xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 9e26e16f703d2dfcc0689de957c21efcb72473e6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/callb.h>
57 
58 /*
59  * ==========================================================================
60  * SPA state manipulation (open/create/destroy/import/export)
61  * ==========================================================================
62  */
63 
64 static int
65 spa_error_entry_compare(const void *a, const void *b)
66 {
67 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
68 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
69 	int ret;
70 
71 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
72 	    sizeof (zbookmark_t));
73 
74 	if (ret < 0)
75 		return (-1);
76 	else if (ret > 0)
77 		return (1);
78 	else
79 		return (0);
80 }
81 
82 /*
83  * Utility function which retrieves copies of the current logs and
84  * re-initializes them in the process.
85  */
86 void
87 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
88 {
89 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
90 
91 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
92 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
93 
94 	avl_create(&spa->spa_errlist_scrub,
95 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
96 	    offsetof(spa_error_entry_t, se_avl));
97 	avl_create(&spa->spa_errlist_last,
98 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
99 	    offsetof(spa_error_entry_t, se_avl));
100 }
101 
102 /*
103  * Activate an uninitialized pool.
104  */
105 static void
106 spa_activate(spa_t *spa)
107 {
108 	int t;
109 
110 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
111 
112 	spa->spa_state = POOL_STATE_ACTIVE;
113 
114 	spa->spa_normal_class = metaslab_class_create();
115 
116 	for (t = 0; t < ZIO_TYPES; t++) {
117 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
118 		    8, maxclsyspri, 50, INT_MAX,
119 		    TASKQ_PREPOPULATE);
120 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
121 		    8, maxclsyspri, 50, INT_MAX,
122 		    TASKQ_PREPOPULATE);
123 	}
124 
125 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
126 
127 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
128 	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
129 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
130 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
131 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
132 	mutex_init(&spa->spa_config_lock.scl_lock, NULL, MUTEX_DEFAULT, NULL);
133 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
134 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
135 
136 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
137 	    offsetof(vdev_t, vdev_dirty_node));
138 
139 	txg_list_create(&spa->spa_vdev_txg_list,
140 	    offsetof(struct vdev, vdev_txg_node));
141 
142 	avl_create(&spa->spa_errlist_scrub,
143 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
144 	    offsetof(spa_error_entry_t, se_avl));
145 	avl_create(&spa->spa_errlist_last,
146 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
147 	    offsetof(spa_error_entry_t, se_avl));
148 }
149 
150 /*
151  * Opposite of spa_activate().
152  */
153 static void
154 spa_deactivate(spa_t *spa)
155 {
156 	int t;
157 
158 	ASSERT(spa->spa_sync_on == B_FALSE);
159 	ASSERT(spa->spa_dsl_pool == NULL);
160 	ASSERT(spa->spa_root_vdev == NULL);
161 
162 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
163 
164 	txg_list_destroy(&spa->spa_vdev_txg_list);
165 
166 	list_destroy(&spa->spa_dirty_list);
167 
168 	rw_destroy(&spa->spa_traverse_lock);
169 
170 	for (t = 0; t < ZIO_TYPES; t++) {
171 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
172 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
173 		spa->spa_zio_issue_taskq[t] = NULL;
174 		spa->spa_zio_intr_taskq[t] = NULL;
175 	}
176 
177 	metaslab_class_destroy(spa->spa_normal_class);
178 	spa->spa_normal_class = NULL;
179 
180 	/*
181 	 * If this was part of an import or the open otherwise failed, we may
182 	 * still have errors left in the queues.  Empty them just in case.
183 	 */
184 	spa_errlog_drain(spa);
185 
186 	avl_destroy(&spa->spa_errlist_scrub);
187 	avl_destroy(&spa->spa_errlist_last);
188 
189 	spa->spa_state = POOL_STATE_UNINITIALIZED;
190 }
191 
192 /*
193  * Verify a pool configuration, and construct the vdev tree appropriately.  This
194  * will create all the necessary vdevs in the appropriate layout, with each vdev
195  * in the CLOSED state.  This will prep the pool before open/creation/import.
196  * All vdev validation is done by the vdev_alloc() routine.
197  */
198 static int
199 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
200     uint_t id, int atype)
201 {
202 	nvlist_t **child;
203 	uint_t c, children;
204 	int error;
205 
206 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
207 		return (error);
208 
209 	if ((*vdp)->vdev_ops->vdev_op_leaf)
210 		return (0);
211 
212 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
213 	    &child, &children) != 0) {
214 		vdev_free(*vdp);
215 		*vdp = NULL;
216 		return (EINVAL);
217 	}
218 
219 	for (c = 0; c < children; c++) {
220 		vdev_t *vd;
221 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
222 		    atype)) != 0) {
223 			vdev_free(*vdp);
224 			*vdp = NULL;
225 			return (error);
226 		}
227 	}
228 
229 	ASSERT(*vdp != NULL);
230 
231 	return (0);
232 }
233 
234 /*
235  * Opposite of spa_load().
236  */
237 static void
238 spa_unload(spa_t *spa)
239 {
240 	int i;
241 
242 	/*
243 	 * Stop async tasks.
244 	 */
245 	spa_async_suspend(spa);
246 
247 	/*
248 	 * Stop syncing.
249 	 */
250 	if (spa->spa_sync_on) {
251 		txg_sync_stop(spa->spa_dsl_pool);
252 		spa->spa_sync_on = B_FALSE;
253 	}
254 
255 	/*
256 	 * Wait for any outstanding prefetch I/O to complete.
257 	 */
258 	spa_config_enter(spa, RW_WRITER, FTAG);
259 	spa_config_exit(spa, FTAG);
260 
261 	/*
262 	 * Close the dsl pool.
263 	 */
264 	if (spa->spa_dsl_pool) {
265 		dsl_pool_close(spa->spa_dsl_pool);
266 		spa->spa_dsl_pool = NULL;
267 	}
268 
269 	/*
270 	 * Close all vdevs.
271 	 */
272 	if (spa->spa_root_vdev)
273 		vdev_free(spa->spa_root_vdev);
274 	ASSERT(spa->spa_root_vdev == NULL);
275 
276 	for (i = 0; i < spa->spa_nspares; i++)
277 		vdev_free(spa->spa_spares[i]);
278 	if (spa->spa_spares) {
279 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
280 		spa->spa_spares = NULL;
281 	}
282 	if (spa->spa_sparelist) {
283 		nvlist_free(spa->spa_sparelist);
284 		spa->spa_sparelist = NULL;
285 	}
286 
287 	spa->spa_async_suspended = 0;
288 }
289 
290 /*
291  * Load (or re-load) the current list of vdevs describing the active spares for
292  * this pool.  When this is called, we have some form of basic information in
293  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
294  * re-generate a more complete list including status information.
295  */
296 static void
297 spa_load_spares(spa_t *spa)
298 {
299 	nvlist_t **spares;
300 	uint_t nspares;
301 	int i;
302 
303 	/*
304 	 * First, close and free any existing spare vdevs.
305 	 */
306 	for (i = 0; i < spa->spa_nspares; i++) {
307 		vdev_close(spa->spa_spares[i]);
308 		vdev_free(spa->spa_spares[i]);
309 	}
310 	if (spa->spa_spares)
311 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
312 
313 	if (spa->spa_sparelist == NULL)
314 		nspares = 0;
315 	else
316 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
317 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
318 
319 	spa->spa_nspares = (int)nspares;
320 	spa->spa_spares = NULL;
321 
322 	if (nspares == 0)
323 		return;
324 
325 	/*
326 	 * Construct the array of vdevs, opening them to get status in the
327 	 * process.
328 	 */
329 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
330 	for (i = 0; i < spa->spa_nspares; i++) {
331 		vdev_t *vd;
332 
333 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
334 		    VDEV_ALLOC_SPARE) == 0);
335 		ASSERT(vd != NULL);
336 
337 		spa->spa_spares[i] = vd;
338 
339 		if (vdev_open(vd) != 0)
340 			continue;
341 
342 		vd->vdev_top = vd;
343 		(void) vdev_validate_spare(vd);
344 	}
345 
346 	/*
347 	 * Recompute the stashed list of spares, with status information
348 	 * this time.
349 	 */
350 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
351 	    DATA_TYPE_NVLIST_ARRAY) == 0);
352 
353 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
354 	for (i = 0; i < spa->spa_nspares; i++)
355 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
356 		    B_TRUE, B_TRUE);
357 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
358 	    spares, spa->spa_nspares) == 0);
359 	for (i = 0; i < spa->spa_nspares; i++)
360 		nvlist_free(spares[i]);
361 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
362 }
363 
364 static int
365 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
366 {
367 	dmu_buf_t *db;
368 	char *packed = NULL;
369 	size_t nvsize = 0;
370 	int error;
371 	*value = NULL;
372 
373 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
374 	nvsize = *(uint64_t *)db->db_data;
375 	dmu_buf_rele(db, FTAG);
376 
377 	packed = kmem_alloc(nvsize, KM_SLEEP);
378 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
379 	if (error == 0)
380 		error = nvlist_unpack(packed, nvsize, value, 0);
381 	kmem_free(packed, nvsize);
382 
383 	return (error);
384 }
385 
386 /*
387  * Load an existing storage pool, using the pool's builtin spa_config as a
388  * source of configuration information.
389  */
390 static int
391 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
392 {
393 	int error = 0;
394 	nvlist_t *nvroot = NULL;
395 	vdev_t *rvd;
396 	uberblock_t *ub = &spa->spa_uberblock;
397 	uint64_t config_cache_txg = spa->spa_config_txg;
398 	uint64_t pool_guid;
399 	uint64_t version;
400 	zio_t *zio;
401 
402 	spa->spa_load_state = state;
403 
404 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
405 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
406 		error = EINVAL;
407 		goto out;
408 	}
409 
410 	/*
411 	 * Versioning wasn't explicitly added to the label until later, so if
412 	 * it's not present treat it as the initial version.
413 	 */
414 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
415 		version = ZFS_VERSION_INITIAL;
416 
417 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
418 	    &spa->spa_config_txg);
419 
420 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
421 	    spa_guid_exists(pool_guid, 0)) {
422 		error = EEXIST;
423 		goto out;
424 	}
425 
426 	spa->spa_load_guid = pool_guid;
427 
428 	/*
429 	 * Parse the configuration into a vdev tree.  We explicitly set the
430 	 * value that will be returned by spa_version() since parsing the
431 	 * configuration requires knowing the version number.
432 	 */
433 	spa_config_enter(spa, RW_WRITER, FTAG);
434 	spa->spa_ubsync.ub_version = version;
435 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
436 	spa_config_exit(spa, FTAG);
437 
438 	if (error != 0)
439 		goto out;
440 
441 	ASSERT(spa->spa_root_vdev == rvd);
442 	ASSERT(spa_guid(spa) == pool_guid);
443 
444 	/*
445 	 * Try to open all vdevs, loading each label in the process.
446 	 */
447 	if (vdev_open(rvd) != 0) {
448 		error = ENXIO;
449 		goto out;
450 	}
451 
452 	/*
453 	 * Validate the labels for all leaf vdevs.  We need to grab the config
454 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
455 	 * flag.
456 	 */
457 	spa_config_enter(spa, RW_READER, FTAG);
458 	error = vdev_validate(rvd);
459 	spa_config_exit(spa, FTAG);
460 
461 	if (error != 0) {
462 		error = EBADF;
463 		goto out;
464 	}
465 
466 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
467 		error = ENXIO;
468 		goto out;
469 	}
470 
471 	/*
472 	 * Find the best uberblock.
