1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright 2017 Joyent, Inc. 31 * Copyright (c) 2017 Datto Inc. 32 */ 33 34 /* 35 * SPA: Storage Pool Allocator 36 * 37 * This file contains all the routines used when modifying on-disk SPA state. 38 * This includes opening, importing, destroying, exporting a pool, and syncing a 39 * pool. 40 */ 41 42 #include <sys/zfs_context.h> 43 #include <sys/fm/fs/zfs.h> 44 #include <sys/spa_impl.h> 45 #include <sys/zio.h> 46 #include <sys/zio_checksum.h> 47 #include <sys/dmu.h> 48 #include <sys/dmu_tx.h> 49 #include <sys/zap.h> 50 #include <sys/zil.h> 51 #include <sys/ddt.h> 52 #include <sys/vdev_impl.h> 53 #include <sys/metaslab.h> 54 #include <sys/metaslab_impl.h> 55 #include <sys/uberblock_impl.h> 56 #include <sys/txg.h> 57 #include <sys/avl.h> 58 #include <sys/dmu_traverse.h> 59 #include <sys/dmu_objset.h> 60 #include <sys/unique.h> 61 #include <sys/dsl_pool.h> 62 #include <sys/dsl_dataset.h> 63 #include <sys/dsl_dir.h> 64 #include <sys/dsl_prop.h> 65 #include <sys/dsl_synctask.h> 66 #include <sys/fs/zfs.h> 67 #include <sys/arc.h> 68 #include <sys/callb.h> 69 #include <sys/systeminfo.h> 70 #include <sys/spa_boot.h> 71 #include <sys/zfs_ioctl.h> 72 #include <sys/dsl_scan.h> 73 #include <sys/zfeature.h> 74 #include <sys/dsl_destroy.h> 75 #include <sys/abd.h> 76 77 #ifdef _KERNEL 78 #include <sys/bootprops.h> 79 #include <sys/callb.h> 80 #include <sys/cpupart.h> 81 #include <sys/pool.h> 82 #include <sys/sysdc.h> 83 #include <sys/zone.h> 84 #endif /* _KERNEL */ 85 86 #include "zfs_prop.h" 87 #include "zfs_comutil.h" 88 89 /* 90 * The interval, in seconds, at which failed configuration cache file writes 91 * should be retried. 92 */ 93 static int zfs_ccw_retry_interval = 300; 94 95 typedef enum zti_modes { 96 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 97 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 98 ZTI_MODE_NULL, /* don't create a taskq */ 99 ZTI_NMODES 100 } zti_modes_t; 101 102 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 103 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 104 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 105 106 #define ZTI_N(n) ZTI_P(n, 1) 107 #define ZTI_ONE ZTI_N(1) 108 109 typedef struct zio_taskq_info { 110 zti_modes_t zti_mode; 111 uint_t zti_value; 112 uint_t zti_count; 113 } zio_taskq_info_t; 114 115 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 116 "issue", "issue_high", "intr", "intr_high" 117 }; 118 119 /* 120 * This table defines the taskq settings for each ZFS I/O type. When 121 * initializing a pool, we use this table to create an appropriately sized 122 * taskq. Some operations are low volume and therefore have a small, static 123 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 124 * macros. Other operations process a large amount of data; the ZTI_BATCH 125 * macro causes us to create a taskq oriented for throughput. Some operations 126 * are so high frequency and short-lived that the taskq itself can become a a 127 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 128 * additional degree of parallelism specified by the number of threads per- 129 * taskq and the number of taskqs; when dispatching an event in this case, the 130 * particular taskq is chosen at random. 131 * 132 * The different taskq priorities are to handle the different contexts (issue 133 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 134 * need to be handled with minimum delay. 135 */ 136 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 137 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 138 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 139 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 140 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 141 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 142 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 143 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 144 }; 145 146 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, 147 const char *name); 148 static void spa_event_post(sysevent_t *ev); 149 static void spa_sync_version(void *arg, dmu_tx_t *tx); 150 static void spa_sync_props(void *arg, dmu_tx_t *tx); 151 static boolean_t spa_has_active_shared_spare(spa_t *spa); 152 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 153 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 154 char **ereport); 155 static void spa_vdev_resilver_done(spa_t *spa); 156 157 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 158 id_t zio_taskq_psrset_bind = PS_NONE; 159 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 160 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 161 162 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 163 extern int zfs_sync_pass_deferred_free; 164 165 /* 166 * This (illegal) pool name is used when temporarily importing a spa_t in order 167 * to get the vdev stats associated with the imported devices. 168 */ 169 #define TRYIMPORT_NAME "$import" 170 171 /* 172 * ========================================================================== 173 * SPA properties routines 174 * ========================================================================== 175 */ 176 177 /* 178 * Add a (source=src, propname=propval) list to an nvlist. 179 */ 180 static void 181 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 182 uint64_t intval, zprop_source_t src) 183 { 184 const char *propname = zpool_prop_to_name(prop); 185 nvlist_t *propval; 186 187 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 188 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 189 190 if (strval != NULL) 191 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 192 else 193 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 194 195 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 196 nvlist_free(propval); 197 } 198 199 /* 200 * Get property values from the spa configuration. 201 */ 202 static void 203 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 204 { 205 vdev_t *rvd = spa->spa_root_vdev; 206 dsl_pool_t *pool = spa->spa_dsl_pool; 207 uint64_t size, alloc, cap, version; 208 zprop_source_t src = ZPROP_SRC_NONE; 209 spa_config_dirent_t *dp; 210 metaslab_class_t *mc = spa_normal_class(spa); 211 212 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 213 214 if (rvd != NULL) { 215 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 216 size = metaslab_class_get_space(spa_normal_class(spa)); 217 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 218 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 219 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 220 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 221 size - alloc, src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 224 metaslab_class_fragmentation(mc), src); 225 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 226 metaslab_class_expandable_space(mc), src); 227 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 228 (spa_mode(spa) == FREAD), src); 229 230 cap = (size == 0) ? 0 : (alloc * 100 / size); 231 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 232 233 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 234 ddt_get_pool_dedup_ratio(spa), src); 235 236 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 237 rvd->vdev_state, src); 238 239 version = spa_version(spa); 240 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 241 src = ZPROP_SRC_DEFAULT; 242 else 243 src = ZPROP_SRC_LOCAL; 244 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 245 } 246 247 if (pool != NULL) { 248 /* 249 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 250 * when opening pools before this version freedir will be NULL. 251 */ 252 if (pool->dp_free_dir != NULL) { 253 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 254 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 255 src); 256 } else { 257 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 258 NULL, 0, src); 259 } 260 261 if (pool->dp_leak_dir != NULL) { 262 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 263 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 264 src); 265 } else { 266 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 267 NULL, 0, src); 268 } 269 } 270 271 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 272 273 if (spa->spa_comment != NULL) { 274 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 275 0, ZPROP_SRC_LOCAL); 276 } 277 278 if (spa->spa_root != NULL) 279 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 280 0, ZPROP_SRC_LOCAL); 281 282 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 283 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 284 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 285 } else { 286 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 287 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 288 } 289 290 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 291 if (dp->scd_path == NULL) { 292 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 293 "none", 0, ZPROP_SRC_LOCAL); 294 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 295 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 296 dp->scd_path, 0, ZPROP_SRC_LOCAL); 297 } 298 } 299 } 300 301 /* 302 * Get zpool property values. 303 */ 304 int 305 spa_prop_get(spa_t *spa, nvlist_t **nvp) 306 { 307 objset_t *mos = spa->spa_meta_objset; 308 zap_cursor_t zc; 309 zap_attribute_t za; 310 int err; 311 312 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 313 314 mutex_enter(&spa->spa_props_lock); 315 316 /* 317 * Get properties from the spa config. 318 */ 319 spa_prop_get_config(spa, nvp); 320 321 /* If no pool property object, no more prop to get. */ 322 if (mos == NULL || spa->spa_pool_props_object == 0) { 323 mutex_exit(&spa->spa_props_lock); 324 return (0); 325 } 326 327 /* 328 * Get properties from the MOS pool property object. 329 */ 330 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 331 (err = zap_cursor_retrieve(&zc, &za)) == 0; 332 zap_cursor_advance(&zc)) { 333 uint64_t intval = 0; 334 char *strval = NULL; 335 zprop_source_t src = ZPROP_SRC_DEFAULT; 336 zpool_prop_t prop; 337 338 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 339 continue; 340 341 switch (za.za_integer_length) { 342 case 8: 343 /* integer property */ 344 if (za.za_first_integer != 345 zpool_prop_default_numeric(prop)) 346 src = ZPROP_SRC_LOCAL; 347 348 if (prop == ZPOOL_PROP_BOOTFS) { 349 dsl_pool_t *dp; 350 dsl_dataset_t *ds = NULL; 351 352 dp = spa_get_dsl(spa); 353 dsl_pool_config_enter(dp, FTAG); 354 if (err = dsl_dataset_hold_obj(dp, 355 za.za_first_integer, FTAG, &ds)) { 356 dsl_pool_config_exit(dp, FTAG); 357 break; 358 } 359 360 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 361 KM_SLEEP); 362 dsl_dataset_name(ds, strval); 363 dsl_dataset_rele(ds, FTAG); 364 dsl_pool_config_exit(dp, FTAG); 365 } else { 366 strval = NULL; 367 intval = za.za_first_integer; 368 } 369 370 spa_prop_add_list(*nvp, prop, strval, intval, src); 371 372 if (strval != NULL) 373 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 374 375 break; 376 377 case 1: 378 /* string property */ 379 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 380 err = zap_lookup(mos, spa->spa_pool_props_object, 381 za.za_name, 1, za.za_num_integers, strval); 382 if (err) { 383 kmem_free(strval, za.za_num_integers); 384 break; 385 } 386 spa_prop_add_list(*nvp, prop, strval, 0, src); 387 kmem_free(strval, za.za_num_integers); 388 break; 389 390 default: 391 break; 392 } 393 } 394 zap_cursor_fini(&zc); 395 mutex_exit(&spa->spa_props_lock); 396 out: 397 if (err && err != ENOENT) { 398 nvlist_free(*nvp); 399 *nvp = NULL; 400 return (err); 401 } 402 403 return (0); 404 } 405 406 /* 407 * Validate the given pool properties nvlist and modify the list 408 * for the property values to be set. 409 */ 410 static int 411 spa_prop_validate(spa_t *spa, nvlist_t *props) 412 { 413 nvpair_t *elem; 414 int error = 0, reset_bootfs = 0; 415 uint64_t objnum = 0; 416 boolean_t has_feature = B_FALSE; 417 418 elem = NULL; 419 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 420 uint64_t intval; 421 char *strval, *slash, *check, *fname; 422 const char *propname = nvpair_name(elem); 423 zpool_prop_t prop = zpool_name_to_prop(propname); 424 425 switch (prop) { 426 case ZPROP_INVAL: 427 if (!zpool_prop_feature(propname)) { 428 error = SET_ERROR(EINVAL); 429 break; 430 } 431 432 /* 433 * Sanitize the input. 434 */ 435 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 436 error = SET_ERROR(EINVAL); 437 break; 438 } 439 440 if (nvpair_value_uint64(elem, &intval) != 0) { 441 error = SET_ERROR(EINVAL); 442 break; 443 } 444 445 if (intval != 0) { 446 error = SET_ERROR(EINVAL); 447 break; 448 } 449 450 fname = strchr(propname, '@') + 1; 451 if (zfeature_lookup_name(fname, NULL) != 0) { 452 error = SET_ERROR(EINVAL); 453 break; 454 } 455 456 has_feature = B_TRUE; 457 break; 458 459 case ZPOOL_PROP_VERSION: 460 error = nvpair_value_uint64(elem, &intval); 461 if (!error && 462 (intval < spa_version(spa) || 463 intval > SPA_VERSION_BEFORE_FEATURES || 464 has_feature)) 465 error = SET_ERROR(EINVAL); 466 break; 467 468 case ZPOOL_PROP_DELEGATION: 469 case ZPOOL_PROP_AUTOREPLACE: 470 case ZPOOL_PROP_LISTSNAPS: 471 case ZPOOL_PROP_AUTOEXPAND: 472 error = nvpair_value_uint64(elem, &intval); 473 if (!error && intval > 1) 474 error = SET_ERROR(EINVAL); 475 break; 476 477 case ZPOOL_PROP_BOOTFS: 478 /* 479 * If the pool version is less than SPA_VERSION_BOOTFS, 480 * or the pool is still being created (version == 0), 481 * the bootfs property cannot be set. 482 */ 483 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 484 error = SET_ERROR(ENOTSUP); 485 break; 486 } 487 488 /* 489 * Make sure the vdev config is bootable 490 */ 491 if (!vdev_is_bootable(spa->spa_root_vdev)) { 492 error = SET_ERROR(ENOTSUP); 493 break; 494 } 495 496 reset_bootfs = 1; 497 498 error = nvpair_value_string(elem, &strval); 499 500 if (!error) { 501 objset_t *os; 502 uint64_t propval; 503 504 if (strval == NULL || strval[0] == '\0') { 505 objnum = zpool_prop_default_numeric( 506 ZPOOL_PROP_BOOTFS); 507 break; 508 } 509 510 if (error = dmu_objset_hold(strval, FTAG, &os)) 511 break; 512 513 /* 514 * Must be ZPL, and its property settings 515 * must be supported by GRUB (compression 516 * is not gzip, and large blocks are not used). 517 */ 518 519 if (dmu_objset_type(os) != DMU_OST_ZFS) { 520 error = SET_ERROR(ENOTSUP); 521 } else if ((error = 522 dsl_prop_get_int_ds(dmu_objset_ds(os), 523 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 524 &propval)) == 0 && 525 !BOOTFS_COMPRESS_VALID(propval)) { 526 error = SET_ERROR(ENOTSUP); 527 } else { 528 objnum = dmu_objset_id(os); 529 } 530 dmu_objset_rele(os, FTAG); 531 } 532 break; 533 534 case ZPOOL_PROP_FAILUREMODE: 535 error = nvpair_value_uint64(elem, &intval); 536 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 537 intval > ZIO_FAILURE_MODE_PANIC)) 538 error = SET_ERROR(EINVAL); 539 540 /* 541 * This is a special case which only occurs when 542 * the pool has completely failed. This allows 543 * the user to change the in-core failmode property 544 * without syncing it out to disk (I/Os might 545 * currently be blocked). We do this by returning 546 * EIO to the caller (spa_prop_set) to trick it 547 * into thinking we encountered a property validation 548 * error. 549 */ 550 if (!error && spa_suspended(spa)) { 551 spa->spa_failmode = intval; 552 error = SET_ERROR(EIO); 553 } 554 break; 555 556 case ZPOOL_PROP_CACHEFILE: 557 if ((error = nvpair_value_string(elem, &strval)) != 0) 558 break; 559 560 if (strval[0] == '\0') 561 break; 562 563 if (strcmp(strval, "none") == 0) 564 break; 565 566 if (strval[0] != '/') { 567 error = SET_ERROR(EINVAL); 568 break; 569 } 570 571 slash = strrchr(strval, '/'); 572 ASSERT(slash != NULL); 573 574 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 575 strcmp(slash, "/..") == 0) 576 error = SET_ERROR(EINVAL); 577 break; 578 579 case ZPOOL_PROP_COMMENT: 580 if ((error = nvpair_value_string(elem, &strval)) != 0) 581 break; 582 for (check = strval; *check != '\0'; check++) { 583 /* 584 * The kernel doesn't have an easy isprint() 585 * check. For this kernel check, we merely 586 * check ASCII apart from DEL. Fix this if 587 * there is an easy-to-use kernel isprint(). 588 */ 589 if (*check >= 0x7f) { 590 error = SET_ERROR(EINVAL); 591 break; 592 } 593 } 594 if (strlen(strval) > ZPROP_MAX_COMMENT) 595 error = E2BIG; 596 break; 597 598 case ZPOOL_PROP_DEDUPDITTO: 599 if (spa_version(spa) < SPA_VERSION_DEDUP) 600 error = SET_ERROR(ENOTSUP); 601 else 602 error = nvpair_value_uint64(elem, &intval); 603 if (error == 0 && 604 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 605 error = SET_ERROR(EINVAL); 606 break; 607 } 608 609 if (error) 610 break; 611 } 612 613 if (!error && reset_bootfs) { 614 error = nvlist_remove(props, 615 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 616 617 if (!error) { 618 error = nvlist_add_uint64(props, 619 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 620 } 621 } 622 623 return (error); 624 } 625 626 void 627 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 628 { 629 char *cachefile; 630 spa_config_dirent_t *dp; 631 632 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 633 &cachefile) != 0) 634 return; 635 636 dp = kmem_alloc(sizeof (spa_config_dirent_t), 637 KM_SLEEP); 638 639 if (cachefile[0] == '\0') 640 dp->scd_path = spa_strdup(spa_config_path); 641 else if (strcmp(cachefile, "none") == 0) 642 dp->scd_path = NULL; 643 else 644 dp->scd_path = spa_strdup(cachefile); 645 646 list_insert_head(&spa->spa_config_list, dp); 647 if (need_sync) 648 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 649 } 650 651 int 652 spa_prop_set(spa_t *spa, nvlist_t *nvp) 653 { 654 int error; 655 nvpair_t *elem = NULL; 656 boolean_t need_sync = B_FALSE; 657 658 if ((error = spa_prop_validate(spa, nvp)) != 0) 659 return (error); 660 661 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 662 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 663 664 if (prop == ZPOOL_PROP_CACHEFILE || 665 prop == ZPOOL_PROP_ALTROOT || 666 prop == ZPOOL_PROP_READONLY) 667 continue; 668 669 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 670 uint64_t ver; 671 672 if (prop == ZPOOL_PROP_VERSION) { 673 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 674 } else { 675 ASSERT(zpool_prop_feature(nvpair_name(elem))); 676 ver = SPA_VERSION_FEATURES; 677 need_sync = B_TRUE; 678 } 679 680 /* Save time if the version is already set. */ 681 if (ver == spa_version(spa)) 682 continue; 683 684 /* 685 * In addition to the pool directory object, we might 686 * create the pool properties object, the features for 687 * read object, the features for write object, or the 688 * feature descriptions object. 689 */ 690 error = dsl_sync_task(spa->spa_name, NULL, 691 spa_sync_version, &ver, 692 6, ZFS_SPACE_CHECK_RESERVED); 693 if (error) 694 return (error); 695 continue; 696 } 697 698 need_sync = B_TRUE; 699 break; 700 } 701 702 if (need_sync) { 703 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 704 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 705 } 706 707 return (0); 708 } 709 710 /* 711 * If the bootfs property value is dsobj, clear it. 712 */ 713 void 714 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 715 { 716 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 717 VERIFY(zap_remove(spa->spa_meta_objset, 718 spa->spa_pool_props_object, 719 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 720 spa->spa_bootfs = 0; 721 } 722 } 723 724 /*ARGSUSED*/ 725 static int 726 spa_change_guid_check(void *arg, dmu_tx_t *tx) 727 { 728 uint64_t *newguid = arg; 729 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 730 vdev_t *rvd = spa->spa_root_vdev; 731 uint64_t vdev_state; 732 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 734 vdev_state = rvd->vdev_state; 735 spa_config_exit(spa, SCL_STATE, FTAG); 736 737 if (vdev_state != VDEV_STATE_HEALTHY) 738 return (SET_ERROR(ENXIO)); 739 740 ASSERT3U(spa_guid(spa), !=, *newguid); 741 742 return (0); 743 } 744 745 static void 746 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 747 { 748 uint64_t *newguid = arg; 749 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 750 uint64_t oldguid; 751 vdev_t *rvd = spa->spa_root_vdev; 752 753 oldguid = spa_guid(spa); 754 755 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 756 rvd->vdev_guid = *newguid; 757 rvd->vdev_guid_sum += (*newguid - oldguid); 758 vdev_config_dirty(rvd); 759 spa_config_exit(spa, SCL_STATE, FTAG); 760 761 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 762 oldguid, *newguid); 763 } 764 765 /* 766 * Change the GUID for the pool. This is done so that we can later 767 * re-import a pool built from a clone of our own vdevs. We will modify 768 * the root vdev's guid, our own pool guid, and then mark all of our 769 * vdevs dirty. Note that we must make sure that all our vdevs are 770 * online when we do this, or else any vdevs that weren't present 771 * would be orphaned from our pool. We are also going to issue a 772 * sysevent to update any watchers. 773 */ 774 int 775 spa_change_guid(spa_t *spa) 776 { 777 int error; 778 uint64_t guid; 779 780 mutex_enter(&spa->spa_vdev_top_lock); 781 mutex_enter(&spa_namespace_lock); 782 guid = spa_generate_guid(NULL); 783 784 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 785 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 786 787 if (error == 0) { 788 spa_config_sync(spa, B_FALSE, B_TRUE); 789 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 790 } 791 792 mutex_exit(&spa_namespace_lock); 793 mutex_exit(&spa->spa_vdev_top_lock); 794 795 return (error); 796 } 797 798 /* 799 * ========================================================================== 800 * SPA state manipulation (open/create/destroy/import/export) 801 * ========================================================================== 802 */ 803 804 static int 805 spa_error_entry_compare(const void *a, const void *b) 806 { 807 spa_error_entry_t *sa = (spa_error_entry_t *)a; 808 spa_error_entry_t *sb = (spa_error_entry_t *)b; 809 int ret; 810 811 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 812 sizeof (zbookmark_phys_t)); 813 814 if (ret < 0) 815 return (-1); 816 else if (ret > 0) 817 return (1); 818 else 819 return (0); 820 } 821 822 /* 823 * Utility function which retrieves copies of the current logs and 824 * re-initializes them in the process. 825 */ 826 void 827 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 828 { 829 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 830 831 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 832 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 833 834 avl_create(&spa->spa_errlist_scrub, 835 spa_error_entry_compare, sizeof (spa_error_entry_t), 836 offsetof(spa_error_entry_t, se_avl)); 837 avl_create(&spa->spa_errlist_last, 838 spa_error_entry_compare, sizeof (spa_error_entry_t), 839 offsetof(spa_error_entry_t, se_avl)); 840 } 841 842 static void 843 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 844 { 845 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 846 enum zti_modes mode = ztip->zti_mode; 847 uint_t value = ztip->zti_value; 848 uint_t count = ztip->zti_count; 849 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 850 char name[32]; 851 uint_t flags = 0; 852 boolean_t batch = B_FALSE; 853 854 if (mode == ZTI_MODE_NULL) { 855 tqs->stqs_count = 0; 856 tqs->stqs_taskq = NULL; 857 return; 858 } 859 860 ASSERT3U(count, >, 0); 861 862 tqs->stqs_count = count; 863 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 864 865 switch (mode) { 866 case ZTI_MODE_FIXED: 867 ASSERT3U(value, >=, 1); 868 value = MAX(value, 1); 869 break; 870 871 case ZTI_MODE_BATCH: 872 batch = B_TRUE; 873 flags |= TASKQ_THREADS_CPU_PCT; 874 value = zio_taskq_batch_pct; 875 break; 876 877 default: 878 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 879 "spa_activate()", 880 zio_type_name[t], zio_taskq_types[q], mode, value); 881 break; 882 } 883 884 for (uint_t i = 0; i < count; i++) { 885 taskq_t *tq; 886 887 if (count > 1) { 888 (void) snprintf(name, sizeof (name), "%s_%s_%u", 889 zio_type_name[t], zio_taskq_types[q], i); 890 } else { 891 (void) snprintf(name, sizeof (name), "%s_%s", 892 zio_type_name[t], zio_taskq_types[q]); 893 } 894 895 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 896 if (batch) 897 flags |= TASKQ_DC_BATCH; 898 899 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 900 spa->spa_proc, zio_taskq_basedc, flags); 901 } else { 902 pri_t pri = maxclsyspri; 903 /* 904 * The write issue taskq can be extremely CPU 905 * intensive. Run it at slightly lower priority 906 * than the other taskqs. 907 */ 908 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 909 pri--; 910 911 tq = taskq_create_proc(name, value, pri, 50, 912 INT_MAX, spa->spa_proc, flags); 913 } 914 915 tqs->stqs_taskq[i] = tq; 916 } 917 } 918 919 static void 920 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 921 { 922 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 923 924 if (tqs->stqs_taskq == NULL) { 925 ASSERT0(tqs->stqs_count); 926 return; 927 } 928 929 for (uint_t i = 0; i < tqs->stqs_count; i++) { 930 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 931 taskq_destroy(tqs->stqs_taskq[i]); 932 } 933 934 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 935 tqs->stqs_taskq = NULL; 936 } 937 938 /* 939 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 940 * Note that a type may have multiple discrete taskqs to avoid lock contention 941 * on the taskq itself. In that case we choose which taskq at random by using 942 * the low bits of gethrtime(). 943 */ 944 void 945 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 946 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 947 { 948 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 949 taskq_t *tq; 950 951 ASSERT3P(tqs->stqs_taskq, !=, NULL); 952 ASSERT3U(tqs->stqs_count, !