1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains all the routines used when modifying on-disk SPA state. 31 * This includes opening, importing, destroying, exporting a pool, and syncing a 32 * pool. 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zio.h> 39 #include <sys/zio_checksum.h> 40 #include <sys/zio_compress.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/vdev_impl.h> 46 #include <sys/metaslab.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/dmu_traverse.h> 51 #include <sys/dmu_objset.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dataset.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_synctask.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/arc.h> 60 #include <sys/callb.h> 61 #include <sys/systeminfo.h> 62 #include <sys/sunddi.h> 63 #include <sys/spa_boot.h> 64 65 #include "zfs_prop.h" 66 #include "zfs_comutil.h" 67 68 int zio_taskq_threads = 8; 69 70 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx); 71 72 /* 73 * ========================================================================== 74 * SPA properties routines 75 * ========================================================================== 76 */ 77 78 /* 79 * Add a (source=src, propname=propval) list to an nvlist. 80 */ 81 static void 82 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 83 uint64_t intval, zprop_source_t src) 84 { 85 const char *propname = zpool_prop_to_name(prop); 86 nvlist_t *propval; 87 88 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 89 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 90 91 if (strval != NULL) 92 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 93 else 94 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 95 96 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 97 nvlist_free(propval); 98 } 99 100 /* 101 * Get property values from the spa configuration. 102 */ 103 static void 104 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 105 { 106 uint64_t size = spa_get_space(spa); 107 uint64_t used = spa_get_alloc(spa); 108 uint64_t cap, version; 109 zprop_source_t src = ZPROP_SRC_NONE; 110 spa_config_dirent_t *dp; 111 112 /* 113 * readonly properties 114 */ 115 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name, 0, src); 116 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 117 spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src); 118 spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, size - used, src); 119 120 cap = (size == 0) ? 0 : (used * 100 / size); 121 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 122 123 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 124 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 125 spa->spa_root_vdev->vdev_state, src); 126 127 /* 128 * settable properties that are not stored in the pool property object. 129 */ 130 version = spa_version(spa); 131 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 132 src = ZPROP_SRC_DEFAULT; 133 else 134 src = ZPROP_SRC_LOCAL; 135 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 136 137 if (spa->spa_root != NULL) 138 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 139 0, ZPROP_SRC_LOCAL); 140 141 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 142 if (dp->scd_path == NULL) { 143 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 144 "none", 0, ZPROP_SRC_LOCAL); 145 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 146 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 147 dp->scd_path, 0, ZPROP_SRC_LOCAL); 148 } 149 } 150 } 151 152 /* 153 * Get zpool property values. 154 */ 155 int 156 spa_prop_get(spa_t *spa, nvlist_t **nvp) 157 { 158 zap_cursor_t zc; 159 zap_attribute_t za; 160 objset_t *mos = spa->spa_meta_objset; 161 int err; 162 163 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 164 165 /* 166 * Get properties from the spa config. 167 */ 168 spa_prop_get_config(spa, nvp); 169 170 mutex_enter(&spa->spa_props_lock); 171 /* If no pool property object, no more prop to get. */ 172 if (spa->spa_pool_props_object == 0) { 173 mutex_exit(&spa->spa_props_lock); 174 return (0); 175 } 176 177 /* 178 * Get properties from the MOS pool property object. 179 */ 180 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 181 (err = zap_cursor_retrieve(&zc, &za)) == 0; 182 zap_cursor_advance(&zc)) { 183 uint64_t intval = 0; 184 char *strval = NULL; 185 zprop_source_t src = ZPROP_SRC_DEFAULT; 186 zpool_prop_t prop; 187 188 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 189 continue; 190 191 switch (za.za_integer_length) { 192 case 8: 193 /* integer property */ 194 if (za.za_first_integer != 195 zpool_prop_default_numeric(prop)) 196 src = ZPROP_SRC_LOCAL; 197 198 if (prop == ZPOOL_PROP_BOOTFS) { 199 dsl_pool_t *dp; 200 dsl_dataset_t *ds = NULL; 201 202 dp = spa_get_dsl(spa); 203 rw_enter(&dp->dp_config_rwlock, RW_READER); 204 if (err = dsl_dataset_hold_obj(dp, 205 za.za_first_integer, FTAG, &ds)) { 206 rw_exit(&dp->dp_config_rwlock); 207 break; 208 } 209 210 strval = kmem_alloc( 211 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 212 KM_SLEEP); 213 dsl_dataset_name(ds, strval); 214 dsl_dataset_rele(ds, FTAG); 215 rw_exit(&dp->dp_config_rwlock); 216 } else { 217 strval = NULL; 218 intval = za.za_first_integer; 219 } 220 221 spa_prop_add_list(*nvp, prop, strval, intval, src); 222 223 if (strval != NULL) 224 kmem_free(strval, 225 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 226 227 break; 228 229 case 1: 230 /* string property */ 231 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 232 err = zap_lookup(mos, spa->spa_pool_props_object, 233 za.za_name, 1, za.za_num_integers, strval); 234 if (err) { 235 kmem_free(strval, za.za_num_integers); 236 break; 237 } 238 spa_prop_add_list(*nvp, prop, strval, 0, src); 239 kmem_free(strval, za.za_num_integers); 240 break; 241 242 default: 243 break; 244 } 245 } 246 zap_cursor_fini(&zc); 247 mutex_exit(&spa->spa_props_lock); 248 out: 249 if (err && err != ENOENT) { 250 nvlist_free(*nvp); 251 *nvp = NULL; 252 return (err); 253 } 254 255 return (0); 256 } 257 258 /* 259 * Validate the given pool properties nvlist and modify the list 260 * for the property values to be set. 261 */ 262 static int 263 spa_prop_validate(spa_t *spa, nvlist_t *props) 264 { 265 nvpair_t *elem; 266 int error = 0, reset_bootfs = 0; 267 uint64_t objnum; 268 269 elem = NULL; 270 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 271 zpool_prop_t prop; 272 char *propname, *strval; 273 uint64_t intval; 274 objset_t *os; 275 char *slash; 276 277 propname = nvpair_name(elem); 278 279 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 280 return (EINVAL); 281 282 switch (prop) { 283 case ZPOOL_PROP_VERSION: 284 error = nvpair_value_uint64(elem, &intval); 285 if (!error && 286 (intval < spa_version(spa) || intval > SPA_VERSION)) 287 error = EINVAL; 288 break; 289 290 case ZPOOL_PROP_DELEGATION: 291 case ZPOOL_PROP_AUTOREPLACE: 292 error = nvpair_value_uint64(elem, &intval); 293 if (!error && intval > 1) 294 error = EINVAL; 295 break; 296 297 case ZPOOL_PROP_BOOTFS: 298 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 299 error = ENOTSUP; 300 break; 301 } 302 303 /* 304 * Make sure the vdev config is bootable 305 */ 306 if (!vdev_is_bootable(spa->spa_root_vdev)) { 307 error = ENOTSUP; 308 break; 309 } 310 311 reset_bootfs = 1; 312 313 error = nvpair_value_string(elem, &strval); 314 315 if (!error) { 316 uint64_t compress; 317 318 if (strval == NULL || strval[0] == '\0') { 319 objnum = zpool_prop_default_numeric( 320 ZPOOL_PROP_BOOTFS); 321 break; 322 } 323 324 if (error = dmu_objset_open(strval, DMU_OST_ZFS, 325 DS_MODE_USER | DS_MODE_READONLY, &os)) 326 break; 327 328 /* We don't support gzip bootable datasets */ 329 if ((error = dsl_prop_get_integer(strval, 330 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 331 &compress, NULL)) == 0 && 332 !BOOTFS_COMPRESS_VALID(compress)) { 333 error = ENOTSUP; 334 } else { 335 objnum = dmu_objset_id(os); 336 } 337 dmu_objset_close(os); 338 } 339 break; 340 case ZPOOL_PROP_FAILUREMODE: 341 error = nvpair_value_uint64(elem, &intval); 342 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 343 intval > ZIO_FAILURE_MODE_PANIC)) 344 error = EINVAL; 345 346 /* 347 * This is a special case which only occurs when 348 * the pool has completely failed. This allows 349 * the user to change the in-core failmode property 350 * without syncing it out to disk (I/Os might 351 * currently be blocked). We do this by returning 352 * EIO to the caller (spa_prop_set) to trick it 353 * into thinking we encountered a property validation 354 * error. 355 */ 356 if (!error && spa_state(spa) == POOL_STATE_IO_FAILURE) { 357 spa->spa_failmode = intval; 358 error = EIO; 359 } 360 break; 361 362 case ZPOOL_PROP_CACHEFILE: 363 if ((error = nvpair_value_string(elem, &strval)) != 0) 364 break; 365 366 if (strval[0] == '\0') 367 break; 368 369 if (strcmp(strval, "none") == 0) 370 break; 371 372 if (strval[0] != '/') { 373 error = EINVAL; 374 break; 375 } 376 377 slash = strrchr(strval, '/'); 378 ASSERT(slash != NULL); 379 380 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 381 strcmp(slash, "/..") == 0) 382 error = EINVAL; 383 break; 384 } 385 386 if (error) 387 break; 388 } 389 390 if (!error && reset_bootfs) { 391 error = nvlist_remove(props, 392 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 393 394 if (!error) { 395 error = nvlist_add_uint64(props, 396 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 397 } 398 } 399 400 return (error); 401 } 402 403 int 404 spa_prop_set(spa_t *spa, nvlist_t *nvp) 405 { 406 int error; 407 408 if ((error = spa_prop_validate(spa, nvp)) != 0) 409 return (error); 410 411 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 412 spa, nvp, 3)); 413 } 414 415 /* 416 * If the bootfs property value is dsobj, clear it. 417 */ 418 void 419 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 420 { 421 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 422 VERIFY(zap_remove(spa->spa_meta_objset, 423 spa->spa_pool_props_object, 424 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 425 spa->spa_bootfs = 0; 426 } 427 } 428 429 /* 430 * ========================================================================== 431 * SPA state manipulation (open/create/destroy/import/export) 432 * ========================================================================== 433 */ 434 435 static int 436 spa_error_entry_compare(const void *a, const void *b) 437 { 438 spa_error_entry_t *sa = (spa_error_entry_t *)a; 439 spa_error_entry_t *sb = (spa_error_entry_t *)b; 440 int ret; 441 442 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 443 sizeof (zbookmark_t)); 444 445 if (ret < 0) 446 return (-1); 447 else if (ret > 0) 448 return (1); 449 else 450 return (0); 451 } 452 453 /* 454 * Utility function which retrieves copies of the current logs and 455 * re-initializes them in the process. 456 */ 457 void 458 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 459 { 460 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 461 462 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 463 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 464 465 avl_create(&spa->spa_errlist_scrub, 466 spa_error_entry_compare, sizeof (spa_error_entry_t), 467 offsetof(spa_error_entry_t, se_avl)); 468 avl_create(&spa->spa_errlist_last, 469 spa_error_entry_compare, sizeof (spa_error_entry_t), 470 offsetof(spa_error_entry_t, se_avl)); 471 } 472 473 /* 474 * Activate an uninitialized pool. 475 */ 476 static void 477 spa_activate(spa_t *spa) 478 { 479 int t; 480 481 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 482 483 spa->spa_state = POOL_STATE_ACTIVE; 484 485 spa->spa_normal_class = metaslab_class_create(); 486 spa->spa_log_class = metaslab_class_create(); 487 488 for (t = 0; t < ZIO_TYPES; t++) { 489 spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue", 490 zio_taskq_threads, maxclsyspri, 50, INT_MAX, 491 TASKQ_PREPOPULATE); 492 spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr", 493 zio_taskq_threads, maxclsyspri, 50, INT_MAX, 494 TASKQ_PREPOPULATE); 495 } 496 497 list_create(&spa->spa_dirty_list, sizeof (vdev_t), 498 offsetof(vdev_t, vdev_dirty_node)); 499 list_create(&spa->spa_zio_list, sizeof (zio_t), 500 offsetof(zio_t, zio_link_node)); 501 502 txg_list_create(&spa->spa_vdev_txg_list, 503 offsetof(struct vdev, vdev_txg_node)); 504 505 avl_create(&spa->spa_errlist_scrub, 506 spa_error_entry_compare, sizeof (spa_error_entry_t), 507 offsetof(spa_error_entry_t, se_avl)); 508 avl_create(&spa->spa_errlist_last, 509 spa_error_entry_compare, sizeof (spa_error_entry_t), 510 offsetof(spa_error_entry_t, se_avl)); 511 } 512 513 /* 514 * Opposite of spa_activate(). 515 */ 516 static void 517 spa_deactivate(spa_t *spa) 518 { 519 int t; 520 521 ASSERT(spa->spa_sync_on == B_FALSE); 522 ASSERT(spa->spa_dsl_pool == NULL); 523 ASSERT(spa->spa_root_vdev == NULL); 524 525 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 526 527 txg_list_destroy(&spa->spa_vdev_txg_list); 528 529 list_destroy(&spa->spa_dirty_list); 530 list_destroy(&spa->spa_zio_list); 531 532 for (t = 0; t < ZIO_TYPES; t++) { 533 taskq_destroy(spa->spa_zio_issue_taskq[t]); 534 taskq_destroy(spa->spa_zio_intr_taskq[t]); 535 spa->spa_zio_issue_taskq[t] = NULL; 536 spa->spa_zio_intr_taskq[t] = NULL; 537 } 538 539 metaslab_class_destroy(spa->spa_normal_class); 540 spa->spa_normal_class = NULL; 541 542 metaslab_class_destroy(spa->spa_log_class); 543 spa->spa_log_class = NULL; 544 545 /* 546 * If this was part of an import or the open otherwise failed, we may 547 * still have errors left in the queues. Empty them just in case. 548 */ 549 spa_errlog_drain(spa); 550 551 avl_destroy(&spa->spa_errlist_scrub); 552 avl_destroy(&spa->spa_errlist_last); 553 554 spa->spa_state = POOL_STATE_UNINITIALIZED; 555 } 556 557 /* 558 * Verify a pool configuration, and construct the vdev tree appropriately. This 559 * will create all the necessary vdevs in the appropriate layout, with each vdev 560 * in the CLOSED state. This will prep the pool before open/creation/import. 561 * All vdev validation is done by the vdev_alloc() routine. 562 */ 563 static int 564 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 565 uint_t id, int atype) 566 { 567 nvlist_t **child; 568 uint_t c, children; 569 int error; 570 571 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 572 return (error); 573 574 if ((*vdp)->vdev_ops->vdev_op_leaf) 575 return (0); 576 577 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 578 &child, &children) != 0) { 579 vdev_free(*vdp); 580 *vdp = NULL; 581 return (EINVAL); 582 } 583 584 for (c = 0; c < children; c++) { 585 vdev_t *vd; 586 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 587 atype)) != 0) { 588 vdev_free(*vdp); 589 *vdp = NULL; 590 return (error); 591 } 592 } 593 594 ASSERT(*vdp != NULL); 595 596 return (0); 597 } 598 599 /* 600 * Opposite of spa_load(). 