1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains all the routines used when modifying on-disk SPA state. 29 * This includes opening, importing, destroying, exporting a pool, and syncing a 30 * pool. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zio.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/zap.h> 41 #include <sys/zil.h> 42 #include <sys/ddt.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/metaslab.h> 45 #include <sys/metaslab_impl.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/txg.h> 48 #include <sys/avl.h> 49 #include <sys/dmu_traverse.h> 50 #include <sys/dmu_objset.h> 51 #include <sys/unique.h> 52 #include <sys/dsl_pool.h> 53 #include <sys/dsl_dataset.h> 54 #include <sys/dsl_dir.h> 55 #include <sys/dsl_prop.h> 56 #include <sys/dsl_synctask.h> 57 #include <sys/fs/zfs.h> 58 #include <sys/arc.h> 59 #include <sys/callb.h> 60 #include <sys/systeminfo.h> 61 #include <sys/spa_boot.h> 62 #include <sys/zfs_ioctl.h> 63 64 #ifdef _KERNEL 65 #include <sys/bootprops.h> 66 #include <sys/callb.h> 67 #include <sys/cpupart.h> 68 #include <sys/pool.h> 69 #include <sys/sysdc.h> 70 #include <sys/zone.h> 71 #endif /* _KERNEL */ 72 73 #include "zfs_prop.h" 74 #include "zfs_comutil.h" 75 76 typedef enum zti_modes { 77 zti_mode_fixed, /* value is # of threads (min 1) */ 78 zti_mode_online_percent, /* value is % of online CPUs */ 79 zti_mode_batch, /* cpu-intensive; value is ignored */ 80 zti_mode_null, /* don't create a taskq */ 81 zti_nmodes 82 } zti_modes_t; 83 84 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 85 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 86 #define ZTI_BATCH { zti_mode_batch, 0 } 87 #define ZTI_NULL { zti_mode_null, 0 } 88 89 #define ZTI_ONE ZTI_FIX(1) 90 91 typedef struct zio_taskq_info { 92 enum zti_modes zti_mode; 93 uint_t zti_value; 94 } zio_taskq_info_t; 95 96 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 97 "issue", "issue_high", "intr", "intr_high" 98 }; 99 100 /* 101 * Define the taskq threads for the following I/O types: 102 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 103 */ 104 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 105 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 106 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 107 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 108 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 109 { ZTI_FIX(10), ZTI_NULL, ZTI_FIX(10), ZTI_NULL }, 110 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 111 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 112 }; 113 114 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx); 115 static boolean_t spa_has_active_shared_spare(spa_t *spa); 116 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 117 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 118 char **ereport); 119 120 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 121 id_t zio_taskq_psrset_bind = PS_NONE; 122 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 123 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 124 125 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 126 127 /* 128 * This (illegal) pool name is used when temporarily importing a spa_t in order 129 * to get the vdev stats associated with the imported devices. 130 */ 131 #define TRYIMPORT_NAME "$import" 132 133 /* 134 * ========================================================================== 135 * SPA properties routines 136 * ========================================================================== 137 */ 138 139 /* 140 * Add a (source=src, propname=propval) list to an nvlist. 141 */ 142 static void 143 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 144 uint64_t intval, zprop_source_t src) 145 { 146 const char *propname = zpool_prop_to_name(prop); 147 nvlist_t *propval; 148 149 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 150 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 151 152 if (strval != NULL) 153 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 154 else 155 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 156 157 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 158 nvlist_free(propval); 159 } 160 161 /* 162 * Get property values from the spa configuration. 163 */ 164 static void 165 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 166 { 167 uint64_t size; 168 uint64_t alloc; 169 uint64_t cap, version; 170 zprop_source_t src = ZPROP_SRC_NONE; 171 spa_config_dirent_t *dp; 172 173 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 174 175 if (spa->spa_root_vdev != NULL) { 176 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 177 size = metaslab_class_get_space(spa_normal_class(spa)); 178 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 179 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 180 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 181 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 182 size - alloc, src); 183 184 cap = (size == 0) ? 0 : (alloc * 100 / size); 185 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 186 187 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 188 ddt_get_pool_dedup_ratio(spa), src); 189 190 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 191 spa->spa_root_vdev->vdev_state, src); 192 193 version = spa_version(spa); 194 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 195 src = ZPROP_SRC_DEFAULT; 196 else 197 src = ZPROP_SRC_LOCAL; 198 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 199 } 200 201 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 202 203 if (spa->spa_root != NULL) 204 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 205 0, ZPROP_SRC_LOCAL); 206 207 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 208 if (dp->scd_path == NULL) { 209 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 210 "none", 0, ZPROP_SRC_LOCAL); 211 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 212 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 213 dp->scd_path, 0, ZPROP_SRC_LOCAL); 214 } 215 } 216 } 217 218 /* 219 * Get zpool property values. 220 */ 221 int 222 spa_prop_get(spa_t *spa, nvlist_t **nvp) 223 { 224 objset_t *mos = spa->spa_meta_objset; 225 zap_cursor_t zc; 226 zap_attribute_t za; 227 int err; 228 229 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 230 231 mutex_enter(&spa->spa_props_lock); 232 233 /* 234 * Get properties from the spa config. 235 */ 236 spa_prop_get_config(spa, nvp); 237 238 /* If no pool property object, no more prop to get. */ 239 if (mos == NULL || spa->spa_pool_props_object == 0) { 240 mutex_exit(&spa->spa_props_lock); 241 return (0); 242 } 243 244 /* 245 * Get properties from the MOS pool property object. 246 */ 247 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 248 (err = zap_cursor_retrieve(&zc, &za)) == 0; 249 zap_cursor_advance(&zc)) { 250 uint64_t intval = 0; 251 char *strval = NULL; 252 zprop_source_t src = ZPROP_SRC_DEFAULT; 253 zpool_prop_t prop; 254 255 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 256 continue; 257 258 switch (za.za_integer_length) { 259 case 8: 260 /* integer property */ 261 if (za.za_first_integer != 262 zpool_prop_default_numeric(prop)) 263 src = ZPROP_SRC_LOCAL; 264 265 if (prop == ZPOOL_PROP_BOOTFS) { 266 dsl_pool_t *dp; 267 dsl_dataset_t *ds = NULL; 268 269 dp = spa_get_dsl(spa); 270 rw_enter(&dp->dp_config_rwlock, RW_READER); 271 if (err = dsl_dataset_hold_obj(dp, 272 za.za_first_integer, FTAG, &ds)) { 273 rw_exit(&dp->dp_config_rwlock); 274 break; 275 } 276 277 strval = kmem_alloc( 278 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 279 KM_SLEEP); 280 dsl_dataset_name(ds, strval); 281 dsl_dataset_rele(ds, FTAG); 282 rw_exit(&dp->dp_config_rwlock); 283 } else { 284 strval = NULL; 285 intval = za.za_first_integer; 286 } 287 288 spa_prop_add_list(*nvp, prop, strval, intval, src); 289 290 if (strval != NULL) 291 kmem_free(strval, 292 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 293 294 break; 295 296 case 1: 297 /* string property */ 298 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 299 err = zap_lookup(mos, spa->spa_pool_props_object, 300 za.za_name, 1, za.za_num_integers, strval); 301 if (err) { 302 kmem_free(strval, za.za_num_integers); 303 break; 304 } 305 spa_prop_add_list(*nvp, prop, strval, 0, src); 306 kmem_free(strval, za.za_num_integers); 307 break; 308 309 default: 310 break; 311 } 312 } 313 zap_cursor_fini(&zc); 314 mutex_exit(&spa->spa_props_lock); 315 out: 316 if (err && err != ENOENT) { 317 nvlist_free(*nvp); 318 *nvp = NULL; 319 return (err); 320 } 321 322 return (0); 323 } 324 325 /* 326 * Validate the given pool properties nvlist and modify the list 327 * for the property values to be set. 328 */ 329 static int 330 spa_prop_validate(spa_t *spa, nvlist_t *props) 331 { 332 nvpair_t *elem; 333 int error = 0, reset_bootfs = 0; 334 uint64_t objnum; 335 336 elem = NULL; 337 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 338 zpool_prop_t prop; 339 char *propname, *strval; 340 uint64_t intval; 341 objset_t *os; 342 char *slash; 343 344 propname = nvpair_name(elem); 345 346 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 347 return (EINVAL); 348 349 switch (prop) { 350 case ZPOOL_PROP_VERSION: 351 error = nvpair_value_uint64(elem, &intval); 352 if (!error && 353 (intval < spa_version(spa) || intval > SPA_VERSION)) 354 error = EINVAL; 355 break; 356 357 case ZPOOL_PROP_DELEGATION: 358 case ZPOOL_PROP_AUTOREPLACE: 359 case ZPOOL_PROP_LISTSNAPS: 360 case ZPOOL_PROP_AUTOEXPAND: 361 error = nvpair_value_uint64(elem, &intval); 362 if (!error && intval > 1) 363 error = EINVAL; 364 break; 365 366 case ZPOOL_PROP_BOOTFS: 367 /* 368 * If the pool version is less than SPA_VERSION_BOOTFS, 369 * or the pool is still being created (version == 0), 370 * the bootfs property cannot be set. 371 */ 372 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 373 error = ENOTSUP; 374 break; 375 } 376 377 /* 378 * Make sure the vdev config is bootable 379 */ 380 if (!vdev_is_bootable(spa->spa_root_vdev)) { 381 error = ENOTSUP; 382 break; 383 } 384 385 reset_bootfs = 1; 386 387 error = nvpair_value_string(elem, &strval); 388 389 if (!error) { 390 uint64_t compress; 391 392 if (strval == NULL || strval[0] == '\0') { 393 objnum = zpool_prop_default_numeric( 394 ZPOOL_PROP_BOOTFS); 395 break; 396 } 397 398 if (error = dmu_objset_hold(strval, FTAG, &os)) 399 break; 400 401 /* Must be ZPL and not gzip compressed. */ 402 403 if (dmu_objset_type(os) != DMU_OST_ZFS) { 404 error = ENOTSUP; 405 } else if ((error = dsl_prop_get_integer(strval, 406 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 407 &compress, NULL)) == 0 && 408 !BOOTFS_COMPRESS_VALID(compress)) { 409 error = ENOTSUP; 410 } else { 411 objnum = dmu_objset_id(os); 412 } 413 dmu_objset_rele(os, FTAG); 414 } 415 break; 416 417 case ZPOOL_PROP_FAILUREMODE: 418 error = nvpair_value_uint64(elem, &intval); 419 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 420 intval > ZIO_FAILURE_MODE_PANIC)) 421 error = EINVAL; 422 423 /* 424 * This is a special case which only occurs when 425 * the pool has completely failed. This allows 426 * the user to change the in-core failmode property 427 * without syncing it out to disk (I/Os might 428 * currently be blocked). We do this by returning 429 * EIO to the caller (spa_prop_set) to trick it 430 * into thinking we encountered a property validation 431 * error. 432 */ 433 if (!error && spa_suspended(spa)) { 434 spa->spa_failmode = intval; 435 error = EIO; 436 } 437 break; 438 439 case ZPOOL_PROP_CACHEFILE: 440 if ((error = nvpair_value_string(elem, &strval)) != 0) 441 break; 442 443 if (strval[0] == '\0') 444 break; 445 446 if (strcmp(strval, "none") == 0) 447 break; 448 449 if (strval[0] != '/') { 450 error = EINVAL; 451 break; 452 } 453 454 slash = strrchr(strval, '/'); 455 ASSERT(slash != NULL); 456 457 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 458 strcmp(slash, "/..") == 0) 459 error = EINVAL; 460 break; 461 462 case ZPOOL_PROP_DEDUPDITTO: 463 if (spa_version(spa) < SPA_VERSION_DEDUP) 464 error = ENOTSUP; 465 else 466 error = nvpair_value_uint64(elem, &intval); 467 if (error == 0 && 468 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 469 error = EINVAL; 470 break; 471 } 472 473 if (error) 474 break; 475 } 476 477 if (!error && reset_bootfs) { 478 error = nvlist_remove(props, 479 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 480 481 if (!error) { 482 error = nvlist_add_uint64(props, 483 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 484 } 485 } 486 487 return (error); 488 } 489 490 void 491 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 492 { 493 char *cachefile; 494 spa_config_dirent_t *dp; 495 496 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 497 &cachefile) != 0) 498 return; 499 500 dp = kmem_alloc(sizeof (spa_config_dirent_t), 501 KM_SLEEP); 502 503 if (cachefile[0] == '\0') 504 dp->scd_path = spa_strdup(spa_config_path); 505 else if (strcmp(cachefile, "none") == 0) 506 dp->scd_path = NULL; 507 else 508 dp->scd_path = spa_strdup(cachefile); 509 510 list_insert_head(&spa->spa_config_list, dp); 511 if (need_sync) 512 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 513 } 514 515 int 516 spa_prop_set(spa_t *spa, nvlist_t *nvp) 517 { 518 int error; 519 nvpair_t *elem; 520 boolean_t need_sync = B_FALSE; 521 zpool_prop_t prop; 522 523 if ((error = spa_prop_validate(spa, nvp)) != 0) 524 return (error); 525 526 elem = NULL; 527 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 528 if ((prop = zpool_name_to_prop( 529 nvpair_name(elem))) == ZPROP_INVAL) 530 return (EINVAL); 531 532 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT) 533 continue; 534 535 need_sync = B_TRUE; 536 break; 537 } 538 539 if (need_sync) 540 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 541 spa, nvp, 3)); 542 else 543 return (0); 544 } 545 546 /* 547 * If the bootfs property value is dsobj, clear it. 548 */ 549 void 550 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 551 { 552 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 553 VERIFY(zap_remove(spa->spa_meta_objset, 554 spa->spa_pool_props_object, 555 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 556 spa->spa_bootfs = 0; 557 } 558 } 559 560 /* 561 * ========================================================================== 562 * SPA state manipulation (open/create/destroy/import/export) 563 * ========================================================================== 564 */ 565 566 static int 567 spa_error_entry_compare(const void *a, const void *b) 568 { 569 spa_error_entry_t *sa = (spa_error_entry_t *)a; 570 spa_error_entry_t *sb = (spa_error_entry_t *)b; 571 int ret; 572 573 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 574 sizeof (zbookmark_t)); 575 576 if (ret < 0) 577 return (-1); 578 else if (ret > 0) 579 return (1); 580 else 581 return (0); 582 } 583 584 /* 585 * Utility function which retrieves copies of the current logs and 586 * re-initializes them in the process. 587 */ 588 void 589 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 590 { 591 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 592 593 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 594 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 595 596 avl_create(&spa->spa_errlist_scrub, 597 spa_error_entry_compare, sizeof (spa_error_entry_t), 598 offsetof(spa_error_entry_t, se_avl)); 599 avl_create(&spa->spa_errlist_last, 600 spa_error_entry_compare, sizeof (spa_error_entry_t), 601 offsetof(spa_error_entry_t, se_avl)); 602 } 603 604 static taskq_t * 605 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 606 uint_t value) 607 { 608 uint_t flags = TASKQ_PREPOPULATE; 609 boolean_t batch = B_FALSE; 610 611 switch (mode) { 612 case zti_mode_null: 613 return (NULL); /* no taskq needed */ 614 615 case zti_mode_fixed: 616 ASSERT3U(value, >=, 1); 617 value = MAX(value, 1); 618 break; 619 620 case zti_mode_batch: 621 batch = B_TRUE; 622 flags |= TASKQ_THREADS_CPU_PCT; 623 value = zio_taskq_batch_pct; 624 break; 625 626 case zti_mode_online_percent: 627 flags |= TASKQ_THREADS_CPU_PCT; 628 break; 629 630 default: 631 panic("unrecognized mode for %s taskq (%u:%u) in " 632 "spa_activate()", 633 name, mode, value); 634 break; 635 } 636 637 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 638 if (batch) 639 flags |= TASKQ_DC_BATCH; 640 641 return (taskq_create_sysdc(name, value, 50, INT_MAX, 642 spa->spa_proc, zio_taskq_basedc, flags)); 643 } 644 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 645 spa->spa_proc, flags)); 646 } 647 648 static void 649 spa_create_zio_taskqs(spa_t *spa) 650 { 651 for (int t = 0; t < ZIO_TYPES; t++) { 652 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 653 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 654 enum zti_modes mode = ztip->zti_mode; 655 uint_t value = ztip->zti_value; 656 char name[32]; 657 658 (void) snprintf(name, sizeof (name), 659 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 660 661 spa->spa_zio_taskq[t][q] = 662 spa_taskq_create(spa, name, mode, value); 663 } 664 } 665 } 666 667 #ifdef _KERNEL 668 static void 669 spa_thread(void *arg) 670 { 671 callb_cpr_t cprinfo; 672 673 spa_t *spa = arg; 674 user_t *pu = PTOU(curproc); 675 676 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 677 spa->spa_name); 678 679 ASSERT(curproc != &p0); 680 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 681 "zpool-%s", spa->spa_name); 682 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 683 684 /* bind this thread to the requested psrset */ 685 if (zio_taskq_psrset_bind != PS_NONE) { 686 pool_lock(); 687 mutex_enter(&cpu_lock); 688 mutex_enter(&pidlock); 689 mutex_enter(&curproc->p_lock); 690 691 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 692 0, NULL, NULL) == 0) { 693 curthread->t_bind_pset = zio_taskq_psrset_bind; 694 } else { 695 cmn_err(CE_WARN, 696 "Couldn't bind process for zfs pool \"%s\" to " 697 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 698 } 699 700 mutex_exit(&curproc->p_lock); 701 mutex_exit(&pidlock); 702 mutex_exit(&cpu_lock); 703 pool_unlock(); 704 } 705 706 if (zio_taskq_sysdc) { 707 sysdc_thread_enter(curthread, 100, 0); 708 } 709 710 spa->spa_proc = curproc; 711 spa->spa_did = curthread->t_did; 712 713 spa_create_zio_taskqs(spa); 714 715 mutex_enter(&spa->spa_proc_lock); 716 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 717 718 spa->spa_proc_state = SPA_PROC_ACTIVE; 719 cv_broadcast(&spa->spa_proc_cv); 720 721 CALLB_CPR_SAFE_BEGIN(&cprinfo); 722 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 723 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 724 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 725 726 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 727 spa->spa_proc_state = SPA_PROC_GONE; 728 spa->spa_proc = &p0; 729 cv_broadcast(&spa->spa_proc_cv); 730 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 731 732 mutex_enter(&curproc->p_lock); 733 lwp_exit(); 734 } 735 #endif 736 737 /* 738 * Activate an uninitialized pool. 739 */ 740 static void 741 spa_activate(spa_t *spa, int mode) 742 { 743 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 744 745 spa->spa_state = POOL_STATE_ACTIVE; 746 spa->spa_mode = mode; 747 748 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 749 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 750 751 /* Try to create a covering process */ 752 mutex_enter(&spa->spa_proc_lock); 753 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 754 ASSERT(spa->spa_proc == &p0); 755 spa->spa_did = 0; 756 757 /* Only create a process if we're going to be around a while. */ 758 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 759 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 760 NULL, 0) == 0) { 761 spa->spa_proc_state = SPA_PROC_CREATED; 762 while (spa->spa_proc_state == SPA_PROC_CREATED) { 763 cv_wait(&spa->spa_proc_cv, 764 &spa->spa_proc_lock); 765 } 766 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 767 ASSERT(spa->spa_proc != &p0); 768 ASSERT(spa->spa_did != 0); 769 } else { 770 #ifdef _KERNEL 771 cmn_err(CE_WARN, 772 "Couldn't create process for zfs pool \"%s\"\n", 773 spa->spa_name); 774 #endif 775 } 776 } 777 mutex_exit(&spa->spa_proc_lock); 778 779 /* If we didn't create a process, we need to create our taskqs. */ 780 if (spa->spa_proc == &p0) { 781 spa_create_zio_taskqs(spa); 782 } 783 784 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 785 offsetof(vdev_t, vdev_config_dirty_node)); 786 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 787 offsetof(vdev_t, vdev_state_dirty_node)); 788 789 txg_list_create(&spa->spa_vdev_txg_list, 790 offsetof(struct vdev, vdev_txg_node)); 791 792 avl_create(&spa->spa_errlist_scrub, 793 spa_error_entry_compare, sizeof (spa_error_entry_t), 794 offsetof(spa_error_entry_t, se_avl)); 795 avl_create(&spa->spa_errlist_last, 796 spa_error_entry_compare, sizeof (spa_error_entry_t), 797 offsetof(spa_error_entry_t, se_avl)); 798 } 799 800 /* 801 * Opposite of spa_activate(). 