=, 0); 953 954 if (tqs->stqs_count == 1) { 955 tq = tqs->stqs_taskq[0]; 956 } else { 957 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 958 } 959 960 taskq_dispatch_ent(tq, func, arg, flags, ent); 961 } 962 963 static void 964 spa_create_zio_taskqs(spa_t *spa) 965 { 966 for (int t = 0; t < ZIO_TYPES; t++) { 967 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 968 spa_taskqs_init(spa, t, q); 969 } 970 } 971 } 972 973 #ifdef _KERNEL 974 static void 975 spa_thread(void *arg) 976 { 977 callb_cpr_t cprinfo; 978 979 spa_t *spa = arg; 980 user_t *pu = PTOU(curproc); 981 982 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 983 spa->spa_name); 984 985 ASSERT(curproc != &p0); 986 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 987 "zpool-%s", spa->spa_name); 988 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 989 990 /* bind this thread to the requested psrset */ 991 if (zio_taskq_psrset_bind != PS_NONE) { 992 pool_lock(); 993 mutex_enter(&cpu_lock); 994 mutex_enter(&pidlock); 995 mutex_enter(&curproc->p_lock); 996 997 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 998 0, NULL, NULL) == 0) { 999 curthread->t_bind_pset = zio_taskq_psrset_bind; 1000 } else { 1001 cmn_err(CE_WARN, 1002 "Couldn't bind process for zfs pool \"%s\" to " 1003 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1004 } 1005 1006 mutex_exit(&curproc->p_lock); 1007 mutex_exit(&pidlock); 1008 mutex_exit(&cpu_lock); 1009 pool_unlock(); 1010 } 1011 1012 if (zio_taskq_sysdc) { 1013 sysdc_thread_enter(curthread, 100, 0); 1014 } 1015 1016 spa->spa_proc = curproc; 1017 spa->spa_did = curthread->t_did; 1018 1019 spa_create_zio_taskqs(spa); 1020 1021 mutex_enter(&spa->spa_proc_lock); 1022 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1023 1024 spa->spa_proc_state = SPA_PROC_ACTIVE; 1025 cv_broadcast(&spa->spa_proc_cv); 1026 1027 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1028 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1029 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1030 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1031 1032 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1033 spa->spa_proc_state = SPA_PROC_GONE; 1034 spa->spa_proc = &p0; 1035 cv_broadcast(&spa->spa_proc_cv); 1036 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1037 1038 mutex_enter(&curproc->p_lock); 1039 lwp_exit(); 1040 } 1041 #endif 1042 1043 /* 1044 * Activate an uninitialized pool. 1045 */ 1046 static void 1047 spa_activate(spa_t *spa, int mode) 1048 { 1049 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1050 1051 spa->spa_state = POOL_STATE_ACTIVE; 1052 spa->spa_mode = mode; 1053 1054 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1055 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1056 1057 /* Try to create a covering process */ 1058 mutex_enter(&spa->spa_proc_lock); 1059 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1060 ASSERT(spa->spa_proc == &p0); 1061 spa->spa_did = 0; 1062 1063 /* Only create a process if we're going to be around a while. */ 1064 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1065 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1066 NULL, 0) == 0) { 1067 spa->spa_proc_state = SPA_PROC_CREATED; 1068 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1069 cv_wait(&spa->spa_proc_cv, 1070 &spa->spa_proc_lock); 1071 } 1072 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1073 ASSERT(spa->spa_proc != &p0); 1074 ASSERT(spa->spa_did != 0); 1075 } else { 1076 #ifdef _KERNEL 1077 cmn_err(CE_WARN, 1078 "Couldn't create process for zfs pool \"%s\"\n", 1079 spa->spa_name); 1080 #endif 1081 } 1082 } 1083 mutex_exit(&spa->spa_proc_lock); 1084 1085 /* If we didn't create a process, we need to create our taskqs. */ 1086 if (spa->spa_proc == &p0) { 1087 spa_create_zio_taskqs(spa); 1088 } 1089 1090 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1091 offsetof(vdev_t, vdev_config_dirty_node)); 1092 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1093 offsetof(objset_t, os_evicting_node)); 1094 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1095 offsetof(vdev_t, vdev_state_dirty_node)); 1096 1097 txg_list_create(&spa->spa_vdev_txg_list, spa, 1098 offsetof(struct vdev, vdev_txg_node)); 1099 1100 avl_create(&spa->spa_errlist_scrub, 1101 spa_error_entry_compare, sizeof (spa_error_entry_t), 1102 offsetof(spa_error_entry_t, se_avl)); 1103 avl_create(&spa->spa_errlist_last, 1104 spa_error_entry_compare, sizeof (spa_error_entry_t), 1105 offsetof(spa_error_entry_t, se_avl)); 1106 } 1107 1108 /* 1109 * Opposite of spa_activate(). 1110 */ 1111 static void 1112 spa_deactivate(spa_t *spa) 1113 { 1114 ASSERT(spa->spa_sync_on == B_FALSE); 1115 ASSERT(spa->spa_dsl_pool == NULL); 1116 ASSERT(spa->spa_root_vdev == NULL); 1117 ASSERT(spa->spa_async_zio_root == NULL); 1118 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1119 1120 spa_evicting_os_wait(spa); 1121 1122 txg_list_destroy(&spa->spa_vdev_txg_list); 1123 1124 list_destroy(&spa->spa_config_dirty_list); 1125 list_destroy(&spa->spa_evicting_os_list); 1126 list_destroy(&spa->spa_state_dirty_list); 1127 1128 for (int t = 0; t < ZIO_TYPES; t++) { 1129 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1130 spa_taskqs_fini(spa, t, q); 1131 } 1132 } 1133 1134 metaslab_class_destroy(spa->spa_normal_class); 1135 spa->spa_normal_class = NULL; 1136 1137 metaslab_class_destroy(spa->spa_log_class); 1138 spa->spa_log_class = NULL; 1139 1140 /* 1141 * If this was part of an import or the open otherwise failed, we may 1142 * still have errors left in the queues. Empty them just in case. 1143 */ 1144 spa_errlog_drain(spa); 1145 1146 avl_destroy(&spa->spa_errlist_scrub); 1147 avl_destroy(&spa->spa_errlist_last); 1148 1149 spa->spa_state = POOL_STATE_UNINITIALIZED; 1150 1151 mutex_enter(&spa->spa_proc_lock); 1152 if (spa->spa_proc_state != SPA_PROC_NONE) { 1153 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1154 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1155 cv_broadcast(&spa->spa_proc_cv); 1156 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1157 ASSERT(spa->spa_proc != &p0); 1158 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1159 } 1160 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1161 spa->spa_proc_state = SPA_PROC_NONE; 1162 } 1163 ASSERT(spa->spa_proc == &p0); 1164 mutex_exit(&spa->spa_proc_lock); 1165 1166 /* 1167 * We want to make sure spa_thread() has actually exited the ZFS 1168 * module, so that the module can't be unloaded out from underneath 1169 * it. 1170 */ 1171 if (spa->spa_did != 0) { 1172 thread_join(spa->spa_did); 1173 spa->spa_did = 0; 1174 } 1175 } 1176 1177 /* 1178 * Verify a pool configuration, and construct the vdev tree appropriately. This 1179 * will create all the necessary vdevs in the appropriate layout, with each vdev 1180 * in the CLOSED state. This will prep the pool before open/creation/import. 1181 * All vdev validation is done by the vdev_alloc() routine. 1182 */ 1183 static int 1184 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1185 uint_t id, int atype) 1186 { 1187 nvlist_t **child; 1188 uint_t children; 1189 int error; 1190 1191 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1192 return (error); 1193 1194 if ((*vdp)->vdev_ops->vdev_op_leaf) 1195 return (0); 1196 1197 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1198 &child, &children); 1199 1200 if (error == ENOENT) 1201 return (0); 1202 1203 if (error) { 1204 vdev_free(*vdp); 1205 *vdp = NULL; 1206 return (SET_ERROR(EINVAL)); 1207 } 1208 1209 for (int c = 0; c < children; c++) { 1210 vdev_t *vd; 1211 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1212 atype)) != 0) { 1213 vdev_free(*vdp); 1214 *vdp = NULL; 1215 return (error); 1216 } 1217 } 1218 1219 ASSERT(*vdp != NULL); 1220 1221 return (0); 1222 } 1223 1224 /* 1225 * Opposite of spa_load(). 1226 */ 1227 static void 1228 spa_unload(spa_t *spa) 1229 { 1230 int i; 1231 1232 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1233 1234 /* 1235 * Stop async tasks. 1236 */ 1237 spa_async_suspend(spa); 1238 1239 /* 1240 * Stop syncing. 1241 */ 1242 if (spa->spa_sync_on) { 1243 txg_sync_stop(spa->spa_dsl_pool); 1244 spa->spa_sync_on = B_FALSE; 1245 } 1246 1247 /* 1248 * Even though vdev_free() also calls vdev_metaslab_fini, we need 1249 * to call it earlier, before we wait for async i/o to complete. 1250 * This ensures that there is no async metaslab prefetching, by 1251 * calling taskq_wait(mg_taskq). 1252 */ 1253 if (spa->spa_root_vdev != NULL) { 1254 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1255 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) 1256 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]); 1257 spa_config_exit(spa, SCL_ALL, FTAG); 1258 } 1259 1260 /* 1261 * Wait for any outstanding async I/O to complete. 1262 */ 1263 if (spa->spa_async_zio_root != NULL) { 1264 for (int i = 0; i < max_ncpus; i++) 1265 (void) zio_wait(spa->spa_async_zio_root[i]); 1266 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1267 spa->spa_async_zio_root = NULL; 1268 } 1269 1270 bpobj_close(&spa->spa_deferred_bpobj); 1271 1272 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1273 1274 /* 1275 * Close all vdevs. 1276 */ 1277 if (spa->spa_root_vdev) 1278 vdev_free(spa->spa_root_vdev); 1279 ASSERT(spa->spa_root_vdev == NULL); 1280 1281 /* 1282 * Close the dsl pool. 1283 */ 1284 if (spa->spa_dsl_pool) { 1285 dsl_pool_close(spa->spa_dsl_pool); 1286 spa->spa_dsl_pool = NULL; 1287 spa->spa_meta_objset = NULL; 1288 } 1289 1290 ddt_unload(spa); 1291 1292 /* 1293 * Drop and purge level 2 cache 1294 */ 1295 spa_l2cache_drop(spa); 1296 1297 for (i = 0; i < spa->spa_spares.sav_count; i++) 1298 vdev_free(spa->spa_spares.sav_vdevs[i]); 1299 if (spa->spa_spares.sav_vdevs) { 1300 kmem_free(spa->spa_spares.sav_vdevs, 1301 spa->spa_spares.sav_count * sizeof (void *)); 1302 spa->spa_spares.sav_vdevs = NULL; 1303 } 1304 if (spa->spa_spares.sav_config) { 1305 nvlist_free(spa->spa_spares.sav_config); 1306 spa->spa_spares.sav_config = NULL; 1307 } 1308 spa->spa_spares.sav_count = 0; 1309 1310 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1311 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1312 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1313 } 1314 if (spa->spa_l2cache.sav_vdevs) { 1315 kmem_free(spa->spa_l2cache.sav_vdevs, 1316 spa->spa_l2cache.sav_count * sizeof (void *)); 1317 spa->spa_l2cache.sav_vdevs = NULL; 1318 } 1319 if (spa->spa_l2cache.sav_config) { 1320 nvlist_free(spa->spa_l2cache.sav_config); 1321 spa->spa_l2cache.sav_config = NULL; 1322 } 1323 spa->spa_l2cache.sav_count = 0; 1324 1325 spa->spa_async_suspended = 0; 1326 1327 if (spa->spa_comment != NULL) { 1328 spa_strfree(spa->spa_comment); 1329 spa->spa_comment = NULL; 1330 } 1331 1332 spa_config_exit(spa, SCL_ALL, FTAG); 1333 } 1334 1335 /* 1336 * Load (or re-load) the current list of vdevs describing the active spares for 1337 * this pool. When this is called, we have some form of basic information in 1338 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1339 * then re-generate a more complete list including status information. 1340 */ 1341 static void 1342 spa_load_spares(spa_t *spa) 1343 { 1344 nvlist_t **spares; 1345 uint_t nspares; 1346 int i; 1347 vdev_t *vd, *tvd; 1348 1349 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1350 1351 /* 1352 * First, close and free any existing spare vdevs. 1353 */ 1354 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1355 vd = spa->spa_spares.sav_vdevs[i]; 1356 1357 /* Undo the call to spa_activate() below */ 1358 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1359 B_FALSE)) != NULL && tvd->vdev_isspare) 1360 spa_spare_remove(tvd); 1361 vdev_close(vd); 1362 vdev_free(vd); 1363 } 1364 1365 if (spa->spa_spares.sav_vdevs) 1366 kmem_free(spa->spa_spares.sav_vdevs, 1367 spa->spa_spares.sav_count * sizeof (void *)); 1368 1369 if (spa->spa_spares.sav_config == NULL) 1370 nspares = 0; 1371 else 1372 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1373 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1374 1375 spa->spa_spares.sav_count = (int)nspares; 1376 spa->spa_spares.sav_vdevs = NULL; 1377 1378 if (nspares == 0) 1379 return; 1380 1381 /* 1382 * Construct the array of vdevs, opening them to get status in the 1383 * process. For each spare, there is potentially two different vdev_t 1384 * structures associated with it: one in the list of spares (used only 1385 * for basic validation purposes) and one in the active vdev 1386 * configuration (if it's spared in). During this phase we open and 1387 * validate each vdev on the spare list. If the vdev also exists in the 1388 * active configuration, then we also mark this vdev as an active spare. 1389 */ 1390 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1391 KM_SLEEP); 1392 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1393 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1394 VDEV_ALLOC_SPARE) == 0); 1395 ASSERT(vd != NULL); 1396 1397 spa->spa_spares.sav_vdevs[i] = vd; 1398 1399 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1400 B_FALSE)) != NULL) { 1401 if (!tvd->vdev_isspare) 1402 spa_spare_add(tvd); 1403 1404 /* 1405 * We only mark the spare active if we were successfully 1406 * able to load the vdev. Otherwise, importing a pool 1407 * with a bad active spare would result in strange 1408 * behavior, because multiple pool would think the spare 1409 * is actively in use. 1410 * 1411 * There is a vulnerability here to an equally bizarre 1412 * circumstance, where a dead active spare is later 1413 * brought back to life (onlined or otherwise). Given 1414 * the rarity of this scenario, and the extra complexity 1415 * it adds, we ignore the possibility. 1416 */ 1417 if (!vdev_is_dead(tvd)) 1418 spa_spare_activate(tvd); 1419 } 1420 1421 vd->vdev_top = vd; 1422 vd->vdev_aux = &spa->spa_spares; 1423 1424 if (vdev_open(vd) != 0) 1425 continue; 1426 1427 if (vdev_validate_aux(vd) == 0) 1428 spa_spare_add(vd); 1429 } 1430 1431 /* 1432 * Recompute the stashed list of spares, with status information 1433 * this time. 1434 */ 1435 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1436 DATA_TYPE_NVLIST_ARRAY) == 0); 1437 1438 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1439 KM_SLEEP); 1440 for (i = 0; i < spa->spa_spares.sav_count; i++) 1441 spares[i] = vdev_config_generate(spa, 1442 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1443 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1444 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1445 for (i = 0; i < spa->spa_spares.sav_count; i++) 1446 nvlist_free(spares[i]); 1447 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1448 } 1449 1450 /* 1451 * Load (or re-load) the current list of vdevs describing the active l2cache for 1452 * this pool. When this is called, we have some form of basic information in 1453 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1454 * then re-generate a more complete list including status information. 1455 * Devices which are already active have their details maintained, and are 1456 * not re-opened. 1457 */ 1458 static void 1459 spa_load_l2cache(spa_t *spa) 1460 { 1461 nvlist_t **l2cache; 1462 uint_t nl2cache; 1463 int i, j, oldnvdevs; 1464 uint64_t guid; 1465 vdev_t *vd, **oldvdevs, **newvdevs; 1466 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1467 1468 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1469 1470 if (sav->sav_config != NULL) { 1471 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1472 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1473 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1474 } else { 1475 nl2cache = 0; 1476 newvdevs = NULL; 1477 } 1478 1479 oldvdevs = sav->sav_vdevs; 1480 oldnvdevs = sav->sav_count; 1481 sav->sav_vdevs = NULL; 1482 sav->sav_count = 0; 1483 1484 /* 1485 * Process new nvlist of vdevs. 1486 */ 1487 for (i = 0; i < nl2cache; i++) { 1488 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1489 &guid) == 0); 1490 1491 newvdevs[i] = NULL; 1492 for (j = 0; j < oldnvdevs; j++) { 1493 vd = oldvdevs[j]; 1494 if (vd != NULL && guid == vd->vdev_guid) { 1495 /* 1496 * Retain previous vdev for add/remove ops. 1497 */ 1498 newvdevs[i] = vd; 1499 oldvdevs[j] = NULL; 1500 break; 1501 } 1502 } 1503 1504 if (newvdevs[i] == NULL) { 1505 /* 1506 * Create new vdev 1507 */ 1508 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1509 VDEV_ALLOC_L2CACHE) == 0); 1510 ASSERT(vd != NULL); 1511 newvdevs[i] = vd; 1512 1513 /* 1514 * Commit this vdev as an l2cache device, 1515 * even if it fails to open. 1516 */ 1517 spa_l2cache_add(vd); 1518 1519 vd->vdev_top = vd; 1520 vd->vdev_aux = sav; 1521 1522 spa_l2cache_activate(vd); 1523 1524 if (vdev_open(vd) != 0) 1525 continue; 1526 1527 (void) vdev_validate_aux(vd); 1528 1529 if (!vdev_is_dead(vd)) 1530 l2arc_add_vdev(spa, vd); 1531 } 1532 } 1533 1534 /* 1535 * Purge vdevs that were dropped 1536 */ 1537 for (i = 0; i < oldnvdevs; i++) { 1538 uint64_t pool; 1539 1540 vd = oldvdevs[i]; 1541 if (vd != NULL) { 1542 ASSERT(vd->vdev_isl2cache); 1543 1544 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1545 pool != 0ULL && l2arc_vdev_present(vd)) 1546 l2arc_remove_vdev(vd); 1547 vdev_clear_stats(vd); 1548 vdev_free(vd); 1549 } 1550 } 1551 1552 if (oldvdevs) 1553 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1554 1555 if (sav->sav_config == NULL) 1556 goto out; 1557 1558 sav->sav_vdevs = newvdevs; 1559 sav->sav_count = (int)nl2cache; 1560 1561 /* 1562 * Recompute the stashed list of l2cache devices, with status 1563 * information this time. 1564 */ 1565 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1566 DATA_TYPE_NVLIST_ARRAY) == 0); 1567 1568 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1569 for (i = 0; i < sav->sav_count; i++) 1570 l2cache[i] = vdev_config_generate(spa, 1571 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1572 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1573 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1574 out: 1575 for (i = 0; i < sav->sav_count; i++) 1576 nvlist_free(l2cache[i]); 1577 if (sav->sav_count) 1578 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1579 } 1580 1581 static int 1582 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1583 { 1584 dmu_buf_t *db; 1585 char *packed = NULL; 1586 size_t nvsize = 0; 1587 int error; 1588 *value = NULL; 1589 1590 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1591 if (error != 0) 1592 return (error); 1593 1594 nvsize = *(uint64_t *)db->db_data; 1595 dmu_buf_rele(db, FTAG); 1596 1597 packed = kmem_alloc(nvsize, KM_SLEEP); 1598 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1599 DMU_READ_PREFETCH); 1600 if (error == 0) 1601 error = nvlist_unpack(packed, nvsize, value, 0); 1602 kmem_free(packed, nvsize); 1603 1604 return (error); 1605 } 1606 1607 /* 1608 * Checks to see if the given vdev could not be opened, in which case we post a 1609 * sysevent to notify the autoreplace code that the device has been removed. 1610 */ 1611 static void 1612 spa_check_removed(vdev_t *vd) 1613 { 1614 for (int c = 0; c < vd->vdev_children; c++) 1615 spa_check_removed(vd->vdev_child[c]); 1616 1617 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1618 !vd->vdev_ishole) { 1619 zfs_post_autoreplace(vd->vdev_spa, vd); 1620 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 1621 } 1622 } 1623 1624 static void 1625 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd) 1626 { 1627 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children); 1628 1629 vd->vdev_top_zap = mvd->vdev_top_zap; 1630 vd->vdev_leaf_zap = mvd->vdev_leaf_zap; 1631 1632 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1633 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]); 1634 } 1635 } 1636 1637 /* 1638 * Validate the current config against the MOS config 1639 */ 1640 static boolean_t 1641 spa_config_valid(spa_t *spa, nvlist_t *config) 1642 { 1643 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1644 nvlist_t *nv; 1645 1646 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1647 1648 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1649 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1650 1651 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1652 1653 /* 1654 * If we're doing a normal import, then build up any additional 1655 * diagnostic information about missing devices in this config. 1656 * We'll pass this up to the user for further processing. 1657 */ 1658 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1659 nvlist_t **child, *nv; 1660 uint64_t idx = 0; 1661 1662 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1663 KM_SLEEP); 1664 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1665 1666 for (int c = 0; c < rvd->vdev_children; c++) { 1667 vdev_t *tvd = rvd->vdev_child[c]; 1668 vdev_t *mtvd = mrvd->vdev_child[c]; 1669 1670 if (tvd->vdev_ops == &vdev_missing_ops && 1671 mtvd->vdev_ops != &vdev_missing_ops && 1672 mtvd->vdev_islog) 1673 child[idx++] = vdev_config_generate(spa, mtvd, 1674 B_FALSE, 0); 1675 } 1676 1677 if (idx) { 1678 VERIFY(nvlist_add_nvlist_array(nv, 1679 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1680 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1681 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1682 1683 for (int i = 0; i < idx; i++) 1684 nvlist_free(child[i]); 1685 } 1686 nvlist_free(nv); 1687 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1688 } 1689 1690 /* 1691 * Compare the root vdev tree with the information we have 1692 * from the MOS config (mrvd). Check each top-level vdev 1693 * with the corresponding MOS config top-level (mtvd). 1694 */ 1695 for (int c = 0; c < rvd->vdev_children; c++) { 1696 vdev_t *tvd = rvd->vdev_child[c]; 1697 vdev_t *mtvd = mrvd->vdev_child[c]; 1698 1699 /* 1700 * Resolve any "missing" vdevs in the current configuration. 1701 * If we find that the MOS config has more accurate information 1702 * about the top-level vdev then use that vdev instead. 1703 */ 1704 if (tvd->vdev_ops == &vdev_missing_ops && 1705 mtvd->vdev_ops != &vdev_missing_ops) { 1706 1707 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1708 continue; 1709 1710 /* 1711 * Device specific actions. 1712 */ 1713 if (mtvd->vdev_islog) { 1714 spa_set_log_state(spa, SPA_LOG_CLEAR); 1715 } else { 1716 /* 1717 * XXX - once we have 'readonly' pool 1718 * support we should be able to handle 1719 * missing data devices by transitioning 1720 * the pool to readonly. 1721 */ 1722 continue; 1723 } 1724 1725 /* 1726 * Swap the missing vdev with the data we were 1727 * able to obtain from the MOS config. 1728 */ 1729 vdev_remove_child(rvd, tvd); 1730 vdev_remove_child(mrvd, mtvd); 1731 1732 vdev_add_child(rvd, mtvd); 1733 vdev_add_child(mrvd, tvd); 1734 1735 spa_config_exit(spa, SCL_ALL, FTAG); 1736 vdev_load(mtvd); 1737 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1738 1739 vdev_reopen(rvd); 1740 } else { 1741 if (mtvd->vdev_islog) { 1742 /* 1743 * Load the slog device's state from the MOS 1744 * config since it's possible that the label 1745 * does not contain the most up-to-date 1746 * information. 1747 */ 1748 vdev_load_log_state(tvd, mtvd); 1749 vdev_reopen(tvd); 1750 } 1751 1752 /* 1753 * Per-vdev ZAP info is stored exclusively in the MOS. 1754 */ 1755 spa_config_valid_zaps(tvd, mtvd); 1756 } 1757 } 1758 1759 vdev_free(mrvd); 1760 spa_config_exit(spa, SCL_ALL, FTAG); 1761 1762 /* 1763 * Ensure we were able to validate the config. 1764 */ 1765 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1766 } 1767 1768 /* 1769 * Check for missing log devices 1770 */ 1771 static boolean_t 1772 spa_check_logs(spa_t *spa) 1773 { 1774 boolean_t rv = B_FALSE; 1775 dsl_pool_t *dp = spa_get_dsl(spa); 1776 1777 switch (spa->spa_log_state) { 1778 case SPA_LOG_MISSING: 1779 /* need to recheck in case slog has been restored */ 1780 case SPA_LOG_UNKNOWN: 1781 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1782 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1783 if (rv) 1784 spa_set_log_state(spa, SPA_LOG_MISSING); 1785 break; 1786 } 1787 return (rv); 1788 } 1789 1790 static boolean_t 1791 spa_passivate_log(spa_t *spa) 1792 { 1793 vdev_t *rvd = spa->spa_root_vdev; 1794 boolean_t slog_found = B_FALSE; 1795 1796 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1797 1798 if (!spa_has_slogs(spa)) 1799 return (B_FALSE); 1800 1801 for (int c = 0; c < rvd->vdev_children; c++) { 1802 vdev_t *tvd = rvd->vdev_child[c]; 1803 metaslab_group_t *mg = tvd->vdev_mg; 1804 1805 if (tvd->vdev_islog) { 1806 metaslab_group_passivate(mg); 1807 slog_found = B_TRUE; 1808 } 1809 } 1810 1811 return (slog_found); 1812 } 1813 1814 static void 1815 spa_activate_log(spa_t *spa) 1816 { 1817 vdev_t *rvd = spa->spa_root_vdev; 1818 1819 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1820 1821 for (int c = 0; c < rvd->vdev_children; c++) { 1822 vdev_t *tvd = rvd->vdev_child[c]; 1823 metaslab_group_t *mg = tvd->vdev_mg; 1824 1825 if (tvd->vdev_islog) 1826 metaslab_group_activate(mg); 1827 } 1828 } 1829 1830 int 1831 spa_offline_log(spa_t *spa) 1832 { 1833 int error; 1834 1835 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1836 NULL, DS_FIND_CHILDREN); 1837 if (error == 0) { 1838 /* 1839 * We successfully offlined the log device, sync out the 1840 * current txg so that the "stubby" block can be removed 1841 * by zil_sync(). 1842 */ 1843 txg_wait_synced(spa->spa_dsl_pool, 0); 1844 } 1845 return (error); 1846 } 1847 1848 static void 1849 spa_aux_check_removed(spa_aux_vdev_t *sav) 1850 { 1851 for (int i = 0; i < sav->sav_count; i++) 1852 spa_check_removed(sav->sav_vdevs[i]); 1853 } 1854 1855 void 1856 spa_claim_notify(zio_t *zio) 1857 { 1858 spa_t *spa = zio->io_spa; 1859 1860 if (zio->io_error) 1861 return; 1862 1863 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1864 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1865 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1866 mutex_exit(&spa->spa_props_lock); 1867 } 1868 1869 typedef struct spa_load_error { 1870 uint64_t sle_meta_count; 1871 uint64_t sle_data_count; 1872 } spa_load_error_t; 1873 1874 static void 1875 spa_load_verify_done(zio_t *zio) 1876 { 1877 blkptr_t *bp = zio->io_bp; 1878 spa_load_error_t *sle = zio->io_private; 1879 dmu_object_type_t type = BP_GET_TYPE(bp); 1880 int error = zio->io_error; 1881 spa_t *spa = zio->io_spa; 1882 1883 abd_free(zio->io_abd); 1884 if (error) { 1885 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1886 type != DMU_OT_INTENT_LOG) 1887 atomic_inc_64(&sle->sle_meta_count); 1888 else 1889 atomic_inc_64(&sle->sle_data_count); 1890 } 1891 1892 mutex_enter(&spa->spa_scrub_lock); 1893 spa->spa_scrub_inflight--; 1894 cv_broadcast(&spa->spa_scrub_io_cv); 1895 mutex_exit(&spa->spa_scrub_lock); 1896 } 1897 1898 /* 1899 * Maximum number of concurrent scrub i/os to create while verifying 1900 * a pool while importing it. 1901 */ 1902 int spa_load_verify_maxinflight = 10000; 1903 boolean_t spa_load_verify_metadata = B_TRUE; 1904 boolean_t spa_load_verify_data = B_TRUE; 1905 1906 /*ARGSUSED*/ 1907 static int 1908 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1909 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1910 { 1911 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1912 return (0); 1913 /* 1914 * Note: normally this routine will not be called if 1915 * spa_load_verify_metadata is not set. However, it may be useful 1916 * to manually set the flag after the traversal has begun. 