601 */ 602 static void 603 spa_unload(spa_t *spa) 604 { 605 int i; 606 607 /* 608 * Stop async tasks. 609 */ 610 spa_async_suspend(spa); 611 612 /* 613 * Stop syncing. 614 */ 615 if (spa->spa_sync_on) { 616 txg_sync_stop(spa->spa_dsl_pool); 617 spa->spa_sync_on = B_FALSE; 618 } 619 620 /* 621 * Wait for any outstanding prefetch I/O to complete. 622 */ 623 spa_config_enter(spa, RW_WRITER, FTAG); 624 spa_config_exit(spa, FTAG); 625 626 /* 627 * Drop and purge level 2 cache 628 */ 629 spa_l2cache_drop(spa); 630 631 /* 632 * Close the dsl pool. 633 */ 634 if (spa->spa_dsl_pool) { 635 dsl_pool_close(spa->spa_dsl_pool); 636 spa->spa_dsl_pool = NULL; 637 } 638 639 /* 640 * Close all vdevs. 641 */ 642 if (spa->spa_root_vdev) 643 vdev_free(spa->spa_root_vdev); 644 ASSERT(spa->spa_root_vdev == NULL); 645 646 for (i = 0; i < spa->spa_spares.sav_count; i++) 647 vdev_free(spa->spa_spares.sav_vdevs[i]); 648 if (spa->spa_spares.sav_vdevs) { 649 kmem_free(spa->spa_spares.sav_vdevs, 650 spa->spa_spares.sav_count * sizeof (void *)); 651 spa->spa_spares.sav_vdevs = NULL; 652 } 653 if (spa->spa_spares.sav_config) { 654 nvlist_free(spa->spa_spares.sav_config); 655 spa->spa_spares.sav_config = NULL; 656 } 657 658 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 659 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 660 if (spa->spa_l2cache.sav_vdevs) { 661 kmem_free(spa->spa_l2cache.sav_vdevs, 662 spa->spa_l2cache.sav_count * sizeof (void *)); 663 spa->spa_l2cache.sav_vdevs = NULL; 664 } 665 if (spa->spa_l2cache.sav_config) { 666 nvlist_free(spa->spa_l2cache.sav_config); 667 spa->spa_l2cache.sav_config = NULL; 668 } 669 670 spa->spa_async_suspended = 0; 671 } 672 673 /* 674 * Load (or re-load) the current list of vdevs describing the active spares for 675 * this pool. When this is called, we have some form of basic information in 676 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 677 * then re-generate a more complete list including status information. 678 */ 679 static void 680 spa_load_spares(spa_t *spa) 681 { 682 nvlist_t **spares; 683 uint_t nspares; 684 int i; 685 vdev_t *vd, *tvd; 686 687 /* 688 * First, close and free any existing spare vdevs. 689 */ 690 for (i = 0; i < spa->spa_spares.sav_count; i++) { 691 vd = spa->spa_spares.sav_vdevs[i]; 692 693 /* Undo the call to spa_activate() below */ 694 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 695 B_FALSE)) != NULL && tvd->vdev_isspare) 696 spa_spare_remove(tvd); 697 vdev_close(vd); 698 vdev_free(vd); 699 } 700 701 if (spa->spa_spares.sav_vdevs) 702 kmem_free(spa->spa_spares.sav_vdevs, 703 spa->spa_spares.sav_count * sizeof (void *)); 704 705 if (spa->spa_spares.sav_config == NULL) 706 nspares = 0; 707 else 708 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 709 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 710 711 spa->spa_spares.sav_count = (int)nspares; 712 spa->spa_spares.sav_vdevs = NULL; 713 714 if (nspares == 0) 715 return; 716 717 /* 718 * Construct the array of vdevs, opening them to get status in the 719 * process. For each spare, there is potentially two different vdev_t 720 * structures associated with it: one in the list of spares (used only 721 * for basic validation purposes) and one in the active vdev 722 * configuration (if it's spared in). During this phase we open and 723 * validate each vdev on the spare list. If the vdev also exists in the 724 * active configuration, then we also mark this vdev as an active spare. 725 */ 726 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 727 KM_SLEEP); 728 for (i = 0; i < spa->spa_spares.sav_count; i++) { 729 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 730 VDEV_ALLOC_SPARE) == 0); 731 ASSERT(vd != NULL); 732 733 spa->spa_spares.sav_vdevs[i] = vd; 734 735 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 736 B_FALSE)) != NULL) { 737 if (!tvd->vdev_isspare) 738 spa_spare_add(tvd); 739 740 /* 741 * We only mark the spare active if we were successfully 742 * able to load the vdev. Otherwise, importing a pool 743 * with a bad active spare would result in strange 744 * behavior, because multiple pool would think the spare 745 * is actively in use. 746 * 747 * There is a vulnerability here to an equally bizarre 748 * circumstance, where a dead active spare is later 749 * brought back to life (onlined or otherwise). Given 750 * the rarity of this scenario, and the extra complexity 751 * it adds, we ignore the possibility. 752 */ 753 if (!vdev_is_dead(tvd)) 754 spa_spare_activate(tvd); 755 } 756 757 if (vdev_open(vd) != 0) 758 continue; 759 760 vd->vdev_top = vd; 761 if (vdev_validate_aux(vd) == 0) 762 spa_spare_add(vd); 763 } 764 765 /* 766 * Recompute the stashed list of spares, with status information 767 * this time. 768 */ 769 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 770 DATA_TYPE_NVLIST_ARRAY) == 0); 771 772 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 773 KM_SLEEP); 774 for (i = 0; i < spa->spa_spares.sav_count; i++) 775 spares[i] = vdev_config_generate(spa, 776 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE); 777 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 778 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 779 for (i = 0; i < spa->spa_spares.sav_count; i++) 780 nvlist_free(spares[i]); 781 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 782 } 783 784 /* 785 * Load (or re-load) the current list of vdevs describing the active l2cache for 786 * this pool. When this is called, we have some form of basic information in 787 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 788 * then re-generate a more complete list including status information. 789 * Devices which are already active have their details maintained, and are 790 * not re-opened. 791 */ 792 static void 793 spa_load_l2cache(spa_t *spa) 794 { 795 nvlist_t **l2cache; 796 uint_t nl2cache; 797 int i, j, oldnvdevs; 798 uint64_t guid, size; 799 vdev_t *vd, **oldvdevs, **newvdevs; 800 spa_aux_vdev_t *sav = &spa->spa_l2cache; 801 802 if (sav->sav_config != NULL) { 803 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 804 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 805 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 806 } else { 807 nl2cache = 0; 808 } 809 810 oldvdevs = sav->sav_vdevs; 811 oldnvdevs = sav->sav_count; 812 sav->sav_vdevs = NULL; 813 sav->sav_count = 0; 814 815 /* 816 * Process new nvlist of vdevs. 817 */ 818 for (i = 0; i < nl2cache; i++) { 819 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 820 &guid) == 0); 821 822 newvdevs[i] = NULL; 823 for (j = 0; j < oldnvdevs; j++) { 824 vd = oldvdevs[j]; 825 if (vd != NULL && guid == vd->vdev_guid) { 826 /* 827 * Retain previous vdev for add/remove ops. 828 */ 829 newvdevs[i] = vd; 830 oldvdevs[j] = NULL; 831 break; 832 } 833 } 834 835 if (newvdevs[i] == NULL) { 836 /* 837 * Create new vdev 838 */ 839 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 840 VDEV_ALLOC_L2CACHE) == 0); 841 ASSERT(vd != NULL); 842 newvdevs[i] = vd; 843 844 /* 845 * Commit this vdev as an l2cache device, 846 * even if it fails to open. 847 */ 848 spa_l2cache_add(vd); 849 850 vd->vdev_top = vd; 851 vd->vdev_aux = sav; 852 853 spa_l2cache_activate(vd); 854 855 if (vdev_open(vd) != 0) 856 continue; 857 858 (void) vdev_validate_aux(vd); 859 860 if (!vdev_is_dead(vd)) { 861 size = vdev_get_rsize(vd); 862 l2arc_add_vdev(spa, vd, 863 VDEV_LABEL_START_SIZE, 864 size - VDEV_LABEL_START_SIZE); 865 } 866 } 867 } 868 869 /* 870 * Purge vdevs that were dropped 871 */ 872 for (i = 0; i < oldnvdevs; i++) { 873 uint64_t pool; 874 875 vd = oldvdevs[i]; 876 if (vd != NULL) { 877 if (spa_mode & FWRITE && 878 spa_l2cache_exists(vd->vdev_guid, &pool) && 879 pool != 0ULL && 880 l2arc_vdev_present(vd)) { 881 l2arc_remove_vdev(vd); 882 } 883 (void) vdev_close(vd); 884 spa_l2cache_remove(vd); 885 } 886 } 887 888 if (oldvdevs) 889 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 890 891 if (sav->sav_config == NULL) 892 goto out; 893 894 sav->sav_vdevs = newvdevs; 895 sav->sav_count = (int)nl2cache; 896 897 /* 898 * Recompute the stashed list of l2cache devices, with status 899 * information this time. 900 */ 901 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 902 DATA_TYPE_NVLIST_ARRAY) == 0); 903 904 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 905 for (i = 0; i < sav->sav_count; i++) 906 l2cache[i] = vdev_config_generate(spa, 907 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE); 908 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 909 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 910 out: 911 for (i = 0; i < sav->sav_count; i++) 912 nvlist_free(l2cache[i]); 913 if (sav->sav_count) 914 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 915 } 916 917 static int 918 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 919 { 920 dmu_buf_t *db; 921 char *packed = NULL; 922 size_t nvsize = 0; 923 int error; 924 *value = NULL; 925 926 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 927 nvsize = *(uint64_t *)db->db_data; 928 dmu_buf_rele(db, FTAG); 929 930 packed = kmem_alloc(nvsize, KM_SLEEP); 931 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed); 932 if (error == 0) 933 error = nvlist_unpack(packed, nvsize, value, 0); 934 kmem_free(packed, nvsize); 935 936 return (error); 937 } 938 939 /* 940 * Checks to see if the given vdev could not be opened, in which case we post a 941 * sysevent to notify the autoreplace code that the device has been removed. 942 */ 943 static void 944 spa_check_removed(vdev_t *vd) 945 { 946 int c; 947 948 for (c = 0; c < vd->vdev_children; c++) 949 spa_check_removed(vd->vdev_child[c]); 950 951 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 952 zfs_post_autoreplace(vd->vdev_spa, vd); 953 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 954 } 955 } 956 957 /* 958 * Load an existing storage pool, using the pool's builtin spa_config as a 959 * source of configuration information. 960 */ 961 static int 962 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig) 963 { 964 int error = 0; 965 nvlist_t *nvroot = NULL; 966 vdev_t *rvd; 967 uberblock_t *ub = &spa->spa_uberblock; 968 uint64_t config_cache_txg = spa->spa_config_txg; 969 uint64_t pool_guid; 970 uint64_t version; 971 zio_t *zio; 972 uint64_t autoreplace = 0; 973 974 spa->spa_load_state = state; 975 976 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 977 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 978 error = EINVAL; 979 goto out; 980 } 981 982 /* 983 * Versioning wasn't explicitly added to the label until later, so if 984 * it's not present treat it as the initial version. 985 */ 986 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0) 987 version = SPA_VERSION_INITIAL; 988 989 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 990 &spa->spa_config_txg); 991 992 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 993 spa_guid_exists(pool_guid, 0)) { 994 error = EEXIST; 995 goto out; 996 } 997 998 spa->spa_load_guid = pool_guid; 999 1000 /* 1001 * Parse the configuration into a vdev tree. We explicitly set the 1002 * value that will be returned by spa_version() since parsing the 1003 * configuration requires knowing the version number. 1004 */ 1005 spa_config_enter(spa, RW_WRITER, FTAG); 1006 spa->spa_ubsync.ub_version = version; 1007 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD); 1008 spa_config_exit(spa, FTAG); 1009 1010 if (error != 0) 1011 goto out; 1012 1013 ASSERT(spa->spa_root_vdev == rvd); 1014 ASSERT(spa_guid(spa) == pool_guid); 1015 1016 /* 1017 * Try to open all vdevs, loading each label in the process. 1018 */ 1019 error = vdev_open(rvd); 1020 if (error != 0) 1021 goto out; 1022 1023 /* 1024 * Validate the labels for all leaf vdevs. We need to grab the config 1025 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD 1026 * flag. 1027 */ 1028 spa_config_enter(spa, RW_READER, FTAG); 1029 error = vdev_validate(rvd); 1030 spa_config_exit(spa, FTAG); 1031 1032 if (error != 0) 1033 goto out; 1034 1035 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1036 error = ENXIO; 1037 goto out; 1038 } 1039 1040 /* 1041 * Find the best uberblock. 1042 */ 1043 bzero(ub, sizeof (uberblock_t)); 1044 1045 zio = zio_root(spa, NULL, NULL, 1046 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1047 vdev_uberblock_load(zio, rvd, ub); 1048 error = zio_wait(zio); 1049 1050 /* 1051 * If we weren't able to find a single valid uberblock, return failure. 1052 */ 1053 if (ub->ub_txg == 0) { 1054 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1055 VDEV_AUX_CORRUPT_DATA); 1056 error = ENXIO; 1057 goto out; 1058 } 1059 1060 /* 1061 * If the pool is newer than the code, we can't open it. 1062 */ 1063 if (ub->ub_version > SPA_VERSION) { 1064 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1065 VDEV_AUX_VERSION_NEWER); 1066 error = ENOTSUP; 1067 goto out; 1068 } 1069 1070 /* 1071 * If the vdev guid sum doesn't match the uberblock, we have an 1072 * incomplete configuration. 1073 */ 1074 if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) { 1075 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1076 VDEV_AUX_BAD_GUID_SUM); 1077 error = ENXIO; 1078 goto out; 1079 } 1080 1081 /* 1082 * Initialize internal SPA structures. 1083 */ 1084 spa->spa_state = POOL_STATE_ACTIVE; 1085 spa->spa_ubsync = spa->spa_uberblock; 1086 spa->spa_first_txg = spa_last_synced_txg(spa) + 1; 1087 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1088 if (error) { 1089 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1090 VDEV_AUX_CORRUPT_DATA); 1091 goto out; 1092 } 1093 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1094 1095 if (zap_lookup(spa->spa_meta_objset, 1096 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 1097 sizeof (uint64_t), 1, &spa->spa_config_object) != 0) { 1098 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1099 VDEV_AUX_CORRUPT_DATA); 1100 error = EIO; 1101 goto out; 1102 } 1103 1104 if (!mosconfig) { 1105 nvlist_t *newconfig; 1106 uint64_t hostid; 1107 1108 if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) { 1109 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1110 VDEV_AUX_CORRUPT_DATA); 1111 error = EIO; 1112 goto out; 1113 } 1114 1115 if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID, 1116 &hostid) == 0) { 1117 char *hostname; 1118 unsigned long myhostid = 0; 1119 1120 VERIFY(nvlist_lookup_string(newconfig, 1121 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1122 1123 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1124 if (hostid != 0 && myhostid != 0 && 1125 (unsigned long)hostid != myhostid) { 1126 cmn_err(CE_WARN, "pool '%s' could not be " 1127 "loaded as it was last accessed by " 1128 "another system (host: %s hostid: 0x%lx). " 1129 "See: http://www.sun.com/msg/ZFS-8000-EY", 1130 spa->spa_name, hostname, 1131 (unsigned long)hostid); 1132 error = EBADF; 1133 goto out; 1134 } 1135 } 1136 1137 spa_config_set(spa, newconfig); 1138 spa_unload(spa); 1139 spa_deactivate(spa); 1140 spa_activate(spa); 1141 1142 return (spa_load(spa, newconfig, state, B_TRUE)); 1143 } 1144 1145 if (zap_lookup(spa->spa_meta_objset, 1146 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 1147 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) { 1148 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1149 VDEV_AUX_CORRUPT_DATA); 1150 error = EIO; 1151 goto out; 1152 } 1153 1154 /* 1155 * Load the bit that tells us to use the new accounting function 1156 * (raid-z deflation). If we have an older pool, this will not 1157 * be present. 