802 */ 803 static void 804 spa_deactivate(spa_t *spa) 805 { 806 ASSERT(spa->spa_sync_on == B_FALSE); 807 ASSERT(spa->spa_dsl_pool == NULL); 808 ASSERT(spa->spa_root_vdev == NULL); 809 ASSERT(spa->spa_async_zio_root == NULL); 810 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 811 812 txg_list_destroy(&spa->spa_vdev_txg_list); 813 814 list_destroy(&spa->spa_config_dirty_list); 815 list_destroy(&spa->spa_state_dirty_list); 816 817 for (int t = 0; t < ZIO_TYPES; t++) { 818 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 819 if (spa->spa_zio_taskq[t][q] != NULL) 820 taskq_destroy(spa->spa_zio_taskq[t][q]); 821 spa->spa_zio_taskq[t][q] = NULL; 822 } 823 } 824 825 metaslab_class_destroy(spa->spa_normal_class); 826 spa->spa_normal_class = NULL; 827 828 metaslab_class_destroy(spa->spa_log_class); 829 spa->spa_log_class = NULL; 830 831 /* 832 * If this was part of an import or the open otherwise failed, we may 833 * still have errors left in the queues. Empty them just in case. 834 */ 835 spa_errlog_drain(spa); 836 837 avl_destroy(&spa->spa_errlist_scrub); 838 avl_destroy(&spa->spa_errlist_last); 839 840 spa->spa_state = POOL_STATE_UNINITIALIZED; 841 842 mutex_enter(&spa->spa_proc_lock); 843 if (spa->spa_proc_state != SPA_PROC_NONE) { 844 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 845 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 846 cv_broadcast(&spa->spa_proc_cv); 847 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 848 ASSERT(spa->spa_proc != &p0); 849 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 850 } 851 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 852 spa->spa_proc_state = SPA_PROC_NONE; 853 } 854 ASSERT(spa->spa_proc == &p0); 855 mutex_exit(&spa->spa_proc_lock); 856 857 /* 858 * We want to make sure spa_thread() has actually exited the ZFS 859 * module, so that the module can't be unloaded out from underneath 860 * it. 861 */ 862 if (spa->spa_did != 0) { 863 thread_join(spa->spa_did); 864 spa->spa_did = 0; 865 } 866 } 867 868 /* 869 * Verify a pool configuration, and construct the vdev tree appropriately. This 870 * will create all the necessary vdevs in the appropriate layout, with each vdev 871 * in the CLOSED state. This will prep the pool before open/creation/import. 872 * All vdev validation is done by the vdev_alloc() routine. 873 */ 874 static int 875 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 876 uint_t id, int atype) 877 { 878 nvlist_t **child; 879 uint_t children; 880 int error; 881 882 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 883 return (error); 884 885 if ((*vdp)->vdev_ops->vdev_op_leaf) 886 return (0); 887 888 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 889 &child, &children); 890 891 if (error == ENOENT) 892 return (0); 893 894 if (error) { 895 vdev_free(*vdp); 896 *vdp = NULL; 897 return (EINVAL); 898 } 899 900 for (int c = 0; c < children; c++) { 901 vdev_t *vd; 902 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 903 atype)) != 0) { 904 vdev_free(*vdp); 905 *vdp = NULL; 906 return (error); 907 } 908 } 909 910 ASSERT(*vdp != NULL); 911 912 return (0); 913 } 914 915 /* 916 * Opposite of spa_load(). 917 */ 918 static void 919 spa_unload(spa_t *spa) 920 { 921 int i; 922 923 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 924 925 /* 926 * Stop async tasks. 927 */ 928 spa_async_suspend(spa); 929 930 /* 931 * Stop syncing. 932 */ 933 if (spa->spa_sync_on) { 934 txg_sync_stop(spa->spa_dsl_pool); 935 spa->spa_sync_on = B_FALSE; 936 } 937 938 /* 939 * Wait for any outstanding async I/O to complete. 940 */ 941 if (spa->spa_async_zio_root != NULL) { 942 (void) zio_wait(spa->spa_async_zio_root); 943 spa->spa_async_zio_root = NULL; 944 } 945 946 /* 947 * Close the dsl pool. 948 */ 949 if (spa->spa_dsl_pool) { 950 dsl_pool_close(spa->spa_dsl_pool); 951 spa->spa_dsl_pool = NULL; 952 spa->spa_meta_objset = NULL; 953 } 954 955 ddt_unload(spa); 956 957 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 958 959 /* 960 * Drop and purge level 2 cache 961 */ 962 spa_l2cache_drop(spa); 963 964 /* 965 * Close all vdevs. 966 */ 967 if (spa->spa_root_vdev) 968 vdev_free(spa->spa_root_vdev); 969 ASSERT(spa->spa_root_vdev == NULL); 970 971 for (i = 0; i < spa->spa_spares.sav_count; i++) 972 vdev_free(spa->spa_spares.sav_vdevs[i]); 973 if (spa->spa_spares.sav_vdevs) { 974 kmem_free(spa->spa_spares.sav_vdevs, 975 spa->spa_spares.sav_count * sizeof (void *)); 976 spa->spa_spares.sav_vdevs = NULL; 977 } 978 if (spa->spa_spares.sav_config) { 979 nvlist_free(spa->spa_spares.sav_config); 980 spa->spa_spares.sav_config = NULL; 981 } 982 spa->spa_spares.sav_count = 0; 983 984 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 985 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 986 if (spa->spa_l2cache.sav_vdevs) { 987 kmem_free(spa->spa_l2cache.sav_vdevs, 988 spa->spa_l2cache.sav_count * sizeof (void *)); 989 spa->spa_l2cache.sav_vdevs = NULL; 990 } 991 if (spa->spa_l2cache.sav_config) { 992 nvlist_free(spa->spa_l2cache.sav_config); 993 spa->spa_l2cache.sav_config = NULL; 994 } 995 spa->spa_l2cache.sav_count = 0; 996 997 spa->spa_async_suspended = 0; 998 999 spa_config_exit(spa, SCL_ALL, FTAG); 1000 } 1001 1002 /* 1003 * Load (or re-load) the current list of vdevs describing the active spares for 1004 * this pool. When this is called, we have some form of basic information in 1005 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1006 * then re-generate a more complete list including status information. 1007 */ 1008 static void 1009 spa_load_spares(spa_t *spa) 1010 { 1011 nvlist_t **spares; 1012 uint_t nspares; 1013 int i; 1014 vdev_t *vd, *tvd; 1015 1016 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1017 1018 /* 1019 * First, close and free any existing spare vdevs. 1020 */ 1021 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1022 vd = spa->spa_spares.sav_vdevs[i]; 1023 1024 /* Undo the call to spa_activate() below */ 1025 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1026 B_FALSE)) != NULL && tvd->vdev_isspare) 1027 spa_spare_remove(tvd); 1028 vdev_close(vd); 1029 vdev_free(vd); 1030 } 1031 1032 if (spa->spa_spares.sav_vdevs) 1033 kmem_free(spa->spa_spares.sav_vdevs, 1034 spa->spa_spares.sav_count * sizeof (void *)); 1035 1036 if (spa->spa_spares.sav_config == NULL) 1037 nspares = 0; 1038 else 1039 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1040 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1041 1042 spa->spa_spares.sav_count = (int)nspares; 1043 spa->spa_spares.sav_vdevs = NULL; 1044 1045 if (nspares == 0) 1046 return; 1047 1048 /* 1049 * Construct the array of vdevs, opening them to get status in the 1050 * process. For each spare, there is potentially two different vdev_t 1051 * structures associated with it: one in the list of spares (used only 1052 * for basic validation purposes) and one in the active vdev 1053 * configuration (if it's spared in). During this phase we open and 1054 * validate each vdev on the spare list. If the vdev also exists in the 1055 * active configuration, then we also mark this vdev as an active spare. 1056 */ 1057 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1058 KM_SLEEP); 1059 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1060 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1061 VDEV_ALLOC_SPARE) == 0); 1062 ASSERT(vd != NULL); 1063 1064 spa->spa_spares.sav_vdevs[i] = vd; 1065 1066 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1067 B_FALSE)) != NULL) { 1068 if (!tvd->vdev_isspare) 1069 spa_spare_add(tvd); 1070 1071 /* 1072 * We only mark the spare active if we were successfully 1073 * able to load the vdev. Otherwise, importing a pool 1074 * with a bad active spare would result in strange 1075 * behavior, because multiple pool would think the spare 1076 * is actively in use. 1077 * 1078 * There is a vulnerability here to an equally bizarre 1079 * circumstance, where a dead active spare is later 1080 * brought back to life (onlined or otherwise). Given 1081 * the rarity of this scenario, and the extra complexity 1082 * it adds, we ignore the possibility. 1083 */ 1084 if (!vdev_is_dead(tvd)) 1085 spa_spare_activate(tvd); 1086 } 1087 1088 vd->vdev_top = vd; 1089 vd->vdev_aux = &spa->spa_spares; 1090 1091 if (vdev_open(vd) != 0) 1092 continue; 1093 1094 if (vdev_validate_aux(vd) == 0) 1095 spa_spare_add(vd); 1096 } 1097 1098 /* 1099 * Recompute the stashed list of spares, with status information 1100 * this time. 1101 */ 1102 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1103 DATA_TYPE_NVLIST_ARRAY) == 0); 1104 1105 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1106 KM_SLEEP); 1107 for (i = 0; i < spa->spa_spares.sav_count; i++) 1108 spares[i] = vdev_config_generate(spa, 1109 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE); 1110 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1111 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1112 for (i = 0; i < spa->spa_spares.sav_count; i++) 1113 nvlist_free(spares[i]); 1114 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1115 } 1116 1117 /* 1118 * Load (or re-load) the current list of vdevs describing the active l2cache for 1119 * this pool. When this is called, we have some form of basic information in 1120 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1121 * then re-generate a more complete list including status information. 1122 * Devices which are already active have their details maintained, and are 1123 * not re-opened. 1124 */ 1125 static void 1126 spa_load_l2cache(spa_t *spa) 1127 { 1128 nvlist_t **l2cache; 1129 uint_t nl2cache; 1130 int i, j, oldnvdevs; 1131 uint64_t guid; 1132 vdev_t *vd, **oldvdevs, **newvdevs; 1133 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1134 1135 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1136 1137 if (sav->sav_config != NULL) { 1138 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1139 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1140 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1141 } else { 1142 nl2cache = 0; 1143 } 1144 1145 oldvdevs = sav->sav_vdevs; 1146 oldnvdevs = sav->sav_count; 1147 sav->sav_vdevs = NULL; 1148 sav->sav_count = 0; 1149 1150 /* 1151 * Process new nvlist of vdevs. 1152 */ 1153 for (i = 0; i < nl2cache; i++) { 1154 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1155 &guid) == 0); 1156 1157 newvdevs[i] = NULL; 1158 for (j = 0; j < oldnvdevs; j++) { 1159 vd = oldvdevs[j]; 1160 if (vd != NULL && guid == vd->vdev_guid) { 1161 /* 1162 * Retain previous vdev for add/remove ops. 1163 */ 1164 newvdevs[i] = vd; 1165 oldvdevs[j] = NULL; 1166 break; 1167 } 1168 } 1169 1170 if (newvdevs[i] == NULL) { 1171 /* 1172 * Create new vdev 1173 */ 1174 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1175 VDEV_ALLOC_L2CACHE) == 0); 1176 ASSERT(vd != NULL); 1177 newvdevs[i] = vd; 1178 1179 /* 1180 * Commit this vdev as an l2cache device, 1181 * even if it fails to open. 1182 */ 1183 spa_l2cache_add(vd); 1184 1185 vd->vdev_top = vd; 1186 vd->vdev_aux = sav; 1187 1188 spa_l2cache_activate(vd); 1189 1190 if (vdev_open(vd) != 0) 1191 continue; 1192 1193 (void) vdev_validate_aux(vd); 1194 1195 if (!vdev_is_dead(vd)) 1196 l2arc_add_vdev(spa, vd); 1197 } 1198 } 1199 1200 /* 1201 * Purge vdevs that were dropped 1202 */ 1203 for (i = 0; i < oldnvdevs; i++) { 1204 uint64_t pool; 1205 1206 vd = oldvdevs[i]; 1207 if (vd != NULL) { 1208 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1209 pool != 0ULL && l2arc_vdev_present(vd)) 1210 l2arc_remove_vdev(vd); 1211 (void) vdev_close(vd); 1212 spa_l2cache_remove(vd); 1213 } 1214 } 1215 1216 if (oldvdevs) 1217 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1218 1219 if (sav->sav_config == NULL) 1220 goto out; 1221 1222 sav->sav_vdevs = newvdevs; 1223 sav->sav_count = (int)nl2cache; 1224 1225 /* 1226 * Recompute the stashed list of l2cache devices, with status 1227 * information this time. 1228 */ 1229 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1230 DATA_TYPE_NVLIST_ARRAY) == 0); 1231 1232 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1233 for (i = 0; i < sav->sav_count; i++) 1234 l2cache[i] = vdev_config_generate(spa, 1235 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE); 1236 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1237 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1238 out: 1239 for (i = 0; i < sav->sav_count; i++) 1240 nvlist_free(l2cache[i]); 1241 if (sav->sav_count) 1242 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1243 } 1244 1245 static int 1246 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1247 { 1248 dmu_buf_t *db; 1249 char *packed = NULL; 1250 size_t nvsize = 0; 1251 int error; 1252 *value = NULL; 1253 1254 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1255 nvsize = *(uint64_t *)db->db_data; 1256 dmu_buf_rele(db, FTAG); 1257 1258 packed = kmem_alloc(nvsize, KM_SLEEP); 1259 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1260 DMU_READ_PREFETCH); 1261 if (error == 0) 1262 error = nvlist_unpack(packed, nvsize, value, 0); 1263 kmem_free(packed, nvsize); 1264 1265 return (error); 1266 } 1267 1268 /* 1269 * Checks to see if the given vdev could not be opened, in which case we post a 1270 * sysevent to notify the autoreplace code that the device has been removed. 1271 */ 1272 static void 1273 spa_check_removed(vdev_t *vd) 1274 { 1275 for (int c = 0; c < vd->vdev_children; c++) 1276 spa_check_removed(vd->vdev_child[c]); 1277 1278 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1279 zfs_post_autoreplace(vd->vdev_spa, vd); 1280 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1281 } 1282 } 1283 1284 /* 1285 * Load the slog device state from the config object since it's possible 1286 * that the label does not contain the most up-to-date information. 1287 */ 1288 void 1289 spa_load_log_state(spa_t *spa, nvlist_t *nv) 1290 { 1291 vdev_t *ovd, *rvd = spa->spa_root_vdev; 1292 1293 /* 1294 * Load the original root vdev tree from the passed config. 1295 */ 1296 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1297 VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1298 1299 for (int c = 0; c < rvd->vdev_children; c++) { 1300 vdev_t *cvd = rvd->vdev_child[c]; 1301 if (cvd->vdev_islog) 1302 vdev_load_log_state(cvd, ovd->vdev_child[c]); 1303 } 1304 vdev_free(ovd); 1305 spa_config_exit(spa, SCL_ALL, FTAG); 1306 } 1307 1308 /* 1309 * Check for missing log devices 1310 */ 1311 int 1312 spa_check_logs(spa_t *spa) 1313 { 1314 switch (spa->spa_log_state) { 1315 case SPA_LOG_MISSING: 1316 /* need to recheck in case slog has been restored */ 1317 case SPA_LOG_UNKNOWN: 1318 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1319 DS_FIND_CHILDREN)) { 1320 spa_set_log_state(spa, SPA_LOG_MISSING); 1321 return (1); 1322 } 1323 break; 1324 } 1325 return (0); 1326 } 1327 1328 static boolean_t 1329 spa_passivate_log(spa_t *spa) 1330 { 1331 vdev_t *rvd = spa->spa_root_vdev; 1332 boolean_t slog_found = B_FALSE; 1333 1334 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1335 1336 if (!spa_has_slogs(spa)) 1337 return (B_FALSE); 1338 1339 for (int c = 0; c < rvd->vdev_children; c++) { 1340 vdev_t *tvd = rvd->vdev_child[c]; 1341 metaslab_group_t *mg = tvd->vdev_mg; 1342 1343 if (tvd->vdev_islog) { 1344 metaslab_group_passivate(mg); 1345 slog_found = B_TRUE; 1346 } 1347 } 1348 1349 return (slog_found); 1350 } 1351 1352 static void 1353 spa_activate_log(spa_t *spa) 1354 { 1355 vdev_t *rvd = spa->spa_root_vdev; 1356 1357 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1358 1359 for (int c = 0; c < rvd->vdev_children; c++) { 1360 vdev_t *tvd = rvd->vdev_child[c]; 1361 metaslab_group_t *mg = tvd->vdev_mg; 1362 1363 if (tvd->vdev_islog) 1364 metaslab_group_activate(mg); 1365 } 1366 } 1367 1368 int 1369 spa_offline_log(spa_t *spa) 1370 { 1371 int error = 0; 1372 1373 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1374 NULL, DS_FIND_CHILDREN)) == 0) { 1375 1376 /* 1377 * We successfully offlined the log device, sync out the 1378 * current txg so that the "stubby" block can be removed 1379 * by zil_sync(). 1380 */ 1381 txg_wait_synced(spa->spa_dsl_pool, 0); 1382 } 1383 return (error); 1384 } 1385 1386 static void 1387 spa_aux_check_removed(spa_aux_vdev_t *sav) 1388 { 1389 for (int i = 0; i < sav->sav_count; i++) 1390 spa_check_removed(sav->sav_vdevs[i]); 1391 } 1392 1393 void 1394 spa_claim_notify(zio_t *zio) 1395 { 1396 spa_t *spa = zio->io_spa; 1397 1398 if (zio->io_error) 1399 return; 1400 1401 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1402 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1403 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1404 mutex_exit(&spa->spa_props_lock); 1405 } 1406 1407 typedef struct spa_load_error { 1408 uint64_t sle_meta_count; 1409 uint64_t sle_data_count; 1410 } spa_load_error_t; 1411 1412 static void 1413 spa_load_verify_done(zio_t *zio) 1414 { 1415 blkptr_t *bp = zio->io_bp; 1416 spa_load_error_t *sle = zio->io_private; 1417 dmu_object_type_t type = BP_GET_TYPE(bp); 1418 int error = zio->io_error; 1419 1420 if (error) { 1421 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) && 1422 type != DMU_OT_INTENT_LOG) 1423 atomic_add_64(&sle->sle_meta_count, 1); 1424 else 1425 atomic_add_64(&sle->sle_data_count, 1); 1426 } 1427 zio_data_buf_free(zio->io_data, zio->io_size); 1428 } 1429 1430 /*ARGSUSED*/ 1431 static int 1432 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1433 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1434 { 1435 if (bp != NULL) { 1436 zio_t *rio = arg; 1437 size_t size = BP_GET_PSIZE(bp); 1438 void *data = zio_data_buf_alloc(size); 1439 1440 zio_nowait(zio_read(rio, spa, bp, data, size, 1441 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1442 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1443 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1444 } 1445 return (0); 1446 } 1447 1448 static int 1449 spa_load_verify(spa_t *spa) 1450 { 1451 zio_t *rio; 1452 spa_load_error_t sle = { 0 }; 1453 zpool_rewind_policy_t policy; 1454 boolean_t verify_ok = B_FALSE; 1455 int error; 1456 1457 zpool_get_rewind_policy(spa->spa_config, &policy); 1458 1459 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1460 return (0); 1461 1462 rio = zio_root(spa, NULL, &sle, 1463 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1464 1465 error = traverse_pool(spa, spa->spa_verify_min_txg, 1466 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1467 1468 (void) zio_wait(rio); 1469 1470 spa->spa_load_meta_errors = sle.sle_meta_count; 1471 spa->spa_load_data_errors = sle.sle_data_count; 1472 1473 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1474 sle.sle_data_count <= policy.zrp_maxdata) { 1475 verify_ok = B_TRUE; 1476 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1477 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1478 } else { 1479 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1480 } 1481 1482 if (error) { 1483 if (error != ENXIO && error != EIO) 1484 error = EIO; 1485 return (error); 1486 } 1487 1488 return (verify_ok ? 0 : EIO); 1489 } 1490 1491 /* 1492 * Find a value in the pool props object. 1493 */ 1494 static void 1495 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1496 { 1497 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1498 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1499 } 1500 1501 /* 1502 * Find a value in the pool directory object. 1503 */ 1504 static int 1505 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1506 { 1507 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1508 name, sizeof (uint64_t), 1, val)); 1509 } 1510 1511 static int 1512 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1513 { 1514 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1515 return (err); 1516 } 1517 1518 /* 1519 * Fix up config after a partly-completed split. This is done with the 1520 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1521 * pool have that entry in their config, but only the splitting one contains 1522 * a list of all the guids of the vdevs that are being split off. 1523 * 1524 * This function determines what to do with that list: either rejoin 1525 * all the disks to the pool, or complete the splitting process. To attempt 1526 * the rejoin, each disk that is offlined is marked online again, and 1527 * we do a reopen() call. If the vdev label for every disk that was 1528 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1529 * then we call vdev_split() on each disk, and complete the split. 