xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision ad135b5d644628e791c3188a6ecbd9c257961ef8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 #include <sys/dsl_scan.h>
65 #include <sys/zfeature.h>
66 
67 #ifdef	_KERNEL
68 #include <sys/bootprops.h>
69 #include <sys/callb.h>
70 #include <sys/cpupart.h>
71 #include <sys/pool.h>
72 #include <sys/sysdc.h>
73 #include <sys/zone.h>
74 #endif	/* _KERNEL */
75 
76 #include "zfs_prop.h"
77 #include "zfs_comutil.h"
78 
79 typedef enum zti_modes {
80 	zti_mode_fixed,			/* value is # of threads (min 1) */
81 	zti_mode_online_percent,	/* value is % of online CPUs */
82 	zti_mode_batch,			/* cpu-intensive; value is ignored */
83 	zti_mode_null,			/* don't create a taskq */
84 	zti_nmodes
85 } zti_modes_t;
86 
87 #define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
88 #define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
89 #define	ZTI_BATCH	{ zti_mode_batch, 0 }
90 #define	ZTI_NULL	{ zti_mode_null, 0 }
91 
92 #define	ZTI_ONE		ZTI_FIX(1)
93 
94 typedef struct zio_taskq_info {
95 	enum zti_modes zti_mode;
96 	uint_t zti_value;
97 } zio_taskq_info_t;
98 
99 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
100 	"issue", "issue_high", "intr", "intr_high"
101 };
102 
103 /*
104  * Define the taskq threads for the following I/O types:
105  * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
106  */
107 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
108 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
109 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
110 	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
111 	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
112 	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
113 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
114 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
115 };
116 
117 static dsl_syncfunc_t spa_sync_version;
118 static dsl_syncfunc_t spa_sync_props;
119 static boolean_t spa_has_active_shared_spare(spa_t *spa);
120 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
121     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
122     char **ereport);
123 static void spa_vdev_resilver_done(spa_t *spa);
124 
125 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
126 id_t		zio_taskq_psrset_bind = PS_NONE;
127 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
128 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
129 
130 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
131 
132 /*
133  * This (illegal) pool name is used when temporarily importing a spa_t in order
134  * to get the vdev stats associated with the imported devices.
135  */
136 #define	TRYIMPORT_NAME	"$import"
137 
138 /*
139  * ==========================================================================
140  * SPA properties routines
141  * ==========================================================================
142  */
143 
144 /*
145  * Add a (source=src, propname=propval) list to an nvlist.
146  */
147 static void
148 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
149     uint64_t intval, zprop_source_t src)
150 {
151 	const char *propname = zpool_prop_to_name(prop);
152 	nvlist_t *propval;
153 
154 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
155 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
156 
157 	if (strval != NULL)
158 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
159 	else
160 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
161 
162 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
163 	nvlist_free(propval);
164 }
165 
166 /*
167  * Get property values from the spa configuration.
168  */
169 static void
170 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
171 {
172 	vdev_t *rvd = spa->spa_root_vdev;
173 	dsl_pool_t *pool = spa->spa_dsl_pool;
174 	uint64_t size;
175 	uint64_t alloc;
176 	uint64_t space;
177 	uint64_t cap, version;
178 	zprop_source_t src = ZPROP_SRC_NONE;
179 	spa_config_dirent_t *dp;
180 
181 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
182 
183 	if (rvd != NULL) {
184 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
185 		size = metaslab_class_get_space(spa_normal_class(spa));
186 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
187 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
188 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
189 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
190 		    size - alloc, src);
191 
192 		space = 0;
193 		for (int c = 0; c < rvd->vdev_children; c++) {
194 			vdev_t *tvd = rvd->vdev_child[c];
195 			space += tvd->vdev_max_asize - tvd->vdev_asize;
196 		}
197 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
198 		    src);
199 
200 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
201 		    (spa_mode(spa) == FREAD), src);
202 
203 		cap = (size == 0) ? 0 : (alloc * 100 / size);
204 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
205 
206 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
207 		    ddt_get_pool_dedup_ratio(spa), src);
208 
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
210 		    rvd->vdev_state, src);
211 
212 		version = spa_version(spa);
213 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
214 			src = ZPROP_SRC_DEFAULT;
215 		else
216 			src = ZPROP_SRC_LOCAL;
217 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
218 	}
219 
220 	if (pool != NULL) {
221 		dsl_dir_t *freedir = pool->dp_free_dir;
222 
223 		/*
224 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
225 		 * when opening pools before this version freedir will be NULL.
226 		 */
227 		if (freedir != NULL) {
228 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
229 			    freedir->dd_phys->dd_used_bytes, src);
230 		} else {
231 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
232 			    NULL, 0, src);
233 		}
234 	}
235 
236 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
237 
238 	if (spa->spa_comment != NULL) {
239 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
240 		    0, ZPROP_SRC_LOCAL);
241 	}
242 
243 	if (spa->spa_root != NULL)
244 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
245 		    0, ZPROP_SRC_LOCAL);
246 
247 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
248 		if (dp->scd_path == NULL) {
249 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
250 			    "none", 0, ZPROP_SRC_LOCAL);
251 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
252 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
253 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
254 		}
255 	}
256 }
257 
258 /*
259  * Get zpool property values.
260  */
261 int
262 spa_prop_get(spa_t *spa, nvlist_t **nvp)
263 {
264 	objset_t *mos = spa->spa_meta_objset;
265 	zap_cursor_t zc;
266 	zap_attribute_t za;
267 	int err;
268 
269 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
270 
271 	mutex_enter(&spa->spa_props_lock);
272 
273 	/*
274 	 * Get properties from the spa config.
275 	 */
276 	spa_prop_get_config(spa, nvp);
277 
278 	/* If no pool property object, no more prop to get. */
279 	if (mos == NULL || spa->spa_pool_props_object == 0) {
280 		mutex_exit(&spa->spa_props_lock);
281 		return (0);
282 	}
283 
284 	/*
285 	 * Get properties from the MOS pool property object.
286 	 */
287 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
288 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
289 	    zap_cursor_advance(&zc)) {
290 		uint64_t intval = 0;
291 		char *strval = NULL;
292 		zprop_source_t src = ZPROP_SRC_DEFAULT;
293 		zpool_prop_t prop;
294 
295 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
296 			continue;
297 
298 		switch (za.za_integer_length) {
299 		case 8:
300 			/* integer property */
301 			if (za.za_first_integer !=
302 			    zpool_prop_default_numeric(prop))
303 				src = ZPROP_SRC_LOCAL;
304 
305 			if (prop == ZPOOL_PROP_BOOTFS) {
306 				dsl_pool_t *dp;
307 				dsl_dataset_t *ds = NULL;
308 
309 				dp = spa_get_dsl(spa);
310 				rw_enter(&dp->dp_config_rwlock, RW_READER);
311 				if (err = dsl_dataset_hold_obj(dp,
312 				    za.za_first_integer, FTAG, &ds)) {
313 					rw_exit(&dp->dp_config_rwlock);
314 					break;
315 				}
316 
317 				strval = kmem_alloc(
318 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
319 				    KM_SLEEP);
320 				dsl_dataset_name(ds, strval);
321 				dsl_dataset_rele(ds, FTAG);
322 				rw_exit(&dp->dp_config_rwlock);
323 			} else {
324 				strval = NULL;
325 				intval = za.za_first_integer;
326 			}
327 
328 			spa_prop_add_list(*nvp, prop, strval, intval, src);
329 
330 			if (strval != NULL)
331 				kmem_free(strval,
332 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
333 
334 			break;
335 
336 		case 1:
337 			/* string property */
338 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
339 			err = zap_lookup(mos, spa->spa_pool_props_object,
340 			    za.za_name, 1, za.za_num_integers, strval);
341 			if (err) {
342 				kmem_free(strval, za.za_num_integers);
343 				break;
344 			}
345 			spa_prop_add_list(*nvp, prop, strval, 0, src);
346 			kmem_free(strval, za.za_num_integers);
347 			break;
348 
349 		default:
350 			break;
351 		}
352 	}
353 	zap_cursor_fini(&zc);
354 	mutex_exit(&spa->spa_props_lock);
355 out:
356 	if (err && err != ENOENT) {
357 		nvlist_free(*nvp);
358 		*nvp = NULL;
359 		return (err);
360 	}
361 
362 	return (0);
363 }
364 
365 /*
366  * Validate the given pool properties nvlist and modify the list
367  * for the property values to be set.
368  */
369 static int
370 spa_prop_validate(spa_t *spa, nvlist_t *props)
371 {
372 	nvpair_t *elem;
373 	int error = 0, reset_bootfs = 0;
374 	uint64_t objnum;
375 	boolean_t has_feature = B_FALSE;
376 
377 	elem = NULL;
378 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
379 		uint64_t intval;
380 		char *strval, *slash, *check, *fname;
381 		const char *propname = nvpair_name(elem);
382 		zpool_prop_t prop = zpool_name_to_prop(propname);
383 
384 		switch (prop) {
385 		case ZPROP_INVAL:
386 			if (!zpool_prop_feature(propname)) {
387 				error = EINVAL;
388 				break;
389 			}
390 
391 			/*
392 			 * Sanitize the input.
393 			 */
394 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
395 				error = EINVAL;
396 				break;
397 			}
398 
399 			if (nvpair_value_uint64(elem, &intval) != 0) {
400 				error = EINVAL;
401 				break;
402 			}
403 
404 			if (intval != 0) {
405 				error = EINVAL;
406 				break;
407 			}
408 
409 			fname = strchr(propname, '@') + 1;
410 			if (zfeature_lookup_name(fname, NULL) != 0) {
411 				error = EINVAL;
412 				break;
413 			}
414 
415 			has_feature = B_TRUE;
416 			break;
417 
418 		case ZPOOL_PROP_VERSION:
419 			error = nvpair_value_uint64(elem, &intval);
420 			if (!error &&
421 			    (intval < spa_version(spa) ||
422 			    intval > SPA_VERSION_BEFORE_FEATURES ||
423 			    has_feature))
424 				error = EINVAL;
425 			break;
426 
427 		case ZPOOL_PROP_DELEGATION:
428 		case ZPOOL_PROP_AUTOREPLACE:
429 		case ZPOOL_PROP_LISTSNAPS:
430 		case ZPOOL_PROP_AUTOEXPAND:
431 			error = nvpair_value_uint64(elem, &intval);
432 			if (!error && intval > 1)
433 				error = EINVAL;
434 			break;
435 
436 		case ZPOOL_PROP_BOOTFS:
437 			/*
438 			 * If the pool version is less than SPA_VERSION_BOOTFS,
439 			 * or the pool is still being created (version == 0),
440 			 * the bootfs property cannot be set.
441 			 */
442 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
443 				error = ENOTSUP;
444 				break;
445 			}
446 
447 			/*
448 			 * Make sure the vdev config is bootable
449 			 */
450 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
451 				error = ENOTSUP;
452 				break;
453 			}
454 
455 			reset_bootfs = 1;
456 
457 			error = nvpair_value_string(elem, &strval);
458 
459 			if (!error) {
460 				objset_t *os;
461 				uint64_t compress;
462 
463 				if (strval == NULL || strval[0] == '\0') {
464 					objnum = zpool_prop_default_numeric(
465 					    ZPOOL_PROP_BOOTFS);
466 					break;
467 				}
468 
469 				if (error = dmu_objset_hold(strval, FTAG, &os))
470 					break;
471 
472 				/* Must be ZPL and not gzip compressed. */
473 
474 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
475 					error = ENOTSUP;
476 				} else if ((error = dsl_prop_get_integer(strval,
477 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
478 				    &compress, NULL)) == 0 &&
479 				    !BOOTFS_COMPRESS_VALID(compress)) {
480 					error = ENOTSUP;
481 				} else {
482 					objnum = dmu_objset_id(os);
483 				}
484 				dmu_objset_rele(os, FTAG);
485 			}
486 			break;
487 
488 		case ZPOOL_PROP_FAILUREMODE:
489 			error = nvpair_value_uint64(elem, &intval);
490 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
491 			    intval > ZIO_FAILURE_MODE_PANIC))
492 				error = EINVAL;
493 
494 			/*
495 			 * This is a special case which only occurs when
496 			 * the pool has completely failed. This allows
497 			 * the user to change the in-core failmode property
498 			 * without syncing it out to disk (I/Os might
499 			 * currently be blocked). We do this by returning
500 			 * EIO to the caller (spa_prop_set) to trick it
501 			 * into thinking we encountered a property validation
502 			 * error.
503 			 */
504 			if (!error && spa_suspended(spa)) {
505 				spa->spa_failmode = intval;
506 				error = EIO;
507 			}
508 			break;
509 
510 		case ZPOOL_PROP_CACHEFILE:
511 			if ((error = nvpair_value_string(elem, &strval)) != 0)
512 				break;
513 
514 			if (strval[0] == '\0')
515 				break;
516 
517 			if (strcmp(strval, "none") == 0)
518 				break;
519 
520 			if (strval[0] != '/') {
521 				error = EINVAL;
522 				break;
523 			}
524 
525 			slash = strrchr(strval, '/');
526 			ASSERT(slash != NULL);
527 
528 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
529 			    strcmp(slash, "/..") == 0)
530 				error = EINVAL;
531 			break;
532 
533 		case ZPOOL_PROP_COMMENT:
534 			if ((error = nvpair_value_string(elem, &strval)) != 0)
535 				break;
536 			for (check = strval; *check != '\0'; check++) {
537 				/*
538 				 * The kernel doesn't have an easy isprint()
539 				 * check.  For this kernel check, we merely
540 				 * check ASCII apart from DEL.  Fix this if
541 				 * there is an easy-to-use kernel isprint().
542 				 */
543 				if (*check >= 0x7f) {
544 					error = EINVAL;
545 					break;
546 				}
547 				check++;
548 			}
549 			if (strlen(strval) > ZPROP_MAX_COMMENT)
550 				error = E2BIG;
551 			break;
552 
553 		case ZPOOL_PROP_DEDUPDITTO:
554 			if (spa_version(spa) < SPA_VERSION_DEDUP)
555 				error = ENOTSUP;
556 			else
557 				error = nvpair_value_uint64(elem, &intval);
558 			if (error == 0 &&
559 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
560 				error = EINVAL;
561 			break;
562 		}
563 
564 		if (error)
565 			break;
566 	}
567 
568 	if (!error && reset_bootfs) {
569 		error = nvlist_remove(props,
570 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
571 
572 		if (!error) {
573 			error = nvlist_add_uint64(props,
574 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
575 		}
576 	}
577 
578 	return (error);
579 }
580 
581 void
582 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
583 {
584 	char *cachefile;
585 	spa_config_dirent_t *dp;
586 
587 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
588 	    &cachefile) != 0)
589 		return;
590 
591 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
592 	    KM_SLEEP);
593 
594 	if (cachefile[0] == '\0')
595 		dp->scd_path = spa_strdup(spa_config_path);
596 	else if (strcmp(cachefile, "none") == 0)
597 		dp->scd_path = NULL;
598 	else
599 		dp->scd_path = spa_strdup(cachefile);
600 
601 	list_insert_head(&spa->spa_config_list, dp);
602 	if (need_sync)
603 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
604 }
605 
606 int
607 spa_prop_set(spa_t *spa, nvlist_t *nvp)
608 {
609 	int error;
610 	nvpair_t *elem = NULL;
611 	boolean_t need_sync = B_FALSE;
612 
613 	if ((error = spa_prop_validate(spa, nvp)) != 0)
614 		return (error);
615 
616 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
617 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
618 
619 		if (prop == ZPOOL_PROP_CACHEFILE ||
620 		    prop == ZPOOL_PROP_ALTROOT ||
621 		    prop == ZPOOL_PROP_READONLY)
622 			continue;
623 
624 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
625 			uint64_t ver;
626 
627 			if (prop == ZPOOL_PROP_VERSION) {
628 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
629 			} else {
630 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
631 				ver = SPA_VERSION_FEATURES;
632 				need_sync = B_TRUE;
633 			}
634 
635 			/* Save time if the version is already set. */
636 			if (ver == spa_version(spa))
637 				continue;
638 
639 			/*
640 			 * In addition to the pool directory object, we might
641 			 * create the pool properties object, the features for
642 			 * read object, the features for write object, or the
643 			 * feature descriptions object.
644 			 */
645 			error = dsl_sync_task_do(spa_get_dsl(spa), NULL,
646 			    spa_sync_version, spa, &ver, 6);
647 			if (error)
648 				return (error);
649 			continue;
650 		}
651 
652 		need_sync = B_TRUE;
653 		break;
654 	}
655 
656 	if (need_sync) {
657 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
658 		    spa, nvp, 6));
659 	}
660 
661 	return (0);
662 }
663 
664 /*
665  * If the bootfs property value is dsobj, clear it.
666  */
667 void
668 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
669 {
670 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
671 		VERIFY(zap_remove(spa->spa_meta_objset,
672 		    spa->spa_pool_props_object,
673 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
674 		spa->spa_bootfs = 0;
675 	}
676 }
677 
678 /*
679  * Change the GUID for the pool.  This is done so that we can later
680  * re-import a pool built from a clone of our own vdevs.  We will modify
681  * the root vdev's guid, our own pool guid, and then mark all of our
682  * vdevs dirty.  Note that we must make sure that all our vdevs are
683  * online when we do this, or else any vdevs that weren't present
684  * would be orphaned from our pool.  We are also going to issue a
685  * sysevent to update any watchers.
686  */
687 int
688 spa_change_guid(spa_t *spa)
689 {
690 	uint64_t	oldguid, newguid;
691 	uint64_t	txg;
692 
693 	if (!(spa_mode_global & FWRITE))
694 		return (EROFS);
695 
696 	txg = spa_vdev_enter(spa);
697 
698 	if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY)
699 		return (spa_vdev_exit(spa, NULL, txg, ENXIO));
700 
701 	oldguid = spa_guid(spa);
702 	newguid = spa_generate_guid(NULL);
703 	ASSERT3U(oldguid, !=, newguid);
704 
705 	spa->spa_root_vdev->vdev_guid = newguid;
706 	spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid);
707 
708 	vdev_config_dirty(spa->spa_root_vdev);
709 
710 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
711 
712 	return (spa_vdev_exit(spa, NULL, txg, 0));
713 }
714 
715 /*
716  * ==========================================================================
717  * SPA state manipulation (open/create/destroy/import/export)
718  * ==========================================================================
719  */
720 
721 static int
722 spa_error_entry_compare(const void *a, const void *b)
723 {
724 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
725 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
726 	int ret;
727 
728 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
729 	    sizeof (zbookmark_t));
730 
731 	if (ret < 0)
732 		return (-1);
733 	else if (ret > 0)
734 		return (1);
735 	else
736 		return (0);
737 }
738 
739 /*
740  * Utility function which retrieves copies of the current logs and
741  * re-initializes them in the process.
742  */
743 void
744 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
745 {
746 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
747 
748 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
749 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
750 
751 	avl_create(&spa->spa_errlist_scrub,
752 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
753 	    offsetof(spa_error_entry_t, se_avl));
754 	avl_create(&spa->spa_errlist_last,
755 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
756 	    offsetof(spa_error_entry_t, se_avl));
757 }
758 
759 static taskq_t *
760 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
761     uint_t value)
762 {
763 	uint_t flags = 0;
764 	boolean_t batch = B_FALSE;
765 
766 	switch (mode) {
767 	case zti_mode_null:
768 		return (NULL);		/* no taskq needed */
769 
770 	case zti_mode_fixed:
771 		ASSERT3U(value, >=, 1);
772 		value = MAX(value, 1);
773 		break;
774 
775 	case zti_mode_batch:
776 		batch = B_TRUE;
777 		flags |= TASKQ_THREADS_CPU_PCT;
778 		value = zio_taskq_batch_pct;
779 		break;
780 
781 	case zti_mode_online_percent:
782 		flags |= TASKQ_THREADS_CPU_PCT;
783 		break;
784 
785 	default:
786 		panic("unrecognized mode for %s taskq (%u:%u) in "
787 		    "spa_activate()",
788 		    name, mode, value);
789 		break;
790 	}
791 
792 	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
793 		if (batch)
794 			flags |= TASKQ_DC_BATCH;
795 
796 		return (taskq_create_sysdc(name, value, 50, INT_MAX,
797 		    spa->spa_proc, zio_taskq_basedc, flags));
798 	}
799 	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
800 	    spa->spa_proc, flags));
801 }
802 
803 static void
804 spa_create_zio_taskqs(spa_t *spa)
805 {
806 	for (int t = 0; t < ZIO_TYPES; t++) {
807 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
808 			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
809 			enum zti_modes mode = ztip->zti_mode;
810 			uint_t value = ztip->zti_value;
811 			char name[32];
812 
813 			(void) snprintf(name, sizeof (name),
814 			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
815 
816 			spa->spa_zio_taskq[t][q] =
817 			    spa_taskq_create(spa, name, mode, value);
818 		}
819 	}
820 }
821 
822 #ifdef _KERNEL
823 static void
824 spa_thread(void *arg)
825 {
826 	callb_cpr_t cprinfo;
827 
828 	spa_t *spa = arg;
829 	user_t *pu = PTOU(curproc);
830 
831 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
832 	    spa->spa_name);
833 
834 	ASSERT(curproc != &p0);
835 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
836 	    "zpool-%s", spa->spa_name);
837 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
838 
839 	/* bind this thread to the requested psrset */
840 	if (zio_taskq_psrset_bind != PS_NONE) {
841 		pool_lock();
842 		mutex_enter(&cpu_lock);
843 		mutex_enter(&pidlock);
844 		mutex_enter(&curproc->p_lock);
845 
846 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
847 		    0, NULL, NULL) == 0)  {
848 			curthread->t_bind_pset = zio_taskq_psrset_bind;
849 		} else {
850 			cmn_err(CE_WARN,
851 			    "Couldn't bind process for zfs pool \"%s\" to "
852 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
853 		}
854 
855 		mutex_exit(&curproc->p_lock);
856 		mutex_exit(&pidlock);
857 		mutex_exit(&cpu_lock);
858 		pool_unlock();
859 	}
860 
861 	if (zio_taskq_sysdc) {
862 		sysdc_thread_enter(curthread, 100, 0);
863 	}
864 
865 	spa->spa_proc = curproc;
866 	spa->spa_did = curthread->t_did;
867 
868 	spa_create_zio_taskqs(spa);
869 
870 	mutex_enter(&spa->spa_proc_lock);
871 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
872 
873 	spa->spa_proc_state = SPA_PROC_ACTIVE;
874 	cv_broadcast(&spa->spa_proc_cv);
875 
876 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
877 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
878 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
879 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
880 
881 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
882 	spa->spa_proc_state = SPA_PROC_GONE;
883 	spa->spa_proc = &p0;
884 	cv_broadcast(&spa->spa_proc_cv);
885 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
886 
887 	mutex_enter(&curproc->p_lock);
888 	lwp_exit();
889 }
890 #endif
891 
892 /*
893  * Activate an uninitialized pool.
