1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 31 * Copyright 2019 Joyent, Inc. 32 * Copyright (c) 2017, Intel Corporation. 33 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 34 * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org> 35 */ 36 37 /* 38 * SPA: Storage Pool Allocator 39 * 40 * This file contains all the routines used when modifying on-disk SPA state. 41 * This includes opening, importing, destroying, exporting a pool, and syncing a 42 * pool. 43 */ 44 45 #include <sys/zfs_context.h> 46 #include <sys/fm/fs/zfs.h> 47 #include <sys/spa_impl.h> 48 #include <sys/zio.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/dmu.h> 51 #include <sys/dmu_tx.h> 52 #include <sys/zap.h> 53 #include <sys/zil.h> 54 #include <sys/ddt.h> 55 #include <sys/vdev_impl.h> 56 #include <sys/vdev_removal.h> 57 #include <sys/vdev_indirect_mapping.h> 58 #include <sys/vdev_indirect_births.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/metaslab.h> 62 #include <sys/metaslab_impl.h> 63 #include <sys/mmp.h> 64 #include <sys/uberblock_impl.h> 65 #include <sys/txg.h> 66 #include <sys/avl.h> 67 #include <sys/bpobj.h> 68 #include <sys/dmu_traverse.h> 69 #include <sys/dmu_objset.h> 70 #include <sys/unique.h> 71 #include <sys/dsl_pool.h> 72 #include <sys/dsl_dataset.h> 73 #include <sys/dsl_dir.h> 74 #include <sys/dsl_prop.h> 75 #include <sys/dsl_synctask.h> 76 #include <sys/fs/zfs.h> 77 #include <sys/arc.h> 78 #include <sys/callb.h> 79 #include <sys/systeminfo.h> 80 #include <sys/spa_boot.h> 81 #include <sys/zfs_ioctl.h> 82 #include <sys/dsl_scan.h> 83 #include <sys/zfeature.h> 84 #include <sys/dsl_destroy.h> 85 #include <sys/abd.h> 86 87 #ifdef _KERNEL 88 #include <sys/bootprops.h> 89 #include <sys/callb.h> 90 #include <sys/cpupart.h> 91 #include <sys/pool.h> 92 #include <sys/sysdc.h> 93 #include <sys/zone.h> 94 #endif /* _KERNEL */ 95 96 #include "zfs_prop.h" 97 #include "zfs_comutil.h" 98 99 /* 100 * The interval, in seconds, at which failed configuration cache file writes 101 * should be retried. 102 */ 103 int zfs_ccw_retry_interval = 300; 104 105 typedef enum zti_modes { 106 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 107 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 108 ZTI_MODE_NULL, /* don't create a taskq */ 109 ZTI_NMODES 110 } zti_modes_t; 111 112 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 113 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 114 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 115 116 #define ZTI_N(n) ZTI_P(n, 1) 117 #define ZTI_ONE ZTI_N(1) 118 119 typedef struct zio_taskq_info { 120 zti_modes_t zti_mode; 121 uint_t zti_value; 122 uint_t zti_count; 123 } zio_taskq_info_t; 124 125 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 126 "issue", "issue_high", "intr", "intr_high" 127 }; 128 129 /* 130 * This table defines the taskq settings for each ZFS I/O type. When 131 * initializing a pool, we use this table to create an appropriately sized 132 * taskq. Some operations are low volume and therefore have a small, static 133 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 134 * macros. Other operations process a large amount of data; the ZTI_BATCH 135 * macro causes us to create a taskq oriented for throughput. Some operations 136 * are so high frequency and short-lived that the taskq itself can become a 137 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 138 * additional degree of parallelism specified by the number of threads per- 139 * taskq and the number of taskqs; when dispatching an event in this case, the 140 * particular taskq is chosen at random. 141 * 142 * The different taskq priorities are to handle the different contexts (issue 143 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 144 * need to be handled with minimum delay. 145 */ 146 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 147 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 148 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 149 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 150 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 151 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 152 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 153 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 154 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ 155 }; 156 157 static void spa_sync_version(void *arg, dmu_tx_t *tx); 158 static void spa_sync_props(void *arg, dmu_tx_t *tx); 159 static boolean_t spa_has_active_shared_spare(spa_t *spa); 160 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport); 161 static void spa_vdev_resilver_done(spa_t *spa); 162 163 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 164 id_t zio_taskq_psrset_bind = PS_NONE; 165 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 166 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 167 168 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 169 extern int zfs_sync_pass_deferred_free; 170 171 /* 172 * Report any spa_load_verify errors found, but do not fail spa_load. 173 * This is used by zdb to analyze non-idle pools. 174 */ 175 boolean_t spa_load_verify_dryrun = B_FALSE; 176 177 /* 178 * This (illegal) pool name is used when temporarily importing a spa_t in order 179 * to get the vdev stats associated with the imported devices. 180 */ 181 #define TRYIMPORT_NAME "$import" 182 183 /* 184 * For debugging purposes: print out vdev tree during pool import. 185 */ 186 boolean_t spa_load_print_vdev_tree = B_FALSE; 187 188 /* 189 * A non-zero value for zfs_max_missing_tvds means that we allow importing 190 * pools with missing top-level vdevs. This is strictly intended for advanced 191 * pool recovery cases since missing data is almost inevitable. Pools with 192 * missing devices can only be imported read-only for safety reasons, and their 193 * fail-mode will be automatically set to "continue". 194 * 195 * With 1 missing vdev we should be able to import the pool and mount all 196 * datasets. User data that was not modified after the missing device has been 197 * added should be recoverable. This means that snapshots created prior to the 198 * addition of that device should be completely intact. 199 * 200 * With 2 missing vdevs, some datasets may fail to mount since there are 201 * dataset statistics that are stored as regular metadata. Some data might be 202 * recoverable if those vdevs were added recently. 203 * 204 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 205 * may be missing entirely. Chances of data recovery are very low. Note that 206 * there are also risks of performing an inadvertent rewind as we might be 207 * missing all the vdevs with the latest uberblocks. 208 */ 209 uint64_t zfs_max_missing_tvds = 0; 210 211 /* 212 * The parameters below are similar to zfs_max_missing_tvds but are only 213 * intended for a preliminary open of the pool with an untrusted config which 214 * might be incomplete or out-dated. 215 * 216 * We are more tolerant for pools opened from a cachefile since we could have 217 * an out-dated cachefile where a device removal was not registered. 218 * We could have set the limit arbitrarily high but in the case where devices 219 * are really missing we would want to return the proper error codes; we chose 220 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 221 * and we get a chance to retrieve the trusted config. 222 */ 223 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 224 225 /* 226 * In the case where config was assembled by scanning device paths (/dev/dsks 227 * by default) we are less tolerant since all the existing devices should have 228 * been detected and we want spa_load to return the right error codes. 229 */ 230 uint64_t zfs_max_missing_tvds_scan = 0; 231 232 /* 233 * Interval in seconds at which to poll spare vdevs for health. 234 * Setting this to zero disables spare polling. 235 * Set to three hours by default. 236 */ 237 uint_t spa_spare_poll_interval_seconds = 60 * 60 * 3; 238 239 /* 240 * Debugging aid that pauses spa_sync() towards the end. 241 */ 242 boolean_t zfs_pause_spa_sync = B_FALSE; 243 244 /* 245 * ========================================================================== 246 * SPA properties routines 247 * ========================================================================== 248 */ 249 250 /* 251 * Add a (source=src, propname=propval) list to an nvlist. 252 */ 253 static void 254 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 255 uint64_t intval, zprop_source_t src) 256 { 257 const char *propname = zpool_prop_to_name(prop); 258 nvlist_t *propval; 259 260 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 261 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 262 263 if (strval != NULL) 264 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 265 else 266 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 267 268 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 269 nvlist_free(propval); 270 } 271 272 /* 273 * Get property values from the spa configuration. 274 */ 275 static void 276 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 277 { 278 vdev_t *rvd = spa->spa_root_vdev; 279 dsl_pool_t *pool = spa->spa_dsl_pool; 280 uint64_t size, alloc, cap, version; 281 zprop_source_t src = ZPROP_SRC_NONE; 282 spa_config_dirent_t *dp; 283 metaslab_class_t *mc = spa_normal_class(spa); 284 285 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 286 287 if (rvd != NULL) { 288 alloc = metaslab_class_get_alloc(mc); 289 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 290 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 291 292 size = metaslab_class_get_space(mc); 293 size += metaslab_class_get_space(spa_special_class(spa)); 294 size += metaslab_class_get_space(spa_dedup_class(spa)); 295 296 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 297 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 298 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 299 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 300 size - alloc, src); 301 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, 302 spa->spa_checkpoint_info.sci_dspace, src); 303 304 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 305 metaslab_class_fragmentation(mc), src); 306 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 307 metaslab_class_expandable_space(mc), src); 308 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 309 (spa_mode(spa) == FREAD), src); 310 311 cap = (size == 0) ? 0 : (alloc * 100 / size); 312 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 313 314 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 315 ddt_get_pool_dedup_ratio(spa), src); 316 317 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 318 rvd->vdev_state, src); 319 320 version = spa_version(spa); 321 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 322 src = ZPROP_SRC_DEFAULT; 323 else 324 src = ZPROP_SRC_LOCAL; 325 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 326 } 327 328 if (pool != NULL) { 329 /* 330 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 331 * when opening pools before this version freedir will be NULL. 332 */ 333 if (pool->dp_free_dir != NULL) { 334 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 335 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 336 src); 337 } else { 338 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 339 NULL, 0, src); 340 } 341 342 if (pool->dp_leak_dir != NULL) { 343 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 344 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 345 src); 346 } else { 347 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 348 NULL, 0, src); 349 } 350 } 351 352 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 353 354 if (spa->spa_comment != NULL) { 355 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 356 0, ZPROP_SRC_LOCAL); 357 } 358 359 if (spa->spa_root != NULL) 360 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 361 0, ZPROP_SRC_LOCAL); 362 363 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 364 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 365 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 366 } else { 367 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 368 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 369 } 370 371 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 372 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 373 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 374 } else { 375 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 376 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 377 } 378 379 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 380 if (dp->scd_path == NULL) { 381 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 382 "none", 0, ZPROP_SRC_LOCAL); 383 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 384 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 385 dp->scd_path, 0, ZPROP_SRC_LOCAL); 386 } 387 } 388 } 389 390 /* 391 * Get zpool property values. 392 */ 393 int 394 spa_prop_get(spa_t *spa, nvlist_t **nvp) 395 { 396 objset_t *mos = spa->spa_meta_objset; 397 zap_cursor_t zc; 398 zap_attribute_t za; 399 int err; 400 401 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 402 403 mutex_enter(&spa->spa_props_lock); 404 405 /* 406 * Get properties from the spa config. 407 */ 408 spa_prop_get_config(spa, nvp); 409 410 /* If no pool property object, no more prop to get. */ 411 if (mos == NULL || spa->spa_pool_props_object == 0) { 412 mutex_exit(&spa->spa_props_lock); 413 return (0); 414 } 415 416 /* 417 * Get properties from the MOS pool property object. 418 */ 419 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 420 (err = zap_cursor_retrieve(&zc, &za)) == 0; 421 zap_cursor_advance(&zc)) { 422 uint64_t intval = 0; 423 char *strval = NULL; 424 zprop_source_t src = ZPROP_SRC_DEFAULT; 425 zpool_prop_t prop; 426 427 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) 428 continue; 429 430 switch (za.za_integer_length) { 431 case 8: 432 /* integer property */ 433 if (za.za_first_integer != 434 zpool_prop_default_numeric(prop)) 435 src = ZPROP_SRC_LOCAL; 436 437 if (prop == ZPOOL_PROP_BOOTFS) { 438 dsl_pool_t *dp; 439 dsl_dataset_t *ds = NULL; 440 441 dp = spa_get_dsl(spa); 442 dsl_pool_config_enter(dp, FTAG); 443 err = dsl_dataset_hold_obj(dp, 444 za.za_first_integer, FTAG, &ds); 445 if (err != 0) { 446 dsl_pool_config_exit(dp, FTAG); 447 break; 448 } 449 450 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 451 KM_SLEEP); 452 dsl_dataset_name(ds, strval); 453 dsl_dataset_rele(ds, FTAG); 454 dsl_pool_config_exit(dp, FTAG); 455 } else { 456 strval = NULL; 457 intval = za.za_first_integer; 458 } 459 460 spa_prop_add_list(*nvp, prop, strval, intval, src); 461 462 if (strval != NULL) 463 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 464 465 break; 466 467 case 1: 468 /* string property */ 469 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 470 err = zap_lookup(mos, spa->spa_pool_props_object, 471 za.za_name, 1, za.za_num_integers, strval); 472 if (err) { 473 kmem_free(strval, za.za_num_integers); 474 break; 475 } 476 spa_prop_add_list(*nvp, prop, strval, 0, src); 477 kmem_free(strval, za.za_num_integers); 478 break; 479 480 default: 481 break; 482 } 483 } 484 zap_cursor_fini(&zc); 485 mutex_exit(&spa->spa_props_lock); 486 out: 487 if (err && err != ENOENT) { 488 nvlist_free(*nvp); 489 *nvp = NULL; 490 return (err); 491 } 492 493 return (0); 494 } 495 496 /* 497 * Validate the given pool properties nvlist and modify the list 498 * for the property values to be set. 499 */ 500 static int 501 spa_prop_validate(spa_t *spa, nvlist_t *props) 502 { 503 nvpair_t *elem; 504 int error = 0, reset_bootfs = 0; 505 uint64_t objnum = 0; 506 boolean_t has_feature = B_FALSE; 507 508 elem = NULL; 509 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 510 uint64_t intval; 511 char *strval, *slash, *check, *fname; 512 const char *propname = nvpair_name(elem); 513 zpool_prop_t prop = zpool_name_to_prop(propname); 514 515 switch (prop) { 516 case ZPOOL_PROP_INVAL: 517 if (!zpool_prop_feature(propname)) { 518 error = SET_ERROR(EINVAL); 519 break; 520 } 521 522 /* 523 * Sanitize the input. 