
1652 				VERIFY(nvlist_dup(oldspares[i],
1653 				    &newspares[i], KM_SLEEP) == 0);
1654 			for (i = 0; i < nspares; i++)
1655 				VERIFY(nvlist_dup(spares[i],
1656 				    &newspares[i + oldnspares],
1657 				    KM_SLEEP) == 0);
1658 
1659 			VERIFY(nvlist_remove(spa->spa_sparelist,
1660 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1661 
1662 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1663 			    ZPOOL_CONFIG_SPARES, newspares,
1664 			    nspares + oldnspares) == 0);
1665 			for (i = 0; i < oldnspares + nspares; i++)
1666 				nvlist_free(newspares[i]);
1667 			kmem_free(newspares, (oldnspares + nspares) *
1668 			    sizeof (void *));
1669 		} else {
1670 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1671 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1672 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1673 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1674 		}
1675 
1676 		spa_load_spares(spa);
1677 		spa->spa_sync_spares = B_TRUE;
1678 	}
1679 
1680 	/*
1681 	 * We have to be careful when adding new vdevs to an existing pool.
1682 	 * If other threads start allocating from these vdevs before we
1683 	 * sync the config cache, and we lose power, then upon reboot we may
1684 	 * fail to open the pool because there are DVAs that the config cache
1685 	 * can't translate.  Therefore, we first add the vdevs without
1686 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1687 	 * and then let spa_config_update() initialize the new metaslabs.
1688 	 *
1689 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1690 	 * if we lose power at any point in this sequence, the remaining
1691 	 * steps will be completed the next time we load the pool.
1692 	 */
1693 	(void) spa_vdev_exit(spa, vd, txg, 0);
1694 
1695 	mutex_enter(&spa_namespace_lock);
1696 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1697 	mutex_exit(&spa_namespace_lock);
1698 
1699 	return (0);
1700 }
1701 
1702 /*
1703  * Attach a device to a mirror.  The arguments are the path to any device
1704  * in the mirror, and the nvroot for the new device.  If the path specifies
1705  * a device that is not mirrored, we automatically insert the mirror vdev.
1706  *
1707  * If 'replacing' is specified, the new device is intended to replace the
1708  * existing device; in this case the two devices are made into their own
1709  * mirror using the 'replacing' vdev, which is functionally identical to
1710  * the mirror vdev (it actually reuses all the same ops) but has a few
1711  * extra rules: you can't attach to it after it's been created, and upon
1712  * completion of resilvering, the first disk (the one being replaced)
1713  * is automatically detached.
1714  */
1715 int
1716 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1717 {
1718 	uint64_t txg, open_txg;
1719 	int error;
1720 	vdev_t *rvd = spa->spa_root_vdev;
1721 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1722 	vdev_ops_t *pvops;
1723 	int is_log;
1724 
1725 	txg = spa_vdev_enter(spa);
1726 
1727 	oldvd = vdev_lookup_by_guid(rvd, guid);
1728 
1729 	if (oldvd == NULL)
1730 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1731 
1732 	if (!oldvd->vdev_ops->vdev_op_leaf)
1733 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1734 
1735 	pvd = oldvd->vdev_parent;
1736 
1737 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
1738 	    VDEV_ALLOC_ADD)) != 0)
1739 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
1740 
1741 	if (newrootvd->vdev_children != 1)
1742 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1743 
1744 	newvd = newrootvd->vdev_child[0];
1745 
1746 	if (!newvd->vdev_ops->vdev_op_leaf)
1747 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1748 
1749 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
1750 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1751 
1752 	/*
1753 	 * Spares can't replace logs
1754 	 */
1755 	is_log = oldvd->vdev_islog;
1756 	if (is_log && newvd->vdev_isspare)
1757 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1758 
1759 	if (!replacing) {
1760 		/*
1761 		 * For attach, the only allowable parent is a mirror or the root
1762 		 * vdev.
1763 		 */
1764 		if (pvd->vdev_ops != &vdev_mirror_ops &&
1765 		    pvd->vdev_ops != &vdev_root_ops)
1766 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1767 
1768 		pvops = &vdev_mirror_ops;
1769 	} else {
1770 		/*
1771 		 * Active hot spares can only be replaced by inactive hot
1772 		 * spares.
1773 		 */
1774 		if (pvd->vdev_ops == &vdev_spare_ops &&
1775 		    pvd->vdev_child[1] == oldvd &&
1776 		    !spa_has_spare(spa, newvd->vdev_guid))
1777 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1778 
1779 		/*
1780 		 * If the source is a hot spare, and the parent isn't already a
1781 		 * spare, then we want to create a new hot spare.  Otherwise, we
1782 		 * want to create a replacing vdev.  The user is not allowed to
1783 		 * attach to a spared vdev child unless the 'isspare' state is
1784 		 * the same (spare replaces spare, non-spare replaces
1785 		 * non-spare).
1786 		 */
1787 		if (pvd->vdev_ops == &vdev_replacing_ops)
1788 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1789 		else if (pvd->vdev_ops == &vdev_spare_ops &&
1790 		    newvd->vdev_isspare != oldvd->vdev_isspare)
1791 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1792 		else if (pvd->vdev_ops != &vdev_spare_ops &&
1793 		    newvd->vdev_isspare)
1794 			pvops = &vdev_spare_ops;
1795 		else
1796 			pvops = &vdev_replacing_ops;
1797 	}
1798 
1799 	/*
1800 	 * Compare the new device size with the replaceable/attachable
1801 	 * device size.
1802 	 */
1803 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1804 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1805 
1806 	/*
1807 	 * The new device cannot have a higher alignment requirement
1808 	 * than the top-level vdev.
1809 	 */
1810 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1811 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1812 
1813 	/*
1814 	 * If this is an in-place replacement, update oldvd's path and devid
1815 	 * to make it distinguishable from newvd, and unopenable from now on.
1816 	 */
1817 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1818 		spa_strfree(oldvd->vdev_path);
1819 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1820 		    KM_SLEEP);
1821 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1822 		    newvd->vdev_path, "old");
1823 		if (oldvd->vdev_devid != NULL) {
1824 			spa_strfree(oldvd->vdev_devid);
1825 			oldvd->vdev_devid = NULL;
1826 		}
1827 	}
1828 
1829 	/*
1830 	 * If the parent is not a mirror, or if we're replacing, insert the new
1831 	 * mirror/replacing/spare vdev above oldvd.
1832 	 */
1833 	if (pvd->vdev_ops != pvops)
1834 		pvd = vdev_add_parent(oldvd, pvops);
1835 
1836 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1837 	ASSERT(pvd->vdev_ops == pvops);
1838 	ASSERT(oldvd->vdev_parent == pvd);
1839 
1840 	/*
1841 	 * Extract the new device from its root and add it to pvd.
1842 	 */
1843 	vdev_remove_child(newrootvd, newvd);
1844 	newvd->vdev_id = pvd->vdev_children;
1845 	vdev_add_child(pvd, newvd);
1846 
1847 	/*
1848 	 * If newvd is smaller than oldvd, but larger than its rsize,
1849 	 * the addition of newvd may have decreased our parent's asize.
1850 	 */
1851 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1852 
1853 	tvd = newvd->vdev_top;
1854 	ASSERT(pvd->vdev_top == tvd);
1855 	ASSERT(tvd->vdev_parent == rvd);
1856 
1857 	vdev_config_dirty(tvd);
1858 
1859 	/*
1860 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1861 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1862 	 */
1863 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1864 
1865 	mutex_enter(&newvd->vdev_dtl_lock);
1866 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1867 	    open_txg - TXG_INITIAL + 1);
1868 	mutex_exit(&newvd->vdev_dtl_lock);
1869 
1870 	if (newvd->vdev_isspare)
1871 		spa_spare_activate(newvd);
1872 
1873 	/*
1874 	 * Mark newvd's DTL dirty in this txg.