1917 */ 1918 if (!spa_load_verify_metadata) 1919 return (0); 1920 if (!BP_IS_METADATA(bp) && !spa_load_verify_data) 1921 return (0); 1922 1923 zio_t *rio = arg; 1924 size_t size = BP_GET_PSIZE(bp); 1925 1926 mutex_enter(&spa->spa_scrub_lock); 1927 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1928 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1929 spa->spa_scrub_inflight++; 1930 mutex_exit(&spa->spa_scrub_lock); 1931 1932 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 1933 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1934 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1935 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1936 return (0); 1937 } 1938 1939 /* ARGSUSED */ 1940 int 1941 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1942 { 1943 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 1944 return (SET_ERROR(ENAMETOOLONG)); 1945 1946 return (0); 1947 } 1948 1949 static int 1950 spa_load_verify(spa_t *spa) 1951 { 1952 zio_t *rio; 1953 spa_load_error_t sle = { 0 }; 1954 zpool_rewind_policy_t policy; 1955 boolean_t verify_ok = B_FALSE; 1956 int error = 0; 1957 1958 zpool_get_rewind_policy(spa->spa_config, &policy); 1959 1960 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1961 return (0); 1962 1963 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 1964 error = dmu_objset_find_dp(spa->spa_dsl_pool, 1965 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 1966 DS_FIND_CHILDREN); 1967 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 1968 if (error != 0) 1969 return (error); 1970 1971 rio = zio_root(spa, NULL, &sle, 1972 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1973 1974 if (spa_load_verify_metadata) { 1975 error = traverse_pool(spa, spa->spa_verify_min_txg, 1976 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1977 spa_load_verify_cb, rio); 1978 } 1979 1980 (void) zio_wait(rio); 1981 1982 spa->spa_load_meta_errors = sle.sle_meta_count; 1983 spa->spa_load_data_errors = sle.sle_data_count; 1984 1985 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1986 sle.sle_data_count <= policy.zrp_maxdata) { 1987 int64_t loss = 0; 1988 1989 verify_ok = B_TRUE; 1990 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1991 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1992 1993 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1994 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1995 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1996 VERIFY(nvlist_add_int64(spa->spa_load_info, 1997 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1998 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1999 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 2000 } else { 2001 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2002 } 2003 2004 if (error) { 2005 if (error != ENXIO && error != EIO) 2006 error = SET_ERROR(EIO); 2007 return (error); 2008 } 2009 2010 return (verify_ok ? 0 : EIO); 2011 } 2012 2013 /* 2014 * Find a value in the pool props object. 2015 */ 2016 static void 2017 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2018 { 2019 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2020 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2021 } 2022 2023 /* 2024 * Find a value in the pool directory object. 2025 */ 2026 static int 2027 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 2028 { 2029 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2030 name, sizeof (uint64_t), 1, val)); 2031 } 2032 2033 static int 2034 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2035 { 2036 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2037 return (err); 2038 } 2039 2040 /* 2041 * Fix up config after a partly-completed split. This is done with the 2042 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2043 * pool have that entry in their config, but only the splitting one contains 2044 * a list of all the guids of the vdevs that are being split off. 2045 * 2046 * This function determines what to do with that list: either rejoin 2047 * all the disks to the pool, or complete the splitting process. To attempt 2048 * the rejoin, each disk that is offlined is marked online again, and 2049 * we do a reopen() call. If the vdev label for every disk that was 2050 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2051 * then we call vdev_split() on each disk, and complete the split. 2052 * 2053 * Otherwise we leave the config alone, with all the vdevs in place in 2054 * the original pool. 2055 */ 2056 static void 2057 spa_try_repair(spa_t *spa, nvlist_t *config) 2058 { 2059 uint_t extracted; 2060 uint64_t *glist; 2061 uint_t i, gcount; 2062 nvlist_t *nvl; 2063 vdev_t **vd; 2064 boolean_t attempt_reopen; 2065 2066 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2067 return; 2068 2069 /* check that the config is complete */ 2070 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2071 &glist, &gcount) != 0) 2072 return; 2073 2074 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2075 2076 /* attempt to online all the vdevs & validate */ 2077 attempt_reopen = B_TRUE; 2078 for (i = 0; i < gcount; i++) { 2079 if (glist[i] == 0) /* vdev is hole */ 2080 continue; 2081 2082 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2083 if (vd[i] == NULL) { 2084 /* 2085 * Don't bother attempting to reopen the disks; 2086 * just do the split. 2087 */ 2088 attempt_reopen = B_FALSE; 2089 } else { 2090 /* attempt to re-online it */ 2091 vd[i]->vdev_offline = B_FALSE; 2092 } 2093 } 2094 2095 if (attempt_reopen) { 2096 vdev_reopen(spa->spa_root_vdev); 2097 2098 /* check each device to see what state it's in */ 2099 for (extracted = 0, i = 0; i < gcount; i++) { 2100 if (vd[i] != NULL && 2101 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2102 break; 2103 ++extracted; 2104 } 2105 } 2106 2107 /* 2108 * If every disk has been moved to the new pool, or if we never 2109 * even attempted to look at them, then we split them off for 2110 * good. 2111 */ 2112 if (!attempt_reopen || gcount == extracted) { 2113 for (i = 0; i < gcount; i++) 2114 if (vd[i] != NULL) 2115 vdev_split(vd[i]); 2116 vdev_reopen(spa->spa_root_vdev); 2117 } 2118 2119 kmem_free(vd, gcount * sizeof (vdev_t *)); 2120 } 2121 2122 static int 2123 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2124 boolean_t mosconfig) 2125 { 2126 nvlist_t *config = spa->spa_config; 2127 char *ereport = FM_EREPORT_ZFS_POOL; 2128 char *comment; 2129 int error; 2130 uint64_t pool_guid; 2131 nvlist_t *nvl; 2132 2133 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2134 return (SET_ERROR(EINVAL)); 2135 2136 ASSERT(spa->spa_comment == NULL); 2137 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2138 spa->spa_comment = spa_strdup(comment); 2139 2140 /* 2141 * Versioning wasn't explicitly added to the label until later, so if 2142 * it's not present treat it as the initial version. 2143 */ 2144 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2145 &spa->spa_ubsync.ub_version) != 0) 2146 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2147 2148 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2149 &spa->spa_config_txg); 2150 2151 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2152 spa_guid_exists(pool_guid, 0)) { 2153 error = SET_ERROR(EEXIST); 2154 } else { 2155 spa->spa_config_guid = pool_guid; 2156 2157 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2158 &nvl) == 0) { 2159 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2160 KM_SLEEP) == 0); 2161 } 2162 2163 nvlist_free(spa->spa_load_info); 2164 spa->spa_load_info = fnvlist_alloc(); 2165 2166 gethrestime(&spa->spa_loaded_ts); 2167 error = spa_load_impl(spa, pool_guid, config, state, type, 2168 mosconfig, &ereport); 2169 } 2170 2171 /* 2172 * Don't count references from objsets that are already closed 2173 * and are making their way through the eviction process. 2174 */ 2175 spa_evicting_os_wait(spa); 2176 spa->spa_minref = refcount_count(&spa->spa_refcount); 2177 if (error) { 2178 if (error != EEXIST) { 2179 spa->spa_loaded_ts.tv_sec = 0; 2180 spa->spa_loaded_ts.tv_nsec = 0; 2181 } 2182 if (error != EBADF) { 2183 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2184 } 2185 } 2186 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2187 spa->spa_ena = 0; 2188 2189 return (error); 2190 } 2191 2192 /* 2193 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2194 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2195 * spa's per-vdev ZAP list. 2196 */ 2197 static uint64_t 2198 vdev_count_verify_zaps(vdev_t *vd) 2199 { 2200 spa_t *spa = vd->vdev_spa; 2201 uint64_t total = 0; 2202 if (vd->vdev_top_zap != 0) { 2203 total++; 2204 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2205 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2206 } 2207 if (vd->vdev_leaf_zap != 0) { 2208 total++; 2209 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2210 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2211 } 2212 2213 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2214 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2215 } 2216 2217 return (total); 2218 } 2219 2220 /* 2221 * Load an existing storage pool, using the pool's builtin spa_config as a 2222 * source of configuration information. 2223 */ 2224 static int 2225 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2226 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2227 char **ereport) 2228 { 2229 int error = 0; 2230 nvlist_t *nvroot = NULL; 2231 nvlist_t *label; 2232 vdev_t *rvd; 2233 uberblock_t *ub = &spa->spa_uberblock; 2234 uint64_t children, config_cache_txg = spa->spa_config_txg; 2235 int orig_mode = spa->spa_mode; 2236 int parse; 2237 uint64_t obj; 2238 boolean_t missing_feat_write = B_FALSE; 2239 2240 /* 2241 * If this is an untrusted config, access the pool in read-only mode. 2242 * This prevents things like resilvering recently removed devices. 2243 */ 2244 if (!mosconfig) 2245 spa->spa_mode = FREAD; 2246 2247 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2248 2249 spa->spa_load_state = state; 2250 2251 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2252 return (SET_ERROR(EINVAL)); 2253 2254 parse = (type == SPA_IMPORT_EXISTING ? 2255 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2256 2257 /* 2258 * Create "The Godfather" zio to hold all async IOs 2259 */ 2260 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2261 KM_SLEEP); 2262 for (int i = 0; i < max_ncpus; i++) { 2263 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2264 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2265 ZIO_FLAG_GODFATHER); 2266 } 2267 2268 /* 2269 * Parse the configuration into a vdev tree. We explicitly set the 2270 * value that will be returned by spa_version() since parsing the 2271 * configuration requires knowing the version number. 2272 */ 2273 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2274 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2275 spa_config_exit(spa, SCL_ALL, FTAG); 2276 2277 if (error != 0) 2278 return (error); 2279 2280 ASSERT(spa->spa_root_vdev == rvd); 2281 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2282 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2283 2284 if (type != SPA_IMPORT_ASSEMBLE) { 2285 ASSERT(spa_guid(spa) == pool_guid); 2286 } 2287 2288 /* 2289 * Try to open all vdevs, loading each label in the process. 2290 */ 2291 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2292 error = vdev_open(rvd); 2293 spa_config_exit(spa, SCL_ALL, FTAG); 2294 if (error != 0) 2295 return (error); 2296 2297 /* 2298 * We need to validate the vdev labels against the configuration that 2299 * we have in hand, which is dependent on the setting of mosconfig. If 2300 * mosconfig is true then we're validating the vdev labels based on 2301 * that config. Otherwise, we're validating against the cached config 2302 * (zpool.cache) that was read when we loaded the zfs module, and then 2303 * later we will recursively call spa_load() and validate against 2304 * the vdev config. 2305 * 2306 * If we're assembling a new pool that's been split off from an 2307 * existing pool, the labels haven't yet been updated so we skip 2308 * validation for now. 2309 */ 2310 if (type != SPA_IMPORT_ASSEMBLE) { 2311 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2312 error = vdev_validate(rvd, mosconfig); 2313 spa_config_exit(spa, SCL_ALL, FTAG); 2314 2315 if (error != 0) 2316 return (error); 2317 2318 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2319 return (SET_ERROR(ENXIO)); 2320 } 2321 2322 /* 2323 * Find the best uberblock. 2324 */ 2325 vdev_uberblock_load(rvd, ub, &label); 2326 2327 /* 2328 * If we weren't able to find a single valid uberblock, return failure. 2329 */ 2330 if (ub->ub_txg == 0) { 2331 nvlist_free(label); 2332 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2333 } 2334 2335 /* 2336 * If the pool has an unsupported version we can't open it. 2337 */ 2338 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2339 nvlist_free(label); 2340 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2341 } 2342 2343 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2344 nvlist_t *features; 2345 2346 /* 2347 * If we weren't able to find what's necessary for reading the 2348 * MOS in the label, return failure. 2349 */ 2350 if (label == NULL || nvlist_lookup_nvlist(label, 2351 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2352 nvlist_free(label); 2353 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2354 ENXIO)); 2355 } 2356 2357 /* 2358 * Update our in-core representation with the definitive values 2359 * from the label. 2360 */ 2361 nvlist_free(spa->spa_label_features); 2362 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2363 } 2364 2365 nvlist_free(label); 2366 2367 /* 2368 * Look through entries in the label nvlist's features_for_read. If 2369 * there is a feature listed there which we don't understand then we 2370 * cannot open a pool. 2371 */ 2372 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2373 nvlist_t *unsup_feat; 2374 2375 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2376 0); 2377 2378 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2379 NULL); nvp != NULL; 2380 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2381 if (!zfeature_is_supported(nvpair_name(nvp))) { 2382 VERIFY(nvlist_add_string(unsup_feat, 2383 nvpair_name(nvp), "") == 0); 2384 } 2385 } 2386 2387 if (!nvlist_empty(unsup_feat)) { 2388 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2389 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2390 nvlist_free(unsup_feat); 2391 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2392 ENOTSUP)); 2393 } 2394 2395 nvlist_free(unsup_feat); 2396 } 2397 2398 /* 2399 * If the vdev guid sum doesn't match the uberblock, we have an 2400 * incomplete configuration. We first check to see if the pool 2401 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2402 * If it is, defer the vdev_guid_sum check till later so we 2403 * can handle missing vdevs. 2404 */ 2405 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2406 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2407 rvd->vdev_guid_sum != ub->ub_guid_sum) 2408 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2409 2410 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2411 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2412 spa_try_repair(spa, config); 2413 spa_config_exit(spa, SCL_ALL, FTAG); 2414 nvlist_free(spa->spa_config_splitting); 2415 spa->spa_config_splitting = NULL; 2416 } 2417 2418 /* 2419 * Initialize internal SPA structures. 2420 */ 2421 spa->spa_state = POOL_STATE_ACTIVE; 2422 spa->spa_ubsync = spa->spa_uberblock; 2423 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2424 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2425 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2426 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2427 spa->spa_claim_max_txg = spa->spa_first_txg; 2428 spa->spa_prev_software_version = ub->ub_software_version; 2429 2430 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2431 if (error) 2432 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2433 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2434 2435 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2436 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2437 2438 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2439 boolean_t missing_feat_read = B_FALSE; 2440 nvlist_t *unsup_feat, *enabled_feat; 2441 2442 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2443 &spa->spa_feat_for_read_obj) != 0) { 2444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2445 } 2446 2447 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2448 &spa->spa_feat_for_write_obj) != 0) { 2449 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2450 } 2451 2452 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2453 &spa->spa_feat_desc_obj) != 0) { 2454 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2455 } 2456 2457 enabled_feat = fnvlist_alloc(); 2458 unsup_feat = fnvlist_alloc(); 2459 2460 if (!spa_features_check(spa, B_FALSE, 2461 unsup_feat, enabled_feat)) 2462 missing_feat_read = B_TRUE; 2463 2464 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2465 if (!spa_features_check(spa, B_TRUE, 2466 unsup_feat, enabled_feat)) { 2467 missing_feat_write = B_TRUE; 2468 } 2469 } 2470 2471 fnvlist_add_nvlist(spa->spa_load_info, 2472 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2473 2474 if (!nvlist_empty(unsup_feat)) { 2475 fnvlist_add_nvlist(spa->spa_load_info, 2476 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2477 } 2478 2479 fnvlist_free(enabled_feat); 2480 fnvlist_free(unsup_feat); 2481 2482 if (!missing_feat_read) { 2483 fnvlist_add_boolean(spa->spa_load_info, 2484 ZPOOL_CONFIG_CAN_RDONLY); 2485 } 2486 2487 /* 2488 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2489 * twofold: to determine whether the pool is available for 2490 * import in read-write mode and (if it is not) whether the 2491 * pool is available for import in read-only mode. If the pool 2492 * is available for import in read-write mode, it is displayed 2493 * as available in userland; if it is not available for import 2494 * in read-only mode, it is displayed as unavailable in 2495 * userland. If the pool is available for import in read-only 2496 * mode but not read-write mode, it is displayed as unavailable 2497 * in userland with a special note that the pool is actually 2498 * available for open in read-only mode. 2499 * 2500 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2501 * missing a feature for write, we must first determine whether 2502 * the pool can be opened read-only before returning to 2503 * userland in order to know whether to display the 2504 * abovementioned note. 2505 */ 2506 if (missing_feat_read || (missing_feat_write && 2507 spa_writeable(spa))) { 2508 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2509 ENOTSUP)); 2510 } 2511 2512 /* 2513 * Load refcounts for ZFS features from disk into an in-memory 2514 * cache during SPA initialization. 2515 */ 2516 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2517 uint64_t refcount; 2518 2519 error = feature_get_refcount_from_disk(spa, 2520 &spa_feature_table[i], &refcount); 2521 if (error == 0) { 2522 spa->spa_feat_refcount_cache[i] = refcount; 2523 } else if (error == ENOTSUP) { 2524 spa->spa_feat_refcount_cache[i] = 2525 SPA_FEATURE_DISABLED; 2526 } else { 2527 return (spa_vdev_err(rvd, 2528 VDEV_AUX_CORRUPT_DATA, EIO)); 2529 } 2530 } 2531 } 2532 2533 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2534 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2535 &spa->spa_feat_enabled_txg_obj) != 0) 2536 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2537 } 2538 2539 spa->spa_is_initializing = B_TRUE; 2540 error = dsl_pool_open(spa->spa_dsl_pool); 2541 spa->spa_is_initializing = B_FALSE; 2542 if (error != 0) 2543 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2544 2545 if (!mosconfig) { 2546 uint64_t hostid; 2547 nvlist_t *policy = NULL, *nvconfig; 2548 2549 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2550 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2551 2552 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2553 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2554 char *hostname; 2555 unsigned long myhostid = 0; 2556 2557 VERIFY(nvlist_lookup_string(nvconfig, 2558 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2559 2560 #ifdef _KERNEL 2561 myhostid = zone_get_hostid(NULL); 2562 #else /* _KERNEL */ 2563 /* 2564 * We're emulating the system's hostid in userland, so 2565 * we can't use zone_get_hostid(). 2566 */ 2567 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2568 #endif /* _KERNEL */ 2569 if (hostid != 0 && myhostid != 0 && 2570 hostid != myhostid) { 2571 nvlist_free(nvconfig); 2572 cmn_err(CE_WARN, "pool '%s' could not be " 2573 "loaded as it was last accessed by " 2574 "another system (host: %s hostid: 0x%lx). " 2575 "See: http://illumos.org/msg/ZFS-8000-EY", 2576 spa_name(spa), hostname, 2577 (unsigned long)hostid); 2578 return (SET_ERROR(EBADF)); 2579 } 2580 } 2581 if (nvlist_lookup_nvlist(spa->spa_config, 2582 ZPOOL_REWIND_POLICY, &policy) == 0) 2583 VERIFY(nvlist_add_nvlist(nvconfig, 2584 ZPOOL_REWIND_POLICY, policy) == 0); 2585 2586 spa_config_set(spa, nvconfig); 2587 spa_unload(spa); 2588 spa_deactivate(spa); 2589 spa_activate(spa, orig_mode); 2590 2591 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2592 } 2593 2594 /* Grab the secret checksum salt from the MOS. */ 2595 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2596 DMU_POOL_CHECKSUM_SALT, 1, 2597 sizeof (spa->spa_cksum_salt.zcs_bytes), 2598 spa->spa_cksum_salt.zcs_bytes); 2599 if (error == ENOENT) { 2600 /* Generate a new salt for subsequent use */ 2601 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 2602 sizeof (spa->spa_cksum_salt.zcs_bytes)); 2603 } else if (error != 0) { 2604 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2605 } 2606 2607 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2608 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2609 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2610 if (error != 0) 2611 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2612 2613 /* 2614 * Load the bit that tells us to use the new accounting function 2615 * (raid-z deflation). If we have an older pool, this will not 2616 * be present. 2617 */ 2618 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2619 if (error != 0 && error != ENOENT) 2620 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2621 2622 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2623 &spa->spa_creation_version); 2624 if (error != 0 && error != ENOENT) 2625 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2626 2627 /* 2628 * Load the persistent error log. If we have an older pool, this will 2629 * not be present. 2630 */ 2631 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2632 if (error != 0 && error != ENOENT) 2633 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2634 2635 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2636 &spa->spa_errlog_scrub); 2637 if (error != 0 && error != ENOENT) 2638 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2639 2640 /* 2641 * Load the history object. If we have an older pool, this 2642 * will not be present. 2643 */ 2644 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2645 if (error != 0 && error != ENOENT) 2646 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2647 2648 /* 2649 * Load the per-vdev ZAP map. If we have an older pool, this will not 2650 * be present; in this case, defer its creation to a later time to 2651 * avoid dirtying the MOS this early / out of sync context. See 2652 * spa_sync_config_object. 2653 */ 2654 2655 /* The sentinel is only available in the MOS config. */ 2656 nvlist_t *mos_config; 2657 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) 2658 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2659 2660 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 2661 &spa->spa_all_vdev_zaps); 2662 2663 if (error == ENOENT) { 2664 VERIFY(!nvlist_exists(mos_config, 2665 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 2666 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 2667 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 2668 } else if (error != 0) { 2669 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2670 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 2671 /* 2672 * An older version of ZFS overwrote the sentinel value, so 2673 * we have orphaned per-vdev ZAPs in the MOS. Defer their 2674 * destruction to later; see spa_sync_config_object. 2675 */ 2676 spa->spa_avz_action = AVZ_ACTION_DESTROY; 2677 /* 2678 * We're assuming that no vdevs have had their ZAPs created 2679 * before this. Better be sure of it. 2680 */ 2681 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 2682 } 2683 nvlist_free(mos_config); 2684 2685 /* 2686 * If we're assembling the pool from the split-off vdevs of 2687 * an existing pool, we don't want to attach the spares & cache 2688 * devices. 