xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision a82ec3cf2b07d0f2ebb2e60f41370b7c39a5e71e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/sunddi.h>
61 #include <sys/spa_boot.h>
62 #include <sys/zfs_ioctl.h>
63 
64 #ifdef	_KERNEL
65 #include <sys/zone.h>
66 #endif	/* _KERNEL */
67 
68 #include "zfs_prop.h"
69 #include "zfs_comutil.h"
70 
71 enum zti_modes {
72 	zti_mode_fixed,			/* value is # of threads (min 1) */
73 	zti_mode_online_percent,	/* value is % of online CPUs */
74 	zti_mode_tune,			/* fill from zio_taskq_tune_* */
75 	zti_nmodes
76 };
77 
78 #define	ZTI_THREAD_FIX(n)	{ zti_mode_fixed, (n) }
79 #define	ZTI_THREAD_PCT(n)	{ zti_mode_online_percent, (n) }
80 #define	ZTI_THREAD_TUNE		{ zti_mode_tune, 0 }
81 
82 #define	ZTI_THREAD_ONE		ZTI_THREAD_FIX(1)
83 
84 typedef struct zio_taskq_info {
85 	const char *zti_name;
86 	struct {
87 		enum zti_modes zti_mode;
88 		uint_t zti_value;
89 	} zti_nthreads[ZIO_TASKQ_TYPES];
90 } zio_taskq_info_t;
91 
92 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
93 				"issue",		"intr"
94 };
95 
96 const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = {
97 	/*			ISSUE			INTR		*/
98 	{ "spa_zio_null",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
99 	{ "spa_zio_read",	{ ZTI_THREAD_FIX(8),	ZTI_THREAD_TUNE } },
100 	{ "spa_zio_write",	{ ZTI_THREAD_TUNE,	ZTI_THREAD_FIX(8) } },
101 	{ "spa_zio_free",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
102 	{ "spa_zio_claim",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
103 	{ "spa_zio_ioctl",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
104 };
105 
106 enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent;
107 uint_t zio_taskq_tune_value = 80;	/* #threads = 80% of # online CPUs */
108 
109 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
110 static boolean_t spa_has_active_shared_spare(spa_t *spa);
111 
112 /*
113  * ==========================================================================
114  * SPA properties routines
115  * ==========================================================================
116  */
117 
118 /*
119  * Add a (source=src, propname=propval) list to an nvlist.
120  */
121 static void
122 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
123     uint64_t intval, zprop_source_t src)
124 {
125 	const char *propname = zpool_prop_to_name(prop);
126 	nvlist_t *propval;
127 
128 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
129 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
130 
131 	if (strval != NULL)
132 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
133 	else
134 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
135 
136 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
137 	nvlist_free(propval);
138 }
139 
140 /*
141  * Get property values from the spa configuration.
142  */
143 static void
144 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
145 {
146 	uint64_t size;
147 	uint64_t used;
148 	uint64_t cap, version;
149 	zprop_source_t src = ZPROP_SRC_NONE;
150 	spa_config_dirent_t *dp;
151 
152 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
153 
154 	if (spa->spa_root_vdev != NULL) {
155 		size = spa_get_space(spa);
156 		used = spa_get_alloc(spa);
157 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
158 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
159 		spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
160 		spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
161 		    size - used, src);
162 
163 		cap = (size == 0) ? 0 : (used * 100 / size);
164 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
165 
166 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
167 		    spa->spa_root_vdev->vdev_state, src);
168 
169 		version = spa_version(spa);
170 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
171 			src = ZPROP_SRC_DEFAULT;
172 		else
173 			src = ZPROP_SRC_LOCAL;
174 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
175 	}
176 
177 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
178 
179 	if (spa->spa_root != NULL)
180 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
181 		    0, ZPROP_SRC_LOCAL);
182 
183 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
184 		if (dp->scd_path == NULL) {
185 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
186 			    "none", 0, ZPROP_SRC_LOCAL);
187 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
188 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
189 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
190 		}
191 	}
192 }
193 
194 /*
195  * Get zpool property values.
196  */
197 int
198 spa_prop_get(spa_t *spa, nvlist_t **nvp)
199 {
200 	zap_cursor_t zc;
201 	zap_attribute_t za;
202 	objset_t *mos = spa->spa_meta_objset;
203 	int err;
204 
205 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
206 
207 	mutex_enter(&spa->spa_props_lock);
208 
209 	/*
210 	 * Get properties from the spa config.
211 	 */
212 	spa_prop_get_config(spa, nvp);
213 
214 	/* If no pool property object, no more prop to get. */
215 	if (spa->spa_pool_props_object == 0) {
216 		mutex_exit(&spa->spa_props_lock);
217 		return (0);
218 	}
219 
220 	/*
221 	 * Get properties from the MOS pool property object.
222 	 */
223 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
224 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
225 	    zap_cursor_advance(&zc)) {
226 		uint64_t intval = 0;
227 		char *strval = NULL;
228 		zprop_source_t src = ZPROP_SRC_DEFAULT;
229 		zpool_prop_t prop;
230 
231 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
232 			continue;
233 
234 		switch (za.za_integer_length) {
235 		case 8:
236 			/* integer property */
237 			if (za.za_first_integer !=
238 			    zpool_prop_default_numeric(prop))
239 				src = ZPROP_SRC_LOCAL;
240 
241 			if (prop == ZPOOL_PROP_BOOTFS) {
242 				dsl_pool_t *dp;
243 				dsl_dataset_t *ds = NULL;
244 
245 				dp = spa_get_dsl(spa);
246 				rw_enter(&dp->dp_config_rwlock, RW_READER);
247 				if (err = dsl_dataset_hold_obj(dp,
248 				    za.za_first_integer, FTAG, &ds)) {
249 					rw_exit(&dp->dp_config_rwlock);
250 					break;
251 				}
252 
253 				strval = kmem_alloc(
254 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
255 				    KM_SLEEP);
256 				dsl_dataset_name(ds, strval);
257 				dsl_dataset_rele(ds, FTAG);
258 				rw_exit(&dp->dp_config_rwlock);
259 			} else {
260 				strval = NULL;
261 				intval = za.za_first_integer;
262 			}
263 
264 			spa_prop_add_list(*nvp, prop, strval, intval, src);
265 
266 			if (strval != NULL)
267 				kmem_free(strval,
268 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
269 
270 			break;
271 
272 		case 1:
273 			/* string property */
274 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
275 			err = zap_lookup(mos, spa->spa_pool_props_object,
276 			    za.za_name, 1, za.za_num_integers, strval);
277 			if (err) {
278 				kmem_free(strval, za.za_num_integers);
279 				break;
280 			}
281 			spa_prop_add_list(*nvp, prop, strval, 0, src);
282 			kmem_free(strval, za.za_num_integers);
283 			break;
284 
285 		default:
286 			break;
287 		}
288 	}
289 	zap_cursor_fini(&zc);
290 	mutex_exit(&spa->spa_props_lock);
291 out:
292 	if (err && err != ENOENT) {
293 		nvlist_free(*nvp);
294 		*nvp = NULL;
295 		return (err);
296 	}
297 
298 	return (0);
299 }
300 
301 /*
302  * Validate the given pool properties nvlist and modify the list
303  * for the property values to be set.
304  */
305 static int
306 spa_prop_validate(spa_t *spa, nvlist_t *props)
307 {
308 	nvpair_t *elem;
309 	int error = 0, reset_bootfs = 0;
310 	uint64_t objnum;
311 
312 	elem = NULL;
313 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
314 		zpool_prop_t prop;
315 		char *propname, *strval;
316 		uint64_t intval;
317 		objset_t *os;
318 		char *slash;
319 
320 		propname = nvpair_name(elem);
321 
322 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
323 			return (EINVAL);
324 
325 		switch (prop) {
326 		case ZPOOL_PROP_VERSION:
327 			error = nvpair_value_uint64(elem, &intval);
328 			if (!error &&
329 			    (intval < spa_version(spa) || intval > SPA_VERSION))
330 				error = EINVAL;
331 			break;
332 
333 		case ZPOOL_PROP_DELEGATION:
334 		case ZPOOL_PROP_AUTOREPLACE:
335 		case ZPOOL_PROP_LISTSNAPS:
336 		case ZPOOL_PROP_AUTOEXPAND:
337 			error = nvpair_value_uint64(elem, &intval);
338 			if (!error && intval > 1)
339 				error = EINVAL;
340 			break;
341 
342 		case ZPOOL_PROP_BOOTFS:
343 			/*
344 			 * If the pool version is less than SPA_VERSION_BOOTFS,
345 			 * or the pool is still being created (version == 0),
346 			 * the bootfs property cannot be set.
347 			 */
348 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
349 				error = ENOTSUP;
350 				break;
351 			}
352 
353 			/*
354 			 * Make sure the vdev config is bootable
355 			 */
356 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
357 				error = ENOTSUP;
358 				break;
359 			}
360 
361 			reset_bootfs = 1;
362 
363 			error = nvpair_value_string(elem, &strval);
364 
365 			if (!error) {
366 				uint64_t compress;
367 
368 				if (strval == NULL || strval[0] == '\0') {
369 					objnum = zpool_prop_default_numeric(
370 					    ZPOOL_PROP_BOOTFS);
371 					break;
372 				}
373 
374 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
375 				    DS_MODE_USER | DS_MODE_READONLY, &os))
376 					break;
377 
378 				/* We don't support gzip bootable datasets */
379 				if ((error = dsl_prop_get_integer(strval,
380 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
381 				    &compress, NULL)) == 0 &&
382 				    !BOOTFS_COMPRESS_VALID(compress)) {
383 					error = ENOTSUP;
384 				} else {
385 					objnum = dmu_objset_id(os);
386 				}
387 				dmu_objset_close(os);
388 			}
389 			break;
390 
391 		case ZPOOL_PROP_FAILUREMODE:
392 			error = nvpair_value_uint64(elem, &intval);
393 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
394 			    intval > ZIO_FAILURE_MODE_PANIC))
395 				error = EINVAL;
396 
397 			/*
398 			 * This is a special case which only occurs when
399 			 * the pool has completely failed. This allows
400 			 * the user to change the in-core failmode property
401 			 * without syncing it out to disk (I/Os might
402 			 * currently be blocked). We do this by returning
403 			 * EIO to the caller (spa_prop_set) to trick it
404 			 * into thinking we encountered a property validation
405 			 * error.
406 			 */
407 			if (!error && spa_suspended(spa)) {
408 				spa->spa_failmode = intval;
409 				error = EIO;
410 			}
411 			break;
412 
413 		case ZPOOL_PROP_CACHEFILE:
414 			if ((error = nvpair_value_string(elem, &strval)) != 0)
415 				break;
416 
417 			if (strval[0] == '\0')
418 				break;
419 
420 			if (strcmp(strval, "none") == 0)
421 				break;
422 
423 			if (strval[0] != '/') {
424 				error = EINVAL;
425 				break;
426 			}
427 
428 			slash = strrchr(strval, '/');
429 			ASSERT(slash != NULL);
430 
431 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
432 			    strcmp(slash, "/..") == 0)
433 				error = EINVAL;
434 			break;
435 		}
436 
437 		if (error)
438 			break;
439 	}
440 
441 	if (!error && reset_bootfs) {
442 		error = nvlist_remove(props,
443 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
444 
445 		if (!error) {
446 			error = nvlist_add_uint64(props,
447 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
448 		}
449 	}
450 
451 	return (error);
452 }
453 
454 void
455 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
456 {
457 	char *cachefile;
458 	spa_config_dirent_t *dp;
459 
460 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
461 	    &cachefile) != 0)
462 		return;
463 
464 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
465 	    KM_SLEEP);
466 
467 	if (cachefile[0] == '\0')
468 		dp->scd_path = spa_strdup(spa_config_path);
469 	else if (strcmp(cachefile, "none") == 0)
470 		dp->scd_path = NULL;
471 	else
472 		dp->scd_path = spa_strdup(cachefile);
473 
474 	list_insert_head(&spa->spa_config_list, dp);
475 	if (need_sync)
476 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
477 }
478 
479 int
480 spa_prop_set(spa_t *spa, nvlist_t *nvp)
481 {
482 	int error;
483 	nvpair_t *elem;
484 	boolean_t need_sync = B_FALSE;
485 	zpool_prop_t prop;
486 
487 	if ((error = spa_prop_validate(spa, nvp)) != 0)
488 		return (error);
489 
490 	elem = NULL;
491 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
492 		if ((prop = zpool_name_to_prop(
493 		    nvpair_name(elem))) == ZPROP_INVAL)
494 			return (EINVAL);
495 
496 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
497 			continue;
498 
499 		need_sync = B_TRUE;
500 		break;
501 	}
502 
503 	if (need_sync)
504 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
505 		    spa, nvp, 3));
506 	else
507 		return (0);
508 }
509 
510 /*
511  * If the bootfs property value is dsobj, clear it.
512  */
513 void
514 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
515 {
516 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
517 		VERIFY(zap_remove(spa->spa_meta_objset,
518 		    spa->spa_pool_props_object,
519 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
520 		spa->spa_bootfs = 0;
521 	}
522 }
523 
524 /*
525  * ==========================================================================
526  * SPA state manipulation (open/create/destroy/import/export)
527  * ==========================================================================
528  */
529 
530 static int
531 spa_error_entry_compare(const void *a, const void *b)
532 {
533 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
534 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
535 	int ret;
536 
537 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
538 	    sizeof (zbookmark_t));
539 
540 	if (ret < 0)
541 		return (-1);
542 	else if (ret > 0)
543 		return (1);
544 	else
545 		return (0);
546 }
547 
548 /*
549  * Utility function which retrieves copies of the current logs and
550  * re-initializes them in the process.
551  */
552 void
553 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
554 {
555 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
556 
557 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
558 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
559 
560 	avl_create(&spa->spa_errlist_scrub,
561 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
562 	    offsetof(spa_error_entry_t, se_avl));
563 	avl_create(&spa->spa_errlist_last,
564 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
565 	    offsetof(spa_error_entry_t, se_avl));
566 }
567 
568 /*
569  * Activate an uninitialized pool.
570  */
571 static void
572 spa_activate(spa_t *spa, int mode)
573 {
574 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
575 
576 	spa->spa_state = POOL_STATE_ACTIVE;
577 	spa->spa_mode = mode;
578 
579 	spa->spa_normal_class = metaslab_class_create(zfs_metaslab_ops);
580 	spa->spa_log_class = metaslab_class_create(zfs_metaslab_ops);
581 
582 	for (int t = 0; t < ZIO_TYPES; t++) {
583 		const zio_taskq_info_t *ztip = &zio_taskqs[t];
584 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
585 			enum zti_modes mode = ztip->zti_nthreads[q].zti_mode;
586 			uint_t value = ztip->zti_nthreads[q].zti_value;
587 			char name[32];
588 
589 			(void) snprintf(name, sizeof (name),
590 			    "%s_%s", ztip->zti_name, zio_taskq_types[q]);
591 
592 			if (mode == zti_mode_tune) {
593 				mode = zio_taskq_tune_mode;
594 				value = zio_taskq_tune_value;
595 				if (mode == zti_mode_tune)
596 					mode = zti_mode_online_percent;
597 			}
598 
599 			switch (mode) {
600 			case zti_mode_fixed:
601 				ASSERT3U(value, >=, 1);
602 				value = MAX(value, 1);
603 
604 				spa->spa_zio_taskq[t][q] = taskq_create(name,
605 				    value, maxclsyspri, 50, INT_MAX,
606 				    TASKQ_PREPOPULATE);
607 				break;
608 
609 			case zti_mode_online_percent:
610 				spa->spa_zio_taskq[t][q] = taskq_create(name,
611 				    value, maxclsyspri, 50, INT_MAX,
612 				    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
613 				break;
614 
615 			case zti_mode_tune:
616 			default:
617 				panic("unrecognized mode for "
618 				    "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) "
619 				    "in spa_activate()",
620 				    t, q, mode, value);
621 				break;
622 			}
623 		}
624 	}
625 
626 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
627 	    offsetof(vdev_t, vdev_config_dirty_node));
628 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
629 	    offsetof(vdev_t, vdev_state_dirty_node));
630 
631 	txg_list_create(&spa->spa_vdev_txg_list,
632 	    offsetof(struct vdev, vdev_txg_node));
633 
634 	avl_create(&spa->spa_errlist_scrub,
635 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
636 	    offsetof(spa_error_entry_t, se_avl));
637 	avl_create(&spa->spa_errlist_last,
638 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
639 	    offsetof(spa_error_entry_t, se_avl));
640 }
641 
642 /*
643  * Opposite of spa_activate().