1158 */ 1159 error = zap_lookup(spa->spa_meta_objset, 1160 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 1161 sizeof (uint64_t), 1, &spa->spa_deflate); 1162 if (error != 0 && error != ENOENT) { 1163 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1164 VDEV_AUX_CORRUPT_DATA); 1165 error = EIO; 1166 goto out; 1167 } 1168 1169 /* 1170 * Load the persistent error log. If we have an older pool, this will 1171 * not be present. 1172 */ 1173 error = zap_lookup(spa->spa_meta_objset, 1174 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST, 1175 sizeof (uint64_t), 1, &spa->spa_errlog_last); 1176 if (error != 0 && error != ENOENT) { 1177 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1178 VDEV_AUX_CORRUPT_DATA); 1179 error = EIO; 1180 goto out; 1181 } 1182 1183 error = zap_lookup(spa->spa_meta_objset, 1184 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB, 1185 sizeof (uint64_t), 1, &spa->spa_errlog_scrub); 1186 if (error != 0 && error != ENOENT) { 1187 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1188 VDEV_AUX_CORRUPT_DATA); 1189 error = EIO; 1190 goto out; 1191 } 1192 1193 /* 1194 * Load the history object. If we have an older pool, this 1195 * will not be present. 1196 */ 1197 error = zap_lookup(spa->spa_meta_objset, 1198 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY, 1199 sizeof (uint64_t), 1, &spa->spa_history); 1200 if (error != 0 && error != ENOENT) { 1201 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1202 VDEV_AUX_CORRUPT_DATA); 1203 error = EIO; 1204 goto out; 1205 } 1206 1207 /* 1208 * Load any hot spares for this pool. 1209 */ 1210 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1211 DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object); 1212 if (error != 0 && error != ENOENT) { 1213 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1214 VDEV_AUX_CORRUPT_DATA); 1215 error = EIO; 1216 goto out; 1217 } 1218 if (error == 0) { 1219 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1220 if (load_nvlist(spa, spa->spa_spares.sav_object, 1221 &spa->spa_spares.sav_config) != 0) { 1222 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1223 VDEV_AUX_CORRUPT_DATA); 1224 error = EIO; 1225 goto out; 1226 } 1227 1228 spa_config_enter(spa, RW_WRITER, FTAG); 1229 spa_load_spares(spa); 1230 spa_config_exit(spa, FTAG); 1231 } 1232 1233 /* 1234 * Load any level 2 ARC devices for this pool. 1235 */ 1236 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1237 DMU_POOL_L2CACHE, sizeof (uint64_t), 1, 1238 &spa->spa_l2cache.sav_object); 1239 if (error != 0 && error != ENOENT) { 1240 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1241 VDEV_AUX_CORRUPT_DATA); 1242 error = EIO; 1243 goto out; 1244 } 1245 if (error == 0) { 1246 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1247 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1248 &spa->spa_l2cache.sav_config) != 0) { 1249 vdev_set_state(rvd, B_TRUE, 1250 VDEV_STATE_CANT_OPEN, 1251 VDEV_AUX_CORRUPT_DATA); 1252 error = EIO; 1253 goto out; 1254 } 1255 1256 spa_config_enter(spa, RW_WRITER, FTAG); 1257 spa_load_l2cache(spa); 1258 spa_config_exit(spa, FTAG); 1259 } 1260 1261 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1262 1263 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1264 DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object); 1265 1266 if (error && error != ENOENT) { 1267 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1268 VDEV_AUX_CORRUPT_DATA); 1269 error = EIO; 1270 goto out; 1271 } 1272 1273 if (error == 0) { 1274 (void) zap_lookup(spa->spa_meta_objset, 1275 spa->spa_pool_props_object, 1276 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 1277 sizeof (uint64_t), 1, &spa->spa_bootfs); 1278 (void) zap_lookup(spa->spa_meta_objset, 1279 spa->spa_pool_props_object, 1280 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1281 sizeof (uint64_t), 1, &autoreplace); 1282 (void) zap_lookup(spa->spa_meta_objset, 1283 spa->spa_pool_props_object, 1284 zpool_prop_to_name(ZPOOL_PROP_DELEGATION), 1285 sizeof (uint64_t), 1, &spa->spa_delegation); 1286 (void) zap_lookup(spa->spa_meta_objset, 1287 spa->spa_pool_props_object, 1288 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE), 1289 sizeof (uint64_t), 1, &spa->spa_failmode); 1290 } 1291 1292 /* 1293 * If the 'autoreplace' property is set, then post a resource notifying 1294 * the ZFS DE that it should not issue any faults for unopenable 1295 * devices. We also iterate over the vdevs, and post a sysevent for any 1296 * unopenable vdevs so that the normal autoreplace handler can take 1297 * over. 1298 */ 1299 if (autoreplace && state != SPA_LOAD_TRYIMPORT) 1300 spa_check_removed(spa->spa_root_vdev); 1301 1302 /* 1303 * Load the vdev state for all toplevel vdevs. 1304 */ 1305 vdev_load(rvd); 1306 1307 /* 1308 * Propagate the leaf DTLs we just loaded all the way up the tree. 1309 */ 1310 spa_config_enter(spa, RW_WRITER, FTAG); 1311 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1312 spa_config_exit(spa, FTAG); 1313 1314 /* 1315 * Check the state of the root vdev. If it can't be opened, it 1316 * indicates one or more toplevel vdevs are faulted. 1317 */ 1318 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1319 error = ENXIO; 1320 goto out; 1321 } 1322 1323 if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) { 1324 dmu_tx_t *tx; 1325 int need_update = B_FALSE; 1326 int c; 1327 1328 /* 1329 * Claim log blocks that haven't been committed yet. 1330 * This must all happen in a single txg. 1331 */ 1332 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 1333 spa_first_txg(spa)); 1334 (void) dmu_objset_find(spa->spa_name, 1335 zil_claim, tx, DS_FIND_CHILDREN); 1336 dmu_tx_commit(tx); 1337 1338 spa->spa_sync_on = B_TRUE; 1339 txg_sync_start(spa->spa_dsl_pool); 1340 1341 /* 1342 * Wait for all claims to sync. 1343 */ 1344 txg_wait_synced(spa->spa_dsl_pool, 0); 1345 1346 /* 1347 * If the config cache is stale, or we have uninitialized 1348 * metaslabs (see spa_vdev_add()), then update the config. 1349 */ 1350 if (config_cache_txg != spa->spa_config_txg || 1351 state == SPA_LOAD_IMPORT) 1352 need_update = B_TRUE; 1353 1354 for (c = 0; c < rvd->vdev_children; c++) 1355 if (rvd->vdev_child[c]->vdev_ms_array == 0) 1356 need_update = B_TRUE; 1357 1358 /* 1359 * Update the config cache asychronously in case we're the 1360 * root pool, in which case the config cache isn't writable yet. 1361 */ 1362 if (need_update) 1363 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 1364 } 1365 1366 error = 0; 1367 out: 1368 spa->spa_minref = refcount_count(&spa->spa_refcount); 1369 if (error && error != EBADF) 1370 zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0); 1371 spa->spa_load_state = SPA_LOAD_NONE; 1372 spa->spa_ena = 0; 1373 1374 return (error); 1375 } 1376 1377 /* 1378 * Pool Open/Import 1379 * 1380 * The import case is identical to an open except that the configuration is sent 1381 * down from userland, instead of grabbed from the configuration cache. For the 1382 * case of an open, the pool configuration will exist in the 1383 * POOL_STATE_UNINITIALIZED state. 1384 * 1385 * The stats information (gen/count/ustats) is used to gather vdev statistics at 1386 * the same time open the pool, without having to keep around the spa_t in some 1387 * ambiguous state. 1388 */ 1389 static int 1390 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config) 1391 { 1392 spa_t *spa; 1393 int error; 1394 int locked = B_FALSE; 1395 1396 *spapp = NULL; 1397 1398 /* 1399 * As disgusting as this is, we need to support recursive calls to this 1400 * function because dsl_dir_open() is called during spa_load(), and ends 1401 * up calling spa_open() again. The real fix is to figure out how to 1402 * avoid dsl_dir_open() calling this in the first place. 1403 */ 1404 if (mutex_owner(&spa_namespace_lock) != curthread) { 1405 mutex_enter(&spa_namespace_lock); 1406 locked = B_TRUE; 1407 } 1408 1409 if ((spa = spa_lookup(pool)) == NULL) { 1410 if (locked) 1411 mutex_exit(&spa_namespace_lock); 1412 return (ENOENT); 1413 } 1414 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 1415 1416 spa_activate(spa); 1417 1418 error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE); 1419 1420 if (error == EBADF) { 1421 /* 1422 * If vdev_validate() returns failure (indicated by 1423 * EBADF), it indicates that one of the vdevs indicates 1424 * that the pool has been exported or destroyed. If 1425 * this is the case, the config cache is out of sync and 1426 * we should remove the pool from the namespace. 1427 */ 1428 spa_unload(spa); 1429 spa_deactivate(spa); 1430 spa_config_sync(spa, B_TRUE, B_TRUE); 1431 spa_remove(spa); 1432 if (locked) 1433 mutex_exit(&spa_namespace_lock); 1434 return (ENOENT); 1435 } 1436 1437 if (error) { 1438 /* 1439 * We can't open the pool, but we still have useful 1440 * information: the state of each vdev after the 1441 * attempted vdev_open(). Return this to the user. 1442 */ 1443 if (config != NULL && spa->spa_root_vdev != NULL) { 1444 spa_config_enter(spa, RW_READER, FTAG); 1445 *config = spa_config_generate(spa, NULL, -1ULL, 1446 B_TRUE); 1447 spa_config_exit(spa, FTAG); 1448 } 1449 spa_unload(spa); 1450 spa_deactivate(spa); 1451 spa->spa_last_open_failed = B_TRUE; 1452 if (locked) 1453 mutex_exit(&spa_namespace_lock); 1454 *spapp = NULL; 1455 return (error); 1456 } else { 1457 spa->spa_last_open_failed = B_FALSE; 1458 } 1459 } 1460 1461 spa_open_ref(spa, tag); 1462 1463 if (locked) 1464 mutex_exit(&spa_namespace_lock); 1465 1466 *spapp = spa; 1467 1468 if (config != NULL) { 1469 spa_config_enter(spa, RW_READER, FTAG); 1470 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 1471 spa_config_exit(spa, FTAG); 1472 } 1473 1474 return (0); 1475 } 1476 1477 int 1478 spa_open(const char *name, spa_t **spapp, void *tag) 1479 { 1480 return (spa_open_common(name, spapp, tag, NULL)); 1481 } 1482 1483 /* 1484 * Lookup the given spa_t, incrementing the inject count in the process, 1485 * preventing it from being exported or destroyed. 1486 */ 1487 spa_t * 1488 spa_inject_addref(char *name) 1489 { 1490 spa_t *spa; 1491 1492 mutex_enter(&spa_namespace_lock); 1493 if ((spa = spa_lookup(name)) == NULL) { 1494 mutex_exit(&spa_namespace_lock); 1495 return (NULL); 1496 } 1497 spa->spa_inject_ref++; 1498 mutex_exit(&spa_namespace_lock); 1499 1500 return (spa); 1501 } 1502 1503 void 1504 spa_inject_delref(spa_t *spa) 1505 { 1506 mutex_enter(&spa_namespace_lock); 1507 spa->spa_inject_ref--; 1508 mutex_exit(&spa_namespace_lock); 1509 } 1510 1511 /* 1512 * Add spares device information to the nvlist. 1513 */ 1514 static void 1515 spa_add_spares(spa_t *spa, nvlist_t *config) 1516 { 1517 nvlist_t **spares; 1518 uint_t i, nspares; 1519 nvlist_t *nvroot; 1520 uint64_t guid; 1521 vdev_stat_t *vs; 1522 uint_t vsc; 1523 uint64_t pool; 1524 1525 if (spa->spa_spares.sav_count == 0) 1526 return; 1527 1528 VERIFY(nvlist_lookup_nvlist(config, 1529 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1530 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1531 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1532 if (nspares != 0) { 1533 VERIFY(nvlist_add_nvlist_array(nvroot, 1534 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1535 VERIFY(nvlist_lookup_nvlist_array(nvroot, 1536 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1537 1538 /* 1539 * Go through and find any spares which have since been 1540 * repurposed as an active spare. If this is the case, update 1541 * their status appropriately. 1542 */ 1543 for (i = 0; i < nspares; i++) { 1544 VERIFY(nvlist_lookup_uint64(spares[i], 1545 ZPOOL_CONFIG_GUID, &guid) == 0); 1546 if (spa_spare_exists(guid, &pool) && pool != 0ULL) { 1547 VERIFY(nvlist_lookup_uint64_array( 1548 spares[i], ZPOOL_CONFIG_STATS, 1549 (uint64_t **)&vs, &vsc) == 0); 1550 vs->vs_state = VDEV_STATE_CANT_OPEN; 1551 vs->vs_aux = VDEV_AUX_SPARED; 1552 } 1553 } 1554 } 1555 } 1556 1557 /* 1558 * Add l2cache device information to the nvlist, including vdev stats. 1559 */ 1560 static void 1561 spa_add_l2cache(spa_t *spa, nvlist_t *config) 1562 { 1563 nvlist_t **l2cache; 1564 uint_t i, j, nl2cache; 1565 nvlist_t *nvroot; 1566 uint64_t guid; 1567 vdev_t *vd; 1568 vdev_stat_t *vs; 1569 uint_t vsc; 1570 1571 if (spa->spa_l2cache.sav_count == 0) 1572 return; 1573 1574 spa_config_enter(spa, RW_READER, FTAG); 1575 1576 VERIFY(nvlist_lookup_nvlist(config, 1577 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1578 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 1579 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1580 if (nl2cache != 0) { 1581 VERIFY(nvlist_add_nvlist_array(nvroot, 1582 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 1583 VERIFY(nvlist_lookup_nvlist_array(nvroot, 1584 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1585 1586 /* 1587 * Update level 2 cache device stats. 1588 */ 1589 1590 for (i = 0; i < nl2cache; i++) { 1591 VERIFY(nvlist_lookup_uint64(l2cache[i], 1592 ZPOOL_CONFIG_GUID, &guid) == 0); 1593 1594 vd = NULL; 1595 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 1596 if (guid == 1597 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 1598 vd = spa->spa_l2cache.sav_vdevs[j]; 1599 break; 1600 } 1601 } 1602 ASSERT(vd != NULL); 1603 1604 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 1605 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); 1606 vdev_get_stats(vd, vs); 1607 } 1608 } 1609 1610 spa_config_exit(spa, FTAG); 1611 } 1612 1613 int 1614 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 1615 { 1616 int error; 1617 spa_t *spa; 1618 1619 *config = NULL; 1620 error = spa_open_common(name, &spa, FTAG, config); 1621 1622 if (spa && *config != NULL) { 1623 VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT, 1624 spa_get_errlog_size(spa)) == 0); 1625 1626 spa_add_spares(spa, *config); 1627 spa_add_l2cache(spa, *config); 1628 } 1629 1630 /* 1631 * We want to get the alternate root even for faulted pools, so we cheat 1632 * and call spa_lookup() directly. 