1875 	 */
1876 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1877 
1878 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1879 
1880 	/*
1881 	 * Kick off a resilver to update newvd.  We need to grab the namespace
1882 	 * lock because spa_scrub() needs to post a sysevent with the pool name.
1883 	 */
1884 	mutex_enter(&spa_namespace_lock);
1885 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1886 	mutex_exit(&spa_namespace_lock);
1887 
1888 	return (0);
1889 }
1890 
1891 /*
1892  * Detach a device from a mirror or replacing vdev.
1893  * If 'replace_done' is specified, only detach if the parent
1894  * is a replacing vdev.
1895  */
1896 int
1897 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1898 {
1899 	uint64_t txg;
1900 	int c, t, error;
1901 	vdev_t *rvd = spa->spa_root_vdev;
1902 	vdev_t *vd, *pvd, *cvd, *tvd;
1903 	boolean_t unspare = B_FALSE;
1904 	uint64_t unspare_guid;
1905 
1906 	txg = spa_vdev_enter(spa);
1907 
1908 	vd = vdev_lookup_by_guid(rvd, guid);
1909 
1910 	if (vd == NULL)
1911 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1912 
1913 	if (!vd->vdev_ops->vdev_op_leaf)
1914 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1915 
1916 	pvd = vd->vdev_parent;
1917 
1918 	/*
1919 	 * If replace_done is specified, only remove this device if it's
1920 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
1921 	 * disk can be removed.
1922 	 */
1923 	if (replace_done) {
1924 		if (pvd->vdev_ops == &vdev_replacing_ops) {
1925 			if (vd->vdev_id != 0)
1926 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1927 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
1928 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1929 		}
1930 	}
1931 
1932 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
1933 	    spa_version(spa) >= SPA_VERSION_SPARES);
1934 
1935 	/*
1936 	 * Only mirror, replacing, and spare vdevs support detach.
1937 	 */
1938 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1939 	    pvd->vdev_ops != &vdev_mirror_ops &&
1940 	    pvd->vdev_ops != &vdev_spare_ops)
1941 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1942 
1943 	/*
1944 	 * If there's only one replica, you can't detach it.
1945 	 */
1946 	if (pvd->vdev_children <= 1)
1947 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1948 
1949 	/*
1950 	 * If all siblings have non-empty DTLs, this device may have the only
1951 	 * valid copy of the data, which means we cannot safely detach it.
1952 	 *
1953 	 * XXX -- as in the vdev_offline() case, we really want a more
1954 	 * precise DTL check.
1955 	 */
1956 	for (c = 0; c < pvd->vdev_children; c++) {
1957 		uint64_t dirty;
1958 
1959 		cvd = pvd->vdev_child[c];
1960 		if (cvd == vd)
1961 			continue;
1962 		if (vdev_is_dead(cvd))
1963 			continue;
1964 		mutex_enter(&cvd->vdev_dtl_lock);
1965 		dirty = cvd->vdev_dtl_map.sm_space |
1966 		    cvd->vdev_dtl_scrub.sm_space;
1967 		mutex_exit(&cvd->vdev_dtl_lock);
1968 		if (!dirty)
1969 			break;
1970 	}
1971 
1972 	/*
1973 	 * If we are a replacing or spare vdev, then we can always detach the
1974 	 * latter child, as that is how one cancels the operation.
1975 	 */
1976 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
1977 	    c == pvd->vdev_children)
1978 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1979 
1980 	/*
1981 	 * If we are detaching the original disk from a spare, then it implies
1982 	 * that the spare should become a real disk, and be removed from the
1983 	 * active spare list for the pool.
1984 	 */
1985 	if (pvd->vdev_ops == &vdev_spare_ops &&
1986 	    vd->vdev_id == 0)
1987 		unspare = B_TRUE;
1988 
1989 	/*
1990 	 * Erase the disk labels so the disk can be used for other things.
1991 	 * This must be done after all other error cases are handled,
1992 	 * but before we disembowel vd (so we can still do I/O to it).
1993 	 * But if we can't do it, don't treat the error as fatal --
1994 	 * it may be that the unwritability of the disk is the reason
1995 	 * it's being detached!
1996 	 */
1997 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1998 
1999 	/*
2000 	 * Remove vd from its parent and compact the parent's children.
2001 	 */
2002 	vdev_remove_child(pvd, vd);
2003 	vdev_compact_children(pvd);
2004 
2005 	/*
2006 	 * Remember one of the remaining children so we can get tvd below.
2007 	 */
2008 	cvd = pvd->vdev_child[0];
2009 
2010 	/*
2011 	 * If we need to remove the remaining child from the list of hot spares,
2012 	 * do it now, marking the vdev as no longer a spare in the process.  We
2013 	 * must do this before vdev_remove_parent(), because that can change the
2014 	 * GUID if it creates a new toplevel GUID.
2015 	 */
2016 	if (unspare) {
2017 		ASSERT(cvd->vdev_isspare);
2018 		spa_spare_remove(cvd);
2019 		unspare_guid = cvd->vdev_guid;
2020 	}
2021 
2022 	/*
2023 	 * If the parent mirror/replacing vdev only has one child,
2024 	 * the parent is no longer needed.  Remove it from the tree.
2025 	 */
2026 	if (pvd->vdev_children == 1)
2027 		vdev_remove_parent(cvd);
2028 
2029 	/*
2030 	 * We don't set tvd until now because the parent we just removed
2031 	 * may have been the previous top-level vdev.
2032 	 */
2033 	tvd = cvd->vdev_top;
2034 	ASSERT(tvd->vdev_parent == rvd);
2035 
2036 	/*
2037 	 * Reevaluate the parent vdev state.
2038 	 */
2039 	vdev_propagate_state(cvd);
2040 
2041 	/*
2042 	 * If the device we just detached was smaller than the others, it may be
2043 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
2044 	 * can't fail because the existing metaslabs are already in core, so
2045 	 * there's nothing to read from disk.
2046 	 */
2047 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
2048 
2049 	vdev_config_dirty(tvd);
2050 
2051 	/*
2052 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
2053 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
2054 	 * But first make sure we're not on any *other* txg's DTL list, to
2055 	 * prevent vd from being accessed after it's freed.
2056 	 */
2057 	for (t = 0; t < TXG_SIZE; t++)
2058 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
2059 	vd->vdev_detached = B_TRUE;
2060 	vdev_dirty(tvd, VDD_DTL, vd, txg);
2061 
2062 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
2063 
2064 	error = spa_vdev_exit(spa, vd, txg, 0);
2065 
2066 	/*
2067 	 * If this was the removal of the original device in a hot spare vdev,
2068 	 * then we want to go through and remove the device from the hot spare
2069 	 * list of every other pool.
2070 	 */
2071 	if (unspare) {
2072 		spa = NULL;
2073 		mutex_enter(&spa_namespace_lock);
2074 		while ((spa = spa_next(spa)) != NULL) {
2075 			if (spa->spa_state != POOL_STATE_ACTIVE)
2076 				continue;
2077 
2078 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
2079 		}
2080 		mutex_exit(&spa_namespace_lock);
2081 	}
2082 
2083 	return (error);
2084 }
2085 
2086 /*
2087  * Remove a device from the pool.  Currently, this supports removing only hot
2088  * spares.