644  */
645 static void
646 spa_deactivate(spa_t *spa)
647 {
648 	ASSERT(spa->spa_sync_on == B_FALSE);
649 	ASSERT(spa->spa_dsl_pool == NULL);
650 	ASSERT(spa->spa_root_vdev == NULL);
651 	ASSERT(spa->spa_async_zio_root == NULL);
652 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
653 
654 	txg_list_destroy(&spa->spa_vdev_txg_list);
655 
656 	list_destroy(&spa->spa_config_dirty_list);
657 	list_destroy(&spa->spa_state_dirty_list);
658 
659 	for (int t = 0; t < ZIO_TYPES; t++) {
660 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
661 			taskq_destroy(spa->spa_zio_taskq[t][q]);
662 			spa->spa_zio_taskq[t][q] = NULL;
663 		}
664 	}
665 
666 	metaslab_class_destroy(spa->spa_normal_class);
667 	spa->spa_normal_class = NULL;
668 
669 	metaslab_class_destroy(spa->spa_log_class);
670 	spa->spa_log_class = NULL;
671 
672 	/*
673 	 * If this was part of an import or the open otherwise failed, we may
674 	 * still have errors left in the queues.  Empty them just in case.
675 	 */
676 	spa_errlog_drain(spa);
677 
678 	avl_destroy(&spa->spa_errlist_scrub);
679 	avl_destroy(&spa->spa_errlist_last);
680 
681 	spa->spa_state = POOL_STATE_UNINITIALIZED;
682 }
683 
684 /*
685  * Verify a pool configuration, and construct the vdev tree appropriately.  This
686  * will create all the necessary vdevs in the appropriate layout, with each vdev
687  * in the CLOSED state.  This will prep the pool before open/creation/import.
688  * All vdev validation is done by the vdev_alloc() routine.
689  */
690 static int
691 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
692     uint_t id, int atype)
693 {
694 	nvlist_t **child;
695 	uint_t children;
696 	int error;
697 
698 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
699 		return (error);
700 
701 	if ((*vdp)->vdev_ops->vdev_op_leaf)
702 		return (0);
703 
704 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
705 	    &child, &children);
706 
707 	if (error == ENOENT)
708 		return (0);
709 
710 	if (error) {
711 		vdev_free(*vdp);
712 		*vdp = NULL;
713 		return (EINVAL);
714 	}
715 
716 	for (int c = 0; c < children; c++) {
717 		vdev_t *vd;
718 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
719 		    atype)) != 0) {
720 			vdev_free(*vdp);
721 			*vdp = NULL;
722 			return (error);
723 		}
724 	}
725 
726 	ASSERT(*vdp != NULL);
727 
728 	return (0);
729 }
730 
731 /*
732  * Opposite of spa_load().
733  */
734 static void
735 spa_unload(spa_t *spa)
736 {
737 	int i;
738 
739 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
740 
741 	/*
742 	 * Stop async tasks.
743 	 */
744 	spa_async_suspend(spa);
745 
746 	/*
747 	 * Stop syncing.
748 	 */
749 	if (spa->spa_sync_on) {
750 		txg_sync_stop(spa->spa_dsl_pool);
751 		spa->spa_sync_on = B_FALSE;
752 	}
753 
754 	/*
755 	 * Wait for any outstanding async I/O to complete.
756 	 */
757 	if (spa->spa_async_zio_root != NULL) {
758 		(void) zio_wait(spa->spa_async_zio_root);
759 		spa->spa_async_zio_root = NULL;
760 	}
761 
762 	/*
763 	 * Close the dsl pool.
764 	 */
765 	if (spa->spa_dsl_pool) {
766 		dsl_pool_close(spa->spa_dsl_pool);
767 		spa->spa_dsl_pool = NULL;
768 	}
769 
770 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
771 
772 	/*
773 	 * Drop and purge level 2 cache
774 	 */
775 	spa_l2cache_drop(spa);
776 
777 	/*
778 	 * Close all vdevs.
779 	 */
780 	if (spa->spa_root_vdev)
781 		vdev_free(spa->spa_root_vdev);
782 	ASSERT(spa->spa_root_vdev == NULL);
783 
784 	for (i = 0; i < spa->spa_spares.sav_count; i++)
785 		vdev_free(spa->spa_spares.sav_vdevs[i]);
786 	if (spa->spa_spares.sav_vdevs) {
787 		kmem_free(spa->spa_spares.sav_vdevs,
788 		    spa->spa_spares.sav_count * sizeof (void *));
789 		spa->spa_spares.sav_vdevs = NULL;
790 	}
791 	if (spa->spa_spares.sav_config) {
792 		nvlist_free(spa->spa_spares.sav_config);
793 		spa->spa_spares.sav_config = NULL;
794 	}
795 	spa->spa_spares.sav_count = 0;
796 
797 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
798 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
799 	if (spa->spa_l2cache.sav_vdevs) {
800 		kmem_free(spa->spa_l2cache.sav_vdevs,
801 		    spa->spa_l2cache.sav_count * sizeof (void *));
802 		spa->spa_l2cache.sav_vdevs = NULL;
803 	}
804 	if (spa->spa_l2cache.sav_config) {
805 		nvlist_free(spa->spa_l2cache.sav_config);
806 		spa->spa_l2cache.sav_config = NULL;
807 	}
808 	spa->spa_l2cache.sav_count = 0;
809 
810 	spa->spa_async_suspended = 0;
811 
812 	spa_config_exit(spa, SCL_ALL, FTAG);
813 }
814 
815 /*
816  * Load (or re-load) the current list of vdevs describing the active spares for
817  * this pool.  When this is called, we have some form of basic information in
818  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
819  * then re-generate a more complete list including status information.
820  */
821 static void
822 spa_load_spares(spa_t *spa)
823 {
824 	nvlist_t **spares;
825 	uint_t nspares;
826 	int i;
827 	vdev_t *vd, *tvd;
828 
829 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
830 
831 	/*
832 	 * First, close and free any existing spare vdevs.
833 	 */
834 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
835 		vd = spa->spa_spares.sav_vdevs[i];
836 
837 		/* Undo the call to spa_activate() below */
838 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
839 		    B_FALSE)) != NULL && tvd->vdev_isspare)
840 			spa_spare_remove(tvd);
841 		vdev_close(vd);
842 		vdev_free(vd);
843 	}
844 
845 	if (spa->spa_spares.sav_vdevs)
846 		kmem_free(spa->spa_spares.sav_vdevs,
847 		    spa->spa_spares.sav_count * sizeof (void *));
848 
849 	if (spa->spa_spares.sav_config == NULL)
850 		nspares = 0;
851 	else
852 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
853 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
854 
855 	spa->spa_spares.sav_count = (int)nspares;
856 	spa->spa_spares.sav_vdevs = NULL;
857 
858 	if (nspares == 0)
859 		return;
860 
861 	/*
862 	 * Construct the array of vdevs, opening them to get status in the
863 	 * process.   For each spare, there is potentially two different vdev_t
864 	 * structures associated with it: one in the list of spares (used only
865 	 * for basic validation purposes) and one in the active vdev
866 	 * configuration (if it's spared in).  During this phase we open and
867 	 * validate each vdev on the spare list.  If the vdev also exists in the
868 	 * active configuration, then we also mark this vdev as an active spare.
869 	 */
870 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
871 	    KM_SLEEP);
872 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
873 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
874 		    VDEV_ALLOC_SPARE) == 0);
875 		ASSERT(vd != NULL);
876 
877 		spa->spa_spares.sav_vdevs[i] = vd;
878 
879 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
880 		    B_FALSE)) != NULL) {
881 			if (!tvd->vdev_isspare)
882 				spa_spare_add(tvd);
883 
884 			/*
885 			 * We only mark the spare active if we were successfully
886 			 * able to load the vdev.  Otherwise, importing a pool
887 			 * with a bad active spare would result in strange
888 			 * behavior, because multiple pool would think the spare
889 			 * is actively in use.
890 			 *
891 			 * There is a vulnerability here to an equally bizarre
892 			 * circumstance, where a dead active spare is later
893 			 * brought back to life (onlined or otherwise).  Given
894 			 * the rarity of this scenario, and the extra complexity
895 			 * it adds, we ignore the possibility.
896 			 */
897 			if (!vdev_is_dead(tvd))
898 				spa_spare_activate(tvd);
899 		}
900 
901 		vd->vdev_top = vd;
902 		vd->vdev_aux = &spa->spa_spares;
903 
904 		if (vdev_open(vd) != 0)
905 			continue;
906 
907 		if (vdev_validate_aux(vd) == 0)
908 			spa_spare_add(vd);
909 	}
910 
911 	/*
912 	 * Recompute the stashed list of spares, with status information
913 	 * this time.
914 	 */
915 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
916 	    DATA_TYPE_NVLIST_ARRAY) == 0);
917 
918 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
919 	    KM_SLEEP);
920 	for (i = 0; i < spa->spa_spares.sav_count; i++)
921 		spares[i] = vdev_config_generate(spa,
922 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
923 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
924 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
925 	for (i = 0; i < spa->spa_spares.sav_count; i++)
926 		nvlist_free(spares[i]);
927 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
928 }
929 
930 /*
931  * Load (or re-load) the current list of vdevs describing the active l2cache for
932  * this pool.  When this is called, we have some form of basic information in
933  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
934  * then re-generate a more complete list including status information.
935  * Devices which are already active have their details maintained, and are
936  * not re-opened.
937  */
938 static void
939 spa_load_l2cache(spa_t *spa)
940 {
941 	nvlist_t **l2cache;
942 	uint_t nl2cache;
943 	int i, j, oldnvdevs;
944 	uint64_t guid;
945 	vdev_t *vd, **oldvdevs, **newvdevs;
946 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
947 
948 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
949 
950 	if (sav->sav_config != NULL) {
951 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
952 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
953 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
954 	} else {
955 		nl2cache = 0;
956 	}
957 
958 	oldvdevs = sav->sav_vdevs;
959 	oldnvdevs = sav->sav_count;
960 	sav->sav_vdevs = NULL;
961 	sav->sav_count = 0;
962 
963 	/*
964 	 * Process new nvlist of vdevs.
965 	 */
966 	for (i = 0; i < nl2cache; i++) {
967 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
968 		    &guid) == 0);
969 
970 		newvdevs[i] = NULL;
971 		for (j = 0; j < oldnvdevs; j++) {
972 			vd = oldvdevs[j];
973 			if (vd != NULL && guid == vd->vdev_guid) {
974 				/*
975 				 * Retain previous vdev for add/remove ops.
976 				 */
977 				newvdevs[i] = vd;
978 				oldvdevs[j] = NULL;
979 				break;
980 			}
981 		}
982 
983 		if (newvdevs[i] == NULL) {
984 			/*
985 			 * Create new vdev
986 			 */
987 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
988 			    VDEV_ALLOC_L2CACHE) == 0);
989 			ASSERT(vd != NULL);
990 			newvdevs[i] = vd;
991 
992 			/*
993 			 * Commit this vdev as an l2cache device,
994 			 * even if it fails to open.
995 			 */
996 			spa_l2cache_add(vd);
997 
998 			vd->vdev_top = vd;
999 			vd->vdev_aux = sav;
1000 
1001 			spa_l2cache_activate(vd);
1002 
1003 			if (vdev_open(vd) != 0)
1004 				continue;
1005 
1006 			(void) vdev_validate_aux(vd);
1007 
1008 			if (!vdev_is_dead(vd))
1009 				l2arc_add_vdev(spa, vd);
1010 		}
1011 	}
1012 
1013 	/*
1014 	 * Purge vdevs that were dropped
1015 	 */
1016 	for (i = 0; i < oldnvdevs; i++) {
1017 		uint64_t pool;
1018 
1019 		vd = oldvdevs[i];
1020 		if (vd != NULL) {
1021 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1022 			    pool != 0ULL && l2arc_vdev_present(vd))
1023 				l2arc_remove_vdev(vd);
1024 			(void) vdev_close(vd);
1025 			spa_l2cache_remove(vd);
1026 		}
1027 	}
1028 
1029 	if (oldvdevs)
1030 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1031 
1032 	if (sav->sav_config == NULL)
1033 		goto out;
1034 
1035 	sav->sav_vdevs = newvdevs;
1036 	sav->sav_count = (int)nl2cache;
1037 
1038 	/*
1039 	 * Recompute the stashed list of l2cache devices, with status
1040 	 * information this time.
1041 	 */
1042 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1043 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1044 
1045 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1046 	for (i = 0; i < sav->sav_count; i++)
1047 		l2cache[i] = vdev_config_generate(spa,
1048 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1049 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1050 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1051 out:
1052 	for (i = 0; i < sav->sav_count; i++)
1053 		nvlist_free(l2cache[i]);
1054 	if (sav->sav_count)
1055 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1056 }
1057 
1058 static int
1059 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1060 {
1061 	dmu_buf_t *db;
1062 	char *packed = NULL;
1063 	size_t nvsize = 0;
1064 	int error;
1065 	*value = NULL;
1066 
1067 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1068 	nvsize = *(uint64_t *)db->db_data;
1069 	dmu_buf_rele(db, FTAG);
1070 
1071 	packed = kmem_alloc(nvsize, KM_SLEEP);
1072 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1073 	    DMU_READ_PREFETCH);
1074 	if (error == 0)
1075 		error = nvlist_unpack(packed, nvsize, value, 0);
1076 	kmem_free(packed, nvsize);
1077 
1078 	return (error);
1079 }
1080 
1081 /*
1082  * Checks to see if the given vdev could not be opened, in which case we post a
1083  * sysevent to notify the autoreplace code that the device has been removed.
1084  */
1085 static void
1086 spa_check_removed(vdev_t *vd)
1087 {
1088 	for (int c = 0; c < vd->vdev_children; c++)
1089 		spa_check_removed(vd->vdev_child[c]);
1090 
1091 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1092 		zfs_post_autoreplace(vd->vdev_spa, vd);
1093 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1094 	}
1095 }
1096 
1097 /*
1098  * Load the slog device state from the config object since it's possible
1099  * that the label does not contain the most up-to-date information.
1100  */
1101 void
1102 spa_load_log_state(spa_t *spa)
1103 {
1104 	nvlist_t *nv, *nvroot, **child;
1105 	uint64_t is_log;
1106 	uint_t children;
1107 	vdev_t *rvd = spa->spa_root_vdev;
1108 
1109 	VERIFY(load_nvlist(spa, spa->spa_config_object, &nv) == 0);
1110 	VERIFY(nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1111 	VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1112 	    &child, &children) == 0);
1113 
1114 	for (int c = 0; c < children; c++) {
1115 		vdev_t *tvd = rvd->vdev_child[c];
1116 
1117 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
1118 		    &is_log) == 0 && is_log)
1119 			vdev_load_log_state(tvd, child[c]);
1120 	}
1121 	nvlist_free(nv);
1122 }
1123 
1124 /*
1125  * Check for missing log devices
1126  */
1127 int
1128 spa_check_logs(spa_t *spa)
1129 {
1130 	switch (spa->spa_log_state) {
1131 	case SPA_LOG_MISSING:
1132 		/* need to recheck in case slog has been restored */
1133 	case SPA_LOG_UNKNOWN:
1134 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1135 		    DS_FIND_CHILDREN)) {
1136 			spa->spa_log_state = SPA_LOG_MISSING;
1137 			return (1);
1138 		}
1139 		break;
1140 	}
1141 	return (0);
1142 }
1143 
1144 /*
1145  * Load an existing storage pool, using the pool's builtin spa_config as a
1146  * source of configuration information.
1147  */
1148 static int
1149 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1150 {
1151 	int error = 0;
1152 	nvlist_t *nvroot = NULL;
1153 	vdev_t *rvd;
1154 	uberblock_t *ub = &spa->spa_uberblock;
1155 	uint64_t config_cache_txg = spa->spa_config_txg;
1156 	uint64_t pool_guid;
1157 	uint64_t version;
1158 	uint64_t autoreplace = 0;
1159 	int orig_mode = spa->spa_mode;
1160 	char *ereport = FM_EREPORT_ZFS_POOL;
1161 
1162 	/*
1163 	 * If this is an untrusted config, access the pool in read-only mode.
1164 	 * This prevents things like resilvering recently removed devices.
1165 	 */
1166 	if (!mosconfig)
1167 		spa->spa_mode = FREAD;
1168 
1169 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1170 
1171 	spa->spa_load_state = state;
1172 
1173 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1174 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1175 		error = EINVAL;
1176 		goto out;
1177 	}
1178 
1179 	/*
1180 	 * Versioning wasn't explicitly added to the label until later, so if
1181 	 * it's not present treat it as the initial version.
1182 	 */
1183 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1184 		version = SPA_VERSION_INITIAL;
1185 
1186 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1187 	    &spa->spa_config_txg);
1188 
1189 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1190 	    spa_guid_exists(pool_guid, 0)) {
1191 		error = EEXIST;
1192 		goto out;
1193 	}
1194 
1195 	spa->spa_load_guid = pool_guid;
1196 
1197 	/*
1198 	 * Create "The Godfather" zio to hold all async IOs
1199 	 */
1200 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1201 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1202 
1203 	/*
1204 	 * Parse the configuration into a vdev tree.  We explicitly set the
1205 	 * value that will be returned by spa_version() since parsing the
1206 	 * configuration requires knowing the version number.
