xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision a33595abb743c413156e63834db73f4df0fdc485)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
26  */
27 
28 /*
29  * SPA: Storage Pool Allocator
30  *
31  * This file contains all the routines used when modifying on-disk SPA state.
32  * This includes opening, importing, destroying, exporting a pool, and syncing a
33  * pool.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69 
70 #ifdef	_KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif	/* _KERNEL */
78 
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81 
82 /*
83  * The interval, in seconds, at which failed configuration cache file writes
84  * should be retried.
85  */
86 static int zfs_ccw_retry_interval = 300;
87 
88 typedef enum zti_modes {
89 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
90 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
91 	ZTI_MODE_NULL,			/* don't create a taskq */
92 	ZTI_NMODES
93 } zti_modes_t;
94 
95 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
96 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
97 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
98 
99 #define	ZTI_N(n)	ZTI_P(n, 1)
100 #define	ZTI_ONE		ZTI_N(1)
101 
102 typedef struct zio_taskq_info {
103 	zti_modes_t zti_mode;
104 	uint_t zti_value;
105 	uint_t zti_count;
106 } zio_taskq_info_t;
107 
108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 	"issue", "issue_high", "intr", "intr_high"
110 };
111 
112 /*
113  * This table defines the taskq settings for each ZFS I/O type. When
114  * initializing a pool, we use this table to create an appropriately sized
115  * taskq. Some operations are low volume and therefore have a small, static
116  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117  * macros. Other operations process a large amount of data; the ZTI_BATCH
118  * macro causes us to create a taskq oriented for throughput. Some operations
119  * are so high frequency and short-lived that the taskq itself can become a a
120  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121  * additional degree of parallelism specified by the number of threads per-
122  * taskq and the number of taskqs; when dispatching an event in this case, the
123  * particular taskq is chosen at random.
124  *
125  * The different taskq priorities are to handle the different contexts (issue
126  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127  * need to be handled with minimum delay.
128  */
129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
131 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
132 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
133 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
134 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
135 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
136 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
137 };
138 
139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144     char **ereport);
145 static void spa_vdev_resilver_done(spa_t *spa);
146 
147 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
148 id_t		zio_taskq_psrset_bind = PS_NONE;
149 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
150 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
151 
152 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
153 extern int	zfs_sync_pass_deferred_free;
154 
155 /*
156  * This (illegal) pool name is used when temporarily importing a spa_t in order
157  * to get the vdev stats associated with the imported devices.
158  */
159 #define	TRYIMPORT_NAME	"$import"
160 
161 /*
162  * ==========================================================================
163  * SPA properties routines
164  * ==========================================================================
165  */
166 
167 /*
168  * Add a (source=src, propname=propval) list to an nvlist.
169  */
170 static void
171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172     uint64_t intval, zprop_source_t src)
173 {
174 	const char *propname = zpool_prop_to_name(prop);
175 	nvlist_t *propval;
176 
177 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179 
180 	if (strval != NULL)
181 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 	else
183 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184 
185 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 	nvlist_free(propval);
187 }
188 
189 /*
190  * Get property values from the spa configuration.
191  */
192 static void
193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 {
195 	vdev_t *rvd = spa->spa_root_vdev;
196 	dsl_pool_t *pool = spa->spa_dsl_pool;
197 	uint64_t size, alloc, cap, version;
198 	zprop_source_t src = ZPROP_SRC_NONE;
199 	spa_config_dirent_t *dp;
200 	metaslab_class_t *mc = spa_normal_class(spa);
201 
202 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
203 
204 	if (rvd != NULL) {
205 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
206 		size = metaslab_class_get_space(spa_normal_class(spa));
207 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
208 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
211 		    size - alloc, src);
212 
213 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
214 		    metaslab_class_fragmentation(mc), src);
215 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
216 		    metaslab_class_expandable_space(mc), src);
217 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
218 		    (spa_mode(spa) == FREAD), src);
219 
220 		cap = (size == 0) ? 0 : (alloc * 100 / size);
221 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
222 
223 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
224 		    ddt_get_pool_dedup_ratio(spa), src);
225 
226 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
227 		    rvd->vdev_state, src);
228 
229 		version = spa_version(spa);
230 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
231 			src = ZPROP_SRC_DEFAULT;
232 		else
233 			src = ZPROP_SRC_LOCAL;
234 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
235 	}
236 
237 	if (pool != NULL) {
238 		/*
239 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
240 		 * when opening pools before this version freedir will be NULL.
241 		 */
242 		if (pool->dp_free_dir != NULL) {
243 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
244 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
245 			    src);
246 		} else {
247 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
248 			    NULL, 0, src);
249 		}
250 
251 		if (pool->dp_leak_dir != NULL) {
252 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
253 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
254 			    src);
255 		} else {
256 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
257 			    NULL, 0, src);
258 		}
259 	}
260 
261 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
262 
263 	if (spa->spa_comment != NULL) {
264 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
265 		    0, ZPROP_SRC_LOCAL);
266 	}
267 
268 	if (spa->spa_root != NULL)
269 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
270 		    0, ZPROP_SRC_LOCAL);
271 
272 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
273 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
274 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
275 	} else {
276 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
277 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
278 	}
279 
280 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
281 		if (dp->scd_path == NULL) {
282 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
283 			    "none", 0, ZPROP_SRC_LOCAL);
284 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
285 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
286 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
287 		}
288 	}
289 }
290 
291 /*
292  * Get zpool property values.
293  */
294 int
295 spa_prop_get(spa_t *spa, nvlist_t **nvp)
296 {
297 	objset_t *mos = spa->spa_meta_objset;
298 	zap_cursor_t zc;
299 	zap_attribute_t za;
300 	int err;
301 
302 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
303 
304 	mutex_enter(&spa->spa_props_lock);
305 
306 	/*
307 	 * Get properties from the spa config.
308 	 */
309 	spa_prop_get_config(spa, nvp);
310 
311 	/* If no pool property object, no more prop to get. */
312 	if (mos == NULL || spa->spa_pool_props_object == 0) {
313 		mutex_exit(&spa->spa_props_lock);
314 		return (0);
315 	}
316 
317 	/*
318 	 * Get properties from the MOS pool property object.
319 	 */
320 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
321 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
322 	    zap_cursor_advance(&zc)) {
323 		uint64_t intval = 0;
324 		char *strval = NULL;
325 		zprop_source_t src = ZPROP_SRC_DEFAULT;
326 		zpool_prop_t prop;
327 
328 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
329 			continue;
330 
331 		switch (za.za_integer_length) {
332 		case 8:
333 			/* integer property */
334 			if (za.za_first_integer !=
335 			    zpool_prop_default_numeric(prop))
336 				src = ZPROP_SRC_LOCAL;
337 
338 			if (prop == ZPOOL_PROP_BOOTFS) {
339 				dsl_pool_t *dp;
340 				dsl_dataset_t *ds = NULL;
341 
342 				dp = spa_get_dsl(spa);
343 				dsl_pool_config_enter(dp, FTAG);
344 				if (err = dsl_dataset_hold_obj(dp,
345 				    za.za_first_integer, FTAG, &ds)) {
346 					dsl_pool_config_exit(dp, FTAG);
347 					break;
348 				}
349 
350 				strval = kmem_alloc(
351 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
352 				    KM_SLEEP);
353 				dsl_dataset_name(ds, strval);
354 				dsl_dataset_rele(ds, FTAG);
355 				dsl_pool_config_exit(dp, FTAG);
356 			} else {
357 				strval = NULL;
358 				intval = za.za_first_integer;
359 			}
360 
361 			spa_prop_add_list(*nvp, prop, strval, intval, src);
362 
363 			if (strval != NULL)
364 				kmem_free(strval,
365 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
366 
367 			break;
368 
369 		case 1:
370 			/* string property */
371 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
372 			err = zap_lookup(mos, spa->spa_pool_props_object,
373 			    za.za_name, 1, za.za_num_integers, strval);
374 			if (err) {
375 				kmem_free(strval, za.za_num_integers);
376 				break;
377 			}
378 			spa_prop_add_list(*nvp, prop, strval, 0, src);
379 			kmem_free(strval, za.za_num_integers);
380 			break;
381 
382 		default:
383 			break;
384 		}
385 	}
386 	zap_cursor_fini(&zc);
387 	mutex_exit(&spa->spa_props_lock);
388 out:
389 	if (err && err != ENOENT) {
390 		nvlist_free(*nvp);
391 		*nvp = NULL;
392 		return (err);
393 	}
394 
395 	return (0);
396 }
397 
398 /*
399  * Validate the given pool properties nvlist and modify the list
400  * for the property values to be set.
401  */
402 static int
403 spa_prop_validate(spa_t *spa, nvlist_t *props)
404 {
405 	nvpair_t *elem;
406 	int error = 0, reset_bootfs = 0;
407 	uint64_t objnum = 0;
408 	boolean_t has_feature = B_FALSE;
409 
410 	elem = NULL;
411 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
412 		uint64_t intval;
413 		char *strval, *slash, *check, *fname;
414 		const char *propname = nvpair_name(elem);
415 		zpool_prop_t prop = zpool_name_to_prop(propname);
416 
417 		switch (prop) {
418 		case ZPROP_INVAL:
419 			if (!zpool_prop_feature(propname)) {
420 				error = SET_ERROR(EINVAL);
421 				break;
422 			}
423 
424 			/*
425 			 * Sanitize the input.
426 			 */
427 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
428 				error = SET_ERROR(EINVAL);
429 				break;
430 			}
431 
432 			if (nvpair_value_uint64(elem, &intval) != 0) {
433 				error = SET_ERROR(EINVAL);
434 				break;
435 			}
436 
437 			if (intval != 0) {
438 				error = SET_ERROR(EINVAL);
439 				break;
440 			}
441 
442 			fname = strchr(propname, '@') + 1;
443 			if (zfeature_lookup_name(fname, NULL) != 0) {
444 				error = SET_ERROR(EINVAL);
445 				break;
446 			}
447 
448 			has_feature = B_TRUE;
449 			break;
450 
451 		case ZPOOL_PROP_VERSION:
452 			error = nvpair_value_uint64(elem, &intval);
453 			if (!error &&
454 			    (intval < spa_version(spa) ||
455 			    intval > SPA_VERSION_BEFORE_FEATURES ||
456 			    has_feature))
457 				error = SET_ERROR(EINVAL);
458 			break;
459 
460 		case ZPOOL_PROP_DELEGATION:
461 		case ZPOOL_PROP_AUTOREPLACE:
462 		case ZPOOL_PROP_LISTSNAPS:
463 		case ZPOOL_PROP_AUTOEXPAND:
464 			error = nvpair_value_uint64(elem, &intval);
465 			if (!error && intval > 1)
466 				error = SET_ERROR(EINVAL);
467 			break;
468 
469 		case ZPOOL_PROP_BOOTFS:
470 			/*
471 			 * If the pool version is less than SPA_VERSION_BOOTFS,
472 			 * or the pool is still being created (version == 0),
473 			 * the bootfs property cannot be set.
474 			 */
475 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
476 				error = SET_ERROR(ENOTSUP);
477 				break;
478 			}
479 
480 			/*
481 			 * Make sure the vdev config is bootable
482 			 */
483 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
484 				error = SET_ERROR(ENOTSUP);
485 				break;
486 			}
487 
488 			reset_bootfs = 1;
489 
490 			error = nvpair_value_string(elem, &strval);
491 
492 			if (!error) {
493 				objset_t *os;
494 				uint64_t propval;
495 
496 				if (strval == NULL || strval[0] == '\0') {
497 					objnum = zpool_prop_default_numeric(
498 					    ZPOOL_PROP_BOOTFS);
499 					break;
500 				}
501 
502 				if (error = dmu_objset_hold(strval, FTAG, &os))
503 					break;
504 
505 				/*
506 				 * Must be ZPL, and its property settings
507 				 * must be supported by GRUB (compression
508 				 * is not gzip, and large blocks are not used).
509 				 */
510 
511 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
512 					error = SET_ERROR(ENOTSUP);
513 				} else if ((error =
514 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
515 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
516 				    &propval)) == 0 &&
517 				    !BOOTFS_COMPRESS_VALID(propval)) {
518 					error = SET_ERROR(ENOTSUP);
519 				} else if ((error =
520 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
521 				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
522 				    &propval)) == 0 &&
523 				    propval > SPA_OLD_MAXBLOCKSIZE) {
524 					error = SET_ERROR(ENOTSUP);
525 				} else {
526 					objnum = dmu_objset_id(os);
527 				}
528 				dmu_objset_rele(os, FTAG);
529 			}
530 			break;
531 
532 		case ZPOOL_PROP_FAILUREMODE:
533 			error = nvpair_value_uint64(elem, &intval);
534 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
535 			    intval > ZIO_FAILURE_MODE_PANIC))
536 				error = SET_ERROR(EINVAL);
537 
538 			/*
539 			 * This is a special case which only occurs when
540 			 * the pool has completely failed. This allows
541 			 * the user to change the in-core failmode property
542 			 * without syncing it out to disk (I/Os might
543 			 * currently be blocked). We do this by returning
544 			 * EIO to the caller (spa_prop_set) to trick it
545 			 * into thinking we encountered a property validation
546 			 * error.
547 			 */
548 			if (!error && spa_suspended(spa)) {
549 				spa->spa_failmode = intval;
550 				error = SET_ERROR(EIO);
551 			}
552 			break;
553 
554 		case ZPOOL_PROP_CACHEFILE:
555 			if ((error = nvpair_value_string(elem, &strval)) != 0)
556 				break;
557 
558 			if (strval[0] == '\0')
559 				break;
560 
561 			if (strcmp(strval, "none") == 0)
562 				break;
563 
564 			if (strval[0] != '/') {
565 				error = SET_ERROR(EINVAL);
566 				break;
567 			}
568 
569 			slash = strrchr(strval, '/');
570 			ASSERT(slash != NULL);
571 
572 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
573 			    strcmp(slash, "/..") == 0)
574 				error = SET_ERROR(EINVAL);
575 			break;
576 
577 		case ZPOOL_PROP_COMMENT:
578 			if ((error = nvpair_value_string(elem, &strval)) != 0)
579 				break;
580 			for (check = strval; *check != '\0'; check++) {
581 				/*
582 				 * The kernel doesn't have an easy isprint()
583 				 * check.  For this kernel check, we merely
584 				 * check ASCII apart from DEL.  Fix this if
585 				 * there is an easy-to-use kernel isprint().
586 				 */
587 				if (*check >= 0x7f) {
588 					error = SET_ERROR(EINVAL);
589 					break;
590 				}
591 				check++;
592 			}
593 			if (strlen(strval) > ZPROP_MAX_COMMENT)
594 				error = E2BIG;
595 			break;
596 
597 		case ZPOOL_PROP_DEDUPDITTO:
598 			if (spa_version(spa) < SPA_VERSION_DEDUP)
599 				error = SET_ERROR(ENOTSUP);
600 			else
601 				error = nvpair_value_uint64(elem, &intval);
602 			if (error == 0 &&
603 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
604 				error = SET_ERROR(EINVAL);
605 			break;
606 		}
607 
608 		if (error)
609 			break;
610 	}
611 
612 	if (!error && reset_bootfs) {
613 		error = nvlist_remove(props,
614 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
615 
616 		if (!error) {
617 			error = nvlist_add_uint64(props,
618 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
619 		}
620 	}
621 
622 	return (error);
623 }
624 
625 void
626 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
627 {
628 	char *cachefile;
629 	spa_config_dirent_t *dp;
630 
631 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
632 	    &cachefile) != 0)
633 		return;
634 
635 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
636 	    KM_SLEEP);
637 
638 	if (cachefile[0] == '\0')
639 		dp->scd_path = spa_strdup(spa_config_path);
640 	else if (strcmp(cachefile, "none") == 0)
641 		dp->scd_path = NULL;
642 	else
643 		dp->scd_path = spa_strdup(cachefile);
644 
645 	list_insert_head(&spa->spa_config_list, dp);
646 	if (need_sync)
647 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
648 }
649 
650 int
651 spa_prop_set(spa_t *spa, nvlist_t *nvp)
652 {
653 	int error;
654 	nvpair_t *elem = NULL;
655 	boolean_t need_sync = B_FALSE;
656 
657 	if ((error = spa_prop_validate(spa, nvp)) != 0)
658 		return (error);
659 
660 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
661 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
662 
663 		if (prop == ZPOOL_PROP_CACHEFILE ||
664 		    prop == ZPOOL_PROP_ALTROOT ||
665 		    prop == ZPOOL_PROP_READONLY)
666 			continue;
667 
668 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
669 			uint64_t ver;
670 
671 			if (prop == ZPOOL_PROP_VERSION) {
672 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
673 			} else {
674 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
675 				ver = SPA_VERSION_FEATURES;
676 				need_sync = B_TRUE;
677 			}
678 
679 			/* Save time if the version is already set. */
680 			if (ver == spa_version(spa))
681 				continue;
682 
683 			/*
684 			 * In addition to the pool directory object, we might
685 			 * create the pool properties object, the features for
686 			 * read object, the features for write object, or the
687 			 * feature descriptions object.
688 			 */
689 			error = dsl_sync_task(spa->spa_name, NULL,
690 			    spa_sync_version, &ver,
691 			    6, ZFS_SPACE_CHECK_RESERVED);
692 			if (error)
693 				return (error);
694 			continue;
695 		}
696 
697 		need_sync = B_TRUE;
698 		break;
699 	}
700 
701 	if (need_sync) {
702 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
703 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
704 	}
705 
706 	return (0);
707 }
708 
709 /*
710  * If the bootfs property value is dsobj, clear it.
711  */
712 void
713 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
714 {
715 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
716 		VERIFY(zap_remove(spa->spa_meta_objset,
717 		    spa->spa_pool_props_object,
718 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
719 		spa->spa_bootfs = 0;
720 	}
721 }
722 
723 /*ARGSUSED*/
724 static int
725 spa_change_guid_check(void *arg, dmu_tx_t *tx)
726 {
727 	uint64_t *newguid = arg;
728 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
729 	vdev_t *rvd = spa->spa_root_vdev;
730 	uint64_t vdev_state;
731 
732 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
733 	vdev_state = rvd->vdev_state;
734 	spa_config_exit(spa, SCL_STATE, FTAG);
735 
736 	if (vdev_state != VDEV_STATE_HEALTHY)
737 		return (SET_ERROR(ENXIO));
738 
739 	ASSERT3U(spa_guid(spa), !=, *newguid);
740 
741 	return (0);
742 }
743 
744 static void
745 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
746 {
747 	uint64_t *newguid = arg;
748 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
749 	uint64_t oldguid;
750 	vdev_t *rvd = spa->spa_root_vdev;
751 
752 	oldguid = spa_guid(spa);
753 
754 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
755 	rvd->vdev_guid = *newguid;
756 	rvd->vdev_guid_sum += (*newguid - oldguid);
757 	vdev_config_dirty(rvd);
758 	spa_config_exit(spa, SCL_STATE, FTAG);
759 
760 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
761 	    oldguid, *newguid);
762 }
763 
764 /*
765  * Change the GUID for the pool.  This is done so that we can later
766  * re-import a pool built from a clone of our own vdevs.  We will modify
767  * the root vdev's guid, our own pool guid, and then mark all of our
768  * vdevs dirty.  Note that we must make sure that all our vdevs are
769  * online when we do this, or else any vdevs that weren't present
770  * would be orphaned from our pool.  We are also going to issue a
771  * sysevent to update any watchers.
772  */
773 int
774 spa_change_guid(spa_t *spa)
775 {
776 	int error;
777 	uint64_t guid;
778 
779 	mutex_enter(&spa->spa_vdev_top_lock);
780 	mutex_enter(&spa_namespace_lock);
781 	guid = spa_generate_guid(NULL);
782 
783 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
784 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
785 
786 	if (error == 0) {
787 		spa_config_sync(spa, B_FALSE, B_TRUE);
788 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
789 	}
790 
791 	mutex_exit(&spa_namespace_lock);
792 	mutex_exit(&spa->spa_vdev_top_lock);
793 
794 	return (error);
795 }
796 
797 /*
798  * ==========================================================================
799  * SPA state manipulation (open/create/destroy/import/export)
800  * ==========================================================================
801  */
802 
803 static int
804 spa_error_entry_compare(const void *a, const void *b)
805 {
806 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
807 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
808 	int ret;
809 
810 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
811 	    sizeof (zbookmark_phys_t));
812 
813 	if (ret < 0)
814 		return (-1);
815 	else if (ret > 0)
816 		return (1);
817 	else
818 		return (0);
819 }
820 
821 /*
822  * Utility function which retrieves copies of the current logs and
823  * re-initializes them in the process.
824  */
825 void
826 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
827 {
828 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
829 
830 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
831 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
832 
833 	avl_create(&spa->spa_errlist_scrub,
834 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
835 	    offsetof(spa_error_entry_t, se_avl));
836 	avl_create(&spa->spa_errlist_last,
837 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
838 	    offsetof(spa_error_entry_t, se_avl));
839 }
840 
841 static void
842 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
843 {
844 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
845 	enum zti_modes mode = ztip->zti_mode;
846 	uint_t value = ztip->zti_value;
847 	uint_t count = ztip->zti_count;
848 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
849 	char name[32];
850 	uint_t flags = 0;
851 	boolean_t batch = B_FALSE;
852 
853 	if (mode == ZTI_MODE_NULL) {
854 		tqs->stqs_count = 0;
855 		tqs->stqs_taskq = NULL;
856 		return;
857 	}
858 
859 	ASSERT3U(count, >, 0);
860 
861 	tqs->stqs_count = count;
862 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
863 
864 	switch (mode) {
865 	case ZTI_MODE_FIXED:
866 		ASSERT3U(value, >=, 1);
867 		value = MAX(value, 1);
868 		break;
869 
870 	case ZTI_MODE_BATCH:
871 		batch = B_TRUE;
872 		flags |= TASKQ_THREADS_CPU_PCT;
873 		value = zio_taskq_batch_pct;
874 		break;
875 
876 	default:
877 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
878 		    "spa_activate()",
879 		    zio_type_name[t], zio_taskq_types[q], mode, value);
880 		break;
881 	}
882 
883 	for (uint_t i = 0; i < count; i++) {
884 		taskq_t *tq;
885 
886 		if (count > 1) {
887 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
888 			    zio_type_name[t], zio_taskq_types[q], i);
889 		} else {
890 			(void) snprintf(name, sizeof (name), "%s_%s",
891 			    zio_type_name[t], zio_taskq_types[q]);
892 		}
893 
894 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
895 			if (batch)
896 				flags |= TASKQ_DC_BATCH;
897 
898 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
899 			    spa->spa_proc, zio_taskq_basedc, flags);
900 		} else {
901 			pri_t pri = maxclsyspri;
902 			/*
903 			 * The write issue taskq can be extremely CPU
904 			 * intensive.  Run it at slightly lower priority
905 			 * than the other taskqs.
906 			 */
907 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
908 				pri--;
909 
910 			tq = taskq_create_proc(name, value, pri, 50,
911 			    INT_MAX, spa->spa_proc, flags);
912 		}
913 
914 		tqs->stqs_taskq[i] = tq;
915 	}
916 }
917 
918 static void
919 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
920 {
921 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
922 
923 	if (tqs->stqs_taskq == NULL) {
924 		ASSERT0(tqs->stqs_count);
925 		return;
926 	}
927 
928 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
929 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
930 		taskq_destroy(tqs->stqs_taskq[i]);
931 	}
932 
933 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
934 	tqs->stqs_taskq = NULL;
935 }
936 
937 /*
938  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
939  * Note that a type may have multiple discrete taskqs to avoid lock contention
940  * on the taskq itself. In that case we choose which taskq at random by using
941  * the low bits of gethrtime().