1530 * 1531 * Otherwise we leave the config alone, with all the vdevs in place in 1532 * the original pool. 1533 */ 1534 static void 1535 spa_try_repair(spa_t *spa, nvlist_t *config) 1536 { 1537 uint_t extracted; 1538 uint64_t *glist; 1539 uint_t i, gcount; 1540 nvlist_t *nvl; 1541 vdev_t **vd; 1542 boolean_t attempt_reopen; 1543 1544 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1545 return; 1546 1547 /* check that the config is complete */ 1548 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1549 &glist, &gcount) != 0) 1550 return; 1551 1552 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1553 1554 /* attempt to online all the vdevs & validate */ 1555 attempt_reopen = B_TRUE; 1556 for (i = 0; i < gcount; i++) { 1557 if (glist[i] == 0) /* vdev is hole */ 1558 continue; 1559 1560 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1561 if (vd[i] == NULL) { 1562 /* 1563 * Don't bother attempting to reopen the disks; 1564 * just do the split. 1565 */ 1566 attempt_reopen = B_FALSE; 1567 } else { 1568 /* attempt to re-online it */ 1569 vd[i]->vdev_offline = B_FALSE; 1570 } 1571 } 1572 1573 if (attempt_reopen) { 1574 vdev_reopen(spa->spa_root_vdev); 1575 1576 /* check each device to see what state it's in */ 1577 for (extracted = 0, i = 0; i < gcount; i++) { 1578 if (vd[i] != NULL && 1579 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1580 break; 1581 ++extracted; 1582 } 1583 } 1584 1585 /* 1586 * If every disk has been moved to the new pool, or if we never 1587 * even attempted to look at them, then we split them off for 1588 * good. 1589 */ 1590 if (!attempt_reopen || gcount == extracted) { 1591 for (i = 0; i < gcount; i++) 1592 if (vd[i] != NULL) 1593 vdev_split(vd[i]); 1594 vdev_reopen(spa->spa_root_vdev); 1595 } 1596 1597 kmem_free(vd, gcount * sizeof (vdev_t *)); 1598 } 1599 1600 static int 1601 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1602 boolean_t mosconfig) 1603 { 1604 nvlist_t *config = spa->spa_config; 1605 char *ereport = FM_EREPORT_ZFS_POOL; 1606 int error; 1607 uint64_t pool_guid; 1608 nvlist_t *nvl; 1609 1610 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1611 return (EINVAL); 1612 1613 /* 1614 * Versioning wasn't explicitly added to the label until later, so if 1615 * it's not present treat it as the initial version. 1616 */ 1617 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1618 &spa->spa_ubsync.ub_version) != 0) 1619 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1620 1621 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1622 &spa->spa_config_txg); 1623 1624 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1625 spa_guid_exists(pool_guid, 0)) { 1626 error = EEXIST; 1627 } else { 1628 spa->spa_load_guid = pool_guid; 1629 1630 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1631 &nvl) == 0) { 1632 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1633 KM_SLEEP) == 0); 1634 } 1635 1636 error = spa_load_impl(spa, pool_guid, config, state, type, 1637 mosconfig, &ereport); 1638 } 1639 1640 spa->spa_minref = refcount_count(&spa->spa_refcount); 1641 if (error && error != EBADF) 1642 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1643 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1644 spa->spa_ena = 0; 1645 1646 return (error); 1647 } 1648 1649 /* 1650 * Load an existing storage pool, using the pool's builtin spa_config as a 1651 * source of configuration information. 1652 */ 1653 static int 1654 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1655 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1656 char **ereport) 1657 { 1658 int error = 0; 1659 nvlist_t *nvroot = NULL; 1660 vdev_t *rvd; 1661 uberblock_t *ub = &spa->spa_uberblock; 1662 uint64_t config_cache_txg = spa->spa_config_txg; 1663 int orig_mode = spa->spa_mode; 1664 int parse; 1665 1666 /* 1667 * If this is an untrusted config, access the pool in read-only mode. 1668 * This prevents things like resilvering recently removed devices. 1669 */ 1670 if (!mosconfig) 1671 spa->spa_mode = FREAD; 1672 1673 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1674 1675 spa->spa_load_state = state; 1676 1677 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 1678 return (EINVAL); 1679 1680 parse = (type == SPA_IMPORT_EXISTING ? 1681 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 1682 1683 /* 1684 * Create "The Godfather" zio to hold all async IOs 1685 */ 1686 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1687 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1688 1689 /* 1690 * Parse the configuration into a vdev tree. We explicitly set the 1691 * value that will be returned by spa_version() since parsing the 1692 * configuration requires knowing the version number. 1693 */ 1694 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1695 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 1696 spa_config_exit(spa, SCL_ALL, FTAG); 1697 1698 if (error != 0) 1699 return (error); 1700 1701 ASSERT(spa->spa_root_vdev == rvd); 1702 1703 if (type != SPA_IMPORT_ASSEMBLE) { 1704 ASSERT(spa_guid(spa) == pool_guid); 1705 } 1706 1707 /* 1708 * Try to open all vdevs, loading each label in the process. 1709 */ 1710 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1711 error = vdev_open(rvd); 1712 spa_config_exit(spa, SCL_ALL, FTAG); 1713 if (error != 0) 1714 return (error); 1715 1716 /* 1717 * We need to validate the vdev labels against the configuration that 1718 * we have in hand, which is dependent on the setting of mosconfig. If 1719 * mosconfig is true then we're validating the vdev labels based on 1720 * that config. Otherwise, we're validating against the cached config 1721 * (zpool.cache) that was read when we loaded the zfs module, and then 1722 * later we will recursively call spa_load() and validate against 1723 * the vdev config. 1724 * 1725 * If we're assembling a new pool that's been split off from an 1726 * existing pool, the labels haven't yet been updated so we skip 1727 * validation for now. 1728 */ 1729 if (type != SPA_IMPORT_ASSEMBLE) { 1730 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1731 error = vdev_validate(rvd); 1732 spa_config_exit(spa, SCL_ALL, FTAG); 1733 1734 if (error != 0) 1735 return (error); 1736 1737 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1738 return (ENXIO); 1739 } 1740 1741 /* 1742 * Find the best uberblock. 1743 */ 1744 vdev_uberblock_load(NULL, rvd, ub); 1745 1746 /* 1747 * If we weren't able to find a single valid uberblock, return failure. 1748 */ 1749 if (ub->ub_txg == 0) 1750 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 1751 1752 /* 1753 * If the pool is newer than the code, we can't open it. 1754 */ 1755 if (ub->ub_version > SPA_VERSION) 1756 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 1757 1758 /* 1759 * If the vdev guid sum doesn't match the uberblock, we have an 1760 * incomplete configuration. 1761 */ 1762 if (mosconfig && type != SPA_IMPORT_ASSEMBLE && 1763 rvd->vdev_guid_sum != ub->ub_guid_sum) 1764 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 1765 1766 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 1767 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1768 spa_try_repair(spa, config); 1769 spa_config_exit(spa, SCL_ALL, FTAG); 1770 nvlist_free(spa->spa_config_splitting); 1771 spa->spa_config_splitting = NULL; 1772 } 1773 1774 /* 1775 * Initialize internal SPA structures. 1776 */ 1777 spa->spa_state = POOL_STATE_ACTIVE; 1778 spa->spa_ubsync = spa->spa_uberblock; 1779 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 1780 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 1781 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 1782 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 1783 spa->spa_claim_max_txg = spa->spa_first_txg; 1784 1785 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1786 if (error) 1787 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1788 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1789 1790 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 1791 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1792 1793 if (!mosconfig) { 1794 uint64_t hostid; 1795 nvlist_t *policy = NULL, *nvconfig; 1796 1797 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 1798 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1799 1800 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 1801 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1802 char *hostname; 1803 unsigned long myhostid = 0; 1804 1805 VERIFY(nvlist_lookup_string(nvconfig, 1806 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1807 1808 #ifdef _KERNEL 1809 myhostid = zone_get_hostid(NULL); 1810 #else /* _KERNEL */ 1811 /* 1812 * We're emulating the system's hostid in userland, so 1813 * we can't use zone_get_hostid(). 1814 */ 1815 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1816 #endif /* _KERNEL */ 1817 if (hostid != 0 && myhostid != 0 && 1818 hostid != myhostid) { 1819 nvlist_free(nvconfig); 1820 cmn_err(CE_WARN, "pool '%s' could not be " 1821 "loaded as it was last accessed by " 1822 "another system (host: %s hostid: 0x%lx). " 1823 "See: http://www.sun.com/msg/ZFS-8000-EY", 1824 spa_name(spa), hostname, 1825 (unsigned long)hostid); 1826 return (EBADF); 1827 } 1828 } 1829 if (nvlist_lookup_nvlist(spa->spa_config, 1830 ZPOOL_REWIND_POLICY, &policy) == 0) 1831 VERIFY(nvlist_add_nvlist(nvconfig, 1832 ZPOOL_REWIND_POLICY, policy) == 0); 1833 1834 spa_config_set(spa, nvconfig); 1835 spa_unload(spa); 1836 spa_deactivate(spa); 1837 spa_activate(spa, orig_mode); 1838 1839 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 1840 } 1841 1842 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPLIST, 1843 &spa->spa_deferred_bplist_obj) != 0) 1844 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1845 1846 /* 1847 * Load the bit that tells us to use the new accounting function 1848 * (raid-z deflation). If we have an older pool, this will not 1849 * be present. 1850 */ 1851 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 1852 if (error != 0 && error != ENOENT) 1853 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1854 1855 /* 1856 * Load the persistent error log. If we have an older pool, this will 1857 * not be present. 1858 */ 1859 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 1860 if (error != 0 && error != ENOENT) 1861 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1862 1863 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 1864 &spa->spa_errlog_scrub); 1865 if (error != 0 && error != ENOENT) 1866 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1867 1868 /* 1869 * Load the history object. If we have an older pool, this 1870 * will not be present. 1871 */ 1872 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 1873 if (error != 0 && error != ENOENT) 1874 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1875 1876 /* 1877 * If we're assembling the pool from the split-off vdevs of 1878 * an existing pool, we don't want to attach the spares & cache 1879 * devices. 1880 */ 1881 1882 /* 1883 * Load any hot spares for this pool. 1884 */ 1885 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 1886 if (error != 0 && error != ENOENT) 1887 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1888 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1889 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1890 if (load_nvlist(spa, spa->spa_spares.sav_object, 1891 &spa->spa_spares.sav_config) != 0) 1892 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1893 1894 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1895 spa_load_spares(spa); 1896 spa_config_exit(spa, SCL_ALL, FTAG); 1897 } else if (error == 0) { 1898 spa->spa_spares.sav_sync = B_TRUE; 1899 } 1900 1901 /* 1902 * Load any level 2 ARC devices for this pool. 1903 */ 1904 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 1905 &spa->spa_l2cache.sav_object); 1906 if (error != 0 && error != ENOENT) 1907 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1908 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1909 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1910 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1911 &spa->spa_l2cache.sav_config) != 0) 1912 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1913 1914 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1915 spa_load_l2cache(spa); 1916 spa_config_exit(spa, SCL_ALL, FTAG); 1917 } else if (error == 0) { 1918 spa->spa_l2cache.sav_sync = B_TRUE; 1919 } 1920 1921 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1922 1923 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 1924 if (error && error != ENOENT) 1925 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1926 1927 if (error == 0) { 1928 uint64_t autoreplace; 1929 1930 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 1931 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 1932 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 1933 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 1934 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 1935 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 1936 &spa->spa_dedup_ditto); 1937 1938 spa->spa_autoreplace = (autoreplace != 0); 1939 } 1940 1941 /* 1942 * If the 'autoreplace' property is set, then post a resource notifying 1943 * the ZFS DE that it should not issue any faults for unopenable 1944 * devices. We also iterate over the vdevs, and post a sysevent for any 1945 * unopenable vdevs so that the normal autoreplace handler can take 1946 * over. 1947 */ 1948 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 1949 spa_check_removed(spa->spa_root_vdev); 1950 /* 1951 * For the import case, this is done in spa_import(), because 1952 * at this point we're using the spare definitions from 1953 * the MOS config, not necessarily from the userland config. 1954 */ 1955 if (state != SPA_LOAD_IMPORT) { 1956 spa_aux_check_removed(&spa->spa_spares); 1957 spa_aux_check_removed(&spa->spa_l2cache); 1958 } 1959 } 1960 1961 /* 1962 * Load the vdev state for all toplevel vdevs. 1963 */ 1964 vdev_load(rvd); 1965 1966 /* 1967 * Propagate the leaf DTLs we just loaded all the way up the tree. 1968 */ 1969 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1970 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1971 spa_config_exit(spa, SCL_ALL, FTAG); 1972 1973 /* 1974 * Check the state of the root vdev. If it can't be opened, it 1975 * indicates one or more toplevel vdevs are faulted. 1976 */ 1977 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1978 return (ENXIO); 1979 1980 /* 1981 * Load the DDTs (dedup tables). 1982 */ 1983 error = ddt_load(spa); 1984 if (error != 0) 1985 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1986 1987 spa_update_dspace(spa); 1988 1989 if (state != SPA_LOAD_TRYIMPORT) { 1990 error = spa_load_verify(spa); 1991 if (error) 1992 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 1993 error)); 1994 } 1995 1996 /* 1997 * Load the intent log state and check log integrity. If we're 1998 * assembling a pool from a split, the log is not transferred over. 1999 */ 2000 if (type != SPA_IMPORT_ASSEMBLE) { 2001 nvlist_t *nvconfig; 2002 2003 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2004 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2005 2006 VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE, 2007 &nvroot) == 0); 2008 spa_load_log_state(spa, nvroot); 2009 nvlist_free(nvconfig); 2010 2011 if (spa_check_logs(spa)) { 2012 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2013 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2014 } 2015 } 2016 2017 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2018 spa->spa_load_max_txg == UINT64_MAX)) { 2019 dmu_tx_t *tx; 2020 int need_update = B_FALSE; 2021 2022 ASSERT(state != SPA_LOAD_TRYIMPORT); 2023 2024 /* 2025 * Claim log blocks that haven't been committed yet. 2026 * This must all happen in a single txg. 2027 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2028 * invoked from zil_claim_log_block()'s i/o done callback. 2029 * Price of rollback is that we abandon the log. 2030 */ 2031 spa->spa_claiming = B_TRUE; 2032 2033 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2034 spa_first_txg(spa)); 2035 (void) dmu_objset_find(spa_name(spa), 2036 zil_claim, tx, DS_FIND_CHILDREN); 2037 dmu_tx_commit(tx); 2038 2039 spa->spa_claiming = B_FALSE; 2040 2041 spa_set_log_state(spa, SPA_LOG_GOOD); 2042 spa->spa_sync_on = B_TRUE; 2043 txg_sync_start(spa->spa_dsl_pool); 2044 2045 /* 2046 * Wait for all claims to sync. We sync up to the highest 2047 * claimed log block birth time so that claimed log blocks 2048 * don't appear to be from the future. spa_claim_max_txg 2049 * will have been set for us by either zil_check_log_chain() 2050 * (invoked from spa_check_logs()) or zil_claim() above. 2051 */ 2052 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2053 2054 /* 2055 * If the config cache is stale, or we have uninitialized 2056 * metaslabs (see spa_vdev_add()), then update the config. 2057 * 2058 * If spa_load_verbatim is true, trust the current 2059 * in-core spa_config and update the disk labels. 2060 */ 2061 if (config_cache_txg != spa->spa_config_txg || 2062 state == SPA_LOAD_IMPORT || spa->spa_load_verbatim || 2063 state == SPA_LOAD_RECOVER) 2064 need_update = B_TRUE; 2065 2066 for (int c = 0; c < rvd->vdev_children; c++) 2067 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2068 need_update = B_TRUE; 2069 2070 /* 2071 * Update the config cache asychronously in case we're the 2072 * root pool, in which case the config cache isn't writable yet. 2073 */ 2074 if (need_update) 2075 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2076 2077 /* 2078 * Check all DTLs to see if anything needs resilvering. 2079 */ 2080 if (vdev_resilver_needed(rvd, NULL, NULL)) 2081 spa_async_request(spa, SPA_ASYNC_RESILVER); 2082 2083 /* 2084 * Delete any inconsistent datasets. 2085 */ 2086 (void) dmu_objset_find(spa_name(spa), 2087 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2088 2089 /* 2090 * Clean up any stale temporary dataset userrefs. 2091 */ 2092 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2093 } 2094 2095 return (0); 2096 } 2097 2098 static int 2099 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2100 { 2101 spa_unload(spa); 2102 spa_deactivate(spa); 2103 2104 spa->spa_load_max_txg--; 2105 2106 spa_activate(spa, spa_mode_global); 2107 spa_async_suspend(spa); 2108 2109 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2110 } 2111 2112 static int 2113 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2114 uint64_t max_request, int rewind_flags) 2115 { 2116 nvlist_t *config = NULL; 2117 int load_error, rewind_error; 2118 uint64_t safe_rewind_txg; 2119 uint64_t min_txg; 2120 2121 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2122 spa->spa_load_max_txg = spa->spa_load_txg; 2123 spa_set_log_state(spa, SPA_LOG_CLEAR); 2124 } else { 2125 spa->spa_load_max_txg = max_request; 2126 } 2127 2128 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2129 mosconfig); 2130 if (load_error == 0) 2131 return (0); 2132 2133 if (spa->spa_root_vdev != NULL) 2134 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2135 2136 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2137 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2138 2139 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2140 nvlist_free(config); 2141 return (load_error); 2142 } 2143 2144 /* Price of rolling back is discarding txgs, including log */ 2145 if (state == SPA_LOAD_RECOVER) 2146 spa_set_log_state(spa, SPA_LOG_CLEAR); 2147 2148 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2149 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2150 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2151 TXG_INITIAL : safe_rewind_txg; 2152 2153 /* 2154 * Continue as long as we're finding errors, we're still within 2155 * the acceptable rewind range, and we're still finding uberblocks 2156 */ 2157 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2158 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2159 if (spa->spa_load_max_txg < safe_rewind_txg) 2160 spa->spa_extreme_rewind = B_TRUE; 2161 rewind_error = spa_load_retry(spa, state, mosconfig); 2162 } 2163 2164 if (config) 2165 spa_rewind_data_to_nvlist(spa, config); 2166 2167 spa->spa_extreme_rewind = B_FALSE; 2168 spa->spa_load_max_txg = UINT64_MAX; 2169 2170 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2171 spa_config_set(spa, config); 2172 2173 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error); 2174 } 2175 2176 /* 2177 * Pool Open/Import 2178 * 2179 * The import case is identical to an open except that the configuration is sent 2180 * down from userland, instead of grabbed from the configuration cache. For the 2181 * case of an open, the pool configuration will exist in the 2182 * POOL_STATE_UNINITIALIZED state. 