524 */ 525 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 526 error = SET_ERROR(EINVAL); 527 break; 528 } 529 530 if (nvpair_value_uint64(elem, &intval) != 0) { 531 error = SET_ERROR(EINVAL); 532 break; 533 } 534 535 if (intval != 0) { 536 error = SET_ERROR(EINVAL); 537 break; 538 } 539 540 fname = strchr(propname, '@') + 1; 541 if (zfeature_lookup_name(fname, NULL) != 0) { 542 error = SET_ERROR(EINVAL); 543 break; 544 } 545 546 has_feature = B_TRUE; 547 break; 548 549 case ZPOOL_PROP_VERSION: 550 error = nvpair_value_uint64(elem, &intval); 551 if (!error && 552 (intval < spa_version(spa) || 553 intval > SPA_VERSION_BEFORE_FEATURES || 554 has_feature)) 555 error = SET_ERROR(EINVAL); 556 break; 557 558 case ZPOOL_PROP_DELEGATION: 559 case ZPOOL_PROP_AUTOREPLACE: 560 case ZPOOL_PROP_LISTSNAPS: 561 case ZPOOL_PROP_AUTOEXPAND: 562 case ZPOOL_PROP_AUTOTRIM: 563 error = nvpair_value_uint64(elem, &intval); 564 if (!error && intval > 1) 565 error = SET_ERROR(EINVAL); 566 break; 567 568 case ZPOOL_PROP_MULTIHOST: 569 error = nvpair_value_uint64(elem, &intval); 570 if (!error && intval > 1) 571 error = SET_ERROR(EINVAL); 572 573 if (!error && !spa_get_hostid()) 574 error = SET_ERROR(ENOTSUP); 575 576 break; 577 578 case ZPOOL_PROP_BOOTFS: 579 /* 580 * If the pool version is less than SPA_VERSION_BOOTFS, 581 * or the pool is still being created (version == 0), 582 * the bootfs property cannot be set. 583 */ 584 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 585 error = SET_ERROR(ENOTSUP); 586 break; 587 } 588 589 /* 590 * Make sure the vdev config is bootable 591 */ 592 if (!vdev_is_bootable(spa->spa_root_vdev)) { 593 error = SET_ERROR(ENOTSUP); 594 break; 595 } 596 597 reset_bootfs = 1; 598 599 error = nvpair_value_string(elem, &strval); 600 601 if (!error) { 602 objset_t *os; 603 uint64_t propval; 604 605 if (strval == NULL || strval[0] == '\0') { 606 objnum = zpool_prop_default_numeric( 607 ZPOOL_PROP_BOOTFS); 608 break; 609 } 610 611 error = dmu_objset_hold(strval, FTAG, &os); 612 if (error != 0) 613 break; 614 615 /* 616 * Must be ZPL, and its property settings 617 * must be supported. 618 */ 619 620 if (dmu_objset_type(os) != DMU_OST_ZFS) { 621 error = SET_ERROR(ENOTSUP); 622 } else if ((error = 623 dsl_prop_get_int_ds(dmu_objset_ds(os), 624 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 625 &propval)) == 0 && 626 !BOOTFS_COMPRESS_VALID(propval)) { 627 error = SET_ERROR(ENOTSUP); 628 } else { 629 objnum = dmu_objset_id(os); 630 } 631 dmu_objset_rele(os, FTAG); 632 } 633 break; 634 635 case ZPOOL_PROP_FAILUREMODE: 636 error = nvpair_value_uint64(elem, &intval); 637 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 638 intval > ZIO_FAILURE_MODE_PANIC)) 639 error = SET_ERROR(EINVAL); 640 641 /* 642 * This is a special case which only occurs when 643 * the pool has completely failed. This allows 644 * the user to change the in-core failmode property 645 * without syncing it out to disk (I/Os might 646 * currently be blocked). We do this by returning 647 * EIO to the caller (spa_prop_set) to trick it 648 * into thinking we encountered a property validation 649 * error. 650 */ 651 if (!error && spa_suspended(spa)) { 652 spa->spa_failmode = intval; 653 error = SET_ERROR(EIO); 654 } 655 break; 656 657 case ZPOOL_PROP_CACHEFILE: 658 if ((error = nvpair_value_string(elem, &strval)) != 0) 659 break; 660 661 if (strval[0] == '\0') 662 break; 663 664 if (strcmp(strval, "none") == 0) 665 break; 666 667 if (strval[0] != '/') { 668 error = SET_ERROR(EINVAL); 669 break; 670 } 671 672 slash = strrchr(strval, '/'); 673 ASSERT(slash != NULL); 674 675 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 676 strcmp(slash, "/..") == 0) 677 error = SET_ERROR(EINVAL); 678 break; 679 680 case ZPOOL_PROP_COMMENT: 681 if ((error = nvpair_value_string(elem, &strval)) != 0) 682 break; 683 for (check = strval; *check != '\0'; check++) { 684 /* 685 * The kernel doesn't have an easy isprint() 686 * check. For this kernel check, we merely 687 * check ASCII apart from DEL. Fix this if 688 * there is an easy-to-use kernel isprint(). 689 */ 690 if (*check >= 0x7f) { 691 error = SET_ERROR(EINVAL); 692 break; 693 } 694 } 695 if (strlen(strval) > ZPROP_MAX_COMMENT) 696 error = E2BIG; 697 break; 698 699 case ZPOOL_PROP_DEDUPDITTO: 700 if (spa_version(spa) < SPA_VERSION_DEDUP) 701 error = SET_ERROR(ENOTSUP); 702 else 703 error = nvpair_value_uint64(elem, &intval); 704 if (error == 0 && 705 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 706 error = SET_ERROR(EINVAL); 707 break; 708 } 709 710 if (error) 711 break; 712 } 713 714 if (!error && reset_bootfs) { 715 error = nvlist_remove(props, 716 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 717 718 if (!error) { 719 error = nvlist_add_uint64(props, 720 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 721 } 722 } 723 724 return (error); 725 } 726 727 void 728 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 729 { 730 char *cachefile; 731 spa_config_dirent_t *dp; 732 733 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 734 &cachefile) != 0) 735 return; 736 737 dp = kmem_alloc(sizeof (spa_config_dirent_t), 738 KM_SLEEP); 739 740 if (cachefile[0] == '\0') 741 dp->scd_path = spa_strdup(spa_config_path); 742 else if (strcmp(cachefile, "none") == 0) 743 dp->scd_path = NULL; 744 else 745 dp->scd_path = spa_strdup(cachefile); 746 747 list_insert_head(&spa->spa_config_list, dp); 748 if (need_sync) 749 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 750 } 751 752 int 753 spa_prop_set(spa_t *spa, nvlist_t *nvp) 754 { 755 int error; 756 nvpair_t *elem = NULL; 757 boolean_t need_sync = B_FALSE; 758 759 if ((error = spa_prop_validate(spa, nvp)) != 0) 760 return (error); 761 762 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 763 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 764 765 if (prop == ZPOOL_PROP_CACHEFILE || 766 prop == ZPOOL_PROP_ALTROOT || 767 prop == ZPOOL_PROP_READONLY) 768 continue; 769 770 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 771 uint64_t ver; 772 773 if (prop == ZPOOL_PROP_VERSION) { 774 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 775 } else { 776 ASSERT(zpool_prop_feature(nvpair_name(elem))); 777 ver = SPA_VERSION_FEATURES; 778 need_sync = B_TRUE; 779 } 780 781 /* Save time if the version is already set. */ 782 if (ver == spa_version(spa)) 783 continue; 784 785 /* 786 * In addition to the pool directory object, we might 787 * create the pool properties object, the features for 788 * read object, the features for write object, or the 789 * feature descriptions object. 790 */ 791 error = dsl_sync_task(spa->spa_name, NULL, 792 spa_sync_version, &ver, 793 6, ZFS_SPACE_CHECK_RESERVED); 794 if (error) 795 return (error); 796 continue; 797 } 798 799 need_sync = B_TRUE; 800 break; 801 } 802 803 if (need_sync) { 804 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 805 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 806 } 807 808 return (0); 809 } 810 811 /* 812 * If the bootfs property value is dsobj, clear it. 813 */ 814 void 815 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 816 { 817 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 818 VERIFY(zap_remove(spa->spa_meta_objset, 819 spa->spa_pool_props_object, 820 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 821 spa->spa_bootfs = 0; 822 } 823 } 824 825 /*ARGSUSED*/ 826 static int 827 spa_change_guid_check(void *arg, dmu_tx_t *tx) 828 { 829 uint64_t *newguid = arg; 830 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 831 vdev_t *rvd = spa->spa_root_vdev; 832 uint64_t vdev_state; 833 834 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 835 int error = (spa_has_checkpoint(spa)) ? 836 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 837 return (SET_ERROR(error)); 838 } 839 840 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 841 vdev_state = rvd->vdev_state; 842 spa_config_exit(spa, SCL_STATE, FTAG); 843 844 if (vdev_state != VDEV_STATE_HEALTHY) 845 return (SET_ERROR(ENXIO)); 846 847 ASSERT3U(spa_guid(spa), !=, *newguid); 848 849 return (0); 850 } 851 852 static void 853 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 854 { 855 uint64_t *newguid = arg; 856 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 857 uint64_t oldguid; 858 vdev_t *rvd = spa->spa_root_vdev; 859 860 oldguid = spa_guid(spa); 861 862 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 863 rvd->vdev_guid = *newguid; 864 rvd->vdev_guid_sum += (*newguid - oldguid); 865 vdev_config_dirty(rvd); 866 spa_config_exit(spa, SCL_STATE, FTAG); 867 868 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 869 oldguid, *newguid); 870 } 871 872 /* 873 * Change the GUID for the pool. This is done so that we can later 874 * re-import a pool built from a clone of our own vdevs. We will modify 875 * the root vdev's guid, our own pool guid, and then mark all of our 876 * vdevs dirty. Note that we must make sure that all our vdevs are 877 * online when we do this, or else any vdevs that weren't present 878 * would be orphaned from our pool. We are also going to issue a 879 * sysevent to update any watchers. 880 */ 881 int 882 spa_change_guid(spa_t *spa) 883 { 884 int error; 885 uint64_t guid; 886 887 mutex_enter(&spa->spa_vdev_top_lock); 888 mutex_enter(&spa_namespace_lock); 889 guid = spa_generate_guid(NULL); 890 891 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 892 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 893 894 if (error == 0) { 895 spa_write_cachefile(spa, B_FALSE, B_TRUE); 896 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 897 } 898 899 mutex_exit(&spa_namespace_lock); 900 mutex_exit(&spa->spa_vdev_top_lock); 901 902 return (error); 903 } 904 905 /* 906 * ========================================================================== 907 * SPA state manipulation (open/create/destroy/import/export) 908 * ========================================================================== 909 */ 910 911 static int 912 spa_error_entry_compare(const void *a, const void *b) 913 { 914 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 915 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 916 int ret; 917 918 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 919 sizeof (zbookmark_phys_t)); 920 921 return (TREE_ISIGN(ret)); 922 } 923 924 /* 925 * Utility function which retrieves copies of the current logs and 926 * re-initializes them in the process. 927 */ 928 void 929 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 930 { 931 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 932 933 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 934 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 935 936 avl_create(&spa->spa_errlist_scrub, 937 spa_error_entry_compare, sizeof (spa_error_entry_t), 938 offsetof(spa_error_entry_t, se_avl)); 939 avl_create(&spa->spa_errlist_last, 940 spa_error_entry_compare, sizeof (spa_error_entry_t), 941 offsetof(spa_error_entry_t, se_avl)); 942 } 943 944 static void 945 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 946 { 947 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 948 enum zti_modes mode = ztip->zti_mode; 949 uint_t value = ztip->zti_value; 950 uint_t count = ztip->zti_count; 951 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 952 char name[32]; 953 uint_t flags = 0; 954 boolean_t batch = B_FALSE; 955 956 if (mode == ZTI_MODE_NULL) { 957 tqs->stqs_count = 0; 958 tqs->stqs_taskq = NULL; 959 return; 960 } 961 962 ASSERT3U(count, >, 0); 963 964 tqs->stqs_count = count; 965 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 966 967 switch (mode) { 968 case ZTI_MODE_FIXED: 969 ASSERT3U(value, >=, 1); 970 value = MAX(value, 1); 971 break; 972 973 case ZTI_MODE_BATCH: 974 batch = B_TRUE; 975 flags |= TASKQ_THREADS_CPU_PCT; 976 value = zio_taskq_batch_pct; 977 break; 978 979 default: 980 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 981 "spa_activate()", 982 zio_type_name[t], zio_taskq_types[q], mode, value); 983 break; 984 } 985 986 for (uint_t i = 0; i < count; i++) { 987 taskq_t *tq; 988 989 if (count > 1) { 990 (void) snprintf(name, sizeof (name), "%s_%s_%u", 991 zio_type_name[t], zio_taskq_types[q], i); 992 } else { 993 (void) snprintf(name, sizeof (name), "%s_%s", 994 zio_type_name[t], zio_taskq_types[q]); 995 } 996 997 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 998 if (batch) 999 flags |= TASKQ_DC_BATCH; 1000 1001 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 1002 spa->spa_proc, zio_taskq_basedc, flags); 1003 } else { 1004 pri_t pri = maxclsyspri; 1005 /* 1006 * The write issue taskq can be extremely CPU 1007 * intensive. Run it at slightly lower priority 1008 * than the other taskqs. 1009 */ 1010 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 1011 pri--; 1012 1013 tq = taskq_create_proc(name, value, pri, 50, 1014 INT_MAX, spa->spa_proc, flags); 1015 } 1016 1017 tqs->stqs_taskq[i] = tq; 1018 } 1019 } 1020 1021 static void 1022 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1023 { 1024 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1025 1026 if (tqs->stqs_taskq == NULL) { 1027 ASSERT0(tqs->stqs_count); 1028 return; 1029 } 1030 1031 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1032 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1033 taskq_destroy(tqs->stqs_taskq[i]); 1034 } 1035 1036 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1037 tqs->stqs_taskq = NULL; 1038 } 1039 1040 /* 1041 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1042 * Note that a type may have multiple discrete taskqs to avoid lock contention 1043 * on the taskq itself. In that case we choose which taskq at random by using 1044 * the low bits of gethrtime(). 1045 */ 1046 void 1047 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1048 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 1049 { 1050 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1051 taskq_t *tq; 1052 1053 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1054 ASSERT3U(tqs->stqs_count, !