1207 	 */
1208 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1209 	spa->spa_ubsync.ub_version = version;
1210 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1211 	spa_config_exit(spa, SCL_ALL, FTAG);
1212 
1213 	if (error != 0)
1214 		goto out;
1215 
1216 	ASSERT(spa->spa_root_vdev == rvd);
1217 	ASSERT(spa_guid(spa) == pool_guid);
1218 
1219 	/*
1220 	 * Try to open all vdevs, loading each label in the process.
1221 	 */
1222 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1223 	error = vdev_open(rvd);
1224 	spa_config_exit(spa, SCL_ALL, FTAG);
1225 	if (error != 0)
1226 		goto out;
1227 
1228 	/*
1229 	 * We need to validate the vdev labels against the configuration that
1230 	 * we have in hand, which is dependent on the setting of mosconfig. If
1231 	 * mosconfig is true then we're validating the vdev labels based on
1232 	 * that config. Otherwise, we're validating against the cached config
1233 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1234 	 * later we will recursively call spa_load() and validate against
1235 	 * the vdev config.
1236 	 */
1237 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1238 	error = vdev_validate(rvd);
1239 	spa_config_exit(spa, SCL_ALL, FTAG);
1240 	if (error != 0)
1241 		goto out;
1242 
1243 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1244 		error = ENXIO;
1245 		goto out;
1246 	}
1247 
1248 	/*
1249 	 * Find the best uberblock.
1250 	 */
1251 	vdev_uberblock_load(NULL, rvd, ub);
1252 
1253 	/*
1254 	 * If we weren't able to find a single valid uberblock, return failure.
1255 	 */
1256 	if (ub->ub_txg == 0) {
1257 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1258 		    VDEV_AUX_CORRUPT_DATA);
1259 		error = ENXIO;
1260 		goto out;
1261 	}
1262 
1263 	/*
1264 	 * If the pool is newer than the code, we can't open it.
1265 	 */
1266 	if (ub->ub_version > SPA_VERSION) {
1267 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1268 		    VDEV_AUX_VERSION_NEWER);
1269 		error = ENOTSUP;
1270 		goto out;
1271 	}
1272 
1273 	/*
1274 	 * If the vdev guid sum doesn't match the uberblock, we have an
1275 	 * incomplete configuration.
1276 	 */
1277 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1278 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1279 		    VDEV_AUX_BAD_GUID_SUM);
1280 		error = ENXIO;
1281 		goto out;
1282 	}
1283 
1284 	/*
1285 	 * Initialize internal SPA structures.
1286 	 */
1287 	spa->spa_state = POOL_STATE_ACTIVE;
1288 	spa->spa_ubsync = spa->spa_uberblock;
1289 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1290 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1291 	if (error) {
1292 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1293 		    VDEV_AUX_CORRUPT_DATA);
1294 		goto out;
1295 	}
1296 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1297 
1298 	if (zap_lookup(spa->spa_meta_objset,
1299 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1300 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1301 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1302 		    VDEV_AUX_CORRUPT_DATA);
1303 		error = EIO;
1304 		goto out;
1305 	}
1306 
1307 	if (!mosconfig) {
1308 		nvlist_t *newconfig;
1309 		uint64_t hostid;
1310 
1311 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1312 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1313 			    VDEV_AUX_CORRUPT_DATA);
1314 			error = EIO;
1315 			goto out;
1316 		}
1317 
1318 		if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1319 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1320 			char *hostname;
1321 			unsigned long myhostid = 0;
1322 
1323 			VERIFY(nvlist_lookup_string(newconfig,
1324 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1325 
1326 #ifdef	_KERNEL
1327 			myhostid = zone_get_hostid(NULL);
1328 #else	/* _KERNEL */
1329 			/*
1330 			 * We're emulating the system's hostid in userland, so
1331 			 * we can't use zone_get_hostid().
1332 			 */
1333 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1334 #endif	/* _KERNEL */
1335 			if (hostid != 0 && myhostid != 0 &&
1336 			    hostid != myhostid) {
1337 				cmn_err(CE_WARN, "pool '%s' could not be "
1338 				    "loaded as it was last accessed by "
1339 				    "another system (host: %s hostid: 0x%lx). "
1340 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1341 				    spa_name(spa), hostname,
1342 				    (unsigned long)hostid);
1343 				error = EBADF;
1344 				goto out;
1345 			}
1346 		}
1347 
1348 		spa_config_set(spa, newconfig);
1349 		spa_unload(spa);
1350 		spa_deactivate(spa);
1351 		spa_activate(spa, orig_mode);
1352 
1353 		return (spa_load(spa, newconfig, state, B_TRUE));
1354 	}
1355 
1356 	if (zap_lookup(spa->spa_meta_objset,
1357 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1358 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1359 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1360 		    VDEV_AUX_CORRUPT_DATA);
1361 		error = EIO;
1362 		goto out;
1363 	}
1364 
1365 	/*
1366 	 * Load the bit that tells us to use the new accounting function
1367 	 * (raid-z deflation).  If we have an older pool, this will not
1368 	 * be present.
1369 	 */
1370 	error = zap_lookup(spa->spa_meta_objset,
1371 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1372 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1373 	if (error != 0 && error != ENOENT) {
1374 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1375 		    VDEV_AUX_CORRUPT_DATA);
1376 		error = EIO;
1377 		goto out;
1378 	}
1379 
1380 	/*
1381 	 * Load the persistent error log.  If we have an older pool, this will
1382 	 * not be present.
1383 	 */
1384 	error = zap_lookup(spa->spa_meta_objset,
1385 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1386 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1387 	if (error != 0 && error != ENOENT) {
1388 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1389 		    VDEV_AUX_CORRUPT_DATA);
1390 		error = EIO;
1391 		goto out;
1392 	}
1393 
1394 	error = zap_lookup(spa->spa_meta_objset,
1395 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1396 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1397 	if (error != 0 && error != ENOENT) {
1398 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1399 		    VDEV_AUX_CORRUPT_DATA);
1400 		error = EIO;
1401 		goto out;
1402 	}
1403 
1404 	/*
1405 	 * Load the history object.  If we have an older pool, this
1406 	 * will not be present.
1407 	 */
1408 	error = zap_lookup(spa->spa_meta_objset,
1409 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1410 	    sizeof (uint64_t), 1, &spa->spa_history);
1411 	if (error != 0 && error != ENOENT) {
1412 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1413 		    VDEV_AUX_CORRUPT_DATA);
1414 		error = EIO;
1415 		goto out;
1416 	}
1417 
1418 	/*
1419 	 * Load any hot spares for this pool.
1420 	 */
1421 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1422 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1423 	if (error != 0 && error != ENOENT) {
1424 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1425 		    VDEV_AUX_CORRUPT_DATA);
1426 		error = EIO;
1427 		goto out;
1428 	}
1429 	if (error == 0) {
1430 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1431 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1432 		    &spa->spa_spares.sav_config) != 0) {
1433 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1434 			    VDEV_AUX_CORRUPT_DATA);
1435 			error = EIO;
1436 			goto out;
1437 		}
1438 
1439 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1440 		spa_load_spares(spa);
1441 		spa_config_exit(spa, SCL_ALL, FTAG);
1442 	}
1443 
1444 	/*
1445 	 * Load any level 2 ARC devices for this pool.
1446 	 */
1447 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1448 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1449 	    &spa->spa_l2cache.sav_object);
1450 	if (error != 0 && error != ENOENT) {
1451 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1452 		    VDEV_AUX_CORRUPT_DATA);
1453 		error = EIO;
1454 		goto out;
1455 	}
1456 	if (error == 0) {
1457 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1458 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1459 		    &spa->spa_l2cache.sav_config) != 0) {
1460 			vdev_set_state(rvd, B_TRUE,
1461 			    VDEV_STATE_CANT_OPEN,
1462 			    VDEV_AUX_CORRUPT_DATA);
1463 			error = EIO;
1464 			goto out;
1465 		}
1466 
1467 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1468 		spa_load_l2cache(spa);
1469 		spa_config_exit(spa, SCL_ALL, FTAG);
1470 	}
1471 
1472 	spa_load_log_state(spa);
1473 
1474 	if (spa_check_logs(spa)) {
1475 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1476 		    VDEV_AUX_BAD_LOG);
1477 		error = ENXIO;
1478 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1479 		goto out;
1480 	}
1481 
1482 
1483 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1484 
1485 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1486 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1487 
1488 	if (error && error != ENOENT) {
1489 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1490 		    VDEV_AUX_CORRUPT_DATA);
1491 		error = EIO;
1492 		goto out;
1493 	}
1494 
1495 	if (error == 0) {
1496 		(void) zap_lookup(spa->spa_meta_objset,
1497 		    spa->spa_pool_props_object,
1498 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1499 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1500 		(void) zap_lookup(spa->spa_meta_objset,
1501 		    spa->spa_pool_props_object,
1502 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1503 		    sizeof (uint64_t), 1, &autoreplace);
1504 		(void) zap_lookup(spa->spa_meta_objset,
1505 		    spa->spa_pool_props_object,
1506 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1507 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1508 		(void) zap_lookup(spa->spa_meta_objset,
1509 		    spa->spa_pool_props_object,
1510 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1511 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1512 		(void) zap_lookup(spa->spa_meta_objset,
1513 		    spa->spa_pool_props_object,
1514 		    zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND),
1515 		    sizeof (uint64_t), 1, &spa->spa_autoexpand);
1516 	}
1517 
1518 	/*
1519 	 * If the 'autoreplace' property is set, then post a resource notifying
1520 	 * the ZFS DE that it should not issue any faults for unopenable
1521 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1522 	 * unopenable vdevs so that the normal autoreplace handler can take
1523 	 * over.
1524 	 */
1525 	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1526 		spa_check_removed(spa->spa_root_vdev);
1527 
1528 	/*
1529 	 * Load the vdev state for all toplevel vdevs.
1530 	 */
1531 	vdev_load(rvd);
1532 
1533 	/*
1534 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1535 	 */
1536 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1537 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1538 	spa_config_exit(spa, SCL_ALL, FTAG);
1539 
1540 	/*
1541 	 * Check the state of the root vdev.  If it can't be opened, it
1542 	 * indicates one or more toplevel vdevs are faulted.
1543 	 */
1544 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1545 		error = ENXIO;
1546 		goto out;
1547 	}
1548 
1549 	if (spa_writeable(spa)) {
1550 		dmu_tx_t *tx;
1551 		int need_update = B_FALSE;
1552 
1553 		ASSERT(state != SPA_LOAD_TRYIMPORT);
1554 
1555 		/*
1556 		 * Claim log blocks that haven't been committed yet.
1557 		 * This must all happen in a single txg.
1558 		 */
1559 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1560 		    spa_first_txg(spa));
1561 		(void) dmu_objset_find(spa_name(spa),
1562 		    zil_claim, tx, DS_FIND_CHILDREN);
1563 		dmu_tx_commit(tx);
1564 
1565 		spa->spa_log_state = SPA_LOG_GOOD;
1566 		spa->spa_sync_on = B_TRUE;
1567 		txg_sync_start(spa->spa_dsl_pool);
1568 
1569 		/*
1570 		 * Wait for all claims to sync.
1571 		 */
1572 		txg_wait_synced(spa->spa_dsl_pool, 0);
1573 
1574 		/*
1575 		 * If the config cache is stale, or we have uninitialized
1576 		 * metaslabs (see spa_vdev_add()), then update the config.
1577 		 *
1578 		 * If spa_load_verbatim is true, trust the current
1579 		 * in-core spa_config and update the disk labels.
1580 		 */
1581 		if (config_cache_txg != spa->spa_config_txg ||
1582 		    state == SPA_LOAD_IMPORT || spa->spa_load_verbatim)
1583 			need_update = B_TRUE;
1584 
1585 		for (int c = 0; c < rvd->vdev_children; c++)
1586 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1587 				need_update = B_TRUE;
1588 
1589 		/*
1590 		 * Update the config cache asychronously in case we're the
1591 		 * root pool, in which case the config cache isn't writable yet.
1592 		 */
1593 		if (need_update)
1594 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1595 
1596 		/*
1597 		 * Check all DTLs to see if anything needs resilvering.
1598 		 */
1599 		if (vdev_resilver_needed(rvd, NULL, NULL))
1600 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1601 	}
1602 
1603 	error = 0;
1604 out:
1605 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1606 	if (error && error != EBADF)
1607 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1608 	spa->spa_load_state = SPA_LOAD_NONE;
1609 	spa->spa_ena = 0;
1610 
1611 	return (error);
1612 }
1613 
1614 /*
1615  * Pool Open/Import
1616  *
1617  * The import case is identical to an open except that the configuration is sent
1618  * down from userland, instead of grabbed from the configuration cache.  For the
1619  * case of an open, the pool configuration will exist in the
1620  * POOL_STATE_UNINITIALIZED state.
1621  *
1622  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1623  * the same time open the pool, without having to keep around the spa_t in some
1624  * ambiguous state.
1625  */
1626 static int
1627 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1628 {
1629 	spa_t *spa;
1630 	int error;
1631 	int locked = B_FALSE;
1632 
1633 	*spapp = NULL;
1634 
1635 	/*
1636 	 * As disgusting as this is, we need to support recursive calls to this
1637 	 * function because dsl_dir_open() is called during spa_load(), and ends
1638 	 * up calling spa_open() again.  The real fix is to figure out how to
1639 	 * avoid dsl_dir_open() calling this in the first place.
1640 	 */
1641 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1642 		mutex_enter(&spa_namespace_lock);
1643 		locked = B_TRUE;
1644 	}
1645 
1646 	if ((spa = spa_lookup(pool)) == NULL) {
1647 		if (locked)
1648 			mutex_exit(&spa_namespace_lock);
1649 		return (ENOENT);
1650 	}
1651 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1652 
1653 		spa_activate(spa, spa_mode_global);
1654 
1655 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1656 
1657 		if (error == EBADF) {
1658 			/*
1659 			 * If vdev_validate() returns failure (indicated by
1660 			 * EBADF), it indicates that one of the vdevs indicates
1661 			 * that the pool has been exported or destroyed.  If
1662 			 * this is the case, the config cache is out of sync and
1663 			 * we should remove the pool from the namespace.
1664 			 */
1665 			spa_unload(spa);
1666 			spa_deactivate(spa);
1667 			spa_config_sync(spa, B_TRUE, B_TRUE);
1668 			spa_remove(spa);
1669 			if (locked)
1670 				mutex_exit(&spa_namespace_lock);
1671 			return (ENOENT);
1672 		}
1673 
1674 		if (error) {
1675 			/*
1676 			 * We can't open the pool, but we still have useful
1677 			 * information: the state of each vdev after the
1678 			 * attempted vdev_open().  Return this to the user.
1679 			 */
1680 			if (config != NULL && spa->spa_root_vdev != NULL)
1681 				*config = spa_config_generate(spa, NULL, -1ULL,
1682 				    B_TRUE);
1683 			spa_unload(spa);
1684 			spa_deactivate(spa);
1685 			spa->spa_last_open_failed = B_TRUE;
1686 			if (locked)
1687 				mutex_exit(&spa_namespace_lock);
1688 			*spapp = NULL;
1689 			return (error);
1690 		} else {
1691 			spa->spa_last_open_failed = B_FALSE;
1692 		}
1693 	}
1694 
1695 	spa_open_ref(spa, tag);
1696 
1697 	if (locked)
1698 		mutex_exit(&spa_namespace_lock);
1699 
1700 	*spapp = spa;
1701 
1702 	if (config != NULL)
1703 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1704 
1705 	return (0);
1706 }
1707 
1708 int
1709 spa_open(const char *name, spa_t **spapp, void *tag)
1710 {
1711 	return (spa_open_common(name, spapp, tag, NULL));
1712 }
1713 
1714 /*
1715  * Lookup the given spa_t, incrementing the inject count in the process,
1716  * preventing it from being exported or destroyed.
1717  */
1718 spa_t *
1719 spa_inject_addref(char *name)
1720 {
1721 	spa_t *spa;
1722 
1723 	mutex_enter(&spa_namespace_lock);
1724 	if ((spa = spa_lookup(name)) == NULL) {
1725 		mutex_exit(&spa_namespace_lock);
1726 		return (NULL);
1727 	}
1728 	spa->spa_inject_ref++;
1729 	mutex_exit(&spa_namespace_lock);
1730 
1731 	return (spa);
1732 }
1733 
1734 void
1735 spa_inject_delref(spa_t *spa)
1736 {
1737 	mutex_enter(&spa_namespace_lock);
1738 	spa->spa_inject_ref--;
1739 	mutex_exit(&spa_namespace_lock);
1740 }
1741 
1742 /*
1743  * Add spares device information to the nvlist.