2183 * 2184 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2185 * the same time open the pool, without having to keep around the spa_t in some 2186 * ambiguous state. 2187 */ 2188 static int 2189 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2190 nvlist_t **config) 2191 { 2192 spa_t *spa; 2193 int error; 2194 int locked = B_FALSE; 2195 2196 *spapp = NULL; 2197 2198 /* 2199 * As disgusting as this is, we need to support recursive calls to this 2200 * function because dsl_dir_open() is called during spa_load(), and ends 2201 * up calling spa_open() again. The real fix is to figure out how to 2202 * avoid dsl_dir_open() calling this in the first place. 2203 */ 2204 if (mutex_owner(&spa_namespace_lock) != curthread) { 2205 mutex_enter(&spa_namespace_lock); 2206 locked = B_TRUE; 2207 } 2208 2209 if ((spa = spa_lookup(pool)) == NULL) { 2210 if (locked) 2211 mutex_exit(&spa_namespace_lock); 2212 return (ENOENT); 2213 } 2214 2215 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2216 spa_load_state_t state = SPA_LOAD_OPEN; 2217 zpool_rewind_policy_t policy; 2218 2219 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2220 &policy); 2221 if (policy.zrp_request & ZPOOL_DO_REWIND) 2222 state = SPA_LOAD_RECOVER; 2223 2224 spa_activate(spa, spa_mode_global); 2225 2226 if (spa->spa_last_open_failed && (policy.zrp_request & 2227 (ZPOOL_NO_REWIND | ZPOOL_NEVER_REWIND))) { 2228 if (config != NULL && spa->spa_config) 2229 VERIFY(nvlist_dup(spa->spa_config, 2230 config, KM_SLEEP) == 0); 2231 spa_deactivate(spa); 2232 if (locked) 2233 mutex_exit(&spa_namespace_lock); 2234 return (spa->spa_last_open_failed); 2235 } 2236 2237 if (state != SPA_LOAD_RECOVER) 2238 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2239 2240 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2241 policy.zrp_request); 2242 2243 if (error == EBADF) { 2244 /* 2245 * If vdev_validate() returns failure (indicated by 2246 * EBADF), it indicates that one of the vdevs indicates 2247 * that the pool has been exported or destroyed. If 2248 * this is the case, the config cache is out of sync and 2249 * we should remove the pool from the namespace. 2250 */ 2251 spa_unload(spa); 2252 spa_deactivate(spa); 2253 spa_config_sync(spa, B_TRUE, B_TRUE); 2254 spa_remove(spa); 2255 if (locked) 2256 mutex_exit(&spa_namespace_lock); 2257 return (ENOENT); 2258 } 2259 2260 if (error) { 2261 /* 2262 * We can't open the pool, but we still have useful 2263 * information: the state of each vdev after the 2264 * attempted vdev_open(). Return this to the user. 2265 */ 2266 if (config != NULL && spa->spa_config) 2267 VERIFY(nvlist_dup(spa->spa_config, config, 2268 KM_SLEEP) == 0); 2269 spa_unload(spa); 2270 spa_deactivate(spa); 2271 spa->spa_last_open_failed = error; 2272 if (locked) 2273 mutex_exit(&spa_namespace_lock); 2274 *spapp = NULL; 2275 return (error); 2276 } 2277 2278 } 2279 2280 spa_open_ref(spa, tag); 2281 2282 2283 if (config != NULL) 2284 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2285 2286 if (locked) { 2287 spa->spa_last_open_failed = 0; 2288 spa->spa_last_ubsync_txg = 0; 2289 spa->spa_load_txg = 0; 2290 mutex_exit(&spa_namespace_lock); 2291 } 2292 2293 *spapp = spa; 2294 2295 return (0); 2296 } 2297 2298 int 2299 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2300 nvlist_t **config) 2301 { 2302 return (spa_open_common(name, spapp, tag, policy, config)); 2303 } 2304 2305 int 2306 spa_open(const char *name, spa_t **spapp, void *tag) 2307 { 2308 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2309 } 2310 2311 /* 2312 * Lookup the given spa_t, incrementing the inject count in the process, 2313 * preventing it from being exported or destroyed. 2314 */ 2315 spa_t * 2316 spa_inject_addref(char *name) 2317 { 2318 spa_t *spa; 2319 2320 mutex_enter(&spa_namespace_lock); 2321 if ((spa = spa_lookup(name)) == NULL) { 2322 mutex_exit(&spa_namespace_lock); 2323 return (NULL); 2324 } 2325 spa->spa_inject_ref++; 2326 mutex_exit(&spa_namespace_lock); 2327 2328 return (spa); 2329 } 2330 2331 void 2332 spa_inject_delref(spa_t *spa) 2333 { 2334 mutex_enter(&spa_namespace_lock); 2335 spa->spa_inject_ref--; 2336 mutex_exit(&spa_namespace_lock); 2337 } 2338 2339 /* 2340 * Add spares device information to the nvlist. 2341 */ 2342 static void 2343 spa_add_spares(spa_t *spa, nvlist_t *config) 2344 { 2345 nvlist_t **spares; 2346 uint_t i, nspares; 2347 nvlist_t *nvroot; 2348 uint64_t guid; 2349 vdev_stat_t *vs; 2350 uint_t vsc; 2351 uint64_t pool; 2352 2353 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2354 2355 if (spa->spa_spares.sav_count == 0) 2356 return; 2357 2358 VERIFY(nvlist_lookup_nvlist(config, 2359 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2360 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2361 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2362 if (nspares != 0) { 2363 VERIFY(nvlist_add_nvlist_array(nvroot, 2364 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2365 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2366 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2367 2368 /* 2369 * Go through and find any spares which have since been 2370 * repurposed as an active spare. If this is the case, update 2371 * their status appropriately. 2372 */ 2373 for (i = 0; i < nspares; i++) { 2374 VERIFY(nvlist_lookup_uint64(spares[i], 2375 ZPOOL_CONFIG_GUID, &guid) == 0); 2376 if (spa_spare_exists(guid, &pool, NULL) && 2377 pool != 0ULL) { 2378 VERIFY(nvlist_lookup_uint64_array( 2379 spares[i], ZPOOL_CONFIG_STATS, 2380 (uint64_t **)&vs, &vsc) == 0); 2381 vs->vs_state = VDEV_STATE_CANT_OPEN; 2382 vs->vs_aux = VDEV_AUX_SPARED; 2383 } 2384 } 2385 } 2386 } 2387 2388 /* 2389 * Add l2cache device information to the nvlist, including vdev stats. 2390 */ 2391 static void 2392 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2393 { 2394 nvlist_t **l2cache; 2395 uint_t i, j, nl2cache; 2396 nvlist_t *nvroot; 2397 uint64_t guid; 2398 vdev_t *vd; 2399 vdev_stat_t *vs; 2400 uint_t vsc; 2401 2402 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2403 2404 if (spa->spa_l2cache.sav_count == 0) 2405 return; 2406 2407 VERIFY(nvlist_lookup_nvlist(config, 2408 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2409 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2410 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2411 if (nl2cache != 0) { 2412 VERIFY(nvlist_add_nvlist_array(nvroot, 2413 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2414 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2415 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2416 2417 /* 2418 * Update level 2 cache device stats. 2419 */ 2420 2421 for (i = 0; i < nl2cache; i++) { 2422 VERIFY(nvlist_lookup_uint64(l2cache[i], 2423 ZPOOL_CONFIG_GUID, &guid) == 0); 2424 2425 vd = NULL; 2426 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2427 if (guid == 2428 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2429 vd = spa->spa_l2cache.sav_vdevs[j]; 2430 break; 2431 } 2432 } 2433 ASSERT(vd != NULL); 2434 2435 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2436 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); 2437 vdev_get_stats(vd, vs); 2438 } 2439 } 2440 } 2441 2442 int 2443 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 2444 { 2445 int error; 2446 spa_t *spa; 2447 2448 *config = NULL; 2449 error = spa_open_common(name, &spa, FTAG, NULL, config); 2450 2451 if (spa != NULL) { 2452 /* 2453 * This still leaves a window of inconsistency where the spares 2454 * or l2cache devices could change and the config would be 2455 * self-inconsistent. 2456 */ 2457 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2458 2459 if (*config != NULL) { 2460 VERIFY(nvlist_add_uint64(*config, 2461 ZPOOL_CONFIG_ERRCOUNT, 2462 spa_get_errlog_size(spa)) == 0); 2463 2464 if (spa_suspended(spa)) 2465 VERIFY(nvlist_add_uint64(*config, 2466 ZPOOL_CONFIG_SUSPENDED, 2467 spa->spa_failmode) == 0); 2468 2469 spa_add_spares(spa, *config); 2470 spa_add_l2cache(spa, *config); 2471 } 2472 } 2473 2474 /* 2475 * We want to get the alternate root even for faulted pools, so we cheat 2476 * and call spa_lookup() directly. 2477 */ 2478 if (altroot) { 2479 if (spa == NULL) { 2480 mutex_enter(&spa_namespace_lock); 2481 spa = spa_lookup(name); 2482 if (spa) 2483 spa_altroot(spa, altroot, buflen); 2484 else 2485 altroot[0] = '\0'; 2486 spa = NULL; 2487 mutex_exit(&spa_namespace_lock); 2488 } else { 2489 spa_altroot(spa, altroot, buflen); 2490 } 2491 } 2492 2493 if (spa != NULL) { 2494 spa_config_exit(spa, SCL_CONFIG, FTAG); 2495 spa_close(spa, FTAG); 2496 } 2497 2498 return (error); 2499 } 2500 2501 /* 2502 * Validate that the auxiliary device array is well formed. We must have an 2503 * array of nvlists, each which describes a valid leaf vdev. If this is an 2504 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 2505 * specified, as long as they are well-formed. 2506 */ 2507 static int 2508 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 2509 spa_aux_vdev_t *sav, const char *config, uint64_t version, 2510 vdev_labeltype_t label) 2511 { 2512 nvlist_t **dev; 2513 uint_t i, ndev; 2514 vdev_t *vd; 2515 int error; 2516 2517 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2518 2519 /* 2520 * It's acceptable to have no devs specified. 2521 */ 2522 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 2523 return (0); 2524 2525 if (ndev == 0) 2526 return (EINVAL); 2527 2528 /* 2529 * Make sure the pool is formatted with a version that supports this 2530 * device type. 2531 */ 2532 if (spa_version(spa) < version) 2533 return (ENOTSUP); 2534 2535 /* 2536 * Set the pending device list so we correctly handle device in-use 2537 * checking. 2538 */ 2539 sav->sav_pending = dev; 2540 sav->sav_npending = ndev; 2541 2542 for (i = 0; i < ndev; i++) { 2543 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 2544 mode)) != 0) 2545 goto out; 2546 2547 if (!vd->vdev_ops->vdev_op_leaf) { 2548 vdev_free(vd); 2549 error = EINVAL; 2550 goto out; 2551 } 2552 2553 /* 2554 * The L2ARC currently only supports disk devices in 2555 * kernel context. For user-level testing, we allow it. 2556 */ 2557 #ifdef _KERNEL 2558 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 2559 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 2560 error = ENOTBLK; 2561 goto out; 2562 } 2563 #endif 2564 vd->vdev_top = vd; 2565 2566 if ((error = vdev_open(vd)) == 0 && 2567 (error = vdev_label_init(vd, crtxg, label)) == 0) { 2568 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 2569 vd->vdev_guid) == 0); 2570 } 2571 2572 vdev_free(vd); 2573 2574 if (error && 2575 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 2576 goto out; 2577 else 2578 error = 0; 2579 } 2580 2581 out: 2582 sav->sav_pending = NULL; 2583 sav->sav_npending = 0; 2584 return (error); 2585 } 2586 2587 static int 2588 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 2589 { 2590 int error; 2591 2592 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2593 2594 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2595 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 2596 VDEV_LABEL_SPARE)) != 0) { 2597 return (error); 2598 } 2599 2600 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2601 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2602 VDEV_LABEL_L2CACHE)); 2603 } 2604 2605 static void 2606 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2607 const char *config) 2608 { 2609 int i; 2610 2611 if (sav->sav_config != NULL) { 2612 nvlist_t **olddevs; 2613 uint_t oldndevs; 2614 nvlist_t **newdevs; 2615 2616 /* 2617 * Generate new dev list by concatentating with the 2618 * current dev list. 2619 */ 2620 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2621 &olddevs, &oldndevs) == 0); 2622 2623 newdevs = kmem_alloc(sizeof (void *) * 2624 (ndevs + oldndevs), KM_SLEEP); 2625 for (i = 0; i < oldndevs; i++) 2626 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2627 KM_SLEEP) == 0); 2628 for (i = 0; i < ndevs; i++) 2629 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2630 KM_SLEEP) == 0); 2631 2632 VERIFY(nvlist_remove(sav->sav_config, config, 2633 DATA_TYPE_NVLIST_ARRAY) == 0); 2634 2635 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2636 config, newdevs, ndevs + oldndevs) == 0); 2637 for (i = 0; i < oldndevs + ndevs; i++) 2638 nvlist_free(newdevs[i]); 2639 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2640 } else { 2641 /* 2642 * Generate a new dev list. 2643 */ 2644 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2645 KM_SLEEP) == 0); 2646 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2647 devs, ndevs) == 0); 2648 } 2649 } 2650 2651 /* 2652 * Stop and drop level 2 ARC devices 2653 */ 2654 void 2655 spa_l2cache_drop(spa_t *spa) 2656 { 2657 vdev_t *vd; 2658 int i; 2659 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2660 2661 for (i = 0; i < sav->sav_count; i++) { 2662 uint64_t pool; 2663 2664 vd = sav->sav_vdevs[i]; 2665 ASSERT(vd != NULL); 2666 2667 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2668 pool != 0ULL && l2arc_vdev_present(vd)) 2669 l2arc_remove_vdev(vd); 2670 if (vd->vdev_isl2cache) 2671 spa_l2cache_remove(vd); 2672 vdev_clear_stats(vd); 2673 (void) vdev_close(vd); 2674 } 2675 } 2676 2677 /* 2678 * Pool Creation 2679 */ 2680 int 2681 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2682 const char *history_str, nvlist_t *zplprops) 2683 { 2684 spa_t *spa; 2685 char *altroot = NULL; 2686 vdev_t *rvd; 2687 dsl_pool_t *dp; 2688 dmu_tx_t *tx; 2689 int error = 0; 2690 uint64_t txg = TXG_INITIAL; 2691 nvlist_t **spares, **l2cache; 2692 uint_t nspares, nl2cache; 2693 uint64_t version; 2694 2695 /* 2696 * If this pool already exists, return failure. 2697 */ 2698 mutex_enter(&spa_namespace_lock); 2699 if (spa_lookup(pool) != NULL) { 2700 mutex_exit(&spa_namespace_lock); 2701 return (EEXIST); 2702 } 2703 2704 /* 2705 * Allocate a new spa_t structure. 2706 */ 2707 (void) nvlist_lookup_string(props, 2708 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2709 spa = spa_add(pool, NULL, altroot); 2710 spa_activate(spa, spa_mode_global); 2711 2712 if (props && (error = spa_prop_validate(spa, props))) { 2713 spa_deactivate(spa); 2714 spa_remove(spa); 2715 mutex_exit(&spa_namespace_lock); 2716 return (error); 2717 } 2718 2719 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2720 &version) != 0) 2721 version = SPA_VERSION; 2722 ASSERT(version <= SPA_VERSION); 2723 2724 spa->spa_first_txg = txg; 2725 spa->spa_uberblock.ub_txg = txg - 1; 2726 spa->spa_uberblock.ub_version = version; 2727 spa->spa_ubsync = spa->spa_uberblock; 2728 2729 /* 2730 * Create "The Godfather" zio to hold all async IOs 2731 */ 2732 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2733 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2734 2735 /* 2736 * Create the root vdev. 2737 */ 2738 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2739 2740 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2741 2742 ASSERT(error != 0 || rvd != NULL); 2743 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2744 2745 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2746 error = EINVAL; 2747 2748 if (error == 0 && 2749 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2750 (error = spa_validate_aux(spa, nvroot, txg, 2751 VDEV_ALLOC_ADD)) == 0) { 2752 for (int c = 0; c < rvd->vdev_children; c++) { 2753 vdev_metaslab_set_size(rvd->vdev_child[c]); 2754 vdev_expand(rvd->vdev_child[c], txg); 2755 } 2756 } 2757 2758 spa_config_exit(spa, SCL_ALL, FTAG); 2759 2760 if (error != 0) { 2761 spa_unload(spa); 2762 spa_deactivate(spa); 2763 spa_remove(spa); 2764 mutex_exit(&spa_namespace_lock); 2765 return (error); 2766 } 2767 2768 /* 2769 * Get the list of spares, if specified. 2770 */ 2771 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2772 &spares, &nspares) == 0) { 2773 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2774 KM_SLEEP) == 0); 2775 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2776 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2777 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2778 spa_load_spares(spa); 2779 spa_config_exit(spa, SCL_ALL, FTAG); 2780 spa->spa_spares.sav_sync = B_TRUE; 2781 } 2782 2783 /* 2784 * Get the list of level 2 cache devices, if specified. 2785 */ 2786 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2787 &l2cache, &nl2cache) == 0) { 2788 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2789 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2790 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2791 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2792 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2793 spa_load_l2cache(spa); 2794 spa_config_exit(spa, SCL_ALL, FTAG); 2795 spa->spa_l2cache.sav_sync = B_TRUE; 2796 } 2797 2798 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2799 spa->spa_meta_objset = dp->dp_meta_objset; 2800 2801 /* 2802 * Create DDTs (dedup tables). 2803 */ 2804 ddt_create(spa); 2805 2806 spa_update_dspace(spa); 2807 2808 tx = dmu_tx_create_assigned(dp, txg); 2809 2810 /* 2811 * Create the pool config object. 2812 */ 2813 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2814 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2815 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2816 2817 if (zap_add(spa->spa_meta_objset, 2818 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2819 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2820 cmn_err(CE_PANIC, "failed to add pool config"); 2821 } 2822 2823 /* Newly created pools with the right version are always deflated. */ 2824 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2825 spa->spa_deflate = TRUE; 2826 if (zap_add(spa->spa_meta_objset, 2827 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2828 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2829 cmn_err(CE_PANIC, "failed to add deflate"); 2830 } 2831 } 2832 2833 /* 2834 * Create the deferred-free bplist object. Turn off compression 2835 * because sync-to-convergence takes longer if the blocksize 2836 * keeps changing. 2837 */ 2838 spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset, 2839 1 << 14, tx); 2840 dmu_object_set_compress(spa->spa_meta_objset, 2841 spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx); 2842 2843 if (zap_add(spa->spa_meta_objset, 2844 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 2845 sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) { 2846 cmn_err(CE_PANIC, "failed to add bplist"); 2847 } 2848 2849 /* 2850 * Create the pool's history object. 2851 */ 2852 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2853 spa_history_create_obj(spa, tx); 2854 2855 /* 2856 * Set pool properties. 2857 */ 2858 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2859 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2860 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2861 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 2862 2863 if (props != NULL) { 2864 spa_configfile_set(spa, props, B_FALSE); 2865 spa_sync_props(spa, props, CRED(), tx); 2866 } 2867 2868 dmu_tx_commit(tx); 2869 2870 spa->spa_sync_on = B_TRUE; 2871 txg_sync_start(spa->spa_dsl_pool); 2872 2873 /* 2874 * We explicitly wait for the first transaction to complete so that our 2875 * bean counters are appropriately updated. 2876 */ 2877 txg_wait_synced(spa->spa_dsl_pool, txg); 2878 2879 spa_config_sync(spa, B_FALSE, B_TRUE); 2880 2881 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2882 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2883 spa_history_log_version(spa, LOG_POOL_CREATE); 2884 2885 spa->spa_minref = refcount_count(&spa->spa_refcount); 2886 2887 mutex_exit(&spa_namespace_lock); 2888 2889 return (0); 2890 } 2891 2892 #ifdef _KERNEL 2893 /* 2894 * Get the root pool information from the root disk, then import the root pool 2895 * during the system boot up time. 2896 */ 2897 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 2898 2899 static nvlist_t * 2900 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 2901 { 2902 nvlist_t *config; 2903 nvlist_t *nvtop, *nvroot; 2904 uint64_t pgid; 2905 2906 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 2907 return (NULL); 2908 2909 /* 2910 * Add this top-level vdev to the child array. 