473 	 */
474 	bzero(ub, sizeof (uberblock_t));
475 
476 	zio = zio_root(spa, NULL, NULL,
477 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
478 	vdev_uberblock_load(zio, rvd, ub);
479 	error = zio_wait(zio);
480 
481 	/*
482 	 * If we weren't able to find a single valid uberblock, return failure.
483 	 */
484 	if (ub->ub_txg == 0) {
485 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
486 		    VDEV_AUX_CORRUPT_DATA);
487 		error = ENXIO;
488 		goto out;
489 	}
490 
491 	/*
492 	 * If the pool is newer than the code, we can't open it.
493 	 */
494 	if (ub->ub_version > ZFS_VERSION) {
495 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
496 		    VDEV_AUX_VERSION_NEWER);
497 		error = ENOTSUP;
498 		goto out;
499 	}
500 
501 	/*
502 	 * If the vdev guid sum doesn't match the uberblock, we have an
503 	 * incomplete configuration.
504 	 */
505 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
506 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
507 		    VDEV_AUX_BAD_GUID_SUM);
508 		error = ENXIO;
509 		goto out;
510 	}
511 
512 	/*
513 	 * Initialize internal SPA structures.
514 	 */
515 	spa->spa_state = POOL_STATE_ACTIVE;
516 	spa->spa_ubsync = spa->spa_uberblock;
517 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
518 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
519 	if (error) {
520 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
521 		    VDEV_AUX_CORRUPT_DATA);
522 		goto out;
523 	}
524 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
525 
526 	if (zap_lookup(spa->spa_meta_objset,
527 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
528 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
529 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
530 		    VDEV_AUX_CORRUPT_DATA);
531 		error = EIO;
532 		goto out;
533 	}
534 
535 	if (!mosconfig) {
536 		nvlist_t *newconfig;
537 
538 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
539 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
540 			    VDEV_AUX_CORRUPT_DATA);
541 			error = EIO;
542 			goto out;
543 		}
544 
545 		spa_config_set(spa, newconfig);
546 		spa_unload(spa);
547 		spa_deactivate(spa);
548 		spa_activate(spa);
549 
550 		return (spa_load(spa, newconfig, state, B_TRUE));
551 	}
552 
553 	if (zap_lookup(spa->spa_meta_objset,
554 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
555 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
556 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
557 		    VDEV_AUX_CORRUPT_DATA);
558 		error = EIO;
559 		goto out;
560 	}
561 
562 	/*
563 	 * Load the bit that tells us to use the new accounting function
564 	 * (raid-z deflation).  If we have an older pool, this will not
565 	 * be present.
566 	 */
567 	error = zap_lookup(spa->spa_meta_objset,
568 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
569 	    sizeof (uint64_t), 1, &spa->spa_deflate);
570 	if (error != 0 && error != ENOENT) {
571 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
572 		    VDEV_AUX_CORRUPT_DATA);
573 		error = EIO;
574 		goto out;
575 	}
576 
577 	/*
578 	 * Load the persistent error log.  If we have an older pool, this will
579 	 * not be present.
580 	 */
581 	error = zap_lookup(spa->spa_meta_objset,
582 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
583 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
584 	if (error != 0 && error != ENOENT) {
585 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
586 		    VDEV_AUX_CORRUPT_DATA);
587 		error = EIO;
588 		goto out;
589 	}
590 
591 	error = zap_lookup(spa->spa_meta_objset,
592 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
593 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
594 	if (error != 0 && error != ENOENT) {
595 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
596 		    VDEV_AUX_CORRUPT_DATA);
597 		error = EIO;
598 		goto out;
599 	}
600 
601 	/*
602 	 * Load the history object.  If we have an older pool, this
603 	 * will not be present.
604 	 */
605 	error = zap_lookup(spa->spa_meta_objset,
606 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
607 	    sizeof (uint64_t), 1, &spa->spa_history);
608 	if (error != 0 && error != ENOENT) {
609 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
610 		    VDEV_AUX_CORRUPT_DATA);
611 		error = EIO;
612 		goto out;
613 	}
614 
615 	/*
616 	 * Load any hot spares for this pool.
617 	 */
618 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
619 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
620 	if (error != 0 && error != ENOENT) {
621 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
622 		    VDEV_AUX_CORRUPT_DATA);
623 		error = EIO;
624 		goto out;
625 	}
626 	if (error == 0) {
627 		ASSERT(spa_version(spa) >= ZFS_VERSION_SPARES);
628 		if (load_nvlist(spa, spa->spa_spares_object,
629 		    &spa->spa_sparelist) != 0) {
630 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
631 			    VDEV_AUX_CORRUPT_DATA);
632 			error = EIO;
633 			goto out;
634 		}
635 
636 		spa_config_enter(spa, RW_WRITER, FTAG);
637 		spa_load_spares(spa);
638 		spa_config_exit(spa, FTAG);
639 	}
640 
641 	/*
642 	 * Load the vdev state for all toplevel vdevs.
643 	 */
644 	vdev_load(rvd);
645 
646 	/*
647 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
648 	 */
649 	spa_config_enter(spa, RW_WRITER, FTAG);
650 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
651 	spa_config_exit(spa, FTAG);
652 
653 	/*
654 	 * Check the state of the root vdev.  If it can't be opened, it
655 	 * indicates one or more toplevel vdevs are faulted.
656 	 */
657 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
658 		error = ENXIO;
659 		goto out;
660 	}
661 
662 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
663 		dmu_tx_t *tx;
664 		int need_update = B_FALSE;
665 		int c;
666 
667 		/*
668 		 * Claim log blocks that haven't been committed yet.
669 		 * This must all happen in a single txg.
670 		 */
671 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
672 		    spa_first_txg(spa));
673 		(void) dmu_objset_find(spa->spa_name,
674 		    zil_claim, tx, DS_FIND_CHILDREN);
675 		dmu_tx_commit(tx);
676 
677 		spa->spa_sync_on = B_TRUE;
678 		txg_sync_start(spa->spa_dsl_pool);
679 
680 		/*
681 		 * Wait for all claims to sync.
682 		 */
683 		txg_wait_synced(spa->spa_dsl_pool, 0);
684 
685 		/*
686 		 * If the config cache is stale, or we have uninitialized
687 		 * metaslabs (see spa_vdev_add()), then update the config.
688 		 */
689 		if (config_cache_txg != spa->spa_config_txg ||
690 		    state == SPA_LOAD_IMPORT)
691 			need_update = B_TRUE;
692 
693 		for (c = 0; c < rvd->vdev_children; c++)
694 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
695 				need_update = B_TRUE;
696 
697 		/*
698 		 * Update the config cache asychronously in case we're the
699 		 * root pool, in which case the config cache isn't writable yet.
700 		 */
701 		if (need_update)
702 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
703 	}
704 
705 	error = 0;
706 out:
707 	if (error && error != EBADF)
708 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
709 	spa->spa_load_state = SPA_LOAD_NONE;
710 	spa->spa_ena = 0;
711 
712 	return (error);
713 }
714 
715 /*
716  * Pool Open/Import
717  *
718  * The import case is identical to an open except that the configuration is sent
719  * down from userland, instead of grabbed from the configuration cache.  For the
720  * case of an open, the pool configuration will exist in the
721  * POOL_STATE_UNITIALIZED state.
722  *
723  * The stats information (gen/count/ustats) is used to gather vdev statistics at
724  * the same time open the pool, without having to keep around the spa_t in some
725  * ambiguous state.
726  */
727 static int
728 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
729 {
730 	spa_t *spa;
731 	int error;
732 	int loaded = B_FALSE;
733 	int locked = B_FALSE;
734 
735 	*spapp = NULL;
736 
737 	/*
738 	 * As disgusting as this is, we need to support recursive calls to this
739 	 * function because dsl_dir_open() is called during spa_load(), and ends
740 	 * up calling spa_open() again.  The real fix is to figure out how to
741 	 * avoid dsl_dir_open() calling this in the first place.
742 	 */
743 	if (mutex_owner(&spa_namespace_lock) != curthread) {
744 		mutex_enter(&spa_namespace_lock);
745 		locked = B_TRUE;
746 	}
747 
748 	if ((spa = spa_lookup(pool)) == NULL) {
749 		if (locked)
750 			mutex_exit(&spa_namespace_lock);
751 		return (ENOENT);
752 	}
753 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
754 
755 		spa_activate(spa);
756 
757 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
758 
759 		if (error == EBADF) {
760 			/*
761 			 * If vdev_validate() returns failure (indicated by
762 			 * EBADF), it indicates that one of the vdevs indicates
763 			 * that the pool has been exported or destroyed.  If
764 			 * this is the case, the config cache is out of sync and
765 			 * we should remove the pool from the namespace.
766 			 */
767 			zfs_post_ok(spa, NULL);
768 			spa_unload(spa);
769 			spa_deactivate(spa);
770 			spa_remove(spa);
771 			spa_config_sync();
772 			if (locked)
773 				mutex_exit(&spa_namespace_lock);
774 			return (ENOENT);
775 		}
776 
777 		if (error) {
778 			/*
779 			 * We can't open the pool, but we still have useful
780 			 * information: the state of each vdev after the
781 			 * attempted vdev_open().  Return this to the user.
782 			 */
783 			if (config != NULL && spa->spa_root_vdev != NULL) {
784 				spa_config_enter(spa, RW_READER, FTAG);
785 				*config = spa_config_generate(spa, NULL, -1ULL,
786 				    B_TRUE);
787 				spa_config_exit(spa, FTAG);
788 			}
789 			spa_unload(spa);
790 			spa_deactivate(spa);
791 			spa->spa_last_open_failed = B_TRUE;
792 			if (locked)
793 				mutex_exit(&spa_namespace_lock);
794 			*spapp = NULL;
795 			return (error);
796 		} else {
797 			zfs_post_ok(spa, NULL);
798 			spa->spa_last_open_failed = B_FALSE;
799 		}
800 
801 		loaded = B_TRUE;
802 	}
803 
804 	spa_open_ref(spa, tag);
805 	if (locked)
806 		mutex_exit(&spa_namespace_lock);
807 
808 	*spapp = spa;
809 
810 	if (config != NULL) {
811 		spa_config_enter(spa, RW_READER, FTAG);
812 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
813 		spa_config_exit(spa, FTAG);
814 	}
815 
816 	/*
817 	 * If we just loaded the pool, resilver anything that's out of date.
818 	 */
819 	if (loaded && (spa_mode & FWRITE))
820 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
821 
822 	return (0);
823 }
824 
825 int
826 spa_open(const char *name, spa_t **spapp, void *tag)
827 {
828 	return (spa_open_common(name, spapp, tag, NULL));
829 }
830 
831 /*
832  * Lookup the given spa_t, incrementing the inject count in the process,
833  * preventing it from being exported or destroyed.
834  */
835 spa_t *
836 spa_inject_addref(char *name)
837 {
838 	spa_t *spa;
839 
840 	mutex_enter(&spa_namespace_lock);
841 	if ((spa = spa_lookup(name)) == NULL) {
842 		mutex_exit(&spa_namespace_lock);
843 		return (NULL);
844 	}
845 	spa->spa_inject_ref++;
846 	mutex_exit(&spa_namespace_lock);
847 
848 	return (spa);
849 }
850 
851 void
852 spa_inject_delref(spa_t *spa)
853 {
854 	mutex_enter(&spa_namespace_lock);
855 	spa->spa_inject_ref--;
856 	mutex_exit(&spa_namespace_lock);
857 }
858 
859 static void
860 spa_add_spares(spa_t *spa, nvlist_t *config)
861 {
862 	nvlist_t **spares;
863 	uint_t i, nspares;
864 	nvlist_t *nvroot;
865 	uint64_t guid;
866 	vdev_stat_t *vs;
867 	uint_t vsc;
868 
869 	if (spa->spa_nspares == 0)
870 		return;
871 
872 	VERIFY(nvlist_lookup_nvlist(config,
873 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
874 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
875 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
876 	if (nspares != 0) {
877 		VERIFY(nvlist_add_nvlist_array(nvroot,
878 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
879 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
880 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
881 
882 		/*
883 		 * Go through and find any spares which have since been
884 		 * repurposed as an active spare.  If this is the case, update
885 		 * their status appropriately.