2689 */ 2690 2691 /* 2692 * Load any hot spares for this pool. 2693 */ 2694 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2695 if (error != 0 && error != ENOENT) 2696 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2697 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2698 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2699 if (load_nvlist(spa, spa->spa_spares.sav_object, 2700 &spa->spa_spares.sav_config) != 0) 2701 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2702 2703 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2704 spa_load_spares(spa); 2705 spa_config_exit(spa, SCL_ALL, FTAG); 2706 } else if (error == 0) { 2707 spa->spa_spares.sav_sync = B_TRUE; 2708 } 2709 2710 /* 2711 * Load any level 2 ARC devices for this pool. 2712 */ 2713 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2714 &spa->spa_l2cache.sav_object); 2715 if (error != 0 && error != ENOENT) 2716 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2717 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2718 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2719 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2720 &spa->spa_l2cache.sav_config) != 0) 2721 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2722 2723 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2724 spa_load_l2cache(spa); 2725 spa_config_exit(spa, SCL_ALL, FTAG); 2726 } else if (error == 0) { 2727 spa->spa_l2cache.sav_sync = B_TRUE; 2728 } 2729 2730 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2731 2732 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2733 if (error && error != ENOENT) 2734 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2735 2736 if (error == 0) { 2737 uint64_t autoreplace; 2738 2739 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2740 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2741 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2742 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2743 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2744 spa_prop_find(spa, ZPOOL_PROP_BOOTSIZE, &spa->spa_bootsize); 2745 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2746 &spa->spa_dedup_ditto); 2747 2748 spa->spa_autoreplace = (autoreplace != 0); 2749 } 2750 2751 /* 2752 * If the 'autoreplace' property is set, then post a resource notifying 2753 * the ZFS DE that it should not issue any faults for unopenable 2754 * devices. We also iterate over the vdevs, and post a sysevent for any 2755 * unopenable vdevs so that the normal autoreplace handler can take 2756 * over. 2757 */ 2758 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2759 spa_check_removed(spa->spa_root_vdev); 2760 /* 2761 * For the import case, this is done in spa_import(), because 2762 * at this point we're using the spare definitions from 2763 * the MOS config, not necessarily from the userland config. 2764 */ 2765 if (state != SPA_LOAD_IMPORT) { 2766 spa_aux_check_removed(&spa->spa_spares); 2767 spa_aux_check_removed(&spa->spa_l2cache); 2768 } 2769 } 2770 2771 /* 2772 * Load the vdev state for all toplevel vdevs. 2773 */ 2774 vdev_load(rvd); 2775 2776 /* 2777 * Propagate the leaf DTLs we just loaded all the way up the tree. 2778 */ 2779 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2780 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2781 spa_config_exit(spa, SCL_ALL, FTAG); 2782 2783 /* 2784 * Load the DDTs (dedup tables). 2785 */ 2786 error = ddt_load(spa); 2787 if (error != 0) 2788 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2789 2790 spa_update_dspace(spa); 2791 2792 /* 2793 * Validate the config, using the MOS config to fill in any 2794 * information which might be missing. If we fail to validate 2795 * the config then declare the pool unfit for use. If we're 2796 * assembling a pool from a split, the log is not transferred 2797 * over. 2798 */ 2799 if (type != SPA_IMPORT_ASSEMBLE) { 2800 nvlist_t *nvconfig; 2801 2802 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2803 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2804 2805 if (!spa_config_valid(spa, nvconfig)) { 2806 nvlist_free(nvconfig); 2807 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2808 ENXIO)); 2809 } 2810 nvlist_free(nvconfig); 2811 2812 /* 2813 * Now that we've validated the config, check the state of the 2814 * root vdev. If it can't be opened, it indicates one or 2815 * more toplevel vdevs are faulted. 2816 */ 2817 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2818 return (SET_ERROR(ENXIO)); 2819 2820 if (spa_writeable(spa) && spa_check_logs(spa)) { 2821 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2822 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2823 } 2824 } 2825 2826 if (missing_feat_write) { 2827 ASSERT(state == SPA_LOAD_TRYIMPORT); 2828 2829 /* 2830 * At this point, we know that we can open the pool in 2831 * read-only mode but not read-write mode. We now have enough 2832 * information and can return to userland. 2833 */ 2834 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2835 } 2836 2837 /* 2838 * We've successfully opened the pool, verify that we're ready 2839 * to start pushing transactions. 2840 */ 2841 if (state != SPA_LOAD_TRYIMPORT) { 2842 if (error = spa_load_verify(spa)) 2843 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2844 error)); 2845 } 2846 2847 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2848 spa->spa_load_max_txg == UINT64_MAX)) { 2849 dmu_tx_t *tx; 2850 int need_update = B_FALSE; 2851 dsl_pool_t *dp = spa_get_dsl(spa); 2852 2853 ASSERT(state != SPA_LOAD_TRYIMPORT); 2854 2855 /* 2856 * Claim log blocks that haven't been committed yet. 2857 * This must all happen in a single txg. 2858 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2859 * invoked from zil_claim_log_block()'s i/o done callback. 2860 * Price of rollback is that we abandon the log. 2861 */ 2862 spa->spa_claiming = B_TRUE; 2863 2864 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 2865 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2866 zil_claim, tx, DS_FIND_CHILDREN); 2867 dmu_tx_commit(tx); 2868 2869 spa->spa_claiming = B_FALSE; 2870 2871 spa_set_log_state(spa, SPA_LOG_GOOD); 2872 spa->spa_sync_on = B_TRUE; 2873 txg_sync_start(spa->spa_dsl_pool); 2874 2875 /* 2876 * Wait for all claims to sync. We sync up to the highest 2877 * claimed log block birth time so that claimed log blocks 2878 * don't appear to be from the future. spa_claim_max_txg 2879 * will have been set for us by either zil_check_log_chain() 2880 * (invoked from spa_check_logs()) or zil_claim() above. 2881 */ 2882 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2883 2884 /* 2885 * If the config cache is stale, or we have uninitialized 2886 * metaslabs (see spa_vdev_add()), then update the config. 2887 * 2888 * If this is a verbatim import, trust the current 2889 * in-core spa_config and update the disk labels. 2890 */ 2891 if (config_cache_txg != spa->spa_config_txg || 2892 state == SPA_LOAD_IMPORT || 2893 state == SPA_LOAD_RECOVER || 2894 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2895 need_update = B_TRUE; 2896 2897 for (int c = 0; c < rvd->vdev_children; c++) 2898 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2899 need_update = B_TRUE; 2900 2901 /* 2902 * Update the config cache asychronously in case we're the 2903 * root pool, in which case the config cache isn't writable yet. 2904 */ 2905 if (need_update) 2906 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2907 2908 /* 2909 * Check all DTLs to see if anything needs resilvering. 2910 */ 2911 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2912 vdev_resilver_needed(rvd, NULL, NULL)) 2913 spa_async_request(spa, SPA_ASYNC_RESILVER); 2914 2915 /* 2916 * Log the fact that we booted up (so that we can detect if 2917 * we rebooted in the middle of an operation). 2918 */ 2919 spa_history_log_version(spa, "open"); 2920 2921 /* 2922 * Delete any inconsistent datasets. 2923 */ 2924 (void) dmu_objset_find(spa_name(spa), 2925 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2926 2927 /* 2928 * Clean up any stale temporary dataset userrefs. 2929 */ 2930 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2931 } 2932 2933 return (0); 2934 } 2935 2936 static int 2937 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2938 { 2939 int mode = spa->spa_mode; 2940 2941 spa_unload(spa); 2942 spa_deactivate(spa); 2943 2944 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2945 2946 spa_activate(spa, mode); 2947 spa_async_suspend(spa); 2948 2949 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2950 } 2951 2952 /* 2953 * If spa_load() fails this function will try loading prior txg's. If 2954 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2955 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2956 * function will not rewind the pool and will return the same error as 2957 * spa_load(). 2958 */ 2959 static int 2960 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2961 uint64_t max_request, int rewind_flags) 2962 { 2963 nvlist_t *loadinfo = NULL; 2964 nvlist_t *config = NULL; 2965 int load_error, rewind_error; 2966 uint64_t safe_rewind_txg; 2967 uint64_t min_txg; 2968 2969 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2970 spa->spa_load_max_txg = spa->spa_load_txg; 2971 spa_set_log_state(spa, SPA_LOG_CLEAR); 2972 } else { 2973 spa->spa_load_max_txg = max_request; 2974 if (max_request != UINT64_MAX) 2975 spa->spa_extreme_rewind = B_TRUE; 2976 } 2977 2978 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2979 mosconfig); 2980 if (load_error == 0) 2981 return (0); 2982 2983 if (spa->spa_root_vdev != NULL) 2984 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2985 2986 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2987 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2988 2989 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2990 nvlist_free(config); 2991 return (load_error); 2992 } 2993 2994 if (state == SPA_LOAD_RECOVER) { 2995 /* Price of rolling back is discarding txgs, including log */ 2996 spa_set_log_state(spa, SPA_LOG_CLEAR); 2997 } else { 2998 /* 2999 * If we aren't rolling back save the load info from our first 3000 * import attempt so that we can restore it after attempting 3001 * to rewind. 3002 */ 3003 loadinfo = spa->spa_load_info; 3004 spa->spa_load_info = fnvlist_alloc(); 3005 } 3006 3007 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 3008 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 3009 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 3010 TXG_INITIAL : safe_rewind_txg; 3011 3012 /* 3013 * Continue as long as we're finding errors, we're still within 3014 * the acceptable rewind range, and we're still finding uberblocks 3015 */ 3016 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 3017 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 3018 if (spa->spa_load_max_txg < safe_rewind_txg) 3019 spa->spa_extreme_rewind = B_TRUE; 3020 rewind_error = spa_load_retry(spa, state, mosconfig); 3021 } 3022 3023 spa->spa_extreme_rewind = B_FALSE; 3024 spa->spa_load_max_txg = UINT64_MAX; 3025 3026 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 3027 spa_config_set(spa, config); 3028 else 3029 nvlist_free(config); 3030 3031 if (state == SPA_LOAD_RECOVER) { 3032 ASSERT3P(loadinfo, ==, NULL); 3033 return (rewind_error); 3034 } else { 3035 /* Store the rewind info as part of the initial load info */ 3036 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 3037 spa->spa_load_info); 3038 3039 /* Restore the initial load info */ 3040 fnvlist_free(spa->spa_load_info); 3041 spa->spa_load_info = loadinfo; 3042 3043 return (load_error); 3044 } 3045 } 3046 3047 /* 3048 * Pool Open/Import 3049 * 3050 * The import case is identical to an open except that the configuration is sent 3051 * down from userland, instead of grabbed from the configuration cache. For the 3052 * case of an open, the pool configuration will exist in the 3053 * POOL_STATE_UNINITIALIZED state. 3054 * 3055 * The stats information (gen/count/ustats) is used to gather vdev statistics at 3056 * the same time open the pool, without having to keep around the spa_t in some 3057 * ambiguous state. 3058 */ 3059 static int 3060 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 3061 nvlist_t **config) 3062 { 3063 spa_t *spa; 3064 spa_load_state_t state = SPA_LOAD_OPEN; 3065 int error; 3066 int locked = B_FALSE; 3067 3068 *spapp = NULL; 3069 3070 /* 3071 * As disgusting as this is, we need to support recursive calls to this 3072 * function because dsl_dir_open() is called during spa_load(), and ends 3073 * up calling spa_open() again. The real fix is to figure out how to 3074 * avoid dsl_dir_open() calling this in the first place. 3075 */ 3076 if (mutex_owner(&spa_namespace_lock) != curthread) { 3077 mutex_enter(&spa_namespace_lock); 3078 locked = B_TRUE; 3079 } 3080 3081 if ((spa = spa_lookup(pool)) == NULL) { 3082 if (locked) 3083 mutex_exit(&spa_namespace_lock); 3084 return (SET_ERROR(ENOENT)); 3085 } 3086 3087 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 3088 zpool_rewind_policy_t policy; 3089 3090 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 3091 &policy); 3092 if (policy.zrp_request & ZPOOL_DO_REWIND) 3093 state = SPA_LOAD_RECOVER; 3094 3095 spa_activate(spa, spa_mode_global); 3096 3097 if (state != SPA_LOAD_RECOVER) 3098 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3099 3100 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 3101 policy.zrp_request); 3102 3103 if (error == EBADF) { 3104 /* 3105 * If vdev_validate() returns failure (indicated by 3106 * EBADF), it indicates that one of the vdevs indicates 3107 * that the pool has been exported or destroyed. If 3108 * this is the case, the config cache is out of sync and 3109 * we should remove the pool from the namespace. 3110 */ 3111 spa_unload(spa); 3112 spa_deactivate(spa); 3113 spa_config_sync(spa, B_TRUE, B_TRUE); 3114 spa_remove(spa); 3115 if (locked) 3116 mutex_exit(&spa_namespace_lock); 3117 return (SET_ERROR(ENOENT)); 3118 } 3119 3120 if (error) { 3121 /* 3122 * We can't open the pool, but we still have useful 3123 * information: the state of each vdev after the 3124 * attempted vdev_open(). Return this to the user. 3125 */ 3126 if (config != NULL && spa->spa_config) { 3127 VERIFY(nvlist_dup(spa->spa_config, config, 3128 KM_SLEEP) == 0); 3129 VERIFY(nvlist_add_nvlist(*config, 3130 ZPOOL_CONFIG_LOAD_INFO, 3131 spa->spa_load_info) == 0); 3132 } 3133 spa_unload(spa); 3134 spa_deactivate(spa); 3135 spa->spa_last_open_failed = error; 3136 if (locked) 3137 mutex_exit(&spa_namespace_lock); 3138 *spapp = NULL; 3139 return (error); 3140 } 3141 } 3142 3143 spa_open_ref(spa, tag); 3144 3145 if (config != NULL) 3146 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3147 3148 /* 3149 * If we've recovered the pool, pass back any information we 3150 * gathered while doing the load. 3151 */ 3152 if (state == SPA_LOAD_RECOVER) { 3153 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3154 spa->spa_load_info) == 0); 3155 } 3156 3157 if (locked) { 3158 spa->spa_last_open_failed = 0; 3159 spa->spa_last_ubsync_txg = 0; 3160 spa->spa_load_txg = 0; 3161 mutex_exit(&spa_namespace_lock); 3162 } 3163 3164 *spapp = spa; 3165 3166 return (0); 3167 } 3168 3169 int 3170 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3171 nvlist_t **config) 3172 { 3173 return (spa_open_common(name, spapp, tag, policy, config)); 3174 } 3175 3176 int 3177 spa_open(const char *name, spa_t **spapp, void *tag) 3178 { 3179 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3180 } 3181 3182 /* 3183 * Lookup the given spa_t, incrementing the inject count in the process, 3184 * preventing it from being exported or destroyed. 3185 */ 3186 spa_t * 3187 spa_inject_addref(char *name) 3188 { 3189 spa_t *spa; 3190 3191 mutex_enter(&spa_namespace_lock); 3192 if ((spa = spa_lookup(name)) == NULL) { 3193 mutex_exit(&spa_namespace_lock); 3194 return (NULL); 3195 } 3196 spa->spa_inject_ref++; 3197 mutex_exit(&spa_namespace_lock); 3198 3199 return (spa); 3200 } 3201 3202 void 3203 spa_inject_delref(spa_t *spa) 3204 { 3205 mutex_enter(&spa_namespace_lock); 3206 spa->spa_inject_ref--; 3207 mutex_exit(&spa_namespace_lock); 3208 } 3209 3210 /* 3211 * Add spares device information to the nvlist. 3212 */ 3213 static void 3214 spa_add_spares(spa_t *spa, nvlist_t *config) 3215 { 3216 nvlist_t **spares; 3217 uint_t i, nspares; 3218 nvlist_t *nvroot; 3219 uint64_t guid; 3220 vdev_stat_t *vs; 3221 uint_t vsc; 3222 uint64_t pool; 3223 3224 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3225 3226 if (spa->spa_spares.sav_count == 0) 3227 return; 3228 3229 VERIFY(nvlist_lookup_nvlist(config, 3230 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3231 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3232 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3233 if (nspares != 0) { 3234 VERIFY(nvlist_add_nvlist_array(nvroot, 3235 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3236 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3237 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3238 3239 /* 3240 * Go through and find any spares which have since been 3241 * repurposed as an active spare. If this is the case, update 3242 * their status appropriately. 3243 */ 3244 for (i = 0; i < nspares; i++) { 3245 VERIFY(nvlist_lookup_uint64(spares[i], 3246 ZPOOL_CONFIG_GUID, &guid) == 0); 3247 if (spa_spare_exists(guid, &pool, NULL) && 3248 pool != 0ULL) { 3249 VERIFY(nvlist_lookup_uint64_array( 3250 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3251 (uint64_t **)&vs, &vsc) == 0); 3252 vs->vs_state = VDEV_STATE_CANT_OPEN; 3253 vs->vs_aux = VDEV_AUX_SPARED; 3254 } 3255 } 3256 } 3257 } 3258 3259 /* 3260 * Add l2cache device information to the nvlist, including vdev stats. 3261 */ 3262 static void 3263 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3264 { 3265 nvlist_t **l2cache; 3266 uint_t i, j, nl2cache; 3267 nvlist_t *nvroot; 3268 uint64_t guid; 3269 vdev_t *vd; 3270 vdev_stat_t *vs; 3271 uint_t vsc; 3272 3273 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3274 3275 if (spa->spa_l2cache.sav_count == 0) 3276 return; 3277 3278 VERIFY(nvlist_lookup_nvlist(config, 3279 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3280 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3281 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3282 if (nl2cache != 0) { 3283 VERIFY(nvlist_add_nvlist_array(nvroot, 3284 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3285 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3286 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3287 3288 /* 3289 * Update level 2 cache device stats. 3290 */ 3291 3292 for (i = 0; i < nl2cache; i++) { 3293 VERIFY(nvlist_lookup_uint64(l2cache[i], 3294 ZPOOL_CONFIG_GUID, &guid) == 0); 3295 3296 vd = NULL; 3297 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3298 if (guid == 3299 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3300 vd = spa->spa_l2cache.sav_vdevs[j]; 3301 break; 3302 } 3303 } 3304 ASSERT(vd != NULL); 3305 3306 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3307 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3308 == 0); 3309 vdev_get_stats(vd, vs); 3310 } 3311 } 3312 } 3313 3314 static void 3315 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3316 { 3317 nvlist_t *features; 3318 zap_cursor_t zc; 3319 zap_attribute_t za; 3320 3321 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3322 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3323 3324 if (spa->spa_feat_for_read_obj != 0) { 3325 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3326 spa->spa_feat_for_read_obj); 3327 zap_cursor_retrieve(&zc, &za) == 0; 3328 zap_cursor_advance(&zc)) { 3329 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3330 za.za_num_integers == 1); 3331 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3332 za.za_first_integer)); 3333 } 3334 zap_cursor_fini(&zc); 3335 } 3336 3337 if (spa->spa_feat_for_write_obj != 0) { 3338 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3339 spa->spa_feat_for_write_obj); 3340 zap_cursor_retrieve(&zc, &za) == 0; 3341 zap_cursor_advance(&zc)) { 3342 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3343 za.za_num_integers == 1); 3344 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3345 za.za_first_integer)); 3346 } 3347 zap_cursor_fini(&zc); 3348 } 3349 3350 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3351 features) == 0); 3352 nvlist_free(features); 3353 } 3354 3355 int 3356 spa_get_stats(const char *name, nvlist_t **config, 3357 char *altroot, size_t buflen) 3358 { 3359 int error; 3360 spa_t *spa; 3361 3362 *config = NULL; 3363 error = spa_open_common(name, &spa, FTAG, NULL, config); 3364 3365 if (spa != NULL) { 3366 /* 3367 * This still leaves a window of inconsistency where the spares 3368 * or l2cache devices could change and the config would be 3369 * self-inconsistent. 3370 */ 3371 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3372 3373 if (*config != NULL) { 3374 uint64_t loadtimes[2]; 3375 3376 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3377 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3378 VERIFY(nvlist_add_uint64_array(*config, 3379 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3380 3381 VERIFY(nvlist_add_uint64(*config, 3382 ZPOOL_CONFIG_ERRCOUNT, 3383 spa_get_errlog_size(spa)) == 0); 3384 3385 if (spa_suspended(spa)) 3386 VERIFY(nvlist_add_uint64(*config, 3387 ZPOOL_CONFIG_SUSPENDED, 3388 spa->spa_failmode) == 0); 3389 3390 spa_add_spares(spa, *config); 3391 spa_add_l2cache(spa, *config); 3392 spa_add_feature_stats(spa, *config); 3393 } 3394 } 3395 3396 /* 3397 * We want to get the alternate root even for faulted pools, so we cheat 3398 * and call spa_lookup() directly. 3399 */ 3400 if (altroot) { 3401 if (spa == NULL) { 3402 mutex_enter(&spa_namespace_lock); 3403 spa = spa_lookup(name); 3404 if (spa) 3405 spa_altroot(spa, altroot, buflen); 3406 else 3407 altroot[0] = '\0'; 3408 spa = NULL; 3409 mutex_exit(&spa_namespace_lock); 3410 } else { 3411 spa_altroot(spa, altroot, buflen); 3412 } 3413 } 3414 3415 if (spa != NULL) { 3416 spa_config_exit(spa, SCL_CONFIG, FTAG); 3417 spa_close(spa, FTAG); 3418 } 3419 3420 return (error); 3421 } 3422 3423 /* 3424 * Validate that the auxiliary device array is well formed. We must have an 3425 * array of nvlists, each which describes a valid leaf vdev. If this is an 3426 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3427 * specified, as long as they are well-formed. 3428 */ 3429 static int 3430 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3431 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3432 vdev_labeltype_t label) 3433 { 3434 nvlist_t **dev; 3435 uint_t i, ndev; 3436 vdev_t *vd; 3437 int error; 3438 3439 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3440 3441 /* 3442 * It's acceptable to have no devs specified. 3443 */ 3444 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3445 return (0); 3446 3447 if (ndev == 0) 3448 return (SET_ERROR(EINVAL)); 3449 3450 /* 3451 * Make sure the pool is formatted with a version that supports this 3452 * device type. 3453 */ 3454 if (spa_version(spa) < version) 3455 return (SET_ERROR(ENOTSUP)); 3456 3457 /* 3458 * Set the pending device list so we correctly handle device in-use 3459 * checking. 3460 */ 3461 sav->sav_pending = dev; 3462 sav->sav_npending = ndev; 3463 3464 for (i = 0; i < ndev; i++) { 3465 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3466 mode)) != 0) 3467 goto out; 3468 3469 if (!vd->vdev_ops->vdev_op_leaf) { 3470 vdev_free(vd); 3471 error = SET_ERROR(EINVAL); 3472 goto out; 3473 } 3474 3475 /* 3476 * The L2ARC currently only supports disk devices in 3477 * kernel context. For user-level testing, we allow it. 3478 */ 3479 #ifdef _KERNEL 3480 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3481 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3482 error = SET_ERROR(ENOTBLK); 3483 vdev_free(vd); 3484 goto out; 3485 } 3486 #endif 3487 vd->vdev_top = vd; 3488 3489 if ((error = vdev_open(vd)) == 0 && 3490 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3491 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3492 vd->vdev_guid) == 0); 3493 } 3494 3495 vdev_free(vd); 3496 3497 if (error && 3498 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3499 goto out; 3500 else 3501 error = 0; 3502 } 3503 3504 out: 3505 sav->sav_pending = NULL; 3506 sav->sav_npending = 0; 3507 return (error); 3508 } 3509 3510 static int 3511 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3512 { 3513 int error; 3514 3515 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3516 3517 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3518 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3519 VDEV_LABEL_SPARE)) != 0) { 3520 return (error); 3521 } 3522 3523 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3524 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3525 VDEV_LABEL_L2CACHE)); 3526 } 3527 3528 static void 3529 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3530 const char *config) 3531 { 3532 int i; 3533 3534 if (sav->sav_config != NULL) { 3535 nvlist_t **olddevs; 3536 uint_t oldndevs; 3537 nvlist_t **newdevs; 3538 3539 /* 3540 * Generate new dev list by concatentating with the 3541 * current dev list. 3542 */ 3543 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3544 &olddevs, &oldndevs) == 0); 3545 3546 newdevs = kmem_alloc(sizeof (void *) * 3547 (ndevs + oldndevs), KM_SLEEP); 3548 for (i = 0; i < oldndevs; i++) 3549 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3550 KM_SLEEP) == 0); 3551 for (i = 0; i < ndevs; i++) 3552 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3553 KM_SLEEP) == 0); 3554 3555 VERIFY(nvlist_remove(sav->sav_config, config, 3556 DATA_TYPE_NVLIST_ARRAY) == 0); 3557 3558 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3559 config, newdevs, ndevs + oldndevs) == 0); 3560 for (i = 0; i < oldndevs + ndevs; i++) 3561 nvlist_free(newdevs[i]); 3562 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3563 } else { 3564 /* 3565 * Generate a new dev list. 3566 */ 3567 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3568 KM_SLEEP) == 0); 3569 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3570 devs, ndevs) == 0); 3571 } 3572 } 3573 3574 /* 3575 * Stop and drop level 2 ARC devices 3576 */ 3577 void 3578 spa_l2cache_drop(spa_t *spa) 3579 { 3580 vdev_t *vd; 3581 int i; 3582 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3583 3584 for (i = 0; i < sav->sav_count; i++) { 3585 uint64_t pool; 3586 3587 vd = sav->sav_vdevs[i]; 3588 ASSERT(vd != NULL); 3589 3590 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3591 pool != 0ULL && l2arc_vdev_present(vd)) 3592 l2arc_remove_vdev(vd); 3593 } 3594 } 3595 3596 /* 3597 * Pool Creation 3598 */ 3599 int 3600 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3601 nvlist_t *zplprops) 3602 { 3603 spa_t *spa; 3604 char *altroot = NULL; 3605 vdev_t *rvd; 3606 dsl_pool_t *dp; 3607 dmu_tx_t *tx; 3608 int error = 0; 3609 uint64_t txg = TXG_INITIAL; 3610 nvlist_t **spares, **l2cache; 3611 uint_t nspares, nl2cache; 3612 uint64_t version, obj; 3613 boolean_t has_features; 3614 3615 /* 3616 * If this pool already exists, return failure. 