1633 */ 1634 if (altroot) { 1635 if (spa == NULL) { 1636 mutex_enter(&spa_namespace_lock); 1637 spa = spa_lookup(name); 1638 if (spa) 1639 spa_altroot(spa, altroot, buflen); 1640 else 1641 altroot[0] = '\0'; 1642 spa = NULL; 1643 mutex_exit(&spa_namespace_lock); 1644 } else { 1645 spa_altroot(spa, altroot, buflen); 1646 } 1647 } 1648 1649 if (spa != NULL) 1650 spa_close(spa, FTAG); 1651 1652 return (error); 1653 } 1654 1655 /* 1656 * Validate that the auxiliary device array is well formed. We must have an 1657 * array of nvlists, each which describes a valid leaf vdev. If this is an 1658 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 1659 * specified, as long as they are well-formed. 1660 */ 1661 static int 1662 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 1663 spa_aux_vdev_t *sav, const char *config, uint64_t version, 1664 vdev_labeltype_t label) 1665 { 1666 nvlist_t **dev; 1667 uint_t i, ndev; 1668 vdev_t *vd; 1669 int error; 1670 1671 /* 1672 * It's acceptable to have no devs specified. 1673 */ 1674 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 1675 return (0); 1676 1677 if (ndev == 0) 1678 return (EINVAL); 1679 1680 /* 1681 * Make sure the pool is formatted with a version that supports this 1682 * device type. 1683 */ 1684 if (spa_version(spa) < version) 1685 return (ENOTSUP); 1686 1687 /* 1688 * Set the pending device list so we correctly handle device in-use 1689 * checking. 1690 */ 1691 sav->sav_pending = dev; 1692 sav->sav_npending = ndev; 1693 1694 for (i = 0; i < ndev; i++) { 1695 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 1696 mode)) != 0) 1697 goto out; 1698 1699 if (!vd->vdev_ops->vdev_op_leaf) { 1700 vdev_free(vd); 1701 error = EINVAL; 1702 goto out; 1703 } 1704 1705 /* 1706 * The L2ARC currently only supports disk devices. 1707 */ 1708 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 1709 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 1710 error = ENOTBLK; 1711 goto out; 1712 } 1713 1714 vd->vdev_top = vd; 1715 1716 if ((error = vdev_open(vd)) == 0 && 1717 (error = vdev_label_init(vd, crtxg, label)) == 0) { 1718 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 1719 vd->vdev_guid) == 0); 1720 } 1721 1722 vdev_free(vd); 1723 1724 if (error && 1725 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 1726 goto out; 1727 else 1728 error = 0; 1729 } 1730 1731 out: 1732 sav->sav_pending = NULL; 1733 sav->sav_npending = 0; 1734 return (error); 1735 } 1736 1737 static int 1738 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 1739 { 1740 int error; 1741 1742 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 1743 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 1744 VDEV_LABEL_SPARE)) != 0) { 1745 return (error); 1746 } 1747 1748 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 1749 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 1750 VDEV_LABEL_L2CACHE)); 1751 } 1752 1753 static void 1754 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 1755 const char *config) 1756 { 1757 int i; 1758 1759 if (sav->sav_config != NULL) { 1760 nvlist_t **olddevs; 1761 uint_t oldndevs; 1762 nvlist_t **newdevs; 1763 1764 /* 1765 * Generate new dev list by concatentating with the 1766 * current dev list. 1767 */ 1768 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 1769 &olddevs, &oldndevs) == 0); 1770 1771 newdevs = kmem_alloc(sizeof (void *) * 1772 (ndevs + oldndevs), KM_SLEEP); 1773 for (i = 0; i < oldndevs; i++) 1774 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 1775 KM_SLEEP) == 0); 1776 for (i = 0; i < ndevs; i++) 1777 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 1778 KM_SLEEP) == 0); 1779 1780 VERIFY(nvlist_remove(sav->sav_config, config, 1781 DATA_TYPE_NVLIST_ARRAY) == 0); 1782 1783 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1784 config, newdevs, ndevs + oldndevs) == 0); 1785 for (i = 0; i < oldndevs + ndevs; i++) 1786 nvlist_free(newdevs[i]); 1787 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 1788 } else { 1789 /* 1790 * Generate a new dev list. 1791 */ 1792 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 1793 KM_SLEEP) == 0); 1794 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 1795 devs, ndevs) == 0); 1796 } 1797 } 1798 1799 /* 1800 * Stop and drop level 2 ARC devices 1801 */ 1802 void 1803 spa_l2cache_drop(spa_t *spa) 1804 { 1805 vdev_t *vd; 1806 int i; 1807 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1808 1809 for (i = 0; i < sav->sav_count; i++) { 1810 uint64_t pool; 1811 1812 vd = sav->sav_vdevs[i]; 1813 ASSERT(vd != NULL); 1814 1815 if (spa_mode & FWRITE && 1816 spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && 1817 l2arc_vdev_present(vd)) { 1818 l2arc_remove_vdev(vd); 1819 } 1820 if (vd->vdev_isl2cache) 1821 spa_l2cache_remove(vd); 1822 vdev_clear_stats(vd); 1823 (void) vdev_close(vd); 1824 } 1825 } 1826 1827 /* 1828 * Pool Creation 1829 */ 1830 int 1831 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 1832 const char *history_str, nvlist_t *zplprops) 1833 { 1834 spa_t *spa; 1835 char *altroot = NULL; 1836 vdev_t *rvd; 1837 dsl_pool_t *dp; 1838 dmu_tx_t *tx; 1839 int c, error = 0; 1840 uint64_t txg = TXG_INITIAL; 1841 nvlist_t **spares, **l2cache; 1842 uint_t nspares, nl2cache; 1843 uint64_t version; 1844 1845 /* 1846 * If this pool already exists, return failure. 1847 */ 1848 mutex_enter(&spa_namespace_lock); 1849 if (spa_lookup(pool) != NULL) { 1850 mutex_exit(&spa_namespace_lock); 1851 return (EEXIST); 1852 } 1853 1854 /* 1855 * Allocate a new spa_t structure. 1856 */ 1857 (void) nvlist_lookup_string(props, 1858 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 1859 spa = spa_add(pool, altroot); 1860 spa_activate(spa); 1861 1862 spa->spa_uberblock.ub_txg = txg - 1; 1863 1864 if (props && (error = spa_prop_validate(spa, props))) { 1865 spa_unload(spa); 1866 spa_deactivate(spa); 1867 spa_remove(spa); 1868 mutex_exit(&spa_namespace_lock); 1869 return (error); 1870 } 1871 1872 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 1873 &version) != 0) 1874 version = SPA_VERSION; 1875 ASSERT(version <= SPA_VERSION); 1876 spa->spa_uberblock.ub_version = version; 1877 spa->spa_ubsync = spa->spa_uberblock; 1878 1879 /* 1880 * Create the root vdev. 1881 */ 1882 spa_config_enter(spa, RW_WRITER, FTAG); 1883 1884 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 1885 1886 ASSERT(error != 0 || rvd != NULL); 1887 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 1888 1889 if (error == 0 && !zfs_allocatable_devs(nvroot)) 1890 error = EINVAL; 1891 1892 if (error == 0 && 1893 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 1894 (error = spa_validate_aux(spa, nvroot, txg, 1895 VDEV_ALLOC_ADD)) == 0) { 1896 for (c = 0; c < rvd->vdev_children; c++) 1897 vdev_init(rvd->vdev_child[c], txg); 1898 vdev_config_dirty(rvd); 1899 } 1900 1901 spa_config_exit(spa, FTAG); 1902 1903 if (error != 0) { 1904 spa_unload(spa); 1905 spa_deactivate(spa); 1906 spa_remove(spa); 1907 mutex_exit(&spa_namespace_lock); 1908 return (error); 1909 } 1910 1911 /* 1912 * Get the list of spares, if specified. 1913 */ 1914 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1915 &spares, &nspares) == 0) { 1916 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 1917 KM_SLEEP) == 0); 1918 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1919 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1920 spa_config_enter(spa, RW_WRITER, FTAG); 1921 spa_load_spares(spa); 1922 spa_config_exit(spa, FTAG); 1923 spa->spa_spares.sav_sync = B_TRUE; 1924 } 1925 1926 /* 1927 * Get the list of level 2 cache devices, if specified. 1928 */ 1929 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 1930 &l2cache, &nl2cache) == 0) { 1931 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 1932 NV_UNIQUE_NAME, KM_SLEEP) == 0); 1933 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 1934 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 1935 spa_config_enter(spa, RW_WRITER, FTAG); 1936 spa_load_l2cache(spa); 1937 spa_config_exit(spa, FTAG); 1938 spa->spa_l2cache.sav_sync = B_TRUE; 1939 } 1940 1941 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 1942 spa->spa_meta_objset = dp->dp_meta_objset; 1943 1944 tx = dmu_tx_create_assigned(dp, txg); 1945 1946 /* 1947 * Create the pool config object. 1948 */ 1949 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 1950 DMU_OT_PACKED_NVLIST, 1 << 14, 1951 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 1952 1953 if (zap_add(spa->spa_meta_objset, 1954 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 1955 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 1956 cmn_err(CE_PANIC, "failed to add pool config"); 1957 } 1958 1959 /* Newly created pools with the right version are always deflated. */ 1960 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 1961 spa->spa_deflate = TRUE; 1962 if (zap_add(spa->spa_meta_objset, 1963 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 1964 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 1965 cmn_err(CE_PANIC, "failed to add deflate"); 1966 } 1967 } 1968 1969 /* 1970 * Create the deferred-free bplist object. Turn off compression 1971 * because sync-to-convergence takes longer if the blocksize 1972 * keeps changing. 1973 */ 1974 spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset, 1975 1 << 14, tx); 1976 dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 1977 ZIO_COMPRESS_OFF, tx); 1978 1979 if (zap_add(spa->spa_meta_objset, 1980 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 1981 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) { 1982 cmn_err(CE_PANIC, "failed to add bplist"); 1983 } 1984 1985 /* 1986 * Create the pool's history object. 1987 */ 1988 if (version >= SPA_VERSION_ZPOOL_HISTORY) 1989 spa_history_create_obj(spa, tx); 1990 1991 /* 1992 * Set pool properties. 1993 */ 1994 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 1995 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1996 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 1997 if (props) 1998 spa_sync_props(spa, props, CRED(), tx); 1999 2000 dmu_tx_commit(tx); 2001 2002 spa->spa_sync_on = B_TRUE; 2003 txg_sync_start(spa->spa_dsl_pool); 2004 2005 /* 2006 * We explicitly wait for the first transaction to complete so that our 2007 * bean counters are appropriately updated. 2008 */ 2009 txg_wait_synced(spa->spa_dsl_pool, txg); 2010 2011 spa_config_sync(spa, B_FALSE, B_TRUE); 2012 2013 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2014 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2015 2016 mutex_exit(&spa_namespace_lock); 2017 2018 spa->spa_minref = refcount_count(&spa->spa_refcount); 2019 2020 return (0); 2021 } 2022 2023 /* 2024 * Import the given pool into the system. We set up the necessary spa_t and 2025 * then call spa_load() to do the dirty work. 2026 */ 2027 static int 2028 spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props, 2029 boolean_t isroot, boolean_t allowfaulted) 2030 { 2031 spa_t *spa; 2032 char *altroot = NULL; 2033 int error, loaderr; 2034 nvlist_t *nvroot; 2035 nvlist_t **spares, **l2cache; 2036 uint_t nspares, nl2cache; 2037 2038 /* 2039 * If a pool with this name exists, return failure. 2040 */ 2041 mutex_enter(&spa_namespace_lock); 2042 if (spa_lookup(pool) != NULL) { 2043 mutex_exit(&spa_namespace_lock); 2044 return (EEXIST); 2045 } 2046 2047 /* 2048 * Create and initialize the spa structure. 2049 */ 2050 (void) nvlist_lookup_string(props, 2051 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2052 spa = spa_add(pool, altroot); 2053 spa_activate(spa); 2054 2055 if (allowfaulted) 2056 spa->spa_import_faulted = B_TRUE; 2057 spa->spa_is_root = isroot; 2058 2059 /* 2060 * Pass off the heavy lifting to spa_load(). 2061 * Pass TRUE for mosconfig (unless this is a root pool) because 2062 * the user-supplied config is actually the one to trust when 2063 * doing an import. 2064 */ 2065 loaderr = error = spa_load(spa, config, SPA_LOAD_IMPORT, !isroot); 2066 2067 spa_config_enter(spa, RW_WRITER, FTAG); 2068 /* 2069 * Toss any existing sparelist, as it doesn't have any validity anymore, 2070 * and conflicts with spa_has_spare(). 2071 */ 2072 if (!isroot && spa->spa_spares.sav_config) { 2073 nvlist_free(spa->spa_spares.sav_config); 2074 spa->spa_spares.sav_config = NULL; 2075 spa_load_spares(spa); 2076 } 2077 if (!isroot && spa->spa_l2cache.sav_config) { 2078 nvlist_free(spa->spa_l2cache.sav_config); 2079 spa->spa_l2cache.sav_config = NULL; 2080 spa_load_l2cache(spa); 2081 } 2082 2083 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2084 &nvroot) == 0); 2085 if (error == 0) 2086 error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE); 2087 if (error == 0) 2088 error = spa_validate_aux(spa, nvroot, -1ULL, 2089 VDEV_ALLOC_L2CACHE); 2090 spa_config_exit(spa, FTAG); 2091 2092 if (error != 0 || (props && (error = spa_prop_set(spa, props)))) { 2093 if (loaderr != 0 && loaderr != EINVAL && allowfaulted) { 2094 /* 2095 * If we failed to load the pool, but 'allowfaulted' is 2096 * set, then manually set the config as if the config 2097 * passed in was specified in the cache file. 2098 */ 2099 error = 0; 2100 spa->spa_import_faulted = B_FALSE; 2101 if (spa->spa_config == NULL) { 2102 spa_config_enter(spa, RW_READER, FTAG); 2103 spa->spa_config = spa_config_generate(spa, 2104 NULL, -1ULL, B_TRUE); 2105 spa_config_exit(spa, FTAG); 2106 } 2107 spa_unload(spa); 2108 spa_deactivate(spa); 2109 spa_config_sync(spa, B_FALSE, B_TRUE); 2110 } else { 2111 spa_unload(spa); 2112 spa_deactivate(spa); 2113 spa_remove(spa); 2114 } 2115 mutex_exit(&spa_namespace_lock); 2116 return (error); 2117 } 2118 2119 /* 2120 * Override any spares and level 2 cache devices as specified by 2121 * the user, as these may have correct device names/devids, etc. 2122 */ 2123 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2124 &spares, &nspares) == 0) { 2125 if (spa->spa_spares.sav_config) 2126 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 2127 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 2128 else 2129 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 2130 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2131 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2132 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2133 spa_config_enter(spa, RW_WRITER, FTAG); 2134 spa_load_spares(spa); 2135 spa_config_exit(spa, FTAG); 2136 spa->spa_spares.sav_sync = B_TRUE; 2137 } 2138 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2139 &l2cache, &nl2cache) == 0) { 2140 if (spa->spa_l2cache.sav_config) 2141 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 2142 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 2143 else 2144 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2145 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2146 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2147 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2148 spa_config_enter(spa, RW_WRITER, FTAG); 2149 spa_load_l2cache(spa); 2150 spa_config_exit(spa, FTAG); 2151 spa->spa_l2cache.sav_sync = B_TRUE; 2152 } 2153 2154 if (spa_mode & FWRITE) { 2155 /* 2156 * Update the config cache to include the newly-imported pool. 2157 */ 2158 spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot); 2159 } 2160 2161 spa->spa_import_faulted = B_FALSE; 2162 mutex_exit(&spa_namespace_lock); 2163 2164 return (0); 2165 } 2166 2167 #ifdef _KERNEL 2168 /* 2169 * Build a "root" vdev for a top level vdev read in from a rootpool 2170 * device label. 