886 		 */
887 		for (i = 0; i < nspares; i++) {
888 			VERIFY(nvlist_lookup_uint64(spares[i],
889 			    ZPOOL_CONFIG_GUID, &guid) == 0);
890 			if (spa_spare_inuse(guid)) {
891 				VERIFY(nvlist_lookup_uint64_array(
892 				    spares[i], ZPOOL_CONFIG_STATS,
893 				    (uint64_t **)&vs, &vsc) == 0);
894 				vs->vs_state = VDEV_STATE_CANT_OPEN;
895 				vs->vs_aux = VDEV_AUX_SPARED;
896 			}
897 		}
898 	}
899 }
900 
901 int
902 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
903 {
904 	int error;
905 	spa_t *spa;
906 
907 	*config = NULL;
908 	error = spa_open_common(name, &spa, FTAG, config);
909 
910 	if (spa && *config != NULL) {
911 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
912 		    spa_get_errlog_size(spa)) == 0);
913 
914 		spa_add_spares(spa, *config);
915 	}
916 
917 	/*
918 	 * We want to get the alternate root even for faulted pools, so we cheat
919 	 * and call spa_lookup() directly.
920 	 */
921 	if (altroot) {
922 		if (spa == NULL) {
923 			mutex_enter(&spa_namespace_lock);
924 			spa = spa_lookup(name);
925 			if (spa)
926 				spa_altroot(spa, altroot, buflen);
927 			else
928 				altroot[0] = '\0';
929 			spa = NULL;
930 			mutex_exit(&spa_namespace_lock);
931 		} else {
932 			spa_altroot(spa, altroot, buflen);
933 		}
934 	}
935 
936 	if (spa != NULL)
937 		spa_close(spa, FTAG);
938 
939 	return (error);
940 }
941 
942 /*
943  * Validate that the 'spares' array is well formed.  We must have an array of
944  * nvlists, each which describes a valid leaf vdev.
945  */
946 static int
947 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
948 {
949 	nvlist_t **spares;
950 	uint_t i, nspares;
951 	vdev_t *vd;
952 	int error;
953 
954 	/*
955 	 * It's acceptable to have no spares specified.
956 	 */
957 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
958 	    &spares, &nspares) != 0)
959 		return (0);
960 
961 	if (nspares == 0)
962 		return (EINVAL);
963 
964 	/*
965 	 * Make sure the pool is formatted with a version that supports hot
966 	 * spares.
967 	 */
968 	if (spa_version(spa) < ZFS_VERSION_SPARES)
969 		return (ENOTSUP);
970 
971 	for (i = 0; i < nspares; i++) {
972 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
973 		    mode)) != 0)
974 			return (error);
975 
976 		if (!vd->vdev_ops->vdev_op_leaf) {
977 			vdev_free(vd);
978 			return (EINVAL);
979 		}
980 
981 		if ((error = vdev_open(vd)) != 0) {
982 			vdev_free(vd);
983 			return (error);
984 		}
985 
986 		vd->vdev_top = vd;
987 		if ((error = vdev_label_spare(vd, crtxg)) != 0) {
988 			vdev_free(vd);
989 			return (error);
990 		}
991 
992 		VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
993 		    vd->vdev_guid) == 0);
994 
995 		vdev_free(vd);
996 	}
997 
998 	return (0);
999 }
1000 
1001 /*
1002  * Pool Creation
1003  */
1004 int
1005 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
1006 {
1007 	spa_t *spa;
1008 	vdev_t *rvd;
1009 	dsl_pool_t *dp;
1010 	dmu_tx_t *tx;
1011 	int c, error = 0;
1012 	uint64_t txg = TXG_INITIAL;
1013 	nvlist_t **spares;
1014 	uint_t nspares;
1015 
1016 	/*
1017 	 * If this pool already exists, return failure.
1018 	 */
1019 	mutex_enter(&spa_namespace_lock);
1020 	if (spa_lookup(pool) != NULL) {
1021 		mutex_exit(&spa_namespace_lock);
1022 		return (EEXIST);
1023 	}
1024 
1025 	/*
1026 	 * Allocate a new spa_t structure.
1027 	 */
1028 	spa = spa_add(pool, altroot);
1029 	spa_activate(spa);
1030 
1031 	spa->spa_uberblock.ub_txg = txg - 1;
1032 	spa->spa_uberblock.ub_version = ZFS_VERSION;
1033 	spa->spa_ubsync = spa->spa_uberblock;
1034 
1035 	/*
1036 	 * Create the root vdev.
1037 	 */
1038 	spa_config_enter(spa, RW_WRITER, FTAG);
1039 
1040 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1041 
1042 	ASSERT(error != 0 || rvd != NULL);
1043 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1044 
1045 	if (error == 0 && rvd->vdev_children == 0)
1046 		error = EINVAL;
1047 
1048 	if (error == 0 &&
1049 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1050 	    (error = spa_validate_spares(spa, nvroot, txg,
1051 	    VDEV_ALLOC_ADD)) == 0) {
1052 		for (c = 0; c < rvd->vdev_children; c++)
1053 			vdev_init(rvd->vdev_child[c], txg);
1054 		vdev_config_dirty(rvd);
1055 	}
1056 
1057 	spa_config_exit(spa, FTAG);
1058 
1059 	if (error != 0) {
1060 		spa_unload(spa);
1061 		spa_deactivate(spa);
1062 		spa_remove(spa);
1063 		mutex_exit(&spa_namespace_lock);
1064 		return (error);
1065 	}
1066 
1067 	/*
1068 	 * Get the list of spares, if specified.
1069 	 */
1070 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1071 	    &spares, &nspares) == 0) {
1072 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1073 		    KM_SLEEP) == 0);
1074 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1075 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1076 		spa_config_enter(spa, RW_WRITER, FTAG);
1077 		spa_load_spares(spa);
1078 		spa_config_exit(spa, FTAG);
1079 		spa->spa_sync_spares = B_TRUE;
1080 	}
1081 
1082 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1083 	spa->spa_meta_objset = dp->dp_meta_objset;
1084 
1085 	tx = dmu_tx_create_assigned(dp, txg);
1086 
1087 	/*
1088 	 * Create the pool config object.
1089 	 */
1090 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1091 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1092 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1093 
1094 	if (zap_add(spa->spa_meta_objset,
1095 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1096 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1097 		cmn_err(CE_PANIC, "failed to add pool config");
1098 	}
1099 
1100 	/* Newly created pools are always deflated. */
1101 	spa->spa_deflate = TRUE;
1102 	if (zap_add(spa->spa_meta_objset,
1103 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1104 	    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1105 		cmn_err(CE_PANIC, "failed to add deflate");
1106 	}
1107 
1108 	/*
1109 	 * Create the deferred-free bplist object.  Turn off compression
1110 	 * because sync-to-convergence takes longer if the blocksize
1111 	 * keeps changing.
1112 	 */
1113 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1114 	    1 << 14, tx);
1115 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1116 	    ZIO_COMPRESS_OFF, tx);
1117 
1118 	if (zap_add(spa->spa_meta_objset,
1119 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1120 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1121 		cmn_err(CE_PANIC, "failed to add bplist");
1122 	}
1123 
1124 	/*
1125 	 * Create the pool's history object.
1126 	 */
1127 	spa_history_create_obj(spa, tx);
1128 
1129 	dmu_tx_commit(tx);
1130 
1131 	spa->spa_sync_on = B_TRUE;
1132 	txg_sync_start(spa->spa_dsl_pool);
1133 
1134 	/*
1135 	 * We explicitly wait for the first transaction to complete so that our
1136 	 * bean counters are appropriately updated.
1137 	 */
1138 	txg_wait_synced(spa->spa_dsl_pool, txg);
1139 
1140 	spa_config_sync();
1141 
1142 	mutex_exit(&spa_namespace_lock);
1143 
1144 	return (0);
1145 }
1146 
1147 /*
1148  * Import the given pool into the system.  We set up the necessary spa_t and
1149  * then call spa_load() to do the dirty work.
1150  */
1151 int
1152 spa_import(const char *pool, nvlist_t *config, const char *altroot)
1153 {
1154 	spa_t *spa;
1155 	int error;
1156 	nvlist_t *nvroot;
1157 	nvlist_t **spares;
1158 	uint_t nspares;
1159 
1160 	if (!(spa_mode & FWRITE))
1161 		return (EROFS);
1162 
1163 	/*
1164 	 * If a pool with this name exists, return failure.
1165 	 */
1166 	mutex_enter(&spa_namespace_lock);
1167 	if (spa_lookup(pool) != NULL) {
1168 		mutex_exit(&spa_namespace_lock);
1169 		return (EEXIST);
1170 	}
1171 
1172 	/*
1173 	 * Create and initialize the spa structure.
1174 	 */
1175 	spa = spa_add(pool, altroot);
1176 	spa_activate(spa);
1177 
1178 	/*
1179 	 * Pass off the heavy lifting to spa_load().
1180 	 * Pass TRUE for mosconfig because the user-supplied config
1181 	 * is actually the one to trust when doing an import.
1182 	 */
1183 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1184 
1185 	spa_config_enter(spa, RW_WRITER, FTAG);
1186 	/*
1187 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1188 	 * and conflicts with spa_has_spare().
1189 	 */
1190 	if (spa->spa_sparelist) {
1191 		nvlist_free(spa->spa_sparelist);
1192 		spa->spa_sparelist = NULL;
1193 		spa_load_spares(spa);
1194 	}
1195 
1196 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1197 	    &nvroot) == 0);
1198 	if (error == 0)
1199 		error = spa_validate_spares(spa, nvroot, -1ULL,
1200 		    VDEV_ALLOC_SPARE);
1201 	spa_config_exit(spa, FTAG);
1202 
1203 	if (error != 0) {
1204 		spa_unload(spa);
1205 		spa_deactivate(spa);
1206 		spa_remove(spa);
1207 		mutex_exit(&spa_namespace_lock);
1208 		return (error);
1209 	}
1210 
1211 	/*
1212 	 * Override any spares as specified by the user, as these may have
1213 	 * correct device names/devids, etc.
1214 	 */
1215 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1216 	    &spares, &nspares) == 0) {
1217 		if (spa->spa_sparelist)
1218 			VERIFY(nvlist_remove(spa->spa_sparelist,
1219 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1220 		else
1221 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1222 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1223 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1224 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1225 		spa_config_enter(spa, RW_WRITER, FTAG);
1226 		spa_load_spares(spa);
1227 		spa_config_exit(spa, FTAG);
1228 		spa->spa_sync_spares = B_TRUE;
1229 	}
1230 
1231 	/*
1232 	 * Update the config cache to include the newly-imported pool.
1233 	 */
1234 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1235 
1236 	mutex_exit(&spa_namespace_lock);
1237 
1238 	/*
1239 	 * Resilver anything that's out of date.