3617 */ 3618 mutex_enter(&spa_namespace_lock); 3619 if (spa_lookup(pool) != NULL) { 3620 mutex_exit(&spa_namespace_lock); 3621 return (SET_ERROR(EEXIST)); 3622 } 3623 3624 /* 3625 * Allocate a new spa_t structure. 3626 */ 3627 (void) nvlist_lookup_string(props, 3628 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3629 spa = spa_add(pool, NULL, altroot); 3630 spa_activate(spa, spa_mode_global); 3631 3632 if (props && (error = spa_prop_validate(spa, props))) { 3633 spa_deactivate(spa); 3634 spa_remove(spa); 3635 mutex_exit(&spa_namespace_lock); 3636 return (error); 3637 } 3638 3639 has_features = B_FALSE; 3640 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3641 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3642 if (zpool_prop_feature(nvpair_name(elem))) 3643 has_features = B_TRUE; 3644 } 3645 3646 if (has_features || nvlist_lookup_uint64(props, 3647 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3648 version = SPA_VERSION; 3649 } 3650 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3651 3652 spa->spa_first_txg = txg; 3653 spa->spa_uberblock.ub_txg = txg - 1; 3654 spa->spa_uberblock.ub_version = version; 3655 spa->spa_ubsync = spa->spa_uberblock; 3656 spa->spa_load_state = SPA_LOAD_CREATE; 3657 3658 /* 3659 * Create "The Godfather" zio to hold all async IOs 3660 */ 3661 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3662 KM_SLEEP); 3663 for (int i = 0; i < max_ncpus; i++) { 3664 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3665 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3666 ZIO_FLAG_GODFATHER); 3667 } 3668 3669 /* 3670 * Create the root vdev. 3671 */ 3672 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3673 3674 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3675 3676 ASSERT(error != 0 || rvd != NULL); 3677 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3678 3679 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3680 error = SET_ERROR(EINVAL); 3681 3682 if (error == 0 && 3683 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3684 (error = spa_validate_aux(spa, nvroot, txg, 3685 VDEV_ALLOC_ADD)) == 0) { 3686 for (int c = 0; c < rvd->vdev_children; c++) { 3687 vdev_metaslab_set_size(rvd->vdev_child[c]); 3688 vdev_expand(rvd->vdev_child[c], txg); 3689 } 3690 } 3691 3692 spa_config_exit(spa, SCL_ALL, FTAG); 3693 3694 if (error != 0) { 3695 spa_unload(spa); 3696 spa_deactivate(spa); 3697 spa_remove(spa); 3698 mutex_exit(&spa_namespace_lock); 3699 return (error); 3700 } 3701 3702 /* 3703 * Get the list of spares, if specified. 3704 */ 3705 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3706 &spares, &nspares) == 0) { 3707 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3708 KM_SLEEP) == 0); 3709 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3710 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3711 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3712 spa_load_spares(spa); 3713 spa_config_exit(spa, SCL_ALL, FTAG); 3714 spa->spa_spares.sav_sync = B_TRUE; 3715 } 3716 3717 /* 3718 * Get the list of level 2 cache devices, if specified. 3719 */ 3720 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3721 &l2cache, &nl2cache) == 0) { 3722 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3723 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3724 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3725 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3726 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3727 spa_load_l2cache(spa); 3728 spa_config_exit(spa, SCL_ALL, FTAG); 3729 spa->spa_l2cache.sav_sync = B_TRUE; 3730 } 3731 3732 spa->spa_is_initializing = B_TRUE; 3733 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3734 spa->spa_meta_objset = dp->dp_meta_objset; 3735 spa->spa_is_initializing = B_FALSE; 3736 3737 /* 3738 * Create DDTs (dedup tables). 3739 */ 3740 ddt_create(spa); 3741 3742 spa_update_dspace(spa); 3743 3744 tx = dmu_tx_create_assigned(dp, txg); 3745 3746 /* 3747 * Create the pool config object. 3748 */ 3749 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3750 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3751 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3752 3753 if (zap_add(spa->spa_meta_objset, 3754 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3755 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3756 cmn_err(CE_PANIC, "failed to add pool config"); 3757 } 3758 3759 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3760 spa_feature_create_zap_objects(spa, tx); 3761 3762 if (zap_add(spa->spa_meta_objset, 3763 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3764 sizeof (uint64_t), 1, &version, tx) != 0) { 3765 cmn_err(CE_PANIC, "failed to add pool version"); 3766 } 3767 3768 /* Newly created pools with the right version are always deflated. */ 3769 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3770 spa->spa_deflate = TRUE; 3771 if (zap_add(spa->spa_meta_objset, 3772 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3773 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3774 cmn_err(CE_PANIC, "failed to add deflate"); 3775 } 3776 } 3777 3778 /* 3779 * Create the deferred-free bpobj. Turn off compression 3780 * because sync-to-convergence takes longer if the blocksize 3781 * keeps changing. 3782 */ 3783 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3784 dmu_object_set_compress(spa->spa_meta_objset, obj, 3785 ZIO_COMPRESS_OFF, tx); 3786 if (zap_add(spa->spa_meta_objset, 3787 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3788 sizeof (uint64_t), 1, &obj, tx) != 0) { 3789 cmn_err(CE_PANIC, "failed to add bpobj"); 3790 } 3791 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3792 spa->spa_meta_objset, obj)); 3793 3794 /* 3795 * Create the pool's history object. 3796 */ 3797 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3798 spa_history_create_obj(spa, tx); 3799 3800 /* 3801 * Generate some random noise for salted checksums to operate on. 3802 */ 3803 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3804 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3805 3806 /* 3807 * Set pool properties. 3808 */ 3809 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3810 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3811 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3812 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3813 3814 if (props != NULL) { 3815 spa_configfile_set(spa, props, B_FALSE); 3816 spa_sync_props(props, tx); 3817 } 3818 3819 dmu_tx_commit(tx); 3820 3821 spa->spa_sync_on = B_TRUE; 3822 txg_sync_start(spa->spa_dsl_pool); 3823 3824 /* 3825 * We explicitly wait for the first transaction to complete so that our 3826 * bean counters are appropriately updated. 3827 */ 3828 txg_wait_synced(spa->spa_dsl_pool, txg); 3829 3830 spa_config_sync(spa, B_FALSE, B_TRUE); 3831 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 3832 3833 spa_history_log_version(spa, "create"); 3834 3835 /* 3836 * Don't count references from objsets that are already closed 3837 * and are making their way through the eviction process. 3838 */ 3839 spa_evicting_os_wait(spa); 3840 spa->spa_minref = refcount_count(&spa->spa_refcount); 3841 spa->spa_load_state = SPA_LOAD_NONE; 3842 3843 mutex_exit(&spa_namespace_lock); 3844 3845 return (0); 3846 } 3847 3848 #ifdef _KERNEL 3849 /* 3850 * Get the root pool information from the root disk, then import the root pool 3851 * during the system boot up time. 3852 */ 3853 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3854 3855 static nvlist_t * 3856 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3857 { 3858 nvlist_t *config; 3859 nvlist_t *nvtop, *nvroot; 3860 uint64_t pgid; 3861 3862 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3863 return (NULL); 3864 3865 /* 3866 * Add this top-level vdev to the child array. 3867 */ 3868 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3869 &nvtop) == 0); 3870 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3871 &pgid) == 0); 3872 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3873 3874 /* 3875 * Put this pool's top-level vdevs into a root vdev. 3876 */ 3877 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3878 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3879 VDEV_TYPE_ROOT) == 0); 3880 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3881 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3882 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3883 &nvtop, 1) == 0); 3884 3885 /* 3886 * Replace the existing vdev_tree with the new root vdev in 3887 * this pool's configuration (remove the old, add the new). 3888 */ 3889 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3890 nvlist_free(nvroot); 3891 return (config); 3892 } 3893 3894 /* 3895 * Walk the vdev tree and see if we can find a device with "better" 3896 * configuration. A configuration is "better" if the label on that 3897 * device has a more recent txg. 3898 */ 3899 static void 3900 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3901 { 3902 for (int c = 0; c < vd->vdev_children; c++) 3903 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3904 3905 if (vd->vdev_ops->vdev_op_leaf) { 3906 nvlist_t *label; 3907 uint64_t label_txg; 3908 3909 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3910 &label) != 0) 3911 return; 3912 3913 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3914 &label_txg) == 0); 3915 3916 /* 3917 * Do we have a better boot device? 3918 */ 3919 if (label_txg > *txg) { 3920 *txg = label_txg; 3921 *avd = vd; 3922 } 3923 nvlist_free(label); 3924 } 3925 } 3926 3927 /* 3928 * Import a root pool. 3929 * 3930 * For x86. devpath_list will consist of devid and/or physpath name of 3931 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3932 * The GRUB "findroot" command will return the vdev we should boot. 3933 * 3934 * For Sparc, devpath_list consists the physpath name of the booting device 3935 * no matter the rootpool is a single device pool or a mirrored pool. 3936 * e.g. 3937 * "/pci@1f,0/ide@d/disk@0,0:a" 3938 */ 3939 int 3940 spa_import_rootpool(char *devpath, char *devid) 3941 { 3942 spa_t *spa; 3943 vdev_t *rvd, *bvd, *avd = NULL; 3944 nvlist_t *config, *nvtop; 3945 uint64_t guid, txg; 3946 char *pname; 3947 int error; 3948 3949 /* 3950 * Read the label from the boot device and generate a configuration. 3951 */ 3952 config = spa_generate_rootconf(devpath, devid, &guid); 3953 #if defined(_OBP) && defined(_KERNEL) 3954 if (config == NULL) { 3955 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3956 /* iscsi boot */ 3957 get_iscsi_bootpath_phy(devpath); 3958 config = spa_generate_rootconf(devpath, devid, &guid); 3959 } 3960 } 3961 #endif 3962 if (config == NULL) { 3963 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3964 devpath); 3965 return (SET_ERROR(EIO)); 3966 } 3967 3968 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3969 &pname) == 0); 3970 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3971 3972 mutex_enter(&spa_namespace_lock); 3973 if ((spa = spa_lookup(pname)) != NULL) { 3974 /* 3975 * Remove the existing root pool from the namespace so that we 3976 * can replace it with the correct config we just read in. 3977 */ 3978 spa_remove(spa); 3979 } 3980 3981 spa = spa_add(pname, config, NULL); 3982 spa->spa_is_root = B_TRUE; 3983 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3984 3985 /* 3986 * Build up a vdev tree based on the boot device's label config. 3987 */ 3988 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3989 &nvtop) == 0); 3990 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3991 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3992 VDEV_ALLOC_ROOTPOOL); 3993 spa_config_exit(spa, SCL_ALL, FTAG); 3994 if (error) { 3995 mutex_exit(&spa_namespace_lock); 3996 nvlist_free(config); 3997 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3998 pname); 3999 return (error); 4000 } 4001 4002 /* 4003 * Get the boot vdev. 4004 */ 4005 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 4006 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 4007 (u_longlong_t)guid); 4008 error = SET_ERROR(ENOENT); 4009 goto out; 4010 } 4011 4012 /* 4013 * Determine if there is a better boot device. 4014 */ 4015 avd = bvd; 4016 spa_alt_rootvdev(rvd, &avd, &txg); 4017 if (avd != bvd) { 4018 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 4019 "try booting from '%s'", avd->vdev_path); 4020 error = SET_ERROR(EINVAL); 4021 goto out; 4022 } 4023 4024 /* 4025 * If the boot device is part of a spare vdev then ensure that 4026 * we're booting off the active spare. 4027 */ 4028 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 4029 !bvd->vdev_isspare) { 4030 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 4031 "try booting from '%s'", 4032 bvd->vdev_parent-> 4033 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 4034 error = SET_ERROR(EINVAL); 4035 goto out; 4036 } 4037 4038 error = 0; 4039 out: 4040 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4041 vdev_free(rvd); 4042 spa_config_exit(spa, SCL_ALL, FTAG); 4043 mutex_exit(&spa_namespace_lock); 4044 4045 nvlist_free(config); 4046 return (error); 4047 } 4048 4049 #endif 4050 4051 /* 4052 * Import a non-root pool into the system. 4053 */ 4054 int 4055 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 4056 { 4057 spa_t *spa; 4058 char *altroot = NULL; 4059 spa_load_state_t state = SPA_LOAD_IMPORT; 4060 zpool_rewind_policy_t policy; 4061 uint64_t mode = spa_mode_global; 4062 uint64_t readonly = B_FALSE; 4063 int error; 4064 nvlist_t *nvroot; 4065 nvlist_t **spares, **l2cache; 4066 uint_t nspares, nl2cache; 4067 4068 /* 4069 * If a pool with this name exists, return failure. 4070 */ 4071 mutex_enter(&spa_namespace_lock); 4072 if (spa_lookup(pool) != NULL) { 4073 mutex_exit(&spa_namespace_lock); 4074 return (SET_ERROR(EEXIST)); 4075 } 4076 4077 /* 4078 * Create and initialize the spa structure. 4079 */ 4080 (void) nvlist_lookup_string(props, 4081 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4082 (void) nvlist_lookup_uint64(props, 4083 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 4084 if (readonly) 4085 mode = FREAD; 4086 spa = spa_add(pool, config, altroot); 4087 spa->spa_import_flags = flags; 4088 4089 /* 4090 * Verbatim import - Take a pool and insert it into the namespace 4091 * as if it had been loaded at boot. 4092 */ 4093 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 4094 if (props != NULL) 4095 spa_configfile_set(spa, props, B_FALSE); 4096 4097 spa_config_sync(spa, B_FALSE, B_TRUE); 4098 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 4099 4100 mutex_exit(&spa_namespace_lock); 4101 return (0); 4102 } 4103 4104 spa_activate(spa, mode); 4105 4106 /* 4107 * Don't start async tasks until we know everything is healthy. 4108 */ 4109 spa_async_suspend(spa); 4110 4111 zpool_get_rewind_policy(config, &policy); 4112 if (policy.zrp_request & ZPOOL_DO_REWIND) 4113 state = SPA_LOAD_RECOVER; 4114 4115 /* 4116 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 4117 * because the user-supplied config is actually the one to trust when 4118 * doing an import. 4119 */ 4120 if (state != SPA_LOAD_RECOVER) 4121 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4122 4123 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 4124 policy.zrp_request); 4125 4126 /* 4127 * Propagate anything learned while loading the pool and pass it 4128 * back to caller (i.e. rewind info, missing devices, etc). 4129 */ 4130 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4131 spa->spa_load_info) == 0); 4132 4133 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4134 /* 4135 * Toss any existing sparelist, as it doesn't have any validity 4136 * anymore, and conflicts with spa_has_spare(). 4137 */ 4138 if (spa->spa_spares.sav_config) { 4139 nvlist_free(spa->spa_spares.sav_config); 4140 spa->spa_spares.sav_config = NULL; 4141 spa_load_spares(spa); 4142 } 4143 if (spa->spa_l2cache.sav_config) { 4144 nvlist_free(spa->spa_l2cache.sav_config); 4145 spa->spa_l2cache.sav_config = NULL; 4146 spa_load_l2cache(spa); 4147 } 4148 4149 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4150 &nvroot) == 0); 4151 if (error == 0) 4152 error = spa_validate_aux(spa, nvroot, -1ULL, 4153 VDEV_ALLOC_SPARE); 4154 if (error == 0) 4155 error = spa_validate_aux(spa, nvroot, -1ULL, 4156 VDEV_ALLOC_L2CACHE); 4157 spa_config_exit(spa, SCL_ALL, FTAG); 4158 4159 if (props != NULL) 4160 spa_configfile_set(spa, props, B_FALSE); 4161 4162 if (error != 0 || (props && spa_writeable(spa) && 4163 (error = spa_prop_set(spa, props)))) { 4164 spa_unload(spa); 4165 spa_deactivate(spa); 4166 spa_remove(spa); 4167 mutex_exit(&spa_namespace_lock); 4168 return (error); 4169 } 4170 4171 spa_async_resume(spa); 4172 4173 /* 4174 * Override any spares and level 2 cache devices as specified by 4175 * the user, as these may have correct device names/devids, etc. 4176 */ 4177 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4178 &spares, &nspares) == 0) { 4179 if (spa->spa_spares.sav_config) 4180 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4181 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4182 else 4183 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4184 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4185 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4186 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4187 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4188 spa_load_spares(spa); 4189 spa_config_exit(spa, SCL_ALL, FTAG); 4190 spa->spa_spares.sav_sync = B_TRUE; 4191 } 4192 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4193 &l2cache, &nl2cache) == 0) { 4194 if (spa->spa_l2cache.sav_config) 4195 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4196 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4197 else 4198 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4199 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4200 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4201 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4202 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4203 spa_load_l2cache(spa); 4204 spa_config_exit(spa, SCL_ALL, FTAG); 4205 spa->spa_l2cache.sav_sync = B_TRUE; 4206 } 4207 4208 /* 4209 * Check for any removed devices. 4210 */ 4211 if (spa->spa_autoreplace) { 4212 spa_aux_check_removed(&spa->spa_spares); 4213 spa_aux_check_removed(&spa->spa_l2cache); 4214 } 4215 4216 if (spa_writeable(spa)) { 4217 /* 4218 * Update the config cache to include the newly-imported pool. 4219 */ 4220 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4221 } 4222 4223 /* 4224 * It's possible that the pool was expanded while it was exported. 4225 * We kick off an async task to handle this for us. 4226 */ 4227 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4228 4229 spa_history_log_version(spa, "import"); 4230 4231 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 4232 4233 mutex_exit(&spa_namespace_lock); 4234 4235 return (0); 4236 } 4237 4238 nvlist_t * 4239 spa_tryimport(nvlist_t *tryconfig) 4240 { 4241 nvlist_t *config = NULL; 4242 char *poolname; 4243 spa_t *spa; 4244 uint64_t state; 4245 int error; 4246 4247 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4248 return (NULL); 4249 4250 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4251 return (NULL); 4252 4253 /* 4254 * Create and initialize the spa structure. 4255 */ 4256 mutex_enter(&spa_namespace_lock); 4257 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4258 spa_activate(spa, FREAD); 4259 4260 /* 4261 * Pass off the heavy lifting to spa_load(). 4262 * Pass TRUE for mosconfig because the user-supplied config 4263 * is actually the one to trust when doing an import. 4264 */ 4265 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4266 4267 /* 4268 * If 'tryconfig' was at least parsable, return the current config. 4269 */ 4270 if (spa->spa_root_vdev != NULL) { 4271 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4272 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4273 poolname) == 0); 4274 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4275 state) == 0); 4276 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4277 spa->spa_uberblock.ub_timestamp) == 0); 4278 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4279 spa->spa_load_info) == 0); 4280 4281 /* 4282 * If the bootfs property exists on this pool then we 4283 * copy it out so that external consumers can tell which 4284 * pools are bootable. 4285 */ 4286 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4287 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4288 4289 /* 4290 * We have to play games with the name since the 4291 * pool was opened as TRYIMPORT_NAME. 4292 */ 4293 if (dsl_dsobj_to_dsname(spa_name(spa), 4294 spa->spa_bootfs, tmpname) == 0) { 4295 char *cp; 4296 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4297 4298 cp = strchr(tmpname, '/'); 4299 if (cp == NULL) { 4300 (void) strlcpy(dsname, tmpname, 4301 MAXPATHLEN); 4302 } else { 4303 (void) snprintf(dsname, MAXPATHLEN, 4304 "%s/%s", poolname, ++cp); 4305 } 4306 VERIFY(nvlist_add_string(config, 4307 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4308 kmem_free(dsname, MAXPATHLEN); 4309 } 4310 kmem_free(tmpname, MAXPATHLEN); 4311 } 4312 4313 /* 4314 * Add the list of hot spares and level 2 cache devices. 4315 */ 4316 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4317 spa_add_spares(spa, config); 4318 spa_add_l2cache(spa, config); 4319 spa_config_exit(spa, SCL_CONFIG, FTAG); 4320 } 4321 4322 spa_unload(spa); 4323 spa_deactivate(spa); 4324 spa_remove(spa); 4325 mutex_exit(&spa_namespace_lock); 4326 4327 return (config); 4328 } 4329 4330 /* 4331 * Pool export/destroy 4332 * 4333 * The act of destroying or exporting a pool is very simple. We make sure there 4334 * is no more pending I/O and any references to the pool are gone. Then, we 4335 * update the pool state and sync all the labels to disk, removing the 4336 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4337 * we don't sync the labels or remove the configuration cache. 4338 */ 4339 static int 4340 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4341 boolean_t force, boolean_t hardforce) 4342 { 4343 spa_t *spa; 4344 4345 if (oldconfig) 4346 *oldconfig = NULL; 4347 4348 if (!(spa_mode_global & FWRITE)) 4349 return (SET_ERROR(EROFS)); 4350 4351 mutex_enter(&spa_namespace_lock); 4352 if ((spa = spa_lookup(pool)) == NULL) { 4353 mutex_exit(&spa_namespace_lock); 4354 return (SET_ERROR(ENOENT)); 4355 } 4356 4357 /* 4358 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4359 * reacquire the namespace lock, and see if we can export. 4360 */ 4361 spa_open_ref(spa, FTAG); 4362 mutex_exit(&spa_namespace_lock); 4363 spa_async_suspend(spa); 4364 mutex_enter(&spa_namespace_lock); 4365 spa_close(spa, FTAG); 4366 4367 /* 4368 * The pool will be in core if it's openable, 4369 * in which case we can modify its state. 4370 */ 4371 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4372 /* 4373 * Objsets may be open only because they're dirty, so we 4374 * have to force it to sync before checking spa_refcnt. 4375 */ 4376 txg_wait_synced(spa->spa_dsl_pool, 0); 4377 spa_evicting_os_wait(spa); 4378 4379 /* 4380 * A pool cannot be exported or destroyed if there are active 4381 * references. If we are resetting a pool, allow references by 4382 * fault injection handlers. 4383 */ 4384 if (!spa_refcount_zero(spa) || 4385 (spa->spa_inject_ref != 0 && 4386 new_state != POOL_STATE_UNINITIALIZED)) { 4387 spa_async_resume(spa); 4388 mutex_exit(&spa_namespace_lock); 4389 return (SET_ERROR(EBUSY)); 4390 } 4391 4392 /* 4393 * A pool cannot be exported if it has an active shared spare. 4394 * This is to prevent other pools stealing the active spare 4395 * from an exported pool. At user's own will, such pool can 4396 * be forcedly exported. 4397 */ 4398 if (!force && new_state == POOL_STATE_EXPORTED && 4399 spa_has_active_shared_spare(spa)) { 4400 spa_async_resume(spa); 4401 mutex_exit(&spa_namespace_lock); 4402 return (SET_ERROR(EXDEV)); 4403 } 4404 4405 /* 4406 * We want this to be reflected on every label, 4407 * so mark them all dirty. spa_unload() will do the 4408 * final sync that pushes these changes out. 4409 */ 4410 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4411 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4412 spa->spa_state = new_state; 4413 spa->spa_final_txg = spa_last_synced_txg(spa) + 4414 TXG_DEFER_SIZE + 1; 4415 vdev_config_dirty(spa->spa_root_vdev); 4416 spa_config_exit(spa, SCL_ALL, FTAG); 4417 } 4418 } 4419 4420 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 4421 4422 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4423 spa_unload(spa); 4424 spa_deactivate(spa); 4425 } 4426 4427 if (oldconfig && spa->spa_config) 4428 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4429 4430 if (new_state != POOL_STATE_UNINITIALIZED) { 4431 if (!hardforce) 4432 spa_config_sync(spa, B_TRUE, B_TRUE); 4433 spa_remove(spa); 4434 } 4435 mutex_exit(&spa_namespace_lock); 4436 4437 return (0); 4438 } 4439 4440 /* 4441 * Destroy a storage pool. 4442 */ 4443 int 4444 spa_destroy(char *pool) 4445 { 4446 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4447 B_FALSE, B_FALSE)); 4448 } 4449 4450 /* 4451 * Export a storage pool. 4452 */ 4453 int 4454 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4455 boolean_t hardforce) 4456 { 4457 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4458 force, hardforce)); 4459 } 4460 4461 /* 4462 * Similar to spa_export(), this unloads the spa_t without actually removing it 4463 * from the namespace in any way. 4464 */ 4465 int 4466 spa_reset(char *pool) 4467 { 4468 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4469 B_FALSE, B_FALSE)); 4470 } 4471 4472 /* 4473 * ========================================================================== 4474 * Device manipulation 4475 * ========================================================================== 4476 */ 4477 4478 /* 4479 * Add a device to a storage pool. 4480 */ 4481 int 4482 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4483 { 4484 uint64_t txg, id; 4485 int error; 4486 vdev_t *rvd = spa->spa_root_vdev; 4487 vdev_t *vd, *tvd; 4488 nvlist_t **spares, **l2cache; 4489 uint_t nspares, nl2cache; 4490 4491 ASSERT(spa_writeable(spa)); 4492 4493 txg = spa_vdev_enter(spa); 4494 4495 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4496 VDEV_ALLOC_ADD)) != 0) 4497 return (spa_vdev_exit(spa, NULL, txg, error)); 4498 4499 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4500 4501 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4502 &nspares) != 0) 4503 nspares = 0; 4504 4505 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4506 &nl2cache) != 0) 4507 nl2cache = 0; 4508 4509 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4510 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4511 4512 if (vd->vdev_children != 0 && 4513 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4514 return (spa_vdev_exit(spa, vd, txg, error)); 4515 4516 /* 4517 * We must validate the spares and l2cache devices after checking the 4518 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4519 */ 4520 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4521 return (spa_vdev_exit(spa, vd, txg, error)); 4522 4523 /* 4524 * Transfer each new top-level vdev from vd to rvd. 4525 */ 4526 for (int c = 0; c < vd->vdev_children; c++) { 4527 4528 /* 4529 * Set the vdev id to the first hole, if one exists. 