894  */
895 static void
896 spa_activate(spa_t *spa, int mode)
897 {
898 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
899 
900 	spa->spa_state = POOL_STATE_ACTIVE;
901 	spa->spa_mode = mode;
902 
903 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
904 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
905 
906 	/* Try to create a covering process */
907 	mutex_enter(&spa->spa_proc_lock);
908 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
909 	ASSERT(spa->spa_proc == &p0);
910 	spa->spa_did = 0;
911 
912 	/* Only create a process if we're going to be around a while. */
913 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
914 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
915 		    NULL, 0) == 0) {
916 			spa->spa_proc_state = SPA_PROC_CREATED;
917 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
918 				cv_wait(&spa->spa_proc_cv,
919 				    &spa->spa_proc_lock);
920 			}
921 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
922 			ASSERT(spa->spa_proc != &p0);
923 			ASSERT(spa->spa_did != 0);
924 		} else {
925 #ifdef _KERNEL
926 			cmn_err(CE_WARN,
927 			    "Couldn't create process for zfs pool \"%s\"\n",
928 			    spa->spa_name);
929 #endif
930 		}
931 	}
932 	mutex_exit(&spa->spa_proc_lock);
933 
934 	/* If we didn't create a process, we need to create our taskqs. */
935 	if (spa->spa_proc == &p0) {
936 		spa_create_zio_taskqs(spa);
937 	}
938 
939 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
940 	    offsetof(vdev_t, vdev_config_dirty_node));
941 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
942 	    offsetof(vdev_t, vdev_state_dirty_node));
943 
944 	txg_list_create(&spa->spa_vdev_txg_list,
945 	    offsetof(struct vdev, vdev_txg_node));
946 
947 	avl_create(&spa->spa_errlist_scrub,
948 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
949 	    offsetof(spa_error_entry_t, se_avl));
950 	avl_create(&spa->spa_errlist_last,
951 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
952 	    offsetof(spa_error_entry_t, se_avl));
953 }
954 
955 /*
956  * Opposite of spa_activate().
957  */
958 static void
959 spa_deactivate(spa_t *spa)
960 {
961 	ASSERT(spa->spa_sync_on == B_FALSE);
962 	ASSERT(spa->spa_dsl_pool == NULL);
963 	ASSERT(spa->spa_root_vdev == NULL);
964 	ASSERT(spa->spa_async_zio_root == NULL);
965 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
966 
967 	txg_list_destroy(&spa->spa_vdev_txg_list);
968 
969 	list_destroy(&spa->spa_config_dirty_list);
970 	list_destroy(&spa->spa_state_dirty_list);
971 
972 	for (int t = 0; t < ZIO_TYPES; t++) {
973 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
974 			if (spa->spa_zio_taskq[t][q] != NULL)
975 				taskq_destroy(spa->spa_zio_taskq[t][q]);
976 			spa->spa_zio_taskq[t][q] = NULL;
977 		}
978 	}
979 
980 	metaslab_class_destroy(spa->spa_normal_class);
981 	spa->spa_normal_class = NULL;
982 
983 	metaslab_class_destroy(spa->spa_log_class);
984 	spa->spa_log_class = NULL;
985 
986 	/*
987 	 * If this was part of an import or the open otherwise failed, we may
988 	 * still have errors left in the queues.  Empty them just in case.
989 	 */
990 	spa_errlog_drain(spa);
991 
992 	avl_destroy(&spa->spa_errlist_scrub);
993 	avl_destroy(&spa->spa_errlist_last);
994 
995 	spa->spa_state = POOL_STATE_UNINITIALIZED;
996 
997 	mutex_enter(&spa->spa_proc_lock);
998 	if (spa->spa_proc_state != SPA_PROC_NONE) {
999 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1000 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1001 		cv_broadcast(&spa->spa_proc_cv);
1002 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1003 			ASSERT(spa->spa_proc != &p0);
1004 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1005 		}
1006 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1007 		spa->spa_proc_state = SPA_PROC_NONE;
1008 	}
1009 	ASSERT(spa->spa_proc == &p0);
1010 	mutex_exit(&spa->spa_proc_lock);
1011 
1012 	/*
1013 	 * We want to make sure spa_thread() has actually exited the ZFS
1014 	 * module, so that the module can't be unloaded out from underneath
1015 	 * it.
1016 	 */
1017 	if (spa->spa_did != 0) {
1018 		thread_join(spa->spa_did);
1019 		spa->spa_did = 0;
1020 	}
1021 }
1022 
1023 /*
1024  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1025  * will create all the necessary vdevs in the appropriate layout, with each vdev
1026  * in the CLOSED state.  This will prep the pool before open/creation/import.
1027  * All vdev validation is done by the vdev_alloc() routine.
1028  */
1029 static int
1030 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1031     uint_t id, int atype)
1032 {
1033 	nvlist_t **child;
1034 	uint_t children;
1035 	int error;
1036 
1037 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1038 		return (error);
1039 
1040 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1041 		return (0);
1042 
1043 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1044 	    &child, &children);
1045 
1046 	if (error == ENOENT)
1047 		return (0);
1048 
1049 	if (error) {
1050 		vdev_free(*vdp);
1051 		*vdp = NULL;
1052 		return (EINVAL);
1053 	}
1054 
1055 	for (int c = 0; c < children; c++) {
1056 		vdev_t *vd;
1057 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1058 		    atype)) != 0) {
1059 			vdev_free(*vdp);
1060 			*vdp = NULL;
1061 			return (error);
1062 		}
1063 	}
1064 
1065 	ASSERT(*vdp != NULL);
1066 
1067 	return (0);
1068 }
1069 
1070 /*
1071  * Opposite of spa_load().
1072  */
1073 static void
1074 spa_unload(spa_t *spa)
1075 {
1076 	int i;
1077 
1078 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1079 
1080 	/*
1081 	 * Stop async tasks.
1082 	 */
1083 	spa_async_suspend(spa);
1084 
1085 	/*
1086 	 * Stop syncing.
1087 	 */
1088 	if (spa->spa_sync_on) {
1089 		txg_sync_stop(spa->spa_dsl_pool);
1090 		spa->spa_sync_on = B_FALSE;
1091 	}
1092 
1093 	/*
1094 	 * Wait for any outstanding async I/O to complete.
1095 	 */
1096 	if (spa->spa_async_zio_root != NULL) {
1097 		(void) zio_wait(spa->spa_async_zio_root);
1098 		spa->spa_async_zio_root = NULL;
1099 	}
1100 
1101 	bpobj_close(&spa->spa_deferred_bpobj);
1102 
1103 	/*
1104 	 * Close the dsl pool.
1105 	 */
1106 	if (spa->spa_dsl_pool) {
1107 		dsl_pool_close(spa->spa_dsl_pool);
1108 		spa->spa_dsl_pool = NULL;
1109 		spa->spa_meta_objset = NULL;
1110 	}
1111 
1112 	ddt_unload(spa);
1113 
1114 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1115 
1116 	/*
1117 	 * Drop and purge level 2 cache
1118 	 */
1119 	spa_l2cache_drop(spa);
1120 
1121 	/*
1122 	 * Close all vdevs.
1123 	 */
1124 	if (spa->spa_root_vdev)
1125 		vdev_free(spa->spa_root_vdev);
1126 	ASSERT(spa->spa_root_vdev == NULL);
1127 
1128 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1129 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1130 	if (spa->spa_spares.sav_vdevs) {
1131 		kmem_free(spa->spa_spares.sav_vdevs,
1132 		    spa->spa_spares.sav_count * sizeof (void *));
1133 		spa->spa_spares.sav_vdevs = NULL;
1134 	}
1135 	if (spa->spa_spares.sav_config) {
1136 		nvlist_free(spa->spa_spares.sav_config);
1137 		spa->spa_spares.sav_config = NULL;
1138 	}
1139 	spa->spa_spares.sav_count = 0;
1140 
1141 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1142 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1143 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1144 	}
1145 	if (spa->spa_l2cache.sav_vdevs) {
1146 		kmem_free(spa->spa_l2cache.sav_vdevs,
1147 		    spa->spa_l2cache.sav_count * sizeof (void *));
1148 		spa->spa_l2cache.sav_vdevs = NULL;
1149 	}
1150 	if (spa->spa_l2cache.sav_config) {
1151 		nvlist_free(spa->spa_l2cache.sav_config);
1152 		spa->spa_l2cache.sav_config = NULL;
1153 	}
1154 	spa->spa_l2cache.sav_count = 0;
1155 
1156 	spa->spa_async_suspended = 0;
1157 
1158 	if (spa->spa_comment != NULL) {
1159 		spa_strfree(spa->spa_comment);
1160 		spa->spa_comment = NULL;
1161 	}
1162 
1163 	spa_config_exit(spa, SCL_ALL, FTAG);
1164 }
1165 
1166 /*
1167  * Load (or re-load) the current list of vdevs describing the active spares for
1168  * this pool.  When this is called, we have some form of basic information in
1169  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1170  * then re-generate a more complete list including status information.
1171  */
1172 static void
1173 spa_load_spares(spa_t *spa)
1174 {
1175 	nvlist_t **spares;
1176 	uint_t nspares;
1177 	int i;
1178 	vdev_t *vd, *tvd;
1179 
1180 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1181 
1182 	/*
1183 	 * First, close and free any existing spare vdevs.
1184 	 */
1185 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1186 		vd = spa->spa_spares.sav_vdevs[i];
1187 
1188 		/* Undo the call to spa_activate() below */
1189 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1190 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1191 			spa_spare_remove(tvd);
1192 		vdev_close(vd);
1193 		vdev_free(vd);
1194 	}
1195 
1196 	if (spa->spa_spares.sav_vdevs)
1197 		kmem_free(spa->spa_spares.sav_vdevs,
1198 		    spa->spa_spares.sav_count * sizeof (void *));
1199 
1200 	if (spa->spa_spares.sav_config == NULL)
1201 		nspares = 0;
1202 	else
1203 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1204 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1205 
1206 	spa->spa_spares.sav_count = (int)nspares;
1207 	spa->spa_spares.sav_vdevs = NULL;
1208 
1209 	if (nspares == 0)
1210 		return;
1211 
1212 	/*
1213 	 * Construct the array of vdevs, opening them to get status in the
1214 	 * process.   For each spare, there is potentially two different vdev_t
1215 	 * structures associated with it: one in the list of spares (used only
1216 	 * for basic validation purposes) and one in the active vdev
1217 	 * configuration (if it's spared in).  During this phase we open and
1218 	 * validate each vdev on the spare list.  If the vdev also exists in the
1219 	 * active configuration, then we also mark this vdev as an active spare.
1220 	 */
1221 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1222 	    KM_SLEEP);
1223 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1224 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1225 		    VDEV_ALLOC_SPARE) == 0);
1226 		ASSERT(vd != NULL);
1227 
1228 		spa->spa_spares.sav_vdevs[i] = vd;
1229 
1230 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1231 		    B_FALSE)) != NULL) {
1232 			if (!tvd->vdev_isspare)
1233 				spa_spare_add(tvd);
1234 
1235 			/*
1236 			 * We only mark the spare active if we were successfully
1237 			 * able to load the vdev.  Otherwise, importing a pool
1238 			 * with a bad active spare would result in strange
1239 			 * behavior, because multiple pool would think the spare
1240 			 * is actively in use.
1241 			 *
1242 			 * There is a vulnerability here to an equally bizarre
1243 			 * circumstance, where a dead active spare is later
1244 			 * brought back to life (onlined or otherwise).  Given
1245 			 * the rarity of this scenario, and the extra complexity
1246 			 * it adds, we ignore the possibility.
1247 			 */
1248 			if (!vdev_is_dead(tvd))
1249 				spa_spare_activate(tvd);
1250 		}
1251 
1252 		vd->vdev_top = vd;
1253 		vd->vdev_aux = &spa->spa_spares;
1254 
1255 		if (vdev_open(vd) != 0)
1256 			continue;
1257 
1258 		if (vdev_validate_aux(vd) == 0)
1259 			spa_spare_add(vd);
1260 	}
1261 
1262 	/*
1263 	 * Recompute the stashed list of spares, with status information
1264 	 * this time.
1265 	 */
1266 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1267 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1268 
1269 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1270 	    KM_SLEEP);
1271 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1272 		spares[i] = vdev_config_generate(spa,
1273 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1274 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1275 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1276 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1277 		nvlist_free(spares[i]);
1278 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1279 }
1280 
1281 /*
1282  * Load (or re-load) the current list of vdevs describing the active l2cache for
1283  * this pool.  When this is called, we have some form of basic information in
1284  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1285  * then re-generate a more complete list including status information.
1286  * Devices which are already active have their details maintained, and are
1287  * not re-opened.
1288  */
1289 static void
1290 spa_load_l2cache(spa_t *spa)
1291 {
1292 	nvlist_t **l2cache;
1293 	uint_t nl2cache;
1294 	int i, j, oldnvdevs;
1295 	uint64_t guid;
1296 	vdev_t *vd, **oldvdevs, **newvdevs;
1297 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1298 
1299 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1300 
1301 	if (sav->sav_config != NULL) {
1302 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1303 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1304 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1305 	} else {
1306 		nl2cache = 0;
1307 	}
1308 
1309 	oldvdevs = sav->sav_vdevs;
1310 	oldnvdevs = sav->sav_count;
1311 	sav->sav_vdevs = NULL;
1312 	sav->sav_count = 0;
1313 
1314 	/*
1315 	 * Process new nvlist of vdevs.
1316 	 */
1317 	for (i = 0; i < nl2cache; i++) {
1318 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1319 		    &guid) == 0);
1320 
1321 		newvdevs[i] = NULL;
1322 		for (j = 0; j < oldnvdevs; j++) {
1323 			vd = oldvdevs[j];
1324 			if (vd != NULL && guid == vd->vdev_guid) {
1325 				/*
1326 				 * Retain previous vdev for add/remove ops.
1327 				 */
1328 				newvdevs[i] = vd;
1329 				oldvdevs[j] = NULL;
1330 				break;
1331 			}
1332 		}
1333 
1334 		if (newvdevs[i] == NULL) {
1335 			/*
1336 			 * Create new vdev
1337 			 */
1338 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1339 			    VDEV_ALLOC_L2CACHE) == 0);
1340 			ASSERT(vd != NULL);
1341 			newvdevs[i] = vd;
1342 
1343 			/*
1344 			 * Commit this vdev as an l2cache device,
1345 			 * even if it fails to open.
1346 			 */
1347 			spa_l2cache_add(vd);
1348 
1349 			vd->vdev_top = vd;
1350 			vd->vdev_aux = sav;
1351 
1352 			spa_l2cache_activate(vd);
1353 
1354 			if (vdev_open(vd) != 0)
1355 				continue;
1356 
1357 			(void) vdev_validate_aux(vd);
1358 
1359 			if (!vdev_is_dead(vd))
1360 				l2arc_add_vdev(spa, vd);
1361 		}
1362 	}
1363 
1364 	/*
1365 	 * Purge vdevs that were dropped
1366 	 */
1367 	for (i = 0; i < oldnvdevs; i++) {
1368 		uint64_t pool;
1369 
1370 		vd = oldvdevs[i];
1371 		if (vd != NULL) {
1372 			ASSERT(vd->vdev_isl2cache);
1373 
1374 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1375 			    pool != 0ULL && l2arc_vdev_present(vd))
1376 				l2arc_remove_vdev(vd);
1377 			vdev_clear_stats(vd);
1378 			vdev_free(vd);
1379 		}
1380 	}
1381 
1382 	if (oldvdevs)
1383 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1384 
1385 	if (sav->sav_config == NULL)
1386 		goto out;
1387 
1388 	sav->sav_vdevs = newvdevs;
1389 	sav->sav_count = (int)nl2cache;
1390 
1391 	/*
1392 	 * Recompute the stashed list of l2cache devices, with status
1393 	 * information this time.
1394 	 */
1395 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1396 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1397 
1398 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1399 	for (i = 0; i < sav->sav_count; i++)
1400 		l2cache[i] = vdev_config_generate(spa,
1401 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1402 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1403 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1404 out:
1405 	for (i = 0; i < sav->sav_count; i++)
1406 		nvlist_free(l2cache[i]);
1407 	if (sav->sav_count)
1408 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1409 }
1410 
1411 static int
1412 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1413 {
1414 	dmu_buf_t *db;
1415 	char *packed = NULL;
1416 	size_t nvsize = 0;
1417 	int error;
1418 	*value = NULL;
1419 
1420 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1421 	nvsize = *(uint64_t *)db->db_data;
1422 	dmu_buf_rele(db, FTAG);
1423 
1424 	packed = kmem_alloc(nvsize, KM_SLEEP);
1425 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1426 	    DMU_READ_PREFETCH);
1427 	if (error == 0)
1428 		error = nvlist_unpack(packed, nvsize, value, 0);
1429 	kmem_free(packed, nvsize);
1430 
1431 	return (error);
1432 }
1433 
1434 /*
1435  * Checks to see if the given vdev could not be opened, in which case we post a
1436  * sysevent to notify the autoreplace code that the device has been removed.
1437  */
1438 static void
1439 spa_check_removed(vdev_t *vd)
1440 {
1441 	for (int c = 0; c < vd->vdev_children; c++)
1442 		spa_check_removed(vd->vdev_child[c]);
1443 
1444 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1445 		zfs_post_autoreplace(vd->vdev_spa, vd);
1446 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1447 	}
1448 }
1449 
1450 /*
1451  * Validate the current config against the MOS config
1452  */
1453 static boolean_t
1454 spa_config_valid(spa_t *spa, nvlist_t *config)
1455 {
1456 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1457 	nvlist_t *nv;
1458 
1459 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1460 
1461 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1462 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1463 
1464 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1465 
1466 	/*
1467 	 * If we're doing a normal import, then build up any additional
1468 	 * diagnostic information about missing devices in this config.
1469 	 * We'll pass this up to the user for further processing.
1470 	 */
1471 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1472 		nvlist_t **child, *nv;
1473 		uint64_t idx = 0;
1474 
1475 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1476 		    KM_SLEEP);
1477 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1478 
1479 		for (int c = 0; c < rvd->vdev_children; c++) {
1480 			vdev_t *tvd = rvd->vdev_child[c];
1481 			vdev_t *mtvd  = mrvd->vdev_child[c];
1482 
1483 			if (tvd->vdev_ops == &vdev_missing_ops &&
1484 			    mtvd->vdev_ops != &vdev_missing_ops &&
1485 			    mtvd->vdev_islog)
1486 				child[idx++] = vdev_config_generate(spa, mtvd,
1487 				    B_FALSE, 0);
1488 		}
1489 
1490 		if (idx) {
1491 			VERIFY(nvlist_add_nvlist_array(nv,
1492 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1493 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1494 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1495 
1496 			for (int i = 0; i < idx; i++)
1497 				nvlist_free(child[i]);
1498 		}
1499 		nvlist_free(nv);
1500 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1501 	}
1502 
1503 	/*
1504 	 * Compare the root vdev tree with the information we have
1505 	 * from the MOS config (mrvd). Check each top-level vdev
1506 	 * with the corresponding MOS config top-level (mtvd).
1507 	 */
1508 	for (int c = 0; c < rvd->vdev_children; c++) {
1509 		vdev_t *tvd = rvd->vdev_child[c];
1510 		vdev_t *mtvd  = mrvd->vdev_child[c];
1511 
1512 		/*
1513 		 * Resolve any "missing" vdevs in the current configuration.
1514 		 * If we find that the MOS config has more accurate information
1515 		 * about the top-level vdev then use that vdev instead.
1516 		 */
1517 		if (tvd->vdev_ops == &vdev_missing_ops &&
1518 		    mtvd->vdev_ops != &vdev_missing_ops) {
1519 
1520 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1521 				continue;
1522 
1523 			/*
1524 			 * Device specific actions.
1525 			 */
1526 			if (mtvd->vdev_islog) {
1527 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1528 			} else {
1529 				/*
1530 				 * XXX - once we have 'readonly' pool
1531 				 * support we should be able to handle
1532 				 * missing data devices by transitioning
1533 				 * the pool to readonly.
1534 				 */
1535 				continue;
1536 			}
1537 
1538 			/*
1539 			 * Swap the missing vdev with the data we were
1540 			 * able to obtain from the MOS config.
1541 			 */
1542 			vdev_remove_child(rvd, tvd);
1543 			vdev_remove_child(mrvd, mtvd);
1544 
1545 			vdev_add_child(rvd, mtvd);
1546 			vdev_add_child(mrvd, tvd);
1547 
1548 			spa_config_exit(spa, SCL_ALL, FTAG);
1549 			vdev_load(mtvd);
1550 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1551 
1552 			vdev_reopen(rvd);
1553 		} else if (mtvd->vdev_islog) {
1554 			/*
1555 			 * Load the slog device's state from the MOS config
1556 			 * since it's possible that the label does not
1557 			 * contain the most up-to-date information.
1558 			 */
1559 			vdev_load_log_state(tvd, mtvd);
1560 			vdev_reopen(tvd);
1561 		}
1562 	}
1563 	vdev_free(mrvd);
1564 	spa_config_exit(spa, SCL_ALL, FTAG);
1565 
1566 	/*
1567 	 * Ensure we were able to validate the config.
1568 	 */
1569 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1570 }
1571 
1572 /*
1573  * Check for missing log devices
1574  */
1575 static int
1576 spa_check_logs(spa_t *spa)
1577 {
1578 	switch (spa->spa_log_state) {
1579 	case SPA_LOG_MISSING:
1580 		/* need to recheck in case slog has been restored */
1581 	case SPA_LOG_UNKNOWN:
1582 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1583 		    DS_FIND_CHILDREN)) {
1584 			spa_set_log_state(spa, SPA_LOG_MISSING);
1585 			return (1);
1586 		}
1587 		break;
1588 	}
1589 	return (0);
1590 }
1591 
1592 static boolean_t
1593 spa_passivate_log(spa_t *spa)
1594 {
1595 	vdev_t *rvd = spa->spa_root_vdev;
1596 	boolean_t slog_found = B_FALSE;
1597 
1598 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1599 
1600 	if (!spa_has_slogs(spa))
1601 		return (B_FALSE);
1602 
1603 	for (int c = 0; c < rvd->vdev_children; c++) {
1604 		vdev_t *tvd = rvd->vdev_child[c];
1605 		metaslab_group_t *mg = tvd->vdev_mg;
1606 
1607 		if (tvd->vdev_islog) {
1608 			metaslab_group_passivate(mg);
1609 			slog_found = B_TRUE;
1610 		}
1611 	}
1612 
1613 	return (slog_found);
1614 }
1615 
1616 static void
1617 spa_activate_log(spa_t *spa)
1618 {
1619 	vdev_t *rvd = spa->spa_root_vdev;
1620 
1621 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1622 
1623 	for (int c = 0; c < rvd->vdev_children; c++) {
1624 		vdev_t *tvd = rvd->vdev_child[c];
1625 		metaslab_group_t *mg = tvd->vdev_mg;
1626 
1627 		if (tvd->vdev_islog)
1628 			metaslab_group_activate(mg);
1629 	}
1630 }
1631 
1632 int
1633 spa_offline_log(spa_t *spa)
1634 {
1635 	int error = 0;
1636 
1637 	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1638 	    NULL, DS_FIND_CHILDREN)) == 0) {
1639 
1640 		/*
1641 		 * We successfully offlined the log device, sync out the
1642 		 * current txg so that the "stubby" block can be removed
1643 		 * by zil_sync().