1240 	 */
1241 	if (spa_mode & FWRITE)
1242 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1243 
1244 	return (0);
1245 }
1246 
1247 /*
1248  * This (illegal) pool name is used when temporarily importing a spa_t in order
1249  * to get the vdev stats associated with the imported devices.
1250  */
1251 #define	TRYIMPORT_NAME	"$import"
1252 
1253 nvlist_t *
1254 spa_tryimport(nvlist_t *tryconfig)
1255 {
1256 	nvlist_t *config = NULL;
1257 	char *poolname;
1258 	spa_t *spa;
1259 	uint64_t state;
1260 
1261 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1262 		return (NULL);
1263 
1264 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1265 		return (NULL);
1266 
1267 	/*
1268 	 * Create and initialize the spa structure.
1269 	 */
1270 	mutex_enter(&spa_namespace_lock);
1271 	spa = spa_add(TRYIMPORT_NAME, NULL);
1272 	spa_activate(spa);
1273 
1274 	/*
1275 	 * Pass off the heavy lifting to spa_load().
1276 	 * Pass TRUE for mosconfig because the user-supplied config
1277 	 * is actually the one to trust when doing an import.
1278 	 */
1279 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1280 
1281 	/*
1282 	 * If 'tryconfig' was at least parsable, return the current config.
1283 	 */
1284 	if (spa->spa_root_vdev != NULL) {
1285 		spa_config_enter(spa, RW_READER, FTAG);
1286 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1287 		spa_config_exit(spa, FTAG);
1288 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1289 		    poolname) == 0);
1290 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1291 		    state) == 0);
1292 
1293 		/*
1294 		 * Add the list of hot spares.
1295 		 */
1296 		spa_add_spares(spa, config);
1297 	}
1298 
1299 	spa_unload(spa);
1300 	spa_deactivate(spa);
1301 	spa_remove(spa);
1302 	mutex_exit(&spa_namespace_lock);
1303 
1304 	return (config);
1305 }
1306 
1307 /*
1308  * Pool export/destroy
1309  *
1310  * The act of destroying or exporting a pool is very simple.  We make sure there
1311  * is no more pending I/O and any references to the pool are gone.  Then, we
1312  * update the pool state and sync all the labels to disk, removing the
1313  * configuration from the cache afterwards.
1314  */
1315 static int
1316 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1317 {
1318 	spa_t *spa;
1319 
1320 	if (oldconfig)
1321 		*oldconfig = NULL;
1322 
1323 	if (!(spa_mode & FWRITE))
1324 		return (EROFS);
1325 
1326 	mutex_enter(&spa_namespace_lock);
1327 	if ((spa = spa_lookup(pool)) == NULL) {
1328 		mutex_exit(&spa_namespace_lock);
1329 		return (ENOENT);
1330 	}
1331 
1332 	/*
1333 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1334 	 * reacquire the namespace lock, and see if we can export.
1335 	 */
1336 	spa_open_ref(spa, FTAG);
1337 	mutex_exit(&spa_namespace_lock);
1338 	spa_async_suspend(spa);
1339 	mutex_enter(&spa_namespace_lock);
1340 	spa_close(spa, FTAG);
1341 
1342 	/*
1343 	 * The pool will be in core if it's openable,
1344 	 * in which case we can modify its state.
1345 	 */
1346 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1347 		/*
1348 		 * Objsets may be open only because they're dirty, so we
1349 		 * have to force it to sync before checking spa_refcnt.
1350 		 */
1351 		spa_scrub_suspend(spa);
1352 		txg_wait_synced(spa->spa_dsl_pool, 0);
1353 
1354 		/*
1355 		 * A pool cannot be exported or destroyed if there are active
1356 		 * references.  If we are resetting a pool, allow references by
1357 		 * fault injection handlers.
1358 		 */
1359 		if (!spa_refcount_zero(spa) ||
1360 		    (spa->spa_inject_ref != 0 &&
1361 		    new_state != POOL_STATE_UNINITIALIZED)) {
1362 			spa_scrub_resume(spa);
1363 			spa_async_resume(spa);
1364 			mutex_exit(&spa_namespace_lock);
1365 			return (EBUSY);
1366 		}
1367 
1368 		spa_scrub_resume(spa);
1369 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1370 
1371 		/*
1372 		 * We want this to be reflected on every label,
1373 		 * so mark them all dirty.  spa_unload() will do the
1374 		 * final sync that pushes these changes out.
1375 		 */
1376 		if (new_state != POOL_STATE_UNINITIALIZED) {
1377 			spa_config_enter(spa, RW_WRITER, FTAG);
1378 			spa->spa_state = new_state;
1379 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1380 			vdev_config_dirty(spa->spa_root_vdev);
1381 			spa_config_exit(spa, FTAG);
1382 		}
1383 	}
1384 
1385 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1386 		spa_unload(spa);
1387 		spa_deactivate(spa);
1388 	}
1389 
1390 	if (oldconfig && spa->spa_config)
1391 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1392 
1393 	if (new_state != POOL_STATE_UNINITIALIZED) {
1394 		spa_remove(spa);
1395 		spa_config_sync();
1396 	}
1397 	mutex_exit(&spa_namespace_lock);
1398 
1399 	return (0);
1400 }
1401 
1402 /*
1403  * Destroy a storage pool.
1404  */
1405 int
1406 spa_destroy(char *pool)
1407 {
1408 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1409 }
1410 
1411 /*
1412  * Export a storage pool.
1413  */
1414 int
1415 spa_export(char *pool, nvlist_t **oldconfig)
1416 {
1417 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1418 }
1419 
1420 /*
1421  * Similar to spa_export(), this unloads the spa_t without actually removing it
1422  * from the namespace in any way.
1423  */
1424 int
1425 spa_reset(char *pool)
1426 {
1427 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1428 }
1429 
1430 
1431 /*
1432  * ==========================================================================
1433  * Device manipulation
1434  * ==========================================================================
1435  */
1436 
1437 /*
1438  * Add capacity to a storage pool.
1439  */
1440 int
1441 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1442 {
1443 	uint64_t txg;
1444 	int c, error;
1445 	vdev_t *rvd = spa->spa_root_vdev;
1446 	vdev_t *vd, *tvd;
1447 	nvlist_t **spares;
1448 	uint_t i, nspares;
1449 
1450 	txg = spa_vdev_enter(spa);
1451 
1452 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1453 	    VDEV_ALLOC_ADD)) != 0)
1454 		return (spa_vdev_exit(spa, NULL, txg, error));
1455 
1456 	if ((error = spa_validate_spares(spa, nvroot, txg,
1457 	    VDEV_ALLOC_ADD)) != 0)
1458 		return (spa_vdev_exit(spa, vd, txg, error));
1459 
1460 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1461 	    &spares, &nspares) != 0)
1462 		nspares = 0;
1463 
1464 	if (vd->vdev_children == 0 && nspares == 0)
1465 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1466 
1467 	if (vd->vdev_children != 0) {
1468 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0)
1469 			return (spa_vdev_exit(spa, vd, txg, error));
1470 
1471 		/*
1472 		 * Transfer each new top-level vdev from vd to rvd.
1473 		 */
1474 		for (c = 0; c < vd->vdev_children; c++) {
1475 			tvd = vd->vdev_child[c];
1476 			vdev_remove_child(vd, tvd);
1477 			tvd->vdev_id = rvd->vdev_children;
1478 			vdev_add_child(rvd, tvd);
1479 			vdev_config_dirty(tvd);
1480 		}
1481 	}
1482 
1483 	if (nspares != 0) {
1484 		if (spa->spa_sparelist != NULL) {
1485 			nvlist_t **oldspares;
1486 			uint_t oldnspares;
1487 			nvlist_t **newspares;
1488 
1489 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1490 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
1491 
1492 			newspares = kmem_alloc(sizeof (void *) *
1493 			    (nspares + oldnspares), KM_SLEEP);
1494 			for (i = 0; i < oldnspares; i++)
1495 				VERIFY(nvlist_dup(oldspares[i],
1496 				    &newspares[i], KM_SLEEP) == 0);
1497 			for (i = 0; i < nspares; i++)
1498 				VERIFY(nvlist_dup(spares[i],
1499 				    &newspares[i + oldnspares],
1500 				    KM_SLEEP) == 0);
1501 
1502 			VERIFY(nvlist_remove(spa->spa_sparelist,
1503 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1504 
1505 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1506 			    ZPOOL_CONFIG_SPARES, newspares,
1507 			    nspares + oldnspares) == 0);
1508 			for (i = 0; i < oldnspares + nspares; i++)
1509 				nvlist_free(newspares[i]);
1510 			kmem_free(newspares, (oldnspares + nspares) *
1511 			    sizeof (void *));
1512 		} else {
1513 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1514 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1515 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1516 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1517 		}
1518 
1519 		spa_load_spares(spa);
1520 		spa->spa_sync_spares = B_TRUE;
1521 	}
1522 
1523 	/*
1524 	 * We have to be careful when adding new vdevs to an existing pool.
1525 	 * If other threads start allocating from these vdevs before we
1526 	 * sync the config cache, and we lose power, then upon reboot we may
1527 	 * fail to open the pool because there are DVAs that the config cache
1528 	 * can't translate.  Therefore, we first add the vdevs without
1529 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1530 	 * and then let spa_config_update() initialize the new metaslabs.
1531 	 *
1532 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1533 	 * if we lose power at any point in this sequence, the remaining
1534 	 * steps will be completed the next time we load the pool.
1535 	 */
1536 	(void) spa_vdev_exit(spa, vd, txg, 0);
1537 
1538 	mutex_enter(&spa_namespace_lock);
1539 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1540 	mutex_exit(&spa_namespace_lock);
1541 
1542 	return (0);
1543 }
1544 
1545 /*
1546  * Attach a device to a mirror.  The arguments are the path to any device
1547  * in the mirror, and the nvroot for the new device.  If the path specifies
1548  * a device that is not mirrored, we automatically insert the mirror vdev.
1549  *
1550  * If 'replacing' is specified, the new device is intended to replace the
1551  * existing device; in this case the two devices are made into their own
1552  * mirror using the 'replacing' vdev, which is functionally idendical to
1553  * the mirror vdev (it actually reuses all the same ops) but has a few
1554  * extra rules: you can't attach to it after it's been created, and upon
1555  * completion of resilvering, the first disk (the one being replaced)
1556  * is automatically detached.
1557  */
1558 int
1559 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1560 {
1561 	uint64_t txg, open_txg;
1562 	int error;
1563 	vdev_t *rvd = spa->spa_root_vdev;
1564 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1565 	vdev_ops_t *pvops;
1566 
1567 	txg = spa_vdev_enter(spa);
1568 
1569 	oldvd = vdev_lookup_by_guid(rvd, guid);
1570 
1571 	if (oldvd == NULL)
1572 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1573 
1574 	if (!oldvd->vdev_ops->vdev_op_leaf)
1575 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1576 
1577 	pvd = oldvd->vdev_parent;
1578 
1579 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
1580 	    VDEV_ALLOC_ADD)) != 0 || newrootvd->vdev_children != 1)
1581 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1582 
1583 	newvd = newrootvd->vdev_child[0];
1584 
1585 	if (!newvd->vdev_ops->vdev_op_leaf)
1586 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1587 
1588 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
1589 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1590 
1591 	if (!replacing) {
1592 		/*
1593 		 * For attach, the only allowable parent is a mirror or the root
1594 		 * vdev.
1595 		 */
1596 		if (pvd->vdev_ops != &vdev_mirror_ops &&
1597 		    pvd->vdev_ops != &vdev_root_ops)
1598 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1599 
1600 		pvops = &vdev_mirror_ops;
1601 	} else {
1602 		/*
1603 		 * Active hot spares can only be replaced by inactive hot
1604 		 * spares.