2089  */
2090 int
2091 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2092 {
2093 	vdev_t *vd;
2094 	nvlist_t **spares, *nv, **newspares;
2095 	uint_t i, j, nspares;
2096 	int ret = 0;
2097 
2098 	spa_config_enter(spa, RW_WRITER, FTAG);
2099 
2100 	vd = spa_lookup_by_guid(spa, guid);
2101 
2102 	nv = NULL;
2103 	if (spa->spa_spares != NULL &&
2104 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2105 	    &spares, &nspares) == 0) {
2106 		for (i = 0; i < nspares; i++) {
2107 			uint64_t theguid;
2108 
2109 			VERIFY(nvlist_lookup_uint64(spares[i],
2110 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
2111 			if (theguid == guid) {
2112 				nv = spares[i];
2113 				break;
2114 			}
2115 		}
2116 	}
2117 
2118 	/*
2119 	 * We only support removing a hot spare, and only if it's not currently
2120 	 * in use in this pool.
2121 	 */
2122 	if (nv == NULL && vd == NULL) {
2123 		ret = ENOENT;
2124 		goto out;
2125 	}
2126 
2127 	if (nv == NULL && vd != NULL) {
2128 		ret = ENOTSUP;
2129 		goto out;
2130 	}
2131 
2132 	if (!unspare && nv != NULL && vd != NULL) {
2133 		ret = EBUSY;
2134 		goto out;
2135 	}
2136 
2137 	if (nspares == 1) {
2138 		newspares = NULL;
2139 	} else {
2140 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
2141 		    KM_SLEEP);
2142 		for (i = 0, j = 0; i < nspares; i++) {
2143 			if (spares[i] != nv)
2144 				VERIFY(nvlist_dup(spares[i],
2145 				    &newspares[j++], KM_SLEEP) == 0);
2146 		}
2147 	}
2148 
2149 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2150 	    DATA_TYPE_NVLIST_ARRAY) == 0);
2151 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2152 	    newspares, nspares - 1) == 0);
2153 	for (i = 0; i < nspares - 1; i++)
2154 		nvlist_free(newspares[i]);
2155 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
2156 	spa_load_spares(spa);
2157 	spa->spa_sync_spares = B_TRUE;
2158 
2159 out:
2160 	spa_config_exit(spa, FTAG);
2161 
2162 	return (ret);
2163 }
2164 
2165 /*
2166  * Find any device that's done replacing, or a vdev marked 'unspare' that's
2167  * current spared, so we can detach it.
2168  */
2169 static vdev_t *
2170 spa_vdev_resilver_done_hunt(vdev_t *vd)
2171 {
2172 	vdev_t *newvd, *oldvd;
2173 	int c;
2174 
2175 	for (c = 0; c < vd->vdev_children; c++) {
2176 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
2177 		if (oldvd != NULL)
2178 			return (oldvd);
2179 	}
2180 
2181 	/*
2182 	 * Check for a completed replacement.
2183 	 */
2184 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
2185 		oldvd = vd->vdev_child[0];
2186 		newvd = vd->vdev_child[1];
2187 
2188 		mutex_enter(&newvd->vdev_dtl_lock);
2189 		if (newvd->vdev_dtl_map.sm_space == 0 &&
2190 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2191 			mutex_exit(&newvd->vdev_dtl_lock);
2192 			return (oldvd);
2193 		}
2194 		mutex_exit(&newvd->vdev_dtl_lock);
2195 	}
2196 
2197 	/*
2198 	 * Check for a completed resilver with the 'unspare' flag set.
2199 	 */
2200 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
2201 		newvd = vd->vdev_child[0];
2202 		oldvd = vd->vdev_child[1];
2203 
2204 		mutex_enter(&newvd->vdev_dtl_lock);
2205 		if (newvd->vdev_unspare &&
2206 		    newvd->vdev_dtl_map.sm_space == 0 &&
2207 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2208 			newvd->vdev_unspare = 0;
2209 			mutex_exit(&newvd->vdev_dtl_lock);
2210 			return (oldvd);
2211 		}
2212 		mutex_exit(&newvd->vdev_dtl_lock);
2213 	}
2214 
2215 	return (NULL);
2216 }
2217 
2218 static void
2219 spa_vdev_resilver_done(spa_t *spa)
2220 {
2221 	vdev_t *vd;
2222 	vdev_t *pvd;
2223 	uint64_t guid;
2224 	uint64_t pguid = 0;
2225 
2226 	spa_config_enter(spa, RW_READER, FTAG);
2227 
2228 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
2229 		guid = vd->vdev_guid;
2230 		/*
2231 		 * If we have just finished replacing a hot spared device, then
2232 		 * we need to detach the parent's first child (the original hot
2233 		 * spare) as well.
2234 		 */
2235 		pvd = vd->vdev_parent;
2236 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2237 		    pvd->vdev_id == 0) {
2238 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2239 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2240 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2241 		}
2242 		spa_config_exit(spa, FTAG);
2243 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2244 			return;
2245 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2246 			return;
2247 		spa_config_enter(spa, RW_READER, FTAG);
2248 	}
2249 
2250 	spa_config_exit(spa, FTAG);
2251 }
2252 
2253 /*
2254  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2255  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2256  */
2257 int
2258 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2259 {
2260 	vdev_t *rvd, *vd;
2261 	uint64_t txg;
2262 
2263 	rvd = spa->spa_root_vdev;
2264 
2265 	txg = spa_vdev_enter(spa);
2266 
2267 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2268 		/*
2269 		 * Determine if this is a reference to a hot spare.  In that
2270 		 * case, update the path as stored in the spare list.
2271 		 */
2272 		nvlist_t **spares;
2273 		uint_t i, nspares;
2274 		if (spa->spa_sparelist != NULL) {
2275 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2276 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2277 			for (i = 0; i < nspares; i++) {
2278 				uint64_t theguid;
2279 				VERIFY(nvlist_lookup_uint64(spares[i],
2280 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2281 				if (theguid == guid)
2282 					break;
2283 			}
2284 
2285 			if (i == nspares)
2286 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2287 
2288 			VERIFY(nvlist_add_string(spares[i],
2289 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2290 			spa_load_spares(spa);
2291 			spa->spa_sync_spares = B_TRUE;
2292 			return (spa_vdev_exit(spa, NULL, txg, 0));
2293 		} else {
2294 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2295 		}
2296 	}
2297 
2298 	if (!vd->vdev_ops->vdev_op_leaf)
2299 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2300 
2301 	spa_strfree(vd->vdev_path);
2302 	vd->vdev_path = spa_strdup(newpath);
2303 
2304 	vdev_config_dirty(vd->vdev_top);
2305 
2306 	return (spa_vdev_exit(spa, NULL, txg, 0));
2307 }
2308 
2309 /*
2310  * ==========================================================================
2311  * SPA Scrubbing
2312  * ==========================================================================
2313  */
2314 
2315 static void
2316 spa_scrub_io_done(zio_t *zio)
2317 {
2318 	spa_t *spa = zio->io_spa;
2319 
2320 	arc_data_buf_free(zio->io_data, zio->io_size);
2321 
2322 	mutex_enter(&spa->spa_scrub_lock);
2323 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2324 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2325 		spa->spa_scrub_errors++;
2326 		mutex_enter(&vd->vdev_stat_lock);
2327 		vd->vdev_stat.vs_scrub_errors++;
2328 		mutex_exit(&vd->vdev_stat_lock);
2329 	}
2330 
2331 	if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight)
2332 		cv_broadcast(&spa->spa_scrub_io_cv);
2333 
2334 	ASSERT(spa->spa_scrub_inflight >= 0);
2335 
2336 	mutex_exit(&spa->spa_scrub_lock);
2337 }
2338 
2339 static void
2340 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2341     zbookmark_t *zb)
2342 {
2343 	size_t size = BP_GET_LSIZE(bp);
2344 	void *data;
2345 
2346 	mutex_enter(&spa->spa_scrub_lock);
2347 	/*
2348 	 * Do not give too much work to vdev(s).