1644 		 */
1645 		txg_wait_synced(spa->spa_dsl_pool, 0);
1646 	}
1647 	return (error);
1648 }
1649 
1650 static void
1651 spa_aux_check_removed(spa_aux_vdev_t *sav)
1652 {
1653 	for (int i = 0; i < sav->sav_count; i++)
1654 		spa_check_removed(sav->sav_vdevs[i]);
1655 }
1656 
1657 void
1658 spa_claim_notify(zio_t *zio)
1659 {
1660 	spa_t *spa = zio->io_spa;
1661 
1662 	if (zio->io_error)
1663 		return;
1664 
1665 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1666 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1667 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1668 	mutex_exit(&spa->spa_props_lock);
1669 }
1670 
1671 typedef struct spa_load_error {
1672 	uint64_t	sle_meta_count;
1673 	uint64_t	sle_data_count;
1674 } spa_load_error_t;
1675 
1676 static void
1677 spa_load_verify_done(zio_t *zio)
1678 {
1679 	blkptr_t *bp = zio->io_bp;
1680 	spa_load_error_t *sle = zio->io_private;
1681 	dmu_object_type_t type = BP_GET_TYPE(bp);
1682 	int error = zio->io_error;
1683 
1684 	if (error) {
1685 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1686 		    type != DMU_OT_INTENT_LOG)
1687 			atomic_add_64(&sle->sle_meta_count, 1);
1688 		else
1689 			atomic_add_64(&sle->sle_data_count, 1);
1690 	}
1691 	zio_data_buf_free(zio->io_data, zio->io_size);
1692 }
1693 
1694 /*ARGSUSED*/
1695 static int
1696 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1697     arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1698 {
1699 	if (bp != NULL) {
1700 		zio_t *rio = arg;
1701 		size_t size = BP_GET_PSIZE(bp);
1702 		void *data = zio_data_buf_alloc(size);
1703 
1704 		zio_nowait(zio_read(rio, spa, bp, data, size,
1705 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1706 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1707 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1708 	}
1709 	return (0);
1710 }
1711 
1712 static int
1713 spa_load_verify(spa_t *spa)
1714 {
1715 	zio_t *rio;
1716 	spa_load_error_t sle = { 0 };
1717 	zpool_rewind_policy_t policy;
1718 	boolean_t verify_ok = B_FALSE;
1719 	int error;
1720 
1721 	zpool_get_rewind_policy(spa->spa_config, &policy);
1722 
1723 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1724 		return (0);
1725 
1726 	rio = zio_root(spa, NULL, &sle,
1727 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1728 
1729 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1730 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1731 
1732 	(void) zio_wait(rio);
1733 
1734 	spa->spa_load_meta_errors = sle.sle_meta_count;
1735 	spa->spa_load_data_errors = sle.sle_data_count;
1736 
1737 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1738 	    sle.sle_data_count <= policy.zrp_maxdata) {
1739 		int64_t loss = 0;
1740 
1741 		verify_ok = B_TRUE;
1742 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1743 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1744 
1745 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1746 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1747 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1748 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1749 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1750 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1751 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1752 	} else {
1753 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1754 	}
1755 
1756 	if (error) {
1757 		if (error != ENXIO && error != EIO)
1758 			error = EIO;
1759 		return (error);
1760 	}
1761 
1762 	return (verify_ok ? 0 : EIO);
1763 }
1764 
1765 /*
1766  * Find a value in the pool props object.
1767  */
1768 static void
1769 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1770 {
1771 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1772 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1773 }
1774 
1775 /*
1776  * Find a value in the pool directory object.
1777  */
1778 static int
1779 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1780 {
1781 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1782 	    name, sizeof (uint64_t), 1, val));
1783 }
1784 
1785 static int
1786 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1787 {
1788 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1789 	return (err);
1790 }
1791 
1792 /*
1793  * Fix up config after a partly-completed split.  This is done with the
1794  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1795  * pool have that entry in their config, but only the splitting one contains
1796  * a list of all the guids of the vdevs that are being split off.
1797  *
1798  * This function determines what to do with that list: either rejoin
1799  * all the disks to the pool, or complete the splitting process.  To attempt
1800  * the rejoin, each disk that is offlined is marked online again, and
1801  * we do a reopen() call.  If the vdev label for every disk that was
1802  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1803  * then we call vdev_split() on each disk, and complete the split.
1804  *
1805  * Otherwise we leave the config alone, with all the vdevs in place in
1806  * the original pool.
1807  */
1808 static void
1809 spa_try_repair(spa_t *spa, nvlist_t *config)
1810 {
1811 	uint_t extracted;
1812 	uint64_t *glist;
1813 	uint_t i, gcount;
1814 	nvlist_t *nvl;
1815 	vdev_t **vd;
1816 	boolean_t attempt_reopen;
1817 
1818 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1819 		return;
1820 
1821 	/* check that the config is complete */
1822 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1823 	    &glist, &gcount) != 0)
1824 		return;
1825 
1826 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1827 
1828 	/* attempt to online all the vdevs & validate */
1829 	attempt_reopen = B_TRUE;
1830 	for (i = 0; i < gcount; i++) {
1831 		if (glist[i] == 0)	/* vdev is hole */
1832 			continue;
1833 
1834 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1835 		if (vd[i] == NULL) {
1836 			/*
1837 			 * Don't bother attempting to reopen the disks;
1838 			 * just do the split.
1839 			 */
1840 			attempt_reopen = B_FALSE;
1841 		} else {
1842 			/* attempt to re-online it */
1843 			vd[i]->vdev_offline = B_FALSE;
1844 		}
1845 	}
1846 
1847 	if (attempt_reopen) {
1848 		vdev_reopen(spa->spa_root_vdev);
1849 
1850 		/* check each device to see what state it's in */
1851 		for (extracted = 0, i = 0; i < gcount; i++) {
1852 			if (vd[i] != NULL &&
1853 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1854 				break;
1855 			++extracted;
1856 		}
1857 	}
1858 
1859 	/*
1860 	 * If every disk has been moved to the new pool, or if we never
1861 	 * even attempted to look at them, then we split them off for
1862 	 * good.
1863 	 */
1864 	if (!attempt_reopen || gcount == extracted) {
1865 		for (i = 0; i < gcount; i++)
1866 			if (vd[i] != NULL)
1867 				vdev_split(vd[i]);
1868 		vdev_reopen(spa->spa_root_vdev);
1869 	}
1870 
1871 	kmem_free(vd, gcount * sizeof (vdev_t *));
1872 }
1873 
1874 static int
1875 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1876     boolean_t mosconfig)
1877 {
1878 	nvlist_t *config = spa->spa_config;
1879 	char *ereport = FM_EREPORT_ZFS_POOL;
1880 	char *comment;
1881 	int error;
1882 	uint64_t pool_guid;
1883 	nvlist_t *nvl;
1884 
1885 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1886 		return (EINVAL);
1887 
1888 	ASSERT(spa->spa_comment == NULL);
1889 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1890 		spa->spa_comment = spa_strdup(comment);
1891 
1892 	/*
1893 	 * Versioning wasn't explicitly added to the label until later, so if
1894 	 * it's not present treat it as the initial version.
1895 	 */
1896 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1897 	    &spa->spa_ubsync.ub_version) != 0)
1898 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1899 
1900 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1901 	    &spa->spa_config_txg);
1902 
1903 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1904 	    spa_guid_exists(pool_guid, 0)) {
1905 		error = EEXIST;
1906 	} else {
1907 		spa->spa_config_guid = pool_guid;
1908 
1909 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1910 		    &nvl) == 0) {
1911 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1912 			    KM_SLEEP) == 0);
1913 		}
1914 
1915 		nvlist_free(spa->spa_load_info);
1916 		spa->spa_load_info = fnvlist_alloc();
1917 
1918 		gethrestime(&spa->spa_loaded_ts);
1919 		error = spa_load_impl(spa, pool_guid, config, state, type,
1920 		    mosconfig, &ereport);
1921 	}
1922 
1923 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1924 	if (error) {
1925 		if (error != EEXIST) {
1926 			spa->spa_loaded_ts.tv_sec = 0;
1927 			spa->spa_loaded_ts.tv_nsec = 0;
1928 		}
1929 		if (error != EBADF) {
1930 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1931 		}
1932 	}
1933 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1934 	spa->spa_ena = 0;
1935 
1936 	return (error);
1937 }
1938 
1939 /*
1940  * Load an existing storage pool, using the pool's builtin spa_config as a
1941  * source of configuration information.
1942  */
1943 static int
1944 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1945     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1946     char **ereport)
1947 {
1948 	int error = 0;
1949 	nvlist_t *nvroot = NULL;
1950 	nvlist_t *label;
1951 	vdev_t *rvd;
1952 	uberblock_t *ub = &spa->spa_uberblock;
1953 	uint64_t children, config_cache_txg = spa->spa_config_txg;
1954 	int orig_mode = spa->spa_mode;
1955 	int parse;
1956 	uint64_t obj;
1957 	boolean_t missing_feat_write = B_FALSE;
1958 
1959 	/*
1960 	 * If this is an untrusted config, access the pool in read-only mode.
1961 	 * This prevents things like resilvering recently removed devices.
1962 	 */
1963 	if (!mosconfig)
1964 		spa->spa_mode = FREAD;
1965 
1966 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1967 
1968 	spa->spa_load_state = state;
1969 
1970 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1971 		return (EINVAL);
1972 
1973 	parse = (type == SPA_IMPORT_EXISTING ?
1974 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1975 
1976 	/*
1977 	 * Create "The Godfather" zio to hold all async IOs
1978 	 */
1979 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1980 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1981 
1982 	/*
1983 	 * Parse the configuration into a vdev tree.  We explicitly set the
1984 	 * value that will be returned by spa_version() since parsing the
1985 	 * configuration requires knowing the version number.
1986 	 */
1987 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1988 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1989 	spa_config_exit(spa, SCL_ALL, FTAG);
1990 
1991 	if (error != 0)
1992 		return (error);
1993 
1994 	ASSERT(spa->spa_root_vdev == rvd);
1995 
1996 	if (type != SPA_IMPORT_ASSEMBLE) {
1997 		ASSERT(spa_guid(spa) == pool_guid);
1998 	}
1999 
2000 	/*
2001 	 * Try to open all vdevs, loading each label in the process.
2002 	 */
2003 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2004 	error = vdev_open(rvd);
2005 	spa_config_exit(spa, SCL_ALL, FTAG);
2006 	if (error != 0)
2007 		return (error);
2008 
2009 	/*
2010 	 * We need to validate the vdev labels against the configuration that
2011 	 * we have in hand, which is dependent on the setting of mosconfig. If
2012 	 * mosconfig is true then we're validating the vdev labels based on
2013 	 * that config.  Otherwise, we're validating against the cached config
2014 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2015 	 * later we will recursively call spa_load() and validate against
2016 	 * the vdev config.
2017 	 *
2018 	 * If we're assembling a new pool that's been split off from an
2019 	 * existing pool, the labels haven't yet been updated so we skip
2020 	 * validation for now.
2021 	 */
2022 	if (type != SPA_IMPORT_ASSEMBLE) {
2023 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2024 		error = vdev_validate(rvd, mosconfig);
2025 		spa_config_exit(spa, SCL_ALL, FTAG);
2026 
2027 		if (error != 0)
2028 			return (error);
2029 
2030 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2031 			return (ENXIO);
2032 	}
2033 
2034 	/*
2035 	 * Find the best uberblock.
2036 	 */
2037 	vdev_uberblock_load(rvd, ub, &label);
2038 
2039 	/*
2040 	 * If we weren't able to find a single valid uberblock, return failure.
2041 	 */
2042 	if (ub->ub_txg == 0) {
2043 		nvlist_free(label);
2044 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2045 	}
2046 
2047 	/*
2048 	 * If the pool has an unsupported version we can't open it.
2049 	 */
2050 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2051 		nvlist_free(label);
2052 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2053 	}
2054 
2055 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2056 		nvlist_t *features;
2057 
2058 		/*
2059 		 * If we weren't able to find what's necessary for reading the
2060 		 * MOS in the label, return failure.
2061 		 */
2062 		if (label == NULL || nvlist_lookup_nvlist(label,
2063 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2064 			nvlist_free(label);
2065 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2066 			    ENXIO));
2067 		}
2068 
2069 		/*
2070 		 * Update our in-core representation with the definitive values
2071 		 * from the label.
2072 		 */
2073 		nvlist_free(spa->spa_label_features);
2074 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2075 	}
2076 
2077 	nvlist_free(label);
2078 
2079 	/*
2080 	 * Look through entries in the label nvlist's features_for_read. If
2081 	 * there is a feature listed there which we don't understand then we
2082 	 * cannot open a pool.
2083 	 */
2084 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2085 		nvlist_t *unsup_feat;
2086 
2087 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2088 		    0);
2089 
2090 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2091 		    NULL); nvp != NULL;
2092 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2093 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2094 				VERIFY(nvlist_add_string(unsup_feat,
2095 				    nvpair_name(nvp), "") == 0);
2096 			}
2097 		}
2098 
2099 		if (!nvlist_empty(unsup_feat)) {
2100 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2101 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2102 			nvlist_free(unsup_feat);
2103 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2104 			    ENOTSUP));
2105 		}
2106 
2107 		nvlist_free(unsup_feat);
2108 	}
2109 
2110 	/*
2111 	 * If the vdev guid sum doesn't match the uberblock, we have an
2112 	 * incomplete configuration.  We first check to see if the pool
2113 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2114 	 * If it is, defer the vdev_guid_sum check till later so we
2115 	 * can handle missing vdevs.
2116 	 */
2117 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2118 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2119 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2120 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2121 
2122 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2123 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2124 		spa_try_repair(spa, config);
2125 		spa_config_exit(spa, SCL_ALL, FTAG);
2126 		nvlist_free(spa->spa_config_splitting);
2127 		spa->spa_config_splitting = NULL;
2128 	}
2129 
2130 	/*
2131 	 * Initialize internal SPA structures.
2132 	 */
2133 	spa->spa_state = POOL_STATE_ACTIVE;
2134 	spa->spa_ubsync = spa->spa_uberblock;
2135 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2136 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2137 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2138 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2139 	spa->spa_claim_max_txg = spa->spa_first_txg;
2140 	spa->spa_prev_software_version = ub->ub_software_version;
2141 
2142 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2143 	if (error)
2144 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2145 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2146 
2147 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2148 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2149 
2150 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2151 		boolean_t missing_feat_read = B_FALSE;
2152 		nvlist_t *unsup_feat;
2153 
2154 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2155 		    &spa->spa_feat_for_read_obj) != 0) {
2156 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2157 		}
2158 
2159 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2160 		    &spa->spa_feat_for_write_obj) != 0) {
2161 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2162 		}
2163 
2164 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2165 		    &spa->spa_feat_desc_obj) != 0) {
2166 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2167 		}
2168 
2169 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2170 		    0);
2171 
2172 		if (!feature_is_supported(spa->spa_meta_objset,
2173 		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2174 		    unsup_feat))
2175 			missing_feat_read = B_TRUE;
2176 
2177 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2178 			if (!feature_is_supported(spa->spa_meta_objset,
2179 			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2180 			    unsup_feat))
2181 				missing_feat_write = B_TRUE;
2182 		}
2183 
2184 		if (!nvlist_empty(unsup_feat)) {
2185 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2186 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2187 		}
2188 
2189 		nvlist_free(unsup_feat);
2190 
2191 		if (!missing_feat_read) {
2192 			fnvlist_add_boolean(spa->spa_load_info,
2193 			    ZPOOL_CONFIG_CAN_RDONLY);
2194 		}
2195 
2196 		/*
2197 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2198 		 * twofold: to determine whether the pool is available for
2199 		 * import in read-write mode and (if it is not) whether the
2200 		 * pool is available for import in read-only mode. If the pool
2201 		 * is available for import in read-write mode, it is displayed
2202 		 * as available in userland; if it is not available for import
2203 		 * in read-only mode, it is displayed as unavailable in
2204 		 * userland. If the pool is available for import in read-only
2205 		 * mode but not read-write mode, it is displayed as unavailable
2206 		 * in userland with a special note that the pool is actually
2207 		 * available for open in read-only mode.
2208 		 *
2209 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2210 		 * missing a feature for write, we must first determine whether
2211 		 * the pool can be opened read-only before returning to
2212 		 * userland in order to know whether to display the
2213 		 * abovementioned note.
2214 		 */
2215 		if (missing_feat_read || (missing_feat_write &&
2216 		    spa_writeable(spa))) {
2217 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2218 			    ENOTSUP));
2219 		}
2220 	}
2221 
2222 	spa->spa_is_initializing = B_TRUE;
2223 	error = dsl_pool_open(spa->spa_dsl_pool);
2224 	spa->spa_is_initializing = B_FALSE;
2225 	if (error != 0)
2226 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2227 
2228 	if (!mosconfig) {
2229 		uint64_t hostid;
2230 		nvlist_t *policy = NULL, *nvconfig;
2231 
2232 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2233 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2234 
2235 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2236 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2237 			char *hostname;
2238 			unsigned long myhostid = 0;
2239 
2240 			VERIFY(nvlist_lookup_string(nvconfig,
2241 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2242 
2243 #ifdef	_KERNEL
2244 			myhostid = zone_get_hostid(NULL);
2245 #else	/* _KERNEL */
2246 			/*
2247 			 * We're emulating the system's hostid in userland, so
2248 			 * we can't use zone_get_hostid().
2249 			 */
2250 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2251 #endif	/* _KERNEL */
2252 			if (hostid != 0 && myhostid != 0 &&
2253 			    hostid != myhostid) {
2254 				nvlist_free(nvconfig);
2255 				cmn_err(CE_WARN, "pool '%s' could not be "
2256 				    "loaded as it was last accessed by "
2257 				    "another system (host: %s hostid: 0x%lx). "
2258 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2259 				    spa_name(spa), hostname,
2260 				    (unsigned long)hostid);
2261 				return (EBADF);
2262 			}
2263 		}
2264 		if (nvlist_lookup_nvlist(spa->spa_config,
2265 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2266 			VERIFY(nvlist_add_nvlist(nvconfig,
2267 			    ZPOOL_REWIND_POLICY, policy) == 0);
2268 
2269 		spa_config_set(spa, nvconfig);
2270 		spa_unload(spa);
2271 		spa_deactivate(spa);
2272 		spa_activate(spa, orig_mode);
2273 
2274 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2275 	}
2276 
2277 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2278 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2279 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2280 	if (error != 0)
2281 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2282 
2283 	/*
2284 	 * Load the bit that tells us to use the new accounting function
2285 	 * (raid-z deflation).  If we have an older pool, this will not
2286 	 * be present.
2287 	 */
2288 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2289 	if (error != 0 && error != ENOENT)
2290 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2291 
2292 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2293 	    &spa->spa_creation_version);
2294 	if (error != 0 && error != ENOENT)
2295 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2296 
2297 	/*
2298 	 * Load the persistent error log.  If we have an older pool, this will
2299 	 * not be present.
2300 	 */
2301 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2302 	if (error != 0 && error != ENOENT)
2303 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2304 
2305 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2306 	    &spa->spa_errlog_scrub);
2307 	if (error != 0 && error != ENOENT)
2308 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2309 
2310 	/*
2311 	 * Load the history object.  If we have an older pool, this
2312 	 * will not be present.
2313 	 */
2314 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2315 	if (error != 0 && error != ENOENT)
2316 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2317 
2318 	/*
2319 	 * If we're assembling the pool from the split-off vdevs of
2320 	 * an existing pool, we don't want to attach the spares & cache
2321 	 * devices.
2322 	 */
2323 
2324 	/*
2325 	 * Load any hot spares for this pool.
2326 	 */
2327 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2328 	if (error != 0 && error != ENOENT)
2329 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2330 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2331 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2332 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2333 		    &spa->spa_spares.sav_config) != 0)
2334 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2335 
2336 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2337 		spa_load_spares(spa);
2338 		spa_config_exit(spa, SCL_ALL, FTAG);
2339 	} else if (error == 0) {
2340 		spa->spa_spares.sav_sync = B_TRUE;
2341 	}
2342 
2343 	/*
2344 	 * Load any level 2 ARC devices for this pool.
2345 	 */
2346 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2347 	    &spa->spa_l2cache.sav_object);
2348 	if (error != 0 && error != ENOENT)
2349 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2350 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2351 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2352 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2353 		    &spa->spa_l2cache.sav_config) != 0)
2354 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2355 
2356 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2357 		spa_load_l2cache(spa);
2358 		spa_config_exit(spa, SCL_ALL, FTAG);
2359 	} else if (error == 0) {
2360 		spa->spa_l2cache.sav_sync = B_TRUE;
2361 	}
2362 
2363 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2364 
2365 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2366 	if (error && error != ENOENT)
2367 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2368 
2369 	if (error == 0) {
2370 		uint64_t autoreplace;
2371 
2372 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2373 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2374 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2375 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2376 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2377 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2378 		    &spa->spa_dedup_ditto);
2379 
2380 		spa->spa_autoreplace = (autoreplace != 0);
2381 	}
2382 
2383 	/*
2384 	 * If the 'autoreplace' property is set, then post a resource notifying
2385 	 * the ZFS DE that it should not issue any faults for unopenable
2386 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2387 	 * unopenable vdevs so that the normal autoreplace handler can take
2388 	 * over.
2389 	 */
2390 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2391 		spa_check_removed(spa->spa_root_vdev);
2392 		/*
2393 		 * For the import case, this is done in spa_import(), because
2394 		 * at this point we're using the spare definitions from
2395 		 * the MOS config, not necessarily from the userland config.
2396 		 */
2397 		if (state != SPA_LOAD_IMPORT) {
2398 			spa_aux_check_removed(&spa->spa_spares);
2399 			spa_aux_check_removed(&spa->spa_l2cache);
2400 		}
2401 	}
2402 
2403 	/*
2404 	 * Load the vdev state for all toplevel vdevs.
2405 	 */
2406 	vdev_load(rvd);
2407 
2408 	/*
2409 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2410 	 */
2411 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2412 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2413 	spa_config_exit(spa, SCL_ALL, FTAG);
2414 
2415 	/*
2416 	 * Load the DDTs (dedup tables).
2417 	 */
2418 	error = ddt_load(spa);
2419 	if (error != 0)
2420 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421 
2422 	spa_update_dspace(spa);
2423 
2424 	/*
2425 	 * Validate the config, using the MOS config to fill in any
2426 	 * information which might be missing.  If we fail to validate
2427 	 * the config then declare the pool unfit for use. If we're
2428 	 * assembling a pool from a split, the log is not transferred
2429 	 * over.
2430 	 */
2431 	if (type != SPA_IMPORT_ASSEMBLE) {
2432 		nvlist_t *nvconfig;
2433 
2434 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2435 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2436 
2437 		if (!spa_config_valid(spa, nvconfig)) {
2438 			nvlist_free(nvconfig);
2439 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2440 			    ENXIO));
2441 		}
2442 		nvlist_free(nvconfig);
2443 
2444 		/*
2445 		 * Now that we've validated the config, check the state of the
2446 		 * root vdev.  If it can't be opened, it indicates one or
2447 		 * more toplevel vdevs are faulted.