2171 */ 2172 static void 2173 spa_build_rootpool_config(nvlist_t *config) 2174 { 2175 nvlist_t *nvtop, *nvroot; 2176 uint64_t pgid; 2177 2178 /* 2179 * Add this top-level vdev to the child array. 2180 */ 2181 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop) 2182 == 0); 2183 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid) 2184 == 0); 2185 2186 /* 2187 * Put this pool's top-level vdevs into a root vdev. 2188 */ 2189 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2190 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) 2191 == 0); 2192 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2193 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2194 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2195 &nvtop, 1) == 0); 2196 2197 /* 2198 * Replace the existing vdev_tree with the new root vdev in 2199 * this pool's configuration (remove the old, add the new). 2200 */ 2201 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2202 nvlist_free(nvroot); 2203 } 2204 2205 /* 2206 * Get the root pool information from the root disk, then import the root pool 2207 * during the system boot up time. 2208 */ 2209 extern nvlist_t *vdev_disk_read_rootlabel(char *, char *); 2210 2211 int 2212 spa_check_rootconf(char *devpath, char *devid, nvlist_t **bestconf, 2213 uint64_t *besttxg) 2214 { 2215 nvlist_t *config; 2216 uint64_t txg; 2217 2218 if ((config = vdev_disk_read_rootlabel(devpath, devid)) == NULL) 2219 return (-1); 2220 2221 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 2222 2223 if (bestconf != NULL) 2224 *bestconf = config; 2225 *besttxg = txg; 2226 return (0); 2227 } 2228 2229 boolean_t 2230 spa_rootdev_validate(nvlist_t *nv) 2231 { 2232 uint64_t ival; 2233 2234 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 || 2235 nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 || 2236 nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0) 2237 return (B_FALSE); 2238 2239 return (B_TRUE); 2240 } 2241 2242 2243 /* 2244 * Given the boot device's physical path or devid, check if the device 2245 * is in a valid state. If so, return the configuration from the vdev 2246 * label. 2247 */ 2248 int 2249 spa_get_rootconf(char *devpath, char *devid, nvlist_t **bestconf) 2250 { 2251 nvlist_t *conf = NULL; 2252 uint64_t txg = 0; 2253 nvlist_t *nvtop, **child; 2254 char *type; 2255 char *bootpath = NULL; 2256 uint_t children, c; 2257 char *tmp; 2258 2259 if (devpath && ((tmp = strchr(devpath, ' ')) != NULL)) 2260 *tmp = '\0'; 2261 if (spa_check_rootconf(devpath, devid, &conf, &txg) < 0) { 2262 cmn_err(CE_NOTE, "error reading device label"); 2263 nvlist_free(conf); 2264 return (EINVAL); 2265 } 2266 if (txg == 0) { 2267 cmn_err(CE_NOTE, "this device is detached"); 2268 nvlist_free(conf); 2269 return (EINVAL); 2270 } 2271 2272 VERIFY(nvlist_lookup_nvlist(conf, ZPOOL_CONFIG_VDEV_TREE, 2273 &nvtop) == 0); 2274 VERIFY(nvlist_lookup_string(nvtop, ZPOOL_CONFIG_TYPE, &type) == 0); 2275 2276 if (strcmp(type, VDEV_TYPE_DISK) == 0) { 2277 if (spa_rootdev_validate(nvtop)) { 2278 goto out; 2279 } else { 2280 nvlist_free(conf); 2281 return (EINVAL); 2282 } 2283 } 2284 2285 ASSERT(strcmp(type, VDEV_TYPE_MIRROR) == 0); 2286 2287 VERIFY(nvlist_lookup_nvlist_array(nvtop, ZPOOL_CONFIG_CHILDREN, 2288 &child, &children) == 0); 2289 2290 /* 2291 * Go thru vdevs in the mirror to see if the given device 2292 * has the most recent txg. Only the device with the most 2293 * recent txg has valid information and should be booted. 2294 */ 2295 for (c = 0; c < children; c++) { 2296 char *cdevid, *cpath; 2297 uint64_t tmptxg; 2298 2299 if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_PHYS_PATH, 2300 &cpath) != 0) 2301 return (EINVAL); 2302 if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_DEVID, 2303 &cdevid) != 0) 2304 return (EINVAL); 2305 if ((spa_check_rootconf(cpath, cdevid, NULL, 2306 &tmptxg) == 0) && (tmptxg > txg)) { 2307 txg = tmptxg; 2308 VERIFY(nvlist_lookup_string(child[c], 2309 ZPOOL_CONFIG_PATH, &bootpath) == 0); 2310 } 2311 } 2312 2313 /* Does the best device match the one we've booted from? */ 2314 if (bootpath) { 2315 cmn_err(CE_NOTE, "try booting from '%s'", bootpath); 2316 return (EINVAL); 2317 } 2318 out: 2319 *bestconf = conf; 2320 return (0); 2321 } 2322 2323 /* 2324 * Import a root pool. 2325 * 2326 * For x86. devpath_list will consist of devid and/or physpath name of 2327 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2328 * The GRUB "findroot" command will return the vdev we should boot. 2329 * 2330 * For Sparc, devpath_list consists the physpath name of the booting device 2331 * no matter the rootpool is a single device pool or a mirrored pool. 2332 * e.g. 2333 * "/pci@1f,0/ide@d/disk@0,0:a" 2334 */ 2335 int 2336 spa_import_rootpool(char *devpath, char *devid) 2337 { 2338 nvlist_t *conf = NULL; 2339 char *pname; 2340 int error; 2341 2342 /* 2343 * Get the vdev pathname and configuation from the most 2344 * recently updated vdev (highest txg). 2345 */ 2346 if (error = spa_get_rootconf(devpath, devid, &conf)) 2347 goto msg_out; 2348 2349 /* 2350 * Add type "root" vdev to the config. 2351 */ 2352 spa_build_rootpool_config(conf); 2353 2354 VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0); 2355 2356 /* 2357 * We specify 'allowfaulted' for this to be treated like spa_open() 2358 * instead of spa_import(). This prevents us from marking vdevs as 2359 * persistently unavailable, and generates FMA ereports as if it were a 2360 * pool open, not import. 2361 */ 2362 error = spa_import_common(pname, conf, NULL, B_TRUE, B_TRUE); 2363 if (error == EEXIST) 2364 error = 0; 2365 2366 nvlist_free(conf); 2367 return (error); 2368 2369 msg_out: 2370 cmn_err(CE_NOTE, "\n" 2371 " *************************************************** \n" 2372 " * This device is not bootable! * \n" 2373 " * It is either offlined or detached or faulted. * \n" 2374 " * Please try to boot from a different device. * \n" 2375 " *************************************************** "); 2376 2377 return (error); 2378 } 2379 #endif 2380 2381 /* 2382 * Import a non-root pool into the system. 2383 */ 2384 int 2385 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 2386 { 2387 return (spa_import_common(pool, config, props, B_FALSE, B_FALSE)); 2388 } 2389 2390 int 2391 spa_import_faulted(const char *pool, nvlist_t *config, nvlist_t *props) 2392 { 2393 return (spa_import_common(pool, config, props, B_FALSE, B_TRUE)); 2394 } 2395 2396 2397 /* 2398 * This (illegal) pool name is used when temporarily importing a spa_t in order 2399 * to get the vdev stats associated with the imported devices. 2400 */ 2401 #define TRYIMPORT_NAME "$import" 2402 2403 nvlist_t * 2404 spa_tryimport(nvlist_t *tryconfig) 2405 { 2406 nvlist_t *config = NULL; 2407 char *poolname; 2408 spa_t *spa; 2409 uint64_t state; 2410 2411 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 2412 return (NULL); 2413 2414 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 2415 return (NULL); 2416 2417 /* 2418 * Create and initialize the spa structure. 2419 */ 2420 mutex_enter(&spa_namespace_lock); 2421 spa = spa_add(TRYIMPORT_NAME, NULL); 2422 spa_activate(spa); 2423 2424 /* 2425 * Pass off the heavy lifting to spa_load(). 2426 * Pass TRUE for mosconfig because the user-supplied config 2427 * is actually the one to trust when doing an import. 2428 */ 2429 (void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE); 2430 2431 /* 2432 * If 'tryconfig' was at least parsable, return the current config. 2433 */ 2434 if (spa->spa_root_vdev != NULL) { 2435 spa_config_enter(spa, RW_READER, FTAG); 2436 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2437 spa_config_exit(spa, FTAG); 2438 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 2439 poolname) == 0); 2440 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 2441 state) == 0); 2442 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 2443 spa->spa_uberblock.ub_timestamp) == 0); 2444 2445 /* 2446 * If the bootfs property exists on this pool then we 2447 * copy it out so that external consumers can tell which 2448 * pools are bootable. 2449 */ 2450 if (spa->spa_bootfs) { 2451 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2452 2453 /* 2454 * We have to play games with the name since the 2455 * pool was opened as TRYIMPORT_NAME. 2456 */ 2457 if (dsl_dsobj_to_dsname(spa->spa_name, 2458 spa->spa_bootfs, tmpname) == 0) { 2459 char *cp; 2460 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2461 2462 cp = strchr(tmpname, '/'); 2463 if (cp == NULL) { 2464 (void) strlcpy(dsname, tmpname, 2465 MAXPATHLEN); 2466 } else { 2467 (void) snprintf(dsname, MAXPATHLEN, 2468 "%s/%s", poolname, ++cp); 2469 } 2470 VERIFY(nvlist_add_string(config, 2471 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 2472 kmem_free(dsname, MAXPATHLEN); 2473 } 2474 kmem_free(tmpname, MAXPATHLEN); 2475 } 2476 2477 /* 2478 * Add the list of hot spares and level 2 cache devices. 2479 */ 2480 spa_add_spares(spa, config); 2481 spa_add_l2cache(spa, config); 2482 } 2483 2484 spa_unload(spa); 2485 spa_deactivate(spa); 2486 spa_remove(spa); 2487 mutex_exit(&spa_namespace_lock); 2488 2489 return (config); 2490 } 2491 2492 /* 2493 * Pool export/destroy 2494 * 2495 * The act of destroying or exporting a pool is very simple. We make sure there 2496 * is no more pending I/O and any references to the pool are gone. Then, we 2497 * update the pool state and sync all the labels to disk, removing the 2498 * configuration from the cache afterwards. 2499 */ 2500 static int 2501 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig) 2502 { 2503 spa_t *spa; 2504 2505 if (oldconfig) 2506 *oldconfig = NULL; 2507 2508 if (!(spa_mode & FWRITE)) 2509 return (EROFS); 2510 2511 mutex_enter(&spa_namespace_lock); 2512 if ((spa = spa_lookup(pool)) == NULL) { 2513 mutex_exit(&spa_namespace_lock); 2514 return (ENOENT); 2515 } 2516 2517 /* 2518 * Put a hold on the pool, drop the namespace lock, stop async tasks, 2519 * reacquire the namespace lock, and see if we can export. 2520 */ 2521 spa_open_ref(spa, FTAG); 2522 mutex_exit(&spa_namespace_lock); 2523 spa_async_suspend(spa); 2524 mutex_enter(&spa_namespace_lock); 2525 spa_close(spa, FTAG); 2526 2527 /* 2528 * The pool will be in core if it's openable, 2529 * in which case we can modify its state. 2530 */ 2531 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 2532 /* 2533 * Objsets may be open only because they're dirty, so we 2534 * have to force it to sync before checking spa_refcnt. 2535 */ 2536 txg_wait_synced(spa->spa_dsl_pool, 0); 2537 2538 /* 2539 * A pool cannot be exported or destroyed if there are active 2540 * references. If we are resetting a pool, allow references by 2541 * fault injection handlers. 2542 */ 2543 if (!spa_refcount_zero(spa) || 2544 (spa->spa_inject_ref != 0 && 2545 new_state != POOL_STATE_UNINITIALIZED)) { 2546 spa_async_resume(spa); 2547 mutex_exit(&spa_namespace_lock); 2548 return (EBUSY); 2549 } 2550 2551 /* 2552 * We want this to be reflected on every label, 2553 * so mark them all dirty. spa_unload() will do the 2554 * final sync that pushes these changes out. 2555 */ 2556 if (new_state != POOL_STATE_UNINITIALIZED) { 2557 spa_config_enter(spa, RW_WRITER, FTAG); 2558 spa->spa_state = new_state; 2559 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 2560 vdev_config_dirty(spa->spa_root_vdev); 2561 spa_config_exit(spa, FTAG); 2562 } 2563 } 2564 2565 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 2566 2567 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 2568 spa_unload(spa); 2569 spa_deactivate(spa); 2570 } 2571 2572 if (oldconfig && spa->spa_config) 2573 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 2574 2575 if (new_state != POOL_STATE_UNINITIALIZED) { 2576 spa_config_sync(spa, B_TRUE, B_TRUE); 2577 spa_remove(spa); 2578 } 2579 mutex_exit(&spa_namespace_lock); 2580 2581 return (0); 2582 } 2583 2584 /* 2585 * Destroy a storage pool. 2586 */ 2587 int 2588 spa_destroy(char *pool) 2589 { 2590 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL)); 2591 } 2592 2593 /* 2594 * Export a storage pool. 2595 */ 2596 int 2597 spa_export(char *pool, nvlist_t **oldconfig) 2598 { 2599 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig)); 2600 } 2601 2602 /* 2603 * Similar to spa_export(), this unloads the spa_t without actually removing it 2604 * from the namespace in any way. 2605 */ 2606 int 2607 spa_reset(char *pool) 2608 { 2609 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL)); 2610 } 2611 2612 /* 2613 * ========================================================================== 2614 * Device manipulation 2615 * ========================================================================== 2616 */ 2617 2618 /* 2619 * Add a device to a storage pool. 2620 */ 2621 int 2622 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 2623 { 2624 uint64_t txg; 2625 int c, error; 2626 vdev_t *rvd = spa->spa_root_vdev; 2627 vdev_t *vd, *tvd; 2628 nvlist_t **spares, **l2cache; 2629 uint_t nspares, nl2cache; 2630 2631 txg = spa_vdev_enter(spa); 2632 2633 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 2634 VDEV_ALLOC_ADD)) != 0) 2635 return (spa_vdev_exit(spa, NULL, txg, error)); 2636 2637 spa->spa_pending_vdev = vd; 2638 2639 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 2640 &nspares) != 0) 2641 nspares = 0; 2642 2643 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 2644 &nl2cache) != 0) 2645 nl2cache = 0; 2646 2647 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) { 2648 spa->spa_pending_vdev = NULL; 2649 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 2650 } 2651 2652 if (vd->vdev_children != 0) { 2653 if ((error = vdev_create(vd, txg, B_FALSE)) != 0) { 2654 spa->spa_pending_vdev = NULL; 2655 return (spa_vdev_exit(spa, vd, txg, error)); 2656 } 2657 } 2658 2659 /* 2660 * We must validate the spares and l2cache devices after checking the 2661 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 2662 */ 2663 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) { 2664 spa->spa_pending_vdev = NULL; 2665 return (spa_vdev_exit(spa, vd, txg, error)); 2666 } 2667 2668 spa->spa_pending_vdev = NULL; 2669 2670 /* 2671 * Transfer each new top-level vdev from vd to rvd. 2672 */ 2673 for (c = 0; c < vd->vdev_children; c++) { 2674 tvd = vd->vdev_child[c]; 2675 vdev_remove_child(vd, tvd); 2676 tvd->vdev_id = rvd->vdev_children; 2677 vdev_add_child(rvd, tvd); 2678 vdev_config_dirty(tvd); 2679 } 2680 2681 if (nspares != 0) { 2682 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 2683 ZPOOL_CONFIG_SPARES); 2684 spa_load_spares(spa); 2685 spa->spa_spares.sav_sync = B_TRUE; 2686 } 2687 2688 if (nl2cache != 0) { 2689 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 2690 ZPOOL_CONFIG_L2CACHE); 2691 spa_load_l2cache(spa); 2692 spa->spa_l2cache.sav_sync = B_TRUE; 2693 } 2694 2695 /* 2696 * We have to be careful when adding new vdevs to an existing pool. 2697 * If other threads start allocating from these vdevs before we 2698 * sync the config cache, and we lose power, then upon reboot we may 2699 * fail to open the pool because there are DVAs that the config cache 2700 * can't translate. Therefore, we first add the vdevs without 2701 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 2702 * and then let spa_config_update() initialize the new metaslabs. 