2349 	 */
2350 	while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) {
2351 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2352 	}
2353 	spa->spa_scrub_inflight++;
2354 	mutex_exit(&spa->spa_scrub_lock);
2355 
2356 	data = arc_data_buf_alloc(size);
2357 
2358 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2359 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2360 
2361 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2362 
2363 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2364 	    spa_scrub_io_done, NULL, priority, flags, zb));
2365 }
2366 
2367 /* ARGSUSED */
2368 static int
2369 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2370 {
2371 	blkptr_t *bp = &bc->bc_blkptr;
2372 	vdev_t *vd = spa->spa_root_vdev;
2373 	dva_t *dva = bp->blk_dva;
2374 	int needs_resilver = B_FALSE;
2375 	int d;
2376 
2377 	if (bc->bc_errno) {
2378 		/*
2379 		 * We can't scrub this block, but we can continue to scrub
2380 		 * the rest of the pool.  Note the error and move along.
2381 		 */
2382 		mutex_enter(&spa->spa_scrub_lock);
2383 		spa->spa_scrub_errors++;
2384 		mutex_exit(&spa->spa_scrub_lock);
2385 
2386 		mutex_enter(&vd->vdev_stat_lock);
2387 		vd->vdev_stat.vs_scrub_errors++;
2388 		mutex_exit(&vd->vdev_stat_lock);
2389 
2390 		return (ERESTART);
2391 	}
2392 
2393 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2394 
2395 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2396 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2397 
2398 		ASSERT(vd != NULL);
2399 
2400 		/*
2401 		 * Keep track of how much data we've examined so that
2402 		 * zpool(1M) status can make useful progress reports.
2403 		 */
2404 		mutex_enter(&vd->vdev_stat_lock);
2405 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2406 		mutex_exit(&vd->vdev_stat_lock);
2407 
2408 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2409 			if (DVA_GET_GANG(&dva[d])) {
2410 				/*
2411 				 * Gang members may be spread across multiple
2412 				 * vdevs, so the best we can do is look at the
2413 				 * pool-wide DTL.
2414 				 * XXX -- it would be better to change our
2415 				 * allocation policy to ensure that this can't
2416 				 * happen.
2417 				 */
2418 				vd = spa->spa_root_vdev;
2419 			}
2420 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2421 			    bp->blk_birth, 1))
2422 				needs_resilver = B_TRUE;
2423 		}
2424 	}
2425 
2426 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2427 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2428 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2429 	else if (needs_resilver)
2430 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2431 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2432 
2433 	return (0);
2434 }
2435 
2436 static void
2437 spa_scrub_thread(spa_t *spa)
2438 {
2439 	callb_cpr_t cprinfo;
2440 	traverse_handle_t *th = spa->spa_scrub_th;
2441 	vdev_t *rvd = spa->spa_root_vdev;
2442 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2443 	int error = 0;
2444 	boolean_t complete;
2445 
2446 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2447 
2448 	/*
2449 	 * If we're restarting due to a snapshot create/delete,
2450 	 * wait for that to complete.
2451 	 */
2452 	txg_wait_synced(spa_get_dsl(spa), 0);
2453 
2454 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2455 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2456 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2457 
2458 	spa_config_enter(spa, RW_WRITER, FTAG);
2459 	vdev_reopen(rvd);		/* purge all vdev caches */
2460 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2461 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2462 	spa_config_exit(spa, FTAG);
2463 
2464 	mutex_enter(&spa->spa_scrub_lock);
2465 	spa->spa_scrub_errors = 0;
2466 	spa->spa_scrub_active = 1;
2467 	ASSERT(spa->spa_scrub_inflight == 0);
2468 
2469 	while (!spa->spa_scrub_stop) {
2470 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2471 		while (spa->spa_scrub_suspended) {
2472 			spa->spa_scrub_active = 0;
2473 			cv_broadcast(&spa->spa_scrub_cv);
2474 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2475 			spa->spa_scrub_active = 1;
2476 		}
2477 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2478 
2479 		if (spa->spa_scrub_restart_txg != 0)
2480 			break;
2481 
2482 		mutex_exit(&spa->spa_scrub_lock);
2483 		error = traverse_more(th);
2484 		mutex_enter(&spa->spa_scrub_lock);
2485 		if (error != EAGAIN)
2486 			break;
2487 	}
2488 
2489 	while (spa->spa_scrub_inflight)
2490 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2491 
2492 	spa->spa_scrub_active = 0;
2493 	cv_broadcast(&spa->spa_scrub_cv);
2494 
2495 	mutex_exit(&spa->spa_scrub_lock);
2496 
2497 	spa_config_enter(spa, RW_WRITER, FTAG);
2498 
2499 	mutex_enter(&spa->spa_scrub_lock);
2500 
2501 	/*
2502 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2503 	 * AND the spa config lock to synchronize with any config changes
2504 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2505 	 */
2506 	if (spa->spa_scrub_restart_txg != 0)
2507 		error = ERESTART;
2508 
2509 	if (spa->spa_scrub_stop)
2510 		error = EINTR;
2511 
2512 	/*
2513 	 * Even if there were uncorrectable errors, we consider the scrub
2514 	 * completed.  The downside is that if there is a transient error during
2515 	 * a resilver, we won't resilver the data properly to the target.  But
2516 	 * if the damage is permanent (more likely) we will resilver forever,
2517 	 * which isn't really acceptable.  Since there is enough information for
2518 	 * the user to know what has failed and why, this seems like a more
2519 	 * tractable approach.
2520 	 */
2521 	complete = (error == 0);
2522 
2523 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2524 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2525 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2526 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2527 
2528 	mutex_exit(&spa->spa_scrub_lock);
2529 
2530 	/*
2531 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2532 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2533 	 */
2534 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2535 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2536 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2537 	spa_errlog_rotate(spa);
2538 
2539 	if (scrub_type == POOL_SCRUB_RESILVER && complete)
2540 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_FINISH);
2541 
2542 	spa_config_exit(spa, FTAG);
2543 
2544 	mutex_enter(&spa->spa_scrub_lock);
2545 
2546 	/*
2547 	 * We may have finished replacing a device.
2548 	 * Let the async thread assess this and handle the detach.
2549 	 */
2550 	spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
2551 
2552 	/*
2553 	 * If we were told to restart, our final act is to start a new scrub.
2554 	 */
2555 	if (error == ERESTART)
2556 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2557 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2558 
2559 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2560 	spa->spa_scrub_active = 0;
2561 	spa->spa_scrub_thread = NULL;
2562 	cv_broadcast(&spa->spa_scrub_cv);
2563 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2564 	thread_exit();
2565 }
2566 
2567 void
2568 spa_scrub_suspend(spa_t *spa)
2569 {
2570 	mutex_enter(&spa->spa_scrub_lock);
2571 	spa->spa_scrub_suspended++;
2572 	while (spa->spa_scrub_active) {
2573 		cv_broadcast(&spa->spa_scrub_cv);
2574 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2575 	}
2576 	while (spa->spa_scrub_inflight)
2577 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2578 	mutex_exit(&spa->spa_scrub_lock);
2579 }
2580 
2581 void
2582 spa_scrub_resume(spa_t *spa)
2583 {
2584 	mutex_enter(&spa->spa_scrub_lock);
2585 	ASSERT(spa->spa_scrub_suspended != 0);
2586 	if (--spa->spa_scrub_suspended == 0)
2587 		cv_broadcast(&spa->spa_scrub_cv);
2588 	mutex_exit(&spa->spa_scrub_lock);
2589 }
2590 
2591 void
2592 spa_scrub_restart(spa_t *spa, uint64_t txg)
2593 {
2594 	/*
2595 	 * Something happened (e.g. snapshot create/delete) that means
2596 	 * we must restart any in-progress scrubs.  The itinerary will
2597 	 * fix this properly.