=, 0); 1055 1056 if (tqs->stqs_count == 1) { 1057 tq = tqs->stqs_taskq[0]; 1058 } else { 1059 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 1060 } 1061 1062 taskq_dispatch_ent(tq, func, arg, flags, ent); 1063 } 1064 1065 static void 1066 spa_create_zio_taskqs(spa_t *spa) 1067 { 1068 for (int t = 0; t < ZIO_TYPES; t++) { 1069 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1070 spa_taskqs_init(spa, t, q); 1071 } 1072 } 1073 } 1074 1075 #ifdef _KERNEL 1076 static void 1077 spa_thread(void *arg) 1078 { 1079 callb_cpr_t cprinfo; 1080 1081 spa_t *spa = arg; 1082 user_t *pu = PTOU(curproc); 1083 1084 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1085 spa->spa_name); 1086 1087 ASSERT(curproc != &p0); 1088 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1089 "zpool-%s", spa->spa_name); 1090 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1091 1092 /* bind this thread to the requested psrset */ 1093 if (zio_taskq_psrset_bind != PS_NONE) { 1094 pool_lock(); 1095 mutex_enter(&cpu_lock); 1096 mutex_enter(&pidlock); 1097 mutex_enter(&curproc->p_lock); 1098 1099 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1100 0, NULL, NULL) == 0) { 1101 curthread->t_bind_pset = zio_taskq_psrset_bind; 1102 } else { 1103 cmn_err(CE_WARN, 1104 "Couldn't bind process for zfs pool \"%s\" to " 1105 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1106 } 1107 1108 mutex_exit(&curproc->p_lock); 1109 mutex_exit(&pidlock); 1110 mutex_exit(&cpu_lock); 1111 pool_unlock(); 1112 } 1113 1114 if (zio_taskq_sysdc) { 1115 sysdc_thread_enter(curthread, 100, 0); 1116 } 1117 1118 spa->spa_proc = curproc; 1119 spa->spa_did = curthread->t_did; 1120 1121 spa_create_zio_taskqs(spa); 1122 1123 mutex_enter(&spa->spa_proc_lock); 1124 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1125 1126 spa->spa_proc_state = SPA_PROC_ACTIVE; 1127 cv_broadcast(&spa->spa_proc_cv); 1128 1129 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1130 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1132 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1133 1134 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1135 spa->spa_proc_state = SPA_PROC_GONE; 1136 spa->spa_proc = &p0; 1137 cv_broadcast(&spa->spa_proc_cv); 1138 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1139 1140 mutex_enter(&curproc->p_lock); 1141 lwp_exit(); 1142 } 1143 #endif 1144 1145 /* 1146 * Activate an uninitialized pool. 1147 */ 1148 static void 1149 spa_activate(spa_t *spa, int mode) 1150 { 1151 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1152 1153 spa->spa_state = POOL_STATE_ACTIVE; 1154 spa->spa_mode = mode; 1155 1156 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1157 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1158 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops); 1159 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops); 1160 1161 /* Try to create a covering process */ 1162 mutex_enter(&spa->spa_proc_lock); 1163 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1164 ASSERT(spa->spa_proc == &p0); 1165 spa->spa_did = 0; 1166 1167 /* Only create a process if we're going to be around a while. */ 1168 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1169 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1170 NULL, 0) == 0) { 1171 spa->spa_proc_state = SPA_PROC_CREATED; 1172 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1173 cv_wait(&spa->spa_proc_cv, 1174 &spa->spa_proc_lock); 1175 } 1176 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1177 ASSERT(spa->spa_proc != &p0); 1178 ASSERT(spa->spa_did != 0); 1179 } else { 1180 #ifdef _KERNEL 1181 cmn_err(CE_WARN, 1182 "Couldn't create process for zfs pool \"%s\"\n", 1183 spa->spa_name); 1184 #endif 1185 } 1186 } 1187 mutex_exit(&spa->spa_proc_lock); 1188 1189 /* If we didn't create a process, we need to create our taskqs. */ 1190 if (spa->spa_proc == &p0) { 1191 spa_create_zio_taskqs(spa); 1192 } 1193 1194 for (size_t i = 0; i < TXG_SIZE; i++) { 1195 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1196 ZIO_FLAG_CANFAIL); 1197 } 1198 1199 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1200 offsetof(vdev_t, vdev_config_dirty_node)); 1201 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1202 offsetof(objset_t, os_evicting_node)); 1203 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1204 offsetof(vdev_t, vdev_state_dirty_node)); 1205 1206 txg_list_create(&spa->spa_vdev_txg_list, spa, 1207 offsetof(struct vdev, vdev_txg_node)); 1208 1209 avl_create(&spa->spa_errlist_scrub, 1210 spa_error_entry_compare, sizeof (spa_error_entry_t), 1211 offsetof(spa_error_entry_t, se_avl)); 1212 avl_create(&spa->spa_errlist_last, 1213 spa_error_entry_compare, sizeof (spa_error_entry_t), 1214 offsetof(spa_error_entry_t, se_avl)); 1215 1216 spa_keystore_init(&spa->spa_keystore); 1217 1218 /* 1219 * The taskq to upgrade datasets in this pool. Currently used by 1220 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. 1221 */ 1222 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus, 1223 minclsyspri, 1, INT_MAX, TASKQ_DYNAMIC); 1224 } 1225 1226 /* 1227 * Opposite of spa_activate(). 1228 */ 1229 static void 1230 spa_deactivate(spa_t *spa) 1231 { 1232 ASSERT(spa->spa_sync_on == B_FALSE); 1233 ASSERT(spa->spa_dsl_pool == NULL); 1234 ASSERT(spa->spa_root_vdev == NULL); 1235 ASSERT(spa->spa_async_zio_root == NULL); 1236 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1237 1238 spa_evicting_os_wait(spa); 1239 1240 if (spa->spa_upgrade_taskq) { 1241 taskq_destroy(spa->spa_upgrade_taskq); 1242 spa->spa_upgrade_taskq = NULL; 1243 } 1244 1245 txg_list_destroy(&spa->spa_vdev_txg_list); 1246 1247 list_destroy(&spa->spa_config_dirty_list); 1248 list_destroy(&spa->spa_evicting_os_list); 1249 list_destroy(&spa->spa_state_dirty_list); 1250 1251 for (int t = 0; t < ZIO_TYPES; t++) { 1252 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1253 spa_taskqs_fini(spa, t, q); 1254 } 1255 } 1256 1257 for (size_t i = 0; i < TXG_SIZE; i++) { 1258 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1259 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1260 spa->spa_txg_zio[i] = NULL; 1261 } 1262 1263 metaslab_class_destroy(spa->spa_normal_class); 1264 spa->spa_normal_class = NULL; 1265 1266 metaslab_class_destroy(spa->spa_log_class); 1267 spa->spa_log_class = NULL; 1268 1269 metaslab_class_destroy(spa->spa_special_class); 1270 spa->spa_special_class = NULL; 1271 1272 metaslab_class_destroy(spa->spa_dedup_class); 1273 spa->spa_dedup_class = NULL; 1274 1275 /* 1276 * If this was part of an import or the open otherwise failed, we may 1277 * still have errors left in the queues. Empty them just in case. 1278 */ 1279 spa_errlog_drain(spa); 1280 avl_destroy(&spa->spa_errlist_scrub); 1281 avl_destroy(&spa->spa_errlist_last); 1282 1283 spa_keystore_fini(&spa->spa_keystore); 1284 1285 spa->spa_state = POOL_STATE_UNINITIALIZED; 1286 1287 mutex_enter(&spa->spa_proc_lock); 1288 if (spa->spa_proc_state != SPA_PROC_NONE) { 1289 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1290 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1291 cv_broadcast(&spa->spa_proc_cv); 1292 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1293 ASSERT(spa->spa_proc != &p0); 1294 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1295 } 1296 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1297 spa->spa_proc_state = SPA_PROC_NONE; 1298 } 1299 ASSERT(spa->spa_proc == &p0); 1300 mutex_exit(&spa->spa_proc_lock); 1301 1302 /* 1303 * We want to make sure spa_thread() has actually exited the ZFS 1304 * module, so that the module can't be unloaded out from underneath 1305 * it. 1306 */ 1307 if (spa->spa_did != 0) { 1308 thread_join(spa->spa_did); 1309 spa->spa_did = 0; 1310 } 1311 } 1312 1313 /* 1314 * Verify a pool configuration, and construct the vdev tree appropriately. This 1315 * will create all the necessary vdevs in the appropriate layout, with each vdev 1316 * in the CLOSED state. This will prep the pool before open/creation/import. 1317 * All vdev validation is done by the vdev_alloc() routine. 1318 */ 1319 static int 1320 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1321 uint_t id, int atype) 1322 { 1323 nvlist_t **child; 1324 uint_t children; 1325 int error; 1326 1327 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1328 return (error); 1329 1330 if ((*vdp)->vdev_ops->vdev_op_leaf) 1331 return (0); 1332 1333 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1334 &child, &children); 1335 1336 if (error == ENOENT) 1337 return (0); 1338 1339 if (error) { 1340 vdev_free(*vdp); 1341 *vdp = NULL; 1342 return (SET_ERROR(EINVAL)); 1343 } 1344 1345 for (int c = 0; c < children; c++) { 1346 vdev_t *vd; 1347 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1348 atype)) != 0) { 1349 vdev_free(*vdp); 1350 *vdp = NULL; 1351 return (error); 1352 } 1353 } 1354 1355 ASSERT(*vdp != NULL); 1356 1357 return (0); 1358 } 1359 1360 static boolean_t 1361 spa_should_flush_logs_on_unload(spa_t *spa) 1362 { 1363 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1364 return (B_FALSE); 1365 1366 if (!spa_writeable(spa)) 1367 return (B_FALSE); 1368 1369 if (!spa->spa_sync_on) 1370 return (B_FALSE); 1371 1372 if (spa_state(spa) != POOL_STATE_EXPORTED) 1373 return (B_FALSE); 1374 1375 if (zfs_keep_log_spacemaps_at_export) 1376 return (B_FALSE); 1377 1378 return (B_TRUE); 1379 } 1380 1381 /* 1382 * Opens a transaction that will set the flag that will instruct 1383 * spa_sync to attempt to flush all the metaslabs for that txg. 1384 */ 1385 static void 1386 spa_unload_log_sm_flush_all(spa_t *spa) 1387 { 1388 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1389 1390 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1391 1392 ASSERT3U(spa->spa_log_flushall_txg, ==, 0); 1393 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); 1394 1395 dmu_tx_commit(tx); 1396 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); 1397 } 1398 1399 static void 1400 spa_unload_log_sm_metadata(spa_t *spa) 1401 { 1402 void *cookie = NULL; 1403 spa_log_sm_t *sls; 1404 1405 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, 1406 &cookie)) != NULL) { 1407 VERIFY0(sls->sls_mscount); 1408 kmem_free(sls, sizeof (spa_log_sm_t)); 1409 } 1410 1411 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary); 1412 e != NULL; e = list_head(&spa->spa_log_summary)) { 1413 VERIFY0(e->lse_mscount); 1414 list_remove(&spa->spa_log_summary, e); 1415 kmem_free(e, sizeof (log_summary_entry_t)); 1416 } 1417 1418 spa->spa_unflushed_stats.sus_nblocks = 0; 1419 spa->spa_unflushed_stats.sus_memused = 0; 1420 spa->spa_unflushed_stats.sus_blocklimit = 0; 1421 } 1422 1423 /* 1424 * Opposite of spa_load(). 1425 */ 1426 static void 1427 spa_unload(spa_t *spa) 1428 { 1429 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1430 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); 1431 1432 spa_import_progress_remove(spa); 1433 spa_load_note(spa, "UNLOADING"); 1434 1435 /* 1436 * If the log space map feature is enabled and the pool is getting 1437 * exported (but not destroyed), we want to spend some time flushing 1438 * as many metaslabs as we can in an attempt to destroy log space 1439 * maps and save import time. 1440 */ 1441 if (spa_should_flush_logs_on_unload(spa)) 1442 spa_unload_log_sm_flush_all(spa); 1443 1444 /* 1445 * Stop async tasks. 1446 */ 1447 spa_async_suspend(spa); 1448 1449 if (spa->spa_root_vdev) { 1450 vdev_t *root_vdev = spa->spa_root_vdev; 1451 vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE); 1452 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); 1453 vdev_autotrim_stop_all(spa); 1454 } 1455 1456 /* 1457 * Stop syncing. 1458 */ 1459 if (spa->spa_sync_on) { 1460 txg_sync_stop(spa->spa_dsl_pool); 1461 spa->spa_sync_on = B_FALSE; 1462 } 1463 1464 /* 1465 * This ensures that there is no async metaslab prefetching 1466 * while we attempt to unload the spa. 1467 */ 1468 if (spa->spa_root_vdev != NULL) { 1469 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) { 1470 vdev_t *vc = spa->spa_root_vdev->vdev_child[c]; 1471 if (vc->vdev_mg != NULL) 1472 taskq_wait(vc->vdev_mg->mg_taskq); 1473 } 1474 } 1475 1476 if (spa->spa_mmp.mmp_thread) 1477 mmp_thread_stop(spa); 1478 1479 /* 1480 * Wait for any outstanding async I/O to complete. 1481 */ 1482 if (spa->spa_async_zio_root != NULL) { 1483 for (int i = 0; i < max_ncpus; i++) 1484 (void) zio_wait(spa->spa_async_zio_root[i]); 1485 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1486 spa->spa_async_zio_root = NULL; 1487 } 1488 1489 if (spa->spa_vdev_removal != NULL) { 1490 spa_vdev_removal_destroy(spa->spa_vdev_removal); 1491 spa->spa_vdev_removal = NULL; 1492 } 1493 1494 if (spa->spa_condense_zthr != NULL) { 1495 zthr_destroy(spa->spa_condense_zthr); 1496 spa->spa_condense_zthr = NULL; 1497 } 1498 1499 if (spa->spa_checkpoint_discard_zthr != NULL) { 1500 zthr_destroy(spa->spa_checkpoint_discard_zthr); 1501 spa->spa_checkpoint_discard_zthr = NULL; 1502 } 1503 1504 spa_condense_fini(spa); 1505 1506 bpobj_close(&spa->spa_deferred_bpobj); 1507 1508 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1509 1510 /* 1511 * Close all vdevs. 1512 */ 1513 if (spa->spa_root_vdev) 1514 vdev_free(spa->spa_root_vdev); 1515 ASSERT(spa->spa_root_vdev == NULL); 1516 1517 /* 1518 * Close the dsl pool. 1519 */ 1520 if (spa->spa_dsl_pool) { 1521 dsl_pool_close(spa->spa_dsl_pool); 1522 spa->spa_dsl_pool = NULL; 1523 spa->spa_meta_objset = NULL; 1524 } 1525 1526 ddt_unload(spa); 1527 spa_unload_log_sm_metadata(spa); 1528 1529 /* 1530 * Drop and purge level 2 cache 1531 */ 1532 spa_l2cache_drop(spa); 1533 1534 for (int i = 0; i < spa->spa_spares.sav_count; i++) 1535 vdev_free(spa->spa_spares.sav_vdevs[i]); 1536 if (spa->spa_spares.sav_vdevs) { 1537 kmem_free(spa->spa_spares.sav_vdevs, 1538 spa->spa_spares.sav_count * sizeof (void *)); 1539 spa->spa_spares.sav_vdevs = NULL; 1540 } 1541 if (spa->spa_spares.sav_config) { 1542 nvlist_free(spa->spa_spares.sav_config); 1543 spa->spa_spares.sav_config = NULL; 1544 } 1545 spa->spa_spares.sav_count = 0; 1546 1547 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1548 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1549 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1550 } 1551 if (spa->spa_l2cache.sav_vdevs) { 1552 kmem_free(spa->spa_l2cache.sav_vdevs, 1553 spa->spa_l2cache.sav_count * sizeof (void *)); 1554 spa->spa_l2cache.sav_vdevs = NULL; 1555 } 1556 if (spa->spa_l2cache.sav_config) { 1557 nvlist_free(spa->spa_l2cache.sav_config); 1558 spa->spa_l2cache.sav_config = NULL; 1559 } 1560 spa->spa_l2cache.sav_count = 0; 1561 1562 spa->spa_async_suspended = 0; 1563 1564 spa->spa_indirect_vdevs_loaded = B_FALSE; 1565 1566 if (spa->spa_comment != NULL) { 1567 spa_strfree(spa->spa_comment); 1568 spa->spa_comment = NULL; 1569 } 1570 1571 spa_config_exit(spa, SCL_ALL, spa); 1572 } 1573 1574 /* 1575 * Load (or re-load) the current list of vdevs describing the active spares for 1576 * this pool. When this is called, we have some form of basic information in 1577 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1578 * then re-generate a more complete list including status information. 