4530 */ 4531 for (id = 0; id < rvd->vdev_children; id++) { 4532 if (rvd->vdev_child[id]->vdev_ishole) { 4533 vdev_free(rvd->vdev_child[id]); 4534 break; 4535 } 4536 } 4537 tvd = vd->vdev_child[c]; 4538 vdev_remove_child(vd, tvd); 4539 tvd->vdev_id = id; 4540 vdev_add_child(rvd, tvd); 4541 vdev_config_dirty(tvd); 4542 } 4543 4544 if (nspares != 0) { 4545 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4546 ZPOOL_CONFIG_SPARES); 4547 spa_load_spares(spa); 4548 spa->spa_spares.sav_sync = B_TRUE; 4549 } 4550 4551 if (nl2cache != 0) { 4552 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4553 ZPOOL_CONFIG_L2CACHE); 4554 spa_load_l2cache(spa); 4555 spa->spa_l2cache.sav_sync = B_TRUE; 4556 } 4557 4558 /* 4559 * We have to be careful when adding new vdevs to an existing pool. 4560 * If other threads start allocating from these vdevs before we 4561 * sync the config cache, and we lose power, then upon reboot we may 4562 * fail to open the pool because there are DVAs that the config cache 4563 * can't translate. Therefore, we first add the vdevs without 4564 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4565 * and then let spa_config_update() initialize the new metaslabs. 4566 * 4567 * spa_load() checks for added-but-not-initialized vdevs, so that 4568 * if we lose power at any point in this sequence, the remaining 4569 * steps will be completed the next time we load the pool. 4570 */ 4571 (void) spa_vdev_exit(spa, vd, txg, 0); 4572 4573 mutex_enter(&spa_namespace_lock); 4574 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4575 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 4576 mutex_exit(&spa_namespace_lock); 4577 4578 return (0); 4579 } 4580 4581 /* 4582 * Attach a device to a mirror. The arguments are the path to any device 4583 * in the mirror, and the nvroot for the new device. If the path specifies 4584 * a device that is not mirrored, we automatically insert the mirror vdev. 4585 * 4586 * If 'replacing' is specified, the new device is intended to replace the 4587 * existing device; in this case the two devices are made into their own 4588 * mirror using the 'replacing' vdev, which is functionally identical to 4589 * the mirror vdev (it actually reuses all the same ops) but has a few 4590 * extra rules: you can't attach to it after it's been created, and upon 4591 * completion of resilvering, the first disk (the one being replaced) 4592 * is automatically detached. 4593 */ 4594 int 4595 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4596 { 4597 uint64_t txg, dtl_max_txg; 4598 vdev_t *rvd = spa->spa_root_vdev; 4599 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4600 vdev_ops_t *pvops; 4601 char *oldvdpath, *newvdpath; 4602 int newvd_isspare; 4603 int error; 4604 4605 ASSERT(spa_writeable(spa)); 4606 4607 txg = spa_vdev_enter(spa); 4608 4609 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4610 4611 if (oldvd == NULL) 4612 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4613 4614 if (!oldvd->vdev_ops->vdev_op_leaf) 4615 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4616 4617 pvd = oldvd->vdev_parent; 4618 4619 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4620 VDEV_ALLOC_ATTACH)) != 0) 4621 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4622 4623 if (newrootvd->vdev_children != 1) 4624 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4625 4626 newvd = newrootvd->vdev_child[0]; 4627 4628 if (!newvd->vdev_ops->vdev_op_leaf) 4629 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4630 4631 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4632 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4633 4634 /* 4635 * Spares can't replace logs 4636 */ 4637 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4638 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4639 4640 if (!replacing) { 4641 /* 4642 * For attach, the only allowable parent is a mirror or the root 4643 * vdev. 4644 */ 4645 if (pvd->vdev_ops != &vdev_mirror_ops && 4646 pvd->vdev_ops != &vdev_root_ops) 4647 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4648 4649 pvops = &vdev_mirror_ops; 4650 } else { 4651 /* 4652 * Active hot spares can only be replaced by inactive hot 4653 * spares. 4654 */ 4655 if (pvd->vdev_ops == &vdev_spare_ops && 4656 oldvd->vdev_isspare && 4657 !spa_has_spare(spa, newvd->vdev_guid)) 4658 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4659 4660 /* 4661 * If the source is a hot spare, and the parent isn't already a 4662 * spare, then we want to create a new hot spare. Otherwise, we 4663 * want to create a replacing vdev. The user is not allowed to 4664 * attach to a spared vdev child unless the 'isspare' state is 4665 * the same (spare replaces spare, non-spare replaces 4666 * non-spare). 4667 */ 4668 if (pvd->vdev_ops == &vdev_replacing_ops && 4669 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4670 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4671 } else if (pvd->vdev_ops == &vdev_spare_ops && 4672 newvd->vdev_isspare != oldvd->vdev_isspare) { 4673 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4674 } 4675 4676 if (newvd->vdev_isspare) 4677 pvops = &vdev_spare_ops; 4678 else 4679 pvops = &vdev_replacing_ops; 4680 } 4681 4682 /* 4683 * Make sure the new device is big enough. 4684 */ 4685 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4686 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4687 4688 /* 4689 * The new device cannot have a higher alignment requirement 4690 * than the top-level vdev. 4691 */ 4692 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4693 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4694 4695 /* 4696 * If this is an in-place replacement, update oldvd's path and devid 4697 * to make it distinguishable from newvd, and unopenable from now on. 4698 */ 4699 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4700 spa_strfree(oldvd->vdev_path); 4701 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4702 KM_SLEEP); 4703 (void) sprintf(oldvd->vdev_path, "%s/%s", 4704 newvd->vdev_path, "old"); 4705 if (oldvd->vdev_devid != NULL) { 4706 spa_strfree(oldvd->vdev_devid); 4707 oldvd->vdev_devid = NULL; 4708 } 4709 } 4710 4711 /* mark the device being resilvered */ 4712 newvd->vdev_resilver_txg = txg; 4713 4714 /* 4715 * If the parent is not a mirror, or if we're replacing, insert the new 4716 * mirror/replacing/spare vdev above oldvd. 4717 */ 4718 if (pvd->vdev_ops != pvops) 4719 pvd = vdev_add_parent(oldvd, pvops); 4720 4721 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4722 ASSERT(pvd->vdev_ops == pvops); 4723 ASSERT(oldvd->vdev_parent == pvd); 4724 4725 /* 4726 * Extract the new device from its root and add it to pvd. 4727 */ 4728 vdev_remove_child(newrootvd, newvd); 4729 newvd->vdev_id = pvd->vdev_children; 4730 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4731 vdev_add_child(pvd, newvd); 4732 4733 tvd = newvd->vdev_top; 4734 ASSERT(pvd->vdev_top == tvd); 4735 ASSERT(tvd->vdev_parent == rvd); 4736 4737 vdev_config_dirty(tvd); 4738 4739 /* 4740 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4741 * for any dmu_sync-ed blocks. It will propagate upward when 4742 * spa_vdev_exit() calls vdev_dtl_reassess(). 4743 */ 4744 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4745 4746 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4747 dtl_max_txg - TXG_INITIAL); 4748 4749 if (newvd->vdev_isspare) { 4750 spa_spare_activate(newvd); 4751 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 4752 } 4753 4754 oldvdpath = spa_strdup(oldvd->vdev_path); 4755 newvdpath = spa_strdup(newvd->vdev_path); 4756 newvd_isspare = newvd->vdev_isspare; 4757 4758 /* 4759 * Mark newvd's DTL dirty in this txg. 4760 */ 4761 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4762 4763 /* 4764 * Schedule the resilver to restart in the future. We do this to 4765 * ensure that dmu_sync-ed blocks have been stitched into the 4766 * respective datasets. 4767 */ 4768 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4769 4770 if (spa->spa_bootfs) 4771 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4772 4773 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 4774 4775 /* 4776 * Commit the config 4777 */ 4778 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4779 4780 spa_history_log_internal(spa, "vdev attach", NULL, 4781 "%s vdev=%s %s vdev=%s", 4782 replacing && newvd_isspare ? "spare in" : 4783 replacing ? "replace" : "attach", newvdpath, 4784 replacing ? "for" : "to", oldvdpath); 4785 4786 spa_strfree(oldvdpath); 4787 spa_strfree(newvdpath); 4788 4789 return (0); 4790 } 4791 4792 /* 4793 * Detach a device from a mirror or replacing vdev. 4794 * 4795 * If 'replace_done' is specified, only detach if the parent 4796 * is a replacing vdev. 4797 */ 4798 int 4799 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4800 { 4801 uint64_t txg; 4802 int error; 4803 vdev_t *rvd = spa->spa_root_vdev; 4804 vdev_t *vd, *pvd, *cvd, *tvd; 4805 boolean_t unspare = B_FALSE; 4806 uint64_t unspare_guid = 0; 4807 char *vdpath; 4808 4809 ASSERT(spa_writeable(spa)); 4810 4811 txg = spa_vdev_enter(spa); 4812 4813 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4814 4815 if (vd == NULL) 4816 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4817 4818 if (!vd->vdev_ops->vdev_op_leaf) 4819 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4820 4821 pvd = vd->vdev_parent; 4822 4823 /* 4824 * If the parent/child relationship is not as expected, don't do it. 4825 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4826 * vdev that's replacing B with C. The user's intent in replacing 4827 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4828 * the replace by detaching C, the expected behavior is to end up 4829 * M(A,B). But suppose that right after deciding to detach C, 4830 * the replacement of B completes. We would have M(A,C), and then 4831 * ask to detach C, which would leave us with just A -- not what 4832 * the user wanted. To prevent this, we make sure that the 4833 * parent/child relationship hasn't changed -- in this example, 4834 * that C's parent is still the replacing vdev R. 4835 */ 4836 if (pvd->vdev_guid != pguid && pguid != 0) 4837 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4838 4839 /* 4840 * Only 'replacing' or 'spare' vdevs can be replaced. 4841 */ 4842 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4843 pvd->vdev_ops != &vdev_spare_ops) 4844 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4845 4846 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4847 spa_version(spa) >= SPA_VERSION_SPARES); 4848 4849 /* 4850 * Only mirror, replacing, and spare vdevs support detach. 4851 */ 4852 if (pvd->vdev_ops != &vdev_replacing_ops && 4853 pvd->vdev_ops != &vdev_mirror_ops && 4854 pvd->vdev_ops != &vdev_spare_ops) 4855 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4856 4857 /* 4858 * If this device has the only valid copy of some data, 4859 * we cannot safely detach it. 4860 */ 4861 if (vdev_dtl_required(vd)) 4862 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4863 4864 ASSERT(pvd->vdev_children >= 2); 4865 4866 /* 4867 * If we are detaching the second disk from a replacing vdev, then 4868 * check to see if we changed the original vdev's path to have "/old" 4869 * at the end in spa_vdev_attach(). If so, undo that change now. 4870 */ 4871 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4872 vd->vdev_path != NULL) { 4873 size_t len = strlen(vd->vdev_path); 4874 4875 for (int c = 0; c < pvd->vdev_children; c++) { 4876 cvd = pvd->vdev_child[c]; 4877 4878 if (cvd == vd || cvd->vdev_path == NULL) 4879 continue; 4880 4881 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4882 strcmp(cvd->vdev_path + len, "/old") == 0) { 4883 spa_strfree(cvd->vdev_path); 4884 cvd->vdev_path = spa_strdup(vd->vdev_path); 4885 break; 4886 } 4887 } 4888 } 4889 4890 /* 4891 * If we are detaching the original disk from a spare, then it implies 4892 * that the spare should become a real disk, and be removed from the 4893 * active spare list for the pool. 4894 */ 4895 if (pvd->vdev_ops == &vdev_spare_ops && 4896 vd->vdev_id == 0 && 4897 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4898 unspare = B_TRUE; 4899 4900 /* 4901 * Erase the disk labels so the disk can be used for other things. 4902 * This must be done after all other error cases are handled, 4903 * but before we disembowel vd (so we can still do I/O to it). 4904 * But if we can't do it, don't treat the error as fatal -- 4905 * it may be that the unwritability of the disk is the reason 4906 * it's being detached! 4907 */ 4908 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4909 4910 /* 4911 * Remove vd from its parent and compact the parent's children. 4912 */ 4913 vdev_remove_child(pvd, vd); 4914 vdev_compact_children(pvd); 4915 4916 /* 4917 * Remember one of the remaining children so we can get tvd below. 4918 */ 4919 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4920 4921 /* 4922 * If we need to remove the remaining child from the list of hot spares, 4923 * do it now, marking the vdev as no longer a spare in the process. 4924 * We must do this before vdev_remove_parent(), because that can 4925 * change the GUID if it creates a new toplevel GUID. For a similar 4926 * reason, we must remove the spare now, in the same txg as the detach; 4927 * otherwise someone could attach a new sibling, change the GUID, and 4928 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4929 */ 4930 if (unspare) { 4931 ASSERT(cvd->vdev_isspare); 4932 spa_spare_remove(cvd); 4933 unspare_guid = cvd->vdev_guid; 4934 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4935 cvd->vdev_unspare = B_TRUE; 4936 } 4937 4938 /* 4939 * If the parent mirror/replacing vdev only has one child, 4940 * the parent is no longer needed. Remove it from the tree. 4941 */ 4942 if (pvd->vdev_children == 1) { 4943 if (pvd->vdev_ops == &vdev_spare_ops) 4944 cvd->vdev_unspare = B_FALSE; 4945 vdev_remove_parent(cvd); 4946 } 4947 4948 4949 /* 4950 * We don't set tvd until now because the parent we just removed 4951 * may have been the previous top-level vdev. 4952 */ 4953 tvd = cvd->vdev_top; 4954 ASSERT(tvd->vdev_parent == rvd); 4955 4956 /* 4957 * Reevaluate the parent vdev state. 4958 */ 4959 vdev_propagate_state(cvd); 4960 4961 /* 4962 * If the 'autoexpand' property is set on the pool then automatically 4963 * try to expand the size of the pool. For example if the device we 4964 * just detached was smaller than the others, it may be possible to 4965 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4966 * first so that we can obtain the updated sizes of the leaf vdevs. 4967 */ 4968 if (spa->spa_autoexpand) { 4969 vdev_reopen(tvd); 4970 vdev_expand(tvd, txg); 4971 } 4972 4973 vdev_config_dirty(tvd); 4974 4975 /* 4976 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4977 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4978 * But first make sure we're not on any *other* txg's DTL list, to 4979 * prevent vd from being accessed after it's freed. 4980 */ 4981 vdpath = spa_strdup(vd->vdev_path); 4982 for (int t = 0; t < TXG_SIZE; t++) 4983 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4984 vd->vdev_detached = B_TRUE; 4985 vdev_dirty(tvd, VDD_DTL, vd, txg); 4986 4987 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 4988 4989 /* hang on to the spa before we release the lock */ 4990 spa_open_ref(spa, FTAG); 4991 4992 error = spa_vdev_exit(spa, vd, txg, 0); 4993 4994 spa_history_log_internal(spa, "detach", NULL, 4995 "vdev=%s", vdpath); 4996 spa_strfree(vdpath); 4997 4998 /* 4999 * If this was the removal of the original device in a hot spare vdev, 5000 * then we want to go through and remove the device from the hot spare 5001 * list of every other pool. 5002 */ 5003 if (unspare) { 5004 spa_t *altspa = NULL; 5005 5006 mutex_enter(&spa_namespace_lock); 5007 while ((altspa = spa_next(altspa)) != NULL) { 5008 if (altspa->spa_state != POOL_STATE_ACTIVE || 5009 altspa == spa) 5010 continue; 5011 5012 spa_open_ref(altspa, FTAG); 5013 mutex_exit(&spa_namespace_lock); 5014 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 5015 mutex_enter(&spa_namespace_lock); 5016 spa_close(altspa, FTAG); 5017 } 5018 mutex_exit(&spa_namespace_lock); 5019 5020 /* search the rest of the vdevs for spares to remove */ 5021 spa_vdev_resilver_done(spa); 5022 } 5023 5024 /* all done with the spa; OK to release */ 5025 mutex_enter(&spa_namespace_lock); 5026 spa_close(spa, FTAG); 5027 mutex_exit(&spa_namespace_lock); 5028 5029 return (error); 5030 } 5031 5032 /* 5033 * Split a set of devices from their mirrors, and create a new pool from them. 5034 */ 5035 int 5036 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 5037 nvlist_t *props, boolean_t exp) 5038 { 5039 int error = 0; 5040 uint64_t txg, *glist; 5041 spa_t *newspa; 5042 uint_t c, children, lastlog; 5043 nvlist_t **child, *nvl, *tmp; 5044 dmu_tx_t *tx; 5045 char *altroot = NULL; 5046 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 5047 boolean_t activate_slog; 5048 5049 ASSERT(spa_writeable(spa)); 5050 5051 txg = spa_vdev_enter(spa); 5052 5053 /* clear the log and flush everything up to now */ 5054 activate_slog = spa_passivate_log(spa); 5055 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5056 error = spa_offline_log(spa); 5057 txg = spa_vdev_config_enter(spa); 5058 5059 if (activate_slog) 5060 spa_activate_log(spa); 5061 5062 if (error != 0) 5063 return (spa_vdev_exit(spa, NULL, txg, error)); 5064 5065 /* check new spa name before going any further */ 5066 if (spa_lookup(newname) != NULL) 5067 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 5068 5069 /* 5070 * scan through all the children to ensure they're all mirrors 5071 */ 5072 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 5073 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 5074 &children) != 0) 5075 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5076 5077 /* first, check to ensure we've got the right child count */ 5078 rvd = spa->spa_root_vdev; 5079 lastlog = 0; 5080 for (c = 0; c < rvd->vdev_children; c++) { 5081 vdev_t *vd = rvd->vdev_child[c]; 5082 5083 /* don't count the holes & logs as children */ 5084 if (vd->vdev_islog || vd->vdev_ishole) { 5085 if (lastlog == 0) 5086 lastlog = c; 5087 continue; 5088 } 5089 5090 lastlog = 0; 5091 } 5092 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 5093 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5094 5095 /* next, ensure no spare or cache devices are part of the split */ 5096 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 5097 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 5098 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5099 5100 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 5101 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 5102 5103 /* then, loop over each vdev and validate it */ 5104 for (c = 0; c < children; c++) { 5105 uint64_t is_hole = 0; 5106 5107 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 5108 &is_hole); 5109 5110 if (is_hole != 0) { 5111 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 5112 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 5113 continue; 5114 } else { 5115 error = SET_ERROR(EINVAL); 5116 break; 5117 } 5118 } 5119 5120 /* which disk is going to be split? */ 5121 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 5122 &glist[c]) != 0) { 5123 error = SET_ERROR(EINVAL); 5124 break; 5125 } 5126 5127 /* look it up in the spa */ 5128 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 5129 if (vml[c] == NULL) { 5130 error = SET_ERROR(ENODEV); 5131 break; 5132 } 5133 5134 /* make sure there's nothing stopping the split */ 5135 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 5136 vml[c]->vdev_islog || 5137 vml[c]->vdev_ishole || 5138 vml[c]->vdev_isspare || 5139 vml[c]->vdev_isl2cache || 5140 !vdev_writeable(vml[c]) || 5141 vml[c]->vdev_children != 0 || 5142 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 5143 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 5144 error = SET_ERROR(EINVAL); 5145 break; 5146 } 5147 5148 if (vdev_dtl_required(vml[c])) { 5149 error = SET_ERROR(EBUSY); 5150 break; 5151 } 5152 5153 /* we need certain info from the top level */ 5154 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5155 vml[c]->vdev_top->vdev_ms_array) == 0); 5156 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5157 vml[c]->vdev_top->vdev_ms_shift) == 0); 5158 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5159 vml[c]->vdev_top->vdev_asize) == 0); 5160 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5161 vml[c]->vdev_top->vdev_ashift) == 0); 5162 5163 /* transfer per-vdev ZAPs */ 5164 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 5165 VERIFY0(nvlist_add_uint64(child[c], 5166 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 5167 5168 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 5169 VERIFY0(nvlist_add_uint64(child[c], 5170 ZPOOL_CONFIG_VDEV_TOP_ZAP, 5171 vml[c]->vdev_parent->vdev_top_zap)); 5172 } 5173 5174 if (error != 0) { 5175 kmem_free(vml, children * sizeof (vdev_t *)); 5176 kmem_free(glist, children * sizeof (uint64_t)); 5177 return (spa_vdev_exit(spa, NULL, txg, error)); 5178 } 5179 5180 /* stop writers from using the disks */ 5181 for (c = 0; c < children; c++) { 5182 if (vml[c] != NULL) 5183 vml[c]->vdev_offline = B_TRUE; 5184 } 5185 vdev_reopen(spa->spa_root_vdev); 5186 5187 /* 5188 * Temporarily record the splitting vdevs in the spa config. This 5189 * will disappear once the config is regenerated. 5190 */ 5191 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5192 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5193 glist, children) == 0); 5194 kmem_free(glist, children * sizeof (uint64_t)); 5195 5196 mutex_enter(&spa->spa_props_lock); 5197 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5198 nvl) == 0); 5199 mutex_exit(&spa->spa_props_lock); 5200 spa->spa_config_splitting = nvl; 5201 vdev_config_dirty(spa->spa_root_vdev); 5202 5203 /* configure and create the new pool */ 5204 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5205 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5206 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5207 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5208 spa_version(spa)) == 0); 5209 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5210 spa->spa_config_txg) == 0); 5211 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5212 spa_generate_guid(NULL)) == 0); 5213 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 5214 (void) nvlist_lookup_string(props, 5215 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5216 5217 /* add the new pool to the namespace */ 5218 newspa = spa_add(newname, config, altroot); 5219 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 5220 newspa->spa_config_txg = spa->spa_config_txg; 5221 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5222 5223 /* release the spa config lock, retaining the namespace lock */ 5224 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5225 5226 if (zio_injection_enabled) 5227 zio_handle_panic_injection(spa, FTAG, 1); 5228 5229 spa_activate(newspa, spa_mode_global); 5230 spa_async_suspend(newspa); 5231 5232 /* create the new pool from the disks of the original pool */ 5233 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5234 if (error) 5235 goto out; 5236 5237 /* if that worked, generate a real config for the new pool */ 5238 if (newspa->spa_root_vdev != NULL) { 5239 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5240 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5241 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5242 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5243 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5244 B_TRUE)); 5245 } 5246 5247 /* set the props */ 5248 if (props != NULL) { 5249 spa_configfile_set(newspa, props, B_FALSE); 5250 error = spa_prop_set(newspa, props); 5251 if (error) 5252 goto out; 5253 } 5254 5255 /* flush everything */ 5256 txg = spa_vdev_config_enter(newspa); 5257 vdev_config_dirty(newspa->spa_root_vdev); 5258 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5259 5260 if (zio_injection_enabled) 5261 zio_handle_panic_injection(spa, FTAG, 2); 5262 5263 spa_async_resume(newspa); 5264 5265 /* finally, update the original pool's config */ 5266 txg = spa_vdev_config_enter(spa); 5267 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5268 error = dmu_tx_assign(tx, TXG_WAIT); 5269 if (error != 0) 5270 dmu_tx_abort(tx); 5271 for (c = 0; c < children; c++) { 5272 if (vml[c] != NULL) { 5273 vdev_split(vml[c]); 5274 if (error == 0) 5275 spa_history_log_internal(spa, "detach", tx, 5276 "vdev=%s", vml[c]->vdev_path); 5277 5278 vdev_free(vml[c]); 5279 } 5280 } 5281 spa->spa_avz_action = AVZ_ACTION_REBUILD; 5282 vdev_config_dirty(spa->spa_root_vdev); 5283 spa->spa_config_splitting = NULL; 5284 nvlist_free(nvl); 5285 if (error == 0) 5286 dmu_tx_commit(tx); 5287 (void) spa_vdev_exit(spa, NULL, txg, 0); 5288 5289 if (zio_injection_enabled) 5290 zio_handle_panic_injection(spa, FTAG, 3); 5291 5292 /* split is complete; log a history record */ 5293 spa_history_log_internal(newspa, "split", NULL, 5294 "from pool %s", spa_name(spa)); 5295 5296 kmem_free(vml, children * sizeof (vdev_t *)); 5297 5298 /* if we're not going to mount the filesystems in userland, export */ 5299 if (exp) 5300 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5301 B_FALSE, B_FALSE); 5302 5303 return (error); 5304 5305 out: 5306 spa_unload(newspa); 5307 spa_deactivate(newspa); 5308 spa_remove(newspa); 5309 5310 txg = spa_vdev_config_enter(spa); 5311 5312 /* re-online all offlined disks */ 5313 for (c = 0; c < children; c++) { 5314 if (vml[c] != NULL) 5315 vml[c]->vdev_offline = B_FALSE; 5316 } 5317 vdev_reopen(spa->spa_root_vdev); 5318 5319 nvlist_free(spa->spa_config_splitting); 5320 spa->spa_config_splitting = NULL; 5321 (void) spa_vdev_exit(spa, NULL, txg, error); 5322 5323 kmem_free(vml, children * sizeof (vdev_t *)); 5324 return (error); 5325 } 5326 5327 static nvlist_t * 5328 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5329 { 5330 for (int i = 0; i < count; i++) { 5331 uint64_t guid; 5332 5333 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5334 &guid) == 0); 5335 5336 if (guid == target_guid) 5337 return (nvpp[i]); 5338 } 5339 5340 return (NULL); 5341 } 5342 5343 static void 5344 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5345 nvlist_t *dev_to_remove) 5346 { 5347 nvlist_t **newdev = NULL; 5348 5349 if (count > 1) 5350 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5351 5352 for (int i = 0, j = 0; i < count; i++) { 5353 if (dev[i] == dev_to_remove) 5354 continue; 5355 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5356 } 5357 5358 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5359 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5360 5361 for (int i = 0; i < count - 1; i++) 5362 nvlist_free(newdev[i]); 5363 5364 if (count > 1) 5365 kmem_free(newdev, (count - 1) * sizeof (void *)); 5366 } 5367 5368 /* 5369 * Evacuate the device. 