2598 	 */
2599 	mutex_enter(&spa->spa_scrub_lock);
2600 	spa->spa_scrub_restart_txg = txg;
2601 	mutex_exit(&spa->spa_scrub_lock);
2602 }
2603 
2604 int
2605 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2606 {
2607 	space_seg_t *ss;
2608 	uint64_t mintxg, maxtxg;
2609 	vdev_t *rvd = spa->spa_root_vdev;
2610 
2611 	if ((uint_t)type >= POOL_SCRUB_TYPES)
2612 		return (ENOTSUP);
2613 
2614 	mutex_enter(&spa->spa_scrub_lock);
2615 
2616 	/*
2617 	 * If there's a scrub or resilver already in progress, stop it.
2618 	 */
2619 	while (spa->spa_scrub_thread != NULL) {
2620 		/*
2621 		 * Don't stop a resilver unless forced.
2622 		 */
2623 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
2624 			mutex_exit(&spa->spa_scrub_lock);
2625 			return (EBUSY);
2626 		}
2627 		spa->spa_scrub_stop = 1;
2628 		cv_broadcast(&spa->spa_scrub_cv);
2629 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2630 	}
2631 
2632 	/*
2633 	 * Terminate the previous traverse.
2634 	 */
2635 	if (spa->spa_scrub_th != NULL) {
2636 		traverse_fini(spa->spa_scrub_th);
2637 		spa->spa_scrub_th = NULL;
2638 	}
2639 
2640 	if (rvd == NULL) {
2641 		ASSERT(spa->spa_scrub_stop == 0);
2642 		ASSERT(spa->spa_scrub_type == type);
2643 		ASSERT(spa->spa_scrub_restart_txg == 0);
2644 		mutex_exit(&spa->spa_scrub_lock);
2645 		return (0);
2646 	}
2647 
2648 	mintxg = TXG_INITIAL - 1;
2649 	maxtxg = spa_last_synced_txg(spa) + 1;
2650 
2651 	mutex_enter(&rvd->vdev_dtl_lock);
2652 
2653 	if (rvd->vdev_dtl_map.sm_space == 0) {
2654 		/*
2655 		 * The pool-wide DTL is empty.
2656 		 * If this is a resilver, there's nothing to do except
2657 		 * check whether any in-progress replacements have completed.
2658 		 */
2659 		if (type == POOL_SCRUB_RESILVER) {
2660 			type = POOL_SCRUB_NONE;
2661 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
2662 		}
2663 	} else {
2664 		/*
2665 		 * The pool-wide DTL is non-empty.
2666 		 * If this is a normal scrub, upgrade to a resilver instead.
2667 		 */
2668 		if (type == POOL_SCRUB_EVERYTHING)
2669 			type = POOL_SCRUB_RESILVER;
2670 	}
2671 
2672 	if (type == POOL_SCRUB_RESILVER) {
2673 		/*
2674 		 * Determine the resilvering boundaries.
2675 		 *
2676 		 * Note: (mintxg, maxtxg) is an open interval,
2677 		 * i.e. mintxg and maxtxg themselves are not included.
2678 		 *
2679 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
2680 		 * so we don't claim to resilver a txg that's still changing.
2681 		 */
2682 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
2683 		mintxg = ss->ss_start - 1;
2684 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
2685 		maxtxg = MIN(ss->ss_end, maxtxg);
2686 
2687 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_START);
2688 	}
2689 
2690 	mutex_exit(&rvd->vdev_dtl_lock);
2691 
2692 	spa->spa_scrub_stop = 0;
2693 	spa->spa_scrub_type = type;
2694 	spa->spa_scrub_restart_txg = 0;
2695 
2696 	if (type != POOL_SCRUB_NONE) {
2697 		spa->spa_scrub_mintxg = mintxg;
2698 		spa->spa_scrub_maxtxg = maxtxg;
2699 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
2700 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
2701 		    ZIO_FLAG_CANFAIL);
2702 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
2703 		spa->spa_scrub_thread = thread_create(NULL, 0,
2704 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
2705 	}
2706 
2707 	mutex_exit(&spa->spa_scrub_lock);
2708 
2709 	return (0);
2710 }
2711 
2712 /*
2713  * ==========================================================================
2714  * SPA async task processing
2715  * ==========================================================================
2716  */
2717 
2718 static void
2719 spa_async_remove(spa_t *spa, vdev_t *vd)
2720 {
2721 	vdev_t *tvd;
2722 	int c;
2723 
2724 	for (c = 0; c < vd->vdev_children; c++) {
2725 		tvd = vd->vdev_child[c];
2726 		if (tvd->vdev_remove_wanted) {
2727 			tvd->vdev_remove_wanted = 0;
2728 			vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED,
2729 			    VDEV_AUX_NONE);
2730 			vdev_clear(spa, tvd);
2731 			vdev_config_dirty(tvd->vdev_top);
2732 		}
2733 		spa_async_remove(spa, tvd);
2734 	}
2735 }
2736 
2737 static void
2738 spa_async_thread(spa_t *spa)
2739 {
2740 	int tasks;
2741 	uint64_t txg;
2742 
2743 	ASSERT(spa->spa_sync_on);
2744 
2745 	mutex_enter(&spa->spa_async_lock);
2746 	tasks = spa->spa_async_tasks;
2747 	spa->spa_async_tasks = 0;
2748 	mutex_exit(&spa->spa_async_lock);
2749 
2750 	/*
2751 	 * See if the config needs to be updated.
2752 	 */
2753 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
2754 		mutex_enter(&spa_namespace_lock);
2755 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2756 		mutex_exit(&spa_namespace_lock);
2757 	}
2758 
2759 	/*
2760 	 * See if any devices need to be marked REMOVED.
2761 	 */
2762 	if (tasks & SPA_ASYNC_REMOVE) {
2763 		txg = spa_vdev_enter(spa);
2764 		spa_async_remove(spa, spa->spa_root_vdev);
2765 		(void) spa_vdev_exit(spa, NULL, txg, 0);
2766 	}
2767 
2768 	/*
2769 	 * If any devices are done replacing, detach them.
2770 	 */
2771 	if (tasks & SPA_ASYNC_RESILVER_DONE)
2772 		spa_vdev_resilver_done(spa);
2773 
2774 	/*
2775 	 * Kick off a scrub.  When starting a RESILVER scrub (or an EVERYTHING
2776 	 * scrub which can become a resilver), we need to hold
2777 	 * spa_namespace_lock() because the sysevent we post via
2778 	 * spa_event_notify() needs to get the name of the pool.
2779 	 */
2780 	if (tasks & SPA_ASYNC_SCRUB) {
2781 		mutex_enter(&spa_namespace_lock);
2782 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
2783 		mutex_exit(&spa_namespace_lock);
2784 	}
2785 
2786 	/*
2787 	 * Kick off a resilver.