942  */
943 void
944 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
945     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
946 {
947 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948 	taskq_t *tq;
949 
950 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
951 	ASSERT3U(tqs->stqs_count, !=, 0);
952 
953 	if (tqs->stqs_count == 1) {
954 		tq = tqs->stqs_taskq[0];
955 	} else {
956 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
957 	}
958 
959 	taskq_dispatch_ent(tq, func, arg, flags, ent);
960 }
961 
962 static void
963 spa_create_zio_taskqs(spa_t *spa)
964 {
965 	for (int t = 0; t < ZIO_TYPES; t++) {
966 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
967 			spa_taskqs_init(spa, t, q);
968 		}
969 	}
970 }
971 
972 #ifdef _KERNEL
973 static void
974 spa_thread(void *arg)
975 {
976 	callb_cpr_t cprinfo;
977 
978 	spa_t *spa = arg;
979 	user_t *pu = PTOU(curproc);
980 
981 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
982 	    spa->spa_name);
983 
984 	ASSERT(curproc != &p0);
985 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
986 	    "zpool-%s", spa->spa_name);
987 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
988 
989 	/* bind this thread to the requested psrset */
990 	if (zio_taskq_psrset_bind != PS_NONE) {
991 		pool_lock();
992 		mutex_enter(&cpu_lock);
993 		mutex_enter(&pidlock);
994 		mutex_enter(&curproc->p_lock);
995 
996 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
997 		    0, NULL, NULL) == 0)  {
998 			curthread->t_bind_pset = zio_taskq_psrset_bind;
999 		} else {
1000 			cmn_err(CE_WARN,
1001 			    "Couldn't bind process for zfs pool \"%s\" to "
1002 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1003 		}
1004 
1005 		mutex_exit(&curproc->p_lock);
1006 		mutex_exit(&pidlock);
1007 		mutex_exit(&cpu_lock);
1008 		pool_unlock();
1009 	}
1010 
1011 	if (zio_taskq_sysdc) {
1012 		sysdc_thread_enter(curthread, 100, 0);
1013 	}
1014 
1015 	spa->spa_proc = curproc;
1016 	spa->spa_did = curthread->t_did;
1017 
1018 	spa_create_zio_taskqs(spa);
1019 
1020 	mutex_enter(&spa->spa_proc_lock);
1021 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1022 
1023 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1024 	cv_broadcast(&spa->spa_proc_cv);
1025 
1026 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1027 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1028 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1029 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1030 
1031 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1032 	spa->spa_proc_state = SPA_PROC_GONE;
1033 	spa->spa_proc = &p0;
1034 	cv_broadcast(&spa->spa_proc_cv);
1035 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1036 
1037 	mutex_enter(&curproc->p_lock);
1038 	lwp_exit();
1039 }
1040 #endif
1041 
1042 /*
1043  * Activate an uninitialized pool.
1044  */
1045 static void
1046 spa_activate(spa_t *spa, int mode)
1047 {
1048 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1049 
1050 	spa->spa_state = POOL_STATE_ACTIVE;
1051 	spa->spa_mode = mode;
1052 
1053 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1054 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1055 
1056 	/* Try to create a covering process */
1057 	mutex_enter(&spa->spa_proc_lock);
1058 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1059 	ASSERT(spa->spa_proc == &p0);
1060 	spa->spa_did = 0;
1061 
1062 	/* Only create a process if we're going to be around a while. */
1063 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1064 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1065 		    NULL, 0) == 0) {
1066 			spa->spa_proc_state = SPA_PROC_CREATED;
1067 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1068 				cv_wait(&spa->spa_proc_cv,
1069 				    &spa->spa_proc_lock);
1070 			}
1071 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1072 			ASSERT(spa->spa_proc != &p0);
1073 			ASSERT(spa->spa_did != 0);
1074 		} else {
1075 #ifdef _KERNEL
1076 			cmn_err(CE_WARN,
1077 			    "Couldn't create process for zfs pool \"%s\"\n",
1078 			    spa->spa_name);
1079 #endif
1080 		}
1081 	}
1082 	mutex_exit(&spa->spa_proc_lock);
1083 
1084 	/* If we didn't create a process, we need to create our taskqs. */
1085 	if (spa->spa_proc == &p0) {
1086 		spa_create_zio_taskqs(spa);
1087 	}
1088 
1089 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1090 	    offsetof(vdev_t, vdev_config_dirty_node));
1091 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1092 	    offsetof(vdev_t, vdev_state_dirty_node));
1093 
1094 	txg_list_create(&spa->spa_vdev_txg_list,
1095 	    offsetof(struct vdev, vdev_txg_node));
1096 
1097 	avl_create(&spa->spa_errlist_scrub,
1098 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1099 	    offsetof(spa_error_entry_t, se_avl));
1100 	avl_create(&spa->spa_errlist_last,
1101 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1102 	    offsetof(spa_error_entry_t, se_avl));
1103 }
1104 
1105 /*
1106  * Opposite of spa_activate().
1107  */
1108 static void
1109 spa_deactivate(spa_t *spa)
1110 {
1111 	ASSERT(spa->spa_sync_on == B_FALSE);
1112 	ASSERT(spa->spa_dsl_pool == NULL);
1113 	ASSERT(spa->spa_root_vdev == NULL);
1114 	ASSERT(spa->spa_async_zio_root == NULL);
1115 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1116 
1117 	txg_list_destroy(&spa->spa_vdev_txg_list);
1118 
1119 	list_destroy(&spa->spa_config_dirty_list);
1120 	list_destroy(&spa->spa_state_dirty_list);
1121 
1122 	for (int t = 0; t < ZIO_TYPES; t++) {
1123 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1124 			spa_taskqs_fini(spa, t, q);
1125 		}
1126 	}
1127 
1128 	metaslab_class_destroy(spa->spa_normal_class);
1129 	spa->spa_normal_class = NULL;
1130 
1131 	metaslab_class_destroy(spa->spa_log_class);
1132 	spa->spa_log_class = NULL;
1133 
1134 	/*
1135 	 * If this was part of an import or the open otherwise failed, we may
1136 	 * still have errors left in the queues.  Empty them just in case.
1137 	 */
1138 	spa_errlog_drain(spa);
1139 
1140 	avl_destroy(&spa->spa_errlist_scrub);
1141 	avl_destroy(&spa->spa_errlist_last);
1142 
1143 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1144 
1145 	mutex_enter(&spa->spa_proc_lock);
1146 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1147 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1148 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1149 		cv_broadcast(&spa->spa_proc_cv);
1150 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1151 			ASSERT(spa->spa_proc != &p0);
1152 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1153 		}
1154 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1155 		spa->spa_proc_state = SPA_PROC_NONE;
1156 	}
1157 	ASSERT(spa->spa_proc == &p0);
1158 	mutex_exit(&spa->spa_proc_lock);
1159 
1160 	/*
1161 	 * We want to make sure spa_thread() has actually exited the ZFS
1162 	 * module, so that the module can't be unloaded out from underneath
1163 	 * it.
1164 	 */
1165 	if (spa->spa_did != 0) {
1166 		thread_join(spa->spa_did);
1167 		spa->spa_did = 0;
1168 	}
1169 }
1170 
1171 /*
1172  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1173  * will create all the necessary vdevs in the appropriate layout, with each vdev
1174  * in the CLOSED state.  This will prep the pool before open/creation/import.
1175  * All vdev validation is done by the vdev_alloc() routine.
1176  */
1177 static int
1178 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1179     uint_t id, int atype)
1180 {
1181 	nvlist_t **child;
1182 	uint_t children;
1183 	int error;
1184 
1185 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1186 		return (error);
1187 
1188 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1189 		return (0);
1190 
1191 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1192 	    &child, &children);
1193 
1194 	if (error == ENOENT)
1195 		return (0);
1196 
1197 	if (error) {
1198 		vdev_free(*vdp);
1199 		*vdp = NULL;
1200 		return (SET_ERROR(EINVAL));
1201 	}
1202 
1203 	for (int c = 0; c < children; c++) {
1204 		vdev_t *vd;
1205 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1206 		    atype)) != 0) {
1207 			vdev_free(*vdp);
1208 			*vdp = NULL;
1209 			return (error);
1210 		}
1211 	}
1212 
1213 	ASSERT(*vdp != NULL);
1214 
1215 	return (0);
1216 }
1217 
1218 /*
1219  * Opposite of spa_load().
1220  */
1221 static void
1222 spa_unload(spa_t *spa)
1223 {
1224 	int i;
1225 
1226 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1227 
1228 	/*
1229 	 * Stop async tasks.
1230 	 */
1231 	spa_async_suspend(spa);
1232 
1233 	/*
1234 	 * Stop syncing.
1235 	 */
1236 	if (spa->spa_sync_on) {
1237 		txg_sync_stop(spa->spa_dsl_pool);
1238 		spa->spa_sync_on = B_FALSE;
1239 	}
1240 
1241 	/*
1242 	 * Wait for any outstanding async I/O to complete.
1243 	 */
1244 	if (spa->spa_async_zio_root != NULL) {
1245 		for (int i = 0; i < max_ncpus; i++)
1246 			(void) zio_wait(spa->spa_async_zio_root[i]);
1247 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1248 		spa->spa_async_zio_root = NULL;
1249 	}
1250 
1251 	bpobj_close(&spa->spa_deferred_bpobj);
1252 
1253 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1254 
1255 	/*
1256 	 * Close all vdevs.
1257 	 */
1258 	if (spa->spa_root_vdev)
1259 		vdev_free(spa->spa_root_vdev);
1260 	ASSERT(spa->spa_root_vdev == NULL);
1261 
1262 	/*
1263 	 * Close the dsl pool.
1264 	 */
1265 	if (spa->spa_dsl_pool) {
1266 		dsl_pool_close(spa->spa_dsl_pool);
1267 		spa->spa_dsl_pool = NULL;
1268 		spa->spa_meta_objset = NULL;
1269 	}
1270 
1271 	ddt_unload(spa);
1272 
1273 
1274 	/*
1275 	 * Drop and purge level 2 cache
1276 	 */
1277 	spa_l2cache_drop(spa);
1278 
1279 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1280 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1281 	if (spa->spa_spares.sav_vdevs) {
1282 		kmem_free(spa->spa_spares.sav_vdevs,
1283 		    spa->spa_spares.sav_count * sizeof (void *));
1284 		spa->spa_spares.sav_vdevs = NULL;
1285 	}
1286 	if (spa->spa_spares.sav_config) {
1287 		nvlist_free(spa->spa_spares.sav_config);
1288 		spa->spa_spares.sav_config = NULL;
1289 	}
1290 	spa->spa_spares.sav_count = 0;
1291 
1292 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1293 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1294 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1295 	}
1296 	if (spa->spa_l2cache.sav_vdevs) {
1297 		kmem_free(spa->spa_l2cache.sav_vdevs,
1298 		    spa->spa_l2cache.sav_count * sizeof (void *));
1299 		spa->spa_l2cache.sav_vdevs = NULL;
1300 	}
1301 	if (spa->spa_l2cache.sav_config) {
1302 		nvlist_free(spa->spa_l2cache.sav_config);
1303 		spa->spa_l2cache.sav_config = NULL;
1304 	}
1305 	spa->spa_l2cache.sav_count = 0;
1306 
1307 	spa->spa_async_suspended = 0;
1308 
1309 	if (spa->spa_comment != NULL) {
1310 		spa_strfree(spa->spa_comment);
1311 		spa->spa_comment = NULL;
1312 	}
1313 
1314 	spa_config_exit(spa, SCL_ALL, FTAG);
1315 }
1316 
1317 /*
1318  * Load (or re-load) the current list of vdevs describing the active spares for
1319  * this pool.  When this is called, we have some form of basic information in
1320  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1321  * then re-generate a more complete list including status information.
1322  */
1323 static void
1324 spa_load_spares(spa_t *spa)
1325 {
1326 	nvlist_t **spares;
1327 	uint_t nspares;
1328 	int i;
1329 	vdev_t *vd, *tvd;
1330 
1331 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1332 
1333 	/*
1334 	 * First, close and free any existing spare vdevs.
1335 	 */
1336 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1337 		vd = spa->spa_spares.sav_vdevs[i];
1338 
1339 		/* Undo the call to spa_activate() below */
1340 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1341 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1342 			spa_spare_remove(tvd);
1343 		vdev_close(vd);
1344 		vdev_free(vd);
1345 	}
1346 
1347 	if (spa->spa_spares.sav_vdevs)
1348 		kmem_free(spa->spa_spares.sav_vdevs,
1349 		    spa->spa_spares.sav_count * sizeof (void *));
1350 
1351 	if (spa->spa_spares.sav_config == NULL)
1352 		nspares = 0;
1353 	else
1354 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1355 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1356 
1357 	spa->spa_spares.sav_count = (int)nspares;
1358 	spa->spa_spares.sav_vdevs = NULL;
1359 
1360 	if (nspares == 0)
1361 		return;
1362 
1363 	/*
1364 	 * Construct the array of vdevs, opening them to get status in the
1365 	 * process.   For each spare, there is potentially two different vdev_t
1366 	 * structures associated with it: one in the list of spares (used only
1367 	 * for basic validation purposes) and one in the active vdev
1368 	 * configuration (if it's spared in).  During this phase we open and
1369 	 * validate each vdev on the spare list.  If the vdev also exists in the
1370 	 * active configuration, then we also mark this vdev as an active spare.
1371 	 */
1372 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1373 	    KM_SLEEP);
1374 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1375 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1376 		    VDEV_ALLOC_SPARE) == 0);
1377 		ASSERT(vd != NULL);
1378 
1379 		spa->spa_spares.sav_vdevs[i] = vd;
1380 
1381 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1382 		    B_FALSE)) != NULL) {
1383 			if (!tvd->vdev_isspare)
1384 				spa_spare_add(tvd);
1385 
1386 			/*
1387 			 * We only mark the spare active if we were successfully
1388 			 * able to load the vdev.  Otherwise, importing a pool
1389 			 * with a bad active spare would result in strange
1390 			 * behavior, because multiple pool would think the spare
1391 			 * is actively in use.
1392 			 *
1393 			 * There is a vulnerability here to an equally bizarre
1394 			 * circumstance, where a dead active spare is later
1395 			 * brought back to life (onlined or otherwise).  Given
1396 			 * the rarity of this scenario, and the extra complexity
1397 			 * it adds, we ignore the possibility.
1398 			 */
1399 			if (!vdev_is_dead(tvd))
1400 				spa_spare_activate(tvd);
1401 		}
1402 
1403 		vd->vdev_top = vd;
1404 		vd->vdev_aux = &spa->spa_spares;
1405 
1406 		if (vdev_open(vd) != 0)
1407 			continue;
1408 
1409 		if (vdev_validate_aux(vd) == 0)
1410 			spa_spare_add(vd);
1411 	}
1412 
1413 	/*
1414 	 * Recompute the stashed list of spares, with status information
1415 	 * this time.
1416 	 */
1417 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1418 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1419 
1420 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1421 	    KM_SLEEP);
1422 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1423 		spares[i] = vdev_config_generate(spa,
1424 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1425 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1426 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1427 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1428 		nvlist_free(spares[i]);
1429 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1430 }
1431 
1432 /*
1433  * Load (or re-load) the current list of vdevs describing the active l2cache for
1434  * this pool.  When this is called, we have some form of basic information in
1435  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1436  * then re-generate a more complete list including status information.
1437  * Devices which are already active have their details maintained, and are
1438  * not re-opened.
1439  */
1440 static void
1441 spa_load_l2cache(spa_t *spa)
1442 {
1443 	nvlist_t **l2cache;
1444 	uint_t nl2cache;
1445 	int i, j, oldnvdevs;
1446 	uint64_t guid;
1447 	vdev_t *vd, **oldvdevs, **newvdevs;
1448 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1449 
1450 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1451 
1452 	if (sav->sav_config != NULL) {
1453 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1454 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1455 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1456 	} else {
1457 		nl2cache = 0;
1458 		newvdevs = NULL;
1459 	}
1460 
1461 	oldvdevs = sav->sav_vdevs;
1462 	oldnvdevs = sav->sav_count;
1463 	sav->sav_vdevs = NULL;
1464 	sav->sav_count = 0;
1465 
1466 	/*
1467 	 * Process new nvlist of vdevs.
1468 	 */
1469 	for (i = 0; i < nl2cache; i++) {
1470 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1471 		    &guid) == 0);
1472 
1473 		newvdevs[i] = NULL;
1474 		for (j = 0; j < oldnvdevs; j++) {
1475 			vd = oldvdevs[j];
1476 			if (vd != NULL && guid == vd->vdev_guid) {
1477 				/*
1478 				 * Retain previous vdev for add/remove ops.
1479 				 */
1480 				newvdevs[i] = vd;
1481 				oldvdevs[j] = NULL;
1482 				break;
1483 			}
1484 		}
1485 
1486 		if (newvdevs[i] == NULL) {
1487 			/*
1488 			 * Create new vdev
1489 			 */
1490 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1491 			    VDEV_ALLOC_L2CACHE) == 0);
1492 			ASSERT(vd != NULL);
1493 			newvdevs[i] = vd;
1494 
1495 			/*
1496 			 * Commit this vdev as an l2cache device,
1497 			 * even if it fails to open.
1498 			 */
1499 			spa_l2cache_add(vd);
1500 
1501 			vd->vdev_top = vd;
1502 			vd->vdev_aux = sav;
1503 
1504 			spa_l2cache_activate(vd);
1505 
1506 			if (vdev_open(vd) != 0)
1507 				continue;
1508 
1509 			(void) vdev_validate_aux(vd);
1510 
1511 			if (!vdev_is_dead(vd))
1512 				l2arc_add_vdev(spa, vd);
1513 		}
1514 	}
1515 
1516 	/*
1517 	 * Purge vdevs that were dropped
1518 	 */
1519 	for (i = 0; i < oldnvdevs; i++) {
1520 		uint64_t pool;
1521 
1522 		vd = oldvdevs[i];
1523 		if (vd != NULL) {
1524 			ASSERT(vd->vdev_isl2cache);
1525 
1526 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1527 			    pool != 0ULL && l2arc_vdev_present(vd))
1528 				l2arc_remove_vdev(vd);
1529 			vdev_clear_stats(vd);
1530 			vdev_free(vd);
1531 		}
1532 	}
1533 
1534 	if (oldvdevs)
1535 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1536 
1537 	if (sav->sav_config == NULL)
1538 		goto out;
1539 
1540 	sav->sav_vdevs = newvdevs;
1541 	sav->sav_count = (int)nl2cache;
1542 
1543 	/*
1544 	 * Recompute the stashed list of l2cache devices, with status
1545 	 * information this time.
1546 	 */
1547 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1548 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1549 
1550 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1551 	for (i = 0; i < sav->sav_count; i++)
1552 		l2cache[i] = vdev_config_generate(spa,
1553 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1554 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1555 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1556 out:
1557 	for (i = 0; i < sav->sav_count; i++)
1558 		nvlist_free(l2cache[i]);
1559 	if (sav->sav_count)
1560 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1561 }
1562 
1563 static int
1564 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1565 {
1566 	dmu_buf_t *db;
1567 	char *packed = NULL;
1568 	size_t nvsize = 0;
1569 	int error;
1570 	*value = NULL;
1571 
1572 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1573 	nvsize = *(uint64_t *)db->db_data;
1574 	dmu_buf_rele(db, FTAG);
1575 
1576 	packed = kmem_alloc(nvsize, KM_SLEEP);
1577 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1578 	    DMU_READ_PREFETCH);
1579 	if (error == 0)
1580 		error = nvlist_unpack(packed, nvsize, value, 0);
1581 	kmem_free(packed, nvsize);
1582 
1583 	return (error);
1584 }
1585 
1586 /*
1587  * Checks to see if the given vdev could not be opened, in which case we post a
1588  * sysevent to notify the autoreplace code that the device has been removed.
1589  */
1590 static void
1591 spa_check_removed(vdev_t *vd)
1592 {
1593 	for (int c = 0; c < vd->vdev_children; c++)
1594 		spa_check_removed(vd->vdev_child[c]);
1595 
1596 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1597 	    !vd->vdev_ishole) {
1598 		zfs_post_autoreplace(vd->vdev_spa, vd);
1599 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1600 	}
1601 }
1602 
1603 /*
1604  * Validate the current config against the MOS config
1605  */
1606 static boolean_t
1607 spa_config_valid(spa_t *spa, nvlist_t *config)
1608 {
1609 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1610 	nvlist_t *nv;
1611 
1612 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1613 
1614 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1615 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1616 
1617 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1618 
1619 	/*
1620 	 * If we're doing a normal import, then build up any additional
1621 	 * diagnostic information about missing devices in this config.
1622 	 * We'll pass this up to the user for further processing.
1623 	 */
1624 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1625 		nvlist_t **child, *nv;
1626 		uint64_t idx = 0;
1627 
1628 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1629 		    KM_SLEEP);
1630 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1631 
1632 		for (int c = 0; c < rvd->vdev_children; c++) {
1633 			vdev_t *tvd = rvd->vdev_child[c];
1634 			vdev_t *mtvd  = mrvd->vdev_child[c];
1635 
1636 			if (tvd->vdev_ops == &vdev_missing_ops &&
1637 			    mtvd->vdev_ops != &vdev_missing_ops &&
1638 			    mtvd->vdev_islog)
1639 				child[idx++] = vdev_config_generate(spa, mtvd,
1640 				    B_FALSE, 0);
1641 		}
1642 
1643 		if (idx) {
1644 			VERIFY(nvlist_add_nvlist_array(nv,
1645 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1646 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1647 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1648 
1649 			for (int i = 0; i < idx; i++)
1650 				nvlist_free(child[i]);
1651 		}
1652 		nvlist_free(nv);
1653 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1654 	}
1655 
1656 	/*
1657 	 * Compare the root vdev tree with the information we have
1658 	 * from the MOS config (mrvd). Check each top-level vdev
1659 	 * with the corresponding MOS config top-level (mtvd).
1660 	 */
1661 	for (int c = 0; c < rvd->vdev_children; c++) {
1662 		vdev_t *tvd = rvd->vdev_child[c];
1663 		vdev_t *mtvd  = mrvd->vdev_child[c];
1664 
1665 		/*
1666 		 * Resolve any "missing" vdevs in the current configuration.
1667 		 * If we find that the MOS config has more accurate information
1668 		 * about the top-level vdev then use that vdev instead.
1669 		 */
1670 		if (tvd->vdev_ops == &vdev_missing_ops &&
1671 		    mtvd->vdev_ops != &vdev_missing_ops) {
1672 
1673 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1674 				continue;
1675 
1676 			/*
1677 			 * Device specific actions.
1678 			 */
1679 			if (mtvd->vdev_islog) {
1680 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1681 			} else {
1682 				/*
1683 				 * XXX - once we have 'readonly' pool
1684 				 * support we should be able to handle
1685 				 * missing data devices by transitioning
1686 				 * the pool to readonly.
1687 				 */
1688 				continue;
1689 			}
1690 
1691 			/*
1692 			 * Swap the missing vdev with the data we were
1693 			 * able to obtain from the MOS config.
1694 			 */
1695 			vdev_remove_child(rvd, tvd);
1696 			vdev_remove_child(mrvd, mtvd);
1697 
1698 			vdev_add_child(rvd, mtvd);
1699 			vdev_add_child(mrvd, tvd);
1700 
1701 			spa_config_exit(spa, SCL_ALL, FTAG);
1702 			vdev_load(mtvd);
1703 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1704 
1705 			vdev_reopen(rvd);
1706 		} else if (mtvd->vdev_islog) {
1707 			/*
1708 			 * Load the slog device's state from the MOS config
1709 			 * since it's possible that the label does not
1710 			 * contain the most up-to-date information.
1711 			 */
1712 			vdev_load_log_state(tvd, mtvd);
1713 			vdev_reopen(tvd);
1714 		}
1715 	}
1716 	vdev_free(mrvd);
1717 	spa_config_exit(spa, SCL_ALL, FTAG);
1718 
1719 	/*
1720 	 * Ensure we were able to validate the config.
1721 	 */
1722 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1723 }
1724 
1725 /*
1726  * Check for missing log devices
1727  */
1728 static boolean_t
1729 spa_check_logs(spa_t *spa)
1730 {
1731 	boolean_t rv = B_FALSE;
1732 
1733 	switch (spa->spa_log_state) {
1734 	case SPA_LOG_MISSING:
1735 		/* need to recheck in case slog has been restored */
1736 	case SPA_LOG_UNKNOWN:
1737 		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1738 		    NULL, DS_FIND_CHILDREN) != 0);
1739 		if (rv)
1740 			spa_set_log_state(spa, SPA_LOG_MISSING);
1741 		break;
1742 	}
1743 	return (rv);
1744 }
1745 
1746 static boolean_t
1747 spa_passivate_log(spa_t *spa)
1748 {
1749 	vdev_t *rvd = spa->spa_root_vdev;
1750 	boolean_t slog_found = B_FALSE;
1751 
1752 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1753 
1754 	if (!spa_has_slogs(spa))
1755 		return (B_FALSE);
1756 
1757 	for (int c = 0; c < rvd->vdev_children; c++) {
1758 		vdev_t *tvd = rvd->vdev_child[c];
1759 		metaslab_group_t *mg = tvd->vdev_mg;
1760 
1761 		if (tvd->vdev_islog) {
1762 			metaslab_group_passivate(mg);
1763 			slog_found = B_TRUE;
1764 		}
1765 	}
1766 
1767 	return (slog_found);
1768 }
1769 
1770 static void
1771 spa_activate_log(spa_t *spa)
1772 {
1773 	vdev_t *rvd = spa->spa_root_vdev;
1774 
1775 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1776 
1777 	for (int c = 0; c < rvd->vdev_children; c++) {
1778 		vdev_t *tvd = rvd->vdev_child[c];
1779 		metaslab_group_t *mg = tvd->vdev_mg;
1780 
1781 		if (tvd->vdev_islog)
1782 			metaslab_group_activate(mg);
1783 	}
1784 }
1785 
1786 int
1787 spa_offline_log(spa_t *spa)
1788 {
1789 	int error;
1790 
1791 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1792 	    NULL, DS_FIND_CHILDREN);
1793 	if (error == 0) {
1794 		/*
1795 		 * We successfully offlined the log device, sync out the
1796 		 * current txg so that the "stubby" block can be removed
1797 		 * by zil_sync().