5370 */ 5371 static int 5372 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5373 { 5374 uint64_t txg; 5375 int error = 0; 5376 5377 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5378 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5379 ASSERT(vd == vd->vdev_top); 5380 5381 /* 5382 * Evacuate the device. We don't hold the config lock as writer 5383 * since we need to do I/O but we do keep the 5384 * spa_namespace_lock held. Once this completes the device 5385 * should no longer have any blocks allocated on it. 5386 */ 5387 if (vd->vdev_islog) { 5388 if (vd->vdev_stat.vs_alloc != 0) 5389 error = spa_offline_log(spa); 5390 } else { 5391 error = SET_ERROR(ENOTSUP); 5392 } 5393 5394 if (error) 5395 return (error); 5396 5397 /* 5398 * The evacuation succeeded. Remove any remaining MOS metadata 5399 * associated with this vdev, and wait for these changes to sync. 5400 */ 5401 ASSERT0(vd->vdev_stat.vs_alloc); 5402 txg = spa_vdev_config_enter(spa); 5403 vd->vdev_removing = B_TRUE; 5404 vdev_dirty_leaves(vd, VDD_DTL, txg); 5405 vdev_config_dirty(vd); 5406 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5407 5408 return (0); 5409 } 5410 5411 /* 5412 * Complete the removal by cleaning up the namespace. 5413 */ 5414 static void 5415 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5416 { 5417 vdev_t *rvd = spa->spa_root_vdev; 5418 uint64_t id = vd->vdev_id; 5419 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5420 5421 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5422 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5423 ASSERT(vd == vd->vdev_top); 5424 5425 /* 5426 * Only remove any devices which are empty. 5427 */ 5428 if (vd->vdev_stat.vs_alloc != 0) 5429 return; 5430 5431 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5432 5433 if (list_link_active(&vd->vdev_state_dirty_node)) 5434 vdev_state_clean(vd); 5435 if (list_link_active(&vd->vdev_config_dirty_node)) 5436 vdev_config_clean(vd); 5437 5438 vdev_free(vd); 5439 5440 if (last_vdev) { 5441 vdev_compact_children(rvd); 5442 } else { 5443 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5444 vdev_add_child(rvd, vd); 5445 } 5446 vdev_config_dirty(rvd); 5447 5448 /* 5449 * Reassess the health of our root vdev. 5450 */ 5451 vdev_reopen(rvd); 5452 } 5453 5454 /* 5455 * Remove a device from the pool - 5456 * 5457 * Removing a device from the vdev namespace requires several steps 5458 * and can take a significant amount of time. As a result we use 5459 * the spa_vdev_config_[enter/exit] functions which allow us to 5460 * grab and release the spa_config_lock while still holding the namespace 5461 * lock. During each step the configuration is synced out. 5462 * 5463 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5464 * devices. 5465 */ 5466 int 5467 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5468 { 5469 vdev_t *vd; 5470 sysevent_t *ev = NULL; 5471 metaslab_group_t *mg; 5472 nvlist_t **spares, **l2cache, *nv; 5473 uint64_t txg = 0; 5474 uint_t nspares, nl2cache; 5475 int error = 0; 5476 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5477 5478 ASSERT(spa_writeable(spa)); 5479 5480 if (!locked) 5481 txg = spa_vdev_enter(spa); 5482 5483 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5484 5485 if (spa->spa_spares.sav_vdevs != NULL && 5486 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5487 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5488 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5489 /* 5490 * Only remove the hot spare if it's not currently in use 5491 * in this pool. 5492 */ 5493 if (vd == NULL || unspare) { 5494 if (vd == NULL) 5495 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 5496 ev = spa_event_create(spa, vd, NULL, 5497 ESC_ZFS_VDEV_REMOVE_AUX); 5498 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5499 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5500 spa_load_spares(spa); 5501 spa->spa_spares.sav_sync = B_TRUE; 5502 } else { 5503 error = SET_ERROR(EBUSY); 5504 } 5505 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5506 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5507 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5508 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5509 /* 5510 * Cache devices can always be removed. 5511 */ 5512 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 5513 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX); 5514 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5515 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5516 spa_load_l2cache(spa); 5517 spa->spa_l2cache.sav_sync = B_TRUE; 5518 } else if (vd != NULL && vd->vdev_islog) { 5519 ASSERT(!locked); 5520 ASSERT(vd == vd->vdev_top); 5521 5522 mg = vd->vdev_mg; 5523 5524 /* 5525 * Stop allocating from this vdev. 5526 */ 5527 metaslab_group_passivate(mg); 5528 5529 /* 5530 * Wait for the youngest allocations and frees to sync, 5531 * and then wait for the deferral of those frees to finish. 5532 */ 5533 spa_vdev_config_exit(spa, NULL, 5534 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5535 5536 /* 5537 * Attempt to evacuate the vdev. 5538 */ 5539 error = spa_vdev_remove_evacuate(spa, vd); 5540 5541 txg = spa_vdev_config_enter(spa); 5542 5543 /* 5544 * If we couldn't evacuate the vdev, unwind. 5545 */ 5546 if (error) { 5547 metaslab_group_activate(mg); 5548 return (spa_vdev_exit(spa, NULL, txg, error)); 5549 } 5550 5551 /* 5552 * Clean up the vdev namespace. 5553 */ 5554 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_DEV); 5555 spa_vdev_remove_from_namespace(spa, vd); 5556 5557 } else if (vd != NULL) { 5558 /* 5559 * Normal vdevs cannot be removed (yet). 5560 */ 5561 error = SET_ERROR(ENOTSUP); 5562 } else { 5563 /* 5564 * There is no vdev of any kind with the specified guid. 5565 */ 5566 error = SET_ERROR(ENOENT); 5567 } 5568 5569 if (!locked) 5570 error = spa_vdev_exit(spa, NULL, txg, error); 5571 5572 if (ev) 5573 spa_event_post(ev); 5574 5575 return (error); 5576 } 5577 5578 /* 5579 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5580 * currently spared, so we can detach it. 5581 */ 5582 static vdev_t * 5583 spa_vdev_resilver_done_hunt(vdev_t *vd) 5584 { 5585 vdev_t *newvd, *oldvd; 5586 5587 for (int c = 0; c < vd->vdev_children; c++) { 5588 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5589 if (oldvd != NULL) 5590 return (oldvd); 5591 } 5592 5593 /* 5594 * Check for a completed replacement. We always consider the first 5595 * vdev in the list to be the oldest vdev, and the last one to be 5596 * the newest (see spa_vdev_attach() for how that works). In 5597 * the case where the newest vdev is faulted, we will not automatically 5598 * remove it after a resilver completes. This is OK as it will require 5599 * user intervention to determine which disk the admin wishes to keep. 5600 */ 5601 if (vd->vdev_ops == &vdev_replacing_ops) { 5602 ASSERT(vd->vdev_children > 1); 5603 5604 newvd = vd->vdev_child[vd->vdev_children - 1]; 5605 oldvd = vd->vdev_child[0]; 5606 5607 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5608 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5609 !vdev_dtl_required(oldvd)) 5610 return (oldvd); 5611 } 5612 5613 /* 5614 * Check for a completed resilver with the 'unspare' flag set. 5615 */ 5616 if (vd->vdev_ops == &vdev_spare_ops) { 5617 vdev_t *first = vd->vdev_child[0]; 5618 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5619 5620 if (last->vdev_unspare) { 5621 oldvd = first; 5622 newvd = last; 5623 } else if (first->vdev_unspare) { 5624 oldvd = last; 5625 newvd = first; 5626 } else { 5627 oldvd = NULL; 5628 } 5629 5630 if (oldvd != NULL && 5631 vdev_dtl_empty(newvd, DTL_MISSING) && 5632 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5633 !vdev_dtl_required(oldvd)) 5634 return (oldvd); 5635 5636 /* 5637 * If there are more than two spares attached to a disk, 5638 * and those spares are not required, then we want to 5639 * attempt to free them up now so that they can be used 5640 * by other pools. Once we're back down to a single 5641 * disk+spare, we stop removing them. 5642 */ 5643 if (vd->vdev_children > 2) { 5644 newvd = vd->vdev_child[1]; 5645 5646 if (newvd->vdev_isspare && last->vdev_isspare && 5647 vdev_dtl_empty(last, DTL_MISSING) && 5648 vdev_dtl_empty(last, DTL_OUTAGE) && 5649 !vdev_dtl_required(newvd)) 5650 return (newvd); 5651 } 5652 } 5653 5654 return (NULL); 5655 } 5656 5657 static void 5658 spa_vdev_resilver_done(spa_t *spa) 5659 { 5660 vdev_t *vd, *pvd, *ppvd; 5661 uint64_t guid, sguid, pguid, ppguid; 5662 5663 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5664 5665 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5666 pvd = vd->vdev_parent; 5667 ppvd = pvd->vdev_parent; 5668 guid = vd->vdev_guid; 5669 pguid = pvd->vdev_guid; 5670 ppguid = ppvd->vdev_guid; 5671 sguid = 0; 5672 /* 5673 * If we have just finished replacing a hot spared device, then 5674 * we need to detach the parent's first child (the original hot 5675 * spare) as well. 5676 */ 5677 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5678 ppvd->vdev_children == 2) { 5679 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5680 sguid = ppvd->vdev_child[1]->vdev_guid; 5681 } 5682 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5683 5684 spa_config_exit(spa, SCL_ALL, FTAG); 5685 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5686 return; 5687 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5688 return; 5689 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5690 } 5691 5692 spa_config_exit(spa, SCL_ALL, FTAG); 5693 } 5694 5695 /* 5696 * Update the stored path or FRU for this vdev. 5697 */ 5698 int 5699 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5700 boolean_t ispath) 5701 { 5702 vdev_t *vd; 5703 boolean_t sync = B_FALSE; 5704 5705 ASSERT(spa_writeable(spa)); 5706 5707 spa_vdev_state_enter(spa, SCL_ALL); 5708 5709 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5710 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5711 5712 if (!vd->vdev_ops->vdev_op_leaf) 5713 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5714 5715 if (ispath) { 5716 if (strcmp(value, vd->vdev_path) != 0) { 5717 spa_strfree(vd->vdev_path); 5718 vd->vdev_path = spa_strdup(value); 5719 sync = B_TRUE; 5720 } 5721 } else { 5722 if (vd->vdev_fru == NULL) { 5723 vd->vdev_fru = spa_strdup(value); 5724 sync = B_TRUE; 5725 } else if (strcmp(value, vd->vdev_fru) != 0) { 5726 spa_strfree(vd->vdev_fru); 5727 vd->vdev_fru = spa_strdup(value); 5728 sync = B_TRUE; 5729 } 5730 } 5731 5732 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5733 } 5734 5735 int 5736 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5737 { 5738 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5739 } 5740 5741 int 5742 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5743 { 5744 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5745 } 5746 5747 /* 5748 * ========================================================================== 5749 * SPA Scanning 5750 * ========================================================================== 5751 */ 5752 int 5753 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 5754 { 5755 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5756 5757 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5758 return (SET_ERROR(EBUSY)); 5759 5760 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 5761 } 5762 5763 int 5764 spa_scan_stop(spa_t *spa) 5765 { 5766 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5767 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5768 return (SET_ERROR(EBUSY)); 5769 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5770 } 5771 5772 int 5773 spa_scan(spa_t *spa, pool_scan_func_t func) 5774 { 5775 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5776 5777 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5778 return (SET_ERROR(ENOTSUP)); 5779 5780 /* 5781 * If a resilver was requested, but there is no DTL on a 5782 * writeable leaf device, we have nothing to do. 5783 */ 5784 if (func == POOL_SCAN_RESILVER && 5785 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5786 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5787 return (0); 5788 } 5789 5790 return (dsl_scan(spa->spa_dsl_pool, func)); 5791 } 5792 5793 /* 5794 * ========================================================================== 5795 * SPA async task processing 5796 * ========================================================================== 5797 */ 5798 5799 static void 5800 spa_async_remove(spa_t *spa, vdev_t *vd) 5801 { 5802 if (vd->vdev_remove_wanted) { 5803 vd->vdev_remove_wanted = B_FALSE; 5804 vd->vdev_delayed_close = B_FALSE; 5805 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5806 5807 /* 5808 * We want to clear the stats, but we don't want to do a full 5809 * vdev_clear() as that will cause us to throw away 5810 * degraded/faulted state as well as attempt to reopen the 5811 * device, all of which is a waste. 5812 */ 5813 vd->vdev_stat.vs_read_errors = 0; 5814 vd->vdev_stat.vs_write_errors = 0; 5815 vd->vdev_stat.vs_checksum_errors = 0; 5816 5817 vdev_state_dirty(vd->vdev_top); 5818 } 5819 5820 for (int c = 0; c < vd->vdev_children; c++) 5821 spa_async_remove(spa, vd->vdev_child[c]); 5822 } 5823 5824 static void 5825 spa_async_probe(spa_t *spa, vdev_t *vd) 5826 { 5827 if (vd->vdev_probe_wanted) { 5828 vd->vdev_probe_wanted = B_FALSE; 5829 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5830 } 5831 5832 for (int c = 0; c < vd->vdev_children; c++) 5833 spa_async_probe(spa, vd->vdev_child[c]); 5834 } 5835 5836 static void 5837 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5838 { 5839 sysevent_id_t eid; 5840 nvlist_t *attr; 5841 char *physpath; 5842 5843 if (!spa->spa_autoexpand) 5844 return; 5845 5846 for (int c = 0; c < vd->vdev_children; c++) { 5847 vdev_t *cvd = vd->vdev_child[c]; 5848 spa_async_autoexpand(spa, cvd); 5849 } 5850 5851 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5852 return; 5853 5854 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5855 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5856 5857 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5858 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5859 5860 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5861 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5862 5863 nvlist_free(attr); 5864 kmem_free(physpath, MAXPATHLEN); 5865 } 5866 5867 static void 5868 spa_async_thread(void *arg) 5869 { 5870 spa_t *spa = (spa_t *)arg; 5871 int tasks; 5872 5873 ASSERT(spa->spa_sync_on); 5874 5875 mutex_enter(&spa->spa_async_lock); 5876 tasks = spa->spa_async_tasks; 5877 spa->spa_async_tasks = 0; 5878 mutex_exit(&spa->spa_async_lock); 5879 5880 /* 5881 * See if the config needs to be updated. 5882 */ 5883 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5884 uint64_t old_space, new_space; 5885 5886 mutex_enter(&spa_namespace_lock); 5887 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5888 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5889 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5890 mutex_exit(&spa_namespace_lock); 5891 5892 /* 5893 * If the pool grew as a result of the config update, 5894 * then log an internal history event. 5895 */ 5896 if (new_space != old_space) { 5897 spa_history_log_internal(spa, "vdev online", NULL, 5898 "pool '%s' size: %llu(+%llu)", 5899 spa_name(spa), new_space, new_space - old_space); 5900 } 5901 } 5902 5903 /* 5904 * See if any devices need to be marked REMOVED. 5905 */ 5906 if (tasks & SPA_ASYNC_REMOVE) { 5907 spa_vdev_state_enter(spa, SCL_NONE); 5908 spa_async_remove(spa, spa->spa_root_vdev); 5909 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5910 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5911 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5912 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5913 (void) spa_vdev_state_exit(spa, NULL, 0); 5914 } 5915 5916 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5917 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5918 spa_async_autoexpand(spa, spa->spa_root_vdev); 5919 spa_config_exit(spa, SCL_CONFIG, FTAG); 5920 } 5921 5922 /* 5923 * See if any devices need to be probed. 5924 */ 5925 if (tasks & SPA_ASYNC_PROBE) { 5926 spa_vdev_state_enter(spa, SCL_NONE); 5927 spa_async_probe(spa, spa->spa_root_vdev); 5928 (void) spa_vdev_state_exit(spa, NULL, 0); 5929 } 5930 5931 /* 5932 * If any devices are done replacing, detach them. 5933 */ 5934 if (tasks & SPA_ASYNC_RESILVER_DONE) 5935 spa_vdev_resilver_done(spa); 5936 5937 /* 5938 * Kick off a resilver. 5939 */ 5940 if (tasks & SPA_ASYNC_RESILVER) 5941 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5942 5943 /* 5944 * Let the world know that we're done. 5945 */ 5946 mutex_enter(&spa->spa_async_lock); 5947 spa->spa_async_thread = NULL; 5948 cv_broadcast(&spa->spa_async_cv); 5949 mutex_exit(&spa->spa_async_lock); 5950 thread_exit(); 5951 } 5952 5953 void 5954 spa_async_suspend(spa_t *spa) 5955 { 5956 mutex_enter(&spa->spa_async_lock); 5957 spa->spa_async_suspended++; 5958 while (spa->spa_async_thread != NULL) 5959 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5960 mutex_exit(&spa->spa_async_lock); 5961 } 5962 5963 void 5964 spa_async_resume(spa_t *spa) 5965 { 5966 mutex_enter(&spa->spa_async_lock); 5967 ASSERT(spa->spa_async_suspended != 0); 5968 spa->spa_async_suspended--; 5969 mutex_exit(&spa->spa_async_lock); 5970 } 5971 5972 static boolean_t 5973 spa_async_tasks_pending(spa_t *spa) 5974 { 5975 uint_t non_config_tasks; 5976 uint_t config_task; 5977 boolean_t config_task_suspended; 5978 5979 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5980 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5981 if (spa->spa_ccw_fail_time == 0) { 5982 config_task_suspended = B_FALSE; 5983 } else { 5984 config_task_suspended = 5985 (gethrtime() - spa->spa_ccw_fail_time) < 5986 (zfs_ccw_retry_interval * NANOSEC); 5987 } 5988 5989 return (non_config_tasks || (config_task && !config_task_suspended)); 5990 } 5991 5992 static void 5993 spa_async_dispatch(spa_t *spa) 5994 { 5995 mutex_enter(&spa->spa_async_lock); 5996 if (spa_async_tasks_pending(spa) && 5997 !spa->spa_async_suspended && 5998 spa->spa_async_thread == NULL && 5999 rootdir != NULL) 6000 spa->spa_async_thread = thread_create(NULL, 0, 6001 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 6002 mutex_exit(&spa->spa_async_lock); 6003 } 6004 6005 void 6006 spa_async_request(spa_t *spa, int task) 6007 { 6008 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 6009 mutex_enter(&spa->spa_async_lock); 6010 spa->spa_async_tasks |= task; 6011 mutex_exit(&spa->spa_async_lock); 6012 } 6013 6014 /* 6015 * ========================================================================== 6016 * SPA syncing routines 6017 * ========================================================================== 6018 */ 6019 6020 static int 6021 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6022 { 6023 bpobj_t *bpo = arg; 6024 bpobj_enqueue(bpo, bp, tx); 6025 return (0); 6026 } 6027 6028 static int 6029 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6030 { 6031 zio_t *zio = arg; 6032 6033 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 6034 zio->io_flags)); 6035 return (0); 6036 } 6037 6038 /* 6039 * Note: this simple function is not inlined to make it easier to dtrace the 6040 * amount of time spent syncing frees. 6041 */ 6042 static void 6043 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 6044 { 6045 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6046 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 6047 VERIFY(zio_wait(zio) == 0); 6048 } 6049 6050 /* 6051 * Note: this simple function is not inlined to make it easier to dtrace the 6052 * amount of time spent syncing deferred frees. 6053 */ 6054 static void 6055 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 6056 { 6057 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6058 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 6059 spa_free_sync_cb, zio, tx), ==, 0); 6060 VERIFY0(zio_wait(zio)); 6061 } 6062 6063 6064 static void 6065 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 6066 { 6067 char *packed = NULL; 6068 size_t bufsize; 6069 size_t nvsize = 0; 6070 dmu_buf_t *db; 6071 6072 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 6073 6074 /* 6075 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 6076 * information. This avoids the dmu_buf_will_dirty() path and 6077 * saves us a pre-read to get data we don't actually care about. 6078 */ 6079 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 6080 packed = kmem_alloc(bufsize, KM_SLEEP); 6081 6082 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 6083 KM_SLEEP) == 0); 6084 bzero(packed + nvsize, bufsize - nvsize); 6085 6086 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 6087 6088 kmem_free(packed, bufsize); 6089 6090 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 6091 dmu_buf_will_dirty(db, tx); 6092 *(uint64_t *)db->db_data = nvsize; 6093 dmu_buf_rele(db, FTAG); 6094 } 6095 6096 static void 6097 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 6098 const char *config, const char *entry) 6099 { 6100 nvlist_t *nvroot; 6101 nvlist_t **list; 6102 int i; 6103 6104 if (!sav->sav_sync) 6105 return; 6106 6107 /* 6108 * Update the MOS nvlist describing the list of available devices. 6109 * spa_validate_aux() will have already made sure this nvlist is 6110 * valid and the vdevs are labeled appropriately. 6111 */ 6112 if (sav->sav_object == 0) { 6113 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 6114 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 6115 sizeof (uint64_t), tx); 6116 VERIFY(zap_update(spa->spa_meta_objset, 6117 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 6118 &sav->sav_object, tx) == 0); 6119 } 6120 6121 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6122 if (sav->sav_count == 0) { 6123 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 6124 } else { 6125 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 6126 for (i = 0; i < sav->sav_count; i++) 6127 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 6128 B_FALSE, VDEV_CONFIG_L2CACHE); 6129 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 6130 sav->sav_count) == 0); 6131 for (i = 0; i < sav->sav_count; i++) 6132 nvlist_free(list[i]); 6133 kmem_free(list, sav->sav_count * sizeof (void *)); 6134 } 6135 6136 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 6137 nvlist_free(nvroot); 6138 6139 sav->sav_sync = B_FALSE; 6140 } 6141 6142 /* 6143 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 6144 * The all-vdev ZAP must be empty. 6145 */ 6146 static void 6147 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 6148 { 6149 spa_t *spa = vd->vdev_spa; 6150 if (vd->vdev_top_zap != 0) { 6151 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6152 vd->vdev_top_zap, tx)); 6153 } 6154 if (vd->vdev_leaf_zap != 0) { 6155 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6156 vd->vdev_leaf_zap, tx)); 6157 } 6158 for (uint64_t i = 0; i < vd->vdev_children; i++) { 6159 spa_avz_build(vd->vdev_child[i], avz, tx); 6160 } 6161 } 6162 6163 static void 6164 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 6165 { 6166 nvlist_t *config; 6167 6168 /* 6169 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 6170 * its config may not be dirty but we still need to build per-vdev ZAPs. 6171 * Similarly, if the pool is being assembled (e.g. after a split), we 6172 * need to rebuild the AVZ although the config may not be dirty. 