1605 		 */
1606 		if (pvd->vdev_ops == &vdev_spare_ops &&
1607 		    pvd->vdev_child[1] == oldvd &&
1608 		    !spa_has_spare(spa, newvd->vdev_guid))
1609 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1610 
1611 		/*
1612 		 * If the source is a hot spare, and the parent isn't already a
1613 		 * spare, then we want to create a new hot spare.  Otherwise, we
1614 		 * want to create a replacing vdev.
1615 		 */
1616 		if (pvd->vdev_ops == &vdev_replacing_ops)
1617 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1618 		else if (pvd->vdev_ops != &vdev_spare_ops &&
1619 		    newvd->vdev_isspare)
1620 			pvops = &vdev_spare_ops;
1621 		else
1622 			pvops = &vdev_replacing_ops;
1623 	}
1624 
1625 	/*
1626 	 * Compare the new device size with the replaceable/attachable
1627 	 * device size.
1628 	 */
1629 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1630 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1631 
1632 	/*
1633 	 * The new device cannot have a higher alignment requirement
1634 	 * than the top-level vdev.
1635 	 */
1636 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1637 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1638 
1639 	/*
1640 	 * If this is an in-place replacement, update oldvd's path and devid
1641 	 * to make it distinguishable from newvd, and unopenable from now on.
1642 	 */
1643 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1644 		spa_strfree(oldvd->vdev_path);
1645 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1646 		    KM_SLEEP);
1647 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1648 		    newvd->vdev_path, "old");
1649 		if (oldvd->vdev_devid != NULL) {
1650 			spa_strfree(oldvd->vdev_devid);
1651 			oldvd->vdev_devid = NULL;
1652 		}
1653 	}
1654 
1655 	/*
1656 	 * If the parent is not a mirror, or if we're replacing, insert the new
1657 	 * mirror/replacing/spare vdev above oldvd.
1658 	 */
1659 	if (pvd->vdev_ops != pvops)
1660 		pvd = vdev_add_parent(oldvd, pvops);
1661 
1662 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1663 	ASSERT(pvd->vdev_ops == pvops);
1664 	ASSERT(oldvd->vdev_parent == pvd);
1665 
1666 	/*
1667 	 * Extract the new device from its root and add it to pvd.
1668 	 */
1669 	vdev_remove_child(newrootvd, newvd);
1670 	newvd->vdev_id = pvd->vdev_children;
1671 	vdev_add_child(pvd, newvd);
1672 
1673 	/*
1674 	 * If newvd is smaller than oldvd, but larger than its rsize,
1675 	 * the addition of newvd may have decreased our parent's asize.
1676 	 */
1677 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1678 
1679 	tvd = newvd->vdev_top;
1680 	ASSERT(pvd->vdev_top == tvd);
1681 	ASSERT(tvd->vdev_parent == rvd);
1682 
1683 	vdev_config_dirty(tvd);
1684 
1685 	/*
1686 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1687 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1688 	 */
1689 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1690 
1691 	mutex_enter(&newvd->vdev_dtl_lock);
1692 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1693 	    open_txg - TXG_INITIAL + 1);
1694 	mutex_exit(&newvd->vdev_dtl_lock);
1695 
1696 	dprintf("attached %s in txg %llu\n", newvd->vdev_path, txg);
1697 
1698 	/*
1699 	 * Mark newvd's DTL dirty in this txg.
1700 	 */
1701 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1702 
1703 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1704 
1705 	/*
1706 	 * Kick off a resilver to update newvd.
1707 	 */
1708 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1709 
1710 	return (0);
1711 }
1712 
1713 /*
1714  * Detach a device from a mirror or replacing vdev.
1715  * If 'replace_done' is specified, only detach if the parent
1716  * is a replacing vdev.
1717  */
1718 int
1719 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1720 {
1721 	uint64_t txg;
1722 	int c, t, error;
1723 	vdev_t *rvd = spa->spa_root_vdev;
1724 	vdev_t *vd, *pvd, *cvd, *tvd;
1725 	boolean_t unspare = B_FALSE;
1726 	uint64_t unspare_guid;
1727 
1728 	txg = spa_vdev_enter(spa);
1729 
1730 	vd = vdev_lookup_by_guid(rvd, guid);
1731 
1732 	if (vd == NULL)
1733 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1734 
1735 	if (!vd->vdev_ops->vdev_op_leaf)
1736 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1737 
1738 	pvd = vd->vdev_parent;
1739 
1740 	/*
1741 	 * If replace_done is specified, only remove this device if it's
1742 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
1743 	 * disk can be removed.
1744 	 */
1745 	if (replace_done) {
1746 		if (pvd->vdev_ops == &vdev_replacing_ops) {
1747 			if (vd->vdev_id != 0)
1748 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1749 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
1750 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1751 		}
1752 	}
1753 
1754 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
1755 	    spa_version(spa) >= ZFS_VERSION_SPARES);
1756 
1757 	/*
1758 	 * Only mirror, replacing, and spare vdevs support detach.
1759 	 */
1760 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1761 	    pvd->vdev_ops != &vdev_mirror_ops &&
1762 	    pvd->vdev_ops != &vdev_spare_ops)
1763 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1764 
1765 	/*
1766 	 * If there's only one replica, you can't detach it.
1767 	 */
1768 	if (pvd->vdev_children <= 1)
1769 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1770 
1771 	/*
1772 	 * If all siblings have non-empty DTLs, this device may have the only
1773 	 * valid copy of the data, which means we cannot safely detach it.
1774 	 *
1775 	 * XXX -- as in the vdev_offline() case, we really want a more
1776 	 * precise DTL check.
1777 	 */
1778 	for (c = 0; c < pvd->vdev_children; c++) {
1779 		uint64_t dirty;
1780 
1781 		cvd = pvd->vdev_child[c];
1782 		if (cvd == vd)
1783 			continue;
1784 		if (vdev_is_dead(cvd))
1785 			continue;
1786 		mutex_enter(&cvd->vdev_dtl_lock);
1787 		dirty = cvd->vdev_dtl_map.sm_space |
1788 		    cvd->vdev_dtl_scrub.sm_space;
1789 		mutex_exit(&cvd->vdev_dtl_lock);
1790 		if (!dirty)
1791 			break;
1792 	}
1793 
1794 	/*
1795 	 * If we are a replacing or spare vdev, then we can always detach the
1796 	 * latter child, as that is how one cancels the operation.
1797 	 */
1798 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
1799 	    c == pvd->vdev_children)
1800 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1801 
1802 	/*
1803 	 * If we are detaching the original disk from a spare, then it implies
1804 	 * that the spare should become a real disk, and be removed from the
1805 	 * active spare list for the pool.
1806 	 */
1807 	if (pvd->vdev_ops == &vdev_spare_ops &&
1808 	    vd->vdev_id == 0)
1809 		unspare = B_TRUE;
1810 
1811 	/*
1812 	 * Erase the disk labels so the disk can be used for other things.
1813 	 * This must be done after all other error cases are handled,
1814 	 * but before we disembowel vd (so we can still do I/O to it).
1815 	 * But if we can't do it, don't treat the error as fatal --
1816 	 * it may be that the unwritability of the disk is the reason
1817 	 * it's being detached!
1818 	 */
1819 	error = vdev_label_init(vd, 0, B_FALSE);
1820 	if (error)
1821 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1822 
1823 	/*
1824 	 * Remove vd from its parent and compact the parent's children.
1825 	 */
1826 	vdev_remove_child(pvd, vd);
1827 	vdev_compact_children(pvd);
1828 
1829 	/*
1830 	 * Remember one of the remaining children so we can get tvd below.
1831 	 */
1832 	cvd = pvd->vdev_child[0];
1833 
1834 	/*
1835 	 * If we need to remove the remaining child from the list of hot spares,
1836 	 * do it now, marking the vdev as no longer a spare in the process.  We
1837 	 * must do this before vdev_remove_parent(), because that can change the
1838 	 * GUID if it creates a new toplevel GUID.
1839 	 */
1840 	if (unspare) {
1841 		ASSERT(cvd->vdev_isspare);
1842 		spa_spare_remove(cvd->vdev_guid);
1843 		cvd->vdev_isspare = B_FALSE;
1844 		unspare_guid = cvd->vdev_guid;
1845 	}
1846 
1847 	/*
1848 	 * If the parent mirror/replacing vdev only has one child,
1849 	 * the parent is no longer needed.  Remove it from the tree.
1850 	 */
1851 	if (pvd->vdev_children == 1)
1852 		vdev_remove_parent(cvd);
1853 
1854 	/*
1855 	 * We don't set tvd until now because the parent we just removed
1856 	 * may have been the previous top-level vdev.
1857 	 */
1858 	tvd = cvd->vdev_top;
1859 	ASSERT(tvd->vdev_parent == rvd);
1860 
1861 	/*
1862 	 * Reopen this top-level vdev to reassess health after detach.
1863 	 */
1864 	vdev_reopen(tvd);
1865 
1866 	/*
1867 	 * If the device we just detached was smaller than the others,
1868 	 * it may be possible to add metaslabs (i.e. grow the pool).
1869 	 * vdev_metaslab_init() can't fail because the existing metaslabs
1870 	 * are already in core, so there's nothing to read from disk.
1871 	 */
1872 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
1873 
1874 	vdev_config_dirty(tvd);
1875 
1876 	/*
1877 	 * Mark vd's DTL as dirty in this txg.
1878 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1879 	 * and free vd's DTL object in syncing context.
1880 	 * But first make sure we're not on any *other* txg's DTL list,
1881 	 * to prevent vd from being accessed after it's freed.
1882 	 */
1883 	for (t = 0; t < TXG_SIZE; t++)
1884 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1885 	vd->vdev_detached = B_TRUE;
1886 	vdev_dirty(tvd, VDD_DTL, vd, txg);
1887 
1888 	dprintf("detached %s in txg %llu\n", vd->vdev_path, txg);
1889 
1890 	error = spa_vdev_exit(spa, vd, txg, 0);
1891 
1892 	/*
1893 	 * If we are supposed to remove the given vdev from the list of spares,
1894 	 * iterate over all pools in the system and replace it if it's present.
1895 	 */
1896 	if (unspare) {
1897 		spa = NULL;
1898 		mutex_enter(&spa_namespace_lock);
1899 		while ((spa = spa_next(spa)) != NULL) {
1900 			if (spa->spa_state != POOL_STATE_ACTIVE)
1901 				continue;
1902 
1903 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
1904 		}
1905 		mutex_exit(&spa_namespace_lock);
1906 	}
1907 
1908 	return (error);
1909 }
1910 
1911 /*
1912  * Remove a device from the pool.  Currently, this supports removing only hot
1913  * spares.
1914  */
1915 int
1916 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
1917 {
1918 	vdev_t *vd;
1919 	nvlist_t **spares, *nv, **newspares;
1920 	uint_t i, j, nspares;
1921 	int ret = 0;
1922 
1923 	spa_config_enter(spa, RW_WRITER, FTAG);
1924 
1925 	vd = spa_lookup_by_guid(spa, guid);
1926 
1927 	nv = NULL;
1928 	if (spa->spa_spares != NULL &&
1929 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1930 	    &spares, &nspares) == 0) {
1931 		for (i = 0; i < nspares; i++) {
1932 			uint64_t theguid;
1933 
1934 			VERIFY(nvlist_lookup_uint64(spares[i],
1935 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
1936 			if (theguid == guid) {
1937 				nv = spares[i];
1938 				break;
1939 			}
1940 		}
1941 	}
1942 
1943 	/*
1944 	 * We only support removing a hot spare, and only if it's not currently
1945 	 * in use in this pool.