1744  */
1745 static void
1746 spa_add_spares(spa_t *spa, nvlist_t *config)
1747 {
1748 	nvlist_t **spares;
1749 	uint_t i, nspares;
1750 	nvlist_t *nvroot;
1751 	uint64_t guid;
1752 	vdev_stat_t *vs;
1753 	uint_t vsc;
1754 	uint64_t pool;
1755 
1756 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1757 
1758 	if (spa->spa_spares.sav_count == 0)
1759 		return;
1760 
1761 	VERIFY(nvlist_lookup_nvlist(config,
1762 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1763 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1764 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1765 	if (nspares != 0) {
1766 		VERIFY(nvlist_add_nvlist_array(nvroot,
1767 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1768 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1769 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1770 
1771 		/*
1772 		 * Go through and find any spares which have since been
1773 		 * repurposed as an active spare.  If this is the case, update
1774 		 * their status appropriately.
1775 		 */
1776 		for (i = 0; i < nspares; i++) {
1777 			VERIFY(nvlist_lookup_uint64(spares[i],
1778 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1779 			if (spa_spare_exists(guid, &pool, NULL) &&
1780 			    pool != 0ULL) {
1781 				VERIFY(nvlist_lookup_uint64_array(
1782 				    spares[i], ZPOOL_CONFIG_STATS,
1783 				    (uint64_t **)&vs, &vsc) == 0);
1784 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1785 				vs->vs_aux = VDEV_AUX_SPARED;
1786 			}
1787 		}
1788 	}
1789 }
1790 
1791 /*
1792  * Add l2cache device information to the nvlist, including vdev stats.
1793  */
1794 static void
1795 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1796 {
1797 	nvlist_t **l2cache;
1798 	uint_t i, j, nl2cache;
1799 	nvlist_t *nvroot;
1800 	uint64_t guid;
1801 	vdev_t *vd;
1802 	vdev_stat_t *vs;
1803 	uint_t vsc;
1804 
1805 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1806 
1807 	if (spa->spa_l2cache.sav_count == 0)
1808 		return;
1809 
1810 	VERIFY(nvlist_lookup_nvlist(config,
1811 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1812 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1813 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1814 	if (nl2cache != 0) {
1815 		VERIFY(nvlist_add_nvlist_array(nvroot,
1816 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1817 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1818 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1819 
1820 		/*
1821 		 * Update level 2 cache device stats.
1822 		 */
1823 
1824 		for (i = 0; i < nl2cache; i++) {
1825 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1826 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1827 
1828 			vd = NULL;
1829 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1830 				if (guid ==
1831 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1832 					vd = spa->spa_l2cache.sav_vdevs[j];
1833 					break;
1834 				}
1835 			}
1836 			ASSERT(vd != NULL);
1837 
1838 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1839 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1840 			vdev_get_stats(vd, vs);
1841 		}
1842 	}
1843 }
1844 
1845 int
1846 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1847 {
1848 	int error;
1849 	spa_t *spa;
1850 
1851 	*config = NULL;
1852 	error = spa_open_common(name, &spa, FTAG, config);
1853 
1854 	if (spa != NULL) {
1855 		/*
1856 		 * This still leaves a window of inconsistency where the spares
1857 		 * or l2cache devices could change and the config would be
1858 		 * self-inconsistent.
1859 		 */
1860 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1861 
1862 		if (*config != NULL) {
1863 			VERIFY(nvlist_add_uint64(*config,
1864 			    ZPOOL_CONFIG_ERRCOUNT,
1865 			    spa_get_errlog_size(spa)) == 0);
1866 
1867 			if (spa_suspended(spa))
1868 				VERIFY(nvlist_add_uint64(*config,
1869 				    ZPOOL_CONFIG_SUSPENDED,
1870 				    spa->spa_failmode) == 0);
1871 
1872 			spa_add_spares(spa, *config);
1873 			spa_add_l2cache(spa, *config);
1874 		}
1875 	}
1876 
1877 	/*
1878 	 * We want to get the alternate root even for faulted pools, so we cheat
1879 	 * and call spa_lookup() directly.
1880 	 */
1881 	if (altroot) {
1882 		if (spa == NULL) {
1883 			mutex_enter(&spa_namespace_lock);
1884 			spa = spa_lookup(name);
1885 			if (spa)
1886 				spa_altroot(spa, altroot, buflen);
1887 			else
1888 				altroot[0] = '\0';
1889 			spa = NULL;
1890 			mutex_exit(&spa_namespace_lock);
1891 		} else {
1892 			spa_altroot(spa, altroot, buflen);
1893 		}
1894 	}
1895 
1896 	if (spa != NULL) {
1897 		spa_config_exit(spa, SCL_CONFIG, FTAG);
1898 		spa_close(spa, FTAG);
1899 	}
1900 
1901 	return (error);
1902 }
1903 
1904 /*
1905  * Validate that the auxiliary device array is well formed.  We must have an
1906  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1907  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1908  * specified, as long as they are well-formed.
1909  */
1910 static int
1911 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1912     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1913     vdev_labeltype_t label)
1914 {
1915 	nvlist_t **dev;
1916 	uint_t i, ndev;
1917 	vdev_t *vd;
1918 	int error;
1919 
1920 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1921 
1922 	/*
1923 	 * It's acceptable to have no devs specified.
1924 	 */
1925 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1926 		return (0);
1927 
1928 	if (ndev == 0)
1929 		return (EINVAL);
1930 
1931 	/*
1932 	 * Make sure the pool is formatted with a version that supports this
1933 	 * device type.
1934 	 */
1935 	if (spa_version(spa) < version)
1936 		return (ENOTSUP);
1937 
1938 	/*
1939 	 * Set the pending device list so we correctly handle device in-use
1940 	 * checking.
1941 	 */
1942 	sav->sav_pending = dev;
1943 	sav->sav_npending = ndev;
1944 
1945 	for (i = 0; i < ndev; i++) {
1946 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1947 		    mode)) != 0)
1948 			goto out;
1949 
1950 		if (!vd->vdev_ops->vdev_op_leaf) {
1951 			vdev_free(vd);
1952 			error = EINVAL;
1953 			goto out;
1954 		}
1955 
1956 		/*
1957 		 * The L2ARC currently only supports disk devices in
1958 		 * kernel context.  For user-level testing, we allow it.
1959 		 */
1960 #ifdef _KERNEL
1961 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1962 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1963 			error = ENOTBLK;
1964 			goto out;
1965 		}
1966 #endif
1967 		vd->vdev_top = vd;
1968 
1969 		if ((error = vdev_open(vd)) == 0 &&
1970 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1971 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1972 			    vd->vdev_guid) == 0);
1973 		}
1974 
1975 		vdev_free(vd);
1976 
1977 		if (error &&
1978 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1979 			goto out;
1980 		else
1981 			error = 0;
1982 	}
1983 
1984 out:
1985 	sav->sav_pending = NULL;
1986 	sav->sav_npending = 0;
1987 	return (error);
1988 }
1989 
1990 static int
1991 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1992 {
1993 	int error;
1994 
1995 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1996 
1997 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1998 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1999 	    VDEV_LABEL_SPARE)) != 0) {
2000 		return (error);
2001 	}
2002 
2003 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2004 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2005 	    VDEV_LABEL_L2CACHE));
2006 }
2007 
2008 static void
2009 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2010     const char *config)
2011 {
2012 	int i;
2013 
2014 	if (sav->sav_config != NULL) {
2015 		nvlist_t **olddevs;
2016 		uint_t oldndevs;
2017 		nvlist_t **newdevs;
2018 
2019 		/*
2020 		 * Generate new dev list by concatentating with the
2021 		 * current dev list.
2022 		 */
2023 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2024 		    &olddevs, &oldndevs) == 0);
2025 
2026 		newdevs = kmem_alloc(sizeof (void *) *
2027 		    (ndevs + oldndevs), KM_SLEEP);
2028 		for (i = 0; i < oldndevs; i++)
2029 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2030 			    KM_SLEEP) == 0);
2031 		for (i = 0; i < ndevs; i++)
2032 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2033 			    KM_SLEEP) == 0);
2034 
2035 		VERIFY(nvlist_remove(sav->sav_config, config,
2036 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2037 
2038 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2039 		    config, newdevs, ndevs + oldndevs) == 0);
2040 		for (i = 0; i < oldndevs + ndevs; i++)
2041 			nvlist_free(newdevs[i]);
2042 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2043 	} else {
2044 		/*
2045 		 * Generate a new dev list.
2046 		 */
2047 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2048 		    KM_SLEEP) == 0);
2049 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2050 		    devs, ndevs) == 0);
2051 	}
2052 }
2053 
2054 /*
2055  * Stop and drop level 2 ARC devices
2056  */
2057 void
2058 spa_l2cache_drop(spa_t *spa)
2059 {
2060 	vdev_t *vd;
2061 	int i;
2062 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2063 
2064 	for (i = 0; i < sav->sav_count; i++) {
2065 		uint64_t pool;
2066 
2067 		vd = sav->sav_vdevs[i];
2068 		ASSERT(vd != NULL);
2069 
2070 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2071 		    pool != 0ULL && l2arc_vdev_present(vd))
2072 			l2arc_remove_vdev(vd);
2073 		if (vd->vdev_isl2cache)
2074 			spa_l2cache_remove(vd);
2075 		vdev_clear_stats(vd);
2076 		(void) vdev_close(vd);
2077 	}
2078 }
2079 
2080 /*
2081  * Pool Creation
2082  */
2083 int
2084 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2085     const char *history_str, nvlist_t *zplprops)
2086 {
2087 	spa_t *spa;
2088 	char *altroot = NULL;
2089 	vdev_t *rvd;
2090 	dsl_pool_t *dp;
2091 	dmu_tx_t *tx;
2092 	int error = 0;
2093 	uint64_t txg = TXG_INITIAL;
2094 	nvlist_t **spares, **l2cache;
2095 	uint_t nspares, nl2cache;
2096 	uint64_t version;
2097 
2098 	/*
2099 	 * If this pool already exists, return failure.
2100 	 */
2101 	mutex_enter(&spa_namespace_lock);
2102 	if (spa_lookup(pool) != NULL) {
2103 		mutex_exit(&spa_namespace_lock);
2104 		return (EEXIST);
2105 	}
2106 
2107 	/*
2108 	 * Allocate a new spa_t structure.
2109 	 */
2110 	(void) nvlist_lookup_string(props,
2111 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2112 	spa = spa_add(pool, altroot);
2113 	spa_activate(spa, spa_mode_global);
2114 
2115 	spa->spa_uberblock.ub_txg = txg - 1;
2116 
2117 	if (props && (error = spa_prop_validate(spa, props))) {
2118 		spa_deactivate(spa);
2119 		spa_remove(spa);
2120 		mutex_exit(&spa_namespace_lock);
2121 		return (error);
2122 	}
2123 
2124 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2125 	    &version) != 0)
2126 		version = SPA_VERSION;
2127 	ASSERT(version <= SPA_VERSION);
2128 	spa->spa_uberblock.ub_version = version;
2129 	spa->spa_ubsync = spa->spa_uberblock;
2130 
2131 	/*
2132 	 * Create "The Godfather" zio to hold all async IOs
2133 	 */
2134 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2135 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2136 
2137 	/*
2138 	 * Create the root vdev.
2139 	 */
2140 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2141 
2142 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2143 
2144 	ASSERT(error != 0 || rvd != NULL);
2145 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2146 
2147 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2148 		error = EINVAL;
2149 
2150 	if (error == 0 &&
2151 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2152 	    (error = spa_validate_aux(spa, nvroot, txg,
2153 	    VDEV_ALLOC_ADD)) == 0) {
2154 		for (int c = 0; c < rvd->vdev_children; c++) {
2155 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2156 			vdev_expand(rvd->vdev_child[c], txg);
2157 		}
2158 	}
2159 
2160 	spa_config_exit(spa, SCL_ALL, FTAG);
2161 
2162 	if (error != 0) {
2163 		spa_unload(spa);
2164 		spa_deactivate(spa);
2165 		spa_remove(spa);
2166 		mutex_exit(&spa_namespace_lock);
2167 		return (error);
2168 	}
2169 
2170 	/*
2171 	 * Get the list of spares, if specified.
2172 	 */
2173 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2174 	    &spares, &nspares) == 0) {
2175 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2176 		    KM_SLEEP) == 0);
2177 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2178 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2179 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2180 		spa_load_spares(spa);
2181 		spa_config_exit(spa, SCL_ALL, FTAG);
2182 		spa->spa_spares.sav_sync = B_TRUE;
2183 	}
2184 
2185 	/*
2186 	 * Get the list of level 2 cache devices, if specified.
2187 	 */
2188 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2189 	    &l2cache, &nl2cache) == 0) {
2190 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2191 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2192 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2193 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2194 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2195 		spa_load_l2cache(spa);
2196 		spa_config_exit(spa, SCL_ALL, FTAG);
2197 		spa->spa_l2cache.sav_sync = B_TRUE;
2198 	}
2199 
2200 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2201 	spa->spa_meta_objset = dp->dp_meta_objset;
2202 
2203 	tx = dmu_tx_create_assigned(dp, txg);
2204 
2205 	/*
2206 	 * Create the pool config object.
2207 	 */
2208 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2209 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2210 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2211 
2212 	if (zap_add(spa->spa_meta_objset,
2213 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2214 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2215 		cmn_err(CE_PANIC, "failed to add pool config");
2216 	}
2217 
2218 	/* Newly created pools with the right version are always deflated. */
2219 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2220 		spa->spa_deflate = TRUE;
2221 		if (zap_add(spa->spa_meta_objset,
2222 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2223 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2224 			cmn_err(CE_PANIC, "failed to add deflate");
2225 		}
2226 	}
2227 
2228 	/*
2229 	 * Create the deferred-free bplist object.  Turn off compression
2230 	 * because sync-to-convergence takes longer if the blocksize
2231 	 * keeps changing.
2232 	 */
2233 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2234 	    1 << 14, tx);
2235 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2236 	    ZIO_COMPRESS_OFF, tx);
2237 
2238 	if (zap_add(spa->spa_meta_objset,
2239 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2240 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2241 		cmn_err(CE_PANIC, "failed to add bplist");
2242 	}
2243 
2244 	/*
2245 	 * Create the pool's history object.
2246 	 */
2247 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2248 		spa_history_create_obj(spa, tx);
2249 
2250 	/*
2251 	 * Set pool properties.
2252 	 */
2253 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2254 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2255 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2256 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2257 	if (props != NULL) {
2258 		spa_configfile_set(spa, props, B_FALSE);
2259 		spa_sync_props(spa, props, CRED(), tx);
2260 	}
2261 
2262 	dmu_tx_commit(tx);
2263 
2264 	spa->spa_sync_on = B_TRUE;
2265 	txg_sync_start(spa->spa_dsl_pool);
2266 
2267 	/*
2268 	 * We explicitly wait for the first transaction to complete so that our
2269 	 * bean counters are appropriately updated.
2270 	 */
2271 	txg_wait_synced(spa->spa_dsl_pool, txg);
2272 
2273 	spa_config_sync(spa, B_FALSE, B_TRUE);
2274 
2275 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2276 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2277 	spa_history_log_version(spa, LOG_POOL_CREATE);
2278 
2279 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2280 
2281 	mutex_exit(&spa_namespace_lock);
2282 
2283 	return (0);
2284 }
2285 
2286 #ifdef _KERNEL
2287 /*
2288  * Get the root pool information from the root disk, then import the root pool
2289  * during the system boot up time.
2290  */
2291 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2292 
2293 static nvlist_t *
2294 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2295 {
2296 	nvlist_t *config;
2297 	nvlist_t *nvtop, *nvroot;
2298 	uint64_t pgid;
2299 
2300 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2301 		return (NULL);
2302 
2303 	/*
2304 	 * Add this top-level vdev to the child array.
2305 	 */
2306 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2307 	    &nvtop) == 0);
2308 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2309 	    &pgid) == 0);
2310 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2311 
2312 	/*
2313 	 * Put this pool's top-level vdevs into a root vdev.
2314 	 */
2315 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2316 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2317 	    VDEV_TYPE_ROOT) == 0);
2318 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2319 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2320 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2321 	    &nvtop, 1) == 0);
2322 
2323 	/*
2324 	 * Replace the existing vdev_tree with the new root vdev in
2325 	 * this pool's configuration (remove the old, add the new).
2326 	 */
2327 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2328 	nvlist_free(nvroot);
2329 	return (config);
2330 }
2331 
2332 /*
2333  * Walk the vdev tree and see if we can find a device with "better"
2334  * configuration. A configuration is "better" if the label on that
2335  * device has a more recent txg.