2703 * 2704 * spa_load() checks for added-but-not-initialized vdevs, so that 2705 * if we lose power at any point in this sequence, the remaining 2706 * steps will be completed the next time we load the pool. 2707 */ 2708 (void) spa_vdev_exit(spa, vd, txg, 0); 2709 2710 mutex_enter(&spa_namespace_lock); 2711 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 2712 mutex_exit(&spa_namespace_lock); 2713 2714 return (0); 2715 } 2716 2717 /* 2718 * Attach a device to a mirror. The arguments are the path to any device 2719 * in the mirror, and the nvroot for the new device. If the path specifies 2720 * a device that is not mirrored, we automatically insert the mirror vdev. 2721 * 2722 * If 'replacing' is specified, the new device is intended to replace the 2723 * existing device; in this case the two devices are made into their own 2724 * mirror using the 'replacing' vdev, which is functionally identical to 2725 * the mirror vdev (it actually reuses all the same ops) but has a few 2726 * extra rules: you can't attach to it after it's been created, and upon 2727 * completion of resilvering, the first disk (the one being replaced) 2728 * is automatically detached. 2729 */ 2730 int 2731 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 2732 { 2733 uint64_t txg, open_txg; 2734 int error; 2735 vdev_t *rvd = spa->spa_root_vdev; 2736 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 2737 vdev_ops_t *pvops; 2738 int is_log; 2739 2740 txg = spa_vdev_enter(spa); 2741 2742 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 2743 2744 if (oldvd == NULL) 2745 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 2746 2747 if (!oldvd->vdev_ops->vdev_op_leaf) 2748 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2749 2750 pvd = oldvd->vdev_parent; 2751 2752 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 2753 VDEV_ALLOC_ADD)) != 0) 2754 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 2755 2756 if (newrootvd->vdev_children != 1) 2757 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 2758 2759 newvd = newrootvd->vdev_child[0]; 2760 2761 if (!newvd->vdev_ops->vdev_op_leaf) 2762 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 2763 2764 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 2765 return (spa_vdev_exit(spa, newrootvd, txg, error)); 2766 2767 /* 2768 * Spares can't replace logs 2769 */ 2770 is_log = oldvd->vdev_islog; 2771 if (is_log && newvd->vdev_isspare) 2772 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2773 2774 if (!replacing) { 2775 /* 2776 * For attach, the only allowable parent is a mirror or the root 2777 * vdev. 2778 */ 2779 if (pvd->vdev_ops != &vdev_mirror_ops && 2780 pvd->vdev_ops != &vdev_root_ops) 2781 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2782 2783 pvops = &vdev_mirror_ops; 2784 } else { 2785 /* 2786 * Active hot spares can only be replaced by inactive hot 2787 * spares. 2788 */ 2789 if (pvd->vdev_ops == &vdev_spare_ops && 2790 pvd->vdev_child[1] == oldvd && 2791 !spa_has_spare(spa, newvd->vdev_guid)) 2792 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2793 2794 /* 2795 * If the source is a hot spare, and the parent isn't already a 2796 * spare, then we want to create a new hot spare. Otherwise, we 2797 * want to create a replacing vdev. The user is not allowed to 2798 * attach to a spared vdev child unless the 'isspare' state is 2799 * the same (spare replaces spare, non-spare replaces 2800 * non-spare). 2801 */ 2802 if (pvd->vdev_ops == &vdev_replacing_ops) 2803 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2804 else if (pvd->vdev_ops == &vdev_spare_ops && 2805 newvd->vdev_isspare != oldvd->vdev_isspare) 2806 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2807 else if (pvd->vdev_ops != &vdev_spare_ops && 2808 newvd->vdev_isspare) 2809 pvops = &vdev_spare_ops; 2810 else 2811 pvops = &vdev_replacing_ops; 2812 } 2813 2814 /* 2815 * Compare the new device size with the replaceable/attachable 2816 * device size. 2817 */ 2818 if (newvd->vdev_psize < vdev_get_rsize(oldvd)) 2819 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 2820 2821 /* 2822 * The new device cannot have a higher alignment requirement 2823 * than the top-level vdev. 2824 */ 2825 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 2826 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 2827 2828 /* 2829 * If this is an in-place replacement, update oldvd's path and devid 2830 * to make it distinguishable from newvd, and unopenable from now on. 2831 */ 2832 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 2833 spa_strfree(oldvd->vdev_path); 2834 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 2835 KM_SLEEP); 2836 (void) sprintf(oldvd->vdev_path, "%s/%s", 2837 newvd->vdev_path, "old"); 2838 if (oldvd->vdev_devid != NULL) { 2839 spa_strfree(oldvd->vdev_devid); 2840 oldvd->vdev_devid = NULL; 2841 } 2842 } 2843 2844 /* 2845 * If the parent is not a mirror, or if we're replacing, insert the new 2846 * mirror/replacing/spare vdev above oldvd. 2847 */ 2848 if (pvd->vdev_ops != pvops) 2849 pvd = vdev_add_parent(oldvd, pvops); 2850 2851 ASSERT(pvd->vdev_top->vdev_parent == rvd); 2852 ASSERT(pvd->vdev_ops == pvops); 2853 ASSERT(oldvd->vdev_parent == pvd); 2854 2855 /* 2856 * Extract the new device from its root and add it to pvd. 2857 */ 2858 vdev_remove_child(newrootvd, newvd); 2859 newvd->vdev_id = pvd->vdev_children; 2860 vdev_add_child(pvd, newvd); 2861 2862 /* 2863 * If newvd is smaller than oldvd, but larger than its rsize, 2864 * the addition of newvd may have decreased our parent's asize. 2865 */ 2866 pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize); 2867 2868 tvd = newvd->vdev_top; 2869 ASSERT(pvd->vdev_top == tvd); 2870 ASSERT(tvd->vdev_parent == rvd); 2871 2872 vdev_config_dirty(tvd); 2873 2874 /* 2875 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 2876 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 2877 */ 2878 open_txg = txg + TXG_CONCURRENT_STATES - 1; 2879 2880 mutex_enter(&newvd->vdev_dtl_lock); 2881 space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL, 2882 open_txg - TXG_INITIAL + 1); 2883 mutex_exit(&newvd->vdev_dtl_lock); 2884 2885 if (newvd->vdev_isspare) 2886 spa_spare_activate(newvd); 2887 2888 /* 2889 * Mark newvd's DTL dirty in this txg. 2890 */ 2891 vdev_dirty(tvd, VDD_DTL, newvd, txg); 2892 2893 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 2894 2895 /* 2896 * Kick off a resilver to update newvd. 2897 */ 2898 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); 2899 2900 return (0); 2901 } 2902 2903 /* 2904 * Detach a device from a mirror or replacing vdev. 2905 * If 'replace_done' is specified, only detach if the parent 2906 * is a replacing vdev. 2907 */ 2908 int 2909 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done) 2910 { 2911 uint64_t txg; 2912 int c, t, error; 2913 vdev_t *rvd = spa->spa_root_vdev; 2914 vdev_t *vd, *pvd, *cvd, *tvd; 2915 boolean_t unspare = B_FALSE; 2916 uint64_t unspare_guid; 2917 size_t len; 2918 2919 txg = spa_vdev_enter(spa); 2920 2921 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 2922 2923 if (vd == NULL) 2924 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 2925 2926 if (!vd->vdev_ops->vdev_op_leaf) 2927 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2928 2929 pvd = vd->vdev_parent; 2930 2931 /* 2932 * If replace_done is specified, only remove this device if it's 2933 * the first child of a replacing vdev. For the 'spare' vdev, either 2934 * disk can be removed. 2935 */ 2936 if (replace_done) { 2937 if (pvd->vdev_ops == &vdev_replacing_ops) { 2938 if (vd->vdev_id != 0) 2939 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2940 } else if (pvd->vdev_ops != &vdev_spare_ops) { 2941 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2942 } 2943 } 2944 2945 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 2946 spa_version(spa) >= SPA_VERSION_SPARES); 2947 2948 /* 2949 * Only mirror, replacing, and spare vdevs support detach. 2950 */ 2951 if (pvd->vdev_ops != &vdev_replacing_ops && 2952 pvd->vdev_ops != &vdev_mirror_ops && 2953 pvd->vdev_ops != &vdev_spare_ops) 2954 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2955 2956 /* 2957 * If there's only one replica, you can't detach it. 2958 */ 2959 if (pvd->vdev_children <= 1) 2960 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 2961 2962 /* 2963 * If all siblings have non-empty DTLs, this device may have the only 2964 * valid copy of the data, which means we cannot safely detach it. 2965 * 2966 * XXX -- as in the vdev_offline() case, we really want a more 2967 * precise DTL check. 2968 */ 2969 for (c = 0; c < pvd->vdev_children; c++) { 2970 uint64_t dirty; 2971 2972 cvd = pvd->vdev_child[c]; 2973 if (cvd == vd) 2974 continue; 2975 if (vdev_is_dead(cvd)) 2976 continue; 2977 mutex_enter(&cvd->vdev_dtl_lock); 2978 dirty = cvd->vdev_dtl_map.sm_space | 2979 cvd->vdev_dtl_scrub.sm_space; 2980 mutex_exit(&cvd->vdev_dtl_lock); 2981 if (!dirty) 2982 break; 2983 } 2984 2985 /* 2986 * If we are a replacing or spare vdev, then we can always detach the 2987 * latter child, as that is how one cancels the operation. 2988 */ 2989 if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) && 2990 c == pvd->vdev_children) 2991 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 2992 2993 /* 2994 * If we are detaching the second disk from a replacing vdev, then 2995 * check to see if we changed the original vdev's path to have "/old" 2996 * at the end in spa_vdev_attach(). If so, undo that change now. 2997 */ 2998 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 2999 pvd->vdev_child[0]->vdev_path != NULL && 3000 pvd->vdev_child[1]->vdev_path != NULL) { 3001 ASSERT(pvd->vdev_child[1] == vd); 3002 cvd = pvd->vdev_child[0]; 3003 len = strlen(vd->vdev_path); 3004 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3005 strcmp(cvd->vdev_path + len, "/old") == 0) { 3006 spa_strfree(cvd->vdev_path); 3007 cvd->vdev_path = spa_strdup(vd->vdev_path); 3008 } 3009 } 3010 3011 /* 3012 * If we are detaching the original disk from a spare, then it implies 3013 * that the spare should become a real disk, and be removed from the 3014 * active spare list for the pool. 3015 */ 3016 if (pvd->vdev_ops == &vdev_spare_ops && 3017 vd->vdev_id == 0) 3018 unspare = B_TRUE; 3019 3020 /* 3021 * Erase the disk labels so the disk can be used for other things. 3022 * This must be done after all other error cases are handled, 3023 * but before we disembowel vd (so we can still do I/O to it). 3024 * But if we can't do it, don't treat the error as fatal -- 3025 * it may be that the unwritability of the disk is the reason 3026 * it's being detached! 3027 */ 3028 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3029 3030 /* 3031 * Remove vd from its parent and compact the parent's children. 3032 */ 3033 vdev_remove_child(pvd, vd); 3034 vdev_compact_children(pvd); 3035 3036 /* 3037 * Remember one of the remaining children so we can get tvd below. 3038 */ 3039 cvd = pvd->vdev_child[0]; 3040 3041 /* 3042 * If we need to remove the remaining child from the list of hot spares, 3043 * do it now, marking the vdev as no longer a spare in the process. We 3044 * must do this before vdev_remove_parent(), because that can change the 3045 * GUID if it creates a new toplevel GUID. 3046 */ 3047 if (unspare) { 3048 ASSERT(cvd->vdev_isspare); 3049 spa_spare_remove(cvd); 3050 unspare_guid = cvd->vdev_guid; 3051 } 3052 3053 /* 3054 * If the parent mirror/replacing vdev only has one child, 3055 * the parent is no longer needed. Remove it from the tree. 3056 */ 3057 if (pvd->vdev_children == 1) 3058 vdev_remove_parent(cvd); 3059 3060 /* 3061 * We don't set tvd until now because the parent we just removed 3062 * may have been the previous top-level vdev. 3063 */ 3064 tvd = cvd->vdev_top; 3065 ASSERT(tvd->vdev_parent == rvd); 3066 3067 /* 3068 * Reevaluate the parent vdev state. 3069 */ 3070 vdev_propagate_state(cvd); 3071 3072 /* 3073 * If the device we just detached was smaller than the others, it may be 3074 * possible to add metaslabs (i.e. grow the pool). vdev_metaslab_init() 3075 * can't fail because the existing metaslabs are already in core, so 3076 * there's nothing to read from disk. 3077 */ 3078 VERIFY(vdev_metaslab_init(tvd, txg) == 0); 3079 3080 vdev_config_dirty(tvd); 3081 3082 /* 3083 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 3084 * vd->vdev_detached is set and free vd's DTL object in syncing context. 3085 * But first make sure we're not on any *other* txg's DTL list, to 3086 * prevent vd from being accessed after it's freed. 3087 */ 3088 for (t = 0; t < TXG_SIZE; t++) 3089 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 3090 vd->vdev_detached = B_TRUE; 3091 vdev_dirty(tvd, VDD_DTL, vd, txg); 3092 3093 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 3094 3095 error = spa_vdev_exit(spa, vd, txg, 0); 3096 3097 /* 3098 * If this was the removal of the original device in a hot spare vdev, 3099 * then we want to go through and remove the device from the hot spare 3100 * list of every other pool. 3101 */ 3102 if (unspare) { 3103 spa = NULL; 3104 mutex_enter(&spa_namespace_lock); 3105 while ((spa = spa_next(spa)) != NULL) { 3106 if (spa->spa_state != POOL_STATE_ACTIVE) 3107 continue; 3108 3109 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3110 } 3111 mutex_exit(&spa_namespace_lock); 3112 } 3113 3114 return (error); 3115 } 3116 3117 /* 3118 * Remove a spares vdev from the nvlist config. 