1946 	 */
1947 	if (nv == NULL && vd == NULL) {
1948 		ret = ENOENT;
1949 		goto out;
1950 	}
1951 
1952 	if (nv == NULL && vd != NULL) {
1953 		ret = ENOTSUP;
1954 		goto out;
1955 	}
1956 
1957 	if (!unspare && nv != NULL && vd != NULL) {
1958 		ret = EBUSY;
1959 		goto out;
1960 	}
1961 
1962 	if (nspares == 1) {
1963 		newspares = NULL;
1964 	} else {
1965 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
1966 		    KM_SLEEP);
1967 		for (i = 0, j = 0; i < nspares; i++) {
1968 			if (spares[i] != nv)
1969 				VERIFY(nvlist_dup(spares[i],
1970 				    &newspares[j++], KM_SLEEP) == 0);
1971 		}
1972 	}
1973 
1974 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1975 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1976 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1977 	    newspares, nspares - 1) == 0);
1978 	for (i = 0; i < nspares - 1; i++)
1979 		nvlist_free(newspares[i]);
1980 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
1981 	spa_load_spares(spa);
1982 	spa->spa_sync_spares = B_TRUE;
1983 
1984 out:
1985 	spa_config_exit(spa, FTAG);
1986 
1987 	return (ret);
1988 }
1989 
1990 /*
1991  * Find any device that's done replacing, so we can detach it.
1992  */
1993 static vdev_t *
1994 spa_vdev_replace_done_hunt(vdev_t *vd)
1995 {
1996 	vdev_t *newvd, *oldvd;
1997 	int c;
1998 
1999 	for (c = 0; c < vd->vdev_children; c++) {
2000 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
2001 		if (oldvd != NULL)
2002 			return (oldvd);
2003 	}
2004 
2005 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
2006 		oldvd = vd->vdev_child[0];
2007 		newvd = vd->vdev_child[1];
2008 
2009 		mutex_enter(&newvd->vdev_dtl_lock);
2010 		if (newvd->vdev_dtl_map.sm_space == 0 &&
2011 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2012 			mutex_exit(&newvd->vdev_dtl_lock);
2013 			return (oldvd);
2014 		}
2015 		mutex_exit(&newvd->vdev_dtl_lock);
2016 	}
2017 
2018 	return (NULL);
2019 }
2020 
2021 static void
2022 spa_vdev_replace_done(spa_t *spa)
2023 {
2024 	vdev_t *vd;
2025 	vdev_t *pvd;
2026 	uint64_t guid;
2027 	uint64_t pguid = 0;
2028 
2029 	spa_config_enter(spa, RW_READER, FTAG);
2030 
2031 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
2032 		guid = vd->vdev_guid;
2033 		/*
2034 		 * If we have just finished replacing a hot spared device, then
2035 		 * we need to detach the parent's first child (the original hot
2036 		 * spare) as well.
2037 		 */
2038 		pvd = vd->vdev_parent;
2039 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2040 		    pvd->vdev_id == 0) {
2041 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2042 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2043 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2044 		}
2045 		spa_config_exit(spa, FTAG);
2046 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2047 			return;
2048 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2049 			return;
2050 		spa_config_enter(spa, RW_READER, FTAG);
2051 	}
2052 
2053 	spa_config_exit(spa, FTAG);
2054 }
2055 
2056 /*
2057  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2058  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2059  */
2060 int
2061 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2062 {
2063 	vdev_t *rvd, *vd;
2064 	uint64_t txg;
2065 
2066 	rvd = spa->spa_root_vdev;
2067 
2068 	txg = spa_vdev_enter(spa);
2069 
2070 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2071 		/*
2072 		 * Determine if this is a reference to a hot spare.  In that
2073 		 * case, update the path as stored in the spare list.
2074 		 */
2075 		nvlist_t **spares;
2076 		uint_t i, nspares;
2077 		if (spa->spa_sparelist != NULL) {
2078 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2079 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2080 			for (i = 0; i < nspares; i++) {
2081 				uint64_t theguid;
2082 				VERIFY(nvlist_lookup_uint64(spares[i],
2083 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2084 				if (theguid == guid)
2085 					break;
2086 			}
2087 
2088 			if (i == nspares)
2089 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2090 
2091 			VERIFY(nvlist_add_string(spares[i],
2092 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2093 			spa_load_spares(spa);
2094 			spa->spa_sync_spares = B_TRUE;
2095 			return (spa_vdev_exit(spa, NULL, txg, 0));
2096 		} else {
2097 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2098 		}
2099 	}
2100 
2101 	if (!vd->vdev_ops->vdev_op_leaf)
2102 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2103 
2104 	spa_strfree(vd->vdev_path);
2105 	vd->vdev_path = spa_strdup(newpath);
2106 
2107 	vdev_config_dirty(vd->vdev_top);
2108 
2109 	return (spa_vdev_exit(spa, NULL, txg, 0));
2110 }
2111 
2112 /*
2113  * ==========================================================================
2114  * SPA Scrubbing
2115  * ==========================================================================
2116  */
2117 
2118 void
2119 spa_scrub_throttle(spa_t *spa, int direction)
2120 {
2121 	mutex_enter(&spa->spa_scrub_lock);
2122 	spa->spa_scrub_throttled += direction;
2123 	ASSERT(spa->spa_scrub_throttled >= 0);
2124 	if (spa->spa_scrub_throttled == 0)
2125 		cv_broadcast(&spa->spa_scrub_io_cv);
2126 	mutex_exit(&spa->spa_scrub_lock);
2127 }
2128 
2129 static void
2130 spa_scrub_io_done(zio_t *zio)
2131 {
2132 	spa_t *spa = zio->io_spa;
2133 
2134 	zio_buf_free(zio->io_data, zio->io_size);
2135 
2136 	mutex_enter(&spa->spa_scrub_lock);
2137 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2138 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2139 		spa->spa_scrub_errors++;
2140 		mutex_enter(&vd->vdev_stat_lock);
2141 		vd->vdev_stat.vs_scrub_errors++;
2142 		mutex_exit(&vd->vdev_stat_lock);
2143 	}
2144 	if (--spa->spa_scrub_inflight == 0) {
2145 		cv_broadcast(&spa->spa_scrub_io_cv);
2146 		ASSERT(spa->spa_scrub_throttled == 0);
2147 	}
2148 	mutex_exit(&spa->spa_scrub_lock);
2149 }
2150 
2151 static void
2152 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2153     zbookmark_t *zb)
2154 {
2155 	size_t size = BP_GET_LSIZE(bp);
2156 	void *data = zio_buf_alloc(size);
2157 
2158 	mutex_enter(&spa->spa_scrub_lock);
2159 	spa->spa_scrub_inflight++;
2160 	mutex_exit(&spa->spa_scrub_lock);
2161 
2162 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2163 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2164 
2165 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2166 
2167 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2168 	    spa_scrub_io_done, NULL, priority, flags, zb));
2169 }
2170 
2171 /* ARGSUSED */
2172 static int
2173 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2174 {
2175 	blkptr_t *bp = &bc->bc_blkptr;
2176 	vdev_t *vd = spa->spa_root_vdev;
2177 	dva_t *dva = bp->blk_dva;
2178 	int needs_resilver = B_FALSE;
2179 	int d;
2180 
2181 	if (bc->bc_errno) {
2182 		/*
2183 		 * We can't scrub this block, but we can continue to scrub
2184 		 * the rest of the pool.  Note the error and move along.
2185 		 */
2186 		mutex_enter(&spa->spa_scrub_lock);
2187 		spa->spa_scrub_errors++;
2188 		mutex_exit(&spa->spa_scrub_lock);
2189 
2190 		mutex_enter(&vd->vdev_stat_lock);
2191 		vd->vdev_stat.vs_scrub_errors++;
2192 		mutex_exit(&vd->vdev_stat_lock);
2193 
2194 		return (ERESTART);
2195 	}
2196 
2197 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2198 
2199 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2200 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2201 
2202 		ASSERT(vd != NULL);
2203 
2204 		/*
2205 		 * Keep track of how much data we've examined so that
2206 		 * zpool(1M) status can make useful progress reports.
2207 		 */
2208 		mutex_enter(&vd->vdev_stat_lock);
2209 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2210 		mutex_exit(&vd->vdev_stat_lock);
2211 
2212 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2213 			if (DVA_GET_GANG(&dva[d])) {
2214 				/*
2215 				 * Gang members may be spread across multiple
2216 				 * vdevs, so the best we can do is look at the
2217 				 * pool-wide DTL.
2218 				 * XXX -- it would be better to change our
2219 				 * allocation policy to ensure that this can't
2220 				 * happen.
2221 				 */
2222 				vd = spa->spa_root_vdev;
2223 			}
2224 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2225 			    bp->blk_birth, 1))
2226 				needs_resilver = B_TRUE;
2227 		}
2228 	}
2229 
2230 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2231 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2232 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2233 	else if (needs_resilver)
2234 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2235 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2236 
2237 	return (0);
2238 }
2239 
2240 static void
2241 spa_scrub_thread(spa_t *spa)
2242 {
2243 	callb_cpr_t cprinfo;
2244 	traverse_handle_t *th = spa->spa_scrub_th;
2245 	vdev_t *rvd = spa->spa_root_vdev;
2246 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2247 	int error = 0;
2248 	boolean_t complete;
2249 
2250 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2251 
2252 	/*
2253 	 * If we're restarting due to a snapshot create/delete,
2254 	 * wait for that to complete.
2255 	 */
2256 	txg_wait_synced(spa_get_dsl(spa), 0);
2257 
2258 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2259 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2260 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2261 
2262 	spa_config_enter(spa, RW_WRITER, FTAG);
2263 	vdev_reopen(rvd);		/* purge all vdev caches */
2264 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2265 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2266 	spa_config_exit(spa, FTAG);
2267 
2268 	mutex_enter(&spa->spa_scrub_lock);
2269 	spa->spa_scrub_errors = 0;
2270 	spa->spa_scrub_active = 1;
2271 	ASSERT(spa->spa_scrub_inflight == 0);
2272 	ASSERT(spa->spa_scrub_throttled == 0);
2273 
2274 	while (!spa->spa_scrub_stop) {
2275 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2276 		while (spa->spa_scrub_suspended) {
2277 			spa->spa_scrub_active = 0;
2278 			cv_broadcast(&spa->spa_scrub_cv);
2279 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2280 			spa->spa_scrub_active = 1;
2281 		}
2282 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2283 
2284 		if (spa->spa_scrub_restart_txg != 0)
2285 			break;
2286 
2287 		mutex_exit(&spa->spa_scrub_lock);
2288 		error = traverse_more(th);
2289 		mutex_enter(&spa->spa_scrub_lock);
2290 		if (error != EAGAIN)
2291 			break;
2292 
2293 		while (spa->spa_scrub_throttled > 0)
2294 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2295 	}
2296 
2297 	while (spa->spa_scrub_inflight)
2298 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2299 
2300 	spa->spa_scrub_active = 0;
2301 	cv_broadcast(&spa->spa_scrub_cv);
2302 
2303 	mutex_exit(&spa->spa_scrub_lock);
2304 
2305 	spa_config_enter(spa, RW_WRITER, FTAG);
2306 
2307 	mutex_enter(&spa->spa_scrub_lock);
2308 
2309 	/*
2310 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2311 	 * AND the spa config lock to synchronize with any config changes
2312 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2313 	 */
2314 	if (spa->spa_scrub_restart_txg != 0)
2315 		error = ERESTART;
2316 
2317 	if (spa->spa_scrub_stop)
2318 		error = EINTR;
2319 
2320 	/*
2321 	 * Even if there were uncorrectable errors, we consider the scrub
2322 	 * completed.  The downside is that if there is a transient error during
2323 	 * a resilver, we won't resilver the data properly to the target.  But
2324 	 * if the damage is permanent (more likely) we will resilver forever,
2325 	 * which isn't really acceptable.  Since there is enough information for
2326 	 * the user to know what has failed and why, this seems like a more
2327 	 * tractable approach.