1798 		 */
1799 		txg_wait_synced(spa->spa_dsl_pool, 0);
1800 	}
1801 	return (error);
1802 }
1803 
1804 static void
1805 spa_aux_check_removed(spa_aux_vdev_t *sav)
1806 {
1807 	for (int i = 0; i < sav->sav_count; i++)
1808 		spa_check_removed(sav->sav_vdevs[i]);
1809 }
1810 
1811 void
1812 spa_claim_notify(zio_t *zio)
1813 {
1814 	spa_t *spa = zio->io_spa;
1815 
1816 	if (zio->io_error)
1817 		return;
1818 
1819 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1820 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1821 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1822 	mutex_exit(&spa->spa_props_lock);
1823 }
1824 
1825 typedef struct spa_load_error {
1826 	uint64_t	sle_meta_count;
1827 	uint64_t	sle_data_count;
1828 } spa_load_error_t;
1829 
1830 static void
1831 spa_load_verify_done(zio_t *zio)
1832 {
1833 	blkptr_t *bp = zio->io_bp;
1834 	spa_load_error_t *sle = zio->io_private;
1835 	dmu_object_type_t type = BP_GET_TYPE(bp);
1836 	int error = zio->io_error;
1837 	spa_t *spa = zio->io_spa;
1838 
1839 	if (error) {
1840 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1841 		    type != DMU_OT_INTENT_LOG)
1842 			atomic_inc_64(&sle->sle_meta_count);
1843 		else
1844 			atomic_inc_64(&sle->sle_data_count);
1845 	}
1846 	zio_data_buf_free(zio->io_data, zio->io_size);
1847 
1848 	mutex_enter(&spa->spa_scrub_lock);
1849 	spa->spa_scrub_inflight--;
1850 	cv_broadcast(&spa->spa_scrub_io_cv);
1851 	mutex_exit(&spa->spa_scrub_lock);
1852 }
1853 
1854 /*
1855  * Maximum number of concurrent scrub i/os to create while verifying
1856  * a pool while importing it.
1857  */
1858 int spa_load_verify_maxinflight = 10000;
1859 boolean_t spa_load_verify_metadata = B_TRUE;
1860 boolean_t spa_load_verify_data = B_TRUE;
1861 
1862 /*ARGSUSED*/
1863 static int
1864 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1865     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1866 {
1867 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1868 		return (0);
1869 	/*
1870 	 * Note: normally this routine will not be called if
1871 	 * spa_load_verify_metadata is not set.  However, it may be useful
1872 	 * to manually set the flag after the traversal has begun.
1873 	 */
1874 	if (!spa_load_verify_metadata)
1875 		return (0);
1876 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1877 		return (0);
1878 
1879 	zio_t *rio = arg;
1880 	size_t size = BP_GET_PSIZE(bp);
1881 	void *data = zio_data_buf_alloc(size);
1882 
1883 	mutex_enter(&spa->spa_scrub_lock);
1884 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1885 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1886 	spa->spa_scrub_inflight++;
1887 	mutex_exit(&spa->spa_scrub_lock);
1888 
1889 	zio_nowait(zio_read(rio, spa, bp, data, size,
1890 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1891 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1892 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1893 	return (0);
1894 }
1895 
1896 static int
1897 spa_load_verify(spa_t *spa)
1898 {
1899 	zio_t *rio;
1900 	spa_load_error_t sle = { 0 };
1901 	zpool_rewind_policy_t policy;
1902 	boolean_t verify_ok = B_FALSE;
1903 	int error = 0;
1904 
1905 	zpool_get_rewind_policy(spa->spa_config, &policy);
1906 
1907 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1908 		return (0);
1909 
1910 	rio = zio_root(spa, NULL, &sle,
1911 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1912 
1913 	if (spa_load_verify_metadata) {
1914 		error = traverse_pool(spa, spa->spa_verify_min_txg,
1915 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1916 		    spa_load_verify_cb, rio);
1917 	}
1918 
1919 	(void) zio_wait(rio);
1920 
1921 	spa->spa_load_meta_errors = sle.sle_meta_count;
1922 	spa->spa_load_data_errors = sle.sle_data_count;
1923 
1924 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1925 	    sle.sle_data_count <= policy.zrp_maxdata) {
1926 		int64_t loss = 0;
1927 
1928 		verify_ok = B_TRUE;
1929 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1930 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1931 
1932 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1933 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1934 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1935 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1936 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1937 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1938 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1939 	} else {
1940 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1941 	}
1942 
1943 	if (error) {
1944 		if (error != ENXIO && error != EIO)
1945 			error = SET_ERROR(EIO);
1946 		return (error);
1947 	}
1948 
1949 	return (verify_ok ? 0 : EIO);
1950 }
1951 
1952 /*
1953  * Find a value in the pool props object.
1954  */
1955 static void
1956 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1957 {
1958 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1959 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1960 }
1961 
1962 /*
1963  * Find a value in the pool directory object.
1964  */
1965 static int
1966 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1967 {
1968 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1969 	    name, sizeof (uint64_t), 1, val));
1970 }
1971 
1972 static int
1973 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1974 {
1975 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1976 	return (err);
1977 }
1978 
1979 /*
1980  * Fix up config after a partly-completed split.  This is done with the
1981  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1982  * pool have that entry in their config, but only the splitting one contains
1983  * a list of all the guids of the vdevs that are being split off.
1984  *
1985  * This function determines what to do with that list: either rejoin
1986  * all the disks to the pool, or complete the splitting process.  To attempt
1987  * the rejoin, each disk that is offlined is marked online again, and
1988  * we do a reopen() call.  If the vdev label for every disk that was
1989  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1990  * then we call vdev_split() on each disk, and complete the split.
1991  *
1992  * Otherwise we leave the config alone, with all the vdevs in place in
1993  * the original pool.
1994  */
1995 static void
1996 spa_try_repair(spa_t *spa, nvlist_t *config)
1997 {
1998 	uint_t extracted;
1999 	uint64_t *glist;
2000 	uint_t i, gcount;
2001 	nvlist_t *nvl;
2002 	vdev_t **vd;
2003 	boolean_t attempt_reopen;
2004 
2005 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2006 		return;
2007 
2008 	/* check that the config is complete */
2009 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2010 	    &glist, &gcount) != 0)
2011 		return;
2012 
2013 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2014 
2015 	/* attempt to online all the vdevs & validate */
2016 	attempt_reopen = B_TRUE;
2017 	for (i = 0; i < gcount; i++) {
2018 		if (glist[i] == 0)	/* vdev is hole */
2019 			continue;
2020 
2021 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2022 		if (vd[i] == NULL) {
2023 			/*
2024 			 * Don't bother attempting to reopen the disks;
2025 			 * just do the split.
2026 			 */
2027 			attempt_reopen = B_FALSE;
2028 		} else {
2029 			/* attempt to re-online it */
2030 			vd[i]->vdev_offline = B_FALSE;
2031 		}
2032 	}
2033 
2034 	if (attempt_reopen) {
2035 		vdev_reopen(spa->spa_root_vdev);
2036 
2037 		/* check each device to see what state it's in */
2038 		for (extracted = 0, i = 0; i < gcount; i++) {
2039 			if (vd[i] != NULL &&
2040 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2041 				break;
2042 			++extracted;
2043 		}
2044 	}
2045 
2046 	/*
2047 	 * If every disk has been moved to the new pool, or if we never
2048 	 * even attempted to look at them, then we split them off for
2049 	 * good.
2050 	 */
2051 	if (!attempt_reopen || gcount == extracted) {
2052 		for (i = 0; i < gcount; i++)
2053 			if (vd[i] != NULL)
2054 				vdev_split(vd[i]);
2055 		vdev_reopen(spa->spa_root_vdev);
2056 	}
2057 
2058 	kmem_free(vd, gcount * sizeof (vdev_t *));
2059 }
2060 
2061 static int
2062 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2063     boolean_t mosconfig)
2064 {
2065 	nvlist_t *config = spa->spa_config;
2066 	char *ereport = FM_EREPORT_ZFS_POOL;
2067 	char *comment;
2068 	int error;
2069 	uint64_t pool_guid;
2070 	nvlist_t *nvl;
2071 
2072 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2073 		return (SET_ERROR(EINVAL));
2074 
2075 	ASSERT(spa->spa_comment == NULL);
2076 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2077 		spa->spa_comment = spa_strdup(comment);
2078 
2079 	/*
2080 	 * Versioning wasn't explicitly added to the label until later, so if
2081 	 * it's not present treat it as the initial version.
2082 	 */
2083 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2084 	    &spa->spa_ubsync.ub_version) != 0)
2085 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2086 
2087 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2088 	    &spa->spa_config_txg);
2089 
2090 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2091 	    spa_guid_exists(pool_guid, 0)) {
2092 		error = SET_ERROR(EEXIST);
2093 	} else {
2094 		spa->spa_config_guid = pool_guid;
2095 
2096 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2097 		    &nvl) == 0) {
2098 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2099 			    KM_SLEEP) == 0);
2100 		}
2101 
2102 		nvlist_free(spa->spa_load_info);
2103 		spa->spa_load_info = fnvlist_alloc();
2104 
2105 		gethrestime(&spa->spa_loaded_ts);
2106 		error = spa_load_impl(spa, pool_guid, config, state, type,
2107 		    mosconfig, &ereport);
2108 	}
2109 
2110 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2111 	if (error) {
2112 		if (error != EEXIST) {
2113 			spa->spa_loaded_ts.tv_sec = 0;
2114 			spa->spa_loaded_ts.tv_nsec = 0;
2115 		}
2116 		if (error != EBADF) {
2117 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2118 		}
2119 	}
2120 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2121 	spa->spa_ena = 0;
2122 
2123 	return (error);
2124 }
2125 
2126 /*
2127  * Load an existing storage pool, using the pool's builtin spa_config as a
2128  * source of configuration information.
2129  */
2130 static int
2131 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2132     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2133     char **ereport)
2134 {
2135 	int error = 0;
2136 	nvlist_t *nvroot = NULL;
2137 	nvlist_t *label;
2138 	vdev_t *rvd;
2139 	uberblock_t *ub = &spa->spa_uberblock;
2140 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2141 	int orig_mode = spa->spa_mode;
2142 	int parse;
2143 	uint64_t obj;
2144 	boolean_t missing_feat_write = B_FALSE;
2145 
2146 	/*
2147 	 * If this is an untrusted config, access the pool in read-only mode.
2148 	 * This prevents things like resilvering recently removed devices.
2149 	 */
2150 	if (!mosconfig)
2151 		spa->spa_mode = FREAD;
2152 
2153 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2154 
2155 	spa->spa_load_state = state;
2156 
2157 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2158 		return (SET_ERROR(EINVAL));
2159 
2160 	parse = (type == SPA_IMPORT_EXISTING ?
2161 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2162 
2163 	/*
2164 	 * Create "The Godfather" zio to hold all async IOs
2165 	 */
2166 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2167 	    KM_SLEEP);
2168 	for (int i = 0; i < max_ncpus; i++) {
2169 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2170 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2171 		    ZIO_FLAG_GODFATHER);
2172 	}
2173 
2174 	/*
2175 	 * Parse the configuration into a vdev tree.  We explicitly set the
2176 	 * value that will be returned by spa_version() since parsing the
2177 	 * configuration requires knowing the version number.
2178 	 */
2179 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2180 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2181 	spa_config_exit(spa, SCL_ALL, FTAG);
2182 
2183 	if (error != 0)
2184 		return (error);
2185 
2186 	ASSERT(spa->spa_root_vdev == rvd);
2187 
2188 	if (type != SPA_IMPORT_ASSEMBLE) {
2189 		ASSERT(spa_guid(spa) == pool_guid);
2190 	}
2191 
2192 	/*
2193 	 * Try to open all vdevs, loading each label in the process.
2194 	 */
2195 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2196 	error = vdev_open(rvd);
2197 	spa_config_exit(spa, SCL_ALL, FTAG);
2198 	if (error != 0)
2199 		return (error);
2200 
2201 	/*
2202 	 * We need to validate the vdev labels against the configuration that
2203 	 * we have in hand, which is dependent on the setting of mosconfig. If
2204 	 * mosconfig is true then we're validating the vdev labels based on
2205 	 * that config.  Otherwise, we're validating against the cached config
2206 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2207 	 * later we will recursively call spa_load() and validate against
2208 	 * the vdev config.
2209 	 *
2210 	 * If we're assembling a new pool that's been split off from an
2211 	 * existing pool, the labels haven't yet been updated so we skip
2212 	 * validation for now.
2213 	 */
2214 	if (type != SPA_IMPORT_ASSEMBLE) {
2215 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2216 		error = vdev_validate(rvd, mosconfig);
2217 		spa_config_exit(spa, SCL_ALL, FTAG);
2218 
2219 		if (error != 0)
2220 			return (error);
2221 
2222 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2223 			return (SET_ERROR(ENXIO));
2224 	}
2225 
2226 	/*
2227 	 * Find the best uberblock.
2228 	 */
2229 	vdev_uberblock_load(rvd, ub, &label);
2230 
2231 	/*
2232 	 * If we weren't able to find a single valid uberblock, return failure.
2233 	 */
2234 	if (ub->ub_txg == 0) {
2235 		nvlist_free(label);
2236 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2237 	}
2238 
2239 	/*
2240 	 * If the pool has an unsupported version we can't open it.
2241 	 */
2242 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2243 		nvlist_free(label);
2244 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2245 	}
2246 
2247 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2248 		nvlist_t *features;
2249 
2250 		/*
2251 		 * If we weren't able to find what's necessary for reading the
2252 		 * MOS in the label, return failure.
2253 		 */
2254 		if (label == NULL || nvlist_lookup_nvlist(label,
2255 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2256 			nvlist_free(label);
2257 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2258 			    ENXIO));
2259 		}
2260 
2261 		/*
2262 		 * Update our in-core representation with the definitive values
2263 		 * from the label.
2264 		 */
2265 		nvlist_free(spa->spa_label_features);
2266 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2267 	}
2268 
2269 	nvlist_free(label);
2270 
2271 	/*
2272 	 * Look through entries in the label nvlist's features_for_read. If
2273 	 * there is a feature listed there which we don't understand then we
2274 	 * cannot open a pool.
2275 	 */
2276 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2277 		nvlist_t *unsup_feat;
2278 
2279 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2280 		    0);
2281 
2282 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2283 		    NULL); nvp != NULL;
2284 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2285 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2286 				VERIFY(nvlist_add_string(unsup_feat,
2287 				    nvpair_name(nvp), "") == 0);
2288 			}
2289 		}
2290 
2291 		if (!nvlist_empty(unsup_feat)) {
2292 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2293 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2294 			nvlist_free(unsup_feat);
2295 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2296 			    ENOTSUP));
2297 		}
2298 
2299 		nvlist_free(unsup_feat);
2300 	}
2301 
2302 	/*
2303 	 * If the vdev guid sum doesn't match the uberblock, we have an
2304 	 * incomplete configuration.  We first check to see if the pool
2305 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2306 	 * If it is, defer the vdev_guid_sum check till later so we
2307 	 * can handle missing vdevs.
2308 	 */
2309 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2310 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2311 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2312 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2313 
2314 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2315 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2316 		spa_try_repair(spa, config);
2317 		spa_config_exit(spa, SCL_ALL, FTAG);
2318 		nvlist_free(spa->spa_config_splitting);
2319 		spa->spa_config_splitting = NULL;
2320 	}
2321 
2322 	/*
2323 	 * Initialize internal SPA structures.
2324 	 */
2325 	spa->spa_state = POOL_STATE_ACTIVE;
2326 	spa->spa_ubsync = spa->spa_uberblock;
2327 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2328 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2329 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2330 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2331 	spa->spa_claim_max_txg = spa->spa_first_txg;
2332 	spa->spa_prev_software_version = ub->ub_software_version;
2333 
2334 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2335 	if (error)
2336 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2337 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2338 
2339 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2340 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2341 
2342 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2343 		boolean_t missing_feat_read = B_FALSE;
2344 		nvlist_t *unsup_feat, *enabled_feat;
2345 
2346 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2347 		    &spa->spa_feat_for_read_obj) != 0) {
2348 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2349 		}
2350 
2351 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2352 		    &spa->spa_feat_for_write_obj) != 0) {
2353 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2354 		}
2355 
2356 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2357 		    &spa->spa_feat_desc_obj) != 0) {
2358 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2359 		}
2360 
2361 		enabled_feat = fnvlist_alloc();
2362 		unsup_feat = fnvlist_alloc();
2363 
2364 		if (!spa_features_check(spa, B_FALSE,
2365 		    unsup_feat, enabled_feat))
2366 			missing_feat_read = B_TRUE;
2367 
2368 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2369 			if (!spa_features_check(spa, B_TRUE,
2370 			    unsup_feat, enabled_feat)) {
2371 				missing_feat_write = B_TRUE;
2372 			}
2373 		}
2374 
2375 		fnvlist_add_nvlist(spa->spa_load_info,
2376 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2377 
2378 		if (!nvlist_empty(unsup_feat)) {
2379 			fnvlist_add_nvlist(spa->spa_load_info,
2380 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2381 		}
2382 
2383 		fnvlist_free(enabled_feat);
2384 		fnvlist_free(unsup_feat);
2385 
2386 		if (!missing_feat_read) {
2387 			fnvlist_add_boolean(spa->spa_load_info,
2388 			    ZPOOL_CONFIG_CAN_RDONLY);
2389 		}
2390 
2391 		/*
2392 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2393 		 * twofold: to determine whether the pool is available for
2394 		 * import in read-write mode and (if it is not) whether the
2395 		 * pool is available for import in read-only mode. If the pool
2396 		 * is available for import in read-write mode, it is displayed
2397 		 * as available in userland; if it is not available for import
2398 		 * in read-only mode, it is displayed as unavailable in
2399 		 * userland. If the pool is available for import in read-only
2400 		 * mode but not read-write mode, it is displayed as unavailable
2401 		 * in userland with a special note that the pool is actually
2402 		 * available for open in read-only mode.
2403 		 *
2404 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2405 		 * missing a feature for write, we must first determine whether
2406 		 * the pool can be opened read-only before returning to
2407 		 * userland in order to know whether to display the
2408 		 * abovementioned note.
2409 		 */
2410 		if (missing_feat_read || (missing_feat_write &&
2411 		    spa_writeable(spa))) {
2412 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2413 			    ENOTSUP));
2414 		}
2415 
2416 		/*
2417 		 * Load refcounts for ZFS features from disk into an in-memory
2418 		 * cache during SPA initialization.
2419 		 */
2420 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2421 			uint64_t refcount;
2422 
2423 			error = feature_get_refcount_from_disk(spa,
2424 			    &spa_feature_table[i], &refcount);
2425 			if (error == 0) {
2426 				spa->spa_feat_refcount_cache[i] = refcount;
2427 			} else if (error == ENOTSUP) {
2428 				spa->spa_feat_refcount_cache[i] =
2429 				    SPA_FEATURE_DISABLED;
2430 			} else {
2431 				return (spa_vdev_err(rvd,
2432 				    VDEV_AUX_CORRUPT_DATA, EIO));
2433 			}
2434 		}
2435 	}
2436 
2437 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2438 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2439 		    &spa->spa_feat_enabled_txg_obj) != 0)
2440 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2441 	}
2442 
2443 	spa->spa_is_initializing = B_TRUE;
2444 	error = dsl_pool_open(spa->spa_dsl_pool);
2445 	spa->spa_is_initializing = B_FALSE;
2446 	if (error != 0)
2447 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2448 
2449 	if (!mosconfig) {
2450 		uint64_t hostid;
2451 		nvlist_t *policy = NULL, *nvconfig;
2452 
2453 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2454 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2455 
2456 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2457 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2458 			char *hostname;
2459 			unsigned long myhostid = 0;
2460 
2461 			VERIFY(nvlist_lookup_string(nvconfig,
2462 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2463 
2464 #ifdef	_KERNEL
2465 			myhostid = zone_get_hostid(NULL);
2466 #else	/* _KERNEL */
2467 			/*
2468 			 * We're emulating the system's hostid in userland, so
2469 			 * we can't use zone_get_hostid().
2470 			 */
2471 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2472 #endif	/* _KERNEL */
2473 			if (hostid != 0 && myhostid != 0 &&
2474 			    hostid != myhostid) {
2475 				nvlist_free(nvconfig);
2476 				cmn_err(CE_WARN, "pool '%s' could not be "
2477 				    "loaded as it was last accessed by "
2478 				    "another system (host: %s hostid: 0x%lx). "
2479 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2480 				    spa_name(spa), hostname,
2481 				    (unsigned long)hostid);
2482 				return (SET_ERROR(EBADF));
2483 			}
2484 		}
2485 		if (nvlist_lookup_nvlist(spa->spa_config,
2486 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2487 			VERIFY(nvlist_add_nvlist(nvconfig,
2488 			    ZPOOL_REWIND_POLICY, policy) == 0);
2489 
2490 		spa_config_set(spa, nvconfig);
2491 		spa_unload(spa);
2492 		spa_deactivate(spa);
2493 		spa_activate(spa, orig_mode);
2494 
2495 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2496 	}
2497 
2498 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2499 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2500 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2501 	if (error != 0)
2502 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2503 
2504 	/*
2505 	 * Load the bit that tells us to use the new accounting function
2506 	 * (raid-z deflation).  If we have an older pool, this will not
2507 	 * be present.
2508 	 */
2509 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2510 	if (error != 0 && error != ENOENT)
2511 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2512 
2513 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2514 	    &spa->spa_creation_version);
2515 	if (error != 0 && error != ENOENT)
2516 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2517 
2518 	/*
2519 	 * Load the persistent error log.  If we have an older pool, this will
2520 	 * not be present.
2521 	 */
2522 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2523 	if (error != 0 && error != ENOENT)
2524 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2525 
2526 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2527 	    &spa->spa_errlog_scrub);
2528 	if (error != 0 && error != ENOENT)
2529 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2530 
2531 	/*
2532 	 * Load the history object.  If we have an older pool, this
2533 	 * will not be present.
2534 	 */
2535 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2536 	if (error != 0 && error != ENOENT)
2537 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2538 
2539 	/*
2540 	 * If we're assembling the pool from the split-off vdevs of
2541 	 * an existing pool, we don't want to attach the spares & cache
2542 	 * devices.
2543 	 */
2544 
2545 	/*
2546 	 * Load any hot spares for this pool.
2547 	 */
2548 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2549 	if (error != 0 && error != ENOENT)
2550 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2551 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2552 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2553 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2554 		    &spa->spa_spares.sav_config) != 0)
2555 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2556 
2557 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2558 		spa_load_spares(spa);
2559 		spa_config_exit(spa, SCL_ALL, FTAG);
2560 	} else if (error == 0) {
2561 		spa->spa_spares.sav_sync = B_TRUE;
2562 	}
2563 
2564 	/*
2565 	 * Load any level 2 ARC devices for this pool.