2448 		 */
2449 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2450 			return (ENXIO);
2451 
2452 		if (spa_check_logs(spa)) {
2453 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2454 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2455 		}
2456 	}
2457 
2458 	if (missing_feat_write) {
2459 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2460 
2461 		/*
2462 		 * At this point, we know that we can open the pool in
2463 		 * read-only mode but not read-write mode. We now have enough
2464 		 * information and can return to userland.
2465 		 */
2466 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2467 	}
2468 
2469 	/*
2470 	 * We've successfully opened the pool, verify that we're ready
2471 	 * to start pushing transactions.
2472 	 */
2473 	if (state != SPA_LOAD_TRYIMPORT) {
2474 		if (error = spa_load_verify(spa))
2475 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2476 			    error));
2477 	}
2478 
2479 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2480 	    spa->spa_load_max_txg == UINT64_MAX)) {
2481 		dmu_tx_t *tx;
2482 		int need_update = B_FALSE;
2483 
2484 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2485 
2486 		/*
2487 		 * Claim log blocks that haven't been committed yet.
2488 		 * This must all happen in a single txg.
2489 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2490 		 * invoked from zil_claim_log_block()'s i/o done callback.
2491 		 * Price of rollback is that we abandon the log.
2492 		 */
2493 		spa->spa_claiming = B_TRUE;
2494 
2495 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2496 		    spa_first_txg(spa));
2497 		(void) dmu_objset_find(spa_name(spa),
2498 		    zil_claim, tx, DS_FIND_CHILDREN);
2499 		dmu_tx_commit(tx);
2500 
2501 		spa->spa_claiming = B_FALSE;
2502 
2503 		spa_set_log_state(spa, SPA_LOG_GOOD);
2504 		spa->spa_sync_on = B_TRUE;
2505 		txg_sync_start(spa->spa_dsl_pool);
2506 
2507 		/*
2508 		 * Wait for all claims to sync.  We sync up to the highest
2509 		 * claimed log block birth time so that claimed log blocks
2510 		 * don't appear to be from the future.  spa_claim_max_txg
2511 		 * will have been set for us by either zil_check_log_chain()
2512 		 * (invoked from spa_check_logs()) or zil_claim() above.
2513 		 */
2514 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2515 
2516 		/*
2517 		 * If the config cache is stale, or we have uninitialized
2518 		 * metaslabs (see spa_vdev_add()), then update the config.
2519 		 *
2520 		 * If this is a verbatim import, trust the current
2521 		 * in-core spa_config and update the disk labels.
2522 		 */
2523 		if (config_cache_txg != spa->spa_config_txg ||
2524 		    state == SPA_LOAD_IMPORT ||
2525 		    state == SPA_LOAD_RECOVER ||
2526 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2527 			need_update = B_TRUE;
2528 
2529 		for (int c = 0; c < rvd->vdev_children; c++)
2530 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2531 				need_update = B_TRUE;
2532 
2533 		/*
2534 		 * Update the config cache asychronously in case we're the
2535 		 * root pool, in which case the config cache isn't writable yet.
2536 		 */
2537 		if (need_update)
2538 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2539 
2540 		/*
2541 		 * Check all DTLs to see if anything needs resilvering.
2542 		 */
2543 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2544 		    vdev_resilver_needed(rvd, NULL, NULL))
2545 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2546 
2547 		/*
2548 		 * Delete any inconsistent datasets.
2549 		 */
2550 		(void) dmu_objset_find(spa_name(spa),
2551 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2552 
2553 		/*
2554 		 * Clean up any stale temporary dataset userrefs.
2555 		 */
2556 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2557 	}
2558 
2559 	return (0);
2560 }
2561 
2562 static int
2563 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2564 {
2565 	int mode = spa->spa_mode;
2566 
2567 	spa_unload(spa);
2568 	spa_deactivate(spa);
2569 
2570 	spa->spa_load_max_txg--;
2571 
2572 	spa_activate(spa, mode);
2573 	spa_async_suspend(spa);
2574 
2575 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2576 }
2577 
2578 /*
2579  * If spa_load() fails this function will try loading prior txg's. If
2580  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2581  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2582  * function will not rewind the pool and will return the same error as
2583  * spa_load().
2584  */
2585 static int
2586 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2587     uint64_t max_request, int rewind_flags)
2588 {
2589 	nvlist_t *loadinfo = NULL;
2590 	nvlist_t *config = NULL;
2591 	int load_error, rewind_error;
2592 	uint64_t safe_rewind_txg;
2593 	uint64_t min_txg;
2594 
2595 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2596 		spa->spa_load_max_txg = spa->spa_load_txg;
2597 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2598 	} else {
2599 		spa->spa_load_max_txg = max_request;
2600 	}
2601 
2602 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2603 	    mosconfig);
2604 	if (load_error == 0)
2605 		return (0);
2606 
2607 	if (spa->spa_root_vdev != NULL)
2608 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2609 
2610 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2611 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2612 
2613 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2614 		nvlist_free(config);
2615 		return (load_error);
2616 	}
2617 
2618 	if (state == SPA_LOAD_RECOVER) {
2619 		/* Price of rolling back is discarding txgs, including log */
2620 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2621 	} else {
2622 		/*
2623 		 * If we aren't rolling back save the load info from our first
2624 		 * import attempt so that we can restore it after attempting
2625 		 * to rewind.
2626 		 */
2627 		loadinfo = spa->spa_load_info;
2628 		spa->spa_load_info = fnvlist_alloc();
2629 	}
2630 
2631 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2632 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2633 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2634 	    TXG_INITIAL : safe_rewind_txg;
2635 
2636 	/*
2637 	 * Continue as long as we're finding errors, we're still within
2638 	 * the acceptable rewind range, and we're still finding uberblocks
2639 	 */
2640 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2641 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2642 		if (spa->spa_load_max_txg < safe_rewind_txg)
2643 			spa->spa_extreme_rewind = B_TRUE;
2644 		rewind_error = spa_load_retry(spa, state, mosconfig);
2645 	}
2646 
2647 	spa->spa_extreme_rewind = B_FALSE;
2648 	spa->spa_load_max_txg = UINT64_MAX;
2649 
2650 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2651 		spa_config_set(spa, config);
2652 
2653 	if (state == SPA_LOAD_RECOVER) {
2654 		ASSERT3P(loadinfo, ==, NULL);
2655 		return (rewind_error);
2656 	} else {
2657 		/* Store the rewind info as part of the initial load info */
2658 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2659 		    spa->spa_load_info);
2660 
2661 		/* Restore the initial load info */
2662 		fnvlist_free(spa->spa_load_info);
2663 		spa->spa_load_info = loadinfo;
2664 
2665 		return (load_error);
2666 	}
2667 }
2668 
2669 /*
2670  * Pool Open/Import
2671  *
2672  * The import case is identical to an open except that the configuration is sent
2673  * down from userland, instead of grabbed from the configuration cache.  For the
2674  * case of an open, the pool configuration will exist in the
2675  * POOL_STATE_UNINITIALIZED state.
2676  *
2677  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2678  * the same time open the pool, without having to keep around the spa_t in some
2679  * ambiguous state.
2680  */
2681 static int
2682 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2683     nvlist_t **config)
2684 {
2685 	spa_t *spa;
2686 	spa_load_state_t state = SPA_LOAD_OPEN;
2687 	int error;
2688 	int locked = B_FALSE;
2689 
2690 	*spapp = NULL;
2691 
2692 	/*
2693 	 * As disgusting as this is, we need to support recursive calls to this
2694 	 * function because dsl_dir_open() is called during spa_load(), and ends
2695 	 * up calling spa_open() again.  The real fix is to figure out how to
2696 	 * avoid dsl_dir_open() calling this in the first place.
2697 	 */
2698 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2699 		mutex_enter(&spa_namespace_lock);
2700 		locked = B_TRUE;
2701 	}
2702 
2703 	if ((spa = spa_lookup(pool)) == NULL) {
2704 		if (locked)
2705 			mutex_exit(&spa_namespace_lock);
2706 		return (ENOENT);
2707 	}
2708 
2709 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2710 		zpool_rewind_policy_t policy;
2711 
2712 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2713 		    &policy);
2714 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2715 			state = SPA_LOAD_RECOVER;
2716 
2717 		spa_activate(spa, spa_mode_global);
2718 
2719 		if (state != SPA_LOAD_RECOVER)
2720 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2721 
2722 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2723 		    policy.zrp_request);
2724 
2725 		if (error == EBADF) {
2726 			/*
2727 			 * If vdev_validate() returns failure (indicated by
2728 			 * EBADF), it indicates that one of the vdevs indicates
2729 			 * that the pool has been exported or destroyed.  If
2730 			 * this is the case, the config cache is out of sync and
2731 			 * we should remove the pool from the namespace.
2732 			 */
2733 			spa_unload(spa);
2734 			spa_deactivate(spa);
2735 			spa_config_sync(spa, B_TRUE, B_TRUE);
2736 			spa_remove(spa);
2737 			if (locked)
2738 				mutex_exit(&spa_namespace_lock);
2739 			return (ENOENT);
2740 		}
2741 
2742 		if (error) {
2743 			/*
2744 			 * We can't open the pool, but we still have useful
2745 			 * information: the state of each vdev after the
2746 			 * attempted vdev_open().  Return this to the user.
2747 			 */
2748 			if (config != NULL && spa->spa_config) {
2749 				VERIFY(nvlist_dup(spa->spa_config, config,
2750 				    KM_SLEEP) == 0);
2751 				VERIFY(nvlist_add_nvlist(*config,
2752 				    ZPOOL_CONFIG_LOAD_INFO,
2753 				    spa->spa_load_info) == 0);
2754 			}
2755 			spa_unload(spa);
2756 			spa_deactivate(spa);
2757 			spa->spa_last_open_failed = error;
2758 			if (locked)
2759 				mutex_exit(&spa_namespace_lock);
2760 			*spapp = NULL;
2761 			return (error);
2762 		}
2763 	}
2764 
2765 	spa_open_ref(spa, tag);
2766 
2767 	if (config != NULL)
2768 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2769 
2770 	/*
2771 	 * If we've recovered the pool, pass back any information we
2772 	 * gathered while doing the load.
2773 	 */
2774 	if (state == SPA_LOAD_RECOVER) {
2775 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2776 		    spa->spa_load_info) == 0);
2777 	}
2778 
2779 	if (locked) {
2780 		spa->spa_last_open_failed = 0;
2781 		spa->spa_last_ubsync_txg = 0;
2782 		spa->spa_load_txg = 0;
2783 		mutex_exit(&spa_namespace_lock);
2784 	}
2785 
2786 	*spapp = spa;
2787 
2788 	return (0);
2789 }
2790 
2791 int
2792 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2793     nvlist_t **config)
2794 {
2795 	return (spa_open_common(name, spapp, tag, policy, config));
2796 }
2797 
2798 int
2799 spa_open(const char *name, spa_t **spapp, void *tag)
2800 {
2801 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2802 }
2803 
2804 /*
2805  * Lookup the given spa_t, incrementing the inject count in the process,
2806  * preventing it from being exported or destroyed.
2807  */
2808 spa_t *
2809 spa_inject_addref(char *name)
2810 {
2811 	spa_t *spa;
2812 
2813 	mutex_enter(&spa_namespace_lock);
2814 	if ((spa = spa_lookup(name)) == NULL) {
2815 		mutex_exit(&spa_namespace_lock);
2816 		return (NULL);
2817 	}
2818 	spa->spa_inject_ref++;
2819 	mutex_exit(&spa_namespace_lock);
2820 
2821 	return (spa);
2822 }
2823 
2824 void
2825 spa_inject_delref(spa_t *spa)
2826 {
2827 	mutex_enter(&spa_namespace_lock);
2828 	spa->spa_inject_ref--;
2829 	mutex_exit(&spa_namespace_lock);
2830 }
2831 
2832 /*
2833  * Add spares device information to the nvlist.
2834  */
2835 static void
2836 spa_add_spares(spa_t *spa, nvlist_t *config)
2837 {
2838 	nvlist_t **spares;
2839 	uint_t i, nspares;
2840 	nvlist_t *nvroot;
2841 	uint64_t guid;
2842 	vdev_stat_t *vs;
2843 	uint_t vsc;
2844 	uint64_t pool;
2845 
2846 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2847 
2848 	if (spa->spa_spares.sav_count == 0)
2849 		return;
2850 
2851 	VERIFY(nvlist_lookup_nvlist(config,
2852 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2853 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2854 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2855 	if (nspares != 0) {
2856 		VERIFY(nvlist_add_nvlist_array(nvroot,
2857 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2858 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2859 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2860 
2861 		/*
2862 		 * Go through and find any spares which have since been
2863 		 * repurposed as an active spare.  If this is the case, update
2864 		 * their status appropriately.
2865 		 */
2866 		for (i = 0; i < nspares; i++) {
2867 			VERIFY(nvlist_lookup_uint64(spares[i],
2868 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2869 			if (spa_spare_exists(guid, &pool, NULL) &&
2870 			    pool != 0ULL) {
2871 				VERIFY(nvlist_lookup_uint64_array(
2872 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2873 				    (uint64_t **)&vs, &vsc) == 0);
2874 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2875 				vs->vs_aux = VDEV_AUX_SPARED;
2876 			}
2877 		}
2878 	}
2879 }
2880 
2881 /*
2882  * Add l2cache device information to the nvlist, including vdev stats.
2883  */
2884 static void
2885 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2886 {
2887 	nvlist_t **l2cache;
2888 	uint_t i, j, nl2cache;
2889 	nvlist_t *nvroot;
2890 	uint64_t guid;
2891 	vdev_t *vd;
2892 	vdev_stat_t *vs;
2893 	uint_t vsc;
2894 
2895 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2896 
2897 	if (spa->spa_l2cache.sav_count == 0)
2898 		return;
2899 
2900 	VERIFY(nvlist_lookup_nvlist(config,
2901 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2902 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2903 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2904 	if (nl2cache != 0) {
2905 		VERIFY(nvlist_add_nvlist_array(nvroot,
2906 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2907 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2908 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2909 
2910 		/*
2911 		 * Update level 2 cache device stats.
2912 		 */
2913 
2914 		for (i = 0; i < nl2cache; i++) {
2915 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2916 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2917 
2918 			vd = NULL;
2919 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2920 				if (guid ==
2921 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2922 					vd = spa->spa_l2cache.sav_vdevs[j];
2923 					break;
2924 				}
2925 			}
2926 			ASSERT(vd != NULL);
2927 
2928 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2929 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2930 			    == 0);
2931 			vdev_get_stats(vd, vs);
2932 		}
2933 	}
2934 }
2935 
2936 static void
2937 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
2938 {
2939 	nvlist_t *features;
2940 	zap_cursor_t zc;
2941 	zap_attribute_t za;
2942 
2943 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2944 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2945 
2946 	if (spa->spa_feat_for_read_obj != 0) {
2947 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
2948 		    spa->spa_feat_for_read_obj);
2949 		    zap_cursor_retrieve(&zc, &za) == 0;
2950 		    zap_cursor_advance(&zc)) {
2951 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
2952 			    za.za_num_integers == 1);
2953 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
2954 			    za.za_first_integer));
2955 		}
2956 		zap_cursor_fini(&zc);
2957 	}
2958 
2959 	if (spa->spa_feat_for_write_obj != 0) {
2960 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
2961 		    spa->spa_feat_for_write_obj);
2962 		    zap_cursor_retrieve(&zc, &za) == 0;
2963 		    zap_cursor_advance(&zc)) {
2964 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
2965 			    za.za_num_integers == 1);
2966 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
2967 			    za.za_first_integer));
2968 		}
2969 		zap_cursor_fini(&zc);
2970 	}
2971 
2972 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
2973 	    features) == 0);
2974 	nvlist_free(features);
2975 }
2976 
2977 int
2978 spa_get_stats(const char *name, nvlist_t **config,
2979     char *altroot, size_t buflen)
2980 {
2981 	int error;
2982 	spa_t *spa;
2983 
2984 	*config = NULL;
2985 	error = spa_open_common(name, &spa, FTAG, NULL, config);
2986 
2987 	if (spa != NULL) {
2988 		/*
2989 		 * This still leaves a window of inconsistency where the spares
2990 		 * or l2cache devices could change and the config would be
2991 		 * self-inconsistent.
2992 		 */
2993 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2994 
2995 		if (*config != NULL) {
2996 			uint64_t loadtimes[2];
2997 
2998 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2999 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3000 			VERIFY(nvlist_add_uint64_array(*config,
3001 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3002 
3003 			VERIFY(nvlist_add_uint64(*config,
3004 			    ZPOOL_CONFIG_ERRCOUNT,
3005 			    spa_get_errlog_size(spa)) == 0);
3006 
3007 			if (spa_suspended(spa))
3008 				VERIFY(nvlist_add_uint64(*config,
3009 				    ZPOOL_CONFIG_SUSPENDED,
3010 				    spa->spa_failmode) == 0);
3011 
3012 			spa_add_spares(spa, *config);
3013 			spa_add_l2cache(spa, *config);
3014 			spa_add_feature_stats(spa, *config);
3015 		}
3016 	}
3017 
3018 	/*
3019 	 * We want to get the alternate root even for faulted pools, so we cheat
3020 	 * and call spa_lookup() directly.
3021 	 */
3022 	if (altroot) {
3023 		if (spa == NULL) {
3024 			mutex_enter(&spa_namespace_lock);
3025 			spa = spa_lookup(name);
3026 			if (spa)
3027 				spa_altroot(spa, altroot, buflen);
3028 			else
3029 				altroot[0] = '\0';
3030 			spa = NULL;
3031 			mutex_exit(&spa_namespace_lock);
3032 		} else {
3033 			spa_altroot(spa, altroot, buflen);
3034 		}
3035 	}
3036 
3037 	if (spa != NULL) {
3038 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3039 		spa_close(spa, FTAG);
3040 	}
3041 
3042 	return (error);
3043 }
3044 
3045 /*
3046  * Validate that the auxiliary device array is well formed.  We must have an
3047  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3048  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3049  * specified, as long as they are well-formed.
3050  */
3051 static int
3052 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3053     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3054     vdev_labeltype_t label)
3055 {
3056 	nvlist_t **dev;
3057 	uint_t i, ndev;
3058 	vdev_t *vd;
3059 	int error;
3060 
3061 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3062 
3063 	/*
3064 	 * It's acceptable to have no devs specified.
3065 	 */
3066 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3067 		return (0);
3068 
3069 	if (ndev == 0)
3070 		return (EINVAL);
3071 
3072 	/*
3073 	 * Make sure the pool is formatted with a version that supports this
3074 	 * device type.
3075 	 */
3076 	if (spa_version(spa) < version)
3077 		return (ENOTSUP);
3078 
3079 	/*
3080 	 * Set the pending device list so we correctly handle device in-use
3081 	 * checking.
3082 	 */
3083 	sav->sav_pending = dev;
3084 	sav->sav_npending = ndev;
3085 
3086 	for (i = 0; i < ndev; i++) {
3087 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3088 		    mode)) != 0)
3089 			goto out;
3090 
3091 		if (!vd->vdev_ops->vdev_op_leaf) {
3092 			vdev_free(vd);
3093 			error = EINVAL;
3094 			goto out;
3095 		}
3096 
3097 		/*
3098 		 * The L2ARC currently only supports disk devices in
3099 		 * kernel context.  For user-level testing, we allow it.
3100 		 */
3101 #ifdef _KERNEL
3102 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3103 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3104 			error = ENOTBLK;
3105 			vdev_free(vd);
3106 			goto out;
3107 		}
3108 #endif
3109 		vd->vdev_top = vd;
3110 
3111 		if ((error = vdev_open(vd)) == 0 &&
3112 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3113 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3114 			    vd->vdev_guid) == 0);
3115 		}
3116 
3117 		vdev_free(vd);
3118 
3119 		if (error &&
3120 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3121 			goto out;
3122 		else
3123 			error = 0;
3124 	}
3125 
3126 out:
3127 	sav->sav_pending = NULL;
3128 	sav->sav_npending = 0;
3129 	return (error);
3130 }
3131 
3132 static int
3133 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3134 {
3135 	int error;
3136 
3137 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3138 
3139 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3140 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3141 	    VDEV_LABEL_SPARE)) != 0) {
3142 		return (error);
3143 	}
3144 
3145 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3146 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3147 	    VDEV_LABEL_L2CACHE));
3148 }
3149 
3150 static void
3151 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3152     const char *config)
3153 {
3154 	int i;
3155 
3156 	if (sav->sav_config != NULL) {
3157 		nvlist_t **olddevs;
3158 		uint_t oldndevs;
3159 		nvlist_t **newdevs;
3160 
3161 		/*
3162 		 * Generate new dev list by concatentating with the
3163 		 * current dev list.
3164 		 */
3165 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3166 		    &olddevs, &oldndevs) == 0);
3167 
3168 		newdevs = kmem_alloc(sizeof (void *) *
3169 		    (ndevs + oldndevs), KM_SLEEP);
3170 		for (i = 0; i < oldndevs; i++)
3171 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3172 			    KM_SLEEP) == 0);
3173 		for (i = 0; i < ndevs; i++)
3174 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3175 			    KM_SLEEP) == 0);
3176 
3177 		VERIFY(nvlist_remove(sav->sav_config, config,
3178 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3179 
3180 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3181 		    config, newdevs, ndevs + oldndevs) == 0);
3182 		for (i = 0; i < oldndevs + ndevs; i++)
3183 			nvlist_free(newdevs[i]);
3184 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3185 	} else {
3186 		/*
3187 		 * Generate a new dev list.
3188 		 */
3189 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3190 		    KM_SLEEP) == 0);
3191 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3192 		    devs, ndevs) == 0);
3193 	}
3194 }
3195 
3196 /*
3197  * Stop and drop level 2 ARC devices
3198  */
3199 void
3200 spa_l2cache_drop(spa_t *spa)
3201 {
3202 	vdev_t *vd;
3203 	int i;
3204 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3205 
3206 	for (i = 0; i < sav->sav_count; i++) {
3207 		uint64_t pool;
3208 
3209 		vd = sav->sav_vdevs[i];
3210 		ASSERT(vd != NULL);
3211 
3212 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3213 		    pool != 0ULL && l2arc_vdev_present(vd))
3214 			l2arc_remove_vdev(vd);
3215 	}
3216 }
3217 
3218 /*
3219  * Pool Creation
3220  */
3221 int
3222 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3223     const char *history_str, nvlist_t *zplprops)
3224 {
3225 	spa_t *spa;
3226 	char *altroot = NULL;
3227 	vdev_t *rvd;
3228 	dsl_pool_t *dp;
3229 	dmu_tx_t *tx;
3230 	int error = 0;
3231 	uint64_t txg = TXG_INITIAL;
3232 	nvlist_t **spares, **l2cache;
3233 	uint_t nspares, nl2cache;
3234 	uint64_t version, obj;
3235 	boolean_t has_features;
3236 
3237 	/*
3238 	 * If this pool already exists, return failure.
3239 	 */
3240 	mutex_enter(&spa_namespace_lock);
3241 	if (spa_lookup(pool) != NULL) {
3242 		mutex_exit(&spa_namespace_lock);
3243 		return (EEXIST);
3244 	}
3245 
3246 	/*
3247 	 * Allocate a new spa_t structure.