2911 */ 2912 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2913 &nvtop) == 0); 2914 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 2915 &pgid) == 0); 2916 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 2917 2918 /* 2919 * Put this pool's top-level vdevs into a root vdev. 2920 */ 2921 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2922 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 2923 VDEV_TYPE_ROOT) == 0); 2924 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2925 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2926 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2927 &nvtop, 1) == 0); 2928 2929 /* 2930 * Replace the existing vdev_tree with the new root vdev in 2931 * this pool's configuration (remove the old, add the new). 2932 */ 2933 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2934 nvlist_free(nvroot); 2935 return (config); 2936 } 2937 2938 /* 2939 * Walk the vdev tree and see if we can find a device with "better" 2940 * configuration. A configuration is "better" if the label on that 2941 * device has a more recent txg. 2942 */ 2943 static void 2944 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 2945 { 2946 for (int c = 0; c < vd->vdev_children; c++) 2947 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 2948 2949 if (vd->vdev_ops->vdev_op_leaf) { 2950 nvlist_t *label; 2951 uint64_t label_txg; 2952 2953 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 2954 &label) != 0) 2955 return; 2956 2957 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 2958 &label_txg) == 0); 2959 2960 /* 2961 * Do we have a better boot device? 2962 */ 2963 if (label_txg > *txg) { 2964 *txg = label_txg; 2965 *avd = vd; 2966 } 2967 nvlist_free(label); 2968 } 2969 } 2970 2971 /* 2972 * Import a root pool. 2973 * 2974 * For x86. devpath_list will consist of devid and/or physpath name of 2975 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2976 * The GRUB "findroot" command will return the vdev we should boot. 2977 * 2978 * For Sparc, devpath_list consists the physpath name of the booting device 2979 * no matter the rootpool is a single device pool or a mirrored pool. 2980 * e.g. 2981 * "/pci@1f,0/ide@d/disk@0,0:a" 2982 */ 2983 int 2984 spa_import_rootpool(char *devpath, char *devid) 2985 { 2986 spa_t *spa; 2987 vdev_t *rvd, *bvd, *avd = NULL; 2988 nvlist_t *config, *nvtop; 2989 uint64_t guid, txg; 2990 char *pname; 2991 int error; 2992 2993 /* 2994 * Read the label from the boot device and generate a configuration. 2995 */ 2996 config = spa_generate_rootconf(devpath, devid, &guid); 2997 #if defined(_OBP) && defined(_KERNEL) 2998 if (config == NULL) { 2999 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3000 /* iscsi boot */ 3001 get_iscsi_bootpath_phy(devpath); 3002 config = spa_generate_rootconf(devpath, devid, &guid); 3003 } 3004 } 3005 #endif 3006 if (config == NULL) { 3007 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 3008 devpath); 3009 return (EIO); 3010 } 3011 3012 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3013 &pname) == 0); 3014 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3015 3016 mutex_enter(&spa_namespace_lock); 3017 if ((spa = spa_lookup(pname)) != NULL) { 3018 /* 3019 * Remove the existing root pool from the namespace so that we 3020 * can replace it with the correct config we just read in. 3021 */ 3022 spa_remove(spa); 3023 } 3024 3025 spa = spa_add(pname, config, NULL); 3026 spa->spa_is_root = B_TRUE; 3027 spa->spa_load_verbatim = B_TRUE; 3028 3029 /* 3030 * Build up a vdev tree based on the boot device's label config. 3031 */ 3032 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3033 &nvtop) == 0); 3034 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3035 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3036 VDEV_ALLOC_ROOTPOOL); 3037 spa_config_exit(spa, SCL_ALL, FTAG); 3038 if (error) { 3039 mutex_exit(&spa_namespace_lock); 3040 nvlist_free(config); 3041 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3042 pname); 3043 return (error); 3044 } 3045 3046 /* 3047 * Get the boot vdev. 3048 */ 3049 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3050 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3051 (u_longlong_t)guid); 3052 error = ENOENT; 3053 goto out; 3054 } 3055 3056 /* 3057 * Determine if there is a better boot device. 3058 */ 3059 avd = bvd; 3060 spa_alt_rootvdev(rvd, &avd, &txg); 3061 if (avd != bvd) { 3062 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3063 "try booting from '%s'", avd->vdev_path); 3064 error = EINVAL; 3065 goto out; 3066 } 3067 3068 /* 3069 * If the boot device is part of a spare vdev then ensure that 3070 * we're booting off the active spare. 3071 */ 3072 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3073 !bvd->vdev_isspare) { 3074 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3075 "try booting from '%s'", 3076 bvd->vdev_parent->vdev_child[1]->vdev_path); 3077 error = EINVAL; 3078 goto out; 3079 } 3080 3081 error = 0; 3082 spa_history_log_version(spa, LOG_POOL_IMPORT); 3083 out: 3084 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3085 vdev_free(rvd); 3086 spa_config_exit(spa, SCL_ALL, FTAG); 3087 mutex_exit(&spa_namespace_lock); 3088 3089 nvlist_free(config); 3090 return (error); 3091 } 3092 3093 #endif 3094 3095 /* 3096 * Take a pool and insert it into the namespace as if it had been loaded at 3097 * boot. 3098 */ 3099 int 3100 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props) 3101 { 3102 spa_t *spa; 3103 char *altroot = NULL; 3104 3105 mutex_enter(&spa_namespace_lock); 3106 if (spa_lookup(pool) != NULL) { 3107 mutex_exit(&spa_namespace_lock); 3108 return (EEXIST); 3109 } 3110 3111 (void) nvlist_lookup_string(props, 3112 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3113 spa = spa_add(pool, config, altroot); 3114 3115 spa->spa_load_verbatim = B_TRUE; 3116 3117 if (props != NULL) 3118 spa_configfile_set(spa, props, B_FALSE); 3119 3120 spa_config_sync(spa, B_FALSE, B_TRUE); 3121 3122 mutex_exit(&spa_namespace_lock); 3123 spa_history_log_version(spa, LOG_POOL_IMPORT); 3124 3125 return (0); 3126 } 3127 3128 /* 3129 * Import a non-root pool into the system. 3130 */ 3131 int 3132 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 3133 { 3134 spa_t *spa; 3135 char *altroot = NULL; 3136 spa_load_state_t state = SPA_LOAD_IMPORT; 3137 zpool_rewind_policy_t policy; 3138 int error; 3139 nvlist_t *nvroot; 3140 nvlist_t **spares, **l2cache; 3141 uint_t nspares, nl2cache; 3142 3143 /* 3144 * If a pool with this name exists, return failure. 3145 */ 3146 mutex_enter(&spa_namespace_lock); 3147 if (spa_lookup(pool) != NULL) { 3148 mutex_exit(&spa_namespace_lock); 3149 return (EEXIST); 3150 } 3151 3152 zpool_get_rewind_policy(config, &policy); 3153 if (policy.zrp_request & ZPOOL_DO_REWIND) 3154 state = SPA_LOAD_RECOVER; 3155 3156 /* 3157 * Create and initialize the spa structure. 3158 */ 3159 (void) nvlist_lookup_string(props, 3160 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3161 spa = spa_add(pool, config, altroot); 3162 spa_activate(spa, spa_mode_global); 3163 3164 /* 3165 * Don't start async tasks until we know everything is healthy. 3166 */ 3167 spa_async_suspend(spa); 3168 3169 /* 3170 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3171 * because the user-supplied config is actually the one to trust when 3172 * doing an import. 3173 */ 3174 if (state != SPA_LOAD_RECOVER) 3175 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3176 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3177 policy.zrp_request); 3178 3179 /* 3180 * Propagate anything learned about failing or best txgs 3181 * back to caller 3182 */ 3183 spa_rewind_data_to_nvlist(spa, config); 3184 3185 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3186 /* 3187 * Toss any existing sparelist, as it doesn't have any validity 3188 * anymore, and conflicts with spa_has_spare(). 3189 */ 3190 if (spa->spa_spares.sav_config) { 3191 nvlist_free(spa->spa_spares.sav_config); 3192 spa->spa_spares.sav_config = NULL; 3193 spa_load_spares(spa); 3194 } 3195 if (spa->spa_l2cache.sav_config) { 3196 nvlist_free(spa->spa_l2cache.sav_config); 3197 spa->spa_l2cache.sav_config = NULL; 3198 spa_load_l2cache(spa); 3199 } 3200 3201 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3202 &nvroot) == 0); 3203 if (error == 0) 3204 error = spa_validate_aux(spa, nvroot, -1ULL, 3205 VDEV_ALLOC_SPARE); 3206 if (error == 0) 3207 error = spa_validate_aux(spa, nvroot, -1ULL, 3208 VDEV_ALLOC_L2CACHE); 3209 spa_config_exit(spa, SCL_ALL, FTAG); 3210 3211 if (props != NULL) 3212 spa_configfile_set(spa, props, B_FALSE); 3213 3214 if (error != 0 || (props && spa_writeable(spa) && 3215 (error = spa_prop_set(spa, props)))) { 3216 spa_unload(spa); 3217 spa_deactivate(spa); 3218 spa_remove(spa); 3219 mutex_exit(&spa_namespace_lock); 3220 return (error); 3221 } 3222 3223 spa_async_resume(spa); 3224 3225 /* 3226 * Override any spares and level 2 cache devices as specified by 3227 * the user, as these may have correct device names/devids, etc. 3228 */ 3229 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3230 &spares, &nspares) == 0) { 3231 if (spa->spa_spares.sav_config) 3232 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3233 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3234 else 3235 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3236 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3237 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3238 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3239 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3240 spa_load_spares(spa); 3241 spa_config_exit(spa, SCL_ALL, FTAG); 3242 spa->spa_spares.sav_sync = B_TRUE; 3243 } 3244 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3245 &l2cache, &nl2cache) == 0) { 3246 if (spa->spa_l2cache.sav_config) 3247 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3248 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3249 else 3250 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3251 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3252 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3253 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3254 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3255 spa_load_l2cache(spa); 3256 spa_config_exit(spa, SCL_ALL, FTAG); 3257 spa->spa_l2cache.sav_sync = B_TRUE; 3258 } 3259 3260 /* 3261 * Check for any removed devices. 3262 */ 3263 if (spa->spa_autoreplace) { 3264 spa_aux_check_removed(&spa->spa_spares); 3265 spa_aux_check_removed(&spa->spa_l2cache); 3266 } 3267 3268 if (spa_writeable(spa)) { 3269 /* 3270 * Update the config cache to include the newly-imported pool. 3271 */ 3272 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3273 } 3274 3275 /* 3276 * It's possible that the pool was expanded while it was exported. 3277 * We kick off an async task to handle this for us. 3278 */ 3279 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3280 3281 mutex_exit(&spa_namespace_lock); 3282 spa_history_log_version(spa, LOG_POOL_IMPORT); 3283 3284 return (0); 3285 } 3286 3287 nvlist_t * 3288 spa_tryimport(nvlist_t *tryconfig) 3289 { 3290 nvlist_t *config = NULL; 3291 char *poolname; 3292 spa_t *spa; 3293 uint64_t state; 3294 int error; 3295 3296 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3297 return (NULL); 3298 3299 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3300 return (NULL); 3301 3302 /* 3303 * Create and initialize the spa structure. 3304 */ 3305 mutex_enter(&spa_namespace_lock); 3306 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3307 spa_activate(spa, FREAD); 3308 3309 /* 3310 * Pass off the heavy lifting to spa_load(). 3311 * Pass TRUE for mosconfig because the user-supplied config 3312 * is actually the one to trust when doing an import. 3313 */ 3314 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3315 3316 /* 3317 * If 'tryconfig' was at least parsable, return the current config. 3318 */ 3319 if (spa->spa_root_vdev != NULL) { 3320 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3321 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3322 poolname) == 0); 3323 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3324 state) == 0); 3325 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3326 spa->spa_uberblock.ub_timestamp) == 0); 3327 3328 /* 3329 * If the bootfs property exists on this pool then we 3330 * copy it out so that external consumers can tell which 3331 * pools are bootable. 3332 */ 3333 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3334 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3335 3336 /* 3337 * We have to play games with the name since the 3338 * pool was opened as TRYIMPORT_NAME. 3339 */ 3340 if (dsl_dsobj_to_dsname(spa_name(spa), 3341 spa->spa_bootfs, tmpname) == 0) { 3342 char *cp; 3343 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3344 3345 cp = strchr(tmpname, '/'); 3346 if (cp == NULL) { 3347 (void) strlcpy(dsname, tmpname, 3348 MAXPATHLEN); 3349 } else { 3350 (void) snprintf(dsname, MAXPATHLEN, 3351 "%s/%s", poolname, ++cp); 3352 } 3353 VERIFY(nvlist_add_string(config, 3354 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3355 kmem_free(dsname, MAXPATHLEN); 3356 } 3357 kmem_free(tmpname, MAXPATHLEN); 3358 } 3359 3360 /* 3361 * Add the list of hot spares and level 2 cache devices. 3362 */ 3363 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3364 spa_add_spares(spa, config); 3365 spa_add_l2cache(spa, config); 3366 spa_config_exit(spa, SCL_CONFIG, FTAG); 3367 } 3368 3369 spa_unload(spa); 3370 spa_deactivate(spa); 3371 spa_remove(spa); 3372 mutex_exit(&spa_namespace_lock); 3373 3374 return (config); 3375 } 3376 3377 /* 3378 * Pool export/destroy 3379 * 3380 * The act of destroying or exporting a pool is very simple. We make sure there 3381 * is no more pending I/O and any references to the pool are gone. Then, we 3382 * update the pool state and sync all the labels to disk, removing the 3383 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3384 * we don't sync the labels or remove the configuration cache. 3385 */ 3386 static int 3387 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3388 boolean_t force, boolean_t hardforce) 3389 { 3390 spa_t *spa; 3391 3392 if (oldconfig) 3393 *oldconfig = NULL; 3394 3395 if (!(spa_mode_global & FWRITE)) 3396 return (EROFS); 3397 3398 mutex_enter(&spa_namespace_lock); 3399 if ((spa = spa_lookup(pool)) == NULL) { 3400 mutex_exit(&spa_namespace_lock); 3401 return (ENOENT); 3402 } 3403 3404 /* 3405 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3406 * reacquire the namespace lock, and see if we can export. 3407 */ 3408 spa_open_ref(spa, FTAG); 3409 mutex_exit(&spa_namespace_lock); 3410 spa_async_suspend(spa); 3411 mutex_enter(&spa_namespace_lock); 3412 spa_close(spa, FTAG); 3413 3414 /* 3415 * The pool will be in core if it's openable, 3416 * in which case we can modify its state. 3417 */ 3418 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3419 /* 3420 * Objsets may be open only because they're dirty, so we 3421 * have to force it to sync before checking spa_refcnt. 3422 */ 3423 txg_wait_synced(spa->spa_dsl_pool, 0); 3424 3425 /* 3426 * A pool cannot be exported or destroyed if there are active 3427 * references. If we are resetting a pool, allow references by 3428 * fault injection handlers. 3429 */ 3430 if (!spa_refcount_zero(spa) || 3431 (spa->spa_inject_ref != 0 && 3432 new_state != POOL_STATE_UNINITIALIZED)) { 3433 spa_async_resume(spa); 3434 mutex_exit(&spa_namespace_lock); 3435 return (EBUSY); 3436 } 3437 3438 /* 3439 * A pool cannot be exported if it has an active shared spare. 3440 * This is to prevent other pools stealing the active spare 3441 * from an exported pool. At user's own will, such pool can 3442 * be forcedly exported. 3443 */ 3444 if (!force && new_state == POOL_STATE_EXPORTED && 3445 spa_has_active_shared_spare(spa)) { 3446 spa_async_resume(spa); 3447 mutex_exit(&spa_namespace_lock); 3448 return (EXDEV); 3449 } 3450 3451 /* 3452 * We want this to be reflected on every label, 3453 * so mark them all dirty. spa_unload() will do the 3454 * final sync that pushes these changes out. 3455 */ 3456 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 3457 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3458 spa->spa_state = new_state; 3459 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 3460 vdev_config_dirty(spa->spa_root_vdev); 3461 spa_config_exit(spa, SCL_ALL, FTAG); 3462 } 3463 } 3464 3465 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 3466 3467 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3468 spa_unload(spa); 3469 spa_deactivate(spa); 3470 } 3471 3472 if (oldconfig && spa->spa_config) 3473 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 3474 3475 if (new_state != POOL_STATE_UNINITIALIZED) { 3476 if (!hardforce) 3477 spa_config_sync(spa, B_TRUE, B_TRUE); 3478 spa_remove(spa); 3479 } 3480 mutex_exit(&spa_namespace_lock); 3481 3482 return (0); 3483 } 3484 3485 /* 3486 * Destroy a storage pool. 3487 */ 3488 int 3489 spa_destroy(char *pool) 3490 { 3491 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 3492 B_FALSE, B_FALSE)); 3493 } 3494 3495 /* 3496 * Export a storage pool. 3497 */ 3498 int 3499 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 3500 boolean_t hardforce) 3501 { 3502 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 3503 force, hardforce)); 3504 } 3505 3506 /* 3507 * Similar to spa_export(), this unloads the spa_t without actually removing it 3508 * from the namespace in any way. 3509 */ 3510 int 3511 spa_reset(char *pool) 3512 { 3513 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 3514 B_FALSE, B_FALSE)); 3515 } 3516 3517 /* 3518 * ========================================================================== 3519 * Device manipulation 3520 * ========================================================================== 3521 */ 3522 3523 /* 3524 * Add a device to a storage pool. 3525 */ 3526 int 3527 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 3528 { 3529 uint64_t txg, id; 3530 int error; 3531 vdev_t *rvd = spa->spa_root_vdev; 3532 vdev_t *vd, *tvd; 3533 nvlist_t **spares, **l2cache; 3534 uint_t nspares, nl2cache; 3535 3536 txg = spa_vdev_enter(spa); 3537 3538 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 3539 VDEV_ALLOC_ADD)) != 0) 3540 return (spa_vdev_exit(spa, NULL, txg, error)); 3541 3542 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 3543 3544 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 3545 &nspares) != 0) 3546 nspares = 0; 3547 3548 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 3549 &nl2cache) != 0) 3550 nl2cache = 0; 3551 3552 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 3553 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 3554 3555 if (vd->vdev_children != 0 && 3556 (error = vdev_create(vd, txg, B_FALSE)) != 0) 3557 return (spa_vdev_exit(spa, vd, txg, error)); 3558 3559 /* 3560 * We must validate the spares and l2cache devices after checking the 3561 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 3562 */ 3563 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 3564 return (spa_vdev_exit(spa, vd, txg, error)); 3565 3566 /* 3567 * Transfer each new top-level vdev from vd to rvd. 3568 */ 3569 for (int c = 0; c < vd->vdev_children; c++) { 3570 3571 /* 3572 * Set the vdev id to the first hole, if one exists. 3573 */ 3574 for (id = 0; id < rvd->vdev_children; id++) { 3575 if (rvd->vdev_child[id]->vdev_ishole) { 3576 vdev_free(rvd->vdev_child[id]); 3577 break; 3578 } 3579 } 3580 tvd = vd->vdev_child[c]; 3581 vdev_remove_child(vd, tvd); 3582 tvd->vdev_id = id; 3583 vdev_add_child(rvd, tvd); 3584 vdev_config_dirty(tvd); 3585 } 3586 3587 if (nspares != 0) { 3588 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 3589 ZPOOL_CONFIG_SPARES); 3590 spa_load_spares(spa); 3591 spa->spa_spares.sav_sync = B_TRUE; 3592 } 3593 3594 if (nl2cache != 0) { 3595 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 3596 ZPOOL_CONFIG_L2CACHE); 3597 spa_load_l2cache(spa); 3598 spa->spa_l2cache.sav_sync = B_TRUE; 3599 } 3600 3601 /* 3602 * We have to be careful when adding new vdevs to an existing pool. 3603 * If other threads start allocating from these vdevs before we 3604 * sync the config cache, and we lose power, then upon reboot we may 3605 * fail to open the pool because there are DVAs that the config cache 3606 * can't translate. Therefore, we first add the vdevs without 3607 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 3608 * and then let spa_config_update() initialize the new metaslabs. 