2566 	 */
2567 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2568 	    &spa->spa_l2cache.sav_object);
2569 	if (error != 0 && error != ENOENT)
2570 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2571 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2572 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2573 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2574 		    &spa->spa_l2cache.sav_config) != 0)
2575 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2576 
2577 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2578 		spa_load_l2cache(spa);
2579 		spa_config_exit(spa, SCL_ALL, FTAG);
2580 	} else if (error == 0) {
2581 		spa->spa_l2cache.sav_sync = B_TRUE;
2582 	}
2583 
2584 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2585 
2586 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2587 	if (error && error != ENOENT)
2588 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2589 
2590 	if (error == 0) {
2591 		uint64_t autoreplace;
2592 
2593 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2594 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2595 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2596 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2597 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2598 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2599 		    &spa->spa_dedup_ditto);
2600 
2601 		spa->spa_autoreplace = (autoreplace != 0);
2602 	}
2603 
2604 	/*
2605 	 * If the 'autoreplace' property is set, then post a resource notifying
2606 	 * the ZFS DE that it should not issue any faults for unopenable
2607 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2608 	 * unopenable vdevs so that the normal autoreplace handler can take
2609 	 * over.
2610 	 */
2611 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2612 		spa_check_removed(spa->spa_root_vdev);
2613 		/*
2614 		 * For the import case, this is done in spa_import(), because
2615 		 * at this point we're using the spare definitions from
2616 		 * the MOS config, not necessarily from the userland config.
2617 		 */
2618 		if (state != SPA_LOAD_IMPORT) {
2619 			spa_aux_check_removed(&spa->spa_spares);
2620 			spa_aux_check_removed(&spa->spa_l2cache);
2621 		}
2622 	}
2623 
2624 	/*
2625 	 * Load the vdev state for all toplevel vdevs.
2626 	 */
2627 	vdev_load(rvd);
2628 
2629 	/*
2630 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2631 	 */
2632 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2633 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2634 	spa_config_exit(spa, SCL_ALL, FTAG);
2635 
2636 	/*
2637 	 * Load the DDTs (dedup tables).
2638 	 */
2639 	error = ddt_load(spa);
2640 	if (error != 0)
2641 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2642 
2643 	spa_update_dspace(spa);
2644 
2645 	/*
2646 	 * Validate the config, using the MOS config to fill in any
2647 	 * information which might be missing.  If we fail to validate
2648 	 * the config then declare the pool unfit for use. If we're
2649 	 * assembling a pool from a split, the log is not transferred
2650 	 * over.
2651 	 */
2652 	if (type != SPA_IMPORT_ASSEMBLE) {
2653 		nvlist_t *nvconfig;
2654 
2655 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2656 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2657 
2658 		if (!spa_config_valid(spa, nvconfig)) {
2659 			nvlist_free(nvconfig);
2660 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2661 			    ENXIO));
2662 		}
2663 		nvlist_free(nvconfig);
2664 
2665 		/*
2666 		 * Now that we've validated the config, check the state of the
2667 		 * root vdev.  If it can't be opened, it indicates one or
2668 		 * more toplevel vdevs are faulted.
2669 		 */
2670 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2671 			return (SET_ERROR(ENXIO));
2672 
2673 		if (spa_check_logs(spa)) {
2674 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2675 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2676 		}
2677 	}
2678 
2679 	if (missing_feat_write) {
2680 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2681 
2682 		/*
2683 		 * At this point, we know that we can open the pool in
2684 		 * read-only mode but not read-write mode. We now have enough
2685 		 * information and can return to userland.
2686 		 */
2687 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2688 	}
2689 
2690 	/*
2691 	 * We've successfully opened the pool, verify that we're ready
2692 	 * to start pushing transactions.
2693 	 */
2694 	if (state != SPA_LOAD_TRYIMPORT) {
2695 		if (error = spa_load_verify(spa))
2696 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2697 			    error));
2698 	}
2699 
2700 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2701 	    spa->spa_load_max_txg == UINT64_MAX)) {
2702 		dmu_tx_t *tx;
2703 		int need_update = B_FALSE;
2704 
2705 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2706 
2707 		/*
2708 		 * Claim log blocks that haven't been committed yet.
2709 		 * This must all happen in a single txg.
2710 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2711 		 * invoked from zil_claim_log_block()'s i/o done callback.
2712 		 * Price of rollback is that we abandon the log.
2713 		 */
2714 		spa->spa_claiming = B_TRUE;
2715 
2716 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2717 		    spa_first_txg(spa));
2718 		(void) dmu_objset_find(spa_name(spa),
2719 		    zil_claim, tx, DS_FIND_CHILDREN);
2720 		dmu_tx_commit(tx);
2721 
2722 		spa->spa_claiming = B_FALSE;
2723 
2724 		spa_set_log_state(spa, SPA_LOG_GOOD);
2725 		spa->spa_sync_on = B_TRUE;
2726 		txg_sync_start(spa->spa_dsl_pool);
2727 
2728 		/*
2729 		 * Wait for all claims to sync.  We sync up to the highest
2730 		 * claimed log block birth time so that claimed log blocks
2731 		 * don't appear to be from the future.  spa_claim_max_txg
2732 		 * will have been set for us by either zil_check_log_chain()
2733 		 * (invoked from spa_check_logs()) or zil_claim() above.
2734 		 */
2735 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2736 
2737 		/*
2738 		 * If the config cache is stale, or we have uninitialized
2739 		 * metaslabs (see spa_vdev_add()), then update the config.
2740 		 *
2741 		 * If this is a verbatim import, trust the current
2742 		 * in-core spa_config and update the disk labels.
2743 		 */
2744 		if (config_cache_txg != spa->spa_config_txg ||
2745 		    state == SPA_LOAD_IMPORT ||
2746 		    state == SPA_LOAD_RECOVER ||
2747 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2748 			need_update = B_TRUE;
2749 
2750 		for (int c = 0; c < rvd->vdev_children; c++)
2751 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2752 				need_update = B_TRUE;
2753 
2754 		/*
2755 		 * Update the config cache asychronously in case we're the
2756 		 * root pool, in which case the config cache isn't writable yet.
2757 		 */
2758 		if (need_update)
2759 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2760 
2761 		/*
2762 		 * Check all DTLs to see if anything needs resilvering.
2763 		 */
2764 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2765 		    vdev_resilver_needed(rvd, NULL, NULL))
2766 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2767 
2768 		/*
2769 		 * Log the fact that we booted up (so that we can detect if
2770 		 * we rebooted in the middle of an operation).
2771 		 */
2772 		spa_history_log_version(spa, "open");
2773 
2774 		/*
2775 		 * Delete any inconsistent datasets.
2776 		 */
2777 		(void) dmu_objset_find(spa_name(spa),
2778 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2779 
2780 		/*
2781 		 * Clean up any stale temporary dataset userrefs.
2782 		 */
2783 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2784 	}
2785 
2786 	return (0);
2787 }
2788 
2789 static int
2790 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2791 {
2792 	int mode = spa->spa_mode;
2793 
2794 	spa_unload(spa);
2795 	spa_deactivate(spa);
2796 
2797 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2798 
2799 	spa_activate(spa, mode);
2800 	spa_async_suspend(spa);
2801 
2802 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2803 }
2804 
2805 /*
2806  * If spa_load() fails this function will try loading prior txg's. If
2807  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2808  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2809  * function will not rewind the pool and will return the same error as
2810  * spa_load().
2811  */
2812 static int
2813 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2814     uint64_t max_request, int rewind_flags)
2815 {
2816 	nvlist_t *loadinfo = NULL;
2817 	nvlist_t *config = NULL;
2818 	int load_error, rewind_error;
2819 	uint64_t safe_rewind_txg;
2820 	uint64_t min_txg;
2821 
2822 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2823 		spa->spa_load_max_txg = spa->spa_load_txg;
2824 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2825 	} else {
2826 		spa->spa_load_max_txg = max_request;
2827 		if (max_request != UINT64_MAX)
2828 			spa->spa_extreme_rewind = B_TRUE;
2829 	}
2830 
2831 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2832 	    mosconfig);
2833 	if (load_error == 0)
2834 		return (0);
2835 
2836 	if (spa->spa_root_vdev != NULL)
2837 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2838 
2839 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2840 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2841 
2842 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2843 		nvlist_free(config);
2844 		return (load_error);
2845 	}
2846 
2847 	if (state == SPA_LOAD_RECOVER) {
2848 		/* Price of rolling back is discarding txgs, including log */
2849 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2850 	} else {
2851 		/*
2852 		 * If we aren't rolling back save the load info from our first
2853 		 * import attempt so that we can restore it after attempting
2854 		 * to rewind.
2855 		 */
2856 		loadinfo = spa->spa_load_info;
2857 		spa->spa_load_info = fnvlist_alloc();
2858 	}
2859 
2860 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2861 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2862 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2863 	    TXG_INITIAL : safe_rewind_txg;
2864 
2865 	/*
2866 	 * Continue as long as we're finding errors, we're still within
2867 	 * the acceptable rewind range, and we're still finding uberblocks
2868 	 */
2869 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2870 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2871 		if (spa->spa_load_max_txg < safe_rewind_txg)
2872 			spa->spa_extreme_rewind = B_TRUE;
2873 		rewind_error = spa_load_retry(spa, state, mosconfig);
2874 	}
2875 
2876 	spa->spa_extreme_rewind = B_FALSE;
2877 	spa->spa_load_max_txg = UINT64_MAX;
2878 
2879 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2880 		spa_config_set(spa, config);
2881 
2882 	if (state == SPA_LOAD_RECOVER) {
2883 		ASSERT3P(loadinfo, ==, NULL);
2884 		return (rewind_error);
2885 	} else {
2886 		/* Store the rewind info as part of the initial load info */
2887 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2888 		    spa->spa_load_info);
2889 
2890 		/* Restore the initial load info */
2891 		fnvlist_free(spa->spa_load_info);
2892 		spa->spa_load_info = loadinfo;
2893 
2894 		return (load_error);
2895 	}
2896 }
2897 
2898 /*
2899  * Pool Open/Import
2900  *
2901  * The import case is identical to an open except that the configuration is sent
2902  * down from userland, instead of grabbed from the configuration cache.  For the
2903  * case of an open, the pool configuration will exist in the
2904  * POOL_STATE_UNINITIALIZED state.
2905  *
2906  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2907  * the same time open the pool, without having to keep around the spa_t in some
2908  * ambiguous state.
2909  */
2910 static int
2911 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2912     nvlist_t **config)
2913 {
2914 	spa_t *spa;
2915 	spa_load_state_t state = SPA_LOAD_OPEN;
2916 	int error;
2917 	int locked = B_FALSE;
2918 
2919 	*spapp = NULL;
2920 
2921 	/*
2922 	 * As disgusting as this is, we need to support recursive calls to this
2923 	 * function because dsl_dir_open() is called during spa_load(), and ends
2924 	 * up calling spa_open() again.  The real fix is to figure out how to
2925 	 * avoid dsl_dir_open() calling this in the first place.
2926 	 */
2927 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2928 		mutex_enter(&spa_namespace_lock);
2929 		locked = B_TRUE;
2930 	}
2931 
2932 	if ((spa = spa_lookup(pool)) == NULL) {
2933 		if (locked)
2934 			mutex_exit(&spa_namespace_lock);
2935 		return (SET_ERROR(ENOENT));
2936 	}
2937 
2938 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2939 		zpool_rewind_policy_t policy;
2940 
2941 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2942 		    &policy);
2943 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2944 			state = SPA_LOAD_RECOVER;
2945 
2946 		spa_activate(spa, spa_mode_global);
2947 
2948 		if (state != SPA_LOAD_RECOVER)
2949 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2950 
2951 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2952 		    policy.zrp_request);
2953 
2954 		if (error == EBADF) {
2955 			/*
2956 			 * If vdev_validate() returns failure (indicated by
2957 			 * EBADF), it indicates that one of the vdevs indicates
2958 			 * that the pool has been exported or destroyed.  If
2959 			 * this is the case, the config cache is out of sync and
2960 			 * we should remove the pool from the namespace.
2961 			 */
2962 			spa_unload(spa);
2963 			spa_deactivate(spa);
2964 			spa_config_sync(spa, B_TRUE, B_TRUE);
2965 			spa_remove(spa);
2966 			if (locked)
2967 				mutex_exit(&spa_namespace_lock);
2968 			return (SET_ERROR(ENOENT));
2969 		}
2970 
2971 		if (error) {
2972 			/*
2973 			 * We can't open the pool, but we still have useful
2974 			 * information: the state of each vdev after the
2975 			 * attempted vdev_open().  Return this to the user.
2976 			 */
2977 			if (config != NULL && spa->spa_config) {
2978 				VERIFY(nvlist_dup(spa->spa_config, config,
2979 				    KM_SLEEP) == 0);
2980 				VERIFY(nvlist_add_nvlist(*config,
2981 				    ZPOOL_CONFIG_LOAD_INFO,
2982 				    spa->spa_load_info) == 0);
2983 			}
2984 			spa_unload(spa);
2985 			spa_deactivate(spa);
2986 			spa->spa_last_open_failed = error;
2987 			if (locked)
2988 				mutex_exit(&spa_namespace_lock);
2989 			*spapp = NULL;
2990 			return (error);
2991 		}
2992 	}
2993 
2994 	spa_open_ref(spa, tag);
2995 
2996 	if (config != NULL)
2997 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2998 
2999 	/*
3000 	 * If we've recovered the pool, pass back any information we
3001 	 * gathered while doing the load.
3002 	 */
3003 	if (state == SPA_LOAD_RECOVER) {
3004 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3005 		    spa->spa_load_info) == 0);
3006 	}
3007 
3008 	if (locked) {
3009 		spa->spa_last_open_failed = 0;
3010 		spa->spa_last_ubsync_txg = 0;
3011 		spa->spa_load_txg = 0;
3012 		mutex_exit(&spa_namespace_lock);
3013 	}
3014 
3015 	*spapp = spa;
3016 
3017 	return (0);
3018 }
3019 
3020 int
3021 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3022     nvlist_t **config)
3023 {
3024 	return (spa_open_common(name, spapp, tag, policy, config));
3025 }
3026 
3027 int
3028 spa_open(const char *name, spa_t **spapp, void *tag)
3029 {
3030 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3031 }
3032 
3033 /*
3034  * Lookup the given spa_t, incrementing the inject count in the process,
3035  * preventing it from being exported or destroyed.
3036  */
3037 spa_t *
3038 spa_inject_addref(char *name)
3039 {
3040 	spa_t *spa;
3041 
3042 	mutex_enter(&spa_namespace_lock);
3043 	if ((spa = spa_lookup(name)) == NULL) {
3044 		mutex_exit(&spa_namespace_lock);
3045 		return (NULL);
3046 	}
3047 	spa->spa_inject_ref++;
3048 	mutex_exit(&spa_namespace_lock);
3049 
3050 	return (spa);
3051 }
3052 
3053 void
3054 spa_inject_delref(spa_t *spa)
3055 {
3056 	mutex_enter(&spa_namespace_lock);
3057 	spa->spa_inject_ref--;
3058 	mutex_exit(&spa_namespace_lock);
3059 }
3060 
3061 /*
3062  * Add spares device information to the nvlist.
3063  */
3064 static void
3065 spa_add_spares(spa_t *spa, nvlist_t *config)
3066 {
3067 	nvlist_t **spares;
3068 	uint_t i, nspares;
3069 	nvlist_t *nvroot;
3070 	uint64_t guid;
3071 	vdev_stat_t *vs;
3072 	uint_t vsc;
3073 	uint64_t pool;
3074 
3075 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3076 
3077 	if (spa->spa_spares.sav_count == 0)
3078 		return;
3079 
3080 	VERIFY(nvlist_lookup_nvlist(config,
3081 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3082 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3083 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3084 	if (nspares != 0) {
3085 		VERIFY(nvlist_add_nvlist_array(nvroot,
3086 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3087 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3088 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3089 
3090 		/*
3091 		 * Go through and find any spares which have since been
3092 		 * repurposed as an active spare.  If this is the case, update
3093 		 * their status appropriately.
3094 		 */
3095 		for (i = 0; i < nspares; i++) {
3096 			VERIFY(nvlist_lookup_uint64(spares[i],
3097 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3098 			if (spa_spare_exists(guid, &pool, NULL) &&
3099 			    pool != 0ULL) {
3100 				VERIFY(nvlist_lookup_uint64_array(
3101 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3102 				    (uint64_t **)&vs, &vsc) == 0);
3103 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3104 				vs->vs_aux = VDEV_AUX_SPARED;
3105 			}
3106 		}
3107 	}
3108 }
3109 
3110 /*
3111  * Add l2cache device information to the nvlist, including vdev stats.
3112  */
3113 static void
3114 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3115 {
3116 	nvlist_t **l2cache;
3117 	uint_t i, j, nl2cache;
3118 	nvlist_t *nvroot;
3119 	uint64_t guid;
3120 	vdev_t *vd;
3121 	vdev_stat_t *vs;
3122 	uint_t vsc;
3123 
3124 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3125 
3126 	if (spa->spa_l2cache.sav_count == 0)
3127 		return;
3128 
3129 	VERIFY(nvlist_lookup_nvlist(config,
3130 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3131 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3132 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3133 	if (nl2cache != 0) {
3134 		VERIFY(nvlist_add_nvlist_array(nvroot,
3135 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3136 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3137 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3138 
3139 		/*
3140 		 * Update level 2 cache device stats.
3141 		 */
3142 
3143 		for (i = 0; i < nl2cache; i++) {
3144 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3145 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3146 
3147 			vd = NULL;
3148 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3149 				if (guid ==
3150 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3151 					vd = spa->spa_l2cache.sav_vdevs[j];
3152 					break;
3153 				}
3154 			}
3155 			ASSERT(vd != NULL);
3156 
3157 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3158 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3159 			    == 0);
3160 			vdev_get_stats(vd, vs);
3161 		}
3162 	}
3163 }
3164 
3165 static void
3166 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3167 {
3168 	nvlist_t *features;
3169 	zap_cursor_t zc;
3170 	zap_attribute_t za;
3171 
3172 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3173 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3174 
3175 	if (spa->spa_feat_for_read_obj != 0) {
3176 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3177 		    spa->spa_feat_for_read_obj);
3178 		    zap_cursor_retrieve(&zc, &za) == 0;
3179 		    zap_cursor_advance(&zc)) {
3180 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3181 			    za.za_num_integers == 1);
3182 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3183 			    za.za_first_integer));
3184 		}
3185 		zap_cursor_fini(&zc);
3186 	}
3187 
3188 	if (spa->spa_feat_for_write_obj != 0) {
3189 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3190 		    spa->spa_feat_for_write_obj);
3191 		    zap_cursor_retrieve(&zc, &za) == 0;
3192 		    zap_cursor_advance(&zc)) {
3193 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3194 			    za.za_num_integers == 1);
3195 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3196 			    za.za_first_integer));
3197 		}
3198 		zap_cursor_fini(&zc);
3199 	}
3200 
3201 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3202 	    features) == 0);
3203 	nvlist_free(features);
3204 }
3205 
3206 int
3207 spa_get_stats(const char *name, nvlist_t **config,
3208     char *altroot, size_t buflen)
3209 {
3210 	int error;
3211 	spa_t *spa;
3212 
3213 	*config = NULL;
3214 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3215 
3216 	if (spa != NULL) {
3217 		/*
3218 		 * This still leaves a window of inconsistency where the spares
3219 		 * or l2cache devices could change and the config would be
3220 		 * self-inconsistent.
3221 		 */
3222 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3223 
3224 		if (*config != NULL) {
3225 			uint64_t loadtimes[2];
3226 
3227 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3228 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3229 			VERIFY(nvlist_add_uint64_array(*config,
3230 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3231 
3232 			VERIFY(nvlist_add_uint64(*config,
3233 			    ZPOOL_CONFIG_ERRCOUNT,
3234 			    spa_get_errlog_size(spa)) == 0);
3235 
3236 			if (spa_suspended(spa))
3237 				VERIFY(nvlist_add_uint64(*config,
3238 				    ZPOOL_CONFIG_SUSPENDED,
3239 				    spa->spa_failmode) == 0);
3240 
3241 			spa_add_spares(spa, *config);
3242 			spa_add_l2cache(spa, *config);
3243 			spa_add_feature_stats(spa, *config);
3244 		}
3245 	}
3246 
3247 	/*
3248 	 * We want to get the alternate root even for faulted pools, so we cheat
3249 	 * and call spa_lookup() directly.
3250 	 */
3251 	if (altroot) {
3252 		if (spa == NULL) {
3253 			mutex_enter(&spa_namespace_lock);
3254 			spa = spa_lookup(name);
3255 			if (spa)
3256 				spa_altroot(spa, altroot, buflen);
3257 			else
3258 				altroot[0] = '\0';
3259 			spa = NULL;
3260 			mutex_exit(&spa_namespace_lock);
3261 		} else {
3262 			spa_altroot(spa, altroot, buflen);
3263 		}
3264 	}
3265 
3266 	if (spa != NULL) {
3267 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3268 		spa_close(spa, FTAG);
3269 	}
3270 
3271 	return (error);
3272 }
3273 
3274 /*
3275  * Validate that the auxiliary device array is well formed.  We must have an
3276  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3277  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3278  * specified, as long as they are well-formed.
3279  */
3280 static int
3281 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3282     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3283     vdev_labeltype_t label)
3284 {
3285 	nvlist_t **dev;
3286 	uint_t i, ndev;
3287 	vdev_t *vd;
3288 	int error;
3289 
3290 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3291 
3292 	/*
3293 	 * It's acceptable to have no devs specified.
3294 	 */
3295 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3296 		return (0);
3297 
3298 	if (ndev == 0)
3299 		return (SET_ERROR(EINVAL));
3300 
3301 	/*
3302 	 * Make sure the pool is formatted with a version that supports this
3303 	 * device type.
3304 	 */
3305 	if (spa_version(spa) < version)
3306 		return (SET_ERROR(ENOTSUP));
3307 
3308 	/*
3309 	 * Set the pending device list so we correctly handle device in-use
3310 	 * checking.
3311 	 */
3312 	sav->sav_pending = dev;
3313 	sav->sav_npending = ndev;
3314 
3315 	for (i = 0; i < ndev; i++) {
3316 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3317 		    mode)) != 0)
3318 			goto out;
3319 
3320 		if (!vd->vdev_ops->vdev_op_leaf) {
3321 			vdev_free(vd);
3322 			error = SET_ERROR(EINVAL);
3323 			goto out;
3324 		}
3325 
3326 		/*
3327 		 * The L2ARC currently only supports disk devices in
3328 		 * kernel context.  For user-level testing, we allow it.
3329 		 */
3330 #ifdef _KERNEL
3331 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3332 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3333 			error = SET_ERROR(ENOTBLK);
3334 			vdev_free(vd);
3335 			goto out;
3336 		}
3337 #endif
3338 		vd->vdev_top = vd;
3339 
3340 		if ((error = vdev_open(vd)) == 0 &&
3341 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3342 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3343 			    vd->vdev_guid) == 0);
3344 		}
3345 
3346 		vdev_free(vd);
3347 
3348 		if (error &&
3349 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3350 			goto out;
3351 		else
3352 			error = 0;
3353 	}
3354 
3355 out:
3356 	sav->sav_pending = NULL;
3357 	sav->sav_npending = 0;
3358 	return (error);
3359 }
3360 
3361 static int
3362 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3363 {
3364 	int error;
3365 
3366 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3367 
3368 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3369 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3370 	    VDEV_LABEL_SPARE)) != 0) {
3371 		return (error);
3372 	}
3373 
3374 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3375 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3376 	    VDEV_LABEL_L2CACHE));
3377 }
3378 
3379 static void
3380 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3381     const char *config)
3382 {
3383 	int i;
3384 
3385 	if (sav->sav_config != NULL) {
3386 		nvlist_t **olddevs;
3387 		uint_t oldndevs;
3388 		nvlist_t **newdevs;
3389 
3390 		/*
3391 		 * Generate new dev list by concatentating with the
3392 		 * current dev list.
3393 		 */
3394 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3395 		    &olddevs, &oldndevs) == 0);
3396 
3397 		newdevs = kmem_alloc(sizeof (void *) *
3398 		    (ndevs + oldndevs), KM_SLEEP);
3399 		for (i = 0; i < oldndevs; i++)
3400 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3401 			    KM_SLEEP) == 0);
3402 		for (i = 0; i < ndevs; i++)
3403 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3404 			    KM_SLEEP) == 0);
3405 
3406 		VERIFY(nvlist_remove(sav->sav_config, config,
3407 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3408 
3409 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3410 		    config, newdevs, ndevs + oldndevs) == 0);
3411 		for (i = 0; i < oldndevs + ndevs; i++)
3412 			nvlist_free(newdevs[i]);
3413 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3414 	} else {
3415 		/*
3416 		 * Generate a new dev list.