2328 	 */
2329 	complete = (error == 0);
2330 
2331 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2332 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2333 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2334 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2335 
2336 	mutex_exit(&spa->spa_scrub_lock);
2337 
2338 	/*
2339 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2340 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2341 	 */
2342 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2343 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2344 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2345 	spa_errlog_rotate(spa);
2346 
2347 	spa_config_exit(spa, FTAG);
2348 
2349 	mutex_enter(&spa->spa_scrub_lock);
2350 
2351 	/*
2352 	 * We may have finished replacing a device.
2353 	 * Let the async thread assess this and handle the detach.
2354 	 */
2355 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2356 
2357 	/*
2358 	 * If we were told to restart, our final act is to start a new scrub.
2359 	 */
2360 	if (error == ERESTART)
2361 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2362 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2363 
2364 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2365 	spa->spa_scrub_active = 0;
2366 	spa->spa_scrub_thread = NULL;
2367 	cv_broadcast(&spa->spa_scrub_cv);
2368 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2369 	thread_exit();
2370 }
2371 
2372 void
2373 spa_scrub_suspend(spa_t *spa)
2374 {
2375 	mutex_enter(&spa->spa_scrub_lock);
2376 	spa->spa_scrub_suspended++;
2377 	while (spa->spa_scrub_active) {
2378 		cv_broadcast(&spa->spa_scrub_cv);
2379 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2380 	}
2381 	while (spa->spa_scrub_inflight)
2382 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2383 	mutex_exit(&spa->spa_scrub_lock);
2384 }
2385 
2386 void
2387 spa_scrub_resume(spa_t *spa)
2388 {
2389 	mutex_enter(&spa->spa_scrub_lock);
2390 	ASSERT(spa->spa_scrub_suspended != 0);
2391 	if (--spa->spa_scrub_suspended == 0)
2392 		cv_broadcast(&spa->spa_scrub_cv);
2393 	mutex_exit(&spa->spa_scrub_lock);
2394 }
2395 
2396 void
2397 spa_scrub_restart(spa_t *spa, uint64_t txg)
2398 {
2399 	/*
2400 	 * Something happened (e.g. snapshot create/delete) that means
2401 	 * we must restart any in-progress scrubs.  The itinerary will
2402 	 * fix this properly.
2403 	 */
2404 	mutex_enter(&spa->spa_scrub_lock);
2405 	spa->spa_scrub_restart_txg = txg;
2406 	mutex_exit(&spa->spa_scrub_lock);
2407 }
2408 
2409 int
2410 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2411 {
2412 	space_seg_t *ss;
2413 	uint64_t mintxg, maxtxg;
2414 	vdev_t *rvd = spa->spa_root_vdev;
2415 
2416 	if ((uint_t)type >= POOL_SCRUB_TYPES)
2417 		return (ENOTSUP);
2418 
2419 	mutex_enter(&spa->spa_scrub_lock);
2420 
2421 	/*
2422 	 * If there's a scrub or resilver already in progress, stop it.
2423 	 */
2424 	while (spa->spa_scrub_thread != NULL) {
2425 		/*
2426 		 * Don't stop a resilver unless forced.
2427 		 */
2428 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
2429 			mutex_exit(&spa->spa_scrub_lock);
2430 			return (EBUSY);
2431 		}
2432 		spa->spa_scrub_stop = 1;
2433 		cv_broadcast(&spa->spa_scrub_cv);
2434 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2435 	}
2436 
2437 	/*
2438 	 * Terminate the previous traverse.
2439 	 */
2440 	if (spa->spa_scrub_th != NULL) {
2441 		traverse_fini(spa->spa_scrub_th);
2442 		spa->spa_scrub_th = NULL;
2443 	}
2444 
2445 	if (rvd == NULL) {
2446 		ASSERT(spa->spa_scrub_stop == 0);
2447 		ASSERT(spa->spa_scrub_type == type);
2448 		ASSERT(spa->spa_scrub_restart_txg == 0);
2449 		mutex_exit(&spa->spa_scrub_lock);
2450 		return (0);
2451 	}
2452 
2453 	mintxg = TXG_INITIAL - 1;
2454 	maxtxg = spa_last_synced_txg(spa) + 1;
2455 
2456 	mutex_enter(&rvd->vdev_dtl_lock);
2457 
2458 	if (rvd->vdev_dtl_map.sm_space == 0) {
2459 		/*
2460 		 * The pool-wide DTL is empty.
2461 		 * If this is a resilver, there's nothing to do except
2462 		 * check whether any in-progress replacements have completed.
2463 		 */
2464 		if (type == POOL_SCRUB_RESILVER) {
2465 			type = POOL_SCRUB_NONE;
2466 			spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2467 		}
2468 	} else {
2469 		/*
2470 		 * The pool-wide DTL is non-empty.
2471 		 * If this is a normal scrub, upgrade to a resilver instead.
2472 		 */
2473 		if (type == POOL_SCRUB_EVERYTHING)
2474 			type = POOL_SCRUB_RESILVER;
2475 	}
2476 
2477 	if (type == POOL_SCRUB_RESILVER) {
2478 		/*
2479 		 * Determine the resilvering boundaries.
2480 		 *
2481 		 * Note: (mintxg, maxtxg) is an open interval,
2482 		 * i.e. mintxg and maxtxg themselves are not included.
2483 		 *
2484 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
2485 		 * so we don't claim to resilver a txg that's still changing.
2486 		 */
2487 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
2488 		mintxg = ss->ss_start - 1;
2489 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
2490 		maxtxg = MIN(ss->ss_end, maxtxg);
2491 	}
2492 
2493 	mutex_exit(&rvd->vdev_dtl_lock);
2494 
2495 	spa->spa_scrub_stop = 0;
2496 	spa->spa_scrub_type = type;
2497 	spa->spa_scrub_restart_txg = 0;
2498 
2499 	if (type != POOL_SCRUB_NONE) {
2500 		spa->spa_scrub_mintxg = mintxg;
2501 		spa->spa_scrub_maxtxg = maxtxg;
2502 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
2503 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
2504 		    ZIO_FLAG_CANFAIL);
2505 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
2506 		spa->spa_scrub_thread = thread_create(NULL, 0,
2507 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
2508 	}
2509 
2510 	mutex_exit(&spa->spa_scrub_lock);
2511 
2512 	return (0);
2513 }
2514 
2515 /*
2516  * ==========================================================================
2517  * SPA async task processing
2518  * ==========================================================================
2519  */
2520 
2521 static void
2522 spa_async_reopen(spa_t *spa)
2523 {
2524 	vdev_t *rvd = spa->spa_root_vdev;
2525 	vdev_t *tvd;
2526 	int c;
2527 
2528 	spa_config_enter(spa, RW_WRITER, FTAG);
2529 
2530 	for (c = 0; c < rvd->vdev_children; c++) {
2531 		tvd = rvd->vdev_child[c];
2532 		if (tvd->vdev_reopen_wanted) {
2533 			tvd->vdev_reopen_wanted = 0;
2534 			vdev_reopen(tvd);
2535 		}
2536 	}
2537 
2538 	spa_config_exit(spa, FTAG);
2539 }
2540 
2541 static void
2542 spa_async_thread(spa_t *spa)
2543 {
2544 	int tasks;
2545 
2546 	ASSERT(spa->spa_sync_on);
2547 
2548 	mutex_enter(&spa->spa_async_lock);
2549 	tasks = spa->spa_async_tasks;
2550 	spa->spa_async_tasks = 0;
2551 	mutex_exit(&spa->spa_async_lock);
2552 
2553 	/*
2554 	 * See if the config needs to be updated.
2555 	 */
2556 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
2557 		mutex_enter(&spa_namespace_lock);
2558 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2559 		mutex_exit(&spa_namespace_lock);
2560 	}
2561 
2562 	/*
2563 	 * See if any devices need to be reopened.
2564 	 */
2565 	if (tasks & SPA_ASYNC_REOPEN)
2566 		spa_async_reopen(spa);
2567 
2568 	/*
2569 	 * If any devices are done replacing, detach them.
2570 	 */
2571 	if (tasks & SPA_ASYNC_REPLACE_DONE)
2572 		spa_vdev_replace_done(spa);
2573 
2574 	/*
2575 	 * Kick off a scrub.
2576 	 */
2577 	if (tasks & SPA_ASYNC_SCRUB)
2578 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
2579 
2580 	/*
2581 	 * Kick off a resilver.
2582 	 */
2583 	if (tasks & SPA_ASYNC_RESILVER)
2584 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2585 
2586 	/*
2587 	 * Let the world know that we're done.
2588 	 */
2589 	mutex_enter(&spa->spa_async_lock);
2590 	spa->spa_async_thread = NULL;
2591 	cv_broadcast(&spa->spa_async_cv);
2592 	mutex_exit(&spa->spa_async_lock);
2593 	thread_exit();
2594 }
2595 
2596 void
2597 spa_async_suspend(spa_t *spa)
2598 {
2599 	mutex_enter(&spa->spa_async_lock);
2600 	spa->spa_async_suspended++;
2601 	while (spa->spa_async_thread != NULL)
2602 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
2603 	mutex_exit(&spa->spa_async_lock);
2604 }
2605 
2606 void
2607 spa_async_resume(spa_t *spa)
2608 {
2609 	mutex_enter(&spa->spa_async_lock);
2610 	ASSERT(spa->spa_async_suspended != 0);
2611 	spa->spa_async_suspended--;
2612 	mutex_exit(&spa->spa_async_lock);
2613 }
2614 
2615 static void
2616 spa_async_dispatch(spa_t *spa)
2617 {
2618 	mutex_enter(&spa->spa_async_lock);
2619 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
2620 	    spa->spa_async_thread == NULL &&
2621 	    rootdir != NULL && !vn_is_readonly(rootdir))
2622 		spa->spa_async_thread = thread_create(NULL, 0,
2623 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
2624 	mutex_exit(&spa->spa_async_lock);
2625 }
2626 
2627 void
2628 spa_async_request(spa_t *spa, int task)
2629 {
2630 	mutex_enter(&spa->spa_async_lock);
2631 	spa->spa_async_tasks |= task;
2632 	mutex_exit(&spa->spa_async_lock);
2633 }
2634 
2635 /*
2636  * ==========================================================================
2637  * SPA syncing routines
2638  * ==========================================================================
2639  */
2640 
2641 static void
2642 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2643 {
2644 	bplist_t *bpl = &spa->spa_sync_bplist;
2645 	dmu_tx_t *tx;
2646 	blkptr_t blk;
2647 	uint64_t itor = 0;
2648 	zio_t *zio;
2649 	int error;
2650 	uint8_t c = 1;
2651 
2652 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2653 
2654 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2655 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2656 
2657 	error = zio_wait(zio);
2658 	ASSERT3U(error, ==, 0);
2659 
2660 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2661 	bplist_vacate(bpl, tx);
2662 
2663 	/*
2664 	 * Pre-dirty the first block so we sync to convergence faster.
2665 	 * (Usually only the first block is needed.)