2788 	 */
2789 	if (tasks & SPA_ASYNC_RESILVER) {
2790 		mutex_enter(&spa_namespace_lock);
2791 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2792 		mutex_exit(&spa_namespace_lock);
2793 	}
2794 
2795 	/*
2796 	 * Let the world know that we're done.
2797 	 */
2798 	mutex_enter(&spa->spa_async_lock);
2799 	spa->spa_async_thread = NULL;
2800 	cv_broadcast(&spa->spa_async_cv);
2801 	mutex_exit(&spa->spa_async_lock);
2802 	thread_exit();
2803 }
2804 
2805 void
2806 spa_async_suspend(spa_t *spa)
2807 {
2808 	mutex_enter(&spa->spa_async_lock);
2809 	spa->spa_async_suspended++;
2810 	while (spa->spa_async_thread != NULL)
2811 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
2812 	mutex_exit(&spa->spa_async_lock);
2813 }
2814 
2815 void
2816 spa_async_resume(spa_t *spa)
2817 {
2818 	mutex_enter(&spa->spa_async_lock);
2819 	ASSERT(spa->spa_async_suspended != 0);
2820 	spa->spa_async_suspended--;
2821 	mutex_exit(&spa->spa_async_lock);
2822 }
2823 
2824 static void
2825 spa_async_dispatch(spa_t *spa)
2826 {
2827 	mutex_enter(&spa->spa_async_lock);
2828 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
2829 	    spa->spa_async_thread == NULL &&
2830 	    rootdir != NULL && !vn_is_readonly(rootdir))
2831 		spa->spa_async_thread = thread_create(NULL, 0,
2832 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
2833 	mutex_exit(&spa->spa_async_lock);
2834 }
2835 
2836 void
2837 spa_async_request(spa_t *spa, int task)
2838 {
2839 	mutex_enter(&spa->spa_async_lock);
2840 	spa->spa_async_tasks |= task;
2841 	mutex_exit(&spa->spa_async_lock);
2842 }
2843 
2844 /*
2845  * ==========================================================================
2846  * SPA syncing routines
2847  * ==========================================================================
2848  */
2849 
2850 static void
2851 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2852 {
2853 	bplist_t *bpl = &spa->spa_sync_bplist;
2854 	dmu_tx_t *tx;
2855 	blkptr_t blk;
2856 	uint64_t itor = 0;
2857 	zio_t *zio;
2858 	int error;
2859 	uint8_t c = 1;
2860 
2861 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2862 
2863 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2864 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2865 
2866 	error = zio_wait(zio);
2867 	ASSERT3U(error, ==, 0);
2868 
2869 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2870 	bplist_vacate(bpl, tx);
2871 
2872 	/*
2873 	 * Pre-dirty the first block so we sync to convergence faster.
2874 	 * (Usually only the first block is needed.)
2875 	 */
2876 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2877 	dmu_tx_commit(tx);
2878 }
2879 
2880 static void
2881 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
2882 {
2883 	char *packed = NULL;
2884 	size_t nvsize = 0;
2885 	dmu_buf_t *db;
2886 
2887 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
2888 
2889 	packed = kmem_alloc(nvsize, KM_SLEEP);
2890 
2891 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
2892 	    KM_SLEEP) == 0);
2893 
2894 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
2895 
2896 	kmem_free(packed, nvsize);
2897 
2898 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
2899 	dmu_buf_will_dirty(db, tx);
2900 	*(uint64_t *)db->db_data = nvsize;
2901 	dmu_buf_rele(db, FTAG);
2902 }
2903 
2904 static void
2905 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
2906 {
2907 	nvlist_t *nvroot;
2908 	nvlist_t **spares;
2909 	int i;
2910 
2911 	if (!spa->spa_sync_spares)
2912 		return;
2913 
2914 	/*
2915 	 * Update the MOS nvlist describing the list of available spares.
2916 	 * spa_validate_spares() will have already made sure this nvlist is
2917 	 * valid and the vdevs are labeled appropriately.
2918 	 */
2919 	if (spa->spa_spares_object == 0) {
2920 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
2921 		    DMU_OT_PACKED_NVLIST, 1 << 14,
2922 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2923 		VERIFY(zap_update(spa->spa_meta_objset,
2924 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
2925 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
2926 	}
2927 
2928 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2929 	if (spa->spa_nspares == 0) {
2930 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2931 		    NULL, 0) == 0);
2932 	} else {
2933 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
2934 		    KM_SLEEP);
2935 		for (i = 0; i < spa->spa_nspares; i++)
2936 			spares[i] = vdev_config_generate(spa,
2937 			    spa->spa_spares[i], B_FALSE, B_TRUE);
2938 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2939 		    spares, spa->spa_nspares) == 0);
2940 		for (i = 0; i < spa->spa_nspares; i++)
2941 			nvlist_free(spares[i]);
2942 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
2943 	}
2944 
2945 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
2946 	nvlist_free(nvroot);
2947 
2948 	spa->spa_sync_spares = B_FALSE;
2949 }
2950 
2951 static void
2952 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2953 {
2954 	nvlist_t *config;
2955 
2956 	if (list_is_empty(&spa->spa_dirty_list))
2957 		return;
2958 
2959 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2960 
2961 	if (spa->spa_config_syncing)
2962 		nvlist_free(spa->spa_config_syncing);
2963 	spa->spa_config_syncing = config;
2964 
2965 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
2966 }
2967 
2968 static void
2969 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
2970 {
2971 	spa_t *spa = arg1;
2972 	nvlist_t *nvp = arg2;
2973 	nvpair_t *nvpair;
2974 	objset_t *mos = spa->spa_meta_objset;
2975 	uint64_t zapobj;
2976 	uint64_t intval;
2977 
2978 	mutex_enter(&spa->spa_props_lock);
2979 	if (spa->spa_pool_props_object == 0) {
2980 		zapobj = zap_create(mos, DMU_OT_POOL_PROPS, DMU_OT_NONE, 0, tx);
2981 		VERIFY(zapobj > 0);
2982 
2983 		spa->spa_pool_props_object = zapobj;
2984 
2985 		VERIFY(zap_update(mos, DMU_POOL_DIRECTORY_OBJECT,
2986 		    DMU_POOL_PROPS, 8, 1,
2987 		    &spa->spa_pool_props_object, tx) == 0);
2988 	}
2989 	mutex_exit(&spa->spa_props_lock);
2990 
2991 	nvpair = NULL;
2992 	while ((nvpair = nvlist_next_nvpair(nvp, nvpair))) {
2993 		switch (zpool_name_to_prop(nvpair_name(nvpair))) {
2994 		case ZPOOL_PROP_DELEGATION:
2995 			VERIFY(nvlist_lookup_uint64(nvp,
2996 			    nvpair_name(nvpair), &intval) == 0);
2997 			VERIFY(zap_update(mos,
2998 			    spa->spa_pool_props_object,
2999 			    nvpair_name(nvpair), 8, 1,
3000 			    &intval, tx) == 0);
3001 			spa->spa_delegation = intval;
3002 			break;
3003 		case ZPOOL_PROP_BOOTFS:
3004 			VERIFY(nvlist_lookup_uint64(nvp,
3005 			    nvpair_name(nvpair), &spa->spa_bootfs) == 0);
3006 			intval = spa->spa_bootfs;
3007 			VERIFY(zap_update(mos,
3008 			    spa->spa_pool_props_object,
3009 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 8, 1,
3010 			    &intval, tx) == 0);
3011 			break;
3012 
3013 		case ZPOOL_PROP_AUTOREPLACE:
3014 			VERIFY(nvlist_lookup_uint64(nvp,
3015 			    nvpair_name(nvpair), &intval) == 0);
3016 			VERIFY(zap_update(mos,
3017 			    spa->spa_pool_props_object,
3018 			    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 8, 1,
3019 			    &intval, tx) == 0);
3020 			break;
3021 		}
3022 		spa_history_internal_log(LOG_POOL_PROPSET,
3023 		    spa, tx, cr, "%s %lld %s",
3024 		    nvpair_name(nvpair), intval,
3025 		    spa->spa_name);
3026 	}
3027 }
3028 
3029 /*
3030  * Sync the specified transaction group.  New blocks may be dirtied as
3031  * part of the process, so we iterate until it converges.