2336  */
2337 static void
2338 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2339 {
2340 	for (int c = 0; c < vd->vdev_children; c++)
2341 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2342 
2343 	if (vd->vdev_ops->vdev_op_leaf) {
2344 		nvlist_t *label;
2345 		uint64_t label_txg;
2346 
2347 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2348 		    &label) != 0)
2349 			return;
2350 
2351 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2352 		    &label_txg) == 0);
2353 
2354 		/*
2355 		 * Do we have a better boot device?
2356 		 */
2357 		if (label_txg > *txg) {
2358 			*txg = label_txg;
2359 			*avd = vd;
2360 		}
2361 		nvlist_free(label);
2362 	}
2363 }
2364 
2365 /*
2366  * Import a root pool.
2367  *
2368  * For x86. devpath_list will consist of devid and/or physpath name of
2369  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2370  * The GRUB "findroot" command will return the vdev we should boot.
2371  *
2372  * For Sparc, devpath_list consists the physpath name of the booting device
2373  * no matter the rootpool is a single device pool or a mirrored pool.
2374  * e.g.
2375  *	"/pci@1f,0/ide@d/disk@0,0:a"
2376  */
2377 int
2378 spa_import_rootpool(char *devpath, char *devid)
2379 {
2380 	spa_t *spa;
2381 	vdev_t *rvd, *bvd, *avd = NULL;
2382 	nvlist_t *config, *nvtop;
2383 	uint64_t guid, txg;
2384 	char *pname;
2385 	int error;
2386 
2387 	/*
2388 	 * Read the label from the boot device and generate a configuration.
2389 	 */
2390 	if ((config = spa_generate_rootconf(devpath, devid, &guid)) == NULL) {
2391 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
2392 		    devpath);
2393 		return (EIO);
2394 	}
2395 
2396 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2397 	    &pname) == 0);
2398 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2399 
2400 	mutex_enter(&spa_namespace_lock);
2401 	if ((spa = spa_lookup(pname)) != NULL) {
2402 		/*
2403 		 * Remove the existing root pool from the namespace so that we
2404 		 * can replace it with the correct config we just read in.
2405 		 */
2406 		spa_remove(spa);
2407 	}
2408 
2409 	spa = spa_add(pname, NULL);
2410 	spa->spa_is_root = B_TRUE;
2411 	spa->spa_load_verbatim = B_TRUE;
2412 
2413 	/*
2414 	 * Build up a vdev tree based on the boot device's label config.
2415 	 */
2416 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2417 	    &nvtop) == 0);
2418 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2419 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
2420 	    VDEV_ALLOC_ROOTPOOL);
2421 	spa_config_exit(spa, SCL_ALL, FTAG);
2422 	if (error) {
2423 		mutex_exit(&spa_namespace_lock);
2424 		nvlist_free(config);
2425 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
2426 		    pname);
2427 		return (error);
2428 	}
2429 
2430 	/*
2431 	 * Get the boot vdev.
2432 	 */
2433 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2434 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
2435 		    (u_longlong_t)guid);
2436 		error = ENOENT;
2437 		goto out;
2438 	}
2439 
2440 	/*
2441 	 * Determine if there is a better boot device.
2442 	 */
2443 	avd = bvd;
2444 	spa_alt_rootvdev(rvd, &avd, &txg);
2445 	if (avd != bvd) {
2446 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
2447 		    "try booting from '%s'", avd->vdev_path);
2448 		error = EINVAL;
2449 		goto out;
2450 	}
2451 
2452 	/*
2453 	 * If the boot device is part of a spare vdev then ensure that
2454 	 * we're booting off the active spare.
2455 	 */
2456 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2457 	    !bvd->vdev_isspare) {
2458 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
2459 		    "try booting from '%s'",
2460 		    bvd->vdev_parent->vdev_child[1]->vdev_path);
2461 		error = EINVAL;
2462 		goto out;
2463 	}
2464 
2465 	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2466 	error = 0;
2467 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2468 out:
2469 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2470 	vdev_free(rvd);
2471 	spa_config_exit(spa, SCL_ALL, FTAG);
2472 	mutex_exit(&spa_namespace_lock);
2473 
2474 	nvlist_free(config);
2475 	return (error);
2476 }
2477 
2478 #endif
2479 
2480 /*
2481  * Take a pool and insert it into the namespace as if it had been loaded at
2482  * boot.
2483  */
2484 int
2485 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
2486 {
2487 	spa_t *spa;
2488 	char *altroot = NULL;
2489 
2490 	mutex_enter(&spa_namespace_lock);
2491 	if (spa_lookup(pool) != NULL) {
2492 		mutex_exit(&spa_namespace_lock);
2493 		return (EEXIST);
2494 	}
2495 
2496 	(void) nvlist_lookup_string(props,
2497 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2498 	spa = spa_add(pool, altroot);
2499 
2500 	spa->spa_load_verbatim = B_TRUE;
2501 
2502 	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2503 
2504 	if (props != NULL)
2505 		spa_configfile_set(spa, props, B_FALSE);
2506 
2507 	spa_config_sync(spa, B_FALSE, B_TRUE);
2508 
2509 	mutex_exit(&spa_namespace_lock);
2510 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2511 
2512 	return (0);
2513 }
2514 
2515 /*
2516  * Import a non-root pool into the system.
2517  */
2518 int
2519 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2520 {
2521 	spa_t *spa;
2522 	char *altroot = NULL;
2523 	int error;
2524 	nvlist_t *nvroot;
2525 	nvlist_t **spares, **l2cache;
2526 	uint_t nspares, nl2cache;
2527 
2528 	/*
2529 	 * If a pool with this name exists, return failure.
2530 	 */
2531 	mutex_enter(&spa_namespace_lock);
2532 	if ((spa = spa_lookup(pool)) != NULL) {
2533 		mutex_exit(&spa_namespace_lock);
2534 		return (EEXIST);
2535 	}
2536 
2537 	/*
2538 	 * Create and initialize the spa structure.
2539 	 */
2540 	(void) nvlist_lookup_string(props,
2541 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2542 	spa = spa_add(pool, altroot);
2543 	spa_activate(spa, spa_mode_global);
2544 
2545 	/*
2546 	 * Don't start async tasks until we know everything is healthy.
2547 	 */
2548 	spa_async_suspend(spa);
2549 
2550 	/*
2551 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
2552 	 * because the user-supplied config is actually the one to trust when
2553 	 * doing an import.
2554 	 */
2555 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
2556 
2557 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2558 	/*
2559 	 * Toss any existing sparelist, as it doesn't have any validity
2560 	 * anymore, and conflicts with spa_has_spare().
2561 	 */
2562 	if (spa->spa_spares.sav_config) {
2563 		nvlist_free(spa->spa_spares.sav_config);
2564 		spa->spa_spares.sav_config = NULL;
2565 		spa_load_spares(spa);
2566 	}
2567 	if (spa->spa_l2cache.sav_config) {
2568 		nvlist_free(spa->spa_l2cache.sav_config);
2569 		spa->spa_l2cache.sav_config = NULL;
2570 		spa_load_l2cache(spa);
2571 	}
2572 
2573 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2574 	    &nvroot) == 0);
2575 	if (error == 0)
2576 		error = spa_validate_aux(spa, nvroot, -1ULL,
2577 		    VDEV_ALLOC_SPARE);
2578 	if (error == 0)
2579 		error = spa_validate_aux(spa, nvroot, -1ULL,
2580 		    VDEV_ALLOC_L2CACHE);
2581 	spa_config_exit(spa, SCL_ALL, FTAG);
2582 
2583 	if (props != NULL)
2584 		spa_configfile_set(spa, props, B_FALSE);
2585 
2586 	if (error != 0 || (props && spa_writeable(spa) &&
2587 	    (error = spa_prop_set(spa, props)))) {
2588 		spa_unload(spa);
2589 		spa_deactivate(spa);
2590 		spa_remove(spa);
2591 		mutex_exit(&spa_namespace_lock);
2592 		return (error);
2593 	}
2594 
2595 	spa_async_resume(spa);
2596 
2597 	/*
2598 	 * Override any spares and level 2 cache devices as specified by
2599 	 * the user, as these may have correct device names/devids, etc.
2600 	 */
2601 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2602 	    &spares, &nspares) == 0) {
2603 		if (spa->spa_spares.sav_config)
2604 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2605 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2606 		else
2607 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2608 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2609 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2610 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2611 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2612 		spa_load_spares(spa);
2613 		spa_config_exit(spa, SCL_ALL, FTAG);
2614 		spa->spa_spares.sav_sync = B_TRUE;
2615 	}
2616 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2617 	    &l2cache, &nl2cache) == 0) {
2618 		if (spa->spa_l2cache.sav_config)
2619 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2620 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2621 		else
2622 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2623 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2624 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2625 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2626 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2627 		spa_load_l2cache(spa);
2628 		spa_config_exit(spa, SCL_ALL, FTAG);
2629 		spa->spa_l2cache.sav_sync = B_TRUE;
2630 	}
2631 
2632 	if (spa_writeable(spa)) {
2633 		/*
2634 		 * Update the config cache to include the newly-imported pool.
2635 		 */
2636 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2637 	}
2638 
2639 	/*
2640 	 * It's possible that the pool was expanded while it was exported.
2641 	 * We kick off an async task to handle this for us.
2642 	 */
2643 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
2644 
2645 	mutex_exit(&spa_namespace_lock);
2646 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2647 
2648 	return (0);
2649 }
2650 
2651 
2652 /*
2653  * This (illegal) pool name is used when temporarily importing a spa_t in order
2654  * to get the vdev stats associated with the imported devices.
2655  */
2656 #define	TRYIMPORT_NAME	"$import"
2657 
2658 nvlist_t *
2659 spa_tryimport(nvlist_t *tryconfig)
2660 {
2661 	nvlist_t *config = NULL;
2662 	char *poolname;
2663 	spa_t *spa;
2664 	uint64_t state;
2665 	int error;
2666 
2667 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2668 		return (NULL);
2669 
2670 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2671 		return (NULL);
2672 
2673 	/*
2674 	 * Create and initialize the spa structure.
2675 	 */
2676 	mutex_enter(&spa_namespace_lock);
2677 	spa = spa_add(TRYIMPORT_NAME, NULL);
2678 	spa_activate(spa, FREAD);
2679 
2680 	/*
2681 	 * Pass off the heavy lifting to spa_load().
2682 	 * Pass TRUE for mosconfig because the user-supplied config
2683 	 * is actually the one to trust when doing an import.
2684 	 */
2685 	error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2686 
2687 	/*
2688 	 * If 'tryconfig' was at least parsable, return the current config.
2689 	 */
2690 	if (spa->spa_root_vdev != NULL) {
2691 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2692 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2693 		    poolname) == 0);
2694 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2695 		    state) == 0);
2696 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2697 		    spa->spa_uberblock.ub_timestamp) == 0);
2698 
2699 		/*
2700 		 * If the bootfs property exists on this pool then we
2701 		 * copy it out so that external consumers can tell which
2702 		 * pools are bootable.
2703 		 */
2704 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
2705 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2706 
2707 			/*
2708 			 * We have to play games with the name since the
2709 			 * pool was opened as TRYIMPORT_NAME.
2710 			 */
2711 			if (dsl_dsobj_to_dsname(spa_name(spa),
2712 			    spa->spa_bootfs, tmpname) == 0) {
2713 				char *cp;
2714 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2715 
2716 				cp = strchr(tmpname, '/');
2717 				if (cp == NULL) {
2718 					(void) strlcpy(dsname, tmpname,
2719 					    MAXPATHLEN);
2720 				} else {
2721 					(void) snprintf(dsname, MAXPATHLEN,
2722 					    "%s/%s", poolname, ++cp);
2723 				}
2724 				VERIFY(nvlist_add_string(config,
2725 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2726 				kmem_free(dsname, MAXPATHLEN);
2727 			}
2728 			kmem_free(tmpname, MAXPATHLEN);
2729 		}
2730 
2731 		/*
2732 		 * Add the list of hot spares and level 2 cache devices.
2733 		 */
2734 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2735 		spa_add_spares(spa, config);
2736 		spa_add_l2cache(spa, config);
2737 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2738 	}
2739 
2740 	spa_unload(spa);
2741 	spa_deactivate(spa);
2742 	spa_remove(spa);
2743 	mutex_exit(&spa_namespace_lock);
2744 
2745 	return (config);
2746 }
2747 
2748 /*
2749  * Pool export/destroy
2750  *
2751  * The act of destroying or exporting a pool is very simple.  We make sure there
2752  * is no more pending I/O and any references to the pool are gone.  Then, we
2753  * update the pool state and sync all the labels to disk, removing the
2754  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
2755  * we don't sync the labels or remove the configuration cache.
2756  */
2757 static int
2758 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2759     boolean_t force, boolean_t hardforce)
2760 {
2761 	spa_t *spa;
2762 
2763 	if (oldconfig)
2764 		*oldconfig = NULL;
2765 
2766 	if (!(spa_mode_global & FWRITE))
2767 		return (EROFS);
2768 
2769 	mutex_enter(&spa_namespace_lock);
2770 	if ((spa = spa_lookup(pool)) == NULL) {
2771 		mutex_exit(&spa_namespace_lock);
2772 		return (ENOENT);
2773 	}
2774 
2775 	/*
2776 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2777 	 * reacquire the namespace lock, and see if we can export.
2778 	 */
2779 	spa_open_ref(spa, FTAG);
2780 	mutex_exit(&spa_namespace_lock);
2781 	spa_async_suspend(spa);
2782 	mutex_enter(&spa_namespace_lock);
2783 	spa_close(spa, FTAG);
2784 
2785 	/*
2786 	 * The pool will be in core if it's openable,
2787 	 * in which case we can modify its state.
2788 	 */
2789 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2790 		/*
2791 		 * Objsets may be open only because they're dirty, so we
2792 		 * have to force it to sync before checking spa_refcnt.
2793 		 */
2794 		txg_wait_synced(spa->spa_dsl_pool, 0);
2795 
2796 		/*
2797 		 * A pool cannot be exported or destroyed if there are active
2798 		 * references.  If we are resetting a pool, allow references by
2799 		 * fault injection handlers.
2800 		 */
2801 		if (!spa_refcount_zero(spa) ||
2802 		    (spa->spa_inject_ref != 0 &&
2803 		    new_state != POOL_STATE_UNINITIALIZED)) {
2804 			spa_async_resume(spa);
2805 			mutex_exit(&spa_namespace_lock);
2806 			return (EBUSY);
2807 		}
2808 
2809 		/*
2810 		 * A pool cannot be exported if it has an active shared spare.
2811 		 * This is to prevent other pools stealing the active spare
2812 		 * from an exported pool. At user's own will, such pool can
2813 		 * be forcedly exported.
2814 		 */
2815 		if (!force && new_state == POOL_STATE_EXPORTED &&
2816 		    spa_has_active_shared_spare(spa)) {
2817 			spa_async_resume(spa);
2818 			mutex_exit(&spa_namespace_lock);
2819 			return (EXDEV);
2820 		}
2821 
2822 		/*
2823 		 * We want this to be reflected on every label,
2824 		 * so mark them all dirty.  spa_unload() will do the
2825 		 * final sync that pushes these changes out.
2826 		 */
2827 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
2828 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2829 			spa->spa_state = new_state;
2830 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2831 			vdev_config_dirty(spa->spa_root_vdev);
2832 			spa_config_exit(spa, SCL_ALL, FTAG);
2833 		}
2834 	}
2835 
2836 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2837 
2838 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2839 		spa_unload(spa);
2840 		spa_deactivate(spa);
2841 	}
2842 
2843 	if (oldconfig && spa->spa_config)
2844 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2845 
2846 	if (new_state != POOL_STATE_UNINITIALIZED) {
2847 		if (!hardforce)
2848 			spa_config_sync(spa, B_TRUE, B_TRUE);
2849 		spa_remove(spa);
2850 	}
2851 	mutex_exit(&spa_namespace_lock);
2852 
2853 	return (0);
2854 }
2855 
2856 /*
2857  * Destroy a storage pool.
2858  */
2859 int
2860 spa_destroy(char *pool)
2861 {
2862 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
2863 	    B_FALSE, B_FALSE));
2864 }
2865 
2866 /*
2867  * Export a storage pool.
2868  */
2869 int
2870 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
2871     boolean_t hardforce)
2872 {
2873 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
2874 	    force, hardforce));
2875 }
2876 
2877 /*
2878  * Similar to spa_export(), this unloads the spa_t without actually removing it
2879  * from the namespace in any way.
2880  */
2881 int
2882 spa_reset(char *pool)
2883 {
2884 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2885 	    B_FALSE, B_FALSE));
2886 }
2887 
2888 /*
2889  * ==========================================================================
2890  * Device manipulation
2891  * ==========================================================================
2892  */
2893 
2894 /*
2895  * Add a device to a storage pool.