3609 * 3610 * spa_load() checks for added-but-not-initialized vdevs, so that 3611 * if we lose power at any point in this sequence, the remaining 3612 * steps will be completed the next time we load the pool. 3613 */ 3614 (void) spa_vdev_exit(spa, vd, txg, 0); 3615 3616 mutex_enter(&spa_namespace_lock); 3617 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3618 mutex_exit(&spa_namespace_lock); 3619 3620 return (0); 3621 } 3622 3623 /* 3624 * Attach a device to a mirror. The arguments are the path to any device 3625 * in the mirror, and the nvroot for the new device. If the path specifies 3626 * a device that is not mirrored, we automatically insert the mirror vdev. 3627 * 3628 * If 'replacing' is specified, the new device is intended to replace the 3629 * existing device; in this case the two devices are made into their own 3630 * mirror using the 'replacing' vdev, which is functionally identical to 3631 * the mirror vdev (it actually reuses all the same ops) but has a few 3632 * extra rules: you can't attach to it after it's been created, and upon 3633 * completion of resilvering, the first disk (the one being replaced) 3634 * is automatically detached. 3635 */ 3636 int 3637 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 3638 { 3639 uint64_t txg, open_txg; 3640 vdev_t *rvd = spa->spa_root_vdev; 3641 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3642 vdev_ops_t *pvops; 3643 char *oldvdpath, *newvdpath; 3644 int newvd_isspare; 3645 int error; 3646 3647 txg = spa_vdev_enter(spa); 3648 3649 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3650 3651 if (oldvd == NULL) 3652 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3653 3654 if (!oldvd->vdev_ops->vdev_op_leaf) 3655 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3656 3657 pvd = oldvd->vdev_parent; 3658 3659 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3660 VDEV_ALLOC_ADD)) != 0) 3661 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3662 3663 if (newrootvd->vdev_children != 1) 3664 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3665 3666 newvd = newrootvd->vdev_child[0]; 3667 3668 if (!newvd->vdev_ops->vdev_op_leaf) 3669 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3670 3671 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3672 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3673 3674 /* 3675 * Spares can't replace logs 3676 */ 3677 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3678 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3679 3680 if (!replacing) { 3681 /* 3682 * For attach, the only allowable parent is a mirror or the root 3683 * vdev. 3684 */ 3685 if (pvd->vdev_ops != &vdev_mirror_ops && 3686 pvd->vdev_ops != &vdev_root_ops) 3687 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3688 3689 pvops = &vdev_mirror_ops; 3690 } else { 3691 /* 3692 * Active hot spares can only be replaced by inactive hot 3693 * spares. 3694 */ 3695 if (pvd->vdev_ops == &vdev_spare_ops && 3696 pvd->vdev_child[1] == oldvd && 3697 !spa_has_spare(spa, newvd->vdev_guid)) 3698 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3699 3700 /* 3701 * If the source is a hot spare, and the parent isn't already a 3702 * spare, then we want to create a new hot spare. Otherwise, we 3703 * want to create a replacing vdev. The user is not allowed to 3704 * attach to a spared vdev child unless the 'isspare' state is 3705 * the same (spare replaces spare, non-spare replaces 3706 * non-spare). 3707 */ 3708 if (pvd->vdev_ops == &vdev_replacing_ops) 3709 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3710 else if (pvd->vdev_ops == &vdev_spare_ops && 3711 newvd->vdev_isspare != oldvd->vdev_isspare) 3712 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3713 else if (pvd->vdev_ops != &vdev_spare_ops && 3714 newvd->vdev_isspare) 3715 pvops = &vdev_spare_ops; 3716 else 3717 pvops = &vdev_replacing_ops; 3718 } 3719 3720 /* 3721 * Make sure the new device is big enough. 3722 */ 3723 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3724 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3725 3726 /* 3727 * The new device cannot have a higher alignment requirement 3728 * than the top-level vdev. 3729 */ 3730 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3731 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3732 3733 /* 3734 * If this is an in-place replacement, update oldvd's path and devid 3735 * to make it distinguishable from newvd, and unopenable from now on. 3736 */ 3737 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3738 spa_strfree(oldvd->vdev_path); 3739 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3740 KM_SLEEP); 3741 (void) sprintf(oldvd->vdev_path, "%s/%s", 3742 newvd->vdev_path, "old"); 3743 if (oldvd->vdev_devid != NULL) { 3744 spa_strfree(oldvd->vdev_devid); 3745 oldvd->vdev_devid = NULL; 3746 } 3747 } 3748 3749 /* 3750 * If the parent is not a mirror, or if we're replacing, insert the new 3751 * mirror/replacing/spare vdev above oldvd. 3752 */ 3753 if (pvd->vdev_ops != pvops) 3754 pvd = vdev_add_parent(oldvd, pvops); 3755 3756 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3757 ASSERT(pvd->vdev_ops == pvops); 3758 ASSERT(oldvd->vdev_parent == pvd); 3759 3760 /* 3761 * Extract the new device from its root and add it to pvd. 3762 */ 3763 vdev_remove_child(newrootvd, newvd); 3764 newvd->vdev_id = pvd->vdev_children; 3765 newvd->vdev_crtxg = oldvd->vdev_crtxg; 3766 vdev_add_child(pvd, newvd); 3767 3768 tvd = newvd->vdev_top; 3769 ASSERT(pvd->vdev_top == tvd); 3770 ASSERT(tvd->vdev_parent == rvd); 3771 3772 vdev_config_dirty(tvd); 3773 3774 /* 3775 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 3776 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 3777 */ 3778 open_txg = txg + TXG_CONCURRENT_STATES - 1; 3779 3780 vdev_dtl_dirty(newvd, DTL_MISSING, 3781 TXG_INITIAL, open_txg - TXG_INITIAL + 1); 3782 3783 if (newvd->vdev_isspare) { 3784 spa_spare_activate(newvd); 3785 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3786 } 3787 3788 oldvdpath = spa_strdup(oldvd->vdev_path); 3789 newvdpath = spa_strdup(newvd->vdev_path); 3790 newvd_isspare = newvd->vdev_isspare; 3791 3792 /* 3793 * Mark newvd's DTL dirty in this txg. 3794 */ 3795 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3796 3797 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 3798 3799 spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL, 3800 CRED(), "%s vdev=%s %s vdev=%s", 3801 replacing && newvd_isspare ? "spare in" : 3802 replacing ? "replace" : "attach", newvdpath, 3803 replacing ? "for" : "to", oldvdpath); 3804 3805 spa_strfree(oldvdpath); 3806 spa_strfree(newvdpath); 3807 3808 /* 3809 * Kick off a resilver to update newvd. 3810 */ 3811 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); 3812 3813 return (0); 3814 } 3815 3816 /* 3817 * Detach a device from a mirror or replacing vdev. 3818 * If 'replace_done' is specified, only detach if the parent 3819 * is a replacing vdev. 3820 */ 3821 int 3822 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3823 { 3824 uint64_t txg; 3825 int error; 3826 vdev_t *rvd = spa->spa_root_vdev; 3827 vdev_t *vd, *pvd, *cvd, *tvd; 3828 boolean_t unspare = B_FALSE; 3829 uint64_t unspare_guid; 3830 size_t len; 3831 char *vdpath; 3832 3833 txg = spa_vdev_enter(spa); 3834 3835 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3836 3837 if (vd == NULL) 3838 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3839 3840 if (!vd->vdev_ops->vdev_op_leaf) 3841 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3842 3843 pvd = vd->vdev_parent; 3844 3845 /* 3846 * If the parent/child relationship is not as expected, don't do it. 3847 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 3848 * vdev that's replacing B with C. The user's intent in replacing 3849 * is to go from M(A,B) to M(A,C). If the user decides to cancel 3850 * the replace by detaching C, the expected behavior is to end up 3851 * M(A,B). But suppose that right after deciding to detach C, 3852 * the replacement of B completes. We would have M(A,C), and then 3853 * ask to detach C, which would leave us with just A -- not what 3854 * the user wanted. To prevent this, we make sure that the 3855 * parent/child relationship hasn't changed -- in this example, 3856 * that C's parent is still the replacing vdev R. 3857 */ 3858 if (pvd->vdev_guid != pguid && pguid != 0) 3859 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3860 3861 /* 3862 * If replace_done is specified, only remove this device if it's 3863 * the first child of a replacing vdev. For the 'spare' vdev, either 3864 * disk can be removed. 3865 */ 3866 if (replace_done) { 3867 if (pvd->vdev_ops == &vdev_replacing_ops) { 3868 if (vd->vdev_id != 0) 3869 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3870 } else if (pvd->vdev_ops != &vdev_spare_ops) { 3871 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3872 } 3873 } 3874 3875 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 3876 spa_version(spa) >= SPA_VERSION_SPARES); 3877 3878 /* 3879 * Only mirror, replacing, and spare vdevs support detach. 3880 */ 3881 if (pvd->vdev_ops != &vdev_replacing_ops && 3882 pvd->vdev_ops != &vdev_mirror_ops && 3883 pvd->vdev_ops != &vdev_spare_ops) 3884 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3885 3886 /* 3887 * If this device has the only valid copy of some data, 3888 * we cannot safely detach it. 3889 */ 3890 if (vdev_dtl_required(vd)) 3891 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3892 3893 ASSERT(pvd->vdev_children >= 2); 3894 3895 /* 3896 * If we are detaching the second disk from a replacing vdev, then 3897 * check to see if we changed the original vdev's path to have "/old" 3898 * at the end in spa_vdev_attach(). If so, undo that change now. 3899 */ 3900 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 3901 pvd->vdev_child[0]->vdev_path != NULL && 3902 pvd->vdev_child[1]->vdev_path != NULL) { 3903 ASSERT(pvd->vdev_child[1] == vd); 3904 cvd = pvd->vdev_child[0]; 3905 len = strlen(vd->vdev_path); 3906 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3907 strcmp(cvd->vdev_path + len, "/old") == 0) { 3908 spa_strfree(cvd->vdev_path); 3909 cvd->vdev_path = spa_strdup(vd->vdev_path); 3910 } 3911 } 3912 3913 /* 3914 * If we are detaching the original disk from a spare, then it implies 3915 * that the spare should become a real disk, and be removed from the 3916 * active spare list for the pool. 3917 */ 3918 if (pvd->vdev_ops == &vdev_spare_ops && 3919 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare) 3920 unspare = B_TRUE; 3921 3922 /* 3923 * Erase the disk labels so the disk can be used for other things. 3924 * This must be done after all other error cases are handled, 3925 * but before we disembowel vd (so we can still do I/O to it). 3926 * But if we can't do it, don't treat the error as fatal -- 3927 * it may be that the unwritability of the disk is the reason 3928 * it's being detached! 3929 */ 3930 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3931 3932 /* 3933 * Remove vd from its parent and compact the parent's children. 3934 */ 3935 vdev_remove_child(pvd, vd); 3936 vdev_compact_children(pvd); 3937 3938 /* 3939 * Remember one of the remaining children so we can get tvd below. 3940 */ 3941 cvd = pvd->vdev_child[0]; 3942 3943 /* 3944 * If we need to remove the remaining child from the list of hot spares, 3945 * do it now, marking the vdev as no longer a spare in the process. 3946 * We must do this before vdev_remove_parent(), because that can 3947 * change the GUID if it creates a new toplevel GUID. For a similar 3948 * reason, we must remove the spare now, in the same txg as the detach; 3949 * otherwise someone could attach a new sibling, change the GUID, and 3950 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 3951 */ 3952 if (unspare) { 3953 ASSERT(cvd->vdev_isspare); 3954 spa_spare_remove(cvd); 3955 unspare_guid = cvd->vdev_guid; 3956 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3957 } 3958 3959 /* 3960 * If the parent mirror/replacing vdev only has one child, 3961 * the parent is no longer needed. Remove it from the tree. 3962 */ 3963 if (pvd->vdev_children == 1) 3964 vdev_remove_parent(cvd); 3965 3966 /* 3967 * We don't set tvd until now because the parent we just removed 3968 * may have been the previous top-level vdev. 3969 */ 3970 tvd = cvd->vdev_top; 3971 ASSERT(tvd->vdev_parent == rvd); 3972 3973 /* 3974 * Reevaluate the parent vdev state. 3975 */ 3976 vdev_propagate_state(cvd); 3977 3978 /* 3979 * If the 'autoexpand' property is set on the pool then automatically 3980 * try to expand the size of the pool. For example if the device we 3981 * just detached was smaller than the others, it may be possible to 3982 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 3983 * first so that we can obtain the updated sizes of the leaf vdevs. 3984 */ 3985 if (spa->spa_autoexpand) { 3986 vdev_reopen(tvd); 3987 vdev_expand(tvd, txg); 3988 } 3989 3990 vdev_config_dirty(tvd); 3991 3992 /* 3993 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 3994 * vd->vdev_detached is set and free vd's DTL object in syncing context. 3995 * But first make sure we're not on any *other* txg's DTL list, to 3996 * prevent vd from being accessed after it's freed. 3997 */ 3998 vdpath = spa_strdup(vd->vdev_path); 3999 for (int t = 0; t < TXG_SIZE; t++) 4000 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4001 vd->vdev_detached = B_TRUE; 4002 vdev_dirty(tvd, VDD_DTL, vd, txg); 4003 4004 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4005 4006 error = spa_vdev_exit(spa, vd, txg, 0); 4007 4008 spa_history_internal_log(LOG_POOL_VDEV_DETACH, spa, NULL, CRED(), 4009 "vdev=%s", vdpath); 4010 spa_strfree(vdpath); 4011 4012 /* 4013 * If this was the removal of the original device in a hot spare vdev, 4014 * then we want to go through and remove the device from the hot spare 4015 * list of every other pool. 4016 */ 4017 if (unspare) { 4018 spa_t *myspa = spa; 4019 spa = NULL; 4020 mutex_enter(&spa_namespace_lock); 4021 while ((spa = spa_next(spa)) != NULL) { 4022 if (spa->spa_state != POOL_STATE_ACTIVE) 4023 continue; 4024 if (spa == myspa) 4025 continue; 4026 spa_open_ref(spa, FTAG); 4027 mutex_exit(&spa_namespace_lock); 4028 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4029 mutex_enter(&spa_namespace_lock); 4030 spa_close(spa, FTAG); 4031 } 4032 mutex_exit(&spa_namespace_lock); 4033 } 4034 4035 return (error); 4036 } 4037 4038 /* 4039 * Split a set of devices from their mirrors, and create a new pool from them. 4040 */ 4041 int 4042 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4043 nvlist_t *props, boolean_t exp) 4044 { 4045 int error = 0; 4046 uint64_t txg, *glist; 4047 spa_t *newspa; 4048 uint_t c, children, lastlog; 4049 nvlist_t **child, *nvl, *tmp; 4050 dmu_tx_t *tx; 4051 char *altroot = NULL; 4052 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4053 boolean_t activate_slog; 4054 4055 if (!spa_writeable(spa)) 4056 return (EROFS); 4057 4058 txg = spa_vdev_enter(spa); 4059 4060 /* clear the log and flush everything up to now */ 4061 activate_slog = spa_passivate_log(spa); 4062 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4063 error = spa_offline_log(spa); 4064 txg = spa_vdev_config_enter(spa); 4065 4066 if (activate_slog) 4067 spa_activate_log(spa); 4068 4069 if (error != 0) 4070 return (spa_vdev_exit(spa, NULL, txg, error)); 4071 4072 /* check new spa name before going any further */ 4073 if (spa_lookup(newname) != NULL) 4074 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4075 4076 /* 4077 * scan through all the children to ensure they're all mirrors 4078 */ 4079 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4080 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4081 &children) != 0) 4082 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4083 4084 /* first, check to ensure we've got the right child count */ 4085 rvd = spa->spa_root_vdev; 4086 lastlog = 0; 4087 for (c = 0; c < rvd->vdev_children; c++) { 4088 vdev_t *vd = rvd->vdev_child[c]; 4089 4090 /* don't count the holes & logs as children */ 4091 if (vd->vdev_islog || vd->vdev_ishole) { 4092 if (lastlog == 0) 4093 lastlog = c; 4094 continue; 4095 } 4096 4097 lastlog = 0; 4098 } 4099 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4100 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4101 4102 /* next, ensure no spare or cache devices are part of the split */ 4103 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4104 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4105 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4106 4107 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4108 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4109 4110 /* then, loop over each vdev and validate it */ 4111 for (c = 0; c < children; c++) { 4112 uint64_t is_hole = 0; 4113 4114 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4115 &is_hole); 4116 4117 if (is_hole != 0) { 4118 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4119 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4120 continue; 4121 } else { 4122 error = EINVAL; 4123 break; 4124 } 4125 } 4126 4127 /* which disk is going to be split? */ 4128 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4129 &glist[c]) != 0) { 4130 error = EINVAL; 4131 break; 4132 } 4133 4134 /* look it up in the spa */ 4135 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4136 if (vml[c] == NULL) { 4137 error = ENODEV; 4138 break; 4139 } 4140 4141 /* make sure there's nothing stopping the split */ 4142 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4143 vml[c]->vdev_islog || 4144 vml[c]->vdev_ishole || 4145 vml[c]->vdev_isspare || 4146 vml[c]->vdev_isl2cache || 4147 !vdev_writeable(vml[c]) || 4148 vml[c]->vdev_children != 0 || 4149 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4150 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4151 error = EINVAL; 4152 break; 4153 } 4154 4155 if (vdev_dtl_required(vml[c])) { 4156 error = EBUSY; 4157 break; 4158 } 4159 4160 /* we need certain info from the top level */ 4161 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4162 vml[c]->vdev_top->vdev_ms_array) == 0); 4163 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4164 vml[c]->vdev_top->vdev_ms_shift) == 0); 4165 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4166 vml[c]->vdev_top->vdev_asize) == 0); 4167 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4168 vml[c]->vdev_top->vdev_ashift) == 0); 4169 } 4170 4171 if (error != 0) { 4172 kmem_free(vml, children * sizeof (vdev_t *)); 4173 kmem_free(glist, children * sizeof (uint64_t)); 4174 return (spa_vdev_exit(spa, NULL, txg, error)); 4175 } 4176 4177 /* stop writers from using the disks */ 4178 for (c = 0; c < children; c++) { 4179 if (vml[c] != NULL) 4180 vml[c]->vdev_offline = B_TRUE; 4181 } 4182 vdev_reopen(spa->spa_root_vdev); 4183 4184 /* 4185 * Temporarily record the splitting vdevs in the spa config. This 4186 * will disappear once the config is regenerated. 