3248 	 */
3249 	(void) nvlist_lookup_string(props,
3250 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3251 	spa = spa_add(pool, NULL, altroot);
3252 	spa_activate(spa, spa_mode_global);
3253 
3254 	if (props && (error = spa_prop_validate(spa, props))) {
3255 		spa_deactivate(spa);
3256 		spa_remove(spa);
3257 		mutex_exit(&spa_namespace_lock);
3258 		return (error);
3259 	}
3260 
3261 	has_features = B_FALSE;
3262 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3263 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3264 		if (zpool_prop_feature(nvpair_name(elem)))
3265 			has_features = B_TRUE;
3266 	}
3267 
3268 	if (has_features || nvlist_lookup_uint64(props,
3269 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3270 		version = SPA_VERSION;
3271 	}
3272 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3273 
3274 	spa->spa_first_txg = txg;
3275 	spa->spa_uberblock.ub_txg = txg - 1;
3276 	spa->spa_uberblock.ub_version = version;
3277 	spa->spa_ubsync = spa->spa_uberblock;
3278 
3279 	/*
3280 	 * Create "The Godfather" zio to hold all async IOs
3281 	 */
3282 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3283 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3284 
3285 	/*
3286 	 * Create the root vdev.
3287 	 */
3288 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3289 
3290 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3291 
3292 	ASSERT(error != 0 || rvd != NULL);
3293 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3294 
3295 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3296 		error = EINVAL;
3297 
3298 	if (error == 0 &&
3299 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3300 	    (error = spa_validate_aux(spa, nvroot, txg,
3301 	    VDEV_ALLOC_ADD)) == 0) {
3302 		for (int c = 0; c < rvd->vdev_children; c++) {
3303 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3304 			vdev_expand(rvd->vdev_child[c], txg);
3305 		}
3306 	}
3307 
3308 	spa_config_exit(spa, SCL_ALL, FTAG);
3309 
3310 	if (error != 0) {
3311 		spa_unload(spa);
3312 		spa_deactivate(spa);
3313 		spa_remove(spa);
3314 		mutex_exit(&spa_namespace_lock);
3315 		return (error);
3316 	}
3317 
3318 	/*
3319 	 * Get the list of spares, if specified.
3320 	 */
3321 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3322 	    &spares, &nspares) == 0) {
3323 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3324 		    KM_SLEEP) == 0);
3325 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3326 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3327 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3328 		spa_load_spares(spa);
3329 		spa_config_exit(spa, SCL_ALL, FTAG);
3330 		spa->spa_spares.sav_sync = B_TRUE;
3331 	}
3332 
3333 	/*
3334 	 * Get the list of level 2 cache devices, if specified.
3335 	 */
3336 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3337 	    &l2cache, &nl2cache) == 0) {
3338 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3339 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3340 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3341 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3342 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3343 		spa_load_l2cache(spa);
3344 		spa_config_exit(spa, SCL_ALL, FTAG);
3345 		spa->spa_l2cache.sav_sync = B_TRUE;
3346 	}
3347 
3348 	spa->spa_is_initializing = B_TRUE;
3349 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3350 	spa->spa_meta_objset = dp->dp_meta_objset;
3351 	spa->spa_is_initializing = B_FALSE;
3352 
3353 	/*
3354 	 * Create DDTs (dedup tables).
3355 	 */
3356 	ddt_create(spa);
3357 
3358 	spa_update_dspace(spa);
3359 
3360 	tx = dmu_tx_create_assigned(dp, txg);
3361 
3362 	/*
3363 	 * Create the pool config object.
3364 	 */
3365 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3366 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3367 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3368 
3369 	if (zap_add(spa->spa_meta_objset,
3370 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3371 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3372 		cmn_err(CE_PANIC, "failed to add pool config");
3373 	}
3374 
3375 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3376 		spa_feature_create_zap_objects(spa, tx);
3377 
3378 	if (zap_add(spa->spa_meta_objset,
3379 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3380 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3381 		cmn_err(CE_PANIC, "failed to add pool version");
3382 	}
3383 
3384 	/* Newly created pools with the right version are always deflated. */
3385 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3386 		spa->spa_deflate = TRUE;
3387 		if (zap_add(spa->spa_meta_objset,
3388 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3389 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3390 			cmn_err(CE_PANIC, "failed to add deflate");
3391 		}
3392 	}
3393 
3394 	/*
3395 	 * Create the deferred-free bpobj.  Turn off compression
3396 	 * because sync-to-convergence takes longer if the blocksize
3397 	 * keeps changing.
3398 	 */
3399 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3400 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3401 	    ZIO_COMPRESS_OFF, tx);
3402 	if (zap_add(spa->spa_meta_objset,
3403 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3404 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3405 		cmn_err(CE_PANIC, "failed to add bpobj");
3406 	}
3407 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3408 	    spa->spa_meta_objset, obj));
3409 
3410 	/*
3411 	 * Create the pool's history object.
3412 	 */
3413 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3414 		spa_history_create_obj(spa, tx);
3415 
3416 	/*
3417 	 * Set pool properties.
3418 	 */
3419 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3420 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3421 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3422 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3423 
3424 	if (props != NULL) {
3425 		spa_configfile_set(spa, props, B_FALSE);
3426 		spa_sync_props(spa, props, tx);
3427 	}
3428 
3429 	dmu_tx_commit(tx);
3430 
3431 	spa->spa_sync_on = B_TRUE;
3432 	txg_sync_start(spa->spa_dsl_pool);
3433 
3434 	/*
3435 	 * We explicitly wait for the first transaction to complete so that our
3436 	 * bean counters are appropriately updated.
3437 	 */
3438 	txg_wait_synced(spa->spa_dsl_pool, txg);
3439 
3440 	spa_config_sync(spa, B_FALSE, B_TRUE);
3441 
3442 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3443 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3444 	spa_history_log_version(spa, LOG_POOL_CREATE);
3445 
3446 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3447 
3448 	mutex_exit(&spa_namespace_lock);
3449 
3450 	return (0);
3451 }
3452 
3453 #ifdef _KERNEL
3454 /*
3455  * Get the root pool information from the root disk, then import the root pool
3456  * during the system boot up time.
3457  */
3458 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3459 
3460 static nvlist_t *
3461 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3462 {
3463 	nvlist_t *config;
3464 	nvlist_t *nvtop, *nvroot;
3465 	uint64_t pgid;
3466 
3467 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3468 		return (NULL);
3469 
3470 	/*
3471 	 * Add this top-level vdev to the child array.
3472 	 */
3473 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3474 	    &nvtop) == 0);
3475 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3476 	    &pgid) == 0);
3477 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3478 
3479 	/*
3480 	 * Put this pool's top-level vdevs into a root vdev.
3481 	 */
3482 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3483 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3484 	    VDEV_TYPE_ROOT) == 0);
3485 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3486 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3487 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3488 	    &nvtop, 1) == 0);
3489 
3490 	/*
3491 	 * Replace the existing vdev_tree with the new root vdev in
3492 	 * this pool's configuration (remove the old, add the new).
3493 	 */
3494 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3495 	nvlist_free(nvroot);
3496 	return (config);
3497 }
3498 
3499 /*
3500  * Walk the vdev tree and see if we can find a device with "better"
3501  * configuration. A configuration is "better" if the label on that
3502  * device has a more recent txg.
3503  */
3504 static void
3505 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3506 {
3507 	for (int c = 0; c < vd->vdev_children; c++)
3508 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3509 
3510 	if (vd->vdev_ops->vdev_op_leaf) {
3511 		nvlist_t *label;
3512 		uint64_t label_txg;
3513 
3514 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3515 		    &label) != 0)
3516 			return;
3517 
3518 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3519 		    &label_txg) == 0);
3520 
3521 		/*
3522 		 * Do we have a better boot device?
3523 		 */
3524 		if (label_txg > *txg) {
3525 			*txg = label_txg;
3526 			*avd = vd;
3527 		}
3528 		nvlist_free(label);
3529 	}
3530 }
3531 
3532 /*
3533  * Import a root pool.
3534  *
3535  * For x86. devpath_list will consist of devid and/or physpath name of
3536  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3537  * The GRUB "findroot" command will return the vdev we should boot.
3538  *
3539  * For Sparc, devpath_list consists the physpath name of the booting device
3540  * no matter the rootpool is a single device pool or a mirrored pool.
3541  * e.g.
3542  *	"/pci@1f,0/ide@d/disk@0,0:a"
3543  */
3544 int
3545 spa_import_rootpool(char *devpath, char *devid)
3546 {
3547 	spa_t *spa;
3548 	vdev_t *rvd, *bvd, *avd = NULL;
3549 	nvlist_t *config, *nvtop;
3550 	uint64_t guid, txg;
3551 	char *pname;
3552 	int error;
3553 
3554 	/*
3555 	 * Read the label from the boot device and generate a configuration.
3556 	 */
3557 	config = spa_generate_rootconf(devpath, devid, &guid);
3558 #if defined(_OBP) && defined(_KERNEL)
3559 	if (config == NULL) {
3560 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3561 			/* iscsi boot */
3562 			get_iscsi_bootpath_phy(devpath);
3563 			config = spa_generate_rootconf(devpath, devid, &guid);
3564 		}
3565 	}
3566 #endif
3567 	if (config == NULL) {
3568 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3569 		    devpath);
3570 		return (EIO);
3571 	}
3572 
3573 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3574 	    &pname) == 0);
3575 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3576 
3577 	mutex_enter(&spa_namespace_lock);
3578 	if ((spa = spa_lookup(pname)) != NULL) {
3579 		/*
3580 		 * Remove the existing root pool from the namespace so that we
3581 		 * can replace it with the correct config we just read in.
3582 		 */
3583 		spa_remove(spa);
3584 	}
3585 
3586 	spa = spa_add(pname, config, NULL);
3587 	spa->spa_is_root = B_TRUE;
3588 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3589 
3590 	/*
3591 	 * Build up a vdev tree based on the boot device's label config.
3592 	 */
3593 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3594 	    &nvtop) == 0);
3595 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3596 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3597 	    VDEV_ALLOC_ROOTPOOL);
3598 	spa_config_exit(spa, SCL_ALL, FTAG);
3599 	if (error) {
3600 		mutex_exit(&spa_namespace_lock);
3601 		nvlist_free(config);
3602 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3603 		    pname);
3604 		return (error);
3605 	}
3606 
3607 	/*
3608 	 * Get the boot vdev.
3609 	 */
3610 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3611 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3612 		    (u_longlong_t)guid);
3613 		error = ENOENT;
3614 		goto out;
3615 	}
3616 
3617 	/*
3618 	 * Determine if there is a better boot device.
3619 	 */
3620 	avd = bvd;
3621 	spa_alt_rootvdev(rvd, &avd, &txg);
3622 	if (avd != bvd) {
3623 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3624 		    "try booting from '%s'", avd->vdev_path);
3625 		error = EINVAL;
3626 		goto out;
3627 	}
3628 
3629 	/*
3630 	 * If the boot device is part of a spare vdev then ensure that
3631 	 * we're booting off the active spare.
3632 	 */
3633 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3634 	    !bvd->vdev_isspare) {
3635 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3636 		    "try booting from '%s'",
3637 		    bvd->vdev_parent->
3638 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3639 		error = EINVAL;
3640 		goto out;
3641 	}
3642 
3643 	error = 0;
3644 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3645 out:
3646 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3647 	vdev_free(rvd);
3648 	spa_config_exit(spa, SCL_ALL, FTAG);
3649 	mutex_exit(&spa_namespace_lock);
3650 
3651 	nvlist_free(config);
3652 	return (error);
3653 }
3654 
3655 #endif
3656 
3657 /*
3658  * Import a non-root pool into the system.
3659  */
3660 int
3661 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3662 {
3663 	spa_t *spa;
3664 	char *altroot = NULL;
3665 	spa_load_state_t state = SPA_LOAD_IMPORT;
3666 	zpool_rewind_policy_t policy;
3667 	uint64_t mode = spa_mode_global;
3668 	uint64_t readonly = B_FALSE;
3669 	int error;
3670 	nvlist_t *nvroot;
3671 	nvlist_t **spares, **l2cache;
3672 	uint_t nspares, nl2cache;
3673 
3674 	/*
3675 	 * If a pool with this name exists, return failure.
3676 	 */
3677 	mutex_enter(&spa_namespace_lock);
3678 	if (spa_lookup(pool) != NULL) {
3679 		mutex_exit(&spa_namespace_lock);
3680 		return (EEXIST);
3681 	}
3682 
3683 	/*
3684 	 * Create and initialize the spa structure.
3685 	 */
3686 	(void) nvlist_lookup_string(props,
3687 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3688 	(void) nvlist_lookup_uint64(props,
3689 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3690 	if (readonly)
3691 		mode = FREAD;
3692 	spa = spa_add(pool, config, altroot);
3693 	spa->spa_import_flags = flags;
3694 
3695 	/*
3696 	 * Verbatim import - Take a pool and insert it into the namespace
3697 	 * as if it had been loaded at boot.
3698 	 */
3699 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3700 		if (props != NULL)
3701 			spa_configfile_set(spa, props, B_FALSE);
3702 
3703 		spa_config_sync(spa, B_FALSE, B_TRUE);
3704 
3705 		mutex_exit(&spa_namespace_lock);
3706 		spa_history_log_version(spa, LOG_POOL_IMPORT);
3707 
3708 		return (0);
3709 	}
3710 
3711 	spa_activate(spa, mode);
3712 
3713 	/*
3714 	 * Don't start async tasks until we know everything is healthy.
3715 	 */
3716 	spa_async_suspend(spa);
3717 
3718 	zpool_get_rewind_policy(config, &policy);
3719 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3720 		state = SPA_LOAD_RECOVER;
3721 
3722 	/*
3723 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3724 	 * because the user-supplied config is actually the one to trust when
3725 	 * doing an import.
3726 	 */
3727 	if (state != SPA_LOAD_RECOVER)
3728 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3729 
3730 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3731 	    policy.zrp_request);
3732 
3733 	/*
3734 	 * Propagate anything learned while loading the pool and pass it
3735 	 * back to caller (i.e. rewind info, missing devices, etc).
3736 	 */
3737 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3738 	    spa->spa_load_info) == 0);
3739 
3740 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3741 	/*
3742 	 * Toss any existing sparelist, as it doesn't have any validity
3743 	 * anymore, and conflicts with spa_has_spare().
3744 	 */
3745 	if (spa->spa_spares.sav_config) {
3746 		nvlist_free(spa->spa_spares.sav_config);
3747 		spa->spa_spares.sav_config = NULL;
3748 		spa_load_spares(spa);
3749 	}
3750 	if (spa->spa_l2cache.sav_config) {
3751 		nvlist_free(spa->spa_l2cache.sav_config);
3752 		spa->spa_l2cache.sav_config = NULL;
3753 		spa_load_l2cache(spa);
3754 	}
3755 
3756 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3757 	    &nvroot) == 0);
3758 	if (error == 0)
3759 		error = spa_validate_aux(spa, nvroot, -1ULL,
3760 		    VDEV_ALLOC_SPARE);
3761 	if (error == 0)
3762 		error = spa_validate_aux(spa, nvroot, -1ULL,
3763 		    VDEV_ALLOC_L2CACHE);
3764 	spa_config_exit(spa, SCL_ALL, FTAG);
3765 
3766 	if (props != NULL)
3767 		spa_configfile_set(spa, props, B_FALSE);
3768 
3769 	if (error != 0 || (props && spa_writeable(spa) &&
3770 	    (error = spa_prop_set(spa, props)))) {
3771 		spa_unload(spa);
3772 		spa_deactivate(spa);
3773 		spa_remove(spa);
3774 		mutex_exit(&spa_namespace_lock);
3775 		return (error);
3776 	}
3777 
3778 	spa_async_resume(spa);
3779 
3780 	/*
3781 	 * Override any spares and level 2 cache devices as specified by
3782 	 * the user, as these may have correct device names/devids, etc.
3783 	 */
3784 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3785 	    &spares, &nspares) == 0) {
3786 		if (spa->spa_spares.sav_config)
3787 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3788 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3789 		else
3790 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3791 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3792 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3793 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3794 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3795 		spa_load_spares(spa);
3796 		spa_config_exit(spa, SCL_ALL, FTAG);
3797 		spa->spa_spares.sav_sync = B_TRUE;
3798 	}
3799 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3800 	    &l2cache, &nl2cache) == 0) {
3801 		if (spa->spa_l2cache.sav_config)
3802 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3803 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3804 		else
3805 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3806 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3807 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3808 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3809 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3810 		spa_load_l2cache(spa);
3811 		spa_config_exit(spa, SCL_ALL, FTAG);
3812 		spa->spa_l2cache.sav_sync = B_TRUE;
3813 	}
3814 
3815 	/*
3816 	 * Check for any removed devices.
3817 	 */
3818 	if (spa->spa_autoreplace) {
3819 		spa_aux_check_removed(&spa->spa_spares);
3820 		spa_aux_check_removed(&spa->spa_l2cache);
3821 	}
3822 
3823 	if (spa_writeable(spa)) {
3824 		/*
3825 		 * Update the config cache to include the newly-imported pool.
3826 		 */
3827 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3828 	}
3829 
3830 	/*
3831 	 * It's possible that the pool was expanded while it was exported.
3832 	 * We kick off an async task to handle this for us.
3833 	 */
3834 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3835 
3836 	mutex_exit(&spa_namespace_lock);
3837 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3838 
3839 	return (0);
3840 }
3841 
3842 nvlist_t *
3843 spa_tryimport(nvlist_t *tryconfig)
3844 {
3845 	nvlist_t *config = NULL;
3846 	char *poolname;
3847 	spa_t *spa;
3848 	uint64_t state;
3849 	int error;
3850 
3851 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3852 		return (NULL);
3853 
3854 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3855 		return (NULL);
3856 
3857 	/*
3858 	 * Create and initialize the spa structure.
3859 	 */
3860 	mutex_enter(&spa_namespace_lock);
3861 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3862 	spa_activate(spa, FREAD);
3863 
3864 	/*
3865 	 * Pass off the heavy lifting to spa_load().
3866 	 * Pass TRUE for mosconfig because the user-supplied config
3867 	 * is actually the one to trust when doing an import.
3868 	 */
3869 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3870 
3871 	/*
3872 	 * If 'tryconfig' was at least parsable, return the current config.
3873 	 */
3874 	if (spa->spa_root_vdev != NULL) {
3875 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3876 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3877 		    poolname) == 0);
3878 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3879 		    state) == 0);
3880 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3881 		    spa->spa_uberblock.ub_timestamp) == 0);
3882 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3883 		    spa->spa_load_info) == 0);
3884 
3885 		/*
3886 		 * If the bootfs property exists on this pool then we
3887 		 * copy it out so that external consumers can tell which
3888 		 * pools are bootable.
3889 		 */
3890 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3891 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3892 
3893 			/*
3894 			 * We have to play games with the name since the
3895 			 * pool was opened as TRYIMPORT_NAME.
3896 			 */
3897 			if (dsl_dsobj_to_dsname(spa_name(spa),
3898 			    spa->spa_bootfs, tmpname) == 0) {
3899 				char *cp;
3900 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3901 
3902 				cp = strchr(tmpname, '/');
3903 				if (cp == NULL) {
3904 					(void) strlcpy(dsname, tmpname,
3905 					    MAXPATHLEN);
3906 				} else {
3907 					(void) snprintf(dsname, MAXPATHLEN,
3908 					    "%s/%s", poolname, ++cp);
3909 				}
3910 				VERIFY(nvlist_add_string(config,
3911 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3912 				kmem_free(dsname, MAXPATHLEN);
3913 			}
3914 			kmem_free(tmpname, MAXPATHLEN);
3915 		}
3916 
3917 		/*
3918 		 * Add the list of hot spares and level 2 cache devices.
3919 		 */
3920 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3921 		spa_add_spares(spa, config);
3922 		spa_add_l2cache(spa, config);
3923 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3924 	}
3925 
3926 	spa_unload(spa);
3927 	spa_deactivate(spa);
3928 	spa_remove(spa);
3929 	mutex_exit(&spa_namespace_lock);
3930 
3931 	return (config);
3932 }
3933 
3934 /*
3935  * Pool export/destroy
3936  *
3937  * The act of destroying or exporting a pool is very simple.  We make sure there
3938  * is no more pending I/O and any references to the pool are gone.  Then, we
3939  * update the pool state and sync all the labels to disk, removing the
3940  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3941  * we don't sync the labels or remove the configuration cache.
3942  */
3943 static int
3944 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3945     boolean_t force, boolean_t hardforce)
3946 {
3947 	spa_t *spa;
3948 
3949 	if (oldconfig)
3950 		*oldconfig = NULL;
3951 
3952 	if (!(spa_mode_global & FWRITE))
3953 		return (EROFS);
3954 
3955 	mutex_enter(&spa_namespace_lock);
3956 	if ((spa = spa_lookup(pool)) == NULL) {
3957 		mutex_exit(&spa_namespace_lock);
3958 		return (ENOENT);
3959 	}
3960 
3961 	/*
3962 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3963 	 * reacquire the namespace lock, and see if we can export.
3964 	 */
3965 	spa_open_ref(spa, FTAG);
3966 	mutex_exit(&spa_namespace_lock);
3967 	spa_async_suspend(spa);
3968 	mutex_enter(&spa_namespace_lock);
3969 	spa_close(spa, FTAG);
3970 
3971 	/*
3972 	 * The pool will be in core if it's openable,
3973 	 * in which case we can modify its state.
3974 	 */
3975 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3976 		/*
3977 		 * Objsets may be open only because they're dirty, so we
3978 		 * have to force it to sync before checking spa_refcnt.
3979 		 */
3980 		txg_wait_synced(spa->spa_dsl_pool, 0);
3981 
3982 		/*
3983 		 * A pool cannot be exported or destroyed if there are active
3984 		 * references.  If we are resetting a pool, allow references by
3985 		 * fault injection handlers.
3986 		 */
3987 		if (!spa_refcount_zero(spa) ||
3988 		    (spa->spa_inject_ref != 0 &&
3989 		    new_state != POOL_STATE_UNINITIALIZED)) {
3990 			spa_async_resume(spa);
3991 			mutex_exit(&spa_namespace_lock);
3992 			return (EBUSY);
3993 		}
3994 
3995 		/*
3996 		 * A pool cannot be exported if it has an active shared spare.
3997 		 * This is to prevent other pools stealing the active spare
3998 		 * from an exported pool. At user's own will, such pool can
3999 		 * be forcedly exported.
4000 		 */
4001 		if (!force && new_state == POOL_STATE_EXPORTED &&
4002 		    spa_has_active_shared_spare(spa)) {
4003 			spa_async_resume(spa);
4004 			mutex_exit(&spa_namespace_lock);
4005 			return (EXDEV);
4006 		}
4007 
4008 		/*
4009 		 * We want this to be reflected on every label,
4010 		 * so mark them all dirty.  spa_unload() will do the
4011 		 * final sync that pushes these changes out.