2896  */
2897 int
2898 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2899 {
2900 	uint64_t txg;
2901 	int error;
2902 	vdev_t *rvd = spa->spa_root_vdev;
2903 	vdev_t *vd, *tvd;
2904 	nvlist_t **spares, **l2cache;
2905 	uint_t nspares, nl2cache;
2906 
2907 	txg = spa_vdev_enter(spa);
2908 
2909 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2910 	    VDEV_ALLOC_ADD)) != 0)
2911 		return (spa_vdev_exit(spa, NULL, txg, error));
2912 
2913 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
2914 
2915 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2916 	    &nspares) != 0)
2917 		nspares = 0;
2918 
2919 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2920 	    &nl2cache) != 0)
2921 		nl2cache = 0;
2922 
2923 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2924 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2925 
2926 	if (vd->vdev_children != 0 &&
2927 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
2928 		return (spa_vdev_exit(spa, vd, txg, error));
2929 
2930 	/*
2931 	 * We must validate the spares and l2cache devices after checking the
2932 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2933 	 */
2934 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2935 		return (spa_vdev_exit(spa, vd, txg, error));
2936 
2937 	/*
2938 	 * Transfer each new top-level vdev from vd to rvd.
2939 	 */
2940 	for (int c = 0; c < vd->vdev_children; c++) {
2941 		tvd = vd->vdev_child[c];
2942 		vdev_remove_child(vd, tvd);
2943 		tvd->vdev_id = rvd->vdev_children;
2944 		vdev_add_child(rvd, tvd);
2945 		vdev_config_dirty(tvd);
2946 	}
2947 
2948 	if (nspares != 0) {
2949 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2950 		    ZPOOL_CONFIG_SPARES);
2951 		spa_load_spares(spa);
2952 		spa->spa_spares.sav_sync = B_TRUE;
2953 	}
2954 
2955 	if (nl2cache != 0) {
2956 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2957 		    ZPOOL_CONFIG_L2CACHE);
2958 		spa_load_l2cache(spa);
2959 		spa->spa_l2cache.sav_sync = B_TRUE;
2960 	}
2961 
2962 	/*
2963 	 * We have to be careful when adding new vdevs to an existing pool.
2964 	 * If other threads start allocating from these vdevs before we
2965 	 * sync the config cache, and we lose power, then upon reboot we may
2966 	 * fail to open the pool because there are DVAs that the config cache
2967 	 * can't translate.  Therefore, we first add the vdevs without
2968 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2969 	 * and then let spa_config_update() initialize the new metaslabs.
2970 	 *
2971 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2972 	 * if we lose power at any point in this sequence, the remaining
2973 	 * steps will be completed the next time we load the pool.
2974 	 */
2975 	(void) spa_vdev_exit(spa, vd, txg, 0);
2976 
2977 	mutex_enter(&spa_namespace_lock);
2978 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2979 	mutex_exit(&spa_namespace_lock);
2980 
2981 	return (0);
2982 }
2983 
2984 /*
2985  * Attach a device to a mirror.  The arguments are the path to any device
2986  * in the mirror, and the nvroot for the new device.  If the path specifies
2987  * a device that is not mirrored, we automatically insert the mirror vdev.
2988  *
2989  * If 'replacing' is specified, the new device is intended to replace the
2990  * existing device; in this case the two devices are made into their own
2991  * mirror using the 'replacing' vdev, which is functionally identical to
2992  * the mirror vdev (it actually reuses all the same ops) but has a few
2993  * extra rules: you can't attach to it after it's been created, and upon
2994  * completion of resilvering, the first disk (the one being replaced)
2995  * is automatically detached.
2996  */
2997 int
2998 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2999 {
3000 	uint64_t txg, open_txg;
3001 	vdev_t *rvd = spa->spa_root_vdev;
3002 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3003 	vdev_ops_t *pvops;
3004 	char *oldvdpath, *newvdpath;
3005 	int newvd_isspare;
3006 	int error;
3007 
3008 	txg = spa_vdev_enter(spa);
3009 
3010 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3011 
3012 	if (oldvd == NULL)
3013 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3014 
3015 	if (!oldvd->vdev_ops->vdev_op_leaf)
3016 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3017 
3018 	pvd = oldvd->vdev_parent;
3019 
3020 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3021 	    VDEV_ALLOC_ADD)) != 0)
3022 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3023 
3024 	if (newrootvd->vdev_children != 1)
3025 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3026 
3027 	newvd = newrootvd->vdev_child[0];
3028 
3029 	if (!newvd->vdev_ops->vdev_op_leaf)
3030 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3031 
3032 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3033 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3034 
3035 	/*
3036 	 * Spares can't replace logs
3037 	 */
3038 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3039 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3040 
3041 	if (!replacing) {
3042 		/*
3043 		 * For attach, the only allowable parent is a mirror or the root
3044 		 * vdev.
3045 		 */
3046 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3047 		    pvd->vdev_ops != &vdev_root_ops)
3048 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3049 
3050 		pvops = &vdev_mirror_ops;
3051 	} else {
3052 		/*
3053 		 * Active hot spares can only be replaced by inactive hot
3054 		 * spares.
3055 		 */
3056 		if (pvd->vdev_ops == &vdev_spare_ops &&
3057 		    pvd->vdev_child[1] == oldvd &&
3058 		    !spa_has_spare(spa, newvd->vdev_guid))
3059 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3060 
3061 		/*
3062 		 * If the source is a hot spare, and the parent isn't already a
3063 		 * spare, then we want to create a new hot spare.  Otherwise, we
3064 		 * want to create a replacing vdev.  The user is not allowed to
3065 		 * attach to a spared vdev child unless the 'isspare' state is
3066 		 * the same (spare replaces spare, non-spare replaces
3067 		 * non-spare).
3068 		 */
3069 		if (pvd->vdev_ops == &vdev_replacing_ops)
3070 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3071 		else if (pvd->vdev_ops == &vdev_spare_ops &&
3072 		    newvd->vdev_isspare != oldvd->vdev_isspare)
3073 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3074 		else if (pvd->vdev_ops != &vdev_spare_ops &&
3075 		    newvd->vdev_isspare)
3076 			pvops = &vdev_spare_ops;
3077 		else
3078 			pvops = &vdev_replacing_ops;
3079 	}
3080 
3081 	/*
3082 	 * Make sure the new device is big enough.
3083 	 */
3084 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3085 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3086 
3087 	/*
3088 	 * The new device cannot have a higher alignment requirement
3089 	 * than the top-level vdev.
3090 	 */
3091 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3092 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3093 
3094 	/*
3095 	 * If this is an in-place replacement, update oldvd's path and devid
3096 	 * to make it distinguishable from newvd, and unopenable from now on.
3097 	 */
3098 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3099 		spa_strfree(oldvd->vdev_path);
3100 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3101 		    KM_SLEEP);
3102 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3103 		    newvd->vdev_path, "old");
3104 		if (oldvd->vdev_devid != NULL) {
3105 			spa_strfree(oldvd->vdev_devid);
3106 			oldvd->vdev_devid = NULL;
3107 		}
3108 	}
3109 
3110 	/*
3111 	 * If the parent is not a mirror, or if we're replacing, insert the new
3112 	 * mirror/replacing/spare vdev above oldvd.
3113 	 */
3114 	if (pvd->vdev_ops != pvops)
3115 		pvd = vdev_add_parent(oldvd, pvops);
3116 
3117 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3118 	ASSERT(pvd->vdev_ops == pvops);
3119 	ASSERT(oldvd->vdev_parent == pvd);
3120 
3121 	/*
3122 	 * Extract the new device from its root and add it to pvd.
3123 	 */
3124 	vdev_remove_child(newrootvd, newvd);
3125 	newvd->vdev_id = pvd->vdev_children;
3126 	vdev_add_child(pvd, newvd);
3127 
3128 	tvd = newvd->vdev_top;
3129 	ASSERT(pvd->vdev_top == tvd);
3130 	ASSERT(tvd->vdev_parent == rvd);
3131 
3132 	vdev_config_dirty(tvd);
3133 
3134 	/*
3135 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3136 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3137 	 */
3138 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3139 
3140 	vdev_dtl_dirty(newvd, DTL_MISSING,
3141 	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3142 
3143 	if (newvd->vdev_isspare) {
3144 		spa_spare_activate(newvd);
3145 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3146 	}
3147 
3148 	oldvdpath = spa_strdup(oldvd->vdev_path);
3149 	newvdpath = spa_strdup(newvd->vdev_path);
3150 	newvd_isspare = newvd->vdev_isspare;
3151 
3152 	/*
3153 	 * Mark newvd's DTL dirty in this txg.
3154 	 */
3155 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3156 
3157 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3158 
3159 	spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3160 	    CRED(),  "%s vdev=%s %s vdev=%s",
3161 	    replacing && newvd_isspare ? "spare in" :
3162 	    replacing ? "replace" : "attach", newvdpath,
3163 	    replacing ? "for" : "to", oldvdpath);
3164 
3165 	spa_strfree(oldvdpath);
3166 	spa_strfree(newvdpath);
3167 
3168 	/*
3169 	 * Kick off a resilver to update newvd.
3170 	 */
3171 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3172 
3173 	return (0);
3174 }
3175 
3176 /*
3177  * Detach a device from a mirror or replacing vdev.
3178  * If 'replace_done' is specified, only detach if the parent
3179  * is a replacing vdev.
3180  */
3181 int
3182 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3183 {
3184 	uint64_t txg;
3185 	int error;
3186 	vdev_t *rvd = spa->spa_root_vdev;
3187 	vdev_t *vd, *pvd, *cvd, *tvd;
3188 	boolean_t unspare = B_FALSE;
3189 	uint64_t unspare_guid;
3190 	size_t len;
3191 
3192 	txg = spa_vdev_enter(spa);
3193 
3194 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3195 
3196 	if (vd == NULL)
3197 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3198 
3199 	if (!vd->vdev_ops->vdev_op_leaf)
3200 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3201 
3202 	pvd = vd->vdev_parent;
3203 
3204 	/*
3205 	 * If the parent/child relationship is not as expected, don't do it.
3206 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3207 	 * vdev that's replacing B with C.  The user's intent in replacing
3208 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3209 	 * the replace by detaching C, the expected behavior is to end up
3210 	 * M(A,B).  But suppose that right after deciding to detach C,
3211 	 * the replacement of B completes.  We would have M(A,C), and then
3212 	 * ask to detach C, which would leave us with just A -- not what
3213 	 * the user wanted.  To prevent this, we make sure that the
3214 	 * parent/child relationship hasn't changed -- in this example,
3215 	 * that C's parent is still the replacing vdev R.
3216 	 */
3217 	if (pvd->vdev_guid != pguid && pguid != 0)
3218 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3219 
3220 	/*
3221 	 * If replace_done is specified, only remove this device if it's
3222 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3223 	 * disk can be removed.
3224 	 */
3225 	if (replace_done) {
3226 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3227 			if (vd->vdev_id != 0)
3228 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3229 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3230 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3231 		}
3232 	}
3233 
3234 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3235 	    spa_version(spa) >= SPA_VERSION_SPARES);
3236 
3237 	/*
3238 	 * Only mirror, replacing, and spare vdevs support detach.
3239 	 */
3240 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3241 	    pvd->vdev_ops != &vdev_mirror_ops &&
3242 	    pvd->vdev_ops != &vdev_spare_ops)
3243 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3244 
3245 	/*
3246 	 * If this device has the only valid copy of some data,
3247 	 * we cannot safely detach it.
3248 	 */
3249 	if (vdev_dtl_required(vd))
3250 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3251 
3252 	ASSERT(pvd->vdev_children >= 2);
3253 
3254 	/*
3255 	 * If we are detaching the second disk from a replacing vdev, then
3256 	 * check to see if we changed the original vdev's path to have "/old"
3257 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3258 	 */
3259 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3260 	    pvd->vdev_child[0]->vdev_path != NULL &&
3261 	    pvd->vdev_child[1]->vdev_path != NULL) {
3262 		ASSERT(pvd->vdev_child[1] == vd);
3263 		cvd = pvd->vdev_child[0];
3264 		len = strlen(vd->vdev_path);
3265 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3266 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3267 			spa_strfree(cvd->vdev_path);
3268 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3269 		}
3270 	}
3271 
3272 	/*
3273 	 * If we are detaching the original disk from a spare, then it implies
3274 	 * that the spare should become a real disk, and be removed from the
3275 	 * active spare list for the pool.
3276 	 */
3277 	if (pvd->vdev_ops == &vdev_spare_ops &&
3278 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3279 		unspare = B_TRUE;
3280 
3281 	/*
3282 	 * Erase the disk labels so the disk can be used for other things.
3283 	 * This must be done after all other error cases are handled,
3284 	 * but before we disembowel vd (so we can still do I/O to it).
3285 	 * But if we can't do it, don't treat the error as fatal --
3286 	 * it may be that the unwritability of the disk is the reason
3287 	 * it's being detached!
3288 	 */
3289 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3290 
3291 	/*
3292 	 * Remove vd from its parent and compact the parent's children.
3293 	 */
3294 	vdev_remove_child(pvd, vd);
3295 	vdev_compact_children(pvd);
3296 
3297 	/*
3298 	 * Remember one of the remaining children so we can get tvd below.
3299 	 */
3300 	cvd = pvd->vdev_child[0];
3301 
3302 	/*
3303 	 * If we need to remove the remaining child from the list of hot spares,
3304 	 * do it now, marking the vdev as no longer a spare in the process.
3305 	 * We must do this before vdev_remove_parent(), because that can
3306 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3307 	 * reason, we must remove the spare now, in the same txg as the detach;
3308 	 * otherwise someone could attach a new sibling, change the GUID, and
3309 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3310 	 */
3311 	if (unspare) {
3312 		ASSERT(cvd->vdev_isspare);
3313 		spa_spare_remove(cvd);
3314 		unspare_guid = cvd->vdev_guid;
3315 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3316 	}
3317 
3318 	/*
3319 	 * If the parent mirror/replacing vdev only has one child,
3320 	 * the parent is no longer needed.  Remove it from the tree.
3321 	 */
3322 	if (pvd->vdev_children == 1)
3323 		vdev_remove_parent(cvd);
3324 
3325 	/*
3326 	 * We don't set tvd until now because the parent we just removed
3327 	 * may have been the previous top-level vdev.
3328 	 */
3329 	tvd = cvd->vdev_top;
3330 	ASSERT(tvd->vdev_parent == rvd);
3331 
3332 	/*
3333 	 * Reevaluate the parent vdev state.
3334 	 */
3335 	vdev_propagate_state(cvd);
3336 
3337 	/*
3338 	 * If the 'autoexpand' property is set on the pool then automatically
3339 	 * try to expand the size of the pool. For example if the device we
3340 	 * just detached was smaller than the others, it may be possible to
3341 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3342 	 * first so that we can obtain the updated sizes of the leaf vdevs.
3343 	 */
3344 	if (spa->spa_autoexpand) {
3345 		vdev_reopen(tvd);
3346 		vdev_expand(tvd, txg);
3347 	}
3348 
3349 	vdev_config_dirty(tvd);
3350 
3351 	/*
3352 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3353 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3354 	 * But first make sure we're not on any *other* txg's DTL list, to
3355 	 * prevent vd from being accessed after it's freed.
3356 	 */
3357 	for (int t = 0; t < TXG_SIZE; t++)
3358 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3359 	vd->vdev_detached = B_TRUE;
3360 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3361 
3362 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3363 
3364 	error = spa_vdev_exit(spa, vd, txg, 0);
3365 
3366 	/*
3367 	 * If this was the removal of the original device in a hot spare vdev,
3368 	 * then we want to go through and remove the device from the hot spare
3369 	 * list of every other pool.
3370 	 */
3371 	if (unspare) {
3372 		spa_t *myspa = spa;
3373 		spa = NULL;
3374 		mutex_enter(&spa_namespace_lock);
3375 		while ((spa = spa_next(spa)) != NULL) {
3376 			if (spa->spa_state != POOL_STATE_ACTIVE)
3377 				continue;
3378 			if (spa == myspa)
3379 				continue;
3380 			spa_open_ref(spa, FTAG);
3381 			mutex_exit(&spa_namespace_lock);
3382 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3383 			mutex_enter(&spa_namespace_lock);
3384 			spa_close(spa, FTAG);
3385 		}
3386 		mutex_exit(&spa_namespace_lock);
3387 	}
3388 
3389 	return (error);
3390 }
3391 
3392 static nvlist_t *
3393 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3394 {
3395 	for (int i = 0; i < count; i++) {
3396 		uint64_t guid;
3397 
3398 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3399 		    &guid) == 0);
3400 
3401 		if (guid == target_guid)
3402 			return (nvpp[i]);
3403 	}
3404 
3405 	return (NULL);
3406 }
3407 
3408 static void
3409 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3410 	nvlist_t *dev_to_remove)
3411 {
3412 	nvlist_t **newdev = NULL;
3413 
3414 	if (count > 1)
3415 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3416 
3417 	for (int i = 0, j = 0; i < count; i++) {
3418 		if (dev[i] == dev_to_remove)
3419 			continue;
3420 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3421 	}
3422 
3423 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3424 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3425 
3426 	for (int i = 0; i < count - 1; i++)
3427 		nvlist_free(newdev[i]);
3428 
3429 	if (count > 1)
3430 		kmem_free(newdev, (count - 1) * sizeof (void *));
3431 }
3432 
3433 /*
3434  * Remove a device from the pool.  Currently, this supports removing only hot
3435  * spares and level 2 ARC devices.