1579 */ 1580 void 1581 spa_load_spares(spa_t *spa) 1582 { 1583 nvlist_t **spares; 1584 uint_t nspares; 1585 int i; 1586 vdev_t *vd, *tvd; 1587 1588 #ifndef _KERNEL 1589 /* 1590 * zdb opens both the current state of the pool and the 1591 * checkpointed state (if present), with a different spa_t. 1592 * 1593 * As spare vdevs are shared among open pools, we skip loading 1594 * them when we load the checkpointed state of the pool. 1595 */ 1596 if (!spa_writeable(spa)) 1597 return; 1598 #endif 1599 1600 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1601 1602 /* 1603 * First, close and free any existing spare vdevs. 1604 */ 1605 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1606 vd = spa->spa_spares.sav_vdevs[i]; 1607 1608 /* Undo the call to spa_activate() below */ 1609 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1610 B_FALSE)) != NULL && tvd->vdev_isspare) 1611 spa_spare_remove(tvd); 1612 vdev_close(vd); 1613 vdev_free(vd); 1614 } 1615 1616 if (spa->spa_spares.sav_vdevs) 1617 kmem_free(spa->spa_spares.sav_vdevs, 1618 spa->spa_spares.sav_count * sizeof (void *)); 1619 1620 if (spa->spa_spares.sav_config == NULL) 1621 nspares = 0; 1622 else 1623 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1624 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1625 1626 spa->spa_spares.sav_count = (int)nspares; 1627 spa->spa_spares.sav_vdevs = NULL; 1628 1629 if (nspares == 0) 1630 return; 1631 1632 /* 1633 * Construct the array of vdevs, opening them to get status in the 1634 * process. For each spare, there is potentially two different vdev_t 1635 * structures associated with it: one in the list of spares (used only 1636 * for basic validation purposes) and one in the active vdev 1637 * configuration (if it's spared in). During this phase we open and 1638 * validate each vdev on the spare list. If the vdev also exists in the 1639 * active configuration, then we also mark this vdev as an active spare. 1640 */ 1641 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1642 KM_SLEEP); 1643 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1644 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1645 VDEV_ALLOC_SPARE) == 0); 1646 ASSERT(vd != NULL); 1647 1648 spa->spa_spares.sav_vdevs[i] = vd; 1649 1650 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1651 B_FALSE)) != NULL) { 1652 if (!tvd->vdev_isspare) 1653 spa_spare_add(tvd); 1654 1655 /* 1656 * We only mark the spare active if we were successfully 1657 * able to load the vdev. Otherwise, importing a pool 1658 * with a bad active spare would result in strange 1659 * behavior, because multiple pool would think the spare 1660 * is actively in use. 1661 * 1662 * There is a vulnerability here to an equally bizarre 1663 * circumstance, where a dead active spare is later 1664 * brought back to life (onlined or otherwise). Given 1665 * the rarity of this scenario, and the extra complexity 1666 * it adds, we ignore the possibility. 1667 */ 1668 if (!vdev_is_dead(tvd)) 1669 spa_spare_activate(tvd); 1670 } 1671 1672 vd->vdev_top = vd; 1673 vd->vdev_aux = &spa->spa_spares; 1674 1675 if (vdev_open(vd) != 0) 1676 continue; 1677 1678 if (vdev_validate_aux(vd) == 0) 1679 spa_spare_add(vd); 1680 } 1681 1682 /* 1683 * Recompute the stashed list of spares, with status information 1684 * this time. 1685 */ 1686 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1687 DATA_TYPE_NVLIST_ARRAY) == 0); 1688 1689 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1690 KM_SLEEP); 1691 for (i = 0; i < spa->spa_spares.sav_count; i++) 1692 spares[i] = vdev_config_generate(spa, 1693 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1694 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1695 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1696 for (i = 0; i < spa->spa_spares.sav_count; i++) 1697 nvlist_free(spares[i]); 1698 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1699 } 1700 1701 /* 1702 * Load (or re-load) the current list of vdevs describing the active l2cache for 1703 * this pool. When this is called, we have some form of basic information in 1704 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1705 * then re-generate a more complete list including status information. 1706 * Devices which are already active have their details maintained, and are 1707 * not re-opened. 1708 */ 1709 void 1710 spa_load_l2cache(spa_t *spa) 1711 { 1712 nvlist_t **l2cache; 1713 uint_t nl2cache; 1714 int i, j, oldnvdevs; 1715 uint64_t guid; 1716 vdev_t *vd, **oldvdevs, **newvdevs; 1717 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1718 1719 #ifndef _KERNEL 1720 /* 1721 * zdb opens both the current state of the pool and the 1722 * checkpointed state (if present), with a different spa_t. 1723 * 1724 * As L2 caches are part of the ARC which is shared among open 1725 * pools, we skip loading them when we load the checkpointed 1726 * state of the pool. 1727 */ 1728 if (!spa_writeable(spa)) 1729 return; 1730 #endif 1731 1732 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1733 1734 if (sav->sav_config != NULL) { 1735 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1736 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1737 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1738 } else { 1739 nl2cache = 0; 1740 newvdevs = NULL; 1741 } 1742 1743 oldvdevs = sav->sav_vdevs; 1744 oldnvdevs = sav->sav_count; 1745 sav->sav_vdevs = NULL; 1746 sav->sav_count = 0; 1747 1748 /* 1749 * Process new nvlist of vdevs. 1750 */ 1751 for (i = 0; i < nl2cache; i++) { 1752 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1753 &guid) == 0); 1754 1755 newvdevs[i] = NULL; 1756 for (j = 0; j < oldnvdevs; j++) { 1757 vd = oldvdevs[j]; 1758 if (vd != NULL && guid == vd->vdev_guid) { 1759 /* 1760 * Retain previous vdev for add/remove ops. 1761 */ 1762 newvdevs[i] = vd; 1763 oldvdevs[j] = NULL; 1764 break; 1765 } 1766 } 1767 1768 if (newvdevs[i] == NULL) { 1769 /* 1770 * Create new vdev 1771 */ 1772 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1773 VDEV_ALLOC_L2CACHE) == 0); 1774 ASSERT(vd != NULL); 1775 newvdevs[i] = vd; 1776 1777 /* 1778 * Commit this vdev as an l2cache device, 1779 * even if it fails to open. 1780 */ 1781 spa_l2cache_add(vd); 1782 1783 vd->vdev_top = vd; 1784 vd->vdev_aux = sav; 1785 1786 spa_l2cache_activate(vd); 1787 1788 if (vdev_open(vd) != 0) 1789 continue; 1790 1791 (void) vdev_validate_aux(vd); 1792 1793 if (!vdev_is_dead(vd)) 1794 l2arc_add_vdev(spa, vd); 1795 } 1796 } 1797 1798 /* 1799 * Purge vdevs that were dropped 1800 */ 1801 for (i = 0; i < oldnvdevs; i++) { 1802 uint64_t pool; 1803 1804 vd = oldvdevs[i]; 1805 if (vd != NULL) { 1806 ASSERT(vd->vdev_isl2cache); 1807 1808 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1809 pool != 0ULL && l2arc_vdev_present(vd)) 1810 l2arc_remove_vdev(vd); 1811 vdev_clear_stats(vd); 1812 vdev_free(vd); 1813 } 1814 } 1815 1816 if (oldvdevs) 1817 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1818 1819 if (sav->sav_config == NULL) 1820 goto out; 1821 1822 sav->sav_vdevs = newvdevs; 1823 sav->sav_count = (int)nl2cache; 1824 1825 /* 1826 * Recompute the stashed list of l2cache devices, with status 1827 * information this time. 1828 */ 1829 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1830 DATA_TYPE_NVLIST_ARRAY) == 0); 1831 1832 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1833 for (i = 0; i < sav->sav_count; i++) 1834 l2cache[i] = vdev_config_generate(spa, 1835 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1836 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1837 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1838 out: 1839 for (i = 0; i < sav->sav_count; i++) 1840 nvlist_free(l2cache[i]); 1841 if (sav->sav_count) 1842 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1843 } 1844 1845 static int 1846 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1847 { 1848 dmu_buf_t *db; 1849 char *packed = NULL; 1850 size_t nvsize = 0; 1851 int error; 1852 *value = NULL; 1853 1854 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1855 if (error != 0) 1856 return (error); 1857 1858 nvsize = *(uint64_t *)db->db_data; 1859 dmu_buf_rele(db, FTAG); 1860 1861 packed = kmem_alloc(nvsize, KM_SLEEP); 1862 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1863 DMU_READ_PREFETCH); 1864 if (error == 0) 1865 error = nvlist_unpack(packed, nvsize, value, 0); 1866 kmem_free(packed, nvsize); 1867 1868 return (error); 1869 } 1870 1871 /* 1872 * Concrete top-level vdevs that are not missing and are not logs. At every 1873 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 1874 */ 1875 static uint64_t 1876 spa_healthy_core_tvds(spa_t *spa) 1877 { 1878 vdev_t *rvd = spa->spa_root_vdev; 1879 uint64_t tvds = 0; 1880 1881 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1882 vdev_t *vd = rvd->vdev_child[i]; 1883 if (vd->vdev_islog) 1884 continue; 1885 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 1886 tvds++; 1887 } 1888 1889 return (tvds); 1890 } 1891 1892 /* 1893 * Checks to see if the given vdev could not be opened, in which case we post a 1894 * sysevent to notify the autoreplace code that the device has been removed. 1895 */ 1896 static void 1897 spa_check_removed(vdev_t *vd) 1898 { 1899 for (uint64_t c = 0; c < vd->vdev_children; c++) 1900 spa_check_removed(vd->vdev_child[c]); 1901 1902 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1903 vdev_is_concrete(vd)) { 1904 zfs_post_autoreplace(vd->vdev_spa, vd); 1905 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 1906 } 1907 } 1908 1909 static int 1910 spa_check_for_missing_logs(spa_t *spa) 1911 { 1912 vdev_t *rvd = spa->spa_root_vdev; 1913 1914 /* 1915 * If we're doing a normal import, then build up any additional 1916 * diagnostic information about missing log devices. 1917 * We'll pass this up to the user for further processing. 1918 */ 1919 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1920 nvlist_t **child, *nv; 1921 uint64_t idx = 0; 1922 1923 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1924 KM_SLEEP); 1925 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1926 1927 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 1928 vdev_t *tvd = rvd->vdev_child[c]; 1929 1930 /* 1931 * We consider a device as missing only if it failed 1932 * to open (i.e. offline or faulted is not considered 1933 * as missing). 1934 */ 1935 if (tvd->vdev_islog && 1936 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 1937 child[idx++] = vdev_config_generate(spa, tvd, 1938 B_FALSE, VDEV_CONFIG_MISSING); 1939 } 1940 } 1941 1942 if (idx > 0) { 1943 fnvlist_add_nvlist_array(nv, 1944 ZPOOL_CONFIG_CHILDREN, child, idx); 1945 fnvlist_add_nvlist(spa->spa_load_info, 1946 ZPOOL_CONFIG_MISSING_DEVICES, nv); 1947 1948 for (uint64_t i = 0; i < idx; i++) 1949 nvlist_free(child[i]); 1950 } 1951 nvlist_free(nv); 1952 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1953 1954 if (idx > 0) { 1955 spa_load_failed(spa, "some log devices are missing"); 1956 vdev_dbgmsg_print_tree(rvd, 2); 1957 return (SET_ERROR(ENXIO)); 1958 } 1959 } else { 1960 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 1961 vdev_t *tvd = rvd->vdev_child[c]; 1962 1963 if (tvd->vdev_islog && 1964 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 1965 spa_set_log_state(spa, SPA_LOG_CLEAR); 1966 spa_load_note(spa, "some log devices are " 1967 "missing, ZIL is dropped."); 1968 vdev_dbgmsg_print_tree(rvd, 2); 1969 break; 1970 } 1971 } 1972 } 1973 1974 return (0); 1975 } 1976 1977 /* 1978 * Check for missing log devices 1979 */ 1980 static boolean_t 1981 spa_check_logs(spa_t *spa) 1982 { 1983 boolean_t rv = B_FALSE; 1984 dsl_pool_t *dp = spa_get_dsl(spa); 1985 1986 switch (spa->spa_log_state) { 1987 case SPA_LOG_MISSING: 1988 /* need to recheck in case slog has been restored */ 1989 case SPA_LOG_UNKNOWN: 1990 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1991 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1992 if (rv) 1993 spa_set_log_state(spa, SPA_LOG_MISSING); 1994 break; 1995 } 1996 return (rv); 1997 } 1998 1999 static boolean_t 2000 spa_passivate_log(spa_t *spa) 2001 { 2002 vdev_t *rvd = spa->spa_root_vdev; 2003 boolean_t slog_found = B_FALSE; 2004 2005 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2006 2007 if (!spa_has_slogs(spa)) 2008 return (B_FALSE); 2009 2010 for (int c = 0; c < rvd->vdev_children; c++) { 2011 vdev_t *tvd = rvd->vdev_child[c]; 2012 metaslab_group_t *mg = tvd->vdev_mg; 2013 2014 if (tvd->vdev_islog) { 2015 metaslab_group_passivate(mg); 2016 slog_found = B_TRUE; 2017 } 2018 } 2019 2020 return (slog_found); 2021 } 2022 2023 static void 2024 spa_activate_log(spa_t *spa) 2025 { 2026 vdev_t *rvd = spa->spa_root_vdev; 2027 2028 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2029 2030 for (int c = 0; c < rvd->vdev_children; c++) { 2031 vdev_t *tvd = rvd->vdev_child[c]; 2032 metaslab_group_t *mg = tvd->vdev_mg; 2033 2034 if (tvd->vdev_islog) 2035 metaslab_group_activate(mg); 2036 } 2037 } 2038 2039 int 2040 spa_reset_logs(spa_t *spa) 2041 { 2042 int error; 2043 2044 error = dmu_objset_find(spa_name(spa), zil_reset, 2045 NULL, DS_FIND_CHILDREN); 2046 if (error == 0) { 2047 /* 2048 * We successfully offlined the log device, sync out the 2049 * current txg so that the "stubby" block can be removed 2050 * by zil_sync(). 2051 */ 2052 txg_wait_synced(spa->spa_dsl_pool, 0); 2053 } 2054 return (error); 2055 } 2056 2057 static void 2058 spa_aux_check_removed(spa_aux_vdev_t *sav) 2059 { 2060 for (int i = 0; i < sav->sav_count; i++) 2061 spa_check_removed(sav->sav_vdevs[i]); 2062 } 2063 2064 void 2065 spa_claim_notify(zio_t *zio) 2066 { 2067 spa_t *spa = zio->io_spa; 2068 2069 if (zio->io_error) 2070 return; 2071 2072 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 2073 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 2074 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 2075 mutex_exit(&spa->spa_props_lock); 2076 } 2077 2078 typedef struct spa_load_error { 2079 uint64_t sle_meta_count; 2080 uint64_t sle_data_count; 2081 } spa_load_error_t; 2082 2083 static void 2084 spa_load_verify_done(zio_t *zio) 2085 { 2086 blkptr_t *bp = zio->io_bp; 2087 spa_load_error_t *sle = zio->io_private; 2088 dmu_object_type_t type = BP_GET_TYPE(bp); 2089 int error = zio->io_error; 2090 spa_t *spa = zio->io_spa; 2091 2092 abd_free(zio->io_abd); 2093 if (error) { 2094 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 2095 type != DMU_OT_INTENT_LOG) 2096 atomic_inc_64(&sle->sle_meta_count); 2097 else 2098 atomic_inc_64(&sle->sle_data_count); 2099 } 2100 2101 mutex_enter(&spa->spa_scrub_lock); 2102 spa->spa_load_verify_ios--; 2103 cv_broadcast(&spa->spa_scrub_io_cv); 2104 mutex_exit(&spa->spa_scrub_lock); 2105 } 2106 2107 /* 2108 * Maximum number of concurrent scrub i/os to create while verifying 2109 * a pool while importing it. 2110 */ 2111 int spa_load_verify_maxinflight = 10000; 2112 boolean_t spa_load_verify_metadata = B_TRUE; 2113 boolean_t spa_load_verify_data = B_TRUE; 2114 2115 /*ARGSUSED*/ 2116 static int 2117 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2118 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2119 { 2120 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2121 return (0); 2122 /* 2123 * Note: normally this routine will not be called if 2124 * spa_load_verify_metadata is not set. However, it may be useful 2125 * to manually set the flag after the traversal has begun. 