3119 */ 3120 static int 3121 spa_remove_spares(spa_aux_vdev_t *sav, uint64_t guid, boolean_t unspare, 3122 nvlist_t **spares, int nspares, vdev_t *vd) 3123 { 3124 nvlist_t *nv, **newspares; 3125 int i, j; 3126 3127 nv = NULL; 3128 for (i = 0; i < nspares; i++) { 3129 uint64_t theguid; 3130 3131 VERIFY(nvlist_lookup_uint64(spares[i], 3132 ZPOOL_CONFIG_GUID, &theguid) == 0); 3133 if (theguid == guid) { 3134 nv = spares[i]; 3135 break; 3136 } 3137 } 3138 3139 /* 3140 * Only remove the hot spare if it's not currently in use in this pool. 3141 */ 3142 if (nv == NULL && vd == NULL) 3143 return (ENOENT); 3144 3145 if (nv == NULL && vd != NULL) 3146 return (ENOTSUP); 3147 3148 if (!unspare && nv != NULL && vd != NULL) 3149 return (EBUSY); 3150 3151 if (nspares == 1) { 3152 newspares = NULL; 3153 } else { 3154 newspares = kmem_alloc((nspares - 1) * sizeof (void *), 3155 KM_SLEEP); 3156 for (i = 0, j = 0; i < nspares; i++) { 3157 if (spares[i] != nv) 3158 VERIFY(nvlist_dup(spares[i], 3159 &newspares[j++], KM_SLEEP) == 0); 3160 } 3161 } 3162 3163 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_SPARES, 3164 DATA_TYPE_NVLIST_ARRAY) == 0); 3165 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3166 ZPOOL_CONFIG_SPARES, newspares, nspares - 1) == 0); 3167 for (i = 0; i < nspares - 1; i++) 3168 nvlist_free(newspares[i]); 3169 kmem_free(newspares, (nspares - 1) * sizeof (void *)); 3170 3171 return (0); 3172 } 3173 3174 /* 3175 * Remove an l2cache vdev from the nvlist config. 3176 */ 3177 static int 3178 spa_remove_l2cache(spa_aux_vdev_t *sav, uint64_t guid, nvlist_t **l2cache, 3179 int nl2cache, vdev_t *vd) 3180 { 3181 nvlist_t *nv, **newl2cache; 3182 int i, j; 3183 3184 nv = NULL; 3185 for (i = 0; i < nl2cache; i++) { 3186 uint64_t theguid; 3187 3188 VERIFY(nvlist_lookup_uint64(l2cache[i], 3189 ZPOOL_CONFIG_GUID, &theguid) == 0); 3190 if (theguid == guid) { 3191 nv = l2cache[i]; 3192 break; 3193 } 3194 } 3195 3196 if (vd == NULL) { 3197 for (i = 0; i < nl2cache; i++) { 3198 if (sav->sav_vdevs[i]->vdev_guid == guid) { 3199 vd = sav->sav_vdevs[i]; 3200 break; 3201 } 3202 } 3203 } 3204 3205 if (nv == NULL && vd == NULL) 3206 return (ENOENT); 3207 3208 if (nv == NULL && vd != NULL) 3209 return (ENOTSUP); 3210 3211 if (nl2cache == 1) { 3212 newl2cache = NULL; 3213 } else { 3214 newl2cache = kmem_alloc((nl2cache - 1) * sizeof (void *), 3215 KM_SLEEP); 3216 for (i = 0, j = 0; i < nl2cache; i++) { 3217 if (l2cache[i] != nv) 3218 VERIFY(nvlist_dup(l2cache[i], 3219 &newl2cache[j++], KM_SLEEP) == 0); 3220 } 3221 } 3222 3223 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 3224 DATA_TYPE_NVLIST_ARRAY) == 0); 3225 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3226 ZPOOL_CONFIG_L2CACHE, newl2cache, nl2cache - 1) == 0); 3227 for (i = 0; i < nl2cache - 1; i++) 3228 nvlist_free(newl2cache[i]); 3229 kmem_free(newl2cache, (nl2cache - 1) * sizeof (void *)); 3230 3231 return (0); 3232 } 3233 3234 /* 3235 * Remove a device from the pool. Currently, this supports removing only hot 3236 * spares and level 2 ARC devices. 3237 */ 3238 int 3239 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 3240 { 3241 vdev_t *vd; 3242 nvlist_t **spares, **l2cache; 3243 uint_t nspares, nl2cache; 3244 int error = 0; 3245 3246 spa_config_enter(spa, RW_WRITER, FTAG); 3247 3248 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3249 3250 if (spa->spa_spares.sav_vdevs != NULL && 3251 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3252 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { 3253 if ((error = spa_remove_spares(&spa->spa_spares, guid, unspare, 3254 spares, nspares, vd)) != 0) 3255 goto out; 3256 spa_load_spares(spa); 3257 spa->spa_spares.sav_sync = B_TRUE; 3258 goto out; 3259 } 3260 3261 if (spa->spa_l2cache.sav_vdevs != NULL && 3262 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3263 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { 3264 if ((error = spa_remove_l2cache(&spa->spa_l2cache, guid, 3265 l2cache, nl2cache, vd)) != 0) 3266 goto out; 3267 spa_load_l2cache(spa); 3268 spa->spa_l2cache.sav_sync = B_TRUE; 3269 } 3270 3271 out: 3272 spa_config_exit(spa, FTAG); 3273 return (error); 3274 } 3275 3276 /* 3277 * Find any device that's done replacing, or a vdev marked 'unspare' that's 3278 * current spared, so we can detach it. 3279 */ 3280 static vdev_t * 3281 spa_vdev_resilver_done_hunt(vdev_t *vd) 3282 { 3283 vdev_t *newvd, *oldvd; 3284 int c; 3285 3286 for (c = 0; c < vd->vdev_children; c++) { 3287 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 3288 if (oldvd != NULL) 3289 return (oldvd); 3290 } 3291 3292 /* 3293 * Check for a completed replacement. 3294 */ 3295 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 3296 oldvd = vd->vdev_child[0]; 3297 newvd = vd->vdev_child[1]; 3298 3299 mutex_enter(&newvd->vdev_dtl_lock); 3300 if (newvd->vdev_dtl_map.sm_space == 0 && 3301 newvd->vdev_dtl_scrub.sm_space == 0) { 3302 mutex_exit(&newvd->vdev_dtl_lock); 3303 return (oldvd); 3304 } 3305 mutex_exit(&newvd->vdev_dtl_lock); 3306 } 3307 3308 /* 3309 * Check for a completed resilver with the 'unspare' flag set. 3310 */ 3311 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 3312 newvd = vd->vdev_child[0]; 3313 oldvd = vd->vdev_child[1]; 3314 3315 mutex_enter(&newvd->vdev_dtl_lock); 3316 if (newvd->vdev_unspare && 3317 newvd->vdev_dtl_map.sm_space == 0 && 3318 newvd->vdev_dtl_scrub.sm_space == 0) { 3319 newvd->vdev_unspare = 0; 3320 mutex_exit(&newvd->vdev_dtl_lock); 3321 return (oldvd); 3322 } 3323 mutex_exit(&newvd->vdev_dtl_lock); 3324 } 3325 3326 return (NULL); 3327 } 3328 3329 static void 3330 spa_vdev_resilver_done(spa_t *spa) 3331 { 3332 vdev_t *vd; 3333 vdev_t *pvd; 3334 uint64_t guid; 3335 uint64_t pguid = 0; 3336 3337 spa_config_enter(spa, RW_READER, FTAG); 3338 3339 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 3340 guid = vd->vdev_guid; 3341 /* 3342 * If we have just finished replacing a hot spared device, then 3343 * we need to detach the parent's first child (the original hot 3344 * spare) as well. 3345 */ 3346 pvd = vd->vdev_parent; 3347 if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3348 pvd->vdev_id == 0) { 3349 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 3350 ASSERT(pvd->vdev_parent->vdev_children == 2); 3351 pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid; 3352 } 3353 spa_config_exit(spa, FTAG); 3354 if (spa_vdev_detach(spa, guid, B_TRUE) != 0) 3355 return; 3356 if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0) 3357 return; 3358 spa_config_enter(spa, RW_READER, FTAG); 3359 } 3360 3361 spa_config_exit(spa, FTAG); 3362 } 3363 3364 /* 3365 * Update the stored path for this vdev. Dirty the vdev configuration, relying 3366 * on spa_vdev_enter/exit() to synchronize the labels and cache. 3367 */ 3368 int 3369 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 3370 { 3371 vdev_t *vd; 3372 uint64_t txg; 3373 3374 txg = spa_vdev_enter(spa); 3375 3376 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) { 3377 /* 3378 * Determine if this is a reference to a hot spare device. If 3379 * it is, update the path manually as there is no associated 3380 * vdev_t that can be synced to disk. 3381 */ 3382 nvlist_t **spares; 3383 uint_t i, nspares; 3384 3385 if (spa->spa_spares.sav_config != NULL) { 3386 VERIFY(nvlist_lookup_nvlist_array( 3387 spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 3388 &spares, &nspares) == 0); 3389 for (i = 0; i < nspares; i++) { 3390 uint64_t theguid; 3391 VERIFY(nvlist_lookup_uint64(spares[i], 3392 ZPOOL_CONFIG_GUID, &theguid) == 0); 3393 if (theguid == guid) { 3394 VERIFY(nvlist_add_string(spares[i], 3395 ZPOOL_CONFIG_PATH, newpath) == 0); 3396 spa_load_spares(spa); 3397 spa->spa_spares.sav_sync = B_TRUE; 3398 return (spa_vdev_exit(spa, NULL, txg, 3399 0)); 3400 } 3401 } 3402 } 3403 3404 return (spa_vdev_exit(spa, NULL, txg, ENOENT)); 3405 } 3406 3407 if (!vd->vdev_ops->vdev_op_leaf) 3408 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3409 3410 spa_strfree(vd->vdev_path); 3411 vd->vdev_path = spa_strdup(newpath); 3412 3413 vdev_config_dirty(vd->vdev_top); 3414 3415 return (spa_vdev_exit(spa, NULL, txg, 0)); 3416 } 3417 3418 /* 3419 * ========================================================================== 3420 * SPA Scrubbing 3421 * ========================================================================== 3422 */ 3423 3424 int 3425 spa_scrub(spa_t *spa, pool_scrub_type_t type) 3426 { 3427 ASSERT(!spa_config_held(spa, RW_WRITER)); 3428 3429 if ((uint_t)type >= POOL_SCRUB_TYPES) 3430 return (ENOTSUP); 3431 3432 /* 3433 * If a resilver was requested, but there is no DTL on a 3434 * writeable leaf device, we have nothing to do. 3435 */ 3436 if (type == POOL_SCRUB_RESILVER && 3437 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 3438 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 3439 return (0); 3440 } 3441 3442 if (type == POOL_SCRUB_EVERYTHING && 3443 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE && 3444 spa->spa_dsl_pool->dp_scrub_isresilver) 3445 return (EBUSY); 3446 3447 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) { 3448 return (dsl_pool_scrub_clean(spa->spa_dsl_pool)); 3449 } else if (type == POOL_SCRUB_NONE) { 3450 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool)); 3451 } else { 3452 return (EINVAL); 3453 } 3454 } 3455 3456 /* 3457 * ========================================================================== 3458 * SPA async task processing 3459 * ========================================================================== 3460 */ 3461 3462 static void 3463 spa_async_remove(spa_t *spa, vdev_t *vd) 3464 { 3465 vdev_t *tvd; 3466 int c; 3467 3468 for (c = 0; c < vd->vdev_children; c++) { 3469 tvd = vd->vdev_child[c]; 3470 if (tvd->vdev_remove_wanted) { 3471 tvd->vdev_remove_wanted = 0; 3472 vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED, 3473 VDEV_AUX_NONE); 3474 vdev_clear(spa, tvd, B_TRUE); 3475 vdev_config_dirty(tvd->vdev_top); 3476 } 3477 spa_async_remove(spa, tvd); 3478 } 3479 } 3480 3481 static void 3482 spa_async_thread(spa_t *spa) 3483 { 3484 int tasks; 3485 uint64_t txg; 3486 3487 ASSERT(spa->spa_sync_on); 3488 3489 mutex_enter(&spa->spa_async_lock); 3490 tasks = spa->spa_async_tasks; 3491 spa->spa_async_tasks = 0; 3492 mutex_exit(&spa->spa_async_lock); 3493 3494 /* 3495 * See if the config needs to be updated. 3496 */ 3497 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 3498 mutex_enter(&spa_namespace_lock); 3499 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3500 mutex_exit(&spa_namespace_lock); 3501 } 3502 3503 /* 3504 * See if any devices need to be marked REMOVED. 3505 * 3506 * XXX - We avoid doing this when we are in 3507 * I/O failure state since spa_vdev_enter() grabs 3508 * the namespace lock and would not be able to obtain 3509 * the writer config lock. 3510 */ 3511 if (tasks & SPA_ASYNC_REMOVE && 3512 spa_state(spa) != POOL_STATE_IO_FAILURE) { 3513 txg = spa_vdev_enter(spa); 3514 spa_async_remove(spa, spa->spa_root_vdev); 3515 (void) spa_vdev_exit(spa, NULL, txg, 0); 3516 } 3517 3518 /* 3519 * If any devices are done replacing, detach them. 3520 */ 3521 if (tasks & SPA_ASYNC_RESILVER_DONE) 3522 spa_vdev_resilver_done(spa); 3523 3524 /* 3525 * Kick off a resilver. 3526 */ 3527 if (tasks & SPA_ASYNC_RESILVER) 3528 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0); 3529 3530 /* 3531 * Let the world know that we're done. 3532 */ 3533 mutex_enter(&spa->spa_async_lock); 3534 spa->spa_async_thread = NULL; 3535 cv_broadcast(&spa->spa_async_cv); 3536 mutex_exit(&spa->spa_async_lock); 3537 thread_exit(); 3538 } 3539 3540 void 3541 spa_async_suspend(spa_t *spa) 3542 { 3543 mutex_enter(&spa->spa_async_lock); 3544 spa->spa_async_suspended++; 3545 while (spa->spa_async_thread != NULL) 3546 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 3547 mutex_exit(&spa->spa_async_lock); 3548 } 3549 3550 void 3551 spa_async_resume(spa_t *spa) 3552 { 3553 mutex_enter(&spa->spa_async_lock); 3554 ASSERT(spa->spa_async_suspended != 0); 3555 spa->spa_async_suspended--; 3556 mutex_exit(&spa->spa_async_lock); 3557 } 3558 3559 static void 3560 spa_async_dispatch(spa_t *spa) 3561 { 3562 mutex_enter(&spa->spa_async_lock); 3563 if (spa->spa_async_tasks && !spa->spa_async_suspended && 3564 spa->spa_async_thread == NULL && 3565 rootdir != NULL && !vn_is_readonly(rootdir)) 3566 spa->spa_async_thread = thread_create(NULL, 0, 3567 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 3568 mutex_exit(&spa->spa_async_lock); 3569 } 3570 3571 void 3572 spa_async_request(spa_t *spa, int task) 3573 { 3574 mutex_enter(&spa->spa_async_lock); 3575 spa->spa_async_tasks |= task; 3576 mutex_exit(&spa->spa_async_lock); 3577 } 3578 3579 /* 3580 * ========================================================================== 3581 * SPA syncing routines 3582 * ========================================================================== 3583 */ 3584 3585 static void 3586 spa_sync_deferred_frees(spa_t *spa, uint64_t txg) 3587 { 3588 bplist_t *bpl = &spa->spa_sync_bplist; 3589 dmu_tx_t *tx; 3590 blkptr_t blk; 3591 uint64_t itor = 0; 3592 zio_t *zio; 3593 int error; 3594 uint8_t c = 1; 3595 3596 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD); 3597 3598 while (bplist_iterate(bpl, &itor, &blk) == 0) 3599 zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL)); 3600 3601 error = zio_wait(zio); 3602 ASSERT3U(error, ==, 0); 3603 3604 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3605 bplist_vacate(bpl, tx); 3606 3607 /* 3608 * Pre-dirty the first block so we sync to convergence faster. 3609 * (Usually only the first block is needed.) 3610 */ 3611 dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx); 3612 dmu_tx_commit(tx); 3613 } 3614 3615 static void 3616 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 3617 { 3618 char *packed = NULL; 3619 size_t nvsize = 0; 3620 dmu_buf_t *db; 3621 3622 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 3623 3624 packed = kmem_alloc(nvsize, KM_SLEEP); 3625 3626 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 3627 KM_SLEEP) == 0); 3628 3629 dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx); 3630 3631 kmem_free(packed, nvsize); 3632 3633 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 3634 dmu_buf_will_dirty(db, tx); 3635 *(uint64_t *)db->db_data = nvsize; 3636 dmu_buf_rele(db, FTAG); 3637 } 3638 3639 static void 3640 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 3641 const char *config, const char *entry) 3642 { 3643 nvlist_t *nvroot; 3644 nvlist_t **list; 3645 int i; 3646 3647 if (!sav->sav_sync) 3648 return; 3649 3650 /* 3651 * Update the MOS nvlist describing the list of available devices. 3652 * spa_validate_aux() will have already made sure this nvlist is 3653 * valid and the vdevs are labeled appropriately. 3654 */ 3655 if (sav->sav_object == 0) { 3656 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 3657 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 3658 sizeof (uint64_t), tx); 3659 VERIFY(zap_update(spa->spa_meta_objset, 3660 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 3661 &sav->sav_object, tx) == 0); 3662 } 3663 3664 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3665 if (sav->sav_count == 0) { 3666 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 3667 } else { 3668 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 3669 for (i = 0; i < sav->sav_count; i++) 3670 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 3671 B_FALSE, B_FALSE, B_TRUE); 3672 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 3673 sav->sav_count) == 0); 3674 for (i = 0; i < sav->sav_count; i++) 3675 nvlist_free(list[i]); 3676 kmem_free(list, sav->sav_count * sizeof (void *)); 3677 } 3678 3679 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 3680 nvlist_free(nvroot); 3681 3682 sav->sav_sync = B_FALSE; 3683 } 3684 3685 static void 3686 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 3687 { 3688 nvlist_t *config; 3689 3690 if (list_is_empty(&spa->spa_dirty_list)) 3691 return; 3692 3693 config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE); 3694 3695 if (spa->spa_config_syncing) 3696 nvlist_free(spa->spa_config_syncing); 3697 spa->spa_config_syncing = config; 3698 3699 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 3700 } 3701 3702 /* 3703 * Set zpool properties. 