3436  */
3437 int
3438 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3439 {
3440 	vdev_t *vd;
3441 	nvlist_t **spares, **l2cache, *nv;
3442 	uint_t nspares, nl2cache;
3443 	uint64_t txg = 0;
3444 	int error = 0;
3445 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3446 
3447 	if (!locked)
3448 		txg = spa_vdev_enter(spa);
3449 
3450 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3451 
3452 	if (spa->spa_spares.sav_vdevs != NULL &&
3453 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3454 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3455 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3456 		/*
3457 		 * Only remove the hot spare if it's not currently in use
3458 		 * in this pool.
3459 		 */
3460 		if (vd == NULL || unspare) {
3461 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3462 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3463 			spa_load_spares(spa);
3464 			spa->spa_spares.sav_sync = B_TRUE;
3465 		} else {
3466 			error = EBUSY;
3467 		}
3468 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3469 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3470 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3471 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3472 		/*
3473 		 * Cache devices can always be removed.
3474 		 */
3475 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3476 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3477 		spa_load_l2cache(spa);
3478 		spa->spa_l2cache.sav_sync = B_TRUE;
3479 	} else if (vd != NULL) {
3480 		/*
3481 		 * Normal vdevs cannot be removed (yet).
3482 		 */
3483 		error = ENOTSUP;
3484 	} else {
3485 		/*
3486 		 * There is no vdev of any kind with the specified guid.
3487 		 */
3488 		error = ENOENT;
3489 	}
3490 
3491 	if (!locked)
3492 		return (spa_vdev_exit(spa, NULL, txg, error));
3493 
3494 	return (error);
3495 }
3496 
3497 /*
3498  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3499  * current spared, so we can detach it.
3500  */
3501 static vdev_t *
3502 spa_vdev_resilver_done_hunt(vdev_t *vd)
3503 {
3504 	vdev_t *newvd, *oldvd;
3505 
3506 	for (int c = 0; c < vd->vdev_children; c++) {
3507 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3508 		if (oldvd != NULL)
3509 			return (oldvd);
3510 	}
3511 
3512 	/*
3513 	 * Check for a completed replacement.
3514 	 */
3515 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3516 		oldvd = vd->vdev_child[0];
3517 		newvd = vd->vdev_child[1];
3518 
3519 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
3520 		    !vdev_dtl_required(oldvd))
3521 			return (oldvd);
3522 	}
3523 
3524 	/*
3525 	 * Check for a completed resilver with the 'unspare' flag set.
3526 	 */
3527 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3528 		newvd = vd->vdev_child[0];
3529 		oldvd = vd->vdev_child[1];
3530 
3531 		if (newvd->vdev_unspare &&
3532 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
3533 		    !vdev_dtl_required(oldvd)) {
3534 			newvd->vdev_unspare = 0;
3535 			return (oldvd);
3536 		}
3537 	}
3538 
3539 	return (NULL);
3540 }
3541 
3542 static void
3543 spa_vdev_resilver_done(spa_t *spa)
3544 {
3545 	vdev_t *vd, *pvd, *ppvd;
3546 	uint64_t guid, sguid, pguid, ppguid;
3547 
3548 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3549 
3550 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3551 		pvd = vd->vdev_parent;
3552 		ppvd = pvd->vdev_parent;
3553 		guid = vd->vdev_guid;
3554 		pguid = pvd->vdev_guid;
3555 		ppguid = ppvd->vdev_guid;
3556 		sguid = 0;
3557 		/*
3558 		 * If we have just finished replacing a hot spared device, then
3559 		 * we need to detach the parent's first child (the original hot
3560 		 * spare) as well.
3561 		 */
3562 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
3563 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3564 			ASSERT(ppvd->vdev_children == 2);
3565 			sguid = ppvd->vdev_child[1]->vdev_guid;
3566 		}
3567 		spa_config_exit(spa, SCL_ALL, FTAG);
3568 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
3569 			return;
3570 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
3571 			return;
3572 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3573 	}
3574 
3575 	spa_config_exit(spa, SCL_ALL, FTAG);
3576 }
3577 
3578 /*
3579  * Update the stored path or FRU for this vdev.  Dirty the vdev configuration,
3580  * relying on spa_vdev_enter/exit() to synchronize the labels and cache.
3581  */
3582 int
3583 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
3584     boolean_t ispath)
3585 {
3586 	vdev_t *vd;
3587 	uint64_t txg;
3588 
3589 	txg = spa_vdev_enter(spa);
3590 
3591 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3592 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3593 
3594 	if (!vd->vdev_ops->vdev_op_leaf)
3595 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3596 
3597 	if (ispath) {
3598 		spa_strfree(vd->vdev_path);
3599 		vd->vdev_path = spa_strdup(value);
3600 	} else {
3601 		if (vd->vdev_fru != NULL)
3602 			spa_strfree(vd->vdev_fru);
3603 		vd->vdev_fru = spa_strdup(value);
3604 	}
3605 
3606 	vdev_config_dirty(vd->vdev_top);
3607 
3608 	return (spa_vdev_exit(spa, NULL, txg, 0));
3609 }
3610 
3611 int
3612 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3613 {
3614 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
3615 }
3616 
3617 int
3618 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
3619 {
3620 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
3621 }
3622 
3623 /*
3624  * ==========================================================================
3625  * SPA Scrubbing
3626  * ==========================================================================
3627  */
3628 
3629 int
3630 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3631 {
3632 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3633 
3634 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3635 		return (ENOTSUP);
3636 
3637 	/*
3638 	 * If a resilver was requested, but there is no DTL on a
3639 	 * writeable leaf device, we have nothing to do.
3640 	 */
3641 	if (type == POOL_SCRUB_RESILVER &&
3642 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3643 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3644 		return (0);
3645 	}
3646 
3647 	if (type == POOL_SCRUB_EVERYTHING &&
3648 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3649 	    spa->spa_dsl_pool->dp_scrub_isresilver)
3650 		return (EBUSY);
3651 
3652 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3653 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3654 	} else if (type == POOL_SCRUB_NONE) {
3655 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3656 	} else {
3657 		return (EINVAL);
3658 	}
3659 }
3660 
3661 /*
3662  * ==========================================================================
3663  * SPA async task processing
3664  * ==========================================================================
3665  */
3666 
3667 static void
3668 spa_async_remove(spa_t *spa, vdev_t *vd)
3669 {
3670 	if (vd->vdev_remove_wanted) {
3671 		vd->vdev_remove_wanted = 0;
3672 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3673 		vdev_clear(spa, vd);
3674 		vdev_state_dirty(vd->vdev_top);
3675 	}
3676 
3677 	for (int c = 0; c < vd->vdev_children; c++)
3678 		spa_async_remove(spa, vd->vdev_child[c]);
3679 }
3680 
3681 static void
3682 spa_async_probe(spa_t *spa, vdev_t *vd)
3683 {
3684 	if (vd->vdev_probe_wanted) {
3685 		vd->vdev_probe_wanted = 0;
3686 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
3687 	}
3688 
3689 	for (int c = 0; c < vd->vdev_children; c++)
3690 		spa_async_probe(spa, vd->vdev_child[c]);
3691 }
3692 
3693 static void
3694 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
3695 {
3696 	sysevent_id_t eid;
3697 	nvlist_t *attr;
3698 	char *physpath;
3699 
3700 	if (!spa->spa_autoexpand)
3701 		return;
3702 
3703 	for (int c = 0; c < vd->vdev_children; c++) {
3704 		vdev_t *cvd = vd->vdev_child[c];
3705 		spa_async_autoexpand(spa, cvd);
3706 	}
3707 
3708 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
3709 		return;
3710 
3711 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3712 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
3713 
3714 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3715 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
3716 
3717 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
3718 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
3719 
3720 	nvlist_free(attr);
3721 	kmem_free(physpath, MAXPATHLEN);
3722 }
3723 
3724 static void
3725 spa_async_thread(spa_t *spa)
3726 {
3727 	int tasks;
3728 
3729 	ASSERT(spa->spa_sync_on);
3730 
3731 	mutex_enter(&spa->spa_async_lock);
3732 	tasks = spa->spa_async_tasks;
3733 	spa->spa_async_tasks = 0;
3734 	mutex_exit(&spa->spa_async_lock);
3735 
3736 	/*
3737 	 * See if the config needs to be updated.
3738 	 */
3739 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3740 		uint64_t oldsz, space_update;
3741 
3742 		mutex_enter(&spa_namespace_lock);
3743 		oldsz = spa_get_space(spa);
3744 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3745 		space_update = spa_get_space(spa) - oldsz;
3746 		mutex_exit(&spa_namespace_lock);
3747 
3748 		/*
3749 		 * If the pool grew as a result of the config update,
3750 		 * then log an internal history event.
3751 		 */
3752 		if (space_update) {
3753 			spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
3754 			    spa, NULL, CRED(),
3755 			    "pool '%s' size: %llu(+%llu)",
3756 			    spa_name(spa), spa_get_space(spa),
3757 			    space_update);
3758 		}
3759 	}
3760 
3761 	/*
3762 	 * See if any devices need to be marked REMOVED.
3763 	 */
3764 	if (tasks & SPA_ASYNC_REMOVE) {
3765 		spa_vdev_state_enter(spa);
3766 		spa_async_remove(spa, spa->spa_root_vdev);
3767 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3768 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3769 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
3770 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3771 		(void) spa_vdev_state_exit(spa, NULL, 0);
3772 	}
3773 
3774 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
3775 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3776 		spa_async_autoexpand(spa, spa->spa_root_vdev);
3777 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3778 	}
3779 
3780 	/*
3781 	 * See if any devices need to be probed.
3782 	 */
3783 	if (tasks & SPA_ASYNC_PROBE) {
3784 		spa_vdev_state_enter(spa);
3785 		spa_async_probe(spa, spa->spa_root_vdev);
3786 		(void) spa_vdev_state_exit(spa, NULL, 0);
3787 	}
3788 
3789 	/*
3790 	 * If any devices are done replacing, detach them.
3791 	 */
3792 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3793 		spa_vdev_resilver_done(spa);
3794 
3795 	/*
3796 	 * Kick off a resilver.
3797 	 */
3798 	if (tasks & SPA_ASYNC_RESILVER)
3799 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3800 
3801 	/*
3802 	 * Let the world know that we're done.
3803 	 */
3804 	mutex_enter(&spa->spa_async_lock);
3805 	spa->spa_async_thread = NULL;
3806 	cv_broadcast(&spa->spa_async_cv);
3807 	mutex_exit(&spa->spa_async_lock);
3808 	thread_exit();
3809 }
3810 
3811 void
3812 spa_async_suspend(spa_t *spa)
3813 {
3814 	mutex_enter(&spa->spa_async_lock);
3815 	spa->spa_async_suspended++;
3816 	while (spa->spa_async_thread != NULL)
3817 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3818 	mutex_exit(&spa->spa_async_lock);
3819 }
3820 
3821 void
3822 spa_async_resume(spa_t *spa)
3823 {
3824 	mutex_enter(&spa->spa_async_lock);
3825 	ASSERT(spa->spa_async_suspended != 0);
3826 	spa->spa_async_suspended--;
3827 	mutex_exit(&spa->spa_async_lock);
3828 }
3829 
3830 static void
3831 spa_async_dispatch(spa_t *spa)
3832 {
3833 	mutex_enter(&spa->spa_async_lock);
3834 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3835 	    spa->spa_async_thread == NULL &&
3836 	    rootdir != NULL && !vn_is_readonly(rootdir))
3837 		spa->spa_async_thread = thread_create(NULL, 0,
3838 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3839 	mutex_exit(&spa->spa_async_lock);
3840 }
3841 
3842 void
3843 spa_async_request(spa_t *spa, int task)
3844 {
3845 	mutex_enter(&spa->spa_async_lock);
3846 	spa->spa_async_tasks |= task;
3847 	mutex_exit(&spa->spa_async_lock);
3848 }
3849 
3850 /*
3851  * ==========================================================================
3852  * SPA syncing routines
3853  * ==========================================================================
3854  */
3855 
3856 static void
3857 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3858 {
3859 	bplist_t *bpl = &spa->spa_sync_bplist;
3860 	dmu_tx_t *tx;
3861 	blkptr_t blk;
3862 	uint64_t itor = 0;
3863 	zio_t *zio;
3864 	int error;
3865 	uint8_t c = 1;
3866 
3867 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
3868 
3869 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
3870 		ASSERT(blk.blk_birth < txg);
3871 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
3872 		    ZIO_FLAG_MUSTSUCCEED));
3873 	}
3874 
3875 	error = zio_wait(zio);
3876 	ASSERT3U(error, ==, 0);
3877 
3878 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3879 	bplist_vacate(bpl, tx);
3880 
3881 	/*
3882 	 * Pre-dirty the first block so we sync to convergence faster.
3883 	 * (Usually only the first block is needed.)
3884 	 */
3885 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3886 	dmu_tx_commit(tx);
3887 }
3888 
3889 static void
3890 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3891 {
3892 	char *packed = NULL;
3893 	size_t bufsize;
3894 	size_t nvsize = 0;
3895 	dmu_buf_t *db;
3896 
3897 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3898 
3899 	/*
3900 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3901 	 * information.  This avoids the dbuf_will_dirty() path and
3902 	 * saves us a pre-read to get data we don't actually care about.
3903 	 */
3904 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3905 	packed = kmem_alloc(bufsize, KM_SLEEP);
3906 
3907 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3908 	    KM_SLEEP) == 0);
3909 	bzero(packed + nvsize, bufsize - nvsize);
3910 
3911 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3912 
3913 	kmem_free(packed, bufsize);
3914 
3915 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3916 	dmu_buf_will_dirty(db, tx);
3917 	*(uint64_t *)db->db_data = nvsize;
3918 	dmu_buf_rele(db, FTAG);
3919 }
3920 
3921 static void
3922 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3923     const char *config, const char *entry)
3924 {
3925 	nvlist_t *nvroot;
3926 	nvlist_t **list;
3927 	int i;
3928 
3929 	if (!sav->sav_sync)
3930 		return;
3931 
3932 	/*
3933 	 * Update the MOS nvlist describing the list of available devices.
3934 	 * spa_validate_aux() will have already made sure this nvlist is
3935 	 * valid and the vdevs are labeled appropriately.
3936 	 */
3937 	if (sav->sav_object == 0) {
3938 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3939 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3940 		    sizeof (uint64_t), tx);
3941 		VERIFY(zap_update(spa->spa_meta_objset,
3942 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3943 		    &sav->sav_object, tx) == 0);
3944 	}
3945 
3946 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3947 	if (sav->sav_count == 0) {
3948 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3949 	} else {
3950 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3951 		for (i = 0; i < sav->sav_count; i++)
3952 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3953 			    B_FALSE, B_FALSE, B_TRUE);
3954 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3955 		    sav->sav_count) == 0);
3956 		for (i = 0; i < sav->sav_count; i++)
3957 			nvlist_free(list[i]);
3958 		kmem_free(list, sav->sav_count * sizeof (void *));
3959 	}
3960 
3961 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3962 	nvlist_free(nvroot);
3963 
3964 	sav->sav_sync = B_FALSE;
3965 }
3966 
3967 static void
3968 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3969 {
3970 	nvlist_t *config;
3971 
3972 	if (list_is_empty(&spa->spa_config_dirty_list))
3973 		return;
3974 
3975 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3976 
3977 	config = spa_config_generate(spa, spa->spa_root_vdev,
3978 	    dmu_tx_get_txg(tx), B_FALSE);
3979 
3980 	spa_config_exit(spa, SCL_STATE, FTAG);
3981 
3982 	if (spa->spa_config_syncing)
3983 		nvlist_free(spa->spa_config_syncing);
3984 	spa->spa_config_syncing = config;
3985 
3986 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3987 }
3988 
3989 /*
3990  * Set zpool properties.
3991  */
3992 static void
3993 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3994 {
3995 	spa_t *spa = arg1;
3996 	objset_t *mos = spa->spa_meta_objset;
3997 	nvlist_t *nvp = arg2;
3998 	nvpair_t *elem;
3999 	uint64_t intval;
4000 	char *strval;
4001 	zpool_prop_t prop;
4002 	const char *propname;
4003 	zprop_type_t proptype;
4004 
4005 	mutex_enter(&spa->spa_props_lock);
4006 
4007 	elem = NULL;
4008 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
4009 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
4010 		case ZPOOL_PROP_VERSION:
4011 			/*
4012 			 * Only set version for non-zpool-creation cases
4013 			 * (set/import). spa_create() needs special care
4014 			 * for version setting.