2126 */ 2127 if (!spa_load_verify_metadata) 2128 return (0); 2129 if (!BP_IS_METADATA(bp) && !spa_load_verify_data) 2130 return (0); 2131 2132 zio_t *rio = arg; 2133 size_t size = BP_GET_PSIZE(bp); 2134 2135 mutex_enter(&spa->spa_scrub_lock); 2136 while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight) 2137 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2138 spa->spa_load_verify_ios++; 2139 mutex_exit(&spa->spa_scrub_lock); 2140 2141 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2142 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2143 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2144 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2145 return (0); 2146 } 2147 2148 /* ARGSUSED */ 2149 int 2150 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2151 { 2152 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2153 return (SET_ERROR(ENAMETOOLONG)); 2154 2155 return (0); 2156 } 2157 2158 static int 2159 spa_load_verify(spa_t *spa) 2160 { 2161 zio_t *rio; 2162 spa_load_error_t sle = { 0 }; 2163 zpool_load_policy_t policy; 2164 boolean_t verify_ok = B_FALSE; 2165 int error = 0; 2166 2167 zpool_get_load_policy(spa->spa_config, &policy); 2168 2169 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND) 2170 return (0); 2171 2172 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2173 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2174 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2175 DS_FIND_CHILDREN); 2176 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2177 if (error != 0) 2178 return (error); 2179 2180 rio = zio_root(spa, NULL, &sle, 2181 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2182 2183 if (spa_load_verify_metadata) { 2184 if (spa->spa_extreme_rewind) { 2185 spa_load_note(spa, "performing a complete scan of the " 2186 "pool since extreme rewind is on. This may take " 2187 "a very long time.\n (spa_load_verify_data=%u, " 2188 "spa_load_verify_metadata=%u)", 2189 spa_load_verify_data, spa_load_verify_metadata); 2190 } 2191 error = traverse_pool(spa, spa->spa_verify_min_txg, 2192 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 2193 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); 2194 } 2195 2196 (void) zio_wait(rio); 2197 2198 spa->spa_load_meta_errors = sle.sle_meta_count; 2199 spa->spa_load_data_errors = sle.sle_data_count; 2200 2201 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2202 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2203 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2204 (u_longlong_t)sle.sle_data_count); 2205 } 2206 2207 if (spa_load_verify_dryrun || 2208 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2209 sle.sle_data_count <= policy.zlp_maxdata)) { 2210 int64_t loss = 0; 2211 2212 verify_ok = B_TRUE; 2213 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2214 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2215 2216 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2217 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2218 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 2219 VERIFY(nvlist_add_int64(spa->spa_load_info, 2220 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 2221 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2222 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 2223 } else { 2224 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2225 } 2226 2227 if (spa_load_verify_dryrun) 2228 return (0); 2229 2230 if (error) { 2231 if (error != ENXIO && error != EIO) 2232 error = SET_ERROR(EIO); 2233 return (error); 2234 } 2235 2236 return (verify_ok ? 0 : EIO); 2237 } 2238 2239 /* 2240 * Find a value in the pool props object. 2241 */ 2242 static void 2243 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2244 { 2245 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2246 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2247 } 2248 2249 /* 2250 * Find a value in the pool directory object. 2251 */ 2252 static int 2253 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2254 { 2255 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2256 name, sizeof (uint64_t), 1, val); 2257 2258 if (error != 0 && (error != ENOENT || log_enoent)) { 2259 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2260 "[error=%d]", name, error); 2261 } 2262 2263 return (error); 2264 } 2265 2266 static int 2267 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2268 { 2269 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2270 return (SET_ERROR(err)); 2271 } 2272 2273 static void 2274 spa_spawn_aux_threads(spa_t *spa) 2275 { 2276 ASSERT(spa_writeable(spa)); 2277 2278 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2279 2280 spa_start_indirect_condensing_thread(spa); 2281 2282 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 2283 spa->spa_checkpoint_discard_zthr = 2284 zthr_create(spa_checkpoint_discard_thread_check, 2285 spa_checkpoint_discard_thread, spa); 2286 } 2287 2288 /* 2289 * Fix up config after a partly-completed split. This is done with the 2290 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2291 * pool have that entry in their config, but only the splitting one contains 2292 * a list of all the guids of the vdevs that are being split off. 2293 * 2294 * This function determines what to do with that list: either rejoin 2295 * all the disks to the pool, or complete the splitting process. To attempt 2296 * the rejoin, each disk that is offlined is marked online again, and 2297 * we do a reopen() call. If the vdev label for every disk that was 2298 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2299 * then we call vdev_split() on each disk, and complete the split. 2300 * 2301 * Otherwise we leave the config alone, with all the vdevs in place in 2302 * the original pool. 2303 */ 2304 static void 2305 spa_try_repair(spa_t *spa, nvlist_t *config) 2306 { 2307 uint_t extracted; 2308 uint64_t *glist; 2309 uint_t i, gcount; 2310 nvlist_t *nvl; 2311 vdev_t **vd; 2312 boolean_t attempt_reopen; 2313 2314 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2315 return; 2316 2317 /* check that the config is complete */ 2318 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2319 &glist, &gcount) != 0) 2320 return; 2321 2322 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2323 2324 /* attempt to online all the vdevs & validate */ 2325 attempt_reopen = B_TRUE; 2326 for (i = 0; i < gcount; i++) { 2327 if (glist[i] == 0) /* vdev is hole */ 2328 continue; 2329 2330 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2331 if (vd[i] == NULL) { 2332 /* 2333 * Don't bother attempting to reopen the disks; 2334 * just do the split. 2335 */ 2336 attempt_reopen = B_FALSE; 2337 } else { 2338 /* attempt to re-online it */ 2339 vd[i]->vdev_offline = B_FALSE; 2340 } 2341 } 2342 2343 if (attempt_reopen) { 2344 vdev_reopen(spa->spa_root_vdev); 2345 2346 /* check each device to see what state it's in */ 2347 for (extracted = 0, i = 0; i < gcount; i++) { 2348 if (vd[i] != NULL && 2349 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2350 break; 2351 ++extracted; 2352 } 2353 } 2354 2355 /* 2356 * If every disk has been moved to the new pool, or if we never 2357 * even attempted to look at them, then we split them off for 2358 * good. 2359 */ 2360 if (!attempt_reopen || gcount == extracted) { 2361 for (i = 0; i < gcount; i++) 2362 if (vd[i] != NULL) 2363 vdev_split(vd[i]); 2364 vdev_reopen(spa->spa_root_vdev); 2365 } 2366 2367 kmem_free(vd, gcount * sizeof (vdev_t *)); 2368 } 2369 2370 static int 2371 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 2372 { 2373 char *ereport = FM_EREPORT_ZFS_POOL; 2374 int error; 2375 2376 spa->spa_load_state = state; 2377 (void) spa_import_progress_set_state(spa, spa_load_state(spa)); 2378 2379 gethrestime(&spa->spa_loaded_ts); 2380 error = spa_load_impl(spa, type, &ereport); 2381 2382 /* 2383 * Don't count references from objsets that are already closed 2384 * and are making their way through the eviction process. 2385 */ 2386 spa_evicting_os_wait(spa); 2387 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 2388 if (error) { 2389 if (error != EEXIST) { 2390 spa->spa_loaded_ts.tv_sec = 0; 2391 spa->spa_loaded_ts.tv_nsec = 0; 2392 } 2393 if (error != EBADF) { 2394 (void) zfs_ereport_post(ereport, spa, 2395 NULL, NULL, NULL, 0, 0); 2396 } 2397 } 2398 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2399 spa->spa_ena = 0; 2400 2401 (void) spa_import_progress_set_state(spa, spa_load_state(spa)); 2402 2403 return (error); 2404 } 2405 2406 /* 2407 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2408 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2409 * spa's per-vdev ZAP list. 2410 */ 2411 static uint64_t 2412 vdev_count_verify_zaps(vdev_t *vd) 2413 { 2414 spa_t *spa = vd->vdev_spa; 2415 uint64_t total = 0; 2416 if (vd->vdev_top_zap != 0) { 2417 total++; 2418 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2419 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2420 } 2421 if (vd->vdev_leaf_zap != 0) { 2422 total++; 2423 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2424 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2425 } 2426 2427 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2428 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2429 } 2430 2431 return (total); 2432 } 2433 2434 /* 2435 * Determine whether the activity check is required. 2436 */ 2437 static boolean_t 2438 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 2439 nvlist_t *config) 2440 { 2441 uint64_t state = 0; 2442 uint64_t hostid = 0; 2443 uint64_t tryconfig_txg = 0; 2444 uint64_t tryconfig_timestamp = 0; 2445 uint16_t tryconfig_mmp_seq = 0; 2446 nvlist_t *nvinfo; 2447 2448 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 2449 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 2450 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 2451 &tryconfig_txg); 2452 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 2453 &tryconfig_timestamp); 2454 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, 2455 &tryconfig_mmp_seq); 2456 } 2457 2458 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 2459 2460 /* 2461 * Disable the MMP activity check - This is used by zdb which 2462 * is intended to be used on potentially active pools. 2463 */ 2464 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 2465 return (B_FALSE); 2466 2467 /* 2468 * Skip the activity check when the MMP feature is disabled. 2469 */ 2470 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 2471 return (B_FALSE); 2472 2473 /* 2474 * If the tryconfig_ values are nonzero, they are the results of an 2475 * earlier tryimport. If they all match the uberblock we just found, 2476 * then the pool has not changed and we return false so we do not test 2477 * a second time. 2478 */ 2479 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 2480 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && 2481 tryconfig_mmp_seq && tryconfig_mmp_seq == 2482 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) 2483 return (B_FALSE); 2484 2485 /* 2486 * Allow the activity check to be skipped when importing the pool 2487 * on the same host which last imported it. Since the hostid from 2488 * configuration may be stale use the one read from the label. 2489 */ 2490 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 2491 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 2492 2493 if (hostid == spa_get_hostid()) 2494 return (B_FALSE); 2495 2496 /* 2497 * Skip the activity test when the pool was cleanly exported. 2498 */ 2499 if (state != POOL_STATE_ACTIVE) 2500 return (B_FALSE); 2501 2502 return (B_TRUE); 2503 } 2504 2505 /* 2506 * Nanoseconds the activity check must watch for changes on-disk. 2507 */ 2508 static uint64_t 2509 spa_activity_check_duration(spa_t *spa, uberblock_t *ub) 2510 { 2511 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 2512 uint64_t multihost_interval = MSEC2NSEC( 2513 MMP_INTERVAL_OK(zfs_multihost_interval)); 2514 uint64_t import_delay = MAX(NANOSEC, import_intervals * 2515 multihost_interval); 2516 2517 /* 2518 * Local tunables determine a minimum duration except for the case 2519 * where we know when the remote host will suspend the pool if MMP 2520 * writes do not land. 2521 * 2522 * See Big Theory comment at the top of mmp.c for the reasoning behind 2523 * these cases and times. 2524 */ 2525 2526 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); 2527 2528 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 2529 MMP_FAIL_INT(ub) > 0) { 2530 2531 /* MMP on remote host will suspend pool after failed writes */ 2532 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * 2533 MMP_IMPORT_SAFETY_FACTOR / 100; 2534 2535 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " 2536 "mmp_fails=%llu ub_mmp mmp_interval=%llu " 2537 "import_intervals=%u", import_delay, MMP_FAIL_INT(ub), 2538 MMP_INTERVAL(ub), import_intervals); 2539 2540 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 2541 MMP_FAIL_INT(ub) == 0) { 2542 2543 /* MMP on remote host will never suspend pool */ 2544 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + 2545 ub->ub_mmp_delay) * import_intervals); 2546 2547 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " 2548 "mmp_interval=%llu ub_mmp_delay=%llu " 2549 "import_intervals=%u", import_delay, MMP_INTERVAL(ub), 2550 ub->ub_mmp_delay, import_intervals); 2551 2552 } else if (MMP_VALID(ub)) { 2553 /* 2554 * zfs-0.7 compatability case 2555 */ 2556 2557 import_delay = MAX(import_delay, (multihost_interval + 2558 ub->ub_mmp_delay) * import_intervals); 2559 2560 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " 2561 "import_intervals=%u leaves=%u", import_delay, 2562 ub->ub_mmp_delay, import_intervals, 2563 vdev_count_leaves(spa)); 2564 } else { 2565 /* Using local tunings is the only reasonable option */ 2566 zfs_dbgmsg("pool last imported on non-MMP aware " 2567 "host using import_delay=%llu multihost_interval=%llu " 2568 "import_intervals=%u", import_delay, multihost_interval, 2569 import_intervals); 2570 } 2571 2572 return (import_delay); 2573 } 2574 2575 /* 2576 * Perform the import activity check. If the user canceled the import or 2577 * we detected activity then fail. 2578 */ 2579 static int 2580 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config) 2581 { 2582 uint64_t txg = ub->ub_txg; 2583 uint64_t timestamp = ub->ub_timestamp; 2584 uint64_t mmp_config = ub->ub_mmp_config; 2585 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; 2586 uint64_t import_delay; 2587 hrtime_t import_expire; 2588 nvlist_t *mmp_label = NULL; 2589 vdev_t *rvd = spa->spa_root_vdev; 2590 kcondvar_t cv; 2591 kmutex_t mtx; 2592 int error = 0; 2593 2594 cv_init(&cv, NULL, CV_DEFAULT, NULL); 2595 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 2596 mutex_enter(&mtx); 2597 2598 /* 2599 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 2600 * during the earlier tryimport. If the txg recorded there is 0 then 2601 * the pool is known to be active on another host. 2602 * 2603 * Otherwise, the pool might be in use on another host. Check for 2604 * changes in the uberblocks on disk if necessary. 