3417 		 */
3418 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3419 		    KM_SLEEP) == 0);
3420 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3421 		    devs, ndevs) == 0);
3422 	}
3423 }
3424 
3425 /*
3426  * Stop and drop level 2 ARC devices
3427  */
3428 void
3429 spa_l2cache_drop(spa_t *spa)
3430 {
3431 	vdev_t *vd;
3432 	int i;
3433 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3434 
3435 	for (i = 0; i < sav->sav_count; i++) {
3436 		uint64_t pool;
3437 
3438 		vd = sav->sav_vdevs[i];
3439 		ASSERT(vd != NULL);
3440 
3441 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3442 		    pool != 0ULL && l2arc_vdev_present(vd))
3443 			l2arc_remove_vdev(vd);
3444 	}
3445 }
3446 
3447 /*
3448  * Pool Creation
3449  */
3450 int
3451 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3452     nvlist_t *zplprops)
3453 {
3454 	spa_t *spa;
3455 	char *altroot = NULL;
3456 	vdev_t *rvd;
3457 	dsl_pool_t *dp;
3458 	dmu_tx_t *tx;
3459 	int error = 0;
3460 	uint64_t txg = TXG_INITIAL;
3461 	nvlist_t **spares, **l2cache;
3462 	uint_t nspares, nl2cache;
3463 	uint64_t version, obj;
3464 	boolean_t has_features;
3465 
3466 	/*
3467 	 * If this pool already exists, return failure.
3468 	 */
3469 	mutex_enter(&spa_namespace_lock);
3470 	if (spa_lookup(pool) != NULL) {
3471 		mutex_exit(&spa_namespace_lock);
3472 		return (SET_ERROR(EEXIST));
3473 	}
3474 
3475 	/*
3476 	 * Allocate a new spa_t structure.
3477 	 */
3478 	(void) nvlist_lookup_string(props,
3479 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3480 	spa = spa_add(pool, NULL, altroot);
3481 	spa_activate(spa, spa_mode_global);
3482 
3483 	if (props && (error = spa_prop_validate(spa, props))) {
3484 		spa_deactivate(spa);
3485 		spa_remove(spa);
3486 		mutex_exit(&spa_namespace_lock);
3487 		return (error);
3488 	}
3489 
3490 	has_features = B_FALSE;
3491 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3492 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3493 		if (zpool_prop_feature(nvpair_name(elem)))
3494 			has_features = B_TRUE;
3495 	}
3496 
3497 	if (has_features || nvlist_lookup_uint64(props,
3498 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3499 		version = SPA_VERSION;
3500 	}
3501 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3502 
3503 	spa->spa_first_txg = txg;
3504 	spa->spa_uberblock.ub_txg = txg - 1;
3505 	spa->spa_uberblock.ub_version = version;
3506 	spa->spa_ubsync = spa->spa_uberblock;
3507 
3508 	/*
3509 	 * Create "The Godfather" zio to hold all async IOs
3510 	 */
3511 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3512 	    KM_SLEEP);
3513 	for (int i = 0; i < max_ncpus; i++) {
3514 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3515 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3516 		    ZIO_FLAG_GODFATHER);
3517 	}
3518 
3519 	/*
3520 	 * Create the root vdev.
3521 	 */
3522 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3523 
3524 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3525 
3526 	ASSERT(error != 0 || rvd != NULL);
3527 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3528 
3529 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3530 		error = SET_ERROR(EINVAL);
3531 
3532 	if (error == 0 &&
3533 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3534 	    (error = spa_validate_aux(spa, nvroot, txg,
3535 	    VDEV_ALLOC_ADD)) == 0) {
3536 		for (int c = 0; c < rvd->vdev_children; c++) {
3537 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3538 			vdev_expand(rvd->vdev_child[c], txg);
3539 		}
3540 	}
3541 
3542 	spa_config_exit(spa, SCL_ALL, FTAG);
3543 
3544 	if (error != 0) {
3545 		spa_unload(spa);
3546 		spa_deactivate(spa);
3547 		spa_remove(spa);
3548 		mutex_exit(&spa_namespace_lock);
3549 		return (error);
3550 	}
3551 
3552 	/*
3553 	 * Get the list of spares, if specified.
3554 	 */
3555 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3556 	    &spares, &nspares) == 0) {
3557 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3558 		    KM_SLEEP) == 0);
3559 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3560 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3561 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3562 		spa_load_spares(spa);
3563 		spa_config_exit(spa, SCL_ALL, FTAG);
3564 		spa->spa_spares.sav_sync = B_TRUE;
3565 	}
3566 
3567 	/*
3568 	 * Get the list of level 2 cache devices, if specified.
3569 	 */
3570 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3571 	    &l2cache, &nl2cache) == 0) {
3572 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3573 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3574 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3575 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3576 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3577 		spa_load_l2cache(spa);
3578 		spa_config_exit(spa, SCL_ALL, FTAG);
3579 		spa->spa_l2cache.sav_sync = B_TRUE;
3580 	}
3581 
3582 	spa->spa_is_initializing = B_TRUE;
3583 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3584 	spa->spa_meta_objset = dp->dp_meta_objset;
3585 	spa->spa_is_initializing = B_FALSE;
3586 
3587 	/*
3588 	 * Create DDTs (dedup tables).
3589 	 */
3590 	ddt_create(spa);
3591 
3592 	spa_update_dspace(spa);
3593 
3594 	tx = dmu_tx_create_assigned(dp, txg);
3595 
3596 	/*
3597 	 * Create the pool config object.
3598 	 */
3599 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3600 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3601 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3602 
3603 	if (zap_add(spa->spa_meta_objset,
3604 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3605 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3606 		cmn_err(CE_PANIC, "failed to add pool config");
3607 	}
3608 
3609 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3610 		spa_feature_create_zap_objects(spa, tx);
3611 
3612 	if (zap_add(spa->spa_meta_objset,
3613 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3614 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3615 		cmn_err(CE_PANIC, "failed to add pool version");
3616 	}
3617 
3618 	/* Newly created pools with the right version are always deflated. */
3619 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3620 		spa->spa_deflate = TRUE;
3621 		if (zap_add(spa->spa_meta_objset,
3622 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3623 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3624 			cmn_err(CE_PANIC, "failed to add deflate");
3625 		}
3626 	}
3627 
3628 	/*
3629 	 * Create the deferred-free bpobj.  Turn off compression
3630 	 * because sync-to-convergence takes longer if the blocksize
3631 	 * keeps changing.
3632 	 */
3633 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3634 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3635 	    ZIO_COMPRESS_OFF, tx);
3636 	if (zap_add(spa->spa_meta_objset,
3637 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3638 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3639 		cmn_err(CE_PANIC, "failed to add bpobj");
3640 	}
3641 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3642 	    spa->spa_meta_objset, obj));
3643 
3644 	/*
3645 	 * Create the pool's history object.
3646 	 */
3647 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3648 		spa_history_create_obj(spa, tx);
3649 
3650 	/*
3651 	 * Set pool properties.
3652 	 */
3653 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3654 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3655 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3656 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3657 
3658 	if (props != NULL) {
3659 		spa_configfile_set(spa, props, B_FALSE);
3660 		spa_sync_props(props, tx);
3661 	}
3662 
3663 	dmu_tx_commit(tx);
3664 
3665 	spa->spa_sync_on = B_TRUE;
3666 	txg_sync_start(spa->spa_dsl_pool);
3667 
3668 	/*
3669 	 * We explicitly wait for the first transaction to complete so that our
3670 	 * bean counters are appropriately updated.
3671 	 */
3672 	txg_wait_synced(spa->spa_dsl_pool, txg);
3673 
3674 	spa_config_sync(spa, B_FALSE, B_TRUE);
3675 
3676 	spa_history_log_version(spa, "create");
3677 
3678 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3679 
3680 	mutex_exit(&spa_namespace_lock);
3681 
3682 	return (0);
3683 }
3684 
3685 #ifdef _KERNEL
3686 /*
3687  * Get the root pool information from the root disk, then import the root pool
3688  * during the system boot up time.
3689  */
3690 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3691 
3692 static nvlist_t *
3693 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3694 {
3695 	nvlist_t *config;
3696 	nvlist_t *nvtop, *nvroot;
3697 	uint64_t pgid;
3698 
3699 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3700 		return (NULL);
3701 
3702 	/*
3703 	 * Add this top-level vdev to the child array.
3704 	 */
3705 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3706 	    &nvtop) == 0);
3707 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3708 	    &pgid) == 0);
3709 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3710 
3711 	/*
3712 	 * Put this pool's top-level vdevs into a root vdev.
3713 	 */
3714 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3715 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3716 	    VDEV_TYPE_ROOT) == 0);
3717 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3718 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3719 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3720 	    &nvtop, 1) == 0);
3721 
3722 	/*
3723 	 * Replace the existing vdev_tree with the new root vdev in
3724 	 * this pool's configuration (remove the old, add the new).
3725 	 */
3726 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3727 	nvlist_free(nvroot);
3728 	return (config);
3729 }
3730 
3731 /*
3732  * Walk the vdev tree and see if we can find a device with "better"
3733  * configuration. A configuration is "better" if the label on that
3734  * device has a more recent txg.
3735  */
3736 static void
3737 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3738 {
3739 	for (int c = 0; c < vd->vdev_children; c++)
3740 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3741 
3742 	if (vd->vdev_ops->vdev_op_leaf) {
3743 		nvlist_t *label;
3744 		uint64_t label_txg;
3745 
3746 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3747 		    &label) != 0)
3748 			return;
3749 
3750 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3751 		    &label_txg) == 0);
3752 
3753 		/*
3754 		 * Do we have a better boot device?
3755 		 */
3756 		if (label_txg > *txg) {
3757 			*txg = label_txg;
3758 			*avd = vd;
3759 		}
3760 		nvlist_free(label);
3761 	}
3762 }
3763 
3764 /*
3765  * Import a root pool.
3766  *
3767  * For x86. devpath_list will consist of devid and/or physpath name of
3768  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3769  * The GRUB "findroot" command will return the vdev we should boot.
3770  *
3771  * For Sparc, devpath_list consists the physpath name of the booting device
3772  * no matter the rootpool is a single device pool or a mirrored pool.
3773  * e.g.
3774  *	"/pci@1f,0/ide@d/disk@0,0:a"
3775  */
3776 int
3777 spa_import_rootpool(char *devpath, char *devid)
3778 {
3779 	spa_t *spa;
3780 	vdev_t *rvd, *bvd, *avd = NULL;
3781 	nvlist_t *config, *nvtop;
3782 	uint64_t guid, txg;
3783 	char *pname;
3784 	int error;
3785 
3786 	/*
3787 	 * Read the label from the boot device and generate a configuration.
3788 	 */
3789 	config = spa_generate_rootconf(devpath, devid, &guid);
3790 #if defined(_OBP) && defined(_KERNEL)
3791 	if (config == NULL) {
3792 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3793 			/* iscsi boot */
3794 			get_iscsi_bootpath_phy(devpath);
3795 			config = spa_generate_rootconf(devpath, devid, &guid);
3796 		}
3797 	}
3798 #endif
3799 	if (config == NULL) {
3800 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3801 		    devpath);
3802 		return (SET_ERROR(EIO));
3803 	}
3804 
3805 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3806 	    &pname) == 0);
3807 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3808 
3809 	mutex_enter(&spa_namespace_lock);
3810 	if ((spa = spa_lookup(pname)) != NULL) {
3811 		/*
3812 		 * Remove the existing root pool from the namespace so that we
3813 		 * can replace it with the correct config we just read in.
3814 		 */
3815 		spa_remove(spa);
3816 	}
3817 
3818 	spa = spa_add(pname, config, NULL);
3819 	spa->spa_is_root = B_TRUE;
3820 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3821 
3822 	/*
3823 	 * Build up a vdev tree based on the boot device's label config.
3824 	 */
3825 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3826 	    &nvtop) == 0);
3827 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3828 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3829 	    VDEV_ALLOC_ROOTPOOL);
3830 	spa_config_exit(spa, SCL_ALL, FTAG);
3831 	if (error) {
3832 		mutex_exit(&spa_namespace_lock);
3833 		nvlist_free(config);
3834 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3835 		    pname);
3836 		return (error);
3837 	}
3838 
3839 	/*
3840 	 * Get the boot vdev.
3841 	 */
3842 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3843 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3844 		    (u_longlong_t)guid);
3845 		error = SET_ERROR(ENOENT);
3846 		goto out;
3847 	}
3848 
3849 	/*
3850 	 * Determine if there is a better boot device.
3851 	 */
3852 	avd = bvd;
3853 	spa_alt_rootvdev(rvd, &avd, &txg);
3854 	if (avd != bvd) {
3855 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3856 		    "try booting from '%s'", avd->vdev_path);
3857 		error = SET_ERROR(EINVAL);
3858 		goto out;
3859 	}
3860 
3861 	/*
3862 	 * If the boot device is part of a spare vdev then ensure that
3863 	 * we're booting off the active spare.
3864 	 */
3865 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3866 	    !bvd->vdev_isspare) {
3867 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3868 		    "try booting from '%s'",
3869 		    bvd->vdev_parent->
3870 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3871 		error = SET_ERROR(EINVAL);
3872 		goto out;
3873 	}
3874 
3875 	error = 0;
3876 out:
3877 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3878 	vdev_free(rvd);
3879 	spa_config_exit(spa, SCL_ALL, FTAG);
3880 	mutex_exit(&spa_namespace_lock);
3881 
3882 	nvlist_free(config);
3883 	return (error);
3884 }
3885 
3886 #endif
3887 
3888 /*
3889  * Import a non-root pool into the system.
3890  */
3891 int
3892 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3893 {
3894 	spa_t *spa;
3895 	char *altroot = NULL;
3896 	spa_load_state_t state = SPA_LOAD_IMPORT;
3897 	zpool_rewind_policy_t policy;
3898 	uint64_t mode = spa_mode_global;
3899 	uint64_t readonly = B_FALSE;
3900 	int error;
3901 	nvlist_t *nvroot;
3902 	nvlist_t **spares, **l2cache;
3903 	uint_t nspares, nl2cache;
3904 
3905 	/*
3906 	 * If a pool with this name exists, return failure.
3907 	 */
3908 	mutex_enter(&spa_namespace_lock);
3909 	if (spa_lookup(pool) != NULL) {
3910 		mutex_exit(&spa_namespace_lock);
3911 		return (SET_ERROR(EEXIST));
3912 	}
3913 
3914 	/*
3915 	 * Create and initialize the spa structure.
3916 	 */
3917 	(void) nvlist_lookup_string(props,
3918 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3919 	(void) nvlist_lookup_uint64(props,
3920 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3921 	if (readonly)
3922 		mode = FREAD;
3923 	spa = spa_add(pool, config, altroot);
3924 	spa->spa_import_flags = flags;
3925 
3926 	/*
3927 	 * Verbatim import - Take a pool and insert it into the namespace
3928 	 * as if it had been loaded at boot.
3929 	 */
3930 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3931 		if (props != NULL)
3932 			spa_configfile_set(spa, props, B_FALSE);
3933 
3934 		spa_config_sync(spa, B_FALSE, B_TRUE);
3935 
3936 		mutex_exit(&spa_namespace_lock);
3937 		return (0);
3938 	}
3939 
3940 	spa_activate(spa, mode);
3941 
3942 	/*
3943 	 * Don't start async tasks until we know everything is healthy.
3944 	 */
3945 	spa_async_suspend(spa);
3946 
3947 	zpool_get_rewind_policy(config, &policy);
3948 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3949 		state = SPA_LOAD_RECOVER;
3950 
3951 	/*
3952 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3953 	 * because the user-supplied config is actually the one to trust when
3954 	 * doing an import.
3955 	 */
3956 	if (state != SPA_LOAD_RECOVER)
3957 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3958 
3959 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3960 	    policy.zrp_request);
3961 
3962 	/*
3963 	 * Propagate anything learned while loading the pool and pass it
3964 	 * back to caller (i.e. rewind info, missing devices, etc).
3965 	 */
3966 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3967 	    spa->spa_load_info) == 0);
3968 
3969 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3970 	/*
3971 	 * Toss any existing sparelist, as it doesn't have any validity
3972 	 * anymore, and conflicts with spa_has_spare().
3973 	 */
3974 	if (spa->spa_spares.sav_config) {
3975 		nvlist_free(spa->spa_spares.sav_config);
3976 		spa->spa_spares.sav_config = NULL;
3977 		spa_load_spares(spa);
3978 	}
3979 	if (spa->spa_l2cache.sav_config) {
3980 		nvlist_free(spa->spa_l2cache.sav_config);
3981 		spa->spa_l2cache.sav_config = NULL;
3982 		spa_load_l2cache(spa);
3983 	}
3984 
3985 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3986 	    &nvroot) == 0);
3987 	if (error == 0)
3988 		error = spa_validate_aux(spa, nvroot, -1ULL,
3989 		    VDEV_ALLOC_SPARE);
3990 	if (error == 0)
3991 		error = spa_validate_aux(spa, nvroot, -1ULL,
3992 		    VDEV_ALLOC_L2CACHE);
3993 	spa_config_exit(spa, SCL_ALL, FTAG);
3994 
3995 	if (props != NULL)
3996 		spa_configfile_set(spa, props, B_FALSE);
3997 
3998 	if (error != 0 || (props && spa_writeable(spa) &&
3999 	    (error = spa_prop_set(spa, props)))) {
4000 		spa_unload(spa);
4001 		spa_deactivate(spa);
4002 		spa_remove(spa);
4003 		mutex_exit(&spa_namespace_lock);
4004 		return (error);
4005 	}
4006 
4007 	spa_async_resume(spa);
4008 
4009 	/*
4010 	 * Override any spares and level 2 cache devices as specified by
4011 	 * the user, as these may have correct device names/devids, etc.
4012 	 */
4013 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4014 	    &spares, &nspares) == 0) {
4015 		if (spa->spa_spares.sav_config)
4016 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4017 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4018 		else
4019 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4020 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4021 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4022 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4023 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4024 		spa_load_spares(spa);
4025 		spa_config_exit(spa, SCL_ALL, FTAG);
4026 		spa->spa_spares.sav_sync = B_TRUE;
4027 	}
4028 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4029 	    &l2cache, &nl2cache) == 0) {
4030 		if (spa->spa_l2cache.sav_config)
4031 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4032 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4033 		else
4034 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4035 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4036 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4037 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4038 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4039 		spa_load_l2cache(spa);
4040 		spa_config_exit(spa, SCL_ALL, FTAG);
4041 		spa->spa_l2cache.sav_sync = B_TRUE;
4042 	}
4043 
4044 	/*
4045 	 * Check for any removed devices.
4046 	 */
4047 	if (spa->spa_autoreplace) {
4048 		spa_aux_check_removed(&spa->spa_spares);
4049 		spa_aux_check_removed(&spa->spa_l2cache);
4050 	}
4051 
4052 	if (spa_writeable(spa)) {
4053 		/*
4054 		 * Update the config cache to include the newly-imported pool.
4055 		 */
4056 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4057 	}
4058 
4059 	/*
4060 	 * It's possible that the pool was expanded while it was exported.
4061 	 * We kick off an async task to handle this for us.
4062 	 */
4063 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4064 
4065 	mutex_exit(&spa_namespace_lock);
4066 	spa_history_log_version(spa, "import");
4067 
4068 	return (0);
4069 }
4070 
4071 nvlist_t *
4072 spa_tryimport(nvlist_t *tryconfig)
4073 {
4074 	nvlist_t *config = NULL;
4075 	char *poolname;
4076 	spa_t *spa;
4077 	uint64_t state;
4078 	int error;
4079 
4080 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4081 		return (NULL);
4082 
4083 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4084 		return (NULL);
4085 
4086 	/*
4087 	 * Create and initialize the spa structure.
4088 	 */
4089 	mutex_enter(&spa_namespace_lock);
4090 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4091 	spa_activate(spa, FREAD);
4092 
4093 	/*
4094 	 * Pass off the heavy lifting to spa_load().
4095 	 * Pass TRUE for mosconfig because the user-supplied config
4096 	 * is actually the one to trust when doing an import.
4097 	 */
4098 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4099 
4100 	/*
4101 	 * If 'tryconfig' was at least parsable, return the current config.
4102 	 */
4103 	if (spa->spa_root_vdev != NULL) {
4104 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4105 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4106 		    poolname) == 0);
4107 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4108 		    state) == 0);
4109 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4110 		    spa->spa_uberblock.ub_timestamp) == 0);
4111 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4112 		    spa->spa_load_info) == 0);
4113 
4114 		/*
4115 		 * If the bootfs property exists on this pool then we
4116 		 * copy it out so that external consumers can tell which
4117 		 * pools are bootable.
4118 		 */
4119 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4120 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4121 
4122 			/*
4123 			 * We have to play games with the name since the
4124 			 * pool was opened as TRYIMPORT_NAME.
4125 			 */
4126 			if (dsl_dsobj_to_dsname(spa_name(spa),
4127 			    spa->spa_bootfs, tmpname) == 0) {
4128 				char *cp;
4129 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4130 
4131 				cp = strchr(tmpname, '/');
4132 				if (cp == NULL) {
4133 					(void) strlcpy(dsname, tmpname,
4134 					    MAXPATHLEN);
4135 				} else {
4136 					(void) snprintf(dsname, MAXPATHLEN,
4137 					    "%s/%s", poolname, ++cp);
4138 				}
4139 				VERIFY(nvlist_add_string(config,
4140 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4141 				kmem_free(dsname, MAXPATHLEN);
4142 			}
4143 			kmem_free(tmpname, MAXPATHLEN);
4144 		}
4145 
4146 		/*
4147 		 * Add the list of hot spares and level 2 cache devices.
4148 		 */
4149 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4150 		spa_add_spares(spa, config);
4151 		spa_add_l2cache(spa, config);
4152 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4153 	}
4154 
4155 	spa_unload(spa);
4156 	spa_deactivate(spa);
4157 	spa_remove(spa);
4158 	mutex_exit(&spa_namespace_lock);
4159 
4160 	return (config);
4161 }
4162 
4163 /*
4164  * Pool export/destroy
4165  *
4166  * The act of destroying or exporting a pool is very simple.  We make sure there
4167  * is no more pending I/O and any references to the pool are gone.  Then, we
4168  * update the pool state and sync all the labels to disk, removing the
4169  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4170  * we don't sync the labels or remove the configuration cache.
4171  */
4172 static int
4173 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4174     boolean_t force, boolean_t hardforce)
4175 {
4176 	spa_t *spa;
4177 
4178 	if (oldconfig)
4179 		*oldconfig = NULL;
4180 
4181 	if (!(spa_mode_global & FWRITE))
4182 		return (SET_ERROR(EROFS));
4183 
4184 	mutex_enter(&spa_namespace_lock);
4185 	if ((spa = spa_lookup(pool)) == NULL) {
4186 		mutex_exit(&spa_namespace_lock);
4187 		return (SET_ERROR(ENOENT));
4188 	}
4189 
4190 	/*
4191 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4192 	 * reacquire the namespace lock, and see if we can export.
4193 	 */
4194 	spa_open_ref(spa, FTAG);
4195 	mutex_exit(&spa_namespace_lock);
4196 	spa_async_suspend(spa);
4197 	mutex_enter(&spa_namespace_lock);
4198 	spa_close(spa, FTAG);
4199 
4200 	/*
4201 	 * The pool will be in core if it's openable,
4202 	 * in which case we can modify its state.
4203 	 */
4204 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4205 		/*
4206 		 * Objsets may be open only because they're dirty, so we
4207 		 * have to force it to sync before checking spa_refcnt.
4208 		 */
4209 		txg_wait_synced(spa->spa_dsl_pool, 0);
4210 
4211 		/*
4212 		 * A pool cannot be exported or destroyed if there are active
4213 		 * references.  If we are resetting a pool, allow references by
4214 		 * fault injection handlers.
4215 		 */
4216 		if (!spa_refcount_zero(spa) ||
4217 		    (spa->spa_inject_ref != 0 &&
4218 		    new_state != POOL_STATE_UNINITIALIZED)) {
4219 			spa_async_resume(spa);
4220 			mutex_exit(&spa_namespace_lock);
4221 			return (SET_ERROR(EBUSY));
4222 		}
4223 
4224 		/*
4225 		 * A pool cannot be exported if it has an active shared spare.
4226 		 * This is to prevent other pools stealing the active spare
4227 		 * from an exported pool. At user's own will, such pool can
4228 		 * be forcedly exported.