4012 		 */
4013 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4014 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4015 			spa->spa_state = new_state;
4016 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4017 			    TXG_DEFER_SIZE + 1;
4018 			vdev_config_dirty(spa->spa_root_vdev);
4019 			spa_config_exit(spa, SCL_ALL, FTAG);
4020 		}
4021 	}
4022 
4023 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4024 
4025 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4026 		spa_unload(spa);
4027 		spa_deactivate(spa);
4028 	}
4029 
4030 	if (oldconfig && spa->spa_config)
4031 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4032 
4033 	if (new_state != POOL_STATE_UNINITIALIZED) {
4034 		if (!hardforce)
4035 			spa_config_sync(spa, B_TRUE, B_TRUE);
4036 		spa_remove(spa);
4037 	}
4038 	mutex_exit(&spa_namespace_lock);
4039 
4040 	return (0);
4041 }
4042 
4043 /*
4044  * Destroy a storage pool.
4045  */
4046 int
4047 spa_destroy(char *pool)
4048 {
4049 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4050 	    B_FALSE, B_FALSE));
4051 }
4052 
4053 /*
4054  * Export a storage pool.
4055  */
4056 int
4057 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4058     boolean_t hardforce)
4059 {
4060 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4061 	    force, hardforce));
4062 }
4063 
4064 /*
4065  * Similar to spa_export(), this unloads the spa_t without actually removing it
4066  * from the namespace in any way.
4067  */
4068 int
4069 spa_reset(char *pool)
4070 {
4071 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4072 	    B_FALSE, B_FALSE));
4073 }
4074 
4075 /*
4076  * ==========================================================================
4077  * Device manipulation
4078  * ==========================================================================
4079  */
4080 
4081 /*
4082  * Add a device to a storage pool.
4083  */
4084 int
4085 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4086 {
4087 	uint64_t txg, id;
4088 	int error;
4089 	vdev_t *rvd = spa->spa_root_vdev;
4090 	vdev_t *vd, *tvd;
4091 	nvlist_t **spares, **l2cache;
4092 	uint_t nspares, nl2cache;
4093 
4094 	ASSERT(spa_writeable(spa));
4095 
4096 	txg = spa_vdev_enter(spa);
4097 
4098 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4099 	    VDEV_ALLOC_ADD)) != 0)
4100 		return (spa_vdev_exit(spa, NULL, txg, error));
4101 
4102 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4103 
4104 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4105 	    &nspares) != 0)
4106 		nspares = 0;
4107 
4108 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4109 	    &nl2cache) != 0)
4110 		nl2cache = 0;
4111 
4112 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4113 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4114 
4115 	if (vd->vdev_children != 0 &&
4116 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4117 		return (spa_vdev_exit(spa, vd, txg, error));
4118 
4119 	/*
4120 	 * We must validate the spares and l2cache devices after checking the
4121 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4122 	 */
4123 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4124 		return (spa_vdev_exit(spa, vd, txg, error));
4125 
4126 	/*
4127 	 * Transfer each new top-level vdev from vd to rvd.
4128 	 */
4129 	for (int c = 0; c < vd->vdev_children; c++) {
4130 
4131 		/*
4132 		 * Set the vdev id to the first hole, if one exists.
4133 		 */
4134 		for (id = 0; id < rvd->vdev_children; id++) {
4135 			if (rvd->vdev_child[id]->vdev_ishole) {
4136 				vdev_free(rvd->vdev_child[id]);
4137 				break;
4138 			}
4139 		}
4140 		tvd = vd->vdev_child[c];
4141 		vdev_remove_child(vd, tvd);
4142 		tvd->vdev_id = id;
4143 		vdev_add_child(rvd, tvd);
4144 		vdev_config_dirty(tvd);
4145 	}
4146 
4147 	if (nspares != 0) {
4148 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4149 		    ZPOOL_CONFIG_SPARES);
4150 		spa_load_spares(spa);
4151 		spa->spa_spares.sav_sync = B_TRUE;
4152 	}
4153 
4154 	if (nl2cache != 0) {
4155 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4156 		    ZPOOL_CONFIG_L2CACHE);
4157 		spa_load_l2cache(spa);
4158 		spa->spa_l2cache.sav_sync = B_TRUE;
4159 	}
4160 
4161 	/*
4162 	 * We have to be careful when adding new vdevs to an existing pool.
4163 	 * If other threads start allocating from these vdevs before we
4164 	 * sync the config cache, and we lose power, then upon reboot we may
4165 	 * fail to open the pool because there are DVAs that the config cache
4166 	 * can't translate.  Therefore, we first add the vdevs without
4167 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4168 	 * and then let spa_config_update() initialize the new metaslabs.
4169 	 *
4170 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4171 	 * if we lose power at any point in this sequence, the remaining
4172 	 * steps will be completed the next time we load the pool.
4173 	 */
4174 	(void) spa_vdev_exit(spa, vd, txg, 0);
4175 
4176 	mutex_enter(&spa_namespace_lock);
4177 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4178 	mutex_exit(&spa_namespace_lock);
4179 
4180 	return (0);
4181 }
4182 
4183 /*
4184  * Attach a device to a mirror.  The arguments are the path to any device
4185  * in the mirror, and the nvroot for the new device.  If the path specifies
4186  * a device that is not mirrored, we automatically insert the mirror vdev.
4187  *
4188  * If 'replacing' is specified, the new device is intended to replace the
4189  * existing device; in this case the two devices are made into their own
4190  * mirror using the 'replacing' vdev, which is functionally identical to
4191  * the mirror vdev (it actually reuses all the same ops) but has a few
4192  * extra rules: you can't attach to it after it's been created, and upon
4193  * completion of resilvering, the first disk (the one being replaced)
4194  * is automatically detached.
4195  */
4196 int
4197 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4198 {
4199 	uint64_t txg, dtl_max_txg;
4200 	vdev_t *rvd = spa->spa_root_vdev;
4201 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4202 	vdev_ops_t *pvops;
4203 	char *oldvdpath, *newvdpath;
4204 	int newvd_isspare;
4205 	int error;
4206 
4207 	ASSERT(spa_writeable(spa));
4208 
4209 	txg = spa_vdev_enter(spa);
4210 
4211 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4212 
4213 	if (oldvd == NULL)
4214 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4215 
4216 	if (!oldvd->vdev_ops->vdev_op_leaf)
4217 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4218 
4219 	pvd = oldvd->vdev_parent;
4220 
4221 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4222 	    VDEV_ALLOC_ATTACH)) != 0)
4223 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4224 
4225 	if (newrootvd->vdev_children != 1)
4226 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4227 
4228 	newvd = newrootvd->vdev_child[0];
4229 
4230 	if (!newvd->vdev_ops->vdev_op_leaf)
4231 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4232 
4233 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4234 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4235 
4236 	/*
4237 	 * Spares can't replace logs
4238 	 */
4239 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4240 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4241 
4242 	if (!replacing) {
4243 		/*
4244 		 * For attach, the only allowable parent is a mirror or the root
4245 		 * vdev.
4246 		 */
4247 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4248 		    pvd->vdev_ops != &vdev_root_ops)
4249 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4250 
4251 		pvops = &vdev_mirror_ops;
4252 	} else {
4253 		/*
4254 		 * Active hot spares can only be replaced by inactive hot
4255 		 * spares.
4256 		 */
4257 		if (pvd->vdev_ops == &vdev_spare_ops &&
4258 		    oldvd->vdev_isspare &&
4259 		    !spa_has_spare(spa, newvd->vdev_guid))
4260 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4261 
4262 		/*
4263 		 * If the source is a hot spare, and the parent isn't already a
4264 		 * spare, then we want to create a new hot spare.  Otherwise, we
4265 		 * want to create a replacing vdev.  The user is not allowed to
4266 		 * attach to a spared vdev child unless the 'isspare' state is
4267 		 * the same (spare replaces spare, non-spare replaces
4268 		 * non-spare).
4269 		 */
4270 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4271 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4272 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4273 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4274 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4275 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4276 		}
4277 
4278 		if (newvd->vdev_isspare)
4279 			pvops = &vdev_spare_ops;
4280 		else
4281 			pvops = &vdev_replacing_ops;
4282 	}
4283 
4284 	/*
4285 	 * Make sure the new device is big enough.
4286 	 */
4287 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4288 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4289 
4290 	/*
4291 	 * The new device cannot have a higher alignment requirement
4292 	 * than the top-level vdev.
4293 	 */
4294 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4295 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4296 
4297 	/*
4298 	 * If this is an in-place replacement, update oldvd's path and devid
4299 	 * to make it distinguishable from newvd, and unopenable from now on.
4300 	 */
4301 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4302 		spa_strfree(oldvd->vdev_path);
4303 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4304 		    KM_SLEEP);
4305 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4306 		    newvd->vdev_path, "old");
4307 		if (oldvd->vdev_devid != NULL) {
4308 			spa_strfree(oldvd->vdev_devid);
4309 			oldvd->vdev_devid = NULL;
4310 		}
4311 	}
4312 
4313 	/* mark the device being resilvered */
4314 	newvd->vdev_resilvering = B_TRUE;
4315 
4316 	/*
4317 	 * If the parent is not a mirror, or if we're replacing, insert the new
4318 	 * mirror/replacing/spare vdev above oldvd.
4319 	 */
4320 	if (pvd->vdev_ops != pvops)
4321 		pvd = vdev_add_parent(oldvd, pvops);
4322 
4323 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4324 	ASSERT(pvd->vdev_ops == pvops);
4325 	ASSERT(oldvd->vdev_parent == pvd);
4326 
4327 	/*
4328 	 * Extract the new device from its root and add it to pvd.
4329 	 */
4330 	vdev_remove_child(newrootvd, newvd);
4331 	newvd->vdev_id = pvd->vdev_children;
4332 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4333 	vdev_add_child(pvd, newvd);
4334 
4335 	tvd = newvd->vdev_top;
4336 	ASSERT(pvd->vdev_top == tvd);
4337 	ASSERT(tvd->vdev_parent == rvd);
4338 
4339 	vdev_config_dirty(tvd);
4340 
4341 	/*
4342 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4343 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4344 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4345 	 */
4346 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4347 
4348 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4349 	    dtl_max_txg - TXG_INITIAL);
4350 
4351 	if (newvd->vdev_isspare) {
4352 		spa_spare_activate(newvd);
4353 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4354 	}
4355 
4356 	oldvdpath = spa_strdup(oldvd->vdev_path);
4357 	newvdpath = spa_strdup(newvd->vdev_path);
4358 	newvd_isspare = newvd->vdev_isspare;
4359 
4360 	/*
4361 	 * Mark newvd's DTL dirty in this txg.
4362 	 */
4363 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4364 
4365 	/*
4366 	 * Restart the resilver
4367 	 */
4368 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4369 
4370 	/*
4371 	 * Commit the config
4372 	 */
4373 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4374 
4375 	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4376 	    "%s vdev=%s %s vdev=%s",
4377 	    replacing && newvd_isspare ? "spare in" :
4378 	    replacing ? "replace" : "attach", newvdpath,
4379 	    replacing ? "for" : "to", oldvdpath);
4380 
4381 	spa_strfree(oldvdpath);
4382 	spa_strfree(newvdpath);
4383 
4384 	if (spa->spa_bootfs)
4385 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4386 
4387 	return (0);
4388 }
4389 
4390 /*
4391  * Detach a device from a mirror or replacing vdev.
4392  * If 'replace_done' is specified, only detach if the parent
4393  * is a replacing vdev.
4394  */
4395 int
4396 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4397 {
4398 	uint64_t txg;
4399 	int error;
4400 	vdev_t *rvd = spa->spa_root_vdev;
4401 	vdev_t *vd, *pvd, *cvd, *tvd;
4402 	boolean_t unspare = B_FALSE;
4403 	uint64_t unspare_guid;
4404 	char *vdpath;
4405 
4406 	ASSERT(spa_writeable(spa));
4407 
4408 	txg = spa_vdev_enter(spa);
4409 
4410 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4411 
4412 	if (vd == NULL)
4413 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4414 
4415 	if (!vd->vdev_ops->vdev_op_leaf)
4416 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4417 
4418 	pvd = vd->vdev_parent;
4419 
4420 	/*
4421 	 * If the parent/child relationship is not as expected, don't do it.
4422 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4423 	 * vdev that's replacing B with C.  The user's intent in replacing
4424 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4425 	 * the replace by detaching C, the expected behavior is to end up
4426 	 * M(A,B).  But suppose that right after deciding to detach C,
4427 	 * the replacement of B completes.  We would have M(A,C), and then
4428 	 * ask to detach C, which would leave us with just A -- not what
4429 	 * the user wanted.  To prevent this, we make sure that the
4430 	 * parent/child relationship hasn't changed -- in this example,
4431 	 * that C's parent is still the replacing vdev R.
4432 	 */
4433 	if (pvd->vdev_guid != pguid && pguid != 0)
4434 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4435 
4436 	/*
4437 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4438 	 */
4439 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4440 	    pvd->vdev_ops != &vdev_spare_ops)
4441 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4442 
4443 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4444 	    spa_version(spa) >= SPA_VERSION_SPARES);
4445 
4446 	/*
4447 	 * Only mirror, replacing, and spare vdevs support detach.
4448 	 */
4449 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4450 	    pvd->vdev_ops != &vdev_mirror_ops &&
4451 	    pvd->vdev_ops != &vdev_spare_ops)
4452 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4453 
4454 	/*
4455 	 * If this device has the only valid copy of some data,
4456 	 * we cannot safely detach it.
4457 	 */
4458 	if (vdev_dtl_required(vd))
4459 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4460 
4461 	ASSERT(pvd->vdev_children >= 2);
4462 
4463 	/*
4464 	 * If we are detaching the second disk from a replacing vdev, then
4465 	 * check to see if we changed the original vdev's path to have "/old"
4466 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4467 	 */
4468 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4469 	    vd->vdev_path != NULL) {
4470 		size_t len = strlen(vd->vdev_path);
4471 
4472 		for (int c = 0; c < pvd->vdev_children; c++) {
4473 			cvd = pvd->vdev_child[c];
4474 
4475 			if (cvd == vd || cvd->vdev_path == NULL)
4476 				continue;
4477 
4478 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4479 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4480 				spa_strfree(cvd->vdev_path);
4481 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4482 				break;
4483 			}
4484 		}
4485 	}
4486 
4487 	/*
4488 	 * If we are detaching the original disk from a spare, then it implies
4489 	 * that the spare should become a real disk, and be removed from the
4490 	 * active spare list for the pool.
4491 	 */
4492 	if (pvd->vdev_ops == &vdev_spare_ops &&
4493 	    vd->vdev_id == 0 &&
4494 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4495 		unspare = B_TRUE;
4496 
4497 	/*
4498 	 * Erase the disk labels so the disk can be used for other things.
4499 	 * This must be done after all other error cases are handled,
4500 	 * but before we disembowel vd (so we can still do I/O to it).
4501 	 * But if we can't do it, don't treat the error as fatal --
4502 	 * it may be that the unwritability of the disk is the reason
4503 	 * it's being detached!
4504 	 */
4505 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4506 
4507 	/*
4508 	 * Remove vd from its parent and compact the parent's children.
4509 	 */
4510 	vdev_remove_child(pvd, vd);
4511 	vdev_compact_children(pvd);
4512 
4513 	/*
4514 	 * Remember one of the remaining children so we can get tvd below.
4515 	 */
4516 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4517 
4518 	/*
4519 	 * If we need to remove the remaining child from the list of hot spares,
4520 	 * do it now, marking the vdev as no longer a spare in the process.
4521 	 * We must do this before vdev_remove_parent(), because that can
4522 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4523 	 * reason, we must remove the spare now, in the same txg as the detach;
4524 	 * otherwise someone could attach a new sibling, change the GUID, and
4525 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4526 	 */
4527 	if (unspare) {
4528 		ASSERT(cvd->vdev_isspare);
4529 		spa_spare_remove(cvd);
4530 		unspare_guid = cvd->vdev_guid;
4531 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4532 		cvd->vdev_unspare = B_TRUE;
4533 	}
4534 
4535 	/*
4536 	 * If the parent mirror/replacing vdev only has one child,
4537 	 * the parent is no longer needed.  Remove it from the tree.
4538 	 */
4539 	if (pvd->vdev_children == 1) {
4540 		if (pvd->vdev_ops == &vdev_spare_ops)
4541 			cvd->vdev_unspare = B_FALSE;
4542 		vdev_remove_parent(cvd);
4543 		cvd->vdev_resilvering = B_FALSE;
4544 	}
4545 
4546 
4547 	/*
4548 	 * We don't set tvd until now because the parent we just removed
4549 	 * may have been the previous top-level vdev.
4550 	 */
4551 	tvd = cvd->vdev_top;
4552 	ASSERT(tvd->vdev_parent == rvd);
4553 
4554 	/*
4555 	 * Reevaluate the parent vdev state.
4556 	 */
4557 	vdev_propagate_state(cvd);
4558 
4559 	/*
4560 	 * If the 'autoexpand' property is set on the pool then automatically
4561 	 * try to expand the size of the pool. For example if the device we
4562 	 * just detached was smaller than the others, it may be possible to
4563 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4564 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4565 	 */
4566 	if (spa->spa_autoexpand) {
4567 		vdev_reopen(tvd);
4568 		vdev_expand(tvd, txg);
4569 	}
4570 
4571 	vdev_config_dirty(tvd);
4572 
4573 	/*
4574 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4575 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4576 	 * But first make sure we're not on any *other* txg's DTL list, to
4577 	 * prevent vd from being accessed after it's freed.
4578 	 */
4579 	vdpath = spa_strdup(vd->vdev_path);
4580 	for (int t = 0; t < TXG_SIZE; t++)
4581 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4582 	vd->vdev_detached = B_TRUE;
4583 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4584 
4585 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4586 
4587 	/* hang on to the spa before we release the lock */
4588 	spa_open_ref(spa, FTAG);
4589 
4590 	error = spa_vdev_exit(spa, vd, txg, 0);
4591 
4592 	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4593 	    "vdev=%s", vdpath);
4594 	spa_strfree(vdpath);
4595 
4596 	/*
4597 	 * If this was the removal of the original device in a hot spare vdev,
4598 	 * then we want to go through and remove the device from the hot spare
4599 	 * list of every other pool.
4600 	 */
4601 	if (unspare) {
4602 		spa_t *altspa = NULL;
4603 
4604 		mutex_enter(&spa_namespace_lock);
4605 		while ((altspa = spa_next(altspa)) != NULL) {
4606 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4607 			    altspa == spa)
4608 				continue;
4609 
4610 			spa_open_ref(altspa, FTAG);
4611 			mutex_exit(&spa_namespace_lock);
4612 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4613 			mutex_enter(&spa_namespace_lock);
4614 			spa_close(altspa, FTAG);
4615 		}
4616 		mutex_exit(&spa_namespace_lock);
4617 
4618 		/* search the rest of the vdevs for spares to remove */
4619 		spa_vdev_resilver_done(spa);
4620 	}
4621 
4622 	/* all done with the spa; OK to release */
4623 	mutex_enter(&spa_namespace_lock);
4624 	spa_close(spa, FTAG);
4625 	mutex_exit(&spa_namespace_lock);
4626 
4627 	return (error);
4628 }
4629 
4630 /*
4631  * Split a set of devices from their mirrors, and create a new pool from them.
4632  */
4633 int
4634 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4635     nvlist_t *props, boolean_t exp)
4636 {
4637 	int error = 0;
4638 	uint64_t txg, *glist;
4639 	spa_t *newspa;
4640 	uint_t c, children, lastlog;
4641 	nvlist_t **child, *nvl, *tmp;
4642 	dmu_tx_t *tx;
4643 	char *altroot = NULL;
4644 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4645 	boolean_t activate_slog;
4646 
4647 	ASSERT(spa_writeable(spa));
4648 
4649 	txg = spa_vdev_enter(spa);
4650 
4651 	/* clear the log and flush everything up to now */
4652 	activate_slog = spa_passivate_log(spa);
4653 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4654 	error = spa_offline_log(spa);
4655 	txg = spa_vdev_config_enter(spa);
4656 
4657 	if (activate_slog)
4658 		spa_activate_log(spa);
4659 
4660 	if (error != 0)
4661 		return (spa_vdev_exit(spa, NULL, txg, error));
4662 
4663 	/* check new spa name before going any further */
4664 	if (spa_lookup(newname) != NULL)
4665 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4666 
4667 	/*
4668 	 * scan through all the children to ensure they're all mirrors
4669 	 */
4670 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4671 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4672 	    &children) != 0)
4673 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4674 
4675 	/* first, check to ensure we've got the right child count */
4676 	rvd = spa->spa_root_vdev;
4677 	lastlog = 0;
4678 	for (c = 0; c < rvd->vdev_children; c++) {
4679 		vdev_t *vd = rvd->vdev_child[c];
4680 
4681 		/* don't count the holes & logs as children */
4682 		if (vd->vdev_islog || vd->vdev_ishole) {
4683 			if (lastlog == 0)
4684 				lastlog = c;
4685 			continue;
4686 		}
4687 
4688 		lastlog = 0;
4689 	}
4690 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4691 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4692 
4693 	/* next, ensure no spare or cache devices are part of the split */
4694 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4695 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4696 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4697 
4698 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4699 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4700 
4701 	/* then, loop over each vdev and validate it */
4702 	for (c = 0; c < children; c++) {
4703 		uint64_t is_hole = 0;
4704 
4705 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4706 		    &is_hole);
4707 
4708 		if (is_hole != 0) {
4709 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4710 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4711 				continue;
4712 			} else {
4713 				error = EINVAL;
4714 				break;
4715 			}
4716 		}
4717 
4718 		/* which disk is going to be split? */
4719 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4720 		    &glist[c]) != 0) {
4721 			error = EINVAL;
4722 			break;
4723 		}
4724 
4725 		/* look it up in the spa */
4726 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4727 		if (vml[c] == NULL) {
4728 			error = ENODEV;
4729 			break;
4730 		}
4731 
4732 		/* make sure there's nothing stopping the split */
4733 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4734 		    vml[c]->vdev_islog ||
4735 		    vml[c]->vdev_ishole ||
4736 		    vml[c]->vdev_isspare ||
4737 		    vml[c]->vdev_isl2cache ||
4738 		    !vdev_writeable(vml[c]) ||
4739 		    vml[c]->vdev_children != 0 ||
4740 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4741 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4742 			error = EINVAL;
4743 			break;
4744 		}
4745 
4746 		if (vdev_dtl_required(vml[c])) {
4747 			error = EBUSY;
4748 			break;
4749 		}
4750 
4751 		/* we need certain info from the top level */
4752 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4753 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4754 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4755 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4756 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4757 		    vml[c]->vdev_top->vdev_asize) == 0);
4758 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4759 		    vml[c]->vdev_top->vdev_ashift) == 0);
4760 	}
4761 
4762 	if (error != 0) {
4763 		kmem_free(vml, children * sizeof (vdev_t *));
4764 		kmem_free(glist, children * sizeof (uint64_t));
4765 		return (spa_vdev_exit(spa, NULL, txg, error));
4766 	}
4767 
4768 	/* stop writers from using the disks */
4769 	for (c = 0; c < children; c++) {
4770 		if (vml[c] != NULL)
4771 			vml[c]->vdev_offline = B_TRUE;
4772 	}
4773 	vdev_reopen(spa->spa_root_vdev);
4774 
4775 	/*
4776 	 * Temporarily record the splitting vdevs in the spa config.  This
4777 	 * will disappear once the config is regenerated.