2605 */ 2606 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 2607 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 2608 ZPOOL_CONFIG_LOAD_INFO); 2609 2610 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 2611 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 2612 vdev_uberblock_load(rvd, ub, &mmp_label); 2613 error = SET_ERROR(EREMOTEIO); 2614 goto out; 2615 } 2616 } 2617 2618 import_delay = spa_activity_check_duration(spa, ub); 2619 2620 /* Add a small random factor in case of simultaneous imports (0-25%) */ 2621 import_delay += import_delay * spa_get_random(250) / 1000; 2622 2623 import_expire = gethrtime() + import_delay; 2624 2625 while (gethrtime() < import_expire) { 2626 (void) spa_import_progress_set_mmp_check(spa, 2627 NSEC2SEC(import_expire - gethrtime())); 2628 2629 vdev_uberblock_load(rvd, ub, &mmp_label); 2630 2631 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || 2632 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { 2633 zfs_dbgmsg("multihost activity detected " 2634 "txg %llu ub_txg %llu " 2635 "timestamp %llu ub_timestamp %llu " 2636 "mmp_config %#llx ub_mmp_config %#llx", 2637 txg, ub->ub_txg, timestamp, ub->ub_timestamp, 2638 mmp_config, ub->ub_mmp_config); 2639 2640 error = SET_ERROR(EREMOTEIO); 2641 break; 2642 } 2643 2644 if (mmp_label) { 2645 nvlist_free(mmp_label); 2646 mmp_label = NULL; 2647 } 2648 2649 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 2650 if (error != -1) { 2651 error = SET_ERROR(EINTR); 2652 break; 2653 } 2654 error = 0; 2655 } 2656 2657 out: 2658 mutex_exit(&mtx); 2659 mutex_destroy(&mtx); 2660 cv_destroy(&cv); 2661 2662 /* 2663 * If the pool is determined to be active store the status in the 2664 * spa->spa_load_info nvlist. If the remote hostname or hostid are 2665 * available from configuration read from disk store them as well. 2666 * This allows 'zpool import' to generate a more useful message. 2667 * 2668 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 2669 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 2670 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 2671 */ 2672 if (error == EREMOTEIO) { 2673 char *hostname = "<unknown>"; 2674 uint64_t hostid = 0; 2675 2676 if (mmp_label) { 2677 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 2678 hostname = fnvlist_lookup_string(mmp_label, 2679 ZPOOL_CONFIG_HOSTNAME); 2680 fnvlist_add_string(spa->spa_load_info, 2681 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 2682 } 2683 2684 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 2685 hostid = fnvlist_lookup_uint64(mmp_label, 2686 ZPOOL_CONFIG_HOSTID); 2687 fnvlist_add_uint64(spa->spa_load_info, 2688 ZPOOL_CONFIG_MMP_HOSTID, hostid); 2689 } 2690 } 2691 2692 fnvlist_add_uint64(spa->spa_load_info, 2693 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 2694 fnvlist_add_uint64(spa->spa_load_info, 2695 ZPOOL_CONFIG_MMP_TXG, 0); 2696 2697 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 2698 } 2699 2700 if (mmp_label) 2701 nvlist_free(mmp_label); 2702 2703 return (error); 2704 } 2705 2706 static int 2707 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 2708 { 2709 uint64_t hostid; 2710 char *hostname; 2711 uint64_t myhostid = 0; 2712 2713 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 2714 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2715 hostname = fnvlist_lookup_string(mos_config, 2716 ZPOOL_CONFIG_HOSTNAME); 2717 2718 myhostid = zone_get_hostid(NULL); 2719 2720 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 2721 cmn_err(CE_WARN, "pool '%s' could not be " 2722 "loaded as it was last accessed by " 2723 "another system (host: %s hostid: 0x%llx). " 2724 "See: http://illumos.org/msg/ZFS-8000-EY", 2725 spa_name(spa), hostname, (u_longlong_t)hostid); 2726 spa_load_failed(spa, "hostid verification failed: pool " 2727 "last accessed by host: %s (hostid: 0x%llx)", 2728 hostname, (u_longlong_t)hostid); 2729 return (SET_ERROR(EBADF)); 2730 } 2731 } 2732 2733 return (0); 2734 } 2735 2736 static int 2737 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 2738 { 2739 int error = 0; 2740 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 2741 int parse; 2742 vdev_t *rvd; 2743 uint64_t pool_guid; 2744 char *comment; 2745 2746 /* 2747 * Versioning wasn't explicitly added to the label until later, so if 2748 * it's not present treat it as the initial version. 2749 */ 2750 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2751 &spa->spa_ubsync.ub_version) != 0) 2752 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2753 2754 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 2755 spa_load_failed(spa, "invalid config provided: '%s' missing", 2756 ZPOOL_CONFIG_POOL_GUID); 2757 return (SET_ERROR(EINVAL)); 2758 } 2759 2760 /* 2761 * If we are doing an import, ensure that the pool is not already 2762 * imported by checking if its pool guid already exists in the 2763 * spa namespace. 2764 * 2765 * The only case that we allow an already imported pool to be 2766 * imported again, is when the pool is checkpointed and we want to 2767 * look at its checkpointed state from userland tools like zdb. 2768 */ 2769 #ifdef _KERNEL 2770 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 2771 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 2772 spa_guid_exists(pool_guid, 0)) { 2773 #else 2774 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 2775 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 2776 spa_guid_exists(pool_guid, 0) && 2777 !spa_importing_readonly_checkpoint(spa)) { 2778 #endif 2779 spa_load_failed(spa, "a pool with guid %llu is already open", 2780 (u_longlong_t)pool_guid); 2781 return (SET_ERROR(EEXIST)); 2782 } 2783 2784 spa->spa_config_guid = pool_guid; 2785 2786 nvlist_free(spa->spa_load_info); 2787 spa->spa_load_info = fnvlist_alloc(); 2788 2789 ASSERT(spa->spa_comment == NULL); 2790 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2791 spa->spa_comment = spa_strdup(comment); 2792 2793 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2794 &spa->spa_config_txg); 2795 2796 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 2797 spa->spa_config_splitting = fnvlist_dup(nvl); 2798 2799 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 2800 spa_load_failed(spa, "invalid config provided: '%s' missing", 2801 ZPOOL_CONFIG_VDEV_TREE); 2802 return (SET_ERROR(EINVAL)); 2803 } 2804 2805 /* 2806 * Create "The Godfather" zio to hold all async IOs 2807 */ 2808 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2809 KM_SLEEP); 2810 for (int i = 0; i < max_ncpus; i++) { 2811 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2812 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2813 ZIO_FLAG_GODFATHER); 2814 } 2815 2816 /* 2817 * Parse the configuration into a vdev tree. We explicitly set the 2818 * value that will be returned by spa_version() since parsing the 2819 * configuration requires knowing the version number. 2820 */ 2821 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2822 parse = (type == SPA_IMPORT_EXISTING ? 2823 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2824 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 2825 spa_config_exit(spa, SCL_ALL, FTAG); 2826 2827 if (error != 0) { 2828 spa_load_failed(spa, "unable to parse config [error=%d]", 2829 error); 2830 return (error); 2831 } 2832 2833 ASSERT(spa->spa_root_vdev == rvd); 2834 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2835 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2836 2837 if (type != SPA_IMPORT_ASSEMBLE) { 2838 ASSERT(spa_guid(spa) == pool_guid); 2839 } 2840 2841 return (0); 2842 } 2843 2844 /* 2845 * Recursively open all vdevs in the vdev tree. This function is called twice: 2846 * first with the untrusted config, then with the trusted config. 2847 */ 2848 static int 2849 spa_ld_open_vdevs(spa_t *spa) 2850 { 2851 int error = 0; 2852 2853 /* 2854 * spa_missing_tvds_allowed defines how many top-level vdevs can be 2855 * missing/unopenable for the root vdev to be still considered openable. 2856 */ 2857 if (spa->spa_trust_config) { 2858 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 2859 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 2860 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 2861 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 2862 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 2863 } else { 2864 spa->spa_missing_tvds_allowed = 0; 2865 } 2866 2867 spa->spa_missing_tvds_allowed = 2868 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 2869 2870 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2871 error = vdev_open(spa->spa_root_vdev); 2872 spa_config_exit(spa, SCL_ALL, FTAG); 2873 2874 if (spa->spa_missing_tvds != 0) { 2875 spa_load_note(spa, "vdev tree has %lld missing top-level " 2876 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 2877 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) { 2878 /* 2879 * Although theoretically we could allow users to open 2880 * incomplete pools in RW mode, we'd need to add a lot 2881 * of extra logic (e.g. adjust pool space to account 2882 * for missing vdevs). 2883 * This limitation also prevents users from accidentally 2884 * opening the pool in RW mode during data recovery and 2885 * damaging it further. 2886 */ 2887 spa_load_note(spa, "pools with missing top-level " 2888 "vdevs can only be opened in read-only mode."); 2889 error = SET_ERROR(ENXIO); 2890 } else { 2891 spa_load_note(spa, "current settings allow for maximum " 2892 "%lld missing top-level vdevs at this stage.", 2893 (u_longlong_t)spa->spa_missing_tvds_allowed); 2894 } 2895 } 2896 if (error != 0) { 2897 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 2898 error); 2899 } 2900 if (spa->spa_missing_tvds != 0 || error != 0) 2901 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 2902 2903 return (error); 2904 } 2905 2906 /* 2907 * We need to validate the vdev labels against the configuration that 2908 * we have in hand. This function is called twice: first with an untrusted 2909 * config, then with a trusted config. The validation is more strict when the 2910 * config is trusted. 2911 */ 2912 static int 2913 spa_ld_validate_vdevs(spa_t *spa) 2914 { 2915 int error = 0; 2916 vdev_t *rvd = spa->spa_root_vdev; 2917 2918 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2919 error = vdev_validate(rvd); 2920 spa_config_exit(spa, SCL_ALL, FTAG); 2921 2922 if (error != 0) { 2923 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 2924 return (error); 2925 } 2926 2927 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 2928 spa_load_failed(spa, "cannot open vdev tree after invalidating " 2929 "some vdevs"); 2930 vdev_dbgmsg_print_tree(rvd, 2); 2931 return (SET_ERROR(ENXIO)); 2932 } 2933 2934 return (0); 2935 } 2936 2937 static void 2938 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 2939 { 2940 spa->spa_state = POOL_STATE_ACTIVE; 2941 spa->spa_ubsync = spa->spa_uberblock; 2942 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2943 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2944 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2945 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2946 spa->spa_claim_max_txg = spa->spa_first_txg; 2947 spa->spa_prev_software_version = ub->ub_software_version; 2948 } 2949 2950 static int 2951 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 2952 { 2953 vdev_t *rvd = spa->spa_root_vdev; 2954 nvlist_t *label; 2955 uberblock_t *ub = &spa->spa_uberblock; 2956 boolean_t activity_check = B_FALSE; 2957 2958 /* 2959 * If we are opening the checkpointed state of the pool by 2960 * rewinding to it, at this point we will have written the 2961 * checkpointed uberblock to the vdev labels, so searching 2962 * the labels will find the right uberblock. However, if 2963 * we are opening the checkpointed state read-only, we have 2964 * not modified the labels. Therefore, we must ignore the 2965 * labels and continue using the spa_uberblock that was set 2966 * by spa_ld_checkpoint_rewind. 2967 * 2968 * Note that it would be fine to ignore the labels when 2969 * rewinding (opening writeable) as well. However, if we 2970 * crash just after writing the labels, we will end up 2971 * searching the labels. Doing so in the common case means 2972 * that this code path gets exercised normally, rather than 2973 * just in the edge case. 2974 */ 2975 if (ub->ub_checkpoint_txg != 0 && 2976 spa_importing_readonly_checkpoint(spa)) { 2977 spa_ld_select_uberblock_done(spa, ub); 2978 return (0); 2979 } 2980 2981 /* 2982 * Find the best uberblock. 2983 */ 2984 vdev_uberblock_load(rvd, ub, &label); 2985 2986 /* 2987 * If we weren't able to find a single valid uberblock, return failure. 2988 */ 2989 if (ub->ub_txg == 0) { 2990 nvlist_free(label); 2991 spa_load_failed(spa, "no valid uberblock found"); 2992 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2993 } 2994 2995 if (spa->spa_load_max_txg != UINT64_MAX) { 2996 (void) spa_import_progress_set_max_txg(spa, 2997 (u_longlong_t)spa->spa_load_max_txg); 2998 } 2999 spa_load_note(spa, "using uberblock with txg=%llu", 3000 (u_longlong_t)ub->ub_txg); 3001 3002 /* 3003 * For pools which have the multihost property on determine if the 3004 * pool is truly inactive and can be safely imported. Prevent 3005 * hosts which don't have a hostid set from importing the pool. 3006 */ 3007 activity_check = spa_activity_check_required(spa, ub, label, 3008 spa->spa_config); 3009 if (activity_check) { 3010 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 3011 spa_get_hostid() == 0) { 3012 nvlist_free(label); 3013 fnvlist_add_uint64(spa->spa_load_info, 3014 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 3015 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 3016 } 3017 3018 int error = spa_activity_check(spa, ub, spa->spa_config); 3019 if (error) { 3020 nvlist_free(label); 3021 return (error); 3022 } 3023 3024 fnvlist_add_uint64(spa->spa_load_info, 3025 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 3026 fnvlist_add_uint64(spa->spa_load_info, 3027 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 3028 fnvlist_add_uint16(spa->spa_load_info, 3029 ZPOOL_CONFIG_MMP_SEQ, 3030 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); 3031 } 3032 3033 /* 3034 * If the pool has an unsupported version we can't open it. 3035 */ 3036 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 3037 nvlist_free(label); 3038 spa_load_failed(spa, "version %llu is not supported", 3039 (u_longlong_t)ub->ub_version); 3040 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 3041 } 3042 3043 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3044 nvlist_t *features; 3045 3046 /* 3047 * If we weren't able to find what's necessary for reading the 3048 * MOS in the label, return failure. 3049 */ 3050 if (label == NULL) { 3051 spa_load_failed(spa, "label config unavailable"); 3052 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3053 ENXIO)); 3054 } 3055 3056 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 3057 &features) != 0) { 3058 nvlist_free(label); 3059 spa_load_failed(spa, "invalid label: '%s' missing", 3060 ZPOOL_CONFIG_FEATURES_FOR_READ); 3061 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3062 ENXIO)); 3063 } 3064 3065 /* 3066 * Update our in-core representation with the definitive values 3067 * from the label. 