3032  */
3033 void
3034 spa_sync(spa_t *spa, uint64_t txg)
3035 {
3036 	dsl_pool_t *dp = spa->spa_dsl_pool;
3037 	objset_t *mos = spa->spa_meta_objset;
3038 	bplist_t *bpl = &spa->spa_sync_bplist;
3039 	vdev_t *rvd = spa->spa_root_vdev;
3040 	vdev_t *vd;
3041 	dmu_tx_t *tx;
3042 	int dirty_vdevs;
3043 
3044 	/*
3045 	 * Lock out configuration changes.
3046 	 */
3047 	spa_config_enter(spa, RW_READER, FTAG);
3048 
3049 	spa->spa_syncing_txg = txg;
3050 	spa->spa_sync_pass = 0;
3051 
3052 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
3053 
3054 	tx = dmu_tx_create_assigned(dp, txg);
3055 
3056 	/*
3057 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
3058 	 * set spa_deflate if we have no raid-z vdevs.
3059 	 */
3060 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
3061 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
3062 		int i;
3063 
3064 		for (i = 0; i < rvd->vdev_children; i++) {
3065 			vd = rvd->vdev_child[i];
3066 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
3067 				break;
3068 		}
3069 		if (i == rvd->vdev_children) {
3070 			spa->spa_deflate = TRUE;
3071 			VERIFY(0 == zap_add(spa->spa_meta_objset,
3072 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3073 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
3074 		}
3075 	}
3076 
3077 	/*
3078 	 * If anything has changed in this txg, push the deferred frees
3079 	 * from the previous txg.  If not, leave them alone so that we
3080 	 * don't generate work on an otherwise idle system.
3081 	 */
3082 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
3083 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
3084 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
3085 		spa_sync_deferred_frees(spa, txg);
3086 
3087 	/*
3088 	 * Iterate to convergence.
3089 	 */
3090 	do {
3091 		spa->spa_sync_pass++;
3092 
3093 		spa_sync_config_object(spa, tx);
3094 		spa_sync_spares(spa, tx);
3095 		spa_errlog_sync(spa, txg);
3096 		dsl_pool_sync(dp, txg);
3097 
3098 		dirty_vdevs = 0;
3099 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
3100 			vdev_sync(vd, txg);
3101 			dirty_vdevs++;
3102 		}
3103 
3104 		bplist_sync(bpl, tx);
3105 	} while (dirty_vdevs);
3106 
3107 	bplist_close(bpl);
3108 
3109 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
3110 
3111 	/*
3112 	 * Rewrite the vdev configuration (which includes the uberblock)
3113 	 * to commit the transaction group.
3114 	 *
3115 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
3116 	 * Otherwise, pick a random top-level vdev that's known to be
3117 	 * visible in the config cache (see spa_vdev_add() for details).
3118 	 * If the write fails, try the next vdev until we're tried them all.
3119 	 */
3120 	if (!list_is_empty(&spa->spa_dirty_list)) {
3121 		VERIFY(vdev_config_sync(rvd, txg) == 0);
3122 	} else {
3123 		int children = rvd->vdev_children;
3124 		int c0 = spa_get_random(children);
3125 		int c;
3126 
3127 		for (c = 0; c < children; c++) {
3128 			vd = rvd->vdev_child[(c0 + c) % children];
3129 			if (vd->vdev_ms_array == 0)
3130 				continue;
3131 			if (vdev_config_sync(vd, txg) == 0)
3132 				break;
3133 		}
3134 		if (c == children)
3135 			VERIFY(vdev_config_sync(rvd, txg) == 0);
3136 	}
3137 
3138 	dmu_tx_commit(tx);
3139 
3140 	/*
3141 	 * Clear the dirty config list.
3142 	 */
3143 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
3144 		vdev_config_clean(vd);
3145 
3146 	/*
3147 	 * Now that the new config has synced transactionally,
3148 	 * let it become visible to the config cache.
3149 	 */
3150 	if (spa->spa_config_syncing != NULL) {
3151 		spa_config_set(spa, spa->spa_config_syncing);
3152 		spa->spa_config_txg = txg;
3153 		spa->spa_config_syncing = NULL;
3154 	}
3155 
3156 	/*
3157 	 * Make a stable copy of the fully synced uberblock.
3158 	 * We use this as the root for pool traversals.
3159 	 */
3160 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
3161 
3162 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
3163 
3164 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
3165 	spa->spa_traverse_wanted = 0;
3166 	spa->spa_ubsync = spa->spa_uberblock;
3167 	rw_exit(&spa->spa_traverse_lock);
3168 
3169 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
3170 
3171 	/*
3172 	 * Clean up the ZIL records for the synced txg.
3173 	 */
3174 	dsl_pool_zil_clean(dp);
3175 
3176 	/*
3177 	 * Update usable space statistics.
3178 	 */
3179 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
3180 		vdev_sync_done(vd, txg);
3181 
3182 	/*
3183 	 * It had better be the case that we didn't dirty anything
3184 	 * since vdev_config_sync().
3185 	 */
3186 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
3187 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
3188 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
3189 	ASSERT(bpl->bpl_queue == NULL);
3190 
3191 	spa_config_exit(spa, FTAG);
3192 
3193 	/*
3194 	 * If any async tasks have been requested, kick them off.
3195 	 */
3196 	spa_async_dispatch(spa);
3197 }
3198 
3199 /*
3200  * Sync all pools.  We don't want to hold the namespace lock across these
3201  * operations, so we take a reference on the spa_t and drop the lock during the
3202  * sync.
3203  */
3204 void
3205 spa_sync_allpools(void)
3206 {
3207 	spa_t *spa = NULL;
3208 	mutex_enter(&spa_namespace_lock);
3209 	while ((spa = spa_next(spa)) != NULL) {
3210 		if (spa_state(spa) != POOL_STATE_ACTIVE)
3211 			continue;
3212 		spa_open_ref(spa, FTAG);
3213 		mutex_exit(&spa_namespace_lock);
3214 		txg_wait_synced(spa_get_dsl(spa), 0);
3215 		mutex_enter(&spa_namespace_lock);
3216 		spa_close(spa, FTAG);
3217 	}
3218 	mutex_exit(&spa_namespace_lock);
3219 }
3220 
3221 /*
3222  * ==========================================================================
3223  * Miscellaneous routines
3224  * ==========================================================================
3225  */
3226 
3227 /*
3228  * Remove all pools in the system.
3229  */
3230 void
3231 spa_evict_all(void)
3232 {
3233 	spa_t *spa;
3234 
3235 	/*
3236 	 * Remove all cached state.  All pools should be closed now,
3237 	 * so every spa in the AVL tree should be unreferenced.
3238 	 */
3239 	mutex_enter(&spa_namespace_lock);
3240 	while ((spa = spa_next(NULL)) != NULL) {
3241 		/*
3242 		 * Stop async tasks.  The async thread may need to detach
3243 		 * a device that's been replaced, which requires grabbing
3244 		 * spa_namespace_lock, so we must drop it here.