4229 		 */
4230 		if (!force && new_state == POOL_STATE_EXPORTED &&
4231 		    spa_has_active_shared_spare(spa)) {
4232 			spa_async_resume(spa);
4233 			mutex_exit(&spa_namespace_lock);
4234 			return (SET_ERROR(EXDEV));
4235 		}
4236 
4237 		/*
4238 		 * We want this to be reflected on every label,
4239 		 * so mark them all dirty.  spa_unload() will do the
4240 		 * final sync that pushes these changes out.
4241 		 */
4242 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4243 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4244 			spa->spa_state = new_state;
4245 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4246 			    TXG_DEFER_SIZE + 1;
4247 			vdev_config_dirty(spa->spa_root_vdev);
4248 			spa_config_exit(spa, SCL_ALL, FTAG);
4249 		}
4250 	}
4251 
4252 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4253 
4254 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4255 		spa_unload(spa);
4256 		spa_deactivate(spa);
4257 	}
4258 
4259 	if (oldconfig && spa->spa_config)
4260 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4261 
4262 	if (new_state != POOL_STATE_UNINITIALIZED) {
4263 		if (!hardforce)
4264 			spa_config_sync(spa, B_TRUE, B_TRUE);
4265 		spa_remove(spa);
4266 	}
4267 	mutex_exit(&spa_namespace_lock);
4268 
4269 	return (0);
4270 }
4271 
4272 /*
4273  * Destroy a storage pool.
4274  */
4275 int
4276 spa_destroy(char *pool)
4277 {
4278 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4279 	    B_FALSE, B_FALSE));
4280 }
4281 
4282 /*
4283  * Export a storage pool.
4284  */
4285 int
4286 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4287     boolean_t hardforce)
4288 {
4289 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4290 	    force, hardforce));
4291 }
4292 
4293 /*
4294  * Similar to spa_export(), this unloads the spa_t without actually removing it
4295  * from the namespace in any way.
4296  */
4297 int
4298 spa_reset(char *pool)
4299 {
4300 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4301 	    B_FALSE, B_FALSE));
4302 }
4303 
4304 /*
4305  * ==========================================================================
4306  * Device manipulation
4307  * ==========================================================================
4308  */
4309 
4310 /*
4311  * Add a device to a storage pool.
4312  */
4313 int
4314 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4315 {
4316 	uint64_t txg, id;
4317 	int error;
4318 	vdev_t *rvd = spa->spa_root_vdev;
4319 	vdev_t *vd, *tvd;
4320 	nvlist_t **spares, **l2cache;
4321 	uint_t nspares, nl2cache;
4322 
4323 	ASSERT(spa_writeable(spa));
4324 
4325 	txg = spa_vdev_enter(spa);
4326 
4327 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4328 	    VDEV_ALLOC_ADD)) != 0)
4329 		return (spa_vdev_exit(spa, NULL, txg, error));
4330 
4331 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4332 
4333 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4334 	    &nspares) != 0)
4335 		nspares = 0;
4336 
4337 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4338 	    &nl2cache) != 0)
4339 		nl2cache = 0;
4340 
4341 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4342 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4343 
4344 	if (vd->vdev_children != 0 &&
4345 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4346 		return (spa_vdev_exit(spa, vd, txg, error));
4347 
4348 	/*
4349 	 * We must validate the spares and l2cache devices after checking the
4350 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4351 	 */
4352 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4353 		return (spa_vdev_exit(spa, vd, txg, error));
4354 
4355 	/*
4356 	 * Transfer each new top-level vdev from vd to rvd.
4357 	 */
4358 	for (int c = 0; c < vd->vdev_children; c++) {
4359 
4360 		/*
4361 		 * Set the vdev id to the first hole, if one exists.
4362 		 */
4363 		for (id = 0; id < rvd->vdev_children; id++) {
4364 			if (rvd->vdev_child[id]->vdev_ishole) {
4365 				vdev_free(rvd->vdev_child[id]);
4366 				break;
4367 			}
4368 		}
4369 		tvd = vd->vdev_child[c];
4370 		vdev_remove_child(vd, tvd);
4371 		tvd->vdev_id = id;
4372 		vdev_add_child(rvd, tvd);
4373 		vdev_config_dirty(tvd);
4374 	}
4375 
4376 	if (nspares != 0) {
4377 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4378 		    ZPOOL_CONFIG_SPARES);
4379 		spa_load_spares(spa);
4380 		spa->spa_spares.sav_sync = B_TRUE;
4381 	}
4382 
4383 	if (nl2cache != 0) {
4384 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4385 		    ZPOOL_CONFIG_L2CACHE);
4386 		spa_load_l2cache(spa);
4387 		spa->spa_l2cache.sav_sync = B_TRUE;
4388 	}
4389 
4390 	/*
4391 	 * We have to be careful when adding new vdevs to an existing pool.
4392 	 * If other threads start allocating from these vdevs before we
4393 	 * sync the config cache, and we lose power, then upon reboot we may
4394 	 * fail to open the pool because there are DVAs that the config cache
4395 	 * can't translate.  Therefore, we first add the vdevs without
4396 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4397 	 * and then let spa_config_update() initialize the new metaslabs.
4398 	 *
4399 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4400 	 * if we lose power at any point in this sequence, the remaining
4401 	 * steps will be completed the next time we load the pool.
4402 	 */
4403 	(void) spa_vdev_exit(spa, vd, txg, 0);
4404 
4405 	mutex_enter(&spa_namespace_lock);
4406 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4407 	mutex_exit(&spa_namespace_lock);
4408 
4409 	return (0);
4410 }
4411 
4412 /*
4413  * Attach a device to a mirror.  The arguments are the path to any device
4414  * in the mirror, and the nvroot for the new device.  If the path specifies
4415  * a device that is not mirrored, we automatically insert the mirror vdev.
4416  *
4417  * If 'replacing' is specified, the new device is intended to replace the
4418  * existing device; in this case the two devices are made into their own
4419  * mirror using the 'replacing' vdev, which is functionally identical to
4420  * the mirror vdev (it actually reuses all the same ops) but has a few
4421  * extra rules: you can't attach to it after it's been created, and upon
4422  * completion of resilvering, the first disk (the one being replaced)
4423  * is automatically detached.
4424  */
4425 int
4426 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4427 {
4428 	uint64_t txg, dtl_max_txg;
4429 	vdev_t *rvd = spa->spa_root_vdev;
4430 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4431 	vdev_ops_t *pvops;
4432 	char *oldvdpath, *newvdpath;
4433 	int newvd_isspare;
4434 	int error;
4435 
4436 	ASSERT(spa_writeable(spa));
4437 
4438 	txg = spa_vdev_enter(spa);
4439 
4440 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4441 
4442 	if (oldvd == NULL)
4443 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4444 
4445 	if (!oldvd->vdev_ops->vdev_op_leaf)
4446 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4447 
4448 	pvd = oldvd->vdev_parent;
4449 
4450 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4451 	    VDEV_ALLOC_ATTACH)) != 0)
4452 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4453 
4454 	if (newrootvd->vdev_children != 1)
4455 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4456 
4457 	newvd = newrootvd->vdev_child[0];
4458 
4459 	if (!newvd->vdev_ops->vdev_op_leaf)
4460 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4461 
4462 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4463 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4464 
4465 	/*
4466 	 * Spares can't replace logs
4467 	 */
4468 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4469 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4470 
4471 	if (!replacing) {
4472 		/*
4473 		 * For attach, the only allowable parent is a mirror or the root
4474 		 * vdev.
4475 		 */
4476 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4477 		    pvd->vdev_ops != &vdev_root_ops)
4478 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4479 
4480 		pvops = &vdev_mirror_ops;
4481 	} else {
4482 		/*
4483 		 * Active hot spares can only be replaced by inactive hot
4484 		 * spares.
4485 		 */
4486 		if (pvd->vdev_ops == &vdev_spare_ops &&
4487 		    oldvd->vdev_isspare &&
4488 		    !spa_has_spare(spa, newvd->vdev_guid))
4489 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4490 
4491 		/*
4492 		 * If the source is a hot spare, and the parent isn't already a
4493 		 * spare, then we want to create a new hot spare.  Otherwise, we
4494 		 * want to create a replacing vdev.  The user is not allowed to
4495 		 * attach to a spared vdev child unless the 'isspare' state is
4496 		 * the same (spare replaces spare, non-spare replaces
4497 		 * non-spare).
4498 		 */
4499 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4500 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4501 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4502 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4503 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4504 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4505 		}
4506 
4507 		if (newvd->vdev_isspare)
4508 			pvops = &vdev_spare_ops;
4509 		else
4510 			pvops = &vdev_replacing_ops;
4511 	}
4512 
4513 	/*
4514 	 * Make sure the new device is big enough.
4515 	 */
4516 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4517 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4518 
4519 	/*
4520 	 * The new device cannot have a higher alignment requirement
4521 	 * than the top-level vdev.
4522 	 */
4523 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4524 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4525 
4526 	/*
4527 	 * If this is an in-place replacement, update oldvd's path and devid
4528 	 * to make it distinguishable from newvd, and unopenable from now on.
4529 	 */
4530 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4531 		spa_strfree(oldvd->vdev_path);
4532 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4533 		    KM_SLEEP);
4534 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4535 		    newvd->vdev_path, "old");
4536 		if (oldvd->vdev_devid != NULL) {
4537 			spa_strfree(oldvd->vdev_devid);
4538 			oldvd->vdev_devid = NULL;
4539 		}
4540 	}
4541 
4542 	/* mark the device being resilvered */
4543 	newvd->vdev_resilver_txg = txg;
4544 
4545 	/*
4546 	 * If the parent is not a mirror, or if we're replacing, insert the new
4547 	 * mirror/replacing/spare vdev above oldvd.
4548 	 */
4549 	if (pvd->vdev_ops != pvops)
4550 		pvd = vdev_add_parent(oldvd, pvops);
4551 
4552 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4553 	ASSERT(pvd->vdev_ops == pvops);
4554 	ASSERT(oldvd->vdev_parent == pvd);
4555 
4556 	/*
4557 	 * Extract the new device from its root and add it to pvd.
4558 	 */
4559 	vdev_remove_child(newrootvd, newvd);
4560 	newvd->vdev_id = pvd->vdev_children;
4561 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4562 	vdev_add_child(pvd, newvd);
4563 
4564 	tvd = newvd->vdev_top;
4565 	ASSERT(pvd->vdev_top == tvd);
4566 	ASSERT(tvd->vdev_parent == rvd);
4567 
4568 	vdev_config_dirty(tvd);
4569 
4570 	/*
4571 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4572 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4573 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4574 	 */
4575 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4576 
4577 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4578 	    dtl_max_txg - TXG_INITIAL);
4579 
4580 	if (newvd->vdev_isspare) {
4581 		spa_spare_activate(newvd);
4582 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4583 	}
4584 
4585 	oldvdpath = spa_strdup(oldvd->vdev_path);
4586 	newvdpath = spa_strdup(newvd->vdev_path);
4587 	newvd_isspare = newvd->vdev_isspare;
4588 
4589 	/*
4590 	 * Mark newvd's DTL dirty in this txg.
4591 	 */
4592 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4593 
4594 	/*
4595 	 * Schedule the resilver to restart in the future. We do this to
4596 	 * ensure that dmu_sync-ed blocks have been stitched into the
4597 	 * respective datasets.
4598 	 */
4599 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4600 
4601 	/*
4602 	 * Commit the config
4603 	 */
4604 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4605 
4606 	spa_history_log_internal(spa, "vdev attach", NULL,
4607 	    "%s vdev=%s %s vdev=%s",
4608 	    replacing && newvd_isspare ? "spare in" :
4609 	    replacing ? "replace" : "attach", newvdpath,
4610 	    replacing ? "for" : "to", oldvdpath);
4611 
4612 	spa_strfree(oldvdpath);
4613 	spa_strfree(newvdpath);
4614 
4615 	if (spa->spa_bootfs)
4616 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4617 
4618 	return (0);
4619 }
4620 
4621 /*
4622  * Detach a device from a mirror or replacing vdev.
4623  *
4624  * If 'replace_done' is specified, only detach if the parent
4625  * is a replacing vdev.
4626  */
4627 int
4628 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4629 {
4630 	uint64_t txg;
4631 	int error;
4632 	vdev_t *rvd = spa->spa_root_vdev;
4633 	vdev_t *vd, *pvd, *cvd, *tvd;
4634 	boolean_t unspare = B_FALSE;
4635 	uint64_t unspare_guid = 0;
4636 	char *vdpath;
4637 
4638 	ASSERT(spa_writeable(spa));
4639 
4640 	txg = spa_vdev_enter(spa);
4641 
4642 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4643 
4644 	if (vd == NULL)
4645 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4646 
4647 	if (!vd->vdev_ops->vdev_op_leaf)
4648 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4649 
4650 	pvd = vd->vdev_parent;
4651 
4652 	/*
4653 	 * If the parent/child relationship is not as expected, don't do it.
4654 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4655 	 * vdev that's replacing B with C.  The user's intent in replacing
4656 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4657 	 * the replace by detaching C, the expected behavior is to end up
4658 	 * M(A,B).  But suppose that right after deciding to detach C,
4659 	 * the replacement of B completes.  We would have M(A,C), and then
4660 	 * ask to detach C, which would leave us with just A -- not what
4661 	 * the user wanted.  To prevent this, we make sure that the
4662 	 * parent/child relationship hasn't changed -- in this example,
4663 	 * that C's parent is still the replacing vdev R.
4664 	 */
4665 	if (pvd->vdev_guid != pguid && pguid != 0)
4666 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4667 
4668 	/*
4669 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4670 	 */
4671 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4672 	    pvd->vdev_ops != &vdev_spare_ops)
4673 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4674 
4675 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4676 	    spa_version(spa) >= SPA_VERSION_SPARES);
4677 
4678 	/*
4679 	 * Only mirror, replacing, and spare vdevs support detach.
4680 	 */
4681 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4682 	    pvd->vdev_ops != &vdev_mirror_ops &&
4683 	    pvd->vdev_ops != &vdev_spare_ops)
4684 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4685 
4686 	/*
4687 	 * If this device has the only valid copy of some data,
4688 	 * we cannot safely detach it.
4689 	 */
4690 	if (vdev_dtl_required(vd))
4691 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4692 
4693 	ASSERT(pvd->vdev_children >= 2);
4694 
4695 	/*
4696 	 * If we are detaching the second disk from a replacing vdev, then
4697 	 * check to see if we changed the original vdev's path to have "/old"
4698 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4699 	 */
4700 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4701 	    vd->vdev_path != NULL) {
4702 		size_t len = strlen(vd->vdev_path);
4703 
4704 		for (int c = 0; c < pvd->vdev_children; c++) {
4705 			cvd = pvd->vdev_child[c];
4706 
4707 			if (cvd == vd || cvd->vdev_path == NULL)
4708 				continue;
4709 
4710 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4711 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4712 				spa_strfree(cvd->vdev_path);
4713 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4714 				break;
4715 			}
4716 		}
4717 	}
4718 
4719 	/*
4720 	 * If we are detaching the original disk from a spare, then it implies
4721 	 * that the spare should become a real disk, and be removed from the
4722 	 * active spare list for the pool.
4723 	 */
4724 	if (pvd->vdev_ops == &vdev_spare_ops &&
4725 	    vd->vdev_id == 0 &&
4726 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4727 		unspare = B_TRUE;
4728 
4729 	/*
4730 	 * Erase the disk labels so the disk can be used for other things.
4731 	 * This must be done after all other error cases are handled,
4732 	 * but before we disembowel vd (so we can still do I/O to it).
4733 	 * But if we can't do it, don't treat the error as fatal --
4734 	 * it may be that the unwritability of the disk is the reason
4735 	 * it's being detached!
4736 	 */
4737 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4738 
4739 	/*
4740 	 * Remove vd from its parent and compact the parent's children.
4741 	 */
4742 	vdev_remove_child(pvd, vd);
4743 	vdev_compact_children(pvd);
4744 
4745 	/*
4746 	 * Remember one of the remaining children so we can get tvd below.
4747 	 */
4748 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4749 
4750 	/*
4751 	 * If we need to remove the remaining child from the list of hot spares,
4752 	 * do it now, marking the vdev as no longer a spare in the process.
4753 	 * We must do this before vdev_remove_parent(), because that can
4754 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4755 	 * reason, we must remove the spare now, in the same txg as the detach;
4756 	 * otherwise someone could attach a new sibling, change the GUID, and
4757 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4758 	 */
4759 	if (unspare) {
4760 		ASSERT(cvd->vdev_isspare);
4761 		spa_spare_remove(cvd);
4762 		unspare_guid = cvd->vdev_guid;
4763 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4764 		cvd->vdev_unspare = B_TRUE;
4765 	}
4766 
4767 	/*
4768 	 * If the parent mirror/replacing vdev only has one child,
4769 	 * the parent is no longer needed.  Remove it from the tree.
4770 	 */
4771 	if (pvd->vdev_children == 1) {
4772 		if (pvd->vdev_ops == &vdev_spare_ops)
4773 			cvd->vdev_unspare = B_FALSE;
4774 		vdev_remove_parent(cvd);
4775 	}
4776 
4777 
4778 	/*
4779 	 * We don't set tvd until now because the parent we just removed
4780 	 * may have been the previous top-level vdev.
4781 	 */
4782 	tvd = cvd->vdev_top;
4783 	ASSERT(tvd->vdev_parent == rvd);
4784 
4785 	/*
4786 	 * Reevaluate the parent vdev state.
4787 	 */
4788 	vdev_propagate_state(cvd);
4789 
4790 	/*
4791 	 * If the 'autoexpand' property is set on the pool then automatically
4792 	 * try to expand the size of the pool. For example if the device we
4793 	 * just detached was smaller than the others, it may be possible to
4794 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4795 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4796 	 */
4797 	if (spa->spa_autoexpand) {
4798 		vdev_reopen(tvd);
4799 		vdev_expand(tvd, txg);
4800 	}
4801 
4802 	vdev_config_dirty(tvd);
4803 
4804 	/*
4805 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4806 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4807 	 * But first make sure we're not on any *other* txg's DTL list, to
4808 	 * prevent vd from being accessed after it's freed.
4809 	 */
4810 	vdpath = spa_strdup(vd->vdev_path);
4811 	for (int t = 0; t < TXG_SIZE; t++)
4812 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4813 	vd->vdev_detached = B_TRUE;
4814 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4815 
4816 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4817 
4818 	/* hang on to the spa before we release the lock */
4819 	spa_open_ref(spa, FTAG);
4820 
4821 	error = spa_vdev_exit(spa, vd, txg, 0);
4822 
4823 	spa_history_log_internal(spa, "detach", NULL,
4824 	    "vdev=%s", vdpath);
4825 	spa_strfree(vdpath);
4826 
4827 	/*
4828 	 * If this was the removal of the original device in a hot spare vdev,
4829 	 * then we want to go through and remove the device from the hot spare
4830 	 * list of every other pool.
4831 	 */
4832 	if (unspare) {
4833 		spa_t *altspa = NULL;
4834 
4835 		mutex_enter(&spa_namespace_lock);
4836 		while ((altspa = spa_next(altspa)) != NULL) {
4837 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4838 			    altspa == spa)
4839 				continue;
4840 
4841 			spa_open_ref(altspa, FTAG);
4842 			mutex_exit(&spa_namespace_lock);
4843 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4844 			mutex_enter(&spa_namespace_lock);
4845 			spa_close(altspa, FTAG);
4846 		}
4847 		mutex_exit(&spa_namespace_lock);
4848 
4849 		/* search the rest of the vdevs for spares to remove */
4850 		spa_vdev_resilver_done(spa);
4851 	}
4852 
4853 	/* all done with the spa; OK to release */
4854 	mutex_enter(&spa_namespace_lock);
4855 	spa_close(spa, FTAG);
4856 	mutex_exit(&spa_namespace_lock);
4857 
4858 	return (error);
4859 }
4860 
4861 /*
4862  * Split a set of devices from their mirrors, and create a new pool from them.
4863  */
4864 int
4865 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4866     nvlist_t *props, boolean_t exp)
4867 {
4868 	int error = 0;
4869 	uint64_t txg, *glist;
4870 	spa_t *newspa;
4871 	uint_t c, children, lastlog;
4872 	nvlist_t **child, *nvl, *tmp;
4873 	dmu_tx_t *tx;
4874 	char *altroot = NULL;
4875 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4876 	boolean_t activate_slog;
4877 
4878 	ASSERT(spa_writeable(spa));
4879 
4880 	txg = spa_vdev_enter(spa);
4881 
4882 	/* clear the log and flush everything up to now */
4883 	activate_slog = spa_passivate_log(spa);
4884 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4885 	error = spa_offline_log(spa);
4886 	txg = spa_vdev_config_enter(spa);
4887 
4888 	if (activate_slog)
4889 		spa_activate_log(spa);
4890 
4891 	if (error != 0)
4892 		return (spa_vdev_exit(spa, NULL, txg, error));
4893 
4894 	/* check new spa name before going any further */
4895 	if (spa_lookup(newname) != NULL)
4896 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4897 
4898 	/*
4899 	 * scan through all the children to ensure they're all mirrors
4900 	 */
4901 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4902 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4903 	    &children) != 0)
4904 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4905 
4906 	/* first, check to ensure we've got the right child count */
4907 	rvd = spa->spa_root_vdev;
4908 	lastlog = 0;
4909 	for (c = 0; c < rvd->vdev_children; c++) {
4910 		vdev_t *vd = rvd->vdev_child[c];
4911 
4912 		/* don't count the holes & logs as children */
4913 		if (vd->vdev_islog || vd->vdev_ishole) {
4914 			if (lastlog == 0)
4915 				lastlog = c;
4916 			continue;
4917 		}
4918 
4919 		lastlog = 0;
4920 	}
4921 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4922 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4923 
4924 	/* next, ensure no spare or cache devices are part of the split */
4925 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4926 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4927 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4928 
4929 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4930 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4931 
4932 	/* then, loop over each vdev and validate it */
4933 	for (c = 0; c < children; c++) {
4934 		uint64_t is_hole = 0;
4935 
4936 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4937 		    &is_hole);
4938 
4939 		if (is_hole != 0) {
4940 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4941 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4942 				continue;
4943 			} else {
4944 				error = SET_ERROR(EINVAL);
4945 				break;
4946 			}
4947 		}
4948 
4949 		/* which disk is going to be split? */
4950 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4951 		    &glist[c]) != 0) {
4952 			error = SET_ERROR(EINVAL);
4953 			break;
4954 		}
4955 
4956 		/* look it up in the spa */
4957 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4958 		if (vml[c] == NULL) {
4959 			error = SET_ERROR(ENODEV);
4960 			break;
4961 		}
4962 
4963 		/* make sure there's nothing stopping the split */
4964 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4965 		    vml[c]->vdev_islog ||
4966 		    vml[c]->vdev_ishole ||
4967 		    vml[c]->vdev_isspare ||
4968 		    vml[c]->vdev_isl2cache ||
4969 		    !vdev_writeable(vml[c]) ||
4970 		    vml[c]->vdev_children != 0 ||
4971 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4972 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4973 			error = SET_ERROR(EINVAL);
4974 			break;
4975 		}
4976 
4977 		if (vdev_dtl_required(vml[c])) {
4978 			error = SET_ERROR(EBUSY);
4979 			break;
4980 		}
4981 
4982 		/* we need certain info from the top level */
4983 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4984 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4985 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4986 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4987 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4988 		    vml[c]->vdev_top->vdev_asize) == 0);
4989 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4990 		    vml[c]->vdev_top->vdev_ashift) == 0);
4991 	}
4992 
4993 	if (error != 0) {
4994 		kmem_free(vml, children * sizeof (vdev_t *));
4995 		kmem_free(glist, children * sizeof (uint64_t));
4996 		return (spa_vdev_exit(spa, NULL, txg, error));
4997 	}
4998 
4999 	/* stop writers from using the disks */
5000 	for (c = 0; c < children; c++) {
5001 		if (vml[c] != NULL)
5002 			vml[c]->vdev_offline = B_TRUE;
5003 	}
5004 	vdev_reopen(spa->spa_root_vdev);
5005 
5006 	/*
5007 	 * Temporarily record the splitting vdevs in the spa config.  This
5008 	 * will disappear once the config is regenerated.