4187 */ 4188 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4189 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4190 glist, children) == 0); 4191 kmem_free(glist, children * sizeof (uint64_t)); 4192 4193 mutex_enter(&spa->spa_props_lock); 4194 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4195 nvl) == 0); 4196 mutex_exit(&spa->spa_props_lock); 4197 spa->spa_config_splitting = nvl; 4198 vdev_config_dirty(spa->spa_root_vdev); 4199 4200 /* configure and create the new pool */ 4201 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4202 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4203 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4204 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4205 spa_version(spa)) == 0); 4206 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4207 spa->spa_config_txg) == 0); 4208 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4209 spa_generate_guid(NULL)) == 0); 4210 (void) nvlist_lookup_string(props, 4211 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4212 4213 /* add the new pool to the namespace */ 4214 newspa = spa_add(newname, config, altroot); 4215 newspa->spa_config_txg = spa->spa_config_txg; 4216 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4217 4218 /* release the spa config lock, retaining the namespace lock */ 4219 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4220 4221 if (zio_injection_enabled) 4222 zio_handle_panic_injection(spa, FTAG, 1); 4223 4224 spa_activate(newspa, spa_mode_global); 4225 spa_async_suspend(newspa); 4226 4227 /* create the new pool from the disks of the original pool */ 4228 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4229 if (error) 4230 goto out; 4231 4232 /* if that worked, generate a real config for the new pool */ 4233 if (newspa->spa_root_vdev != NULL) { 4234 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4235 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4236 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4237 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4238 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4239 B_TRUE)); 4240 } 4241 4242 /* set the props */ 4243 if (props != NULL) { 4244 spa_configfile_set(newspa, props, B_FALSE); 4245 error = spa_prop_set(newspa, props); 4246 if (error) 4247 goto out; 4248 } 4249 4250 /* flush everything */ 4251 txg = spa_vdev_config_enter(newspa); 4252 vdev_config_dirty(newspa->spa_root_vdev); 4253 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4254 4255 if (zio_injection_enabled) 4256 zio_handle_panic_injection(spa, FTAG, 2); 4257 4258 spa_async_resume(newspa); 4259 4260 /* finally, update the original pool's config */ 4261 txg = spa_vdev_config_enter(spa); 4262 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4263 error = dmu_tx_assign(tx, TXG_WAIT); 4264 if (error != 0) 4265 dmu_tx_abort(tx); 4266 for (c = 0; c < children; c++) { 4267 if (vml[c] != NULL) { 4268 vdev_split(vml[c]); 4269 if (error == 0) 4270 spa_history_internal_log(LOG_POOL_VDEV_DETACH, 4271 spa, tx, CRED(), "vdev=%s", 4272 vml[c]->vdev_path); 4273 vdev_free(vml[c]); 4274 } 4275 } 4276 vdev_config_dirty(spa->spa_root_vdev); 4277 spa->spa_config_splitting = NULL; 4278 nvlist_free(nvl); 4279 if (error == 0) 4280 dmu_tx_commit(tx); 4281 (void) spa_vdev_exit(spa, NULL, txg, 0); 4282 4283 if (zio_injection_enabled) 4284 zio_handle_panic_injection(spa, FTAG, 3); 4285 4286 /* split is complete; log a history record */ 4287 spa_history_internal_log(LOG_POOL_SPLIT, newspa, NULL, CRED(), 4288 "split new pool %s from pool %s", newname, spa_name(spa)); 4289 4290 kmem_free(vml, children * sizeof (vdev_t *)); 4291 4292 /* if we're not going to mount the filesystems in userland, export */ 4293 if (exp) 4294 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4295 B_FALSE, B_FALSE); 4296 4297 return (error); 4298 4299 out: 4300 spa_unload(newspa); 4301 spa_deactivate(newspa); 4302 spa_remove(newspa); 4303 4304 txg = spa_vdev_config_enter(spa); 4305 4306 /* re-online all offlined disks */ 4307 for (c = 0; c < children; c++) { 4308 if (vml[c] != NULL) 4309 vml[c]->vdev_offline = B_FALSE; 4310 } 4311 vdev_reopen(spa->spa_root_vdev); 4312 4313 nvlist_free(spa->spa_config_splitting); 4314 spa->spa_config_splitting = NULL; 4315 (void) spa_vdev_exit(spa, NULL, txg, error); 4316 4317 kmem_free(vml, children * sizeof (vdev_t *)); 4318 return (error); 4319 } 4320 4321 static nvlist_t * 4322 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4323 { 4324 for (int i = 0; i < count; i++) { 4325 uint64_t guid; 4326 4327 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4328 &guid) == 0); 4329 4330 if (guid == target_guid) 4331 return (nvpp[i]); 4332 } 4333 4334 return (NULL); 4335 } 4336 4337 static void 4338 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4339 nvlist_t *dev_to_remove) 4340 { 4341 nvlist_t **newdev = NULL; 4342 4343 if (count > 1) 4344 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4345 4346 for (int i = 0, j = 0; i < count; i++) { 4347 if (dev[i] == dev_to_remove) 4348 continue; 4349 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4350 } 4351 4352 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4353 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4354 4355 for (int i = 0; i < count - 1; i++) 4356 nvlist_free(newdev[i]); 4357 4358 if (count > 1) 4359 kmem_free(newdev, (count - 1) * sizeof (void *)); 4360 } 4361 4362 /* 4363 * Removing a device from the vdev namespace requires several steps 4364 * and can take a significant amount of time. As a result we use 4365 * the spa_vdev_config_[enter/exit] functions which allow us to 4366 * grab and release the spa_config_lock while still holding the namespace 4367 * lock. During each step the configuration is synced out. 4368 */ 4369 4370 /* 4371 * Evacuate the device. 4372 */ 4373 int 4374 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 4375 { 4376 int error = 0; 4377 uint64_t txg; 4378 4379 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4380 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4381 ASSERT(vd == vd->vdev_top); 4382 4383 /* 4384 * Evacuate the device. We don't hold the config lock as writer 4385 * since we need to do I/O but we do keep the 4386 * spa_namespace_lock held. Once this completes the device 4387 * should no longer have any blocks allocated on it. 4388 */ 4389 if (vd->vdev_islog) { 4390 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 4391 NULL, DS_FIND_CHILDREN); 4392 } else { 4393 error = ENOTSUP; /* until we have bp rewrite */ 4394 } 4395 4396 txg_wait_synced(spa_get_dsl(spa), 0); 4397 4398 if (error) 4399 return (error); 4400 4401 /* 4402 * The evacuation succeeded. Remove any remaining MOS metadata 4403 * associated with this vdev, and wait for these changes to sync. 4404 */ 4405 txg = spa_vdev_config_enter(spa); 4406 vd->vdev_removing = B_TRUE; 4407 vdev_dirty(vd, 0, NULL, txg); 4408 vdev_config_dirty(vd); 4409 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4410 4411 return (0); 4412 } 4413 4414 /* 4415 * Complete the removal by cleaning up the namespace. 4416 */ 4417 void 4418 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 4419 { 4420 vdev_t *rvd = spa->spa_root_vdev; 4421 uint64_t id = vd->vdev_id; 4422 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 4423 4424 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4425 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4426 ASSERT(vd == vd->vdev_top); 4427 4428 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4429 4430 if (list_link_active(&vd->vdev_state_dirty_node)) 4431 vdev_state_clean(vd); 4432 if (list_link_active(&vd->vdev_config_dirty_node)) 4433 vdev_config_clean(vd); 4434 4435 vdev_free(vd); 4436 4437 if (last_vdev) { 4438 vdev_compact_children(rvd); 4439 } else { 4440 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 4441 vdev_add_child(rvd, vd); 4442 } 4443 vdev_config_dirty(rvd); 4444 4445 /* 4446 * Reassess the health of our root vdev. 4447 */ 4448 vdev_reopen(rvd); 4449 } 4450 4451 /* 4452 * Remove a device from the pool. Currently, this supports removing only hot 4453 * spares, slogs, and level 2 ARC devices. 4454 */ 4455 int 4456 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 4457 { 4458 vdev_t *vd; 4459 metaslab_group_t *mg; 4460 nvlist_t **spares, **l2cache, *nv; 4461 uint64_t txg = 0; 4462 uint_t nspares, nl2cache; 4463 int error = 0; 4464 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 4465 4466 if (!locked) 4467 txg = spa_vdev_enter(spa); 4468 4469 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4470 4471 if (spa->spa_spares.sav_vdevs != NULL && 4472 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4473 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 4474 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 4475 /* 4476 * Only remove the hot spare if it's not currently in use 4477 * in this pool. 4478 */ 4479 if (vd == NULL || unspare) { 4480 spa_vdev_remove_aux(spa->spa_spares.sav_config, 4481 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 4482 spa_load_spares(spa); 4483 spa->spa_spares.sav_sync = B_TRUE; 4484 } else { 4485 error = EBUSY; 4486 } 4487 } else if (spa->spa_l2cache.sav_vdevs != NULL && 4488 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4489 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 4490 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 4491 /* 4492 * Cache devices can always be removed. 4493 */ 4494 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 4495 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 4496 spa_load_l2cache(spa); 4497 spa->spa_l2cache.sav_sync = B_TRUE; 4498 } else if (vd != NULL && vd->vdev_islog) { 4499 ASSERT(!locked); 4500 ASSERT(vd == vd->vdev_top); 4501 4502 /* 4503 * XXX - Once we have bp-rewrite this should 4504 * become the common case. 4505 */ 4506 4507 mg = vd->vdev_mg; 4508 4509 /* 4510 * Stop allocating from this vdev. 4511 */ 4512 metaslab_group_passivate(mg); 4513 4514 /* 4515 * Wait for the youngest allocations and frees to sync, 4516 * and then wait for the deferral of those frees to finish. 4517 */ 4518 spa_vdev_config_exit(spa, NULL, 4519 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 4520 4521 /* 4522 * Attempt to evacuate the vdev. 4523 */ 4524 error = spa_vdev_remove_evacuate(spa, vd); 4525 4526 txg = spa_vdev_config_enter(spa); 4527 4528 /* 4529 * If we couldn't evacuate the vdev, unwind. 4530 */ 4531 if (error) { 4532 metaslab_group_activate(mg); 4533 return (spa_vdev_exit(spa, NULL, txg, error)); 4534 } 4535 4536 /* 4537 * Clean up the vdev namespace. 4538 */ 4539 spa_vdev_remove_from_namespace(spa, vd); 4540 4541 } else if (vd != NULL) { 4542 /* 4543 * Normal vdevs cannot be removed (yet). 4544 */ 4545 error = ENOTSUP; 4546 } else { 4547 /* 4548 * There is no vdev of any kind with the specified guid. 4549 */ 4550 error = ENOENT; 4551 } 4552 4553 if (!locked) 4554 return (spa_vdev_exit(spa, NULL, txg, error)); 4555 4556 return (error); 4557 } 4558 4559 /* 4560 * Find any device that's done replacing, or a vdev marked 'unspare' that's 4561 * current spared, so we can detach it. 4562 */ 4563 static vdev_t * 4564 spa_vdev_resilver_done_hunt(vdev_t *vd) 4565 { 4566 vdev_t *newvd, *oldvd; 4567 4568 for (int c = 0; c < vd->vdev_children; c++) { 4569 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 4570 if (oldvd != NULL) 4571 return (oldvd); 4572 } 4573 4574 /* 4575 * Check for a completed replacement. 4576 */ 4577 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 4578 oldvd = vd->vdev_child[0]; 4579 newvd = vd->vdev_child[1]; 4580 4581 if (vdev_dtl_empty(newvd, DTL_MISSING) && 4582 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4583 !vdev_dtl_required(oldvd)) 4584 return (oldvd); 4585 } 4586 4587 /* 4588 * Check for a completed resilver with the 'unspare' flag set. 4589 */ 4590 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 4591 newvd = vd->vdev_child[0]; 4592 oldvd = vd->vdev_child[1]; 4593 4594 if (newvd->vdev_unspare && 4595 vdev_dtl_empty(newvd, DTL_MISSING) && 4596 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4597 !vdev_dtl_required(oldvd)) { 4598 newvd->vdev_unspare = 0; 4599 return (oldvd); 4600 } 4601 } 4602 4603 return (NULL); 4604 } 4605 4606 static void 4607 spa_vdev_resilver_done(spa_t *spa) 4608 { 4609 vdev_t *vd, *pvd, *ppvd; 4610 uint64_t guid, sguid, pguid, ppguid; 4611 4612 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4613 4614 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 4615 pvd = vd->vdev_parent; 4616 ppvd = pvd->vdev_parent; 4617 guid = vd->vdev_guid; 4618 pguid = pvd->vdev_guid; 4619 ppguid = ppvd->vdev_guid; 4620 sguid = 0; 4621 /* 4622 * If we have just finished replacing a hot spared device, then 4623 * we need to detach the parent's first child (the original hot 4624 * spare) as well. 4625 */ 4626 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { 4627 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 4628 ASSERT(ppvd->vdev_children == 2); 4629 sguid = ppvd->vdev_child[1]->vdev_guid; 4630 } 4631 spa_config_exit(spa, SCL_ALL, FTAG); 4632 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 4633 return; 4634 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 4635 return; 4636 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4637 } 4638 4639 spa_config_exit(spa, SCL_ALL, FTAG); 4640 } 4641 4642 /* 4643 * Update the stored path or FRU for this vdev. 4644 */ 4645 int 4646 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 4647 boolean_t ispath) 4648 { 4649 vdev_t *vd; 4650 boolean_t sync = B_FALSE; 4651 4652 spa_vdev_state_enter(spa, SCL_ALL); 4653 4654 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4655 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 4656 4657 if (!vd->vdev_ops->vdev_op_leaf) 4658 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4659 4660 if (ispath) { 4661 if (strcmp(value, vd->vdev_path) != 0) { 4662 spa_strfree(vd->vdev_path); 4663 vd->vdev_path = spa_strdup(value); 4664 sync = B_TRUE; 4665 } 4666 } else { 4667 if (vd->vdev_fru == NULL) { 4668 vd->vdev_fru = spa_strdup(value); 4669 sync = B_TRUE; 4670 } else if (strcmp(value, vd->vdev_fru) != 0) { 4671 spa_strfree(vd->vdev_fru); 4672 vd->vdev_fru = spa_strdup(value); 4673 sync = B_TRUE; 4674 } 4675 } 4676 4677 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 4678 } 4679 4680 int 4681 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 4682 { 4683 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 4684 } 4685 4686 int 4687 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 4688 { 4689 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 4690 } 4691 4692 /* 4693 * ========================================================================== 4694 * SPA Scrubbing 4695 * ========================================================================== 4696 */ 4697 4698 int 4699 spa_scrub(spa_t *spa, pool_scrub_type_t type) 4700 { 4701 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4702 4703 if ((uint_t)type >= POOL_SCRUB_TYPES) 4704 return (ENOTSUP); 4705 4706 /* 4707 * If a resilver was requested, but there is no DTL on a 4708 * writeable leaf device, we have nothing to do. 4709 */ 4710 if (type == POOL_SCRUB_RESILVER && 4711 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4712 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4713 return (0); 4714 } 4715 4716 if (type == POOL_SCRUB_EVERYTHING && 4717 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE && 4718 spa->spa_dsl_pool->dp_scrub_isresilver) 4719 return (EBUSY); 4720 4721 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) { 4722 return (dsl_pool_scrub_clean(spa->spa_dsl_pool)); 4723 } else if (type == POOL_SCRUB_NONE) { 4724 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool)); 4725 } else { 4726 return (EINVAL); 4727 } 4728 } 4729 4730 /* 4731 * ========================================================================== 4732 * SPA async task processing 4733 * ========================================================================== 4734 */ 4735 4736 static void 4737 spa_async_remove(spa_t *spa, vdev_t *vd) 4738 { 4739 if (vd->vdev_remove_wanted) { 4740 vd->vdev_remove_wanted = 0; 4741 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 4742 4743 /* 4744 * We want to clear the stats, but we don't want to do a full 4745 * vdev_clear() as that will cause us to throw away 4746 * degraded/faulted state as well as attempt to reopen the 4747 * device, all of which is a waste. 4748 */ 4749 vd->vdev_stat.vs_read_errors = 0; 4750 vd->vdev_stat.vs_write_errors = 0; 4751 vd->vdev_stat.vs_checksum_errors = 0; 4752 4753 vdev_state_dirty(vd->vdev_top); 4754 } 4755 4756 for (int c = 0; c < vd->vdev_children; c++) 4757 spa_async_remove(spa, vd->vdev_child[c]); 4758 } 4759 4760 static void 4761 spa_async_probe(spa_t *spa, vdev_t *vd) 4762 { 4763 if (vd->vdev_probe_wanted) { 4764 vd->vdev_probe_wanted = 0; 4765 vdev_reopen(vd); /* vdev_open() does the actual probe */ 4766 } 4767 4768 for (int c = 0; c < vd->vdev_children; c++) 4769 spa_async_probe(spa, vd->vdev_child[c]); 4770 } 4771 4772 static void 4773 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 4774 { 4775 sysevent_id_t eid; 4776 nvlist_t *attr; 4777 char *physpath; 4778 4779 if (!spa->spa_autoexpand) 4780 return; 4781 4782 for (int c = 0; c < vd->vdev_children; c++) { 4783 vdev_t *cvd = vd->vdev_child[c]; 4784 spa_async_autoexpand(spa, cvd); 4785 } 4786 4787 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 4788 return; 4789 4790 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4791 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 4792 4793 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4794 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 4795 4796 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 4797 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 4798 4799 nvlist_free(attr); 4800 kmem_free(physpath, MAXPATHLEN); 4801 } 4802 4803 static void 4804 spa_async_thread(spa_t *spa) 4805 { 4806 int tasks; 4807 4808 ASSERT(spa->spa_sync_on); 4809 4810 mutex_enter(&spa->spa_async_lock); 4811 tasks = spa->spa_async_tasks; 4812 spa->spa_async_tasks = 0; 4813 mutex_exit(&spa->spa_async_lock); 4814 4815 /* 4816 * See if the config needs to be updated. 4817 */ 4818 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 4819 uint64_t old_space, new_space; 4820 4821 mutex_enter(&spa_namespace_lock); 4822 old_space = metaslab_class_get_space(spa_normal_class(spa)); 4823 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4824 new_space = metaslab_class_get_space(spa_normal_class(spa)); 4825 mutex_exit(&spa_namespace_lock); 4826 4827 /* 4828 * If the pool grew as a result of the config update, 4829 * then log an internal history event. 4830 */ 4831 if (new_space != old_space) { 4832 spa_history_internal_log(LOG_POOL_VDEV_ONLINE, 4833 spa, NULL, CRED(), 4834 "pool '%s' size: %llu(+%llu)", 4835 spa_name(spa), new_space, new_space - old_space); 4836 } 4837 } 4838 4839 /* 4840 * See if any devices need to be marked REMOVED. 4841 */ 4842 if (tasks & SPA_ASYNC_REMOVE) { 4843 spa_vdev_state_enter(spa, SCL_NONE); 4844 spa_async_remove(spa, spa->spa_root_vdev); 4845 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 4846 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 4847 for (int i = 0; i < spa->spa_spares.sav_count; i++) 4848 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 4849 (void) spa_vdev_state_exit(spa, NULL, 0); 4850 } 4851 4852 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 4853 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4854 spa_async_autoexpand(spa, spa->spa_root_vdev); 4855 spa_config_exit(spa, SCL_CONFIG, FTAG); 4856 } 4857 4858 /* 4859 * See if any devices need to be probed. 4860 */ 4861 if (tasks & SPA_ASYNC_PROBE) { 4862 spa_vdev_state_enter(spa, SCL_NONE); 4863 spa_async_probe(spa, spa->spa_root_vdev); 4864 (void) spa_vdev_state_exit(spa, NULL, 0); 4865 } 4866 4867 /* 4868 * If any devices are done replacing, detach them. 4869 */ 4870 if (tasks & SPA_ASYNC_RESILVER_DONE) 4871 spa_vdev_resilver_done(spa); 4872 4873 /* 4874 * Kick off a resilver. 4875 */ 4876 if (tasks & SPA_ASYNC_RESILVER) 4877 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0); 4878 4879 /* 4880 * Let the world know that we're done. 4881 */ 4882 mutex_enter(&spa->spa_async_lock); 4883 spa->spa_async_thread = NULL; 4884 cv_broadcast(&spa->spa_async_cv); 4885 mutex_exit(&spa->spa_async_lock); 4886 thread_exit(); 4887 } 4888 4889 void 4890 spa_async_suspend(spa_t *spa) 4891 { 4892 mutex_enter(&spa->spa_async_lock); 4893 spa->spa_async_suspended++; 4894 while (spa->spa_async_thread != NULL) 4895 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 4896 mutex_exit(&spa->spa_async_lock); 4897 } 4898 4899 void 4900 spa_async_resume(spa_t *spa) 4901 { 4902 mutex_enter(&spa->spa_async_lock); 4903 ASSERT(spa->spa_async_suspended != 0); 4904 spa->spa_async_suspended--; 4905 mutex_exit(&spa->spa_async_lock); 4906 } 4907 4908 static void 4909 spa_async_dispatch(spa_t *spa) 4910 { 4911 mutex_enter(&spa->spa_async_lock); 4912 if (spa->spa_async_tasks && !spa->spa_async_suspended && 4913 spa->spa_async_thread == NULL && 4914 rootdir != NULL && !vn_is_readonly(rootdir)) 4915 spa->spa_async_thread = thread_create(NULL, 0, 4916 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 4917 mutex_exit(&spa->spa_async_lock); 4918 } 4919 4920 void 4921 spa_async_request(spa_t *spa, int task) 4922 { 4923 mutex_enter(&spa->spa_async_lock); 4924 spa->spa_async_tasks |= task; 4925 mutex_exit(&spa->spa_async_lock); 4926 } 4927 4928 /* 4929 * ========================================================================== 4930 * SPA syncing routines 4931 * ========================================================================== 4932 */ 4933 static void 4934 spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg) 4935 { 4936 blkptr_t blk; 4937 uint64_t itor = 0; 4938 uint8_t c = 1; 4939 4940 while (bplist_iterate(bpl, &itor, &blk) == 0) { 4941 ASSERT(blk.blk_birth < txg); 4942 zio_free(spa, txg, &blk); 4943 } 4944 4945 bplist_vacate(bpl, tx); 4946 4947 /* 4948 * Pre-dirty the first block so we sync to convergence faster. 