3068 */ 3069 nvlist_free(spa->spa_label_features); 3070 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 3071 } 3072 3073 nvlist_free(label); 3074 3075 /* 3076 * Look through entries in the label nvlist's features_for_read. If 3077 * there is a feature listed there which we don't understand then we 3078 * cannot open a pool. 3079 */ 3080 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3081 nvlist_t *unsup_feat; 3082 3083 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 3084 0); 3085 3086 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 3087 NULL); nvp != NULL; 3088 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 3089 if (!zfeature_is_supported(nvpair_name(nvp))) { 3090 VERIFY(nvlist_add_string(unsup_feat, 3091 nvpair_name(nvp), "") == 0); 3092 } 3093 } 3094 3095 if (!nvlist_empty(unsup_feat)) { 3096 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 3097 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 3098 nvlist_free(unsup_feat); 3099 spa_load_failed(spa, "some features are unsupported"); 3100 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3101 ENOTSUP)); 3102 } 3103 3104 nvlist_free(unsup_feat); 3105 } 3106 3107 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 3108 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3109 spa_try_repair(spa, spa->spa_config); 3110 spa_config_exit(spa, SCL_ALL, FTAG); 3111 nvlist_free(spa->spa_config_splitting); 3112 spa->spa_config_splitting = NULL; 3113 } 3114 3115 /* 3116 * Initialize internal SPA structures. 3117 */ 3118 spa_ld_select_uberblock_done(spa, ub); 3119 3120 return (0); 3121 } 3122 3123 static int 3124 spa_ld_open_rootbp(spa_t *spa) 3125 { 3126 int error = 0; 3127 vdev_t *rvd = spa->spa_root_vdev; 3128 3129 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 3130 if (error != 0) { 3131 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 3132 "[error=%d]", error); 3133 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3134 } 3135 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 3136 3137 return (0); 3138 } 3139 3140 static int 3141 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 3142 boolean_t reloading) 3143 { 3144 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 3145 nvlist_t *nv, *mos_config, *policy; 3146 int error = 0, copy_error; 3147 uint64_t healthy_tvds, healthy_tvds_mos; 3148 uint64_t mos_config_txg; 3149 3150 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 3151 != 0) 3152 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3153 3154 /* 3155 * If we're assembling a pool from a split, the config provided is 3156 * already trusted so there is nothing to do. 3157 */ 3158 if (type == SPA_IMPORT_ASSEMBLE) 3159 return (0); 3160 3161 healthy_tvds = spa_healthy_core_tvds(spa); 3162 3163 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 3164 != 0) { 3165 spa_load_failed(spa, "unable to retrieve MOS config"); 3166 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3167 } 3168 3169 /* 3170 * If we are doing an open, pool owner wasn't verified yet, thus do 3171 * the verification here. 3172 */ 3173 if (spa->spa_load_state == SPA_LOAD_OPEN) { 3174 error = spa_verify_host(spa, mos_config); 3175 if (error != 0) { 3176 nvlist_free(mos_config); 3177 return (error); 3178 } 3179 } 3180 3181 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 3182 3183 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3184 3185 /* 3186 * Build a new vdev tree from the trusted config 3187 */ 3188 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 3189 3190 /* 3191 * Vdev paths in the MOS may be obsolete. If the untrusted config was 3192 * obtained by scanning /dev/dsk, then it will have the right vdev 3193 * paths. We update the trusted MOS config with this information. 3194 * We first try to copy the paths with vdev_copy_path_strict, which 3195 * succeeds only when both configs have exactly the same vdev tree. 3196 * If that fails, we fall back to a more flexible method that has a 3197 * best effort policy. 3198 */ 3199 copy_error = vdev_copy_path_strict(rvd, mrvd); 3200 if (copy_error != 0 || spa_load_print_vdev_tree) { 3201 spa_load_note(spa, "provided vdev tree:"); 3202 vdev_dbgmsg_print_tree(rvd, 2); 3203 spa_load_note(spa, "MOS vdev tree:"); 3204 vdev_dbgmsg_print_tree(mrvd, 2); 3205 } 3206 if (copy_error != 0) { 3207 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 3208 "back to vdev_copy_path_relaxed"); 3209 vdev_copy_path_relaxed(rvd, mrvd); 3210 } 3211 3212 vdev_close(rvd); 3213 vdev_free(rvd); 3214 spa->spa_root_vdev = mrvd; 3215 rvd = mrvd; 3216 spa_config_exit(spa, SCL_ALL, FTAG); 3217 3218 /* 3219 * We will use spa_config if we decide to reload the spa or if spa_load 3220 * fails and we rewind. We must thus regenerate the config using the 3221 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 3222 * pass settings on how to load the pool and is not stored in the MOS. 3223 * We copy it over to our new, trusted config. 3224 */ 3225 mos_config_txg = fnvlist_lookup_uint64(mos_config, 3226 ZPOOL_CONFIG_POOL_TXG); 3227 nvlist_free(mos_config); 3228 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 3229 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 3230 &policy) == 0) 3231 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 3232 spa_config_set(spa, mos_config); 3233 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 3234 3235 /* 3236 * Now that we got the config from the MOS, we should be more strict 3237 * in checking blkptrs and can make assumptions about the consistency 3238 * of the vdev tree. spa_trust_config must be set to true before opening 3239 * vdevs in order for them to be writeable. 3240 */ 3241 spa->spa_trust_config = B_TRUE; 3242 3243 /* 3244 * Open and validate the new vdev tree 3245 */ 3246 error = spa_ld_open_vdevs(spa); 3247 if (error != 0) 3248 return (error); 3249 3250 error = spa_ld_validate_vdevs(spa); 3251 if (error != 0) 3252 return (error); 3253 3254 if (copy_error != 0 || spa_load_print_vdev_tree) { 3255 spa_load_note(spa, "final vdev tree:"); 3256 vdev_dbgmsg_print_tree(rvd, 2); 3257 } 3258 3259 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 3260 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 3261 /* 3262 * Sanity check to make sure that we are indeed loading the 3263 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 3264 * in the config provided and they happened to be the only ones 3265 * to have the latest uberblock, we could involuntarily perform 3266 * an extreme rewind. 3267 */ 3268 healthy_tvds_mos = spa_healthy_core_tvds(spa); 3269 if (healthy_tvds_mos - healthy_tvds >= 3270 SPA_SYNC_MIN_VDEVS) { 3271 spa_load_note(spa, "config provided misses too many " 3272 "top-level vdevs compared to MOS (%lld vs %lld). ", 3273 (u_longlong_t)healthy_tvds, 3274 (u_longlong_t)healthy_tvds_mos); 3275 spa_load_note(spa, "vdev tree:"); 3276 vdev_dbgmsg_print_tree(rvd, 2); 3277 if (reloading) { 3278 spa_load_failed(spa, "config was already " 3279 "provided from MOS. Aborting."); 3280 return (spa_vdev_err(rvd, 3281 VDEV_AUX_CORRUPT_DATA, EIO)); 3282 } 3283 spa_load_note(spa, "spa must be reloaded using MOS " 3284 "config"); 3285 return (SET_ERROR(EAGAIN)); 3286 } 3287 } 3288 3289 error = spa_check_for_missing_logs(spa); 3290 if (error != 0) 3291 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 3292 3293 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 3294 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 3295 "guid sum (%llu != %llu)", 3296 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 3297 (u_longlong_t)rvd->vdev_guid_sum); 3298 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 3299 ENXIO)); 3300 } 3301 3302 return (0); 3303 } 3304 3305 static int 3306 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 3307 { 3308 int error = 0; 3309 vdev_t *rvd = spa->spa_root_vdev; 3310 3311 /* 3312 * Everything that we read before spa_remove_init() must be stored 3313 * on concreted vdevs. Therefore we do this as early as possible. 3314 */ 3315 error = spa_remove_init(spa); 3316 if (error != 0) { 3317 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 3318 error); 3319 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3320 } 3321 3322 /* 3323 * Retrieve information needed to condense indirect vdev mappings. 3324 */ 3325 error = spa_condense_init(spa); 3326 if (error != 0) { 3327 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 3328 error); 3329 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3330 } 3331 3332 return (0); 3333 } 3334 3335 static int 3336 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 3337 { 3338 int error = 0; 3339 vdev_t *rvd = spa->spa_root_vdev; 3340 3341 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 3342 boolean_t missing_feat_read = B_FALSE; 3343 nvlist_t *unsup_feat, *enabled_feat; 3344 3345 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 3346 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 3347 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3348 } 3349 3350 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 3351 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 3352 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3353 } 3354 3355 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 3356 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 3357 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3358 } 3359 3360 enabled_feat = fnvlist_alloc(); 3361 unsup_feat = fnvlist_alloc(); 3362 3363 if (!spa_features_check(spa, B_FALSE, 3364 unsup_feat, enabled_feat)) 3365 missing_feat_read = B_TRUE; 3366 3367 if (spa_writeable(spa) || 3368 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 3369 if (!spa_features_check(spa, B_TRUE, 3370 unsup_feat, enabled_feat)) { 3371 *missing_feat_writep = B_TRUE; 3372 } 3373 } 3374 3375 fnvlist_add_nvlist(spa->spa_load_info, 3376 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 3377 3378 if (!nvlist_empty(unsup_feat)) { 3379 fnvlist_add_nvlist(spa->spa_load_info, 3380 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 3381 } 3382 3383 fnvlist_free(enabled_feat); 3384 fnvlist_free(unsup_feat); 3385 3386 if (!missing_feat_read) { 3387 fnvlist_add_boolean(spa->spa_load_info, 3388 ZPOOL_CONFIG_CAN_RDONLY); 3389 } 3390 3391 /* 3392 * If the state is SPA_LOAD_TRYIMPORT, our objective is 3393 * twofold: to determine whether the pool is available for 3394 * import in read-write mode and (if it is not) whether the 3395 * pool is available for import in read-only mode. If the pool 3396 * is available for import in read-write mode, it is displayed 3397 * as available in userland; if it is not available for import 3398 * in read-only mode, it is displayed as unavailable in 3399 * userland. If the pool is available for import in read-only 3400 * mode but not read-write mode, it is displayed as unavailable 3401 * in userland with a special note that the pool is actually 3402 * available for open in read-only mode. 3403 * 3404 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 3405 * missing a feature for write, we must first determine whether 3406 * the pool can be opened read-only before returning to 3407 * userland in order to know whether to display the 3408 * abovementioned note. 3409 */ 3410 if (missing_feat_read || (*missing_feat_writep && 3411 spa_writeable(spa))) { 3412 spa_load_failed(spa, "pool uses unsupported features"); 3413 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3414 ENOTSUP)); 3415 } 3416 3417 /* 3418 * Load refcounts for ZFS features from disk into an in-memory 3419 * cache during SPA initialization. 3420 */ 3421 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 3422 uint64_t refcount; 3423 3424 error = feature_get_refcount_from_disk(spa, 3425 &spa_feature_table[i], &refcount); 3426 if (error == 0) { 3427 spa->spa_feat_refcount_cache[i] = refcount; 3428 } else if (error == ENOTSUP) { 3429 spa->spa_feat_refcount_cache[i] = 3430 SPA_FEATURE_DISABLED; 3431 } else { 3432 spa_load_failed(spa, "error getting refcount " 3433 "for feature %s [error=%d]", 3434 spa_feature_table[i].fi_guid, error); 3435 return (spa_vdev_err(rvd, 3436 VDEV_AUX_CORRUPT_DATA, EIO)); 3437 } 3438 } 3439 } 3440 3441 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 3442 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 3443 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 3444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3445 } 3446 3447 /* 3448 * Encryption was added before bookmark_v2, even though bookmark_v2 3449 * is now a dependency. If this pool has encryption enabled without 3450 * bookmark_v2, trigger an errata message. 3451 */ 3452 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && 3453 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { 3454 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; 3455 } 3456 3457 return (0); 3458 } 3459 3460 static int 3461 spa_ld_load_special_directories(spa_t *spa) 3462 { 3463 int error = 0; 3464 vdev_t *rvd = spa->spa_root_vdev; 3465 3466 spa->spa_is_initializing = B_TRUE; 3467 error = dsl_pool_open(spa->spa_dsl_pool); 3468 spa->spa_is_initializing = B_FALSE; 3469 if (error != 0) { 3470 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 3471 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3472 } 3473 3474 return (0); 3475 } 3476 3477 static int 3478 spa_ld_get_props(spa_t *spa) 3479 { 3480 int error = 0; 3481 uint64_t obj; 3482 vdev_t *rvd = spa->spa_root_vdev; 3483 3484 /* Grab the secret checksum salt from the MOS. */ 3485 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3486 DMU_POOL_CHECKSUM_SALT, 1, 3487 sizeof (spa->spa_cksum_salt.zcs_bytes), 3488 spa->spa_cksum_salt.zcs_bytes); 3489 if (error == ENOENT) { 3490 /* Generate a new salt for subsequent use */ 3491 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3492 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3493 } else if (error != 0) { 3494 spa_load_failed(spa, "unable to retrieve checksum salt from " 3495 "MOS [error=%d]", error); 3496 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3497 } 3498 3499 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 3500 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3501 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 3502 if (error != 0) { 3503 spa_load_failed(spa, "error opening deferred-frees bpobj " 3504 "[error=%d]", error); 3505 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3506 } 3507 3508 /* 3509 * Load the bit that tells us to use the new accounting function 3510 * (raid-z deflation). If we have an older pool, this will not 3511 * be present. 3512 */ 3513 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 3514 if (error != 0 && error != ENOENT) 3515 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3516 3517 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 3518 &spa->spa_creation_version, B_FALSE); 3519 if (error != 0 && error != ENOENT) 3520 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3521 3522 /* 3523 * Load the persistent error log. If we have an older pool, this will 3524 * not be present. 