3245 		 */
3246 		spa_open_ref(spa, FTAG);
3247 		mutex_exit(&spa_namespace_lock);
3248 		spa_async_suspend(spa);
3249 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
3250 		mutex_enter(&spa_namespace_lock);
3251 		spa_close(spa, FTAG);
3252 
3253 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3254 			spa_unload(spa);
3255 			spa_deactivate(spa);
3256 		}
3257 		spa_remove(spa);
3258 	}
3259 	mutex_exit(&spa_namespace_lock);
3260 }
3261 
3262 vdev_t *
3263 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
3264 {
3265 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
3266 }
3267 
3268 void
3269 spa_upgrade(spa_t *spa)
3270 {
3271 	spa_config_enter(spa, RW_WRITER, FTAG);
3272 
3273 	/*
3274 	 * This should only be called for a non-faulted pool, and since a
3275 	 * future version would result in an unopenable pool, this shouldn't be
3276 	 * possible.
3277 	 */
3278 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
3279 
3280 	spa->spa_uberblock.ub_version = SPA_VERSION;
3281 	vdev_config_dirty(spa->spa_root_vdev);
3282 
3283 	spa_config_exit(spa, FTAG);
3284 
3285 	txg_wait_synced(spa_get_dsl(spa), 0);
3286 }
3287 
3288 boolean_t
3289 spa_has_spare(spa_t *spa, uint64_t guid)
3290 {
3291 	int i;
3292 	uint64_t spareguid;
3293 
3294 	for (i = 0; i < spa->spa_nspares; i++)
3295 		if (spa->spa_spares[i]->vdev_guid == guid)
3296 			return (B_TRUE);
3297 
3298 	for (i = 0; i < spa->spa_pending_nspares; i++) {
3299 		if (nvlist_lookup_uint64(spa->spa_pending_spares[i],
3300 		    ZPOOL_CONFIG_GUID, &spareguid) == 0 &&
3301 		    spareguid == guid)
3302 			return (B_TRUE);
3303 	}
3304 
3305 	return (B_FALSE);
3306 }
3307 
3308 int
3309 spa_set_props(spa_t *spa, nvlist_t *nvp)
3310 {
3311 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
3312 	    spa, nvp, 3));
3313 }
3314 
3315 int
3316 spa_get_props(spa_t *spa, nvlist_t **nvp)
3317 {
3318 	zap_cursor_t zc;
3319 	zap_attribute_t za;
3320 	objset_t *mos = spa->spa_meta_objset;
3321 	zfs_source_t src;
3322 	zpool_prop_t prop;
3323 	nvlist_t *propval;
3324 	uint64_t value;
3325 	int err;
3326 
3327 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3328 
3329 	mutex_enter(&spa->spa_props_lock);
3330 	/* If no props object, then just return empty nvlist */
3331 	if (spa->spa_pool_props_object == 0) {
3332 		mutex_exit(&spa->spa_props_lock);
3333 		return (0);
3334 	}
3335 
3336 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
3337 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
3338 	    zap_cursor_advance(&zc)) {
3339 
3340 		if ((prop = zpool_name_to_prop(za.za_name)) == ZFS_PROP_INVAL)
3341 			continue;
3342 
3343 		VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3344 		switch (za.za_integer_length) {
3345 		case 8:
3346 			if (zpool_prop_default_numeric(prop) ==
3347 			    za.za_first_integer)
3348 				src = ZFS_SRC_DEFAULT;
3349 			else
3350 				src = ZFS_SRC_LOCAL;
3351 			value = za.za_first_integer;
3352 
3353 			if (prop == ZPOOL_PROP_BOOTFS) {
3354 				dsl_pool_t *dp;
3355 				dsl_dataset_t *ds = NULL;
3356 				char strval[MAXPATHLEN];
3357 
3358 				dp = spa_get_dsl(spa);
3359 				rw_enter(&dp->dp_config_rwlock, RW_READER);
3360 				if ((err = dsl_dataset_open_obj(dp,
3361 				    za.za_first_integer, NULL, DS_MODE_NONE,
3362 				    FTAG, &ds)) != 0) {
3363 					rw_exit(&dp->dp_config_rwlock);
3364 					break;
3365 				}
3366 				dsl_dataset_name(ds, strval);
3367 				dsl_dataset_close(ds, DS_MODE_NONE, FTAG);
3368 				rw_exit(&dp->dp_config_rwlock);
3369 
3370 				VERIFY(nvlist_add_uint64(propval,
3371 				    ZFS_PROP_SOURCE, src) == 0);
3372 				VERIFY(nvlist_add_string(propval,
3373 				    ZFS_PROP_VALUE, strval) == 0);
3374 			} else {
3375 				VERIFY(nvlist_add_uint64(propval,
3376 				    ZFS_PROP_SOURCE, src) == 0);
3377 				VERIFY(nvlist_add_uint64(propval,
3378 				    ZFS_PROP_VALUE, value) == 0);
3379 			}
3380 			VERIFY(nvlist_add_nvlist(*nvp, za.za_name,
3381 			    propval) == 0);
3382 			break;
3383 		}
3384 		nvlist_free(propval);
3385 	}
3386 	zap_cursor_fini(&zc);
3387 	mutex_exit(&spa->spa_props_lock);
3388 	if (err && err != ENOENT) {
3389 		nvlist_free(*nvp);
3390 		return (err);
3391 	}
3392 
3393 	return (0);
3394 }
3395 
3396 /*
3397  * If the bootfs property value is dsobj, clear it.
3398  */
3399 void
3400 spa_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
3401 {
3402 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
3403 		VERIFY(zap_remove(spa->spa_meta_objset,
3404 		    spa->spa_pool_props_object,
3405 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
3406 		spa->spa_bootfs = 0;
3407 	}
3408 }
3409 
3410 /*
3411  * Post a sysevent corresponding to the given event.  The 'name' must be one of
3412  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
3413  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
3414  * in the userland libzpool, as we don't want consumers to misinterpret ztest
3415  * or zdb as real changes.
3416  */
3417 void
3418 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
3419 {
3420 #ifdef _KERNEL
3421 	sysevent_t		*ev;
3422 	sysevent_attr_list_t	*attr = NULL;
3423 	sysevent_value_t	value;
3424 	sysevent_id_t		eid;
3425 
3426 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
3427 	    SE_SLEEP);
3428 
3429 	value.value_type = SE_DATA_TYPE_STRING;
3430 	value.value.sv_string = spa_name(spa);
3431 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
3432 		goto done;
3433 
3434 	value.value_type = SE_DATA_TYPE_UINT64;
3435 	value.value.sv_uint64 = spa_guid(spa);
3436 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
3437 		goto done;
3438 
3439 	if (vd) {
3440 		value.value_type = SE_DATA_TYPE_UINT64;
3441 		value.value.sv_uint64 = vd->vdev_guid;
3442 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
3443 		    SE_SLEEP) != 0)
3444 			goto done;
3445 
3446 		if (vd->vdev_path) {
3447 			value.value_type = SE_DATA_TYPE_STRING;
3448 			value.value.sv_string = vd->vdev_path;
3449 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
3450 			    &value, SE_SLEEP) != 0)
3451 				goto done;
3452 		}
3453 	}
3454 
3455 	(void) log_sysevent(ev, SE_SLEEP, &eid);
3456 
3457 done:
3458 	if (attr)
3459 		sysevent_free_attr(attr);
3460 	sysevent_free(ev);
3461 #endif
3462 }
3463