5009 	 */
5010 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5011 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5012 	    glist, children) == 0);
5013 	kmem_free(glist, children * sizeof (uint64_t));
5014 
5015 	mutex_enter(&spa->spa_props_lock);
5016 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5017 	    nvl) == 0);
5018 	mutex_exit(&spa->spa_props_lock);
5019 	spa->spa_config_splitting = nvl;
5020 	vdev_config_dirty(spa->spa_root_vdev);
5021 
5022 	/* configure and create the new pool */
5023 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5024 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5025 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5026 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5027 	    spa_version(spa)) == 0);
5028 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5029 	    spa->spa_config_txg) == 0);
5030 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5031 	    spa_generate_guid(NULL)) == 0);
5032 	(void) nvlist_lookup_string(props,
5033 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5034 
5035 	/* add the new pool to the namespace */
5036 	newspa = spa_add(newname, config, altroot);
5037 	newspa->spa_config_txg = spa->spa_config_txg;
5038 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5039 
5040 	/* release the spa config lock, retaining the namespace lock */
5041 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5042 
5043 	if (zio_injection_enabled)
5044 		zio_handle_panic_injection(spa, FTAG, 1);
5045 
5046 	spa_activate(newspa, spa_mode_global);
5047 	spa_async_suspend(newspa);
5048 
5049 	/* create the new pool from the disks of the original pool */
5050 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5051 	if (error)
5052 		goto out;
5053 
5054 	/* if that worked, generate a real config for the new pool */
5055 	if (newspa->spa_root_vdev != NULL) {
5056 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5057 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5058 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5059 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5060 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5061 		    B_TRUE));
5062 	}
5063 
5064 	/* set the props */
5065 	if (props != NULL) {
5066 		spa_configfile_set(newspa, props, B_FALSE);
5067 		error = spa_prop_set(newspa, props);
5068 		if (error)
5069 			goto out;
5070 	}
5071 
5072 	/* flush everything */
5073 	txg = spa_vdev_config_enter(newspa);
5074 	vdev_config_dirty(newspa->spa_root_vdev);
5075 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5076 
5077 	if (zio_injection_enabled)
5078 		zio_handle_panic_injection(spa, FTAG, 2);
5079 
5080 	spa_async_resume(newspa);
5081 
5082 	/* finally, update the original pool's config */
5083 	txg = spa_vdev_config_enter(spa);
5084 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5085 	error = dmu_tx_assign(tx, TXG_WAIT);
5086 	if (error != 0)
5087 		dmu_tx_abort(tx);
5088 	for (c = 0; c < children; c++) {
5089 		if (vml[c] != NULL) {
5090 			vdev_split(vml[c]);
5091 			if (error == 0)
5092 				spa_history_log_internal(spa, "detach", tx,
5093 				    "vdev=%s", vml[c]->vdev_path);
5094 			vdev_free(vml[c]);
5095 		}
5096 	}
5097 	vdev_config_dirty(spa->spa_root_vdev);
5098 	spa->spa_config_splitting = NULL;
5099 	nvlist_free(nvl);
5100 	if (error == 0)
5101 		dmu_tx_commit(tx);
5102 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5103 
5104 	if (zio_injection_enabled)
5105 		zio_handle_panic_injection(spa, FTAG, 3);
5106 
5107 	/* split is complete; log a history record */
5108 	spa_history_log_internal(newspa, "split", NULL,
5109 	    "from pool %s", spa_name(spa));
5110 
5111 	kmem_free(vml, children * sizeof (vdev_t *));
5112 
5113 	/* if we're not going to mount the filesystems in userland, export */
5114 	if (exp)
5115 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5116 		    B_FALSE, B_FALSE);
5117 
5118 	return (error);
5119 
5120 out:
5121 	spa_unload(newspa);
5122 	spa_deactivate(newspa);
5123 	spa_remove(newspa);
5124 
5125 	txg = spa_vdev_config_enter(spa);
5126 
5127 	/* re-online all offlined disks */
5128 	for (c = 0; c < children; c++) {
5129 		if (vml[c] != NULL)
5130 			vml[c]->vdev_offline = B_FALSE;
5131 	}
5132 	vdev_reopen(spa->spa_root_vdev);
5133 
5134 	nvlist_free(spa->spa_config_splitting);
5135 	spa->spa_config_splitting = NULL;
5136 	(void) spa_vdev_exit(spa, NULL, txg, error);
5137 
5138 	kmem_free(vml, children * sizeof (vdev_t *));
5139 	return (error);
5140 }
5141 
5142 static nvlist_t *
5143 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5144 {
5145 	for (int i = 0; i < count; i++) {
5146 		uint64_t guid;
5147 
5148 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5149 		    &guid) == 0);
5150 
5151 		if (guid == target_guid)
5152 			return (nvpp[i]);
5153 	}
5154 
5155 	return (NULL);
5156 }
5157 
5158 static void
5159 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5160 	nvlist_t *dev_to_remove)
5161 {
5162 	nvlist_t **newdev = NULL;
5163 
5164 	if (count > 1)
5165 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5166 
5167 	for (int i = 0, j = 0; i < count; i++) {
5168 		if (dev[i] == dev_to_remove)
5169 			continue;
5170 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5171 	}
5172 
5173 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5174 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5175 
5176 	for (int i = 0; i < count - 1; i++)
5177 		nvlist_free(newdev[i]);
5178 
5179 	if (count > 1)
5180 		kmem_free(newdev, (count - 1) * sizeof (void *));
5181 }
5182 
5183 /*
5184  * Evacuate the device.
5185  */
5186 static int
5187 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5188 {
5189 	uint64_t txg;
5190 	int error = 0;
5191 
5192 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5193 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5194 	ASSERT(vd == vd->vdev_top);
5195 
5196 	/*
5197 	 * Evacuate the device.  We don't hold the config lock as writer
5198 	 * since we need to do I/O but we do keep the
5199 	 * spa_namespace_lock held.  Once this completes the device
5200 	 * should no longer have any blocks allocated on it.
5201 	 */
5202 	if (vd->vdev_islog) {
5203 		if (vd->vdev_stat.vs_alloc != 0)
5204 			error = spa_offline_log(spa);
5205 	} else {
5206 		error = SET_ERROR(ENOTSUP);
5207 	}
5208 
5209 	if (error)
5210 		return (error);
5211 
5212 	/*
5213 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5214 	 * associated with this vdev, and wait for these changes to sync.
5215 	 */
5216 	ASSERT0(vd->vdev_stat.vs_alloc);
5217 	txg = spa_vdev_config_enter(spa);
5218 	vd->vdev_removing = B_TRUE;
5219 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5220 	vdev_config_dirty(vd);
5221 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5222 
5223 	return (0);
5224 }
5225 
5226 /*
5227  * Complete the removal by cleaning up the namespace.
5228  */
5229 static void
5230 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5231 {
5232 	vdev_t *rvd = spa->spa_root_vdev;
5233 	uint64_t id = vd->vdev_id;
5234 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5235 
5236 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5237 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5238 	ASSERT(vd == vd->vdev_top);
5239 
5240 	/*
5241 	 * Only remove any devices which are empty.
5242 	 */
5243 	if (vd->vdev_stat.vs_alloc != 0)
5244 		return;
5245 
5246 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5247 
5248 	if (list_link_active(&vd->vdev_state_dirty_node))
5249 		vdev_state_clean(vd);
5250 	if (list_link_active(&vd->vdev_config_dirty_node))
5251 		vdev_config_clean(vd);
5252 
5253 	vdev_free(vd);
5254 
5255 	if (last_vdev) {
5256 		vdev_compact_children(rvd);
5257 	} else {
5258 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5259 		vdev_add_child(rvd, vd);
5260 	}
5261 	vdev_config_dirty(rvd);
5262 
5263 	/*
5264 	 * Reassess the health of our root vdev.
5265 	 */
5266 	vdev_reopen(rvd);
5267 }
5268 
5269 /*
5270  * Remove a device from the pool -
5271  *
5272  * Removing a device from the vdev namespace requires several steps
5273  * and can take a significant amount of time.  As a result we use
5274  * the spa_vdev_config_[enter/exit] functions which allow us to
5275  * grab and release the spa_config_lock while still holding the namespace
5276  * lock.  During each step the configuration is synced out.
5277  *
5278  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5279  * devices.
5280  */
5281 int
5282 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5283 {
5284 	vdev_t *vd;
5285 	metaslab_group_t *mg;
5286 	nvlist_t **spares, **l2cache, *nv;
5287 	uint64_t txg = 0;
5288 	uint_t nspares, nl2cache;
5289 	int error = 0;
5290 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5291 
5292 	ASSERT(spa_writeable(spa));
5293 
5294 	if (!locked)
5295 		txg = spa_vdev_enter(spa);
5296 
5297 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5298 
5299 	if (spa->spa_spares.sav_vdevs != NULL &&
5300 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5301 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5302 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5303 		/*
5304 		 * Only remove the hot spare if it's not currently in use
5305 		 * in this pool.
5306 		 */
5307 		if (vd == NULL || unspare) {
5308 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5309 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5310 			spa_load_spares(spa);
5311 			spa->spa_spares.sav_sync = B_TRUE;
5312 		} else {
5313 			error = SET_ERROR(EBUSY);
5314 		}
5315 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5316 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5317 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5318 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5319 		/*
5320 		 * Cache devices can always be removed.
5321 		 */
5322 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5323 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5324 		spa_load_l2cache(spa);
5325 		spa->spa_l2cache.sav_sync = B_TRUE;
5326 	} else if (vd != NULL && vd->vdev_islog) {
5327 		ASSERT(!locked);
5328 		ASSERT(vd == vd->vdev_top);
5329 
5330 		mg = vd->vdev_mg;
5331 
5332 		/*
5333 		 * Stop allocating from this vdev.
5334 		 */
5335 		metaslab_group_passivate(mg);
5336 
5337 		/*
5338 		 * Wait for the youngest allocations and frees to sync,
5339 		 * and then wait for the deferral of those frees to finish.
5340 		 */
5341 		spa_vdev_config_exit(spa, NULL,
5342 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5343 
5344 		/*
5345 		 * Attempt to evacuate the vdev.
5346 		 */
5347 		error = spa_vdev_remove_evacuate(spa, vd);
5348 
5349 		txg = spa_vdev_config_enter(spa);
5350 
5351 		/*
5352 		 * If we couldn't evacuate the vdev, unwind.
5353 		 */
5354 		if (error) {
5355 			metaslab_group_activate(mg);
5356 			return (spa_vdev_exit(spa, NULL, txg, error));
5357 		}
5358 
5359 		/*
5360 		 * Clean up the vdev namespace.
5361 		 */
5362 		spa_vdev_remove_from_namespace(spa, vd);
5363 
5364 	} else if (vd != NULL) {
5365 		/*
5366 		 * Normal vdevs cannot be removed (yet).
5367 		 */
5368 		error = SET_ERROR(ENOTSUP);
5369 	} else {
5370 		/*
5371 		 * There is no vdev of any kind with the specified guid.
5372 		 */
5373 		error = SET_ERROR(ENOENT);
5374 	}
5375 
5376 	if (!locked)
5377 		return (spa_vdev_exit(spa, NULL, txg, error));
5378 
5379 	return (error);
5380 }
5381 
5382 /*
5383  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5384  * currently spared, so we can detach it.
5385  */
5386 static vdev_t *
5387 spa_vdev_resilver_done_hunt(vdev_t *vd)
5388 {
5389 	vdev_t *newvd, *oldvd;
5390 
5391 	for (int c = 0; c < vd->vdev_children; c++) {
5392 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5393 		if (oldvd != NULL)
5394 			return (oldvd);
5395 	}
5396 
5397 	/*
5398 	 * Check for a completed replacement.  We always consider the first
5399 	 * vdev in the list to be the oldest vdev, and the last one to be
5400 	 * the newest (see spa_vdev_attach() for how that works).  In
5401 	 * the case where the newest vdev is faulted, we will not automatically
5402 	 * remove it after a resilver completes.  This is OK as it will require
5403 	 * user intervention to determine which disk the admin wishes to keep.
5404 	 */
5405 	if (vd->vdev_ops == &vdev_replacing_ops) {
5406 		ASSERT(vd->vdev_children > 1);
5407 
5408 		newvd = vd->vdev_child[vd->vdev_children - 1];
5409 		oldvd = vd->vdev_child[0];
5410 
5411 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5412 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5413 		    !vdev_dtl_required(oldvd))
5414 			return (oldvd);
5415 	}
5416 
5417 	/*
5418 	 * Check for a completed resilver with the 'unspare' flag set.
5419 	 */
5420 	if (vd->vdev_ops == &vdev_spare_ops) {
5421 		vdev_t *first = vd->vdev_child[0];
5422 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5423 
5424 		if (last->vdev_unspare) {
5425 			oldvd = first;
5426 			newvd = last;
5427 		} else if (first->vdev_unspare) {
5428 			oldvd = last;
5429 			newvd = first;
5430 		} else {
5431 			oldvd = NULL;
5432 		}
5433 
5434 		if (oldvd != NULL &&
5435 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5436 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5437 		    !vdev_dtl_required(oldvd))
5438 			return (oldvd);
5439 
5440 		/*
5441 		 * If there are more than two spares attached to a disk,
5442 		 * and those spares are not required, then we want to
5443 		 * attempt to free them up now so that they can be used
5444 		 * by other pools.  Once we're back down to a single
5445 		 * disk+spare, we stop removing them.
5446 		 */
5447 		if (vd->vdev_children > 2) {
5448 			newvd = vd->vdev_child[1];
5449 
5450 			if (newvd->vdev_isspare && last->vdev_isspare &&
5451 			    vdev_dtl_empty(last, DTL_MISSING) &&
5452 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5453 			    !vdev_dtl_required(newvd))
5454 				return (newvd);
5455 		}
5456 	}
5457 
5458 	return (NULL);
5459 }
5460 
5461 static void
5462 spa_vdev_resilver_done(spa_t *spa)
5463 {
5464 	vdev_t *vd, *pvd, *ppvd;
5465 	uint64_t guid, sguid, pguid, ppguid;
5466 
5467 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5468 
5469 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5470 		pvd = vd->vdev_parent;
5471 		ppvd = pvd->vdev_parent;
5472 		guid = vd->vdev_guid;
5473 		pguid = pvd->vdev_guid;
5474 		ppguid = ppvd->vdev_guid;
5475 		sguid = 0;
5476 		/*
5477 		 * If we have just finished replacing a hot spared device, then
5478 		 * we need to detach the parent's first child (the original hot
5479 		 * spare) as well.
5480 		 */
5481 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5482 		    ppvd->vdev_children == 2) {
5483 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5484 			sguid = ppvd->vdev_child[1]->vdev_guid;
5485 		}
5486 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5487 
5488 		spa_config_exit(spa, SCL_ALL, FTAG);
5489 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5490 			return;
5491 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5492 			return;
5493 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5494 	}
5495 
5496 	spa_config_exit(spa, SCL_ALL, FTAG);
5497 }
5498 
5499 /*
5500  * Update the stored path or FRU for this vdev.
5501  */
5502 int
5503 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5504     boolean_t ispath)
5505 {
5506 	vdev_t *vd;
5507 	boolean_t sync = B_FALSE;
5508 
5509 	ASSERT(spa_writeable(spa));
5510 
5511 	spa_vdev_state_enter(spa, SCL_ALL);
5512 
5513 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5514 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5515 
5516 	if (!vd->vdev_ops->vdev_op_leaf)
5517 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5518 
5519 	if (ispath) {
5520 		if (strcmp(value, vd->vdev_path) != 0) {
5521 			spa_strfree(vd->vdev_path);
5522 			vd->vdev_path = spa_strdup(value);
5523 			sync = B_TRUE;
5524 		}
5525 	} else {
5526 		if (vd->vdev_fru == NULL) {
5527 			vd->vdev_fru = spa_strdup(value);
5528 			sync = B_TRUE;
5529 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5530 			spa_strfree(vd->vdev_fru);
5531 			vd->vdev_fru = spa_strdup(value);
5532 			sync = B_TRUE;
5533 		}
5534 	}
5535 
5536 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5537 }
5538 
5539 int
5540 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5541 {
5542 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5543 }
5544 
5545 int
5546 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5547 {
5548 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5549 }
5550 
5551 /*
5552  * ==========================================================================
5553  * SPA Scanning
5554  * ==========================================================================
5555  */
5556 
5557 int
5558 spa_scan_stop(spa_t *spa)
5559 {
5560 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5561 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5562 		return (SET_ERROR(EBUSY));
5563 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5564 }
5565 
5566 int
5567 spa_scan(spa_t *spa, pool_scan_func_t func)
5568 {
5569 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5570 
5571 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5572 		return (SET_ERROR(ENOTSUP));
5573 
5574 	/*
5575 	 * If a resilver was requested, but there is no DTL on a
5576 	 * writeable leaf device, we have nothing to do.
5577 	 */
5578 	if (func == POOL_SCAN_RESILVER &&
5579 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5580 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5581 		return (0);
5582 	}
5583 
5584 	return (dsl_scan(spa->spa_dsl_pool, func));
5585 }
5586 
5587 /*
5588  * ==========================================================================
5589  * SPA async task processing
5590  * ==========================================================================
5591  */
5592 
5593 static void
5594 spa_async_remove(spa_t *spa, vdev_t *vd)
5595 {
5596 	if (vd->vdev_remove_wanted) {
5597 		vd->vdev_remove_wanted = B_FALSE;
5598 		vd->vdev_delayed_close = B_FALSE;
5599 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5600 
5601 		/*
5602 		 * We want to clear the stats, but we don't want to do a full
5603 		 * vdev_clear() as that will cause us to throw away
5604 		 * degraded/faulted state as well as attempt to reopen the
5605 		 * device, all of which is a waste.
5606 		 */
5607 		vd->vdev_stat.vs_read_errors = 0;
5608 		vd->vdev_stat.vs_write_errors = 0;
5609 		vd->vdev_stat.vs_checksum_errors = 0;
5610 
5611 		vdev_state_dirty(vd->vdev_top);
5612 	}
5613 
5614 	for (int c = 0; c < vd->vdev_children; c++)
5615 		spa_async_remove(spa, vd->vdev_child[c]);
5616 }
5617 
5618 static void
5619 spa_async_probe(spa_t *spa, vdev_t *vd)
5620 {
5621 	if (vd->vdev_probe_wanted) {
5622 		vd->vdev_probe_wanted = B_FALSE;
5623 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5624 	}
5625 
5626 	for (int c = 0; c < vd->vdev_children; c++)
5627 		spa_async_probe(spa, vd->vdev_child[c]);
5628 }
5629 
5630 static void
5631 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5632 {
5633 	sysevent_id_t eid;
5634 	nvlist_t *attr;
5635 	char *physpath;
5636 
5637 	if (!spa->spa_autoexpand)
5638 		return;
5639 
5640 	for (int c = 0; c < vd->vdev_children; c++) {
5641 		vdev_t *cvd = vd->vdev_child[c];
5642 		spa_async_autoexpand(spa, cvd);
5643 	}
5644 
5645 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5646 		return;
5647 
5648 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5649 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5650 
5651 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5652 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5653 
5654 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5655 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5656 
5657 	nvlist_free(attr);
5658 	kmem_free(physpath, MAXPATHLEN);
5659 }
5660 
5661 static void
5662 spa_async_thread(spa_t *spa)
5663 {
5664 	int tasks;
5665 
5666 	ASSERT(spa->spa_sync_on);
5667 
5668 	mutex_enter(&spa->spa_async_lock);
5669 	tasks = spa->spa_async_tasks;
5670 	spa->spa_async_tasks = 0;
5671 	mutex_exit(&spa->spa_async_lock);
5672 
5673 	/*
5674 	 * See if the config needs to be updated.
5675 	 */
5676 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5677 		uint64_t old_space, new_space;
5678 
5679 		mutex_enter(&spa_namespace_lock);
5680 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5681 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5682 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5683 		mutex_exit(&spa_namespace_lock);
5684 
5685 		/*
5686 		 * If the pool grew as a result of the config update,
5687 		 * then log an internal history event.
5688 		 */
5689 		if (new_space != old_space) {
5690 			spa_history_log_internal(spa, "vdev online", NULL,
5691 			    "pool '%s' size: %llu(+%llu)",
5692 			    spa_name(spa), new_space, new_space - old_space);
5693 		}
5694 	}
5695 
5696 	/*
5697 	 * See if any devices need to be marked REMOVED.
5698 	 */
5699 	if (tasks & SPA_ASYNC_REMOVE) {
5700 		spa_vdev_state_enter(spa, SCL_NONE);
5701 		spa_async_remove(spa, spa->spa_root_vdev);
5702 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5703 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5704 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5705 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5706 		(void) spa_vdev_state_exit(spa, NULL, 0);
5707 	}
5708 
5709 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5710 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5711 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5712 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5713 	}
5714 
5715 	/*
5716 	 * See if any devices need to be probed.
5717 	 */
5718 	if (tasks & SPA_ASYNC_PROBE) {
5719 		spa_vdev_state_enter(spa, SCL_NONE);
5720 		spa_async_probe(spa, spa->spa_root_vdev);
5721 		(void) spa_vdev_state_exit(spa, NULL, 0);
5722 	}
5723 
5724 	/*
5725 	 * If any devices are done replacing, detach them.
5726 	 */
5727 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5728 		spa_vdev_resilver_done(spa);
5729 
5730 	/*
5731 	 * Kick off a resilver.
5732 	 */
5733 	if (tasks & SPA_ASYNC_RESILVER)
5734 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5735 
5736 	/*
5737 	 * Let the world know that we're done.
5738 	 */
5739 	mutex_enter(&spa->spa_async_lock);
5740 	spa->spa_async_thread = NULL;
5741 	cv_broadcast(&spa->spa_async_cv);
5742 	mutex_exit(&spa->spa_async_lock);
5743 	thread_exit();
5744 }
5745 
5746 void
5747 spa_async_suspend(spa_t *spa)
5748 {
5749 	mutex_enter(&spa->spa_async_lock);
5750 	spa->spa_async_suspended++;
5751 	while (spa->spa_async_thread != NULL)
5752 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5753 	mutex_exit(&spa->spa_async_lock);
5754 }
5755 
5756 void
5757 spa_async_resume(spa_t *spa)
5758 {
5759 	mutex_enter(&spa->spa_async_lock);
5760 	ASSERT(spa->spa_async_suspended != 0);
5761 	spa->spa_async_suspended--;
5762 	mutex_exit(&spa->spa_async_lock);
5763 }
5764 
5765 static boolean_t
5766 spa_async_tasks_pending(spa_t *spa)
5767 {
5768 	uint_t non_config_tasks;
5769 	uint_t config_task;
5770 	boolean_t config_task_suspended;
5771 
5772 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5773 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5774 	if (spa->spa_ccw_fail_time == 0) {
5775 		config_task_suspended = B_FALSE;
5776 	} else {
5777 		config_task_suspended =
5778 		    (gethrtime() - spa->spa_ccw_fail_time) <
5779 		    (zfs_ccw_retry_interval * NANOSEC);
5780 	}
5781 
5782 	return (non_config_tasks || (config_task && !config_task_suspended));
5783 }
5784 
5785 static void
5786 spa_async_dispatch(spa_t *spa)
5787 {
5788 	mutex_enter(&spa->spa_async_lock);
5789 	if (spa_async_tasks_pending(spa) &&
5790 	    !spa->spa_async_suspended &&
5791 	    spa->spa_async_thread == NULL &&
5792 	    rootdir != NULL)
5793 		spa->spa_async_thread = thread_create(NULL, 0,
5794 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5795 	mutex_exit(&spa->spa_async_lock);
5796 }
5797 
5798 void
5799 spa_async_request(spa_t *spa, int task)
5800 {
5801 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5802 	mutex_enter(&spa->spa_async_lock);
5803 	spa->spa_async_tasks |= task;
5804 	mutex_exit(&spa->spa_async_lock);
5805 }
5806 
5807 /*
5808  * ==========================================================================
5809  * SPA syncing routines
5810  * ==========================================================================
5811  */
5812 
5813 static int
5814 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5815 {
5816 	bpobj_t *bpo = arg;
5817 	bpobj_enqueue(bpo, bp, tx);
5818 	return (0);
5819 }
5820 
5821 static int
5822 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5823 {
5824 	zio_t *zio = arg;
5825 
5826 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5827 	    zio->io_flags));
5828 	return (0);
5829 }
5830 
5831 /*
5832  * Note: this simple function is not inlined to make it easier to dtrace the
5833  * amount of time spent syncing frees.
5834  */
5835 static void
5836 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5837 {
5838 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5839 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5840 	VERIFY(zio_wait(zio) == 0);
5841 }
5842 
5843 /*
5844  * Note: this simple function is not inlined to make it easier to dtrace the
5845  * amount of time spent syncing deferred frees.