2666 	 */
2667 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2668 	dmu_tx_commit(tx);
2669 }
2670 
2671 static void
2672 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
2673 {
2674 	char *packed = NULL;
2675 	size_t nvsize = 0;
2676 	dmu_buf_t *db;
2677 
2678 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
2679 
2680 	packed = kmem_alloc(nvsize, KM_SLEEP);
2681 
2682 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
2683 	    KM_SLEEP) == 0);
2684 
2685 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
2686 
2687 	kmem_free(packed, nvsize);
2688 
2689 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
2690 	dmu_buf_will_dirty(db, tx);
2691 	*(uint64_t *)db->db_data = nvsize;
2692 	dmu_buf_rele(db, FTAG);
2693 }
2694 
2695 static void
2696 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
2697 {
2698 	nvlist_t *nvroot;
2699 	nvlist_t **spares;
2700 	int i;
2701 
2702 	if (!spa->spa_sync_spares)
2703 		return;
2704 
2705 	/*
2706 	 * Update the MOS nvlist describing the list of available spares.
2707 	 * spa_validate_spares() will have already made sure this nvlist is
2708 	 * valid and the vdevs are labelled appropriately.
2709 	 */
2710 	if (spa->spa_spares_object == 0) {
2711 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
2712 		    DMU_OT_PACKED_NVLIST, 1 << 14,
2713 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2714 		VERIFY(zap_update(spa->spa_meta_objset,
2715 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
2716 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
2717 	}
2718 
2719 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2720 	if (spa->spa_nspares == 0) {
2721 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2722 		    NULL, 0) == 0);
2723 	} else {
2724 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
2725 		    KM_SLEEP);
2726 		for (i = 0; i < spa->spa_nspares; i++)
2727 			spares[i] = vdev_config_generate(spa,
2728 			    spa->spa_spares[i], B_FALSE, B_TRUE);
2729 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2730 		    spares, spa->spa_nspares) == 0);
2731 		for (i = 0; i < spa->spa_nspares; i++)
2732 			nvlist_free(spares[i]);
2733 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
2734 	}
2735 
2736 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
2737 	nvlist_free(nvroot);
2738 
2739 	spa->spa_sync_spares = B_FALSE;
2740 }
2741 
2742 static void
2743 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2744 {
2745 	nvlist_t *config;
2746 
2747 	if (list_is_empty(&spa->spa_dirty_list))
2748 		return;
2749 
2750 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2751 
2752 	if (spa->spa_config_syncing)
2753 		nvlist_free(spa->spa_config_syncing);
2754 	spa->spa_config_syncing = config;
2755 
2756 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
2757 }
2758 
2759 /*
2760  * Sync the specified transaction group.  New blocks may be dirtied as
2761  * part of the process, so we iterate until it converges.
2762  */
2763 void
2764 spa_sync(spa_t *spa, uint64_t txg)
2765 {
2766 	dsl_pool_t *dp = spa->spa_dsl_pool;
2767 	objset_t *mos = spa->spa_meta_objset;
2768 	bplist_t *bpl = &spa->spa_sync_bplist;
2769 	vdev_t *rvd = spa->spa_root_vdev;
2770 	vdev_t *vd;
2771 	dmu_tx_t *tx;
2772 	int dirty_vdevs;
2773 
2774 	/*
2775 	 * Lock out configuration changes.
2776 	 */
2777 	spa_config_enter(spa, RW_READER, FTAG);
2778 
2779 	spa->spa_syncing_txg = txg;
2780 	spa->spa_sync_pass = 0;
2781 
2782 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2783 
2784 	tx = dmu_tx_create_assigned(dp, txg);
2785 
2786 	/*
2787 	 * If we are upgrading to ZFS_VERSION_RAIDZ_DEFLATE this txg,
2788 	 * set spa_deflate if we have no raid-z vdevs.
2789 	 */
2790 	if (spa->spa_ubsync.ub_version < ZFS_VERSION_RAIDZ_DEFLATE &&
2791 	    spa->spa_uberblock.ub_version >= ZFS_VERSION_RAIDZ_DEFLATE) {
2792 		int i;
2793 
2794 		for (i = 0; i < rvd->vdev_children; i++) {
2795 			vd = rvd->vdev_child[i];
2796 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
2797 				break;
2798 		}
2799 		if (i == rvd->vdev_children) {
2800 			spa->spa_deflate = TRUE;
2801 			VERIFY(0 == zap_add(spa->spa_meta_objset,
2802 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2803 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
2804 		}
2805 	}
2806 
2807 	/*
2808 	 * If anything has changed in this txg, push the deferred frees
2809 	 * from the previous txg.  If not, leave them alone so that we
2810 	 * don't generate work on an otherwise idle system.
2811 	 */
2812 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2813 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
2814 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
2815 		spa_sync_deferred_frees(spa, txg);
2816 
2817 	/*
2818 	 * Iterate to convergence.
2819 	 */
2820 	do {
2821 		spa->spa_sync_pass++;
2822 
2823 		spa_sync_config_object(spa, tx);
2824 		spa_sync_spares(spa, tx);
2825 		spa_errlog_sync(spa, txg);
2826 		dsl_pool_sync(dp, txg);
2827 
2828 		dirty_vdevs = 0;
2829 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2830 			vdev_sync(vd, txg);
2831 			dirty_vdevs++;
2832 		}
2833 
2834 		bplist_sync(bpl, tx);
2835 	} while (dirty_vdevs);
2836 
2837 	bplist_close(bpl);
2838 
2839 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2840 
2841 	/*
2842 	 * Rewrite the vdev configuration (which includes the uberblock)
2843 	 * to commit the transaction group.
2844 	 *
2845 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
2846 	 * Otherwise, pick a random top-level vdev that's known to be
2847 	 * visible in the config cache (see spa_vdev_add() for details).
2848 	 * If the write fails, try the next vdev until we're tried them all.
2849 	 */
2850 	if (!list_is_empty(&spa->spa_dirty_list)) {
2851 		VERIFY(vdev_config_sync(rvd, txg) == 0);
2852 	} else {
2853 		int children = rvd->vdev_children;
2854 		int c0 = spa_get_random(children);
2855 		int c;
2856 
2857 		for (c = 0; c < children; c++) {
2858 			vd = rvd->vdev_child[(c0 + c) % children];
2859 			if (vd->vdev_ms_array == 0)
2860 				continue;
2861 			if (vdev_config_sync(vd, txg) == 0)
2862 				break;
2863 		}
2864 		if (c == children)
2865 			VERIFY(vdev_config_sync(rvd, txg) == 0);
2866 	}
2867 
2868 	dmu_tx_commit(tx);
2869 
2870 	/*
2871 	 * Clear the dirty config list.
2872 	 */
2873 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
2874 		vdev_config_clean(vd);
2875 
2876 	/*
2877 	 * Now that the new config has synced transactionally,
2878 	 * let it become visible to the config cache.
2879 	 */
2880 	if (spa->spa_config_syncing != NULL) {
2881 		spa_config_set(spa, spa->spa_config_syncing);
2882 		spa->spa_config_txg = txg;
2883 		spa->spa_config_syncing = NULL;
2884 	}
2885 
2886 	/*
2887 	 * Make a stable copy of the fully synced uberblock.
2888 	 * We use this as the root for pool traversals.
2889 	 */
2890 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
2891 
2892 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
2893 
2894 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
2895 	spa->spa_traverse_wanted = 0;
2896 	spa->spa_ubsync = spa->spa_uberblock;
2897 	rw_exit(&spa->spa_traverse_lock);
2898 
2899 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
2900 
2901 	/*
2902 	 * Clean up the ZIL records for the synced txg.
2903 	 */
2904 	dsl_pool_zil_clean(dp);
2905 
2906 	/*
2907 	 * Update usable space statistics.
2908 	 */
2909 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
2910 		vdev_sync_done(vd, txg);
2911 
2912 	/*
2913 	 * It had better be the case that we didn't dirty anything
2914 	 * since vdev_config_sync().
2915 	 */
2916 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
2917 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
2918 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
2919 	ASSERT(bpl->bpl_queue == NULL);
2920 
2921 	spa_config_exit(spa, FTAG);
2922 
2923 	/*
2924 	 * If any async tasks have been requested, kick them off.
2925 	 */
2926 	spa_async_dispatch(spa);
2927 }
2928 
2929 /*
2930  * Sync all pools.  We don't want to hold the namespace lock across these
2931  * operations, so we take a reference on the spa_t and drop the lock during the
2932  * sync.
2933  */
2934 void
2935 spa_sync_allpools(void)
2936 {
2937 	spa_t *spa = NULL;
2938 	mutex_enter(&spa_namespace_lock);
2939 	while ((spa = spa_next(spa)) != NULL) {
2940 		if (spa_state(spa) != POOL_STATE_ACTIVE)
2941 			continue;
2942 		spa_open_ref(spa, FTAG);
2943 		mutex_exit(&spa_namespace_lock);
2944 		txg_wait_synced(spa_get_dsl(spa), 0);
2945 		mutex_enter(&spa_namespace_lock);
2946 		spa_close(spa, FTAG);
2947 	}
2948 	mutex_exit(&spa_namespace_lock);
2949 }
2950 
2951 /*
2952  * ==========================================================================
2953  * Miscellaneous routines
2954  * ==========================================================================
2955  */
2956 
2957 /*
2958  * Remove all pools in the system.
2959  */
2960 void
2961 spa_evict_all(void)
2962 {
2963 	spa_t *spa;
2964 
2965 	/*
2966 	 * Remove all cached state.  All pools should be closed now,
2967 	 * so every spa in the AVL tree should be unreferenced.
2968 	 */
2969 	mutex_enter(&spa_namespace_lock);
2970 	while ((spa = spa_next(NULL)) != NULL) {
2971 		/*
2972 		 * Stop async tasks.  The async thread may need to detach
2973 		 * a device that's been replaced, which requires grabbing
2974 		 * spa_namespace_lock, so we must drop it here.
2975 		 */
2976 		spa_open_ref(spa, FTAG);
2977 		mutex_exit(&spa_namespace_lock);
2978 		spa_async_suspend(spa);
2979 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2980 		mutex_enter(&spa_namespace_lock);
2981 		spa_close(spa, FTAG);
2982 
2983 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2984 			spa_unload(spa);
2985 			spa_deactivate(spa);
2986 		}
2987 		spa_remove(spa);
2988 	}
2989 	mutex_exit(&spa_namespace_lock);
2990 }
2991 
2992 vdev_t *
2993 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
2994 {
2995 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
2996 }
2997 
2998 void
2999 spa_upgrade(spa_t *spa)
3000 {
3001 	spa_config_enter(spa, RW_WRITER, FTAG);
3002 
3003 	/*
3004 	 * This should only be called for a non-faulted pool, and since a
3005 	 * future version would result in an unopenable pool, this shouldn't be
3006 	 * possible.
3007 	 */
3008 	ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION);
3009 
3010 	spa->spa_uberblock.ub_version = ZFS_VERSION;
3011 	vdev_config_dirty(spa->spa_root_vdev);
3012 
3013 	spa_config_exit(spa, FTAG);
3014 
3015 	txg_wait_synced(spa_get_dsl(spa), 0);
3016 }
3017 
3018 boolean_t
3019 spa_has_spare(spa_t *spa, uint64_t guid)
3020 {
3021 	int i;
3022 
3023 	for (i = 0; i < spa->spa_nspares; i++)
3024 		if (spa->spa_spares[i]->vdev_guid == guid)
3025 			return (B_TRUE);
3026 
3027 	return (B_FALSE);
3028 }
3029