3704 */ 3705 static void 3706 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) 3707 { 3708 spa_t *spa = arg1; 3709 objset_t *mos = spa->spa_meta_objset; 3710 nvlist_t *nvp = arg2; 3711 nvpair_t *elem; 3712 uint64_t intval; 3713 char *strval; 3714 zpool_prop_t prop; 3715 const char *propname; 3716 zprop_type_t proptype; 3717 spa_config_dirent_t *dp; 3718 3719 elem = NULL; 3720 while ((elem = nvlist_next_nvpair(nvp, elem))) { 3721 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 3722 case ZPOOL_PROP_VERSION: 3723 /* 3724 * Only set version for non-zpool-creation cases 3725 * (set/import). spa_create() needs special care 3726 * for version setting. 3727 */ 3728 if (tx->tx_txg != TXG_INITIAL) { 3729 VERIFY(nvpair_value_uint64(elem, 3730 &intval) == 0); 3731 ASSERT(intval <= SPA_VERSION); 3732 ASSERT(intval >= spa_version(spa)); 3733 spa->spa_uberblock.ub_version = intval; 3734 vdev_config_dirty(spa->spa_root_vdev); 3735 } 3736 break; 3737 3738 case ZPOOL_PROP_ALTROOT: 3739 /* 3740 * 'altroot' is a non-persistent property. It should 3741 * have been set temporarily at creation or import time. 3742 */ 3743 ASSERT(spa->spa_root != NULL); 3744 break; 3745 3746 case ZPOOL_PROP_CACHEFILE: 3747 /* 3748 * 'cachefile' is a non-persistent property, but note 3749 * an async request that the config cache needs to be 3750 * udpated. 3751 */ 3752 VERIFY(nvpair_value_string(elem, &strval) == 0); 3753 3754 dp = kmem_alloc(sizeof (spa_config_dirent_t), 3755 KM_SLEEP); 3756 3757 if (strval[0] == '\0') 3758 dp->scd_path = spa_strdup(spa_config_path); 3759 else if (strcmp(strval, "none") == 0) 3760 dp->scd_path = NULL; 3761 else 3762 dp->scd_path = spa_strdup(strval); 3763 3764 list_insert_head(&spa->spa_config_list, dp); 3765 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3766 break; 3767 default: 3768 /* 3769 * Set pool property values in the poolprops mos object. 3770 */ 3771 mutex_enter(&spa->spa_props_lock); 3772 if (spa->spa_pool_props_object == 0) { 3773 objset_t *mos = spa->spa_meta_objset; 3774 3775 VERIFY((spa->spa_pool_props_object = 3776 zap_create(mos, DMU_OT_POOL_PROPS, 3777 DMU_OT_NONE, 0, tx)) > 0); 3778 3779 VERIFY(zap_update(mos, 3780 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 3781 8, 1, &spa->spa_pool_props_object, tx) 3782 == 0); 3783 } 3784 mutex_exit(&spa->spa_props_lock); 3785 3786 /* normalize the property name */ 3787 propname = zpool_prop_to_name(prop); 3788 proptype = zpool_prop_get_type(prop); 3789 3790 if (nvpair_type(elem) == DATA_TYPE_STRING) { 3791 ASSERT(proptype == PROP_TYPE_STRING); 3792 VERIFY(nvpair_value_string(elem, &strval) == 0); 3793 VERIFY(zap_update(mos, 3794 spa->spa_pool_props_object, propname, 3795 1, strlen(strval) + 1, strval, tx) == 0); 3796 3797 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 3798 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 3799 3800 if (proptype == PROP_TYPE_INDEX) { 3801 const char *unused; 3802 VERIFY(zpool_prop_index_to_string( 3803 prop, intval, &unused) == 0); 3804 } 3805 VERIFY(zap_update(mos, 3806 spa->spa_pool_props_object, propname, 3807 8, 1, &intval, tx) == 0); 3808 } else { 3809 ASSERT(0); /* not allowed */ 3810 } 3811 3812 switch (prop) { 3813 case ZPOOL_PROP_DELEGATION: 3814 spa->spa_delegation = intval; 3815 break; 3816 case ZPOOL_PROP_BOOTFS: 3817 spa->spa_bootfs = intval; 3818 break; 3819 case ZPOOL_PROP_FAILUREMODE: 3820 spa->spa_failmode = intval; 3821 break; 3822 default: 3823 break; 3824 } 3825 } 3826 3827 /* log internal history if this is not a zpool create */ 3828 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 3829 tx->tx_txg != TXG_INITIAL) { 3830 spa_history_internal_log(LOG_POOL_PROPSET, 3831 spa, tx, cr, "%s %lld %s", 3832 nvpair_name(elem), intval, spa->spa_name); 3833 } 3834 } 3835 } 3836 3837 /* 3838 * Sync the specified transaction group. New blocks may be dirtied as 3839 * part of the process, so we iterate until it converges. 3840 */ 3841 void 3842 spa_sync(spa_t *spa, uint64_t txg) 3843 { 3844 dsl_pool_t *dp = spa->spa_dsl_pool; 3845 objset_t *mos = spa->spa_meta_objset; 3846 bplist_t *bpl = &spa->spa_sync_bplist; 3847 vdev_t *rvd = spa->spa_root_vdev; 3848 vdev_t *vd; 3849 dmu_tx_t *tx; 3850 int dirty_vdevs; 3851 3852 /* 3853 * Lock out configuration changes. 3854 */ 3855 spa_config_enter(spa, RW_READER, FTAG); 3856 3857 spa->spa_syncing_txg = txg; 3858 spa->spa_sync_pass = 0; 3859 3860 VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj)); 3861 3862 tx = dmu_tx_create_assigned(dp, txg); 3863 3864 /* 3865 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 3866 * set spa_deflate if we have no raid-z vdevs. 3867 */ 3868 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 3869 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 3870 int i; 3871 3872 for (i = 0; i < rvd->vdev_children; i++) { 3873 vd = rvd->vdev_child[i]; 3874 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 3875 break; 3876 } 3877 if (i == rvd->vdev_children) { 3878 spa->spa_deflate = TRUE; 3879 VERIFY(0 == zap_add(spa->spa_meta_objset, 3880 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3881 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 3882 } 3883 } 3884 3885 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 3886 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 3887 dsl_pool_create_origin(dp, tx); 3888 3889 /* Keeping the origin open increases spa_minref */ 3890 spa->spa_minref += 3; 3891 } 3892 3893 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 3894 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 3895 dsl_pool_upgrade_clones(dp, tx); 3896 } 3897 3898 /* 3899 * If anything has changed in this txg, push the deferred frees 3900 * from the previous txg. If not, leave them alone so that we 3901 * don't generate work on an otherwise idle system. 3902 */ 3903 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 3904 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 3905 !txg_list_empty(&dp->dp_sync_tasks, txg)) 3906 spa_sync_deferred_frees(spa, txg); 3907 3908 /* 3909 * Iterate to convergence. 3910 */ 3911 do { 3912 spa->spa_sync_pass++; 3913 3914 spa_sync_config_object(spa, tx); 3915 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 3916 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 3917 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 3918 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 3919 spa_errlog_sync(spa, txg); 3920 dsl_pool_sync(dp, txg); 3921 3922 dirty_vdevs = 0; 3923 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) { 3924 vdev_sync(vd, txg); 3925 dirty_vdevs++; 3926 } 3927 3928 bplist_sync(bpl, tx); 3929 } while (dirty_vdevs); 3930 3931 bplist_close(bpl); 3932 3933 dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass); 3934 3935 /* 3936 * Rewrite the vdev configuration (which includes the uberblock) 3937 * to commit the transaction group. 3938 * 3939 * If there are no dirty vdevs, we sync the uberblock to a few 3940 * random top-level vdevs that are known to be visible in the 3941 * config cache (see spa_vdev_add() for details). If there *are* 3942 * dirty vdevs -- or if the sync to our random subset fails -- 3943 * then sync the uberblock to all vdevs. 3944 */ 3945 if (list_is_empty(&spa->spa_dirty_list)) { 3946 vdev_t *svd[SPA_DVAS_PER_BP]; 3947 int svdcount = 0; 3948 int children = rvd->vdev_children; 3949 int c0 = spa_get_random(children); 3950 int c; 3951 3952 for (c = 0; c < children; c++) { 3953 vd = rvd->vdev_child[(c0 + c) % children]; 3954 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 3955 continue; 3956 svd[svdcount++] = vd; 3957 if (svdcount == SPA_DVAS_PER_BP) 3958 break; 3959 } 3960 vdev_config_sync(svd, svdcount, txg); 3961 } else { 3962 vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg); 3963 } 3964 dmu_tx_commit(tx); 3965 3966 /* 3967 * Clear the dirty config list. 3968 */ 3969 while ((vd = list_head(&spa->spa_dirty_list)) != NULL) 3970 vdev_config_clean(vd); 3971 3972 /* 3973 * Now that the new config has synced transactionally, 3974 * let it become visible to the config cache. 3975 */ 3976 if (spa->spa_config_syncing != NULL) { 3977 spa_config_set(spa, spa->spa_config_syncing); 3978 spa->spa_config_txg = txg; 3979 spa->spa_config_syncing = NULL; 3980 } 3981 3982 spa->spa_traverse_wanted = B_TRUE; 3983 rw_enter(&spa->spa_traverse_lock, RW_WRITER); 3984 spa->spa_traverse_wanted = B_FALSE; 3985 spa->spa_ubsync = spa->spa_uberblock; 3986 rw_exit(&spa->spa_traverse_lock); 3987 3988 /* 3989 * Clean up the ZIL records for the synced txg. 3990 */ 3991 dsl_pool_zil_clean(dp); 3992 3993 /* 3994 * Update usable space statistics. 3995 */ 3996 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 3997 vdev_sync_done(vd, txg); 3998 3999 /* 4000 * It had better be the case that we didn't dirty anything 4001 * since vdev_config_sync(). 4002 */ 4003 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 4004 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 4005 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 4006 ASSERT(bpl->bpl_queue == NULL); 4007 4008 spa_config_exit(spa, FTAG); 4009 4010 /* 4011 * If any async tasks have been requested, kick them off. 4012 */ 4013 spa_async_dispatch(spa); 4014 } 4015 4016 /* 4017 * Sync all pools. We don't want to hold the namespace lock across these 4018 * operations, so we take a reference on the spa_t and drop the lock during the 4019 * sync. 4020 */ 4021 void 4022 spa_sync_allpools(void) 4023 { 4024 spa_t *spa = NULL; 4025 mutex_enter(&spa_namespace_lock); 4026 while ((spa = spa_next(spa)) != NULL) { 4027 if (spa_state(spa) != POOL_STATE_ACTIVE) 4028 continue; 4029 spa_open_ref(spa, FTAG); 4030 mutex_exit(&spa_namespace_lock); 4031 txg_wait_synced(spa_get_dsl(spa), 0); 4032 mutex_enter(&spa_namespace_lock); 4033 spa_close(spa, FTAG); 4034 } 4035 mutex_exit(&spa_namespace_lock); 4036 } 4037 4038 /* 4039 * ========================================================================== 4040 * Miscellaneous routines 4041 * ========================================================================== 4042 */ 4043 4044 /* 4045 * Remove all pools in the system. 4046 */ 4047 void 4048 spa_evict_all(void) 4049 { 4050 spa_t *spa; 4051 4052 /* 4053 * Remove all cached state. All pools should be closed now, 4054 * so every spa in the AVL tree should be unreferenced. 4055 */ 4056 mutex_enter(&spa_namespace_lock); 4057 while ((spa = spa_next(NULL)) != NULL) { 4058 /* 4059 * Stop async tasks. The async thread may need to detach 4060 * a device that's been replaced, which requires grabbing 4061 * spa_namespace_lock, so we must drop it here. 4062 */ 4063 spa_open_ref(spa, FTAG); 4064 mutex_exit(&spa_namespace_lock); 4065 spa_async_suspend(spa); 4066 mutex_enter(&spa_namespace_lock); 4067 spa_close(spa, FTAG); 4068 4069 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4070 spa_unload(spa); 4071 spa_deactivate(spa); 4072 } 4073 spa_remove(spa); 4074 } 4075 mutex_exit(&spa_namespace_lock); 4076 } 4077 4078 vdev_t * 4079 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache) 4080 { 4081 vdev_t *vd; 4082 int i; 4083 4084 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 4085 return (vd); 4086 4087 if (l2cache) { 4088 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 4089 vd = spa->spa_l2cache.sav_vdevs[i]; 4090 if (vd->vdev_guid == guid) 4091 return (vd); 4092 } 4093 } 4094 4095 return (NULL); 4096 } 4097 4098 void 4099 spa_upgrade(spa_t *spa, uint64_t version) 4100 { 4101 spa_config_enter(spa, RW_WRITER, FTAG); 4102 4103 /* 4104 * This should only be called for a non-faulted pool, and since a 4105 * future version would result in an unopenable pool, this shouldn't be 4106 * possible. 4107 */ 4108 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 4109 ASSERT(version >= spa->spa_uberblock.ub_version); 4110 4111 spa->spa_uberblock.ub_version = version; 4112 vdev_config_dirty(spa->spa_root_vdev); 4113 4114 spa_config_exit(spa, FTAG); 4115 4116 txg_wait_synced(spa_get_dsl(spa), 0); 4117 } 4118 4119 boolean_t 4120 spa_has_spare(spa_t *spa, uint64_t guid) 4121 { 4122 int i; 4123 uint64_t spareguid; 4124 spa_aux_vdev_t *sav = &spa->spa_spares; 4125 4126 for (i = 0; i < sav->sav_count; i++) 4127 if (sav->sav_vdevs[i]->vdev_guid == guid) 4128 return (B_TRUE); 4129 4130 for (i = 0; i < sav->sav_npending; i++) { 4131 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 4132 &spareguid) == 0 && spareguid == guid) 4133 return (B_TRUE); 4134 } 4135 4136 return (B_FALSE); 4137 } 4138 4139 /* 4140 * Post a sysevent corresponding to the given event. The 'name' must be one of 4141 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 4142 * filled in from the spa and (optionally) the vdev. This doesn't do anything 4143 * in the userland libzpool, as we don't want consumers to misinterpret ztest 4144 * or zdb as real changes. 4145 */ 4146 void 4147 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 4148 { 4149 #ifdef _KERNEL 4150 sysevent_t *ev; 4151 sysevent_attr_list_t *attr = NULL; 4152 sysevent_value_t value; 4153 sysevent_id_t eid; 4154 4155 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 4156 SE_SLEEP); 4157 4158 value.value_type = SE_DATA_TYPE_STRING; 4159 value.value.sv_string = spa_name(spa); 4160 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 4161 goto done; 4162 4163 value.value_type = SE_DATA_TYPE_UINT64; 4164 value.value.sv_uint64 = spa_guid(spa); 4165 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 4166 goto done; 4167 4168 if (vd) { 4169 value.value_type = SE_DATA_TYPE_UINT64; 4170 value.value.sv_uint64 = vd->vdev_guid; 4171 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 4172 SE_SLEEP) != 0) 4173 goto done; 4174 4175 if (vd->vdev_path) { 4176 value.value_type = SE_DATA_TYPE_STRING; 4177 value.value.sv_string = vd->vdev_path; 4178 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 4179 &value, SE_SLEEP) != 0) 4180 goto done; 4181 } 4182 } 4183 4184 if (sysevent_attach_attributes(ev, attr) != 0) 4185 goto done; 4186 attr = NULL; 4187 4188 (void) log_sysevent(ev, SE_SLEEP, &eid); 4189 4190 done: 4191 if (attr) 4192 sysevent_free_attr(attr); 4193 sysevent_free(ev); 4194 #endif 4195 } 4196