5846  */
5847 static void
5848 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5849 {
5850 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5851 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5852 	    spa_free_sync_cb, zio, tx), ==, 0);
5853 	VERIFY0(zio_wait(zio));
5854 }
5855 
5856 
5857 static void
5858 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5859 {
5860 	char *packed = NULL;
5861 	size_t bufsize;
5862 	size_t nvsize = 0;
5863 	dmu_buf_t *db;
5864 
5865 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5866 
5867 	/*
5868 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5869 	 * information.  This avoids the dmu_buf_will_dirty() path and
5870 	 * saves us a pre-read to get data we don't actually care about.
5871 	 */
5872 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5873 	packed = kmem_alloc(bufsize, KM_SLEEP);
5874 
5875 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5876 	    KM_SLEEP) == 0);
5877 	bzero(packed + nvsize, bufsize - nvsize);
5878 
5879 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5880 
5881 	kmem_free(packed, bufsize);
5882 
5883 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5884 	dmu_buf_will_dirty(db, tx);
5885 	*(uint64_t *)db->db_data = nvsize;
5886 	dmu_buf_rele(db, FTAG);
5887 }
5888 
5889 static void
5890 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5891     const char *config, const char *entry)
5892 {
5893 	nvlist_t *nvroot;
5894 	nvlist_t **list;
5895 	int i;
5896 
5897 	if (!sav->sav_sync)
5898 		return;
5899 
5900 	/*
5901 	 * Update the MOS nvlist describing the list of available devices.
5902 	 * spa_validate_aux() will have already made sure this nvlist is
5903 	 * valid and the vdevs are labeled appropriately.
5904 	 */
5905 	if (sav->sav_object == 0) {
5906 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5907 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5908 		    sizeof (uint64_t), tx);
5909 		VERIFY(zap_update(spa->spa_meta_objset,
5910 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5911 		    &sav->sav_object, tx) == 0);
5912 	}
5913 
5914 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5915 	if (sav->sav_count == 0) {
5916 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5917 	} else {
5918 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5919 		for (i = 0; i < sav->sav_count; i++)
5920 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5921 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5922 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5923 		    sav->sav_count) == 0);
5924 		for (i = 0; i < sav->sav_count; i++)
5925 			nvlist_free(list[i]);
5926 		kmem_free(list, sav->sav_count * sizeof (void *));
5927 	}
5928 
5929 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5930 	nvlist_free(nvroot);
5931 
5932 	sav->sav_sync = B_FALSE;
5933 }
5934 
5935 static void
5936 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5937 {
5938 	nvlist_t *config;
5939 
5940 	if (list_is_empty(&spa->spa_config_dirty_list))
5941 		return;
5942 
5943 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5944 
5945 	config = spa_config_generate(spa, spa->spa_root_vdev,
5946 	    dmu_tx_get_txg(tx), B_FALSE);
5947 
5948 	/*
5949 	 * If we're upgrading the spa version then make sure that
5950 	 * the config object gets updated with the correct version.
5951 	 */
5952 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5953 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5954 		    spa->spa_uberblock.ub_version);
5955 
5956 	spa_config_exit(spa, SCL_STATE, FTAG);
5957 
5958 	if (spa->spa_config_syncing)
5959 		nvlist_free(spa->spa_config_syncing);
5960 	spa->spa_config_syncing = config;
5961 
5962 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5963 }
5964 
5965 static void
5966 spa_sync_version(void *arg, dmu_tx_t *tx)
5967 {
5968 	uint64_t *versionp = arg;
5969 	uint64_t version = *versionp;
5970 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5971 
5972 	/*
5973 	 * Setting the version is special cased when first creating the pool.
5974 	 */
5975 	ASSERT(tx->tx_txg != TXG_INITIAL);
5976 
5977 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5978 	ASSERT(version >= spa_version(spa));
5979 
5980 	spa->spa_uberblock.ub_version = version;
5981 	vdev_config_dirty(spa->spa_root_vdev);
5982 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5983 }
5984 
5985 /*
5986  * Set zpool properties.
5987  */
5988 static void
5989 spa_sync_props(void *arg, dmu_tx_t *tx)
5990 {
5991 	nvlist_t *nvp = arg;
5992 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5993 	objset_t *mos = spa->spa_meta_objset;
5994 	nvpair_t *elem = NULL;
5995 
5996 	mutex_enter(&spa->spa_props_lock);
5997 
5998 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5999 		uint64_t intval;
6000 		char *strval, *fname;
6001 		zpool_prop_t prop;
6002 		const char *propname;
6003 		zprop_type_t proptype;
6004 		spa_feature_t fid;
6005 
6006 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6007 		case ZPROP_INVAL:
6008 			/*
6009 			 * We checked this earlier in spa_prop_validate().
6010 			 */
6011 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6012 
6013 			fname = strchr(nvpair_name(elem), '@') + 1;
6014 			VERIFY0(zfeature_lookup_name(fname, &fid));
6015 
6016 			spa_feature_enable(spa, fid, tx);
6017 			spa_history_log_internal(spa, "set", tx,
6018 			    "%s=enabled", nvpair_name(elem));
6019 			break;
6020 
6021 		case ZPOOL_PROP_VERSION:
6022 			intval = fnvpair_value_uint64(elem);
6023 			/*
6024 			 * The version is synced seperatly before other
6025 			 * properties and should be correct by now.
6026 			 */
6027 			ASSERT3U(spa_version(spa), >=, intval);
6028 			break;
6029 
6030 		case ZPOOL_PROP_ALTROOT:
6031 			/*
6032 			 * 'altroot' is a non-persistent property. It should
6033 			 * have been set temporarily at creation or import time.
6034 			 */
6035 			ASSERT(spa->spa_root != NULL);
6036 			break;
6037 
6038 		case ZPOOL_PROP_READONLY:
6039 		case ZPOOL_PROP_CACHEFILE:
6040 			/*
6041 			 * 'readonly' and 'cachefile' are also non-persisitent
6042 			 * properties.
6043 			 */
6044 			break;
6045 		case ZPOOL_PROP_COMMENT:
6046 			strval = fnvpair_value_string(elem);
6047 			if (spa->spa_comment != NULL)
6048 				spa_strfree(spa->spa_comment);
6049 			spa->spa_comment = spa_strdup(strval);
6050 			/*
6051 			 * We need to dirty the configuration on all the vdevs
6052 			 * so that their labels get updated.  It's unnecessary
6053 			 * to do this for pool creation since the vdev's
6054 			 * configuratoin has already been dirtied.
6055 			 */
6056 			if (tx->tx_txg != TXG_INITIAL)
6057 				vdev_config_dirty(spa->spa_root_vdev);
6058 			spa_history_log_internal(spa, "set", tx,
6059 			    "%s=%s", nvpair_name(elem), strval);
6060 			break;
6061 		default:
6062 			/*
6063 			 * Set pool property values in the poolprops mos object.
6064 			 */
6065 			if (spa->spa_pool_props_object == 0) {
6066 				spa->spa_pool_props_object =
6067 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6068 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6069 				    tx);
6070 			}
6071 
6072 			/* normalize the property name */
6073 			propname = zpool_prop_to_name(prop);
6074 			proptype = zpool_prop_get_type(prop);
6075 
6076 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6077 				ASSERT(proptype == PROP_TYPE_STRING);
6078 				strval = fnvpair_value_string(elem);
6079 				VERIFY0(zap_update(mos,
6080 				    spa->spa_pool_props_object, propname,
6081 				    1, strlen(strval) + 1, strval, tx));
6082 				spa_history_log_internal(spa, "set", tx,
6083 				    "%s=%s", nvpair_name(elem), strval);
6084 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6085 				intval = fnvpair_value_uint64(elem);
6086 
6087 				if (proptype == PROP_TYPE_INDEX) {
6088 					const char *unused;
6089 					VERIFY0(zpool_prop_index_to_string(
6090 					    prop, intval, &unused));
6091 				}
6092 				VERIFY0(zap_update(mos,
6093 				    spa->spa_pool_props_object, propname,
6094 				    8, 1, &intval, tx));
6095 				spa_history_log_internal(spa, "set", tx,
6096 				    "%s=%lld", nvpair_name(elem), intval);
6097 			} else {
6098 				ASSERT(0); /* not allowed */
6099 			}
6100 
6101 			switch (prop) {
6102 			case ZPOOL_PROP_DELEGATION:
6103 				spa->spa_delegation = intval;
6104 				break;
6105 			case ZPOOL_PROP_BOOTFS:
6106 				spa->spa_bootfs = intval;
6107 				break;
6108 			case ZPOOL_PROP_FAILUREMODE:
6109 				spa->spa_failmode = intval;
6110 				break;
6111 			case ZPOOL_PROP_AUTOEXPAND:
6112 				spa->spa_autoexpand = intval;
6113 				if (tx->tx_txg != TXG_INITIAL)
6114 					spa_async_request(spa,
6115 					    SPA_ASYNC_AUTOEXPAND);
6116 				break;
6117 			case ZPOOL_PROP_DEDUPDITTO:
6118 				spa->spa_dedup_ditto = intval;
6119 				break;
6120 			default:
6121 				break;
6122 			}
6123 		}
6124 
6125 	}
6126 
6127 	mutex_exit(&spa->spa_props_lock);
6128 }
6129 
6130 /*
6131  * Perform one-time upgrade on-disk changes.  spa_version() does not
6132  * reflect the new version this txg, so there must be no changes this
6133  * txg to anything that the upgrade code depends on after it executes.
6134  * Therefore this must be called after dsl_pool_sync() does the sync
6135  * tasks.
6136  */
6137 static void
6138 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6139 {
6140 	dsl_pool_t *dp = spa->spa_dsl_pool;
6141 
6142 	ASSERT(spa->spa_sync_pass == 1);
6143 
6144 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6145 
6146 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6147 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6148 		dsl_pool_create_origin(dp, tx);
6149 
6150 		/* Keeping the origin open increases spa_minref */
6151 		spa->spa_minref += 3;
6152 	}
6153 
6154 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6155 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6156 		dsl_pool_upgrade_clones(dp, tx);
6157 	}
6158 
6159 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6160 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6161 		dsl_pool_upgrade_dir_clones(dp, tx);
6162 
6163 		/* Keeping the freedir open increases spa_minref */
6164 		spa->spa_minref += 3;
6165 	}
6166 
6167 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6168 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6169 		spa_feature_create_zap_objects(spa, tx);
6170 	}
6171 
6172 	/*
6173 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6174 	 * when possibility to use lz4 compression for metadata was added
6175 	 * Old pools that have this feature enabled must be upgraded to have
6176 	 * this feature active
6177 	 */
6178 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6179 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6180 		    SPA_FEATURE_LZ4_COMPRESS);
6181 		boolean_t lz4_ac = spa_feature_is_active(spa,
6182 		    SPA_FEATURE_LZ4_COMPRESS);
6183 
6184 		if (lz4_en && !lz4_ac)
6185 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6186 	}
6187 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6188 }
6189 
6190 /*
6191  * Sync the specified transaction group.  New blocks may be dirtied as
6192  * part of the process, so we iterate until it converges.
6193  */
6194 void
6195 spa_sync(spa_t *spa, uint64_t txg)
6196 {
6197 	dsl_pool_t *dp = spa->spa_dsl_pool;
6198 	objset_t *mos = spa->spa_meta_objset;
6199 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6200 	vdev_t *rvd = spa->spa_root_vdev;
6201 	vdev_t *vd;
6202 	dmu_tx_t *tx;
6203 	int error;
6204 
6205 	VERIFY(spa_writeable(spa));
6206 
6207 	/*
6208 	 * Lock out configuration changes.
6209 	 */
6210 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6211 
6212 	spa->spa_syncing_txg = txg;
6213 	spa->spa_sync_pass = 0;
6214 
6215 	/*
6216 	 * If there are any pending vdev state changes, convert them
6217 	 * into config changes that go out with this transaction group.
6218 	 */
6219 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6220 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6221 		/*
6222 		 * We need the write lock here because, for aux vdevs,
6223 		 * calling vdev_config_dirty() modifies sav_config.
6224 		 * This is ugly and will become unnecessary when we
6225 		 * eliminate the aux vdev wart by integrating all vdevs
6226 		 * into the root vdev tree.
6227 		 */
6228 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6229 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6230 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6231 			vdev_state_clean(vd);
6232 			vdev_config_dirty(vd);
6233 		}
6234 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6235 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6236 	}
6237 	spa_config_exit(spa, SCL_STATE, FTAG);
6238 
6239 	tx = dmu_tx_create_assigned(dp, txg);
6240 
6241 	spa->spa_sync_starttime = gethrtime();
6242 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6243 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6244 
6245 	/*
6246 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6247 	 * set spa_deflate if we have no raid-z vdevs.
6248 	 */
6249 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6250 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6251 		int i;
6252 
6253 		for (i = 0; i < rvd->vdev_children; i++) {
6254 			vd = rvd->vdev_child[i];
6255 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6256 				break;
6257 		}
6258 		if (i == rvd->vdev_children) {
6259 			spa->spa_deflate = TRUE;
6260 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6261 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6262 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6263 		}
6264 	}
6265 
6266 	/*
6267 	 * Iterate to convergence.
6268 	 */
6269 	do {
6270 		int pass = ++spa->spa_sync_pass;
6271 
6272 		spa_sync_config_object(spa, tx);
6273 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6274 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6275 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6276 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6277 		spa_errlog_sync(spa, txg);
6278 		dsl_pool_sync(dp, txg);
6279 
6280 		if (pass < zfs_sync_pass_deferred_free) {
6281 			spa_sync_frees(spa, free_bpl, tx);
6282 		} else {
6283 			/*
6284 			 * We can not defer frees in pass 1, because
6285 			 * we sync the deferred frees later in pass 1.
6286 			 */
6287 			ASSERT3U(pass, >, 1);
6288 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6289 			    &spa->spa_deferred_bpobj, tx);
6290 		}
6291 
6292 		ddt_sync(spa, txg);
6293 		dsl_scan_sync(dp, tx);
6294 
6295 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6296 			vdev_sync(vd, txg);
6297 
6298 		if (pass == 1) {
6299 			spa_sync_upgrades(spa, tx);
6300 			ASSERT3U(txg, >=,
6301 			    spa->spa_uberblock.ub_rootbp.blk_birth);
6302 			/*
6303 			 * Note: We need to check if the MOS is dirty
6304 			 * because we could have marked the MOS dirty
6305 			 * without updating the uberblock (e.g. if we
6306 			 * have sync tasks but no dirty user data).  We
6307 			 * need to check the uberblock's rootbp because
6308 			 * it is updated if we have synced out dirty
6309 			 * data (though in this case the MOS will most
6310 			 * likely also be dirty due to second order
6311 			 * effects, we don't want to rely on that here).
6312 			 */
6313 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6314 			    !dmu_objset_is_dirty(mos, txg)) {
6315 				/*
6316 				 * Nothing changed on the first pass,
6317 				 * therefore this TXG is a no-op.  Avoid
6318 				 * syncing deferred frees, so that we
6319 				 * can keep this TXG as a no-op.
6320 				 */
6321 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6322 				    txg));
6323 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6324 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6325 				break;
6326 			}
6327 			spa_sync_deferred_frees(spa, tx);
6328 		}
6329 
6330 	} while (dmu_objset_is_dirty(mos, txg));
6331 
6332 	/*
6333 	 * Rewrite the vdev configuration (which includes the uberblock)
6334 	 * to commit the transaction group.
6335 	 *
6336 	 * If there are no dirty vdevs, we sync the uberblock to a few
6337 	 * random top-level vdevs that are known to be visible in the
6338 	 * config cache (see spa_vdev_add() for a complete description).
6339 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6340 	 */
6341 	for (;;) {
6342 		/*
6343 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6344 		 * while we're attempting to write the vdev labels.
6345 		 */
6346 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6347 
6348 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6349 			vdev_t *svd[SPA_DVAS_PER_BP];
6350 			int svdcount = 0;
6351 			int children = rvd->vdev_children;
6352 			int c0 = spa_get_random(children);
6353 
6354 			for (int c = 0; c < children; c++) {
6355 				vd = rvd->vdev_child[(c0 + c) % children];
6356 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6357 					continue;
6358 				svd[svdcount++] = vd;
6359 				if (svdcount == SPA_DVAS_PER_BP)
6360 					break;
6361 			}
6362 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6363 			if (error != 0)
6364 				error = vdev_config_sync(svd, svdcount, txg,
6365 				    B_TRUE);
6366 		} else {
6367 			error = vdev_config_sync(rvd->vdev_child,
6368 			    rvd->vdev_children, txg, B_FALSE);
6369 			if (error != 0)
6370 				error = vdev_config_sync(rvd->vdev_child,
6371 				    rvd->vdev_children, txg, B_TRUE);
6372 		}
6373 
6374 		if (error == 0)
6375 			spa->spa_last_synced_guid = rvd->vdev_guid;
6376 
6377 		spa_config_exit(spa, SCL_STATE, FTAG);
6378 
6379 		if (error == 0)
6380 			break;
6381 		zio_suspend(spa, NULL);
6382 		zio_resume_wait(spa);
6383 	}
6384 	dmu_tx_commit(tx);
6385 
6386 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6387 
6388 	/*
6389 	 * Clear the dirty config list.
6390 	 */
6391 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6392 		vdev_config_clean(vd);
6393 
6394 	/*
6395 	 * Now that the new config has synced transactionally,
6396 	 * let it become visible to the config cache.
6397 	 */
6398 	if (spa->spa_config_syncing != NULL) {
6399 		spa_config_set(spa, spa->spa_config_syncing);
6400 		spa->spa_config_txg = txg;
6401 		spa->spa_config_syncing = NULL;
6402 	}
6403 
6404 	spa->spa_ubsync = spa->spa_uberblock;
6405 
6406 	dsl_pool_sync_done(dp, txg);
6407 
6408 	/*
6409 	 * Update usable space statistics.
6410 	 */
6411 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6412 		vdev_sync_done(vd, txg);
6413 
6414 	spa_update_dspace(spa);
6415 
6416 	/*
6417 	 * It had better be the case that we didn't dirty anything
6418 	 * since vdev_config_sync().
6419 	 */
6420 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6421 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6422 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6423 
6424 	spa->spa_sync_pass = 0;
6425 
6426 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6427 
6428 	spa_handle_ignored_writes(spa);
6429 
6430 	/*
6431 	 * If any async tasks have been requested, kick them off.
6432 	 */
6433 	spa_async_dispatch(spa);
6434 }
6435 
6436 /*
6437  * Sync all pools.  We don't want to hold the namespace lock across these
6438  * operations, so we take a reference on the spa_t and drop the lock during the
6439  * sync.
6440  */
6441 void
6442 spa_sync_allpools(void)
6443 {
6444 	spa_t *spa = NULL;
6445 	mutex_enter(&spa_namespace_lock);
6446 	while ((spa = spa_next(spa)) != NULL) {
6447 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6448 		    !spa_writeable(spa) || spa_suspended(spa))
6449 			continue;
6450 		spa_open_ref(spa, FTAG);
6451 		mutex_exit(&spa_namespace_lock);
6452 		txg_wait_synced(spa_get_dsl(spa), 0);
6453 		mutex_enter(&spa_namespace_lock);
6454 		spa_close(spa, FTAG);
6455 	}
6456 	mutex_exit(&spa_namespace_lock);
6457 }
6458 
6459 /*
6460  * ==========================================================================
6461  * Miscellaneous routines
6462  * ==========================================================================
6463  */
6464 
6465 /*
6466  * Remove all pools in the system.
6467  */
6468 void
6469 spa_evict_all(void)
6470 {
6471 	spa_t *spa;
6472 
6473 	/*
6474 	 * Remove all cached state.  All pools should be closed now,
6475 	 * so every spa in the AVL tree should be unreferenced.
6476 	 */
6477 	mutex_enter(&spa_namespace_lock);
6478 	while ((spa = spa_next(NULL)) != NULL) {
6479 		/*
6480 		 * Stop async tasks.  The async thread may need to detach
6481 		 * a device that's been replaced, which requires grabbing
6482 		 * spa_namespace_lock, so we must drop it here.
6483 		 */
6484 		spa_open_ref(spa, FTAG);
6485 		mutex_exit(&spa_namespace_lock);
6486 		spa_async_suspend(spa);
6487 		mutex_enter(&spa_namespace_lock);
6488 		spa_close(spa, FTAG);
6489 
6490 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6491 			spa_unload(spa);
6492 			spa_deactivate(spa);
6493 		}
6494 		spa_remove(spa);
6495 	}
6496 	mutex_exit(&spa_namespace_lock);
6497 }
6498 
6499 vdev_t *
6500 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6501 {
6502 	vdev_t *vd;
6503 	int i;
6504 
6505 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6506 		return (vd);
6507 
6508 	if (aux) {
6509 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6510 			vd = spa->spa_l2cache.sav_vdevs[i];
6511 			if (vd->vdev_guid == guid)
6512 				return (vd);
6513 		}
6514 
6515 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6516 			vd = spa->spa_spares.sav_vdevs[i];
6517 			if (vd->vdev_guid == guid)
6518 				return (vd);
6519 		}
6520 	}
6521 
6522 	return (NULL);
6523 }
6524 
6525 void
6526 spa_upgrade(spa_t *spa, uint64_t version)
6527 {
6528 	ASSERT(spa_writeable(spa));
6529 
6530 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6531 
6532 	/*
6533 	 * This should only be called for a non-faulted pool, and since a
6534 	 * future version would result in an unopenable pool, this shouldn't be
6535 	 * possible.
6536 	 */
6537 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6538 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6539 
6540 	spa->spa_uberblock.ub_version = version;
6541 	vdev_config_dirty(spa->spa_root_vdev);
6542 
6543 	spa_config_exit(spa, SCL_ALL, FTAG);
6544 
6545 	txg_wait_synced(spa_get_dsl(spa), 0);
6546 }
6547 
6548 boolean_t
6549 spa_has_spare(spa_t *spa, uint64_t guid)
6550 {
6551 	int i;
6552 	uint64_t spareguid;
6553 	spa_aux_vdev_t *sav = &spa->spa_spares;
6554 
6555 	for (i = 0; i < sav->sav_count; i++)
6556 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6557 			return (B_TRUE);
6558 
6559 	for (i = 0; i < sav->sav_npending; i++) {
6560 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6561 		    &spareguid) == 0 && spareguid == guid)
6562 			return (B_TRUE);
6563 	}
6564 
6565 	return (B_FALSE);
6566 }
6567 
6568 /*
6569  * Check if a pool has an active shared spare device.
6570  * Note: reference count of an active spare is 2, as a spare and as a replace
6571  */
6572 static boolean_t
6573 spa_has_active_shared_spare(spa_t *spa)
6574 {
6575 	int i, refcnt;
6576 	uint64_t pool;
6577 	spa_aux_vdev_t *sav = &spa->spa_spares;
6578 
6579 	for (i = 0; i < sav->sav_count; i++) {
6580 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6581 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6582 		    refcnt > 2)
6583 			return (B_TRUE);
6584 	}
6585 
6586 	return (B_FALSE);
6587 }
6588 
6589 /*
6590  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6591  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6592  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6593  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6594  * or zdb as real changes.
6595  */
6596 void
6597 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6598 {
6599 #ifdef _KERNEL
6600 	sysevent_t		*ev;
6601 	sysevent_attr_list_t	*attr = NULL;
6602 	sysevent_value_t	value;
6603 	sysevent_id_t		eid;
6604 
6605 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6606 	    SE_SLEEP);
6607 
6608 	value.value_type = SE_DATA_TYPE_STRING;
6609 	value.value.sv_string = spa_name(spa);
6610 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6611 		goto done;
6612 
6613 	value.value_type = SE_DATA_TYPE_UINT64;
6614 	value.value.sv_uint64 = spa_guid(spa);
6615 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6616 		goto done;
6617 
6618 	if (vd) {
6619 		value.value_type = SE_DATA_TYPE_UINT64;
6620 		value.value.sv_uint64 = vd->vdev_guid;
6621 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6622 		    SE_SLEEP) != 0)
6623 			goto done;
6624 
6625 		if (vd->vdev_path) {
6626 			value.value_type = SE_DATA_TYPE_STRING;
6627 			value.value.sv_string = vd->vdev_path;
6628 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6629 			    &value, SE_SLEEP) != 0)
6630 				goto done;
6631 		}
6632 	}
6633 
6634 	if (sysevent_attach_attributes(ev, attr) != 0)
6635 		goto done;
6636 	attr = NULL;
6637 
6638 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6639 
6640 done:
6641 	if (attr)
6642 		sysevent_free_attr(attr);
6643 	sysevent_free(ev);
6644 #endif
6645 }
6646