4778 	 */
4779 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4780 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4781 	    glist, children) == 0);
4782 	kmem_free(glist, children * sizeof (uint64_t));
4783 
4784 	mutex_enter(&spa->spa_props_lock);
4785 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4786 	    nvl) == 0);
4787 	mutex_exit(&spa->spa_props_lock);
4788 	spa->spa_config_splitting = nvl;
4789 	vdev_config_dirty(spa->spa_root_vdev);
4790 
4791 	/* configure and create the new pool */
4792 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4793 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4794 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4795 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4796 	    spa_version(spa)) == 0);
4797 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4798 	    spa->spa_config_txg) == 0);
4799 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4800 	    spa_generate_guid(NULL)) == 0);
4801 	(void) nvlist_lookup_string(props,
4802 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4803 
4804 	/* add the new pool to the namespace */
4805 	newspa = spa_add(newname, config, altroot);
4806 	newspa->spa_config_txg = spa->spa_config_txg;
4807 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4808 
4809 	/* release the spa config lock, retaining the namespace lock */
4810 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4811 
4812 	if (zio_injection_enabled)
4813 		zio_handle_panic_injection(spa, FTAG, 1);
4814 
4815 	spa_activate(newspa, spa_mode_global);
4816 	spa_async_suspend(newspa);
4817 
4818 	/* create the new pool from the disks of the original pool */
4819 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4820 	if (error)
4821 		goto out;
4822 
4823 	/* if that worked, generate a real config for the new pool */
4824 	if (newspa->spa_root_vdev != NULL) {
4825 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4826 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4827 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4828 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4829 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4830 		    B_TRUE));
4831 	}
4832 
4833 	/* set the props */
4834 	if (props != NULL) {
4835 		spa_configfile_set(newspa, props, B_FALSE);
4836 		error = spa_prop_set(newspa, props);
4837 		if (error)
4838 			goto out;
4839 	}
4840 
4841 	/* flush everything */
4842 	txg = spa_vdev_config_enter(newspa);
4843 	vdev_config_dirty(newspa->spa_root_vdev);
4844 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4845 
4846 	if (zio_injection_enabled)
4847 		zio_handle_panic_injection(spa, FTAG, 2);
4848 
4849 	spa_async_resume(newspa);
4850 
4851 	/* finally, update the original pool's config */
4852 	txg = spa_vdev_config_enter(spa);
4853 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4854 	error = dmu_tx_assign(tx, TXG_WAIT);
4855 	if (error != 0)
4856 		dmu_tx_abort(tx);
4857 	for (c = 0; c < children; c++) {
4858 		if (vml[c] != NULL) {
4859 			vdev_split(vml[c]);
4860 			if (error == 0)
4861 				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4862 				    spa, tx, "vdev=%s",
4863 				    vml[c]->vdev_path);
4864 			vdev_free(vml[c]);
4865 		}
4866 	}
4867 	vdev_config_dirty(spa->spa_root_vdev);
4868 	spa->spa_config_splitting = NULL;
4869 	nvlist_free(nvl);
4870 	if (error == 0)
4871 		dmu_tx_commit(tx);
4872 	(void) spa_vdev_exit(spa, NULL, txg, 0);
4873 
4874 	if (zio_injection_enabled)
4875 		zio_handle_panic_injection(spa, FTAG, 3);
4876 
4877 	/* split is complete; log a history record */
4878 	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4879 	    "split new pool %s from pool %s", newname, spa_name(spa));
4880 
4881 	kmem_free(vml, children * sizeof (vdev_t *));
4882 
4883 	/* if we're not going to mount the filesystems in userland, export */
4884 	if (exp)
4885 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4886 		    B_FALSE, B_FALSE);
4887 
4888 	return (error);
4889 
4890 out:
4891 	spa_unload(newspa);
4892 	spa_deactivate(newspa);
4893 	spa_remove(newspa);
4894 
4895 	txg = spa_vdev_config_enter(spa);
4896 
4897 	/* re-online all offlined disks */
4898 	for (c = 0; c < children; c++) {
4899 		if (vml[c] != NULL)
4900 			vml[c]->vdev_offline = B_FALSE;
4901 	}
4902 	vdev_reopen(spa->spa_root_vdev);
4903 
4904 	nvlist_free(spa->spa_config_splitting);
4905 	spa->spa_config_splitting = NULL;
4906 	(void) spa_vdev_exit(spa, NULL, txg, error);
4907 
4908 	kmem_free(vml, children * sizeof (vdev_t *));
4909 	return (error);
4910 }
4911 
4912 static nvlist_t *
4913 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4914 {
4915 	for (int i = 0; i < count; i++) {
4916 		uint64_t guid;
4917 
4918 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4919 		    &guid) == 0);
4920 
4921 		if (guid == target_guid)
4922 			return (nvpp[i]);
4923 	}
4924 
4925 	return (NULL);
4926 }
4927 
4928 static void
4929 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4930 	nvlist_t *dev_to_remove)
4931 {
4932 	nvlist_t **newdev = NULL;
4933 
4934 	if (count > 1)
4935 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4936 
4937 	for (int i = 0, j = 0; i < count; i++) {
4938 		if (dev[i] == dev_to_remove)
4939 			continue;
4940 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4941 	}
4942 
4943 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4944 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4945 
4946 	for (int i = 0; i < count - 1; i++)
4947 		nvlist_free(newdev[i]);
4948 
4949 	if (count > 1)
4950 		kmem_free(newdev, (count - 1) * sizeof (void *));
4951 }
4952 
4953 /*
4954  * Evacuate the device.
4955  */
4956 static int
4957 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4958 {
4959 	uint64_t txg;
4960 	int error = 0;
4961 
4962 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4963 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4964 	ASSERT(vd == vd->vdev_top);
4965 
4966 	/*
4967 	 * Evacuate the device.  We don't hold the config lock as writer
4968 	 * since we need to do I/O but we do keep the
4969 	 * spa_namespace_lock held.  Once this completes the device
4970 	 * should no longer have any blocks allocated on it.
4971 	 */
4972 	if (vd->vdev_islog) {
4973 		if (vd->vdev_stat.vs_alloc != 0)
4974 			error = spa_offline_log(spa);
4975 	} else {
4976 		error = ENOTSUP;
4977 	}
4978 
4979 	if (error)
4980 		return (error);
4981 
4982 	/*
4983 	 * The evacuation succeeded.  Remove any remaining MOS metadata
4984 	 * associated with this vdev, and wait for these changes to sync.
4985 	 */
4986 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4987 	txg = spa_vdev_config_enter(spa);
4988 	vd->vdev_removing = B_TRUE;
4989 	vdev_dirty(vd, 0, NULL, txg);
4990 	vdev_config_dirty(vd);
4991 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4992 
4993 	return (0);
4994 }
4995 
4996 /*
4997  * Complete the removal by cleaning up the namespace.
4998  */
4999 static void
5000 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5001 {
5002 	vdev_t *rvd = spa->spa_root_vdev;
5003 	uint64_t id = vd->vdev_id;
5004 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5005 
5006 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5007 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5008 	ASSERT(vd == vd->vdev_top);
5009 
5010 	/*
5011 	 * Only remove any devices which are empty.
5012 	 */
5013 	if (vd->vdev_stat.vs_alloc != 0)
5014 		return;
5015 
5016 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5017 
5018 	if (list_link_active(&vd->vdev_state_dirty_node))
5019 		vdev_state_clean(vd);
5020 	if (list_link_active(&vd->vdev_config_dirty_node))
5021 		vdev_config_clean(vd);
5022 
5023 	vdev_free(vd);
5024 
5025 	if (last_vdev) {
5026 		vdev_compact_children(rvd);
5027 	} else {
5028 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5029 		vdev_add_child(rvd, vd);
5030 	}
5031 	vdev_config_dirty(rvd);
5032 
5033 	/*
5034 	 * Reassess the health of our root vdev.
5035 	 */
5036 	vdev_reopen(rvd);
5037 }
5038 
5039 /*
5040  * Remove a device from the pool -
5041  *
5042  * Removing a device from the vdev namespace requires several steps
5043  * and can take a significant amount of time.  As a result we use
5044  * the spa_vdev_config_[enter/exit] functions which allow us to
5045  * grab and release the spa_config_lock while still holding the namespace
5046  * lock.  During each step the configuration is synced out.
5047  */
5048 
5049 /*
5050  * Remove a device from the pool.  Currently, this supports removing only hot
5051  * spares, slogs, and level 2 ARC devices.
5052  */
5053 int
5054 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5055 {
5056 	vdev_t *vd;
5057 	metaslab_group_t *mg;
5058 	nvlist_t **spares, **l2cache, *nv;
5059 	uint64_t txg = 0;
5060 	uint_t nspares, nl2cache;
5061 	int error = 0;
5062 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5063 
5064 	ASSERT(spa_writeable(spa));
5065 
5066 	if (!locked)
5067 		txg = spa_vdev_enter(spa);
5068 
5069 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5070 
5071 	if (spa->spa_spares.sav_vdevs != NULL &&
5072 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5073 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5074 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5075 		/*
5076 		 * Only remove the hot spare if it's not currently in use
5077 		 * in this pool.
5078 		 */
5079 		if (vd == NULL || unspare) {
5080 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5081 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5082 			spa_load_spares(spa);
5083 			spa->spa_spares.sav_sync = B_TRUE;
5084 		} else {
5085 			error = EBUSY;
5086 		}
5087 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5088 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5089 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5090 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5091 		/*
5092 		 * Cache devices can always be removed.
5093 		 */
5094 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5095 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5096 		spa_load_l2cache(spa);
5097 		spa->spa_l2cache.sav_sync = B_TRUE;
5098 	} else if (vd != NULL && vd->vdev_islog) {
5099 		ASSERT(!locked);
5100 		ASSERT(vd == vd->vdev_top);
5101 
5102 		/*
5103 		 * XXX - Once we have bp-rewrite this should
5104 		 * become the common case.
5105 		 */
5106 
5107 		mg = vd->vdev_mg;
5108 
5109 		/*
5110 		 * Stop allocating from this vdev.
5111 		 */
5112 		metaslab_group_passivate(mg);
5113 
5114 		/*
5115 		 * Wait for the youngest allocations and frees to sync,
5116 		 * and then wait for the deferral of those frees to finish.
5117 		 */
5118 		spa_vdev_config_exit(spa, NULL,
5119 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5120 
5121 		/*
5122 		 * Attempt to evacuate the vdev.
5123 		 */
5124 		error = spa_vdev_remove_evacuate(spa, vd);
5125 
5126 		txg = spa_vdev_config_enter(spa);
5127 
5128 		/*
5129 		 * If we couldn't evacuate the vdev, unwind.
5130 		 */
5131 		if (error) {
5132 			metaslab_group_activate(mg);
5133 			return (spa_vdev_exit(spa, NULL, txg, error));
5134 		}
5135 
5136 		/*
5137 		 * Clean up the vdev namespace.
5138 		 */
5139 		spa_vdev_remove_from_namespace(spa, vd);
5140 
5141 	} else if (vd != NULL) {
5142 		/*
5143 		 * Normal vdevs cannot be removed (yet).
5144 		 */
5145 		error = ENOTSUP;
5146 	} else {
5147 		/*
5148 		 * There is no vdev of any kind with the specified guid.
5149 		 */
5150 		error = ENOENT;
5151 	}
5152 
5153 	if (!locked)
5154 		return (spa_vdev_exit(spa, NULL, txg, error));
5155 
5156 	return (error);
5157 }
5158 
5159 /*
5160  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5161  * current spared, so we can detach it.
5162  */
5163 static vdev_t *
5164 spa_vdev_resilver_done_hunt(vdev_t *vd)
5165 {
5166 	vdev_t *newvd, *oldvd;
5167 
5168 	for (int c = 0; c < vd->vdev_children; c++) {
5169 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5170 		if (oldvd != NULL)
5171 			return (oldvd);
5172 	}
5173 
5174 	/*
5175 	 * Check for a completed replacement.  We always consider the first
5176 	 * vdev in the list to be the oldest vdev, and the last one to be
5177 	 * the newest (see spa_vdev_attach() for how that works).  In
5178 	 * the case where the newest vdev is faulted, we will not automatically
5179 	 * remove it after a resilver completes.  This is OK as it will require
5180 	 * user intervention to determine which disk the admin wishes to keep.
5181 	 */
5182 	if (vd->vdev_ops == &vdev_replacing_ops) {
5183 		ASSERT(vd->vdev_children > 1);
5184 
5185 		newvd = vd->vdev_child[vd->vdev_children - 1];
5186 		oldvd = vd->vdev_child[0];
5187 
5188 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5189 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5190 		    !vdev_dtl_required(oldvd))
5191 			return (oldvd);
5192 	}
5193 
5194 	/*
5195 	 * Check for a completed resilver with the 'unspare' flag set.
5196 	 */
5197 	if (vd->vdev_ops == &vdev_spare_ops) {
5198 		vdev_t *first = vd->vdev_child[0];
5199 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5200 
5201 		if (last->vdev_unspare) {
5202 			oldvd = first;
5203 			newvd = last;
5204 		} else if (first->vdev_unspare) {
5205 			oldvd = last;
5206 			newvd = first;
5207 		} else {
5208 			oldvd = NULL;
5209 		}
5210 
5211 		if (oldvd != NULL &&
5212 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5213 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5214 		    !vdev_dtl_required(oldvd))
5215 			return (oldvd);
5216 
5217 		/*
5218 		 * If there are more than two spares attached to a disk,
5219 		 * and those spares are not required, then we want to
5220 		 * attempt to free them up now so that they can be used
5221 		 * by other pools.  Once we're back down to a single
5222 		 * disk+spare, we stop removing them.
5223 		 */
5224 		if (vd->vdev_children > 2) {
5225 			newvd = vd->vdev_child[1];
5226 
5227 			if (newvd->vdev_isspare && last->vdev_isspare &&
5228 			    vdev_dtl_empty(last, DTL_MISSING) &&
5229 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5230 			    !vdev_dtl_required(newvd))
5231 				return (newvd);
5232 		}
5233 	}
5234 
5235 	return (NULL);
5236 }
5237 
5238 static void
5239 spa_vdev_resilver_done(spa_t *spa)
5240 {
5241 	vdev_t *vd, *pvd, *ppvd;
5242 	uint64_t guid, sguid, pguid, ppguid;
5243 
5244 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5245 
5246 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5247 		pvd = vd->vdev_parent;
5248 		ppvd = pvd->vdev_parent;
5249 		guid = vd->vdev_guid;
5250 		pguid = pvd->vdev_guid;
5251 		ppguid = ppvd->vdev_guid;
5252 		sguid = 0;
5253 		/*
5254 		 * If we have just finished replacing a hot spared device, then
5255 		 * we need to detach the parent's first child (the original hot
5256 		 * spare) as well.
5257 		 */
5258 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5259 		    ppvd->vdev_children == 2) {
5260 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5261 			sguid = ppvd->vdev_child[1]->vdev_guid;
5262 		}
5263 		spa_config_exit(spa, SCL_ALL, FTAG);
5264 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5265 			return;
5266 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5267 			return;
5268 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5269 	}
5270 
5271 	spa_config_exit(spa, SCL_ALL, FTAG);
5272 }
5273 
5274 /*
5275  * Update the stored path or FRU for this vdev.
5276  */
5277 int
5278 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5279     boolean_t ispath)
5280 {
5281 	vdev_t *vd;
5282 	boolean_t sync = B_FALSE;
5283 
5284 	ASSERT(spa_writeable(spa));
5285 
5286 	spa_vdev_state_enter(spa, SCL_ALL);
5287 
5288 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5289 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5290 
5291 	if (!vd->vdev_ops->vdev_op_leaf)
5292 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5293 
5294 	if (ispath) {
5295 		if (strcmp(value, vd->vdev_path) != 0) {
5296 			spa_strfree(vd->vdev_path);
5297 			vd->vdev_path = spa_strdup(value);
5298 			sync = B_TRUE;
5299 		}
5300 	} else {
5301 		if (vd->vdev_fru == NULL) {
5302 			vd->vdev_fru = spa_strdup(value);
5303 			sync = B_TRUE;
5304 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5305 			spa_strfree(vd->vdev_fru);
5306 			vd->vdev_fru = spa_strdup(value);
5307 			sync = B_TRUE;
5308 		}
5309 	}
5310 
5311 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5312 }
5313 
5314 int
5315 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5316 {
5317 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5318 }
5319 
5320 int
5321 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5322 {
5323 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5324 }
5325 
5326 /*
5327  * ==========================================================================
5328  * SPA Scanning
5329  * ==========================================================================
5330  */
5331 
5332 int
5333 spa_scan_stop(spa_t *spa)
5334 {
5335 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5336 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5337 		return (EBUSY);
5338 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5339 }
5340 
5341 int
5342 spa_scan(spa_t *spa, pool_scan_func_t func)
5343 {
5344 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5345 
5346 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5347 		return (ENOTSUP);
5348 
5349 	/*
5350 	 * If a resilver was requested, but there is no DTL on a
5351 	 * writeable leaf device, we have nothing to do.
5352 	 */
5353 	if (func == POOL_SCAN_RESILVER &&
5354 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5355 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5356 		return (0);
5357 	}
5358 
5359 	return (dsl_scan(spa->spa_dsl_pool, func));
5360 }
5361 
5362 /*
5363  * ==========================================================================
5364  * SPA async task processing
5365  * ==========================================================================
5366  */
5367 
5368 static void
5369 spa_async_remove(spa_t *spa, vdev_t *vd)
5370 {
5371 	if (vd->vdev_remove_wanted) {
5372 		vd->vdev_remove_wanted = B_FALSE;
5373 		vd->vdev_delayed_close = B_FALSE;
5374 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5375 
5376 		/*
5377 		 * We want to clear the stats, but we don't want to do a full
5378 		 * vdev_clear() as that will cause us to throw away
5379 		 * degraded/faulted state as well as attempt to reopen the
5380 		 * device, all of which is a waste.
5381 		 */
5382 		vd->vdev_stat.vs_read_errors = 0;
5383 		vd->vdev_stat.vs_write_errors = 0;
5384 		vd->vdev_stat.vs_checksum_errors = 0;
5385 
5386 		vdev_state_dirty(vd->vdev_top);
5387 	}
5388 
5389 	for (int c = 0; c < vd->vdev_children; c++)
5390 		spa_async_remove(spa, vd->vdev_child[c]);
5391 }
5392 
5393 static void
5394 spa_async_probe(spa_t *spa, vdev_t *vd)
5395 {
5396 	if (vd->vdev_probe_wanted) {
5397 		vd->vdev_probe_wanted = B_FALSE;
5398 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5399 	}
5400 
5401 	for (int c = 0; c < vd->vdev_children; c++)
5402 		spa_async_probe(spa, vd->vdev_child[c]);
5403 }
5404 
5405 static void
5406 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5407 {
5408 	sysevent_id_t eid;
5409 	nvlist_t *attr;
5410 	char *physpath;
5411 
5412 	if (!spa->spa_autoexpand)
5413 		return;
5414 
5415 	for (int c = 0; c < vd->vdev_children; c++) {
5416 		vdev_t *cvd = vd->vdev_child[c];
5417 		spa_async_autoexpand(spa, cvd);
5418 	}
5419 
5420 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5421 		return;
5422 
5423 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5424 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5425 
5426 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5427 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5428 
5429 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5430 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5431 
5432 	nvlist_free(attr);
5433 	kmem_free(physpath, MAXPATHLEN);
5434 }
5435 
5436 static void
5437 spa_async_thread(spa_t *spa)
5438 {
5439 	int tasks;
5440 
5441 	ASSERT(spa->spa_sync_on);
5442 
5443 	mutex_enter(&spa->spa_async_lock);
5444 	tasks = spa->spa_async_tasks;
5445 	spa->spa_async_tasks = 0;
5446 	mutex_exit(&spa->spa_async_lock);
5447 
5448 	/*
5449 	 * See if the config needs to be updated.
5450 	 */
5451 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5452 		uint64_t old_space, new_space;
5453 
5454 		mutex_enter(&spa_namespace_lock);
5455 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5456 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5457 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5458 		mutex_exit(&spa_namespace_lock);
5459 
5460 		/*
5461 		 * If the pool grew as a result of the config update,
5462 		 * then log an internal history event.
5463 		 */
5464 		if (new_space != old_space) {
5465 			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5466 			    spa, NULL,
5467 			    "pool '%s' size: %llu(+%llu)",
5468 			    spa_name(spa), new_space, new_space - old_space);
5469 		}
5470 	}
5471 
5472 	/*
5473 	 * See if any devices need to be marked REMOVED.
5474 	 */
5475 	if (tasks & SPA_ASYNC_REMOVE) {
5476 		spa_vdev_state_enter(spa, SCL_NONE);
5477 		spa_async_remove(spa, spa->spa_root_vdev);
5478 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5479 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5480 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5481 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5482 		(void) spa_vdev_state_exit(spa, NULL, 0);
5483 	}
5484 
5485 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5486 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5487 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5488 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5489 	}
5490 
5491 	/*
5492 	 * See if any devices need to be probed.
5493 	 */
5494 	if (tasks & SPA_ASYNC_PROBE) {
5495 		spa_vdev_state_enter(spa, SCL_NONE);
5496 		spa_async_probe(spa, spa->spa_root_vdev);
5497 		(void) spa_vdev_state_exit(spa, NULL, 0);
5498 	}
5499 
5500 	/*
5501 	 * If any devices are done replacing, detach them.
5502 	 */
5503 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5504 		spa_vdev_resilver_done(spa);
5505 
5506 	/*
5507 	 * Kick off a resilver.
5508 	 */
5509 	if (tasks & SPA_ASYNC_RESILVER)
5510 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5511 
5512 	/*
5513 	 * Let the world know that we're done.
5514 	 */
5515 	mutex_enter(&spa->spa_async_lock);
5516 	spa->spa_async_thread = NULL;
5517 	cv_broadcast(&spa->spa_async_cv);
5518 	mutex_exit(&spa->spa_async_lock);
5519 	thread_exit();
5520 }
5521 
5522 void
5523 spa_async_suspend(spa_t *spa)
5524 {
5525 	mutex_enter(&spa->spa_async_lock);
5526 	spa->spa_async_suspended++;
5527 	while (spa->spa_async_thread != NULL)
5528 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5529 	mutex_exit(&spa->spa_async_lock);
5530 }
5531 
5532 void
5533 spa_async_resume(spa_t *spa)
5534 {
5535 	mutex_enter(&spa->spa_async_lock);
5536 	ASSERT(spa->spa_async_suspended != 0);
5537 	spa->spa_async_suspended--;
5538 	mutex_exit(&spa->spa_async_lock);
5539 }
5540 
5541 static void
5542 spa_async_dispatch(spa_t *spa)
5543 {
5544 	mutex_enter(&spa->spa_async_lock);
5545 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5546 	    spa->spa_async_thread == NULL &&
5547 	    rootdir != NULL && !vn_is_readonly(rootdir))
5548 		spa->spa_async_thread = thread_create(NULL, 0,
5549 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5550 	mutex_exit(&spa->spa_async_lock);
5551 }
5552 
5553 void
5554 spa_async_request(spa_t *spa, int task)
5555 {
5556 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5557 	mutex_enter(&spa->spa_async_lock);
5558 	spa->spa_async_tasks |= task;
5559 	mutex_exit(&spa->spa_async_lock);
5560 }
5561 
5562 /*
5563  * ==========================================================================
5564  * SPA syncing routines
5565  * ==========================================================================
5566  */
5567 
5568 static int
5569 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5570 {
5571 	bpobj_t *bpo = arg;
5572 	bpobj_enqueue(bpo, bp, tx);
5573 	return (0);
5574 }
5575 
5576 static int
5577 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5578 {
5579 	zio_t *zio = arg;
5580 
5581 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5582 	    zio->io_flags));
5583 	return (0);
5584 }
5585 
5586 static void
5587 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5588 {
5589 	char *packed = NULL;
5590 	size_t bufsize;
5591 	size_t nvsize = 0;
5592 	dmu_buf_t *db;
5593 
5594 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5595 
5596 	/*
5597 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5598 	 * information.  This avoids the dbuf_will_dirty() path and
5599 	 * saves us a pre-read to get data we don't actually care about.