4949 * (Usually only the first block is needed.) 4950 */ 4951 dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx); 4952 } 4953 4954 static void 4955 spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 4956 { 4957 zio_t *zio = arg; 4958 4959 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 4960 zio->io_flags)); 4961 } 4962 4963 static void 4964 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 4965 { 4966 char *packed = NULL; 4967 size_t bufsize; 4968 size_t nvsize = 0; 4969 dmu_buf_t *db; 4970 4971 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 4972 4973 /* 4974 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 4975 * information. This avoids the dbuf_will_dirty() path and 4976 * saves us a pre-read to get data we don't actually care about. 4977 */ 4978 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 4979 packed = kmem_alloc(bufsize, KM_SLEEP); 4980 4981 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 4982 KM_SLEEP) == 0); 4983 bzero(packed + nvsize, bufsize - nvsize); 4984 4985 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 4986 4987 kmem_free(packed, bufsize); 4988 4989 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 4990 dmu_buf_will_dirty(db, tx); 4991 *(uint64_t *)db->db_data = nvsize; 4992 dmu_buf_rele(db, FTAG); 4993 } 4994 4995 static void 4996 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 4997 const char *config, const char *entry) 4998 { 4999 nvlist_t *nvroot; 5000 nvlist_t **list; 5001 int i; 5002 5003 if (!sav->sav_sync) 5004 return; 5005 5006 /* 5007 * Update the MOS nvlist describing the list of available devices. 5008 * spa_validate_aux() will have already made sure this nvlist is 5009 * valid and the vdevs are labeled appropriately. 5010 */ 5011 if (sav->sav_object == 0) { 5012 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5013 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5014 sizeof (uint64_t), tx); 5015 VERIFY(zap_update(spa->spa_meta_objset, 5016 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5017 &sav->sav_object, tx) == 0); 5018 } 5019 5020 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5021 if (sav->sav_count == 0) { 5022 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5023 } else { 5024 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5025 for (i = 0; i < sav->sav_count; i++) 5026 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5027 B_FALSE, B_FALSE, B_TRUE); 5028 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5029 sav->sav_count) == 0); 5030 for (i = 0; i < sav->sav_count; i++) 5031 nvlist_free(list[i]); 5032 kmem_free(list, sav->sav_count * sizeof (void *)); 5033 } 5034 5035 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5036 nvlist_free(nvroot); 5037 5038 sav->sav_sync = B_FALSE; 5039 } 5040 5041 static void 5042 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5043 { 5044 nvlist_t *config; 5045 5046 if (list_is_empty(&spa->spa_config_dirty_list)) 5047 return; 5048 5049 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5050 5051 config = spa_config_generate(spa, spa->spa_root_vdev, 5052 dmu_tx_get_txg(tx), B_FALSE); 5053 5054 spa_config_exit(spa, SCL_STATE, FTAG); 5055 5056 if (spa->spa_config_syncing) 5057 nvlist_free(spa->spa_config_syncing); 5058 spa->spa_config_syncing = config; 5059 5060 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5061 } 5062 5063 /* 5064 * Set zpool properties. 5065 */ 5066 static void 5067 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) 5068 { 5069 spa_t *spa = arg1; 5070 objset_t *mos = spa->spa_meta_objset; 5071 nvlist_t *nvp = arg2; 5072 nvpair_t *elem; 5073 uint64_t intval; 5074 char *strval; 5075 zpool_prop_t prop; 5076 const char *propname; 5077 zprop_type_t proptype; 5078 5079 mutex_enter(&spa->spa_props_lock); 5080 5081 elem = NULL; 5082 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5083 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5084 case ZPOOL_PROP_VERSION: 5085 /* 5086 * Only set version for non-zpool-creation cases 5087 * (set/import). spa_create() needs special care 5088 * for version setting. 5089 */ 5090 if (tx->tx_txg != TXG_INITIAL) { 5091 VERIFY(nvpair_value_uint64(elem, 5092 &intval) == 0); 5093 ASSERT(intval <= SPA_VERSION); 5094 ASSERT(intval >= spa_version(spa)); 5095 spa->spa_uberblock.ub_version = intval; 5096 vdev_config_dirty(spa->spa_root_vdev); 5097 } 5098 break; 5099 5100 case ZPOOL_PROP_ALTROOT: 5101 /* 5102 * 'altroot' is a non-persistent property. It should 5103 * have been set temporarily at creation or import time. 5104 */ 5105 ASSERT(spa->spa_root != NULL); 5106 break; 5107 5108 case ZPOOL_PROP_CACHEFILE: 5109 /* 5110 * 'cachefile' is also a non-persisitent property. 5111 */ 5112 break; 5113 default: 5114 /* 5115 * Set pool property values in the poolprops mos object. 5116 */ 5117 if (spa->spa_pool_props_object == 0) { 5118 VERIFY((spa->spa_pool_props_object = 5119 zap_create(mos, DMU_OT_POOL_PROPS, 5120 DMU_OT_NONE, 0, tx)) > 0); 5121 5122 VERIFY(zap_update(mos, 5123 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5124 8, 1, &spa->spa_pool_props_object, tx) 5125 == 0); 5126 } 5127 5128 /* normalize the property name */ 5129 propname = zpool_prop_to_name(prop); 5130 proptype = zpool_prop_get_type(prop); 5131 5132 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5133 ASSERT(proptype == PROP_TYPE_STRING); 5134 VERIFY(nvpair_value_string(elem, &strval) == 0); 5135 VERIFY(zap_update(mos, 5136 spa->spa_pool_props_object, propname, 5137 1, strlen(strval) + 1, strval, tx) == 0); 5138 5139 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5140 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5141 5142 if (proptype == PROP_TYPE_INDEX) { 5143 const char *unused; 5144 VERIFY(zpool_prop_index_to_string( 5145 prop, intval, &unused) == 0); 5146 } 5147 VERIFY(zap_update(mos, 5148 spa->spa_pool_props_object, propname, 5149 8, 1, &intval, tx) == 0); 5150 } else { 5151 ASSERT(0); /* not allowed */ 5152 } 5153 5154 switch (prop) { 5155 case ZPOOL_PROP_DELEGATION: 5156 spa->spa_delegation = intval; 5157 break; 5158 case ZPOOL_PROP_BOOTFS: 5159 spa->spa_bootfs = intval; 5160 break; 5161 case ZPOOL_PROP_FAILUREMODE: 5162 spa->spa_failmode = intval; 5163 break; 5164 case ZPOOL_PROP_AUTOEXPAND: 5165 spa->spa_autoexpand = intval; 5166 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 5167 break; 5168 case ZPOOL_PROP_DEDUPDITTO: 5169 spa->spa_dedup_ditto = intval; 5170 break; 5171 default: 5172 break; 5173 } 5174 } 5175 5176 /* log internal history if this is not a zpool create */ 5177 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 5178 tx->tx_txg != TXG_INITIAL) { 5179 spa_history_internal_log(LOG_POOL_PROPSET, 5180 spa, tx, cr, "%s %lld %s", 5181 nvpair_name(elem), intval, spa_name(spa)); 5182 } 5183 } 5184 5185 mutex_exit(&spa->spa_props_lock); 5186 } 5187 5188 /* 5189 * Sync the specified transaction group. New blocks may be dirtied as 5190 * part of the process, so we iterate until it converges. 5191 */ 5192 void 5193 spa_sync(spa_t *spa, uint64_t txg) 5194 { 5195 dsl_pool_t *dp = spa->spa_dsl_pool; 5196 objset_t *mos = spa->spa_meta_objset; 5197 bplist_t *defer_bpl = &spa->spa_deferred_bplist; 5198 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5199 vdev_t *rvd = spa->spa_root_vdev; 5200 vdev_t *vd; 5201 dmu_tx_t *tx; 5202 int error; 5203 5204 /* 5205 * Lock out configuration changes. 5206 */ 5207 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5208 5209 spa->spa_syncing_txg = txg; 5210 spa->spa_sync_pass = 0; 5211 5212 /* 5213 * If there are any pending vdev state changes, convert them 5214 * into config changes that go out with this transaction group. 5215 */ 5216 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5217 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5218 /* 5219 * We need the write lock here because, for aux vdevs, 5220 * calling vdev_config_dirty() modifies sav_config. 5221 * This is ugly and will become unnecessary when we 5222 * eliminate the aux vdev wart by integrating all vdevs 5223 * into the root vdev tree. 5224 */ 5225 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5226 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5227 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5228 vdev_state_clean(vd); 5229 vdev_config_dirty(vd); 5230 } 5231 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5232 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5233 } 5234 spa_config_exit(spa, SCL_STATE, FTAG); 5235 5236 VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj)); 5237 5238 tx = dmu_tx_create_assigned(dp, txg); 5239 5240 /* 5241 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 5242 * set spa_deflate if we have no raid-z vdevs. 5243 */ 5244 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 5245 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 5246 int i; 5247 5248 for (i = 0; i < rvd->vdev_children; i++) { 5249 vd = rvd->vdev_child[i]; 5250 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 5251 break; 5252 } 5253 if (i == rvd->vdev_children) { 5254 spa->spa_deflate = TRUE; 5255 VERIFY(0 == zap_add(spa->spa_meta_objset, 5256 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5257 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 5258 } 5259 } 5260 5261 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5262 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5263 dsl_pool_create_origin(dp, tx); 5264 5265 /* Keeping the origin open increases spa_minref */ 5266 spa->spa_minref += 3; 5267 } 5268 5269 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5270 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5271 dsl_pool_upgrade_clones(dp, tx); 5272 } 5273 5274 /* 5275 * If anything has changed in this txg, push the deferred frees 5276 * from the previous txg. If not, leave them alone so that we 5277 * don't generate work on an otherwise idle system. 5278 */ 5279 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 5280 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 5281 !txg_list_empty(&dp->dp_sync_tasks, txg)) 5282 spa_sync_deferred_bplist(spa, defer_bpl, tx, txg); 5283 5284 /* 5285 * Iterate to convergence. 5286 */ 5287 do { 5288 int pass = ++spa->spa_sync_pass; 5289 5290 spa_sync_config_object(spa, tx); 5291 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 5292 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 5293 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 5294 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 5295 spa_errlog_sync(spa, txg); 5296 dsl_pool_sync(dp, txg); 5297 5298 if (pass <= SYNC_PASS_DEFERRED_FREE) { 5299 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5300 bplist_sync(free_bpl, spa_sync_free, zio, tx); 5301 VERIFY(zio_wait(zio) == 0); 5302 } else { 5303 bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx); 5304 } 5305 5306 ddt_sync(spa, txg); 5307 5308 mutex_enter(&spa->spa_scrub_lock); 5309 while (spa->spa_scrub_inflight > 0) 5310 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5311 mutex_exit(&spa->spa_scrub_lock); 5312 5313 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 5314 vdev_sync(vd, txg); 5315 5316 } while (dmu_objset_is_dirty(mos, txg)); 5317 5318 ASSERT(list_is_empty(&free_bpl->bpl_queue)); 5319 5320 bplist_close(defer_bpl); 5321 5322 /* 5323 * Rewrite the vdev configuration (which includes the uberblock) 5324 * to commit the transaction group. 5325 * 5326 * If there are no dirty vdevs, we sync the uberblock to a few 5327 * random top-level vdevs that are known to be visible in the 5328 * config cache (see spa_vdev_add() for a complete description). 5329 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 5330 */ 5331 for (;;) { 5332 /* 5333 * We hold SCL_STATE to prevent vdev open/close/etc. 5334 * while we're attempting to write the vdev labels. 5335 */ 5336 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5337 5338 if (list_is_empty(&spa->spa_config_dirty_list)) { 5339 vdev_t *svd[SPA_DVAS_PER_BP]; 5340 int svdcount = 0; 5341 int children = rvd->vdev_children; 5342 int c0 = spa_get_random(children); 5343 5344 for (int c = 0; c < children; c++) { 5345 vd = rvd->vdev_child[(c0 + c) % children]; 5346 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 5347 continue; 5348 svd[svdcount++] = vd; 5349 if (svdcount == SPA_DVAS_PER_BP) 5350 break; 5351 } 5352 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 5353 if (error != 0) 5354 error = vdev_config_sync(svd, svdcount, txg, 5355 B_TRUE); 5356 } else { 5357 error = vdev_config_sync(rvd->vdev_child, 5358 rvd->vdev_children, txg, B_FALSE); 5359 if (error != 0) 5360 error = vdev_config_sync(rvd->vdev_child, 5361 rvd->vdev_children, txg, B_TRUE); 5362 } 5363 5364 spa_config_exit(spa, SCL_STATE, FTAG); 5365 5366 if (error == 0) 5367 break; 5368 zio_suspend(spa, NULL); 5369 zio_resume_wait(spa); 5370 } 5371 dmu_tx_commit(tx); 5372 5373 /* 5374 * Clear the dirty config list. 5375 */ 5376 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 5377 vdev_config_clean(vd); 5378 5379 /* 5380 * Now that the new config has synced transactionally, 5381 * let it become visible to the config cache. 5382 */ 5383 if (spa->spa_config_syncing != NULL) { 5384 spa_config_set(spa, spa->spa_config_syncing); 5385 spa->spa_config_txg = txg; 5386 spa->spa_config_syncing = NULL; 5387 } 5388 5389 spa->spa_ubsync = spa->spa_uberblock; 5390 5391 dsl_pool_sync_done(dp, txg); 5392 5393 /* 5394 * Update usable space statistics. 5395 */ 5396 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 5397 vdev_sync_done(vd, txg); 5398 5399 spa_update_dspace(spa); 5400 5401 /* 5402 * It had better be the case that we didn't dirty anything 5403 * since vdev_config_sync(). 5404 */ 5405 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 5406 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 5407 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 5408 ASSERT(list_is_empty(&defer_bpl->bpl_queue)); 5409 ASSERT(list_is_empty(&free_bpl->bpl_queue)); 5410 5411 spa->spa_sync_pass = 0; 5412 5413 spa_config_exit(spa, SCL_CONFIG, FTAG); 5414 5415 spa_handle_ignored_writes(spa); 5416 5417 /* 5418 * If any async tasks have been requested, kick them off. 5419 */ 5420 spa_async_dispatch(spa); 5421 } 5422 5423 /* 5424 * Sync all pools. We don't want to hold the namespace lock across these 5425 * operations, so we take a reference on the spa_t and drop the lock during the 5426 * sync. 5427 */ 5428 void 5429 spa_sync_allpools(void) 5430 { 5431 spa_t *spa = NULL; 5432 mutex_enter(&spa_namespace_lock); 5433 while ((spa = spa_next(spa)) != NULL) { 5434 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa)) 5435 continue; 5436 spa_open_ref(spa, FTAG); 5437 mutex_exit(&spa_namespace_lock); 5438 txg_wait_synced(spa_get_dsl(spa), 0); 5439 mutex_enter(&spa_namespace_lock); 5440 spa_close(spa, FTAG); 5441 } 5442 mutex_exit(&spa_namespace_lock); 5443 } 5444 5445 /* 5446 * ========================================================================== 5447 * Miscellaneous routines 5448 * ========================================================================== 5449 */ 5450 5451 /* 5452 * Remove all pools in the system. 5453 */ 5454 void 5455 spa_evict_all(void) 5456 { 5457 spa_t *spa; 5458 5459 /* 5460 * Remove all cached state. All pools should be closed now, 5461 * so every spa in the AVL tree should be unreferenced. 5462 */ 5463 mutex_enter(&spa_namespace_lock); 5464 while ((spa = spa_next(NULL)) != NULL) { 5465 /* 5466 * Stop async tasks. The async thread may need to detach 5467 * a device that's been replaced, which requires grabbing 5468 * spa_namespace_lock, so we must drop it here. 5469 */ 5470 spa_open_ref(spa, FTAG); 5471 mutex_exit(&spa_namespace_lock); 5472 spa_async_suspend(spa); 5473 mutex_enter(&spa_namespace_lock); 5474 spa_close(spa, FTAG); 5475 5476 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5477 spa_unload(spa); 5478 spa_deactivate(spa); 5479 } 5480 spa_remove(spa); 5481 } 5482 mutex_exit(&spa_namespace_lock); 5483 } 5484 5485 vdev_t * 5486 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 5487 { 5488 vdev_t *vd; 5489 int i; 5490 5491 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 5492 return (vd); 5493 5494 if (aux) { 5495 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 5496 vd = spa->spa_l2cache.sav_vdevs[i]; 5497 if (vd->vdev_guid == guid) 5498 return (vd); 5499 } 5500 5501 for (i = 0; i < spa->spa_spares.sav_count; i++) { 5502 vd = spa->spa_spares.sav_vdevs[i]; 5503 if (vd->vdev_guid == guid) 5504 return (vd); 5505 } 5506 } 5507 5508 return (NULL); 5509 } 5510 5511 void 5512 spa_upgrade(spa_t *spa, uint64_t version) 5513 { 5514 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5515 5516 /* 5517 * This should only be called for a non-faulted pool, and since a 5518 * future version would result in an unopenable pool, this shouldn't be 5519 * possible. 5520 */ 5521 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 5522 ASSERT(version >= spa->spa_uberblock.ub_version); 5523 5524 spa->spa_uberblock.ub_version = version; 5525 vdev_config_dirty(spa->spa_root_vdev); 5526 5527 spa_config_exit(spa, SCL_ALL, FTAG); 5528 5529 txg_wait_synced(spa_get_dsl(spa), 0); 5530 } 5531 5532 boolean_t 5533 spa_has_spare(spa_t *spa, uint64_t guid) 5534 { 5535 int i; 5536 uint64_t spareguid; 5537 spa_aux_vdev_t *sav = &spa->spa_spares; 5538 5539 for (i = 0; i < sav->sav_count; i++) 5540 if (sav->sav_vdevs[i]->vdev_guid == guid) 5541 return (B_TRUE); 5542 5543 for (i = 0; i < sav->sav_npending; i++) { 5544 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 5545 &spareguid) == 0 && spareguid == guid) 5546 return (B_TRUE); 5547 } 5548 5549 return (B_FALSE); 5550 } 5551 5552 /* 5553 * Check if a pool has an active shared spare device. 5554 * Note: reference count of an active spare is 2, as a spare and as a replace 5555 */ 5556 static boolean_t 5557 spa_has_active_shared_spare(spa_t *spa) 5558 { 5559 int i, refcnt; 5560 uint64_t pool; 5561 spa_aux_vdev_t *sav = &spa->spa_spares; 5562 5563 for (i = 0; i < sav->sav_count; i++) { 5564 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 5565 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 5566 refcnt > 2) 5567 return (B_TRUE); 5568 } 5569 5570 return (B_FALSE); 5571 } 5572 5573 /* 5574 * Post a sysevent corresponding to the given event. The 'name' must be one of 5575 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 5576 * filled in from the spa and (optionally) the vdev. This doesn't do anything 5577 * in the userland libzpool, as we don't want consumers to misinterpret ztest 5578 * or zdb as real changes. 5579 */ 5580 void 5581 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 5582 { 5583 #ifdef _KERNEL 5584 sysevent_t *ev; 5585 sysevent_attr_list_t *attr = NULL; 5586 sysevent_value_t value; 5587 sysevent_id_t eid; 5588 5589 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 5590 SE_SLEEP); 5591 5592 value.value_type = SE_DATA_TYPE_STRING; 5593 value.value.sv_string = spa_name(spa); 5594 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 5595 goto done; 5596 5597 value.value_type = SE_DATA_TYPE_UINT64; 5598 value.value.sv_uint64 = spa_guid(spa); 5599 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 5600 goto done; 5601 5602 if (vd) { 5603 value.value_type = SE_DATA_TYPE_UINT64; 5604 value.value.sv_uint64 = vd->vdev_guid; 5605 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 5606 SE_SLEEP) != 0) 5607 goto done; 5608 5609 if (vd->vdev_path) { 5610 value.value_type = SE_DATA_TYPE_STRING; 5611 value.value.sv_string = vd->vdev_path; 5612 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 5613 &value, SE_SLEEP) != 0) 5614 goto done; 5615 } 5616 } 5617 5618 if (sysevent_attach_attributes(ev, attr) != 0) 5619 goto done; 5620 attr = NULL; 5621 5622 (void) log_sysevent(ev, SE_SLEEP, &eid); 5623 5624 done: 5625 if (attr) 5626 sysevent_free_attr(attr); 5627 sysevent_free(ev); 5628 #endif 5629 } 5630