4015 			 */
4016 			if (tx->tx_txg != TXG_INITIAL) {
4017 				VERIFY(nvpair_value_uint64(elem,
4018 				    &intval) == 0);
4019 				ASSERT(intval <= SPA_VERSION);
4020 				ASSERT(intval >= spa_version(spa));
4021 				spa->spa_uberblock.ub_version = intval;
4022 				vdev_config_dirty(spa->spa_root_vdev);
4023 			}
4024 			break;
4025 
4026 		case ZPOOL_PROP_ALTROOT:
4027 			/*
4028 			 * 'altroot' is a non-persistent property. It should
4029 			 * have been set temporarily at creation or import time.
4030 			 */
4031 			ASSERT(spa->spa_root != NULL);
4032 			break;
4033 
4034 		case ZPOOL_PROP_CACHEFILE:
4035 			/*
4036 			 * 'cachefile' is also a non-persisitent property.
4037 			 */
4038 			break;
4039 		default:
4040 			/*
4041 			 * Set pool property values in the poolprops mos object.
4042 			 */
4043 			if (spa->spa_pool_props_object == 0) {
4044 				objset_t *mos = spa->spa_meta_objset;
4045 
4046 				VERIFY((spa->spa_pool_props_object =
4047 				    zap_create(mos, DMU_OT_POOL_PROPS,
4048 				    DMU_OT_NONE, 0, tx)) > 0);
4049 
4050 				VERIFY(zap_update(mos,
4051 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
4052 				    8, 1, &spa->spa_pool_props_object, tx)
4053 				    == 0);
4054 			}
4055 
4056 			/* normalize the property name */
4057 			propname = zpool_prop_to_name(prop);
4058 			proptype = zpool_prop_get_type(prop);
4059 
4060 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
4061 				ASSERT(proptype == PROP_TYPE_STRING);
4062 				VERIFY(nvpair_value_string(elem, &strval) == 0);
4063 				VERIFY(zap_update(mos,
4064 				    spa->spa_pool_props_object, propname,
4065 				    1, strlen(strval) + 1, strval, tx) == 0);
4066 
4067 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4068 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4069 
4070 				if (proptype == PROP_TYPE_INDEX) {
4071 					const char *unused;
4072 					VERIFY(zpool_prop_index_to_string(
4073 					    prop, intval, &unused) == 0);
4074 				}
4075 				VERIFY(zap_update(mos,
4076 				    spa->spa_pool_props_object, propname,
4077 				    8, 1, &intval, tx) == 0);
4078 			} else {
4079 				ASSERT(0); /* not allowed */
4080 			}
4081 
4082 			switch (prop) {
4083 			case ZPOOL_PROP_DELEGATION:
4084 				spa->spa_delegation = intval;
4085 				break;
4086 			case ZPOOL_PROP_BOOTFS:
4087 				spa->spa_bootfs = intval;
4088 				break;
4089 			case ZPOOL_PROP_FAILUREMODE:
4090 				spa->spa_failmode = intval;
4091 				break;
4092 			case ZPOOL_PROP_AUTOEXPAND:
4093 				spa->spa_autoexpand = intval;
4094 				spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4095 				break;
4096 			default:
4097 				break;
4098 			}
4099 		}
4100 
4101 		/* log internal history if this is not a zpool create */
4102 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4103 		    tx->tx_txg != TXG_INITIAL) {
4104 			spa_history_internal_log(LOG_POOL_PROPSET,
4105 			    spa, tx, cr, "%s %lld %s",
4106 			    nvpair_name(elem), intval, spa_name(spa));
4107 		}
4108 	}
4109 
4110 	mutex_exit(&spa->spa_props_lock);
4111 }
4112 
4113 /*
4114  * Sync the specified transaction group.  New blocks may be dirtied as
4115  * part of the process, so we iterate until it converges.
4116  */
4117 void
4118 spa_sync(spa_t *spa, uint64_t txg)
4119 {
4120 	dsl_pool_t *dp = spa->spa_dsl_pool;
4121 	objset_t *mos = spa->spa_meta_objset;
4122 	bplist_t *bpl = &spa->spa_sync_bplist;
4123 	vdev_t *rvd = spa->spa_root_vdev;
4124 	vdev_t *vd;
4125 	dmu_tx_t *tx;
4126 	int dirty_vdevs;
4127 	int error;
4128 
4129 	/*
4130 	 * Lock out configuration changes.
4131 	 */
4132 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4133 
4134 	spa->spa_syncing_txg = txg;
4135 	spa->spa_sync_pass = 0;
4136 
4137 	/*
4138 	 * If there are any pending vdev state changes, convert them
4139 	 * into config changes that go out with this transaction group.
4140 	 */
4141 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4142 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
4143 		/*
4144 		 * We need the write lock here because, for aux vdevs,
4145 		 * calling vdev_config_dirty() modifies sav_config.
4146 		 * This is ugly and will become unnecessary when we
4147 		 * eliminate the aux vdev wart by integrating all vdevs
4148 		 * into the root vdev tree.
4149 		 */
4150 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4151 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4152 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4153 			vdev_state_clean(vd);
4154 			vdev_config_dirty(vd);
4155 		}
4156 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4157 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4158 	}
4159 	spa_config_exit(spa, SCL_STATE, FTAG);
4160 
4161 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4162 
4163 	tx = dmu_tx_create_assigned(dp, txg);
4164 
4165 	/*
4166 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4167 	 * set spa_deflate if we have no raid-z vdevs.
4168 	 */
4169 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4170 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4171 		int i;
4172 
4173 		for (i = 0; i < rvd->vdev_children; i++) {
4174 			vd = rvd->vdev_child[i];
4175 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4176 				break;
4177 		}
4178 		if (i == rvd->vdev_children) {
4179 			spa->spa_deflate = TRUE;
4180 			VERIFY(0 == zap_add(spa->spa_meta_objset,
4181 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4182 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4183 		}
4184 	}
4185 
4186 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4187 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4188 		dsl_pool_create_origin(dp, tx);
4189 
4190 		/* Keeping the origin open increases spa_minref */
4191 		spa->spa_minref += 3;
4192 	}
4193 
4194 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4195 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4196 		dsl_pool_upgrade_clones(dp, tx);
4197 	}
4198 
4199 	/*
4200 	 * If anything has changed in this txg, push the deferred frees
4201 	 * from the previous txg.  If not, leave them alone so that we
4202 	 * don't generate work on an otherwise idle system.
4203 	 */
4204 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4205 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4206 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4207 		spa_sync_deferred_frees(spa, txg);
4208 
4209 	/*
4210 	 * Iterate to convergence.
4211 	 */
4212 	do {
4213 		spa->spa_sync_pass++;
4214 
4215 		spa_sync_config_object(spa, tx);
4216 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4217 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4218 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4219 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4220 		spa_errlog_sync(spa, txg);
4221 		dsl_pool_sync(dp, txg);
4222 
4223 		dirty_vdevs = 0;
4224 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4225 			vdev_sync(vd, txg);
4226 			dirty_vdevs++;
4227 		}
4228 
4229 		bplist_sync(bpl, tx);
4230 	} while (dirty_vdevs);
4231 
4232 	bplist_close(bpl);
4233 
4234 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4235 
4236 	/*
4237 	 * Rewrite the vdev configuration (which includes the uberblock)
4238 	 * to commit the transaction group.
4239 	 *
4240 	 * If there are no dirty vdevs, we sync the uberblock to a few
4241 	 * random top-level vdevs that are known to be visible in the
4242 	 * config cache (see spa_vdev_add() for a complete description).
4243 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4244 	 */
4245 	for (;;) {
4246 		/*
4247 		 * We hold SCL_STATE to prevent vdev open/close/etc.
4248 		 * while we're attempting to write the vdev labels.
4249 		 */
4250 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4251 
4252 		if (list_is_empty(&spa->spa_config_dirty_list)) {
4253 			vdev_t *svd[SPA_DVAS_PER_BP];
4254 			int svdcount = 0;
4255 			int children = rvd->vdev_children;
4256 			int c0 = spa_get_random(children);
4257 
4258 			for (int c = 0; c < children; c++) {
4259 				vd = rvd->vdev_child[(c0 + c) % children];
4260 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4261 					continue;
4262 				svd[svdcount++] = vd;
4263 				if (svdcount == SPA_DVAS_PER_BP)
4264 					break;
4265 			}
4266 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
4267 			if (error != 0)
4268 				error = vdev_config_sync(svd, svdcount, txg,
4269 				    B_TRUE);
4270 		} else {
4271 			error = vdev_config_sync(rvd->vdev_child,
4272 			    rvd->vdev_children, txg, B_FALSE);
4273 			if (error != 0)
4274 				error = vdev_config_sync(rvd->vdev_child,
4275 				    rvd->vdev_children, txg, B_TRUE);
4276 		}
4277 
4278 		spa_config_exit(spa, SCL_STATE, FTAG);
4279 
4280 		if (error == 0)
4281 			break;
4282 		zio_suspend(spa, NULL);
4283 		zio_resume_wait(spa);
4284 	}
4285 	dmu_tx_commit(tx);
4286 
4287 	/*
4288 	 * Clear the dirty config list.
4289 	 */
4290 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4291 		vdev_config_clean(vd);
4292 
4293 	/*
4294 	 * Now that the new config has synced transactionally,
4295 	 * let it become visible to the config cache.
4296 	 */
4297 	if (spa->spa_config_syncing != NULL) {
4298 		spa_config_set(spa, spa->spa_config_syncing);
4299 		spa->spa_config_txg = txg;
4300 		spa->spa_config_syncing = NULL;
4301 	}
4302 
4303 	spa->spa_ubsync = spa->spa_uberblock;
4304 
4305 	/*
4306 	 * Clean up the ZIL records for the synced txg.
4307 	 */
4308 	dsl_pool_zil_clean(dp);
4309 
4310 	/*
4311 	 * Update usable space statistics.
4312 	 */
4313 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4314 		vdev_sync_done(vd, txg);
4315 
4316 	/*
4317 	 * It had better be the case that we didn't dirty anything
4318 	 * since vdev_config_sync().
4319 	 */
4320 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4321 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4322 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4323 	ASSERT(bpl->bpl_queue == NULL);
4324 
4325 	spa_config_exit(spa, SCL_CONFIG, FTAG);
4326 
4327 	/*
4328 	 * If any async tasks have been requested, kick them off.
4329 	 */
4330 	spa_async_dispatch(spa);
4331 }
4332 
4333 /*
4334  * Sync all pools.  We don't want to hold the namespace lock across these
4335  * operations, so we take a reference on the spa_t and drop the lock during the
4336  * sync.
4337  */
4338 void
4339 spa_sync_allpools(void)
4340 {
4341 	spa_t *spa = NULL;
4342 	mutex_enter(&spa_namespace_lock);
4343 	while ((spa = spa_next(spa)) != NULL) {
4344 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4345 			continue;
4346 		spa_open_ref(spa, FTAG);
4347 		mutex_exit(&spa_namespace_lock);
4348 		txg_wait_synced(spa_get_dsl(spa), 0);
4349 		mutex_enter(&spa_namespace_lock);
4350 		spa_close(spa, FTAG);
4351 	}
4352 	mutex_exit(&spa_namespace_lock);
4353 }
4354 
4355 /*
4356  * ==========================================================================
4357  * Miscellaneous routines
4358  * ==========================================================================
4359  */
4360 
4361 /*
4362  * Remove all pools in the system.
4363  */
4364 void
4365 spa_evict_all(void)
4366 {
4367 	spa_t *spa;
4368 
4369 	/*
4370 	 * Remove all cached state.  All pools should be closed now,
4371 	 * so every spa in the AVL tree should be unreferenced.
4372 	 */
4373 	mutex_enter(&spa_namespace_lock);
4374 	while ((spa = spa_next(NULL)) != NULL) {
4375 		/*
4376 		 * Stop async tasks.  The async thread may need to detach
4377 		 * a device that's been replaced, which requires grabbing
4378 		 * spa_namespace_lock, so we must drop it here.
4379 		 */
4380 		spa_open_ref(spa, FTAG);
4381 		mutex_exit(&spa_namespace_lock);
4382 		spa_async_suspend(spa);
4383 		mutex_enter(&spa_namespace_lock);
4384 		spa_close(spa, FTAG);
4385 
4386 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4387 			spa_unload(spa);
4388 			spa_deactivate(spa);
4389 		}
4390 		spa_remove(spa);
4391 	}
4392 	mutex_exit(&spa_namespace_lock);
4393 }
4394 
4395 vdev_t *
4396 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
4397 {
4398 	vdev_t *vd;
4399 	int i;
4400 
4401 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4402 		return (vd);
4403 
4404 	if (aux) {
4405 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4406 			vd = spa->spa_l2cache.sav_vdevs[i];
4407 			if (vd->vdev_guid == guid)
4408 				return (vd);
4409 		}
4410 
4411 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
4412 			vd = spa->spa_spares.sav_vdevs[i];
4413 			if (vd->vdev_guid == guid)
4414 				return (vd);
4415 		}
4416 	}
4417 
4418 	return (NULL);
4419 }
4420 
4421 void
4422 spa_upgrade(spa_t *spa, uint64_t version)
4423 {
4424 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4425 
4426 	/*
4427 	 * This should only be called for a non-faulted pool, and since a
4428 	 * future version would result in an unopenable pool, this shouldn't be
4429 	 * possible.
4430 	 */
4431 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4432 	ASSERT(version >= spa->spa_uberblock.ub_version);
4433 
4434 	spa->spa_uberblock.ub_version = version;
4435 	vdev_config_dirty(spa->spa_root_vdev);
4436 
4437 	spa_config_exit(spa, SCL_ALL, FTAG);
4438 
4439 	txg_wait_synced(spa_get_dsl(spa), 0);
4440 }
4441 
4442 boolean_t
4443 spa_has_spare(spa_t *spa, uint64_t guid)
4444 {
4445 	int i;
4446 	uint64_t spareguid;
4447 	spa_aux_vdev_t *sav = &spa->spa_spares;
4448 
4449 	for (i = 0; i < sav->sav_count; i++)
4450 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4451 			return (B_TRUE);
4452 
4453 	for (i = 0; i < sav->sav_npending; i++) {
4454 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4455 		    &spareguid) == 0 && spareguid == guid)
4456 			return (B_TRUE);
4457 	}
4458 
4459 	return (B_FALSE);
4460 }
4461 
4462 /*
4463  * Check if a pool has an active shared spare device.
4464  * Note: reference count of an active spare is 2, as a spare and as a replace
4465  */
4466 static boolean_t
4467 spa_has_active_shared_spare(spa_t *spa)
4468 {
4469 	int i, refcnt;
4470 	uint64_t pool;
4471 	spa_aux_vdev_t *sav = &spa->spa_spares;
4472 
4473 	for (i = 0; i < sav->sav_count; i++) {
4474 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4475 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4476 		    refcnt > 2)
4477 			return (B_TRUE);
4478 	}
4479 
4480 	return (B_FALSE);
4481 }
4482 
4483 /*
4484  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4485  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4486  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4487  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4488  * or zdb as real changes.
4489  */
4490 void
4491 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4492 {
4493 #ifdef _KERNEL
4494 	sysevent_t		*ev;
4495 	sysevent_attr_list_t	*attr = NULL;
4496 	sysevent_value_t	value;
4497 	sysevent_id_t		eid;
4498 
4499 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4500 	    SE_SLEEP);
4501 
4502 	value.value_type = SE_DATA_TYPE_STRING;
4503 	value.value.sv_string = spa_name(spa);
4504 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4505 		goto done;
4506 
4507 	value.value_type = SE_DATA_TYPE_UINT64;
4508 	value.value.sv_uint64 = spa_guid(spa);
4509 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4510 		goto done;
4511 
4512 	if (vd) {
4513 		value.value_type = SE_DATA_TYPE_UINT64;
4514 		value.value.sv_uint64 = vd->vdev_guid;
4515 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4516 		    SE_SLEEP) != 0)
4517 			goto done;
4518 
4519 		if (vd->vdev_path) {
4520 			value.value_type = SE_DATA_TYPE_STRING;
4521 			value.value.sv_string = vd->vdev_path;
4522 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4523 			    &value, SE_SLEEP) != 0)
4524 				goto done;
4525 		}
4526 	}
4527 
4528 	if (sysevent_attach_attributes(ev, attr) != 0)
4529 		goto done;
4530 	attr = NULL;
4531 
4532 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4533 
4534 done:
4535 	if (attr)
4536 		sysevent_free_attr(attr);
4537 	sysevent_free(ev);
4538 #endif
4539 }
4540