6173 */ 6174 if (list_is_empty(&spa->spa_config_dirty_list) && 6175 spa->spa_avz_action == AVZ_ACTION_NONE) 6176 return; 6177 6178 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6179 6180 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 6181 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 6182 spa->spa_all_vdev_zaps != 0); 6183 6184 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 6185 /* Make and build the new AVZ */ 6186 uint64_t new_avz = zap_create(spa->spa_meta_objset, 6187 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 6188 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 6189 6190 /* Diff old AVZ with new one */ 6191 zap_cursor_t zc; 6192 zap_attribute_t za; 6193 6194 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6195 spa->spa_all_vdev_zaps); 6196 zap_cursor_retrieve(&zc, &za) == 0; 6197 zap_cursor_advance(&zc)) { 6198 uint64_t vdzap = za.za_first_integer; 6199 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 6200 vdzap) == ENOENT) { 6201 /* 6202 * ZAP is listed in old AVZ but not in new one; 6203 * destroy it 6204 */ 6205 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 6206 tx)); 6207 } 6208 } 6209 6210 zap_cursor_fini(&zc); 6211 6212 /* Destroy the old AVZ */ 6213 VERIFY0(zap_destroy(spa->spa_meta_objset, 6214 spa->spa_all_vdev_zaps, tx)); 6215 6216 /* Replace the old AVZ in the dir obj with the new one */ 6217 VERIFY0(zap_update(spa->spa_meta_objset, 6218 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 6219 sizeof (new_avz), 1, &new_avz, tx)); 6220 6221 spa->spa_all_vdev_zaps = new_avz; 6222 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 6223 zap_cursor_t zc; 6224 zap_attribute_t za; 6225 6226 /* Walk through the AVZ and destroy all listed ZAPs */ 6227 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6228 spa->spa_all_vdev_zaps); 6229 zap_cursor_retrieve(&zc, &za) == 0; 6230 zap_cursor_advance(&zc)) { 6231 uint64_t zap = za.za_first_integer; 6232 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 6233 } 6234 6235 zap_cursor_fini(&zc); 6236 6237 /* Destroy and unlink the AVZ itself */ 6238 VERIFY0(zap_destroy(spa->spa_meta_objset, 6239 spa->spa_all_vdev_zaps, tx)); 6240 VERIFY0(zap_remove(spa->spa_meta_objset, 6241 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 6242 spa->spa_all_vdev_zaps = 0; 6243 } 6244 6245 if (spa->spa_all_vdev_zaps == 0) { 6246 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 6247 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 6248 DMU_POOL_VDEV_ZAP_MAP, tx); 6249 } 6250 spa->spa_avz_action = AVZ_ACTION_NONE; 6251 6252 /* Create ZAPs for vdevs that don't have them. */ 6253 vdev_construct_zaps(spa->spa_root_vdev, tx); 6254 6255 config = spa_config_generate(spa, spa->spa_root_vdev, 6256 dmu_tx_get_txg(tx), B_FALSE); 6257 6258 /* 6259 * If we're upgrading the spa version then make sure that 6260 * the config object gets updated with the correct version. 6261 */ 6262 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 6263 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 6264 spa->spa_uberblock.ub_version); 6265 6266 spa_config_exit(spa, SCL_STATE, FTAG); 6267 6268 nvlist_free(spa->spa_config_syncing); 6269 spa->spa_config_syncing = config; 6270 6271 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 6272 } 6273 6274 static void 6275 spa_sync_version(void *arg, dmu_tx_t *tx) 6276 { 6277 uint64_t *versionp = arg; 6278 uint64_t version = *versionp; 6279 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6280 6281 /* 6282 * Setting the version is special cased when first creating the pool. 6283 */ 6284 ASSERT(tx->tx_txg != TXG_INITIAL); 6285 6286 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6287 ASSERT(version >= spa_version(spa)); 6288 6289 spa->spa_uberblock.ub_version = version; 6290 vdev_config_dirty(spa->spa_root_vdev); 6291 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6292 } 6293 6294 /* 6295 * Set zpool properties. 6296 */ 6297 static void 6298 spa_sync_props(void *arg, dmu_tx_t *tx) 6299 { 6300 nvlist_t *nvp = arg; 6301 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6302 objset_t *mos = spa->spa_meta_objset; 6303 nvpair_t *elem = NULL; 6304 6305 mutex_enter(&spa->spa_props_lock); 6306 6307 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6308 uint64_t intval; 6309 char *strval, *fname; 6310 zpool_prop_t prop; 6311 const char *propname; 6312 zprop_type_t proptype; 6313 spa_feature_t fid; 6314 6315 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6316 case ZPROP_INVAL: 6317 /* 6318 * We checked this earlier in spa_prop_validate(). 6319 */ 6320 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6321 6322 fname = strchr(nvpair_name(elem), '@') + 1; 6323 VERIFY0(zfeature_lookup_name(fname, &fid)); 6324 6325 spa_feature_enable(spa, fid, tx); 6326 spa_history_log_internal(spa, "set", tx, 6327 "%s=enabled", nvpair_name(elem)); 6328 break; 6329 6330 case ZPOOL_PROP_VERSION: 6331 intval = fnvpair_value_uint64(elem); 6332 /* 6333 * The version is synced seperatly before other 6334 * properties and should be correct by now. 6335 */ 6336 ASSERT3U(spa_version(spa), >=, intval); 6337 break; 6338 6339 case ZPOOL_PROP_ALTROOT: 6340 /* 6341 * 'altroot' is a non-persistent property. It should 6342 * have been set temporarily at creation or import time. 6343 */ 6344 ASSERT(spa->spa_root != NULL); 6345 break; 6346 6347 case ZPOOL_PROP_READONLY: 6348 case ZPOOL_PROP_CACHEFILE: 6349 /* 6350 * 'readonly' and 'cachefile' are also non-persisitent 6351 * properties. 6352 */ 6353 break; 6354 case ZPOOL_PROP_COMMENT: 6355 strval = fnvpair_value_string(elem); 6356 if (spa->spa_comment != NULL) 6357 spa_strfree(spa->spa_comment); 6358 spa->spa_comment = spa_strdup(strval); 6359 /* 6360 * We need to dirty the configuration on all the vdevs 6361 * so that their labels get updated. It's unnecessary 6362 * to do this for pool creation since the vdev's 6363 * configuratoin has already been dirtied. 6364 */ 6365 if (tx->tx_txg != TXG_INITIAL) 6366 vdev_config_dirty(spa->spa_root_vdev); 6367 spa_history_log_internal(spa, "set", tx, 6368 "%s=%s", nvpair_name(elem), strval); 6369 break; 6370 default: 6371 /* 6372 * Set pool property values in the poolprops mos object. 6373 */ 6374 if (spa->spa_pool_props_object == 0) { 6375 spa->spa_pool_props_object = 6376 zap_create_link(mos, DMU_OT_POOL_PROPS, 6377 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6378 tx); 6379 } 6380 6381 /* normalize the property name */ 6382 propname = zpool_prop_to_name(prop); 6383 proptype = zpool_prop_get_type(prop); 6384 6385 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6386 ASSERT(proptype == PROP_TYPE_STRING); 6387 strval = fnvpair_value_string(elem); 6388 VERIFY0(zap_update(mos, 6389 spa->spa_pool_props_object, propname, 6390 1, strlen(strval) + 1, strval, tx)); 6391 spa_history_log_internal(spa, "set", tx, 6392 "%s=%s", nvpair_name(elem), strval); 6393 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6394 intval = fnvpair_value_uint64(elem); 6395 6396 if (proptype == PROP_TYPE_INDEX) { 6397 const char *unused; 6398 VERIFY0(zpool_prop_index_to_string( 6399 prop, intval, &unused)); 6400 } 6401 VERIFY0(zap_update(mos, 6402 spa->spa_pool_props_object, propname, 6403 8, 1, &intval, tx)); 6404 spa_history_log_internal(spa, "set", tx, 6405 "%s=%lld", nvpair_name(elem), intval); 6406 } else { 6407 ASSERT(0); /* not allowed */ 6408 } 6409 6410 switch (prop) { 6411 case ZPOOL_PROP_DELEGATION: 6412 spa->spa_delegation = intval; 6413 break; 6414 case ZPOOL_PROP_BOOTFS: 6415 spa->spa_bootfs = intval; 6416 break; 6417 case ZPOOL_PROP_FAILUREMODE: 6418 spa->spa_failmode = intval; 6419 break; 6420 case ZPOOL_PROP_AUTOEXPAND: 6421 spa->spa_autoexpand = intval; 6422 if (tx->tx_txg != TXG_INITIAL) 6423 spa_async_request(spa, 6424 SPA_ASYNC_AUTOEXPAND); 6425 break; 6426 case ZPOOL_PROP_DEDUPDITTO: 6427 spa->spa_dedup_ditto = intval; 6428 break; 6429 default: 6430 break; 6431 } 6432 } 6433 6434 } 6435 6436 mutex_exit(&spa->spa_props_lock); 6437 } 6438 6439 /* 6440 * Perform one-time upgrade on-disk changes. spa_version() does not 6441 * reflect the new version this txg, so there must be no changes this 6442 * txg to anything that the upgrade code depends on after it executes. 6443 * Therefore this must be called after dsl_pool_sync() does the sync 6444 * tasks. 6445 */ 6446 static void 6447 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6448 { 6449 dsl_pool_t *dp = spa->spa_dsl_pool; 6450 6451 ASSERT(spa->spa_sync_pass == 1); 6452 6453 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6454 6455 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6456 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6457 dsl_pool_create_origin(dp, tx); 6458 6459 /* Keeping the origin open increases spa_minref */ 6460 spa->spa_minref += 3; 6461 } 6462 6463 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6464 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6465 dsl_pool_upgrade_clones(dp, tx); 6466 } 6467 6468 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6469 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6470 dsl_pool_upgrade_dir_clones(dp, tx); 6471 6472 /* Keeping the freedir open increases spa_minref */ 6473 spa->spa_minref += 3; 6474 } 6475 6476 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6477 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6478 spa_feature_create_zap_objects(spa, tx); 6479 } 6480 6481 /* 6482 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6483 * when possibility to use lz4 compression for metadata was added 6484 * Old pools that have this feature enabled must be upgraded to have 6485 * this feature active 6486 */ 6487 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6488 boolean_t lz4_en = spa_feature_is_enabled(spa, 6489 SPA_FEATURE_LZ4_COMPRESS); 6490 boolean_t lz4_ac = spa_feature_is_active(spa, 6491 SPA_FEATURE_LZ4_COMPRESS); 6492 6493 if (lz4_en && !lz4_ac) 6494 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6495 } 6496 6497 /* 6498 * If we haven't written the salt, do so now. Note that the 6499 * feature may not be activated yet, but that's fine since 6500 * the presence of this ZAP entry is backwards compatible. 6501 */ 6502 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 6503 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 6504 VERIFY0(zap_add(spa->spa_meta_objset, 6505 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 6506 sizeof (spa->spa_cksum_salt.zcs_bytes), 6507 spa->spa_cksum_salt.zcs_bytes, tx)); 6508 } 6509 6510 rrw_exit(&dp->dp_config_rwlock, FTAG); 6511 } 6512 6513 /* 6514 * Sync the specified transaction group. New blocks may be dirtied as 6515 * part of the process, so we iterate until it converges. 6516 */ 6517 void 6518 spa_sync(spa_t *spa, uint64_t txg) 6519 { 6520 dsl_pool_t *dp = spa->spa_dsl_pool; 6521 objset_t *mos = spa->spa_meta_objset; 6522 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6523 vdev_t *rvd = spa->spa_root_vdev; 6524 vdev_t *vd; 6525 dmu_tx_t *tx; 6526 int error; 6527 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 6528 zfs_vdev_queue_depth_pct / 100; 6529 6530 VERIFY(spa_writeable(spa)); 6531 6532 /* 6533 * Lock out configuration changes. 6534 */ 6535 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6536 6537 spa->spa_syncing_txg = txg; 6538 spa->spa_sync_pass = 0; 6539 6540 mutex_enter(&spa->spa_alloc_lock); 6541 VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); 6542 mutex_exit(&spa->spa_alloc_lock); 6543 6544 /* 6545 * If there are any pending vdev state changes, convert them 6546 * into config changes that go out with this transaction group. 6547 */ 6548 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6549 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6550 /* 6551 * We need the write lock here because, for aux vdevs, 6552 * calling vdev_config_dirty() modifies sav_config. 6553 * This is ugly and will become unnecessary when we 6554 * eliminate the aux vdev wart by integrating all vdevs 6555 * into the root vdev tree. 6556 */ 6557 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6558 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6559 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6560 vdev_state_clean(vd); 6561 vdev_config_dirty(vd); 6562 } 6563 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6564 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6565 } 6566 spa_config_exit(spa, SCL_STATE, FTAG); 6567 6568 tx = dmu_tx_create_assigned(dp, txg); 6569 6570 spa->spa_sync_starttime = gethrtime(); 6571 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6572 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6573 6574 /* 6575 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6576 * set spa_deflate if we have no raid-z vdevs. 6577 */ 6578 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6579 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6580 int i; 6581 6582 for (i = 0; i < rvd->vdev_children; i++) { 6583 vd = rvd->vdev_child[i]; 6584 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6585 break; 6586 } 6587 if (i == rvd->vdev_children) { 6588 spa->spa_deflate = TRUE; 6589 VERIFY(0 == zap_add(spa->spa_meta_objset, 6590 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6591 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6592 } 6593 } 6594 6595 /* 6596 * Set the top-level vdev's max queue depth. Evaluate each 6597 * top-level's async write queue depth in case it changed. 6598 * The max queue depth will not change in the middle of syncing 6599 * out this txg. 6600 */ 6601 uint64_t queue_depth_total = 0; 6602 for (int c = 0; c < rvd->vdev_children; c++) { 6603 vdev_t *tvd = rvd->vdev_child[c]; 6604 metaslab_group_t *mg = tvd->vdev_mg; 6605 6606 if (mg == NULL || mg->mg_class != spa_normal_class(spa) || 6607 !metaslab_group_initialized(mg)) 6608 continue; 6609 6610 /* 6611 * It is safe to do a lock-free check here because only async 6612 * allocations look at mg_max_alloc_queue_depth, and async 6613 * allocations all happen from spa_sync(). 6614 */ 6615 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth)); 6616 mg->mg_max_alloc_queue_depth = max_queue_depth; 6617 queue_depth_total += mg->mg_max_alloc_queue_depth; 6618 } 6619 metaslab_class_t *mc = spa_normal_class(spa); 6620 ASSERT0(refcount_count(&mc->mc_alloc_slots)); 6621 mc->mc_alloc_max_slots = queue_depth_total; 6622 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 6623 6624 ASSERT3U(mc->mc_alloc_max_slots, <=, 6625 max_queue_depth * rvd->vdev_children); 6626 6627 /* 6628 * Iterate to convergence. 6629 */ 6630 do { 6631 int pass = ++spa->spa_sync_pass; 6632 6633 spa_sync_config_object(spa, tx); 6634 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6635 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6636 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6637 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6638 spa_errlog_sync(spa, txg); 6639 dsl_pool_sync(dp, txg); 6640 6641 if (pass < zfs_sync_pass_deferred_free) { 6642 spa_sync_frees(spa, free_bpl, tx); 6643 } else { 6644 /* 6645 * We can not defer frees in pass 1, because 6646 * we sync the deferred frees later in pass 1. 6647 */ 6648 ASSERT3U(pass, >, 1); 6649 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6650 &spa->spa_deferred_bpobj, tx); 6651 } 6652 6653 ddt_sync(spa, txg); 6654 dsl_scan_sync(dp, tx); 6655 6656 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6657 vdev_sync(vd, txg); 6658 6659 if (pass == 1) { 6660 spa_sync_upgrades(spa, tx); 6661 ASSERT3U(txg, >=, 6662 spa->spa_uberblock.ub_rootbp.blk_birth); 6663 /* 6664 * Note: We need to check if the MOS is dirty 6665 * because we could have marked the MOS dirty 6666 * without updating the uberblock (e.g. if we 6667 * have sync tasks but no dirty user data). We 6668 * need to check the uberblock's rootbp because 6669 * it is updated if we have synced out dirty 6670 * data (though in this case the MOS will most 6671 * likely also be dirty due to second order 6672 * effects, we don't want to rely on that here). 6673 */ 6674 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 6675 !dmu_objset_is_dirty(mos, txg)) { 6676 /* 6677 * Nothing changed on the first pass, 6678 * therefore this TXG is a no-op. Avoid 6679 * syncing deferred frees, so that we 6680 * can keep this TXG as a no-op. 6681 */ 6682 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 6683 txg)); 6684 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6685 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 6686 break; 6687 } 6688 spa_sync_deferred_frees(spa, tx); 6689 } 6690 6691 } while (dmu_objset_is_dirty(mos, txg)); 6692 6693 if (!list_is_empty(&spa->spa_config_dirty_list)) { 6694 /* 6695 * Make sure that the number of ZAPs for all the vdevs matches 6696 * the number of ZAPs in the per-vdev ZAP list. This only gets 6697 * called if the config is dirty; otherwise there may be 6698 * outstanding AVZ operations that weren't completed in 6699 * spa_sync_config_object. 6700 */ 6701 uint64_t all_vdev_zap_entry_count; 6702 ASSERT0(zap_count(spa->spa_meta_objset, 6703 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 6704 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 6705 all_vdev_zap_entry_count); 6706 } 6707 6708 /* 6709 * Rewrite the vdev configuration (which includes the uberblock) 6710 * to commit the transaction group. 6711 * 6712 * If there are no dirty vdevs, we sync the uberblock to a few 6713 * random top-level vdevs that are known to be visible in the 6714 * config cache (see spa_vdev_add() for a complete description). 6715 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6716 */ 6717 for (;;) { 6718 /* 6719 * We hold SCL_STATE to prevent vdev open/close/etc. 6720 * while we're attempting to write the vdev labels. 6721 */ 6722 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6723 6724 if (list_is_empty(&spa->spa_config_dirty_list)) { 6725 vdev_t *svd[SPA_DVAS_PER_BP]; 6726 int svdcount = 0; 6727 int children = rvd->vdev_children; 6728 int c0 = spa_get_random(children); 6729 6730 for (int c = 0; c < children; c++) { 6731 vd = rvd->vdev_child[(c0 + c) % children]; 6732 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6733 continue; 6734 svd[svdcount++] = vd; 6735 if (svdcount == SPA_DVAS_PER_BP) 6736 break; 6737 } 6738 error = vdev_config_sync(svd, svdcount, txg); 6739 } else { 6740 error = vdev_config_sync(rvd->vdev_child, 6741 rvd->vdev_children, txg); 6742 } 6743 6744 if (error == 0) 6745 spa->spa_last_synced_guid = rvd->vdev_guid; 6746 6747 spa_config_exit(spa, SCL_STATE, FTAG); 6748 6749 if (error == 0) 6750 break; 6751 zio_suspend(spa, NULL); 6752 zio_resume_wait(spa); 6753 } 6754 dmu_tx_commit(tx); 6755 6756 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6757 6758 /* 6759 * Clear the dirty config list. 6760 */ 6761 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6762 vdev_config_clean(vd); 6763 6764 /* 6765 * Now that the new config has synced transactionally, 6766 * let it become visible to the config cache. 6767 */ 6768 if (spa->spa_config_syncing != NULL) { 6769 spa_config_set(spa, spa->spa_config_syncing); 6770 spa->spa_config_txg = txg; 6771 spa->spa_config_syncing = NULL; 6772 } 6773 6774 dsl_pool_sync_done(dp, txg); 6775 6776 mutex_enter(&spa->spa_alloc_lock); 6777 VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); 6778 mutex_exit(&spa->spa_alloc_lock); 6779 6780 /* 6781 * Update usable space statistics. 6782 */ 6783 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6784 vdev_sync_done(vd, txg); 6785 6786 spa_update_dspace(spa); 6787 6788 /* 6789 * It had better be the case that we didn't dirty anything 6790 * since vdev_config_sync(). 6791 */ 6792 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6793 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6794 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6795 6796 spa->spa_sync_pass = 0; 6797 6798 /* 6799 * Update the last synced uberblock here. We want to do this at 6800 * the end of spa_sync() so that consumers of spa_last_synced_txg() 6801 * will be guaranteed that all the processing associated with 6802 * that txg has been completed. 6803 */ 6804 spa->spa_ubsync = spa->spa_uberblock; 6805 spa_config_exit(spa, SCL_CONFIG, FTAG); 6806 6807 spa_handle_ignored_writes(spa); 6808 6809 /* 6810 * If any async tasks have been requested, kick them off. 6811 */ 6812 spa_async_dispatch(spa); 6813 } 6814 6815 /* 6816 * Sync all pools. We don't want to hold the namespace lock across these 6817 * operations, so we take a reference on the spa_t and drop the lock during the 6818 * sync. 6819 */ 6820 void 6821 spa_sync_allpools(void) 6822 { 6823 spa_t *spa = NULL; 6824 mutex_enter(&spa_namespace_lock); 6825 while ((spa = spa_next(spa)) != NULL) { 6826 if (spa_state(spa) != POOL_STATE_ACTIVE || 6827 !spa_writeable(spa) || spa_suspended(spa)) 6828 continue; 6829 spa_open_ref(spa, FTAG); 6830 mutex_exit(&spa_namespace_lock); 6831 txg_wait_synced(spa_get_dsl(spa), 0); 6832 mutex_enter(&spa_namespace_lock); 6833 spa_close(spa, FTAG); 6834 } 6835 mutex_exit(&spa_namespace_lock); 6836 } 6837 6838 /* 6839 * ========================================================================== 6840 * Miscellaneous routines 6841 * ========================================================================== 6842 */ 6843 6844 /* 6845 * Remove all pools in the system. 6846 */ 6847 void 6848 spa_evict_all(void) 6849 { 6850 spa_t *spa; 6851 6852 /* 6853 * Remove all cached state. All pools should be closed now, 6854 * so every spa in the AVL tree should be unreferenced. 6855 */ 6856 mutex_enter(&spa_namespace_lock); 6857 while ((spa = spa_next(NULL)) != NULL) { 6858 /* 6859 * Stop async tasks. The async thread may need to detach 6860 * a device that's been replaced, which requires grabbing 6861 * spa_namespace_lock, so we must drop it here. 6862 */ 6863 spa_open_ref(spa, FTAG); 6864 mutex_exit(&spa_namespace_lock); 6865 spa_async_suspend(spa); 6866 mutex_enter(&spa_namespace_lock); 6867 spa_close(spa, FTAG); 6868 6869 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6870 spa_unload(spa); 6871 spa_deactivate(spa); 6872 } 6873 spa_remove(spa); 6874 } 6875 mutex_exit(&spa_namespace_lock); 6876 } 6877 6878 vdev_t * 6879 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6880 { 6881 vdev_t *vd; 6882 int i; 6883 6884 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6885 return (vd); 6886 6887 if (aux) { 6888 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6889 vd = spa->spa_l2cache.sav_vdevs[i]; 6890 if (vd->vdev_guid == guid) 6891 return (vd); 6892 } 6893 6894 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6895 vd = spa->spa_spares.sav_vdevs[i]; 6896 if (vd->vdev_guid == guid) 6897 return (vd); 6898 } 6899 } 6900 6901 return (NULL); 6902 } 6903 6904 void 6905 spa_upgrade(spa_t *spa, uint64_t version) 6906 { 6907 ASSERT(spa_writeable(spa)); 6908 6909 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6910 6911 /* 6912 * This should only be called for a non-faulted pool, and since a 6913 * future version would result in an unopenable pool, this shouldn't be 6914 * possible. 6915 */ 6916 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6917 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6918 6919 spa->spa_uberblock.ub_version = version; 6920 vdev_config_dirty(spa->spa_root_vdev); 6921 6922 spa_config_exit(spa, SCL_ALL, FTAG); 6923 6924 txg_wait_synced(spa_get_dsl(spa), 0); 6925 } 6926 6927 boolean_t 6928 spa_has_spare(spa_t *spa, uint64_t guid) 6929 { 6930 int i; 6931 uint64_t spareguid; 6932 spa_aux_vdev_t *sav = &spa->spa_spares; 6933 6934 for (i = 0; i < sav->sav_count; i++) 6935 if (sav->sav_vdevs[i]->vdev_guid == guid) 6936 return (B_TRUE); 6937 6938 for (i = 0; i < sav->sav_npending; i++) { 6939 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6940 &spareguid) == 0 && spareguid == guid) 6941 return (B_TRUE); 6942 } 6943 6944 return (B_FALSE); 6945 } 6946 6947 /* 6948 * Check if a pool has an active shared spare device. 6949 * Note: reference count of an active spare is 2, as a spare and as a replace 6950 */ 6951 static boolean_t 6952 spa_has_active_shared_spare(spa_t *spa) 6953 { 6954 int i, refcnt; 6955 uint64_t pool; 6956 spa_aux_vdev_t *sav = &spa->spa_spares; 6957 6958 for (i = 0; i < sav->sav_count; i++) { 6959 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6960 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6961 refcnt > 2) 6962 return (B_TRUE); 6963 } 6964 6965 return (B_FALSE); 6966 } 6967 6968 static sysevent_t * 6969 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 6970 { 6971 sysevent_t *ev = NULL; 6972 #ifdef _KERNEL 6973 sysevent_attr_list_t *attr = NULL; 6974 sysevent_value_t value; 6975 6976 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6977 SE_SLEEP); 6978 ASSERT(ev != NULL); 6979 6980 value.value_type = SE_DATA_TYPE_STRING; 6981 value.value.sv_string = spa_name(spa); 6982 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6983 goto done; 6984 6985 value.value_type = SE_DATA_TYPE_UINT64; 6986 value.value.sv_uint64 = spa_guid(spa); 6987 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6988 goto done; 6989 6990 if (vd) { 6991 value.value_type = SE_DATA_TYPE_UINT64; 6992 value.value.sv_uint64 = vd->vdev_guid; 6993 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6994 SE_SLEEP) != 0) 6995 goto done; 6996 6997 if (vd->vdev_path) { 6998 value.value_type = SE_DATA_TYPE_STRING; 6999 value.value.sv_string = vd->vdev_path; 7000 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 7001 &value, SE_SLEEP) != 0) 7002 goto done; 7003 } 7004 } 7005 7006 if (hist_nvl != NULL) { 7007 fnvlist_merge((nvlist_t *)attr, hist_nvl); 7008 } 7009 7010 if (sysevent_attach_attributes(ev, attr) != 0) 7011 goto done; 7012 attr = NULL; 7013 7014 done: 7015 if (attr) 7016 sysevent_free_attr(attr); 7017 7018 #endif 7019 return (ev); 7020 } 7021 7022 static void 7023 spa_event_post(sysevent_t *ev) 7024 { 7025 #ifdef _KERNEL 7026 sysevent_id_t eid; 7027 7028 (void) log_sysevent(ev, SE_SLEEP, &eid); 7029 sysevent_free(ev); 7030 #endif 7031 } 7032 7033 /* 7034 * Post a sysevent corresponding to the given event. The 'name' must be one of 7035 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 7036 * filled in from the spa and (optionally) the vdev and history nvl. This 7037 * doesn't do anything in the userland libzpool, as we don't want consumers to 7038 * misinterpret ztest or zdb as real changes. 7039 */ 7040 void 7041 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 7042 { 7043 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 7044 } 7045