5600 	 */
5601 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5602 	packed = kmem_alloc(bufsize, KM_SLEEP);
5603 
5604 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5605 	    KM_SLEEP) == 0);
5606 	bzero(packed + nvsize, bufsize - nvsize);
5607 
5608 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5609 
5610 	kmem_free(packed, bufsize);
5611 
5612 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5613 	dmu_buf_will_dirty(db, tx);
5614 	*(uint64_t *)db->db_data = nvsize;
5615 	dmu_buf_rele(db, FTAG);
5616 }
5617 
5618 static void
5619 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5620     const char *config, const char *entry)
5621 {
5622 	nvlist_t *nvroot;
5623 	nvlist_t **list;
5624 	int i;
5625 
5626 	if (!sav->sav_sync)
5627 		return;
5628 
5629 	/*
5630 	 * Update the MOS nvlist describing the list of available devices.
5631 	 * spa_validate_aux() will have already made sure this nvlist is
5632 	 * valid and the vdevs are labeled appropriately.
5633 	 */
5634 	if (sav->sav_object == 0) {
5635 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5636 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5637 		    sizeof (uint64_t), tx);
5638 		VERIFY(zap_update(spa->spa_meta_objset,
5639 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5640 		    &sav->sav_object, tx) == 0);
5641 	}
5642 
5643 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5644 	if (sav->sav_count == 0) {
5645 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5646 	} else {
5647 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5648 		for (i = 0; i < sav->sav_count; i++)
5649 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5650 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5651 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5652 		    sav->sav_count) == 0);
5653 		for (i = 0; i < sav->sav_count; i++)
5654 			nvlist_free(list[i]);
5655 		kmem_free(list, sav->sav_count * sizeof (void *));
5656 	}
5657 
5658 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5659 	nvlist_free(nvroot);
5660 
5661 	sav->sav_sync = B_FALSE;
5662 }
5663 
5664 static void
5665 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5666 {
5667 	nvlist_t *config;
5668 
5669 	if (list_is_empty(&spa->spa_config_dirty_list))
5670 		return;
5671 
5672 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5673 
5674 	config = spa_config_generate(spa, spa->spa_root_vdev,
5675 	    dmu_tx_get_txg(tx), B_FALSE);
5676 
5677 	spa_config_exit(spa, SCL_STATE, FTAG);
5678 
5679 	if (spa->spa_config_syncing)
5680 		nvlist_free(spa->spa_config_syncing);
5681 	spa->spa_config_syncing = config;
5682 
5683 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5684 }
5685 
5686 static void
5687 spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx)
5688 {
5689 	spa_t *spa = arg1;
5690 	uint64_t version = *(uint64_t *)arg2;
5691 
5692 	/*
5693 	 * Setting the version is special cased when first creating the pool.
5694 	 */
5695 	ASSERT(tx->tx_txg != TXG_INITIAL);
5696 
5697 	ASSERT(version <= SPA_VERSION);
5698 	ASSERT(version >= spa_version(spa));
5699 
5700 	spa->spa_uberblock.ub_version = version;
5701 	vdev_config_dirty(spa->spa_root_vdev);
5702 }
5703 
5704 /*
5705  * Set zpool properties.
5706  */
5707 static void
5708 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5709 {
5710 	spa_t *spa = arg1;
5711 	objset_t *mos = spa->spa_meta_objset;
5712 	nvlist_t *nvp = arg2;
5713 	nvpair_t *elem = NULL;
5714 
5715 	mutex_enter(&spa->spa_props_lock);
5716 
5717 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5718 		uint64_t intval;
5719 		char *strval, *fname;
5720 		zpool_prop_t prop;
5721 		const char *propname;
5722 		zprop_type_t proptype;
5723 		zfeature_info_t *feature;
5724 
5725 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5726 		case ZPROP_INVAL:
5727 			/*
5728 			 * We checked this earlier in spa_prop_validate().
5729 			 */
5730 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5731 
5732 			fname = strchr(nvpair_name(elem), '@') + 1;
5733 			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5734 
5735 			spa_feature_enable(spa, feature, tx);
5736 			break;
5737 
5738 		case ZPOOL_PROP_VERSION:
5739 			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5740 			/*
5741 			 * The version is synced seperatly before other
5742 			 * properties and should be correct by now.
5743 			 */
5744 			ASSERT3U(spa_version(spa), >=, intval);
5745 			break;
5746 
5747 		case ZPOOL_PROP_ALTROOT:
5748 			/*
5749 			 * 'altroot' is a non-persistent property. It should
5750 			 * have been set temporarily at creation or import time.
5751 			 */
5752 			ASSERT(spa->spa_root != NULL);
5753 			break;
5754 
5755 		case ZPOOL_PROP_READONLY:
5756 		case ZPOOL_PROP_CACHEFILE:
5757 			/*
5758 			 * 'readonly' and 'cachefile' are also non-persisitent
5759 			 * properties.
5760 			 */
5761 			break;
5762 		case ZPOOL_PROP_COMMENT:
5763 			VERIFY(nvpair_value_string(elem, &strval) == 0);
5764 			if (spa->spa_comment != NULL)
5765 				spa_strfree(spa->spa_comment);
5766 			spa->spa_comment = spa_strdup(strval);
5767 			/*
5768 			 * We need to dirty the configuration on all the vdevs
5769 			 * so that their labels get updated.  It's unnecessary
5770 			 * to do this for pool creation since the vdev's
5771 			 * configuratoin has already been dirtied.
5772 			 */
5773 			if (tx->tx_txg != TXG_INITIAL)
5774 				vdev_config_dirty(spa->spa_root_vdev);
5775 			break;
5776 		default:
5777 			/*
5778 			 * Set pool property values in the poolprops mos object.
5779 			 */
5780 			if (spa->spa_pool_props_object == 0) {
5781 				spa->spa_pool_props_object =
5782 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
5783 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5784 				    tx);
5785 			}
5786 
5787 			/* normalize the property name */
5788 			propname = zpool_prop_to_name(prop);
5789 			proptype = zpool_prop_get_type(prop);
5790 
5791 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5792 				ASSERT(proptype == PROP_TYPE_STRING);
5793 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5794 				VERIFY(zap_update(mos,
5795 				    spa->spa_pool_props_object, propname,
5796 				    1, strlen(strval) + 1, strval, tx) == 0);
5797 
5798 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5799 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5800 
5801 				if (proptype == PROP_TYPE_INDEX) {
5802 					const char *unused;
5803 					VERIFY(zpool_prop_index_to_string(
5804 					    prop, intval, &unused) == 0);
5805 				}
5806 				VERIFY(zap_update(mos,
5807 				    spa->spa_pool_props_object, propname,
5808 				    8, 1, &intval, tx) == 0);
5809 			} else {
5810 				ASSERT(0); /* not allowed */
5811 			}
5812 
5813 			switch (prop) {
5814 			case ZPOOL_PROP_DELEGATION:
5815 				spa->spa_delegation = intval;
5816 				break;
5817 			case ZPOOL_PROP_BOOTFS:
5818 				spa->spa_bootfs = intval;
5819 				break;
5820 			case ZPOOL_PROP_FAILUREMODE:
5821 				spa->spa_failmode = intval;
5822 				break;
5823 			case ZPOOL_PROP_AUTOEXPAND:
5824 				spa->spa_autoexpand = intval;
5825 				if (tx->tx_txg != TXG_INITIAL)
5826 					spa_async_request(spa,
5827 					    SPA_ASYNC_AUTOEXPAND);
5828 				break;
5829 			case ZPOOL_PROP_DEDUPDITTO:
5830 				spa->spa_dedup_ditto = intval;
5831 				break;
5832 			default:
5833 				break;
5834 			}
5835 		}
5836 
5837 		/* log internal history if this is not a zpool create */
5838 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5839 		    tx->tx_txg != TXG_INITIAL) {
5840 			spa_history_log_internal(LOG_POOL_PROPSET,
5841 			    spa, tx, "%s %lld %s",
5842 			    nvpair_name(elem), intval, spa_name(spa));
5843 		}
5844 	}
5845 
5846 	mutex_exit(&spa->spa_props_lock);
5847 }
5848 
5849 /*
5850  * Perform one-time upgrade on-disk changes.  spa_version() does not
5851  * reflect the new version this txg, so there must be no changes this
5852  * txg to anything that the upgrade code depends on after it executes.
5853  * Therefore this must be called after dsl_pool_sync() does the sync
5854  * tasks.
5855  */
5856 static void
5857 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5858 {
5859 	dsl_pool_t *dp = spa->spa_dsl_pool;
5860 
5861 	ASSERT(spa->spa_sync_pass == 1);
5862 
5863 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5864 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5865 		dsl_pool_create_origin(dp, tx);
5866 
5867 		/* Keeping the origin open increases spa_minref */
5868 		spa->spa_minref += 3;
5869 	}
5870 
5871 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5872 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5873 		dsl_pool_upgrade_clones(dp, tx);
5874 	}
5875 
5876 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5877 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5878 		dsl_pool_upgrade_dir_clones(dp, tx);
5879 
5880 		/* Keeping the freedir open increases spa_minref */
5881 		spa->spa_minref += 3;
5882 	}
5883 
5884 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
5885 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
5886 		spa_feature_create_zap_objects(spa, tx);
5887 	}
5888 }
5889 
5890 /*
5891  * Sync the specified transaction group.  New blocks may be dirtied as
5892  * part of the process, so we iterate until it converges.
5893  */
5894 void
5895 spa_sync(spa_t *spa, uint64_t txg)
5896 {
5897 	dsl_pool_t *dp = spa->spa_dsl_pool;
5898 	objset_t *mos = spa->spa_meta_objset;
5899 	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5900 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5901 	vdev_t *rvd = spa->spa_root_vdev;
5902 	vdev_t *vd;
5903 	dmu_tx_t *tx;
5904 	int error;
5905 
5906 	VERIFY(spa_writeable(spa));
5907 
5908 	/*
5909 	 * Lock out configuration changes.
5910 	 */
5911 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5912 
5913 	spa->spa_syncing_txg = txg;
5914 	spa->spa_sync_pass = 0;
5915 
5916 	/*
5917 	 * If there are any pending vdev state changes, convert them
5918 	 * into config changes that go out with this transaction group.
5919 	 */
5920 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5921 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5922 		/*
5923 		 * We need the write lock here because, for aux vdevs,
5924 		 * calling vdev_config_dirty() modifies sav_config.
5925 		 * This is ugly and will become unnecessary when we
5926 		 * eliminate the aux vdev wart by integrating all vdevs
5927 		 * into the root vdev tree.
5928 		 */
5929 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5930 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5931 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5932 			vdev_state_clean(vd);
5933 			vdev_config_dirty(vd);
5934 		}
5935 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5936 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5937 	}
5938 	spa_config_exit(spa, SCL_STATE, FTAG);
5939 
5940 	tx = dmu_tx_create_assigned(dp, txg);
5941 
5942 	/*
5943 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5944 	 * set spa_deflate if we have no raid-z vdevs.
5945 	 */
5946 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5947 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5948 		int i;
5949 
5950 		for (i = 0; i < rvd->vdev_children; i++) {
5951 			vd = rvd->vdev_child[i];
5952 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5953 				break;
5954 		}
5955 		if (i == rvd->vdev_children) {
5956 			spa->spa_deflate = TRUE;
5957 			VERIFY(0 == zap_add(spa->spa_meta_objset,
5958 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5959 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5960 		}
5961 	}
5962 
5963 	/*
5964 	 * If anything has changed in this txg, or if someone is waiting
5965 	 * for this txg to sync (eg, spa_vdev_remove()), push the
5966 	 * deferred frees from the previous txg.  If not, leave them
5967 	 * alone so that we don't generate work on an otherwise idle
5968 	 * system.
5969 	 */
5970 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5971 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5972 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5973 	    ((dsl_scan_active(dp->dp_scan) ||
5974 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5975 		zio_t *zio = zio_root(spa, NULL, NULL, 0);
5976 		VERIFY3U(bpobj_iterate(defer_bpo,
5977 		    spa_free_sync_cb, zio, tx), ==, 0);
5978 		VERIFY3U(zio_wait(zio), ==, 0);
5979 	}
5980 
5981 	/*
5982 	 * Iterate to convergence.
5983 	 */
5984 	do {
5985 		int pass = ++spa->spa_sync_pass;
5986 
5987 		spa_sync_config_object(spa, tx);
5988 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5989 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5990 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5991 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5992 		spa_errlog_sync(spa, txg);
5993 		dsl_pool_sync(dp, txg);
5994 
5995 		if (pass <= SYNC_PASS_DEFERRED_FREE) {
5996 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
5997 			bplist_iterate(free_bpl, spa_free_sync_cb,
5998 			    zio, tx);
5999 			VERIFY(zio_wait(zio) == 0);
6000 		} else {
6001 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6002 			    defer_bpo, tx);
6003 		}
6004 
6005 		ddt_sync(spa, txg);
6006 		dsl_scan_sync(dp, tx);
6007 
6008 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6009 			vdev_sync(vd, txg);
6010 
6011 		if (pass == 1)
6012 			spa_sync_upgrades(spa, tx);
6013 
6014 	} while (dmu_objset_is_dirty(mos, txg));
6015 
6016 	/*
6017 	 * Rewrite the vdev configuration (which includes the uberblock)
6018 	 * to commit the transaction group.
6019 	 *
6020 	 * If there are no dirty vdevs, we sync the uberblock to a few
6021 	 * random top-level vdevs that are known to be visible in the
6022 	 * config cache (see spa_vdev_add() for a complete description).
6023 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6024 	 */
6025 	for (;;) {
6026 		/*
6027 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6028 		 * while we're attempting to write the vdev labels.
6029 		 */
6030 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6031 
6032 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6033 			vdev_t *svd[SPA_DVAS_PER_BP];
6034 			int svdcount = 0;
6035 			int children = rvd->vdev_children;
6036 			int c0 = spa_get_random(children);
6037 
6038 			for (int c = 0; c < children; c++) {
6039 				vd = rvd->vdev_child[(c0 + c) % children];
6040 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6041 					continue;
6042 				svd[svdcount++] = vd;
6043 				if (svdcount == SPA_DVAS_PER_BP)
6044 					break;
6045 			}
6046 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6047 			if (error != 0)
6048 				error = vdev_config_sync(svd, svdcount, txg,
6049 				    B_TRUE);
6050 		} else {
6051 			error = vdev_config_sync(rvd->vdev_child,
6052 			    rvd->vdev_children, txg, B_FALSE);
6053 			if (error != 0)
6054 				error = vdev_config_sync(rvd->vdev_child,
6055 				    rvd->vdev_children, txg, B_TRUE);
6056 		}
6057 
6058 		spa_config_exit(spa, SCL_STATE, FTAG);
6059 
6060 		if (error == 0)
6061 			break;
6062 		zio_suspend(spa, NULL);
6063 		zio_resume_wait(spa);
6064 	}
6065 	dmu_tx_commit(tx);
6066 
6067 	/*
6068 	 * Clear the dirty config list.
6069 	 */
6070 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6071 		vdev_config_clean(vd);
6072 
6073 	/*
6074 	 * Now that the new config has synced transactionally,
6075 	 * let it become visible to the config cache.
6076 	 */
6077 	if (spa->spa_config_syncing != NULL) {
6078 		spa_config_set(spa, spa->spa_config_syncing);
6079 		spa->spa_config_txg = txg;
6080 		spa->spa_config_syncing = NULL;
6081 	}
6082 
6083 	spa->spa_ubsync = spa->spa_uberblock;
6084 
6085 	dsl_pool_sync_done(dp, txg);
6086 
6087 	/*
6088 	 * Update usable space statistics.
6089 	 */
6090 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6091 		vdev_sync_done(vd, txg);
6092 
6093 	spa_update_dspace(spa);
6094 
6095 	/*
6096 	 * It had better be the case that we didn't dirty anything
6097 	 * since vdev_config_sync().
6098 	 */
6099 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6100 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6101 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6102 
6103 	spa->spa_sync_pass = 0;
6104 
6105 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6106 
6107 	spa_handle_ignored_writes(spa);
6108 
6109 	/*
6110 	 * If any async tasks have been requested, kick them off.
6111 	 */
6112 	spa_async_dispatch(spa);
6113 }
6114 
6115 /*
6116  * Sync all pools.  We don't want to hold the namespace lock across these
6117  * operations, so we take a reference on the spa_t and drop the lock during the
6118  * sync.
6119  */
6120 void
6121 spa_sync_allpools(void)
6122 {
6123 	spa_t *spa = NULL;
6124 	mutex_enter(&spa_namespace_lock);
6125 	while ((spa = spa_next(spa)) != NULL) {
6126 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6127 		    !spa_writeable(spa) || spa_suspended(spa))
6128 			continue;
6129 		spa_open_ref(spa, FTAG);
6130 		mutex_exit(&spa_namespace_lock);
6131 		txg_wait_synced(spa_get_dsl(spa), 0);
6132 		mutex_enter(&spa_namespace_lock);
6133 		spa_close(spa, FTAG);
6134 	}
6135 	mutex_exit(&spa_namespace_lock);
6136 }
6137 
6138 /*
6139  * ==========================================================================
6140  * Miscellaneous routines
6141  * ==========================================================================
6142  */
6143 
6144 /*
6145  * Remove all pools in the system.
6146  */
6147 void
6148 spa_evict_all(void)
6149 {
6150 	spa_t *spa;
6151 
6152 	/*
6153 	 * Remove all cached state.  All pools should be closed now,
6154 	 * so every spa in the AVL tree should be unreferenced.
6155 	 */
6156 	mutex_enter(&spa_namespace_lock);
6157 	while ((spa = spa_next(NULL)) != NULL) {
6158 		/*
6159 		 * Stop async tasks.  The async thread may need to detach
6160 		 * a device that's been replaced, which requires grabbing
6161 		 * spa_namespace_lock, so we must drop it here.
6162 		 */
6163 		spa_open_ref(spa, FTAG);
6164 		mutex_exit(&spa_namespace_lock);
6165 		spa_async_suspend(spa);
6166 		mutex_enter(&spa_namespace_lock);
6167 		spa_close(spa, FTAG);
6168 
6169 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6170 			spa_unload(spa);
6171 			spa_deactivate(spa);
6172 		}
6173 		spa_remove(spa);
6174 	}
6175 	mutex_exit(&spa_namespace_lock);
6176 }
6177 
6178 vdev_t *
6179 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6180 {
6181 	vdev_t *vd;
6182 	int i;
6183 
6184 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6185 		return (vd);
6186 
6187 	if (aux) {
6188 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6189 			vd = spa->spa_l2cache.sav_vdevs[i];
6190 			if (vd->vdev_guid == guid)
6191 				return (vd);
6192 		}
6193 
6194 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6195 			vd = spa->spa_spares.sav_vdevs[i];
6196 			if (vd->vdev_guid == guid)
6197 				return (vd);
6198 		}
6199 	}
6200 
6201 	return (NULL);
6202 }
6203 
6204 void
6205 spa_upgrade(spa_t *spa, uint64_t version)
6206 {
6207 	ASSERT(spa_writeable(spa));
6208 
6209 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6210 
6211 	/*
6212 	 * This should only be called for a non-faulted pool, and since a
6213 	 * future version would result in an unopenable pool, this shouldn't be
6214 	 * possible.
6215 	 */
6216 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
6217 	ASSERT(version >= spa->spa_uberblock.ub_version);
6218 
6219 	spa->spa_uberblock.ub_version = version;
6220 	vdev_config_dirty(spa->spa_root_vdev);
6221 
6222 	spa_config_exit(spa, SCL_ALL, FTAG);
6223 
6224 	txg_wait_synced(spa_get_dsl(spa), 0);
6225 }
6226 
6227 boolean_t
6228 spa_has_spare(spa_t *spa, uint64_t guid)
6229 {
6230 	int i;
6231 	uint64_t spareguid;
6232 	spa_aux_vdev_t *sav = &spa->spa_spares;
6233 
6234 	for (i = 0; i < sav->sav_count; i++)
6235 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6236 			return (B_TRUE);
6237 
6238 	for (i = 0; i < sav->sav_npending; i++) {
6239 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6240 		    &spareguid) == 0 && spareguid == guid)
6241 			return (B_TRUE);
6242 	}
6243 
6244 	return (B_FALSE);
6245 }
6246 
6247 /*
6248  * Check if a pool has an active shared spare device.
6249  * Note: reference count of an active spare is 2, as a spare and as a replace
6250  */
6251 static boolean_t
6252 spa_has_active_shared_spare(spa_t *spa)
6253 {
6254 	int i, refcnt;
6255 	uint64_t pool;
6256 	spa_aux_vdev_t *sav = &spa->spa_spares;
6257 
6258 	for (i = 0; i < sav->sav_count; i++) {
6259 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6260 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6261 		    refcnt > 2)
6262 			return (B_TRUE);
6263 	}
6264 
6265 	return (B_FALSE);
6266 }
6267 
6268 /*
6269  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6270  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6271  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6272  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6273  * or zdb as real changes.
6274  */
6275 void
6276 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6277 {
6278 #ifdef _KERNEL
6279 	sysevent_t		*ev;
6280 	sysevent_attr_list_t	*attr = NULL;
6281 	sysevent_value_t	value;
6282 	sysevent_id_t		eid;
6283 
6284 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6285 	    SE_SLEEP);
6286 
6287 	value.value_type = SE_DATA_TYPE_STRING;
6288 	value.value.sv_string = spa_name(spa);
6289 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6290 		goto done;
6291 
6292 	value.value_type = SE_DATA_TYPE_UINT64;
6293 	value.value.sv_uint64 = spa_guid(spa);
6294 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6295 		goto done;
6296 
6297 	if (vd) {
6298 		value.value_type = SE_DATA_TYPE_UINT64;
6299 		value.value.sv_uint64 = vd->vdev_guid;
6300 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6301 		    SE_SLEEP) != 0)
6302 			goto done;
6303 
6304 		if (vd->vdev_path) {
6305 			value.value_type = SE_DATA_TYPE_STRING;
6306 			value.value.sv_string = vd->vdev_path;
6307 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6308 			    &value, SE_SLEEP) != 0)
6309 				goto done;
6310 		}
6311 	}
6312 
6313 	if (sysevent_attach_attributes(ev, attr) != 0)
6314 		goto done;
6315 	attr = NULL;
6316 
6317 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6318 
6319 done:
6320 	if (attr)
6321 		sysevent_free_attr(attr);
6322 	sysevent_free(ev);
6323 #endif
6324 }
6325