3525 */ 3526 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 3527 B_FALSE); 3528 if (error != 0 && error != ENOENT) 3529 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3530 3531 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 3532 &spa->spa_errlog_scrub, B_FALSE); 3533 if (error != 0 && error != ENOENT) 3534 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3535 3536 /* 3537 * Load the history object. If we have an older pool, this 3538 * will not be present. 3539 */ 3540 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 3541 if (error != 0 && error != ENOENT) 3542 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3543 3544 /* 3545 * Load the per-vdev ZAP map. If we have an older pool, this will not 3546 * be present; in this case, defer its creation to a later time to 3547 * avoid dirtying the MOS this early / out of sync context. See 3548 * spa_sync_config_object. 3549 */ 3550 3551 /* The sentinel is only available in the MOS config. */ 3552 nvlist_t *mos_config; 3553 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 3554 spa_load_failed(spa, "unable to retrieve MOS config"); 3555 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3556 } 3557 3558 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 3559 &spa->spa_all_vdev_zaps, B_FALSE); 3560 3561 if (error == ENOENT) { 3562 VERIFY(!nvlist_exists(mos_config, 3563 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 3564 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 3565 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 3566 } else if (error != 0) { 3567 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3568 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 3569 /* 3570 * An older version of ZFS overwrote the sentinel value, so 3571 * we have orphaned per-vdev ZAPs in the MOS. Defer their 3572 * destruction to later; see spa_sync_config_object. 3573 */ 3574 spa->spa_avz_action = AVZ_ACTION_DESTROY; 3575 /* 3576 * We're assuming that no vdevs have had their ZAPs created 3577 * before this. Better be sure of it. 3578 */ 3579 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 3580 } 3581 nvlist_free(mos_config); 3582 3583 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3584 3585 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 3586 B_FALSE); 3587 if (error && error != ENOENT) 3588 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3589 3590 if (error == 0) { 3591 uint64_t autoreplace; 3592 3593 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 3594 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 3595 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 3596 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 3597 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 3598 spa_prop_find(spa, ZPOOL_PROP_BOOTSIZE, &spa->spa_bootsize); 3599 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 3600 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 3601 &spa->spa_dedup_ditto); 3602 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); 3603 spa->spa_autoreplace = (autoreplace != 0); 3604 } 3605 3606 /* 3607 * If we are importing a pool with missing top-level vdevs, 3608 * we enforce that the pool doesn't panic or get suspended on 3609 * error since the likelihood of missing data is extremely high. 3610 */ 3611 if (spa->spa_missing_tvds > 0 && 3612 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 3613 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3614 spa_load_note(spa, "forcing failmode to 'continue' " 3615 "as some top level vdevs are missing"); 3616 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 3617 } 3618 3619 return (0); 3620 } 3621 3622 static int 3623 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 3624 { 3625 int error = 0; 3626 vdev_t *rvd = spa->spa_root_vdev; 3627 3628 /* 3629 * If we're assembling the pool from the split-off vdevs of 3630 * an existing pool, we don't want to attach the spares & cache 3631 * devices. 3632 */ 3633 3634 /* 3635 * Load any hot spares for this pool. 3636 */ 3637 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 3638 B_FALSE); 3639 if (error != 0 && error != ENOENT) 3640 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3641 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 3642 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 3643 if (load_nvlist(spa, spa->spa_spares.sav_object, 3644 &spa->spa_spares.sav_config) != 0) { 3645 spa_load_failed(spa, "error loading spares nvlist"); 3646 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3647 } 3648 3649 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3650 spa_load_spares(spa); 3651 spa_config_exit(spa, SCL_ALL, FTAG); 3652 } else if (error == 0) { 3653 spa->spa_spares.sav_sync = B_TRUE; 3654 } 3655 3656 /* 3657 * Load any level 2 ARC devices for this pool. 3658 */ 3659 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 3660 &spa->spa_l2cache.sav_object, B_FALSE); 3661 if (error != 0 && error != ENOENT) 3662 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3663 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 3664 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 3665 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 3666 &spa->spa_l2cache.sav_config) != 0) { 3667 spa_load_failed(spa, "error loading l2cache nvlist"); 3668 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3669 } 3670 3671 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3672 spa_load_l2cache(spa); 3673 spa_config_exit(spa, SCL_ALL, FTAG); 3674 } else if (error == 0) { 3675 spa->spa_l2cache.sav_sync = B_TRUE; 3676 } 3677 3678 return (0); 3679 } 3680 3681 static int 3682 spa_ld_load_vdev_metadata(spa_t *spa) 3683 { 3684 int error = 0; 3685 vdev_t *rvd = spa->spa_root_vdev; 3686 3687 /* 3688 * If the 'multihost' property is set, then never allow a pool to 3689 * be imported when the system hostid is zero. The exception to 3690 * this rule is zdb which is always allowed to access pools. 3691 */ 3692 if (spa_multihost(spa) && spa_get_hostid() == 0 && 3693 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 3694 fnvlist_add_uint64(spa->spa_load_info, 3695 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 3696 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 3697 } 3698 3699 /* 3700 * If the 'autoreplace' property is set, then post a resource notifying 3701 * the ZFS DE that it should not issue any faults for unopenable 3702 * devices. We also iterate over the vdevs, and post a sysevent for any 3703 * unopenable vdevs so that the normal autoreplace handler can take 3704 * over. 3705 */ 3706 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3707 spa_check_removed(spa->spa_root_vdev); 3708 /* 3709 * For the import case, this is done in spa_import(), because 3710 * at this point we're using the spare definitions from 3711 * the MOS config, not necessarily from the userland config. 3712 */ 3713 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 3714 spa_aux_check_removed(&spa->spa_spares); 3715 spa_aux_check_removed(&spa->spa_l2cache); 3716 } 3717 } 3718 3719 /* 3720 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 3721 */ 3722 error = vdev_load(rvd); 3723 if (error != 0) { 3724 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 3725 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3726 } 3727 3728 error = spa_ld_log_spacemaps(spa); 3729 if (error != 0) { 3730 spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]", 3731 error); 3732 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3733 } 3734 3735 /* 3736 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 3737 */ 3738 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3739 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 3740 spa_config_exit(spa, SCL_ALL, FTAG); 3741 3742 return (0); 3743 } 3744 3745 static int 3746 spa_ld_load_dedup_tables(spa_t *spa) 3747 { 3748 int error = 0; 3749 vdev_t *rvd = spa->spa_root_vdev; 3750 3751 error = ddt_load(spa); 3752 if (error != 0) { 3753 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 3754 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3755 } 3756 3757 return (0); 3758 } 3759 3760 static int 3761 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport) 3762 { 3763 vdev_t *rvd = spa->spa_root_vdev; 3764 3765 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 3766 boolean_t missing = spa_check_logs(spa); 3767 if (missing) { 3768 if (spa->spa_missing_tvds != 0) { 3769 spa_load_note(spa, "spa_check_logs failed " 3770 "so dropping the logs"); 3771 } else { 3772 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 3773 spa_load_failed(spa, "spa_check_logs failed"); 3774 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 3775 ENXIO)); 3776 } 3777 } 3778 } 3779 3780 return (0); 3781 } 3782 3783 static int 3784 spa_ld_verify_pool_data(spa_t *spa) 3785 { 3786 int error = 0; 3787 vdev_t *rvd = spa->spa_root_vdev; 3788 3789 /* 3790 * We've successfully opened the pool, verify that we're ready 3791 * to start pushing transactions. 3792 */ 3793 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3794 error = spa_load_verify(spa); 3795 if (error != 0) { 3796 spa_load_failed(spa, "spa_load_verify failed " 3797 "[error=%d]", error); 3798 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3799 error)); 3800 } 3801 } 3802 3803 return (0); 3804 } 3805 3806 static void 3807 spa_ld_claim_log_blocks(spa_t *spa) 3808 { 3809 dmu_tx_t *tx; 3810 dsl_pool_t *dp = spa_get_dsl(spa); 3811 3812 /* 3813 * Claim log blocks that haven't been committed yet. 3814 * This must all happen in a single txg. 3815 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 3816 * invoked from zil_claim_log_block()'s i/o done callback. 3817 * Price of rollback is that we abandon the log. 3818 */ 3819 spa->spa_claiming = B_TRUE; 3820 3821 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 3822 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 3823 zil_claim, tx, DS_FIND_CHILDREN); 3824 dmu_tx_commit(tx); 3825 3826 spa->spa_claiming = B_FALSE; 3827 3828 spa_set_log_state(spa, SPA_LOG_GOOD); 3829 } 3830 3831 static void 3832 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 3833 boolean_t update_config_cache) 3834 { 3835 vdev_t *rvd = spa->spa_root_vdev; 3836 int need_update = B_FALSE; 3837 3838 /* 3839 * If the config cache is stale, or we have uninitialized 3840 * metaslabs (see spa_vdev_add()), then update the config. 3841 * 3842 * If this is a verbatim import, trust the current 3843 * in-core spa_config and update the disk labels. 3844 */ 3845 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 3846 spa->spa_load_state == SPA_LOAD_IMPORT || 3847 spa->spa_load_state == SPA_LOAD_RECOVER || 3848 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 3849 need_update = B_TRUE; 3850 3851 for (int c = 0; c < rvd->vdev_children; c++) 3852 if (rvd->vdev_child[c]->vdev_ms_array == 0) 3853 need_update = B_TRUE; 3854 3855 /* 3856 * Update the config cache asychronously in case we're the 3857 * root pool, in which case the config cache isn't writable yet. 3858 */ 3859 if (need_update) 3860 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3861 } 3862 3863 static void 3864 spa_ld_prepare_for_reload(spa_t *spa) 3865 { 3866 int mode = spa->spa_mode; 3867 int async_suspended = spa->spa_async_suspended; 3868 3869 spa_unload(spa); 3870 spa_deactivate(spa); 3871 spa_activate(spa, mode); 3872 3873 /* 3874 * We save the value of spa_async_suspended as it gets reset to 0 by 3875 * spa_unload(). We want to restore it back to the original value before 3876 * returning as we might be calling spa_async_resume() later. 3877 */ 3878 spa->spa_async_suspended = async_suspended; 3879 } 3880 3881 static int 3882 spa_ld_read_checkpoint_txg(spa_t *spa) 3883 { 3884 uberblock_t checkpoint; 3885 int error = 0; 3886 3887 ASSERT0(spa->spa_checkpoint_txg); 3888 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3889 3890 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3891 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 3892 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 3893 3894 if (error == ENOENT) 3895 return (0); 3896 3897 if (error != 0) 3898 return (error); 3899 3900 ASSERT3U(checkpoint.ub_txg, !=, 0); 3901 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 3902 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 3903 spa->spa_checkpoint_txg = checkpoint.ub_txg; 3904 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 3905 3906 return (0); 3907 } 3908 3909 static int 3910 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 3911 { 3912 int error = 0; 3913 3914 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3915 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 3916 3917 /* 3918 * Never trust the config that is provided unless we are assembling 3919 * a pool following a split. 3920 * This means don't trust blkptrs and the vdev tree in general. This 3921 * also effectively puts the spa in read-only mode since 3922 * spa_writeable() checks for spa_trust_config to be true. 3923 * We will later load a trusted config from the MOS. 3924 */ 3925 if (type != SPA_IMPORT_ASSEMBLE) 3926 spa->spa_trust_config = B_FALSE; 3927 3928 /* 3929 * Parse the config provided to create a vdev tree. 3930 */ 3931 error = spa_ld_parse_config(spa, type); 3932 if (error != 0) 3933 return (error); 3934 3935 spa_import_progress_add(spa); 3936 3937 /* 3938 * Now that we have the vdev tree, try to open each vdev. This involves 3939 * opening the underlying physical device, retrieving its geometry and 3940 * probing the vdev with a dummy I/O. The state of each vdev will be set 3941 * based on the success of those operations. After this we'll be ready 3942 * to read from the vdevs. 3943 */ 3944 error = spa_ld_open_vdevs(spa); 3945 if (error != 0) 3946 return (error); 3947 3948 /* 3949 * Read the label of each vdev and make sure that the GUIDs stored 3950 * there match the GUIDs in the config provided. 3951 * If we're assembling a new pool that's been split off from an 3952 * existing pool, the labels haven't yet been updated so we skip 3953 * validation for now. 3954 */ 3955 if (type != SPA_IMPORT_ASSEMBLE) { 3956 error = spa_ld_validate_vdevs(spa); 3957 if (error != 0) 3958 return (error); 3959 } 3960 3961 /* 3962 * Read all vdev labels to find the best uberblock (i.e. latest, 3963 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 3964 * get the list of features required to read blkptrs in the MOS from 3965 * the vdev label with the best uberblock and verify that our version 3966 * of zfs supports them all. 3967 */ 3968 error = spa_ld_select_uberblock(spa, type); 3969 if (error != 0) 3970 return (error); 3971 3972 /* 3973 * Pass that uberblock to the dsl_pool layer which will open the root 3974 * blkptr. This blkptr points to the latest version of the MOS and will 3975 * allow us to read its contents. 3976 */ 3977 error = spa_ld_open_rootbp(spa); 3978 if (error != 0) 3979 return (error); 3980 3981 return (0); 3982 } 3983 3984 static int 3985 spa_ld_checkpoint_rewind(spa_t *spa) 3986 { 3987 uberblock_t checkpoint; 3988 int error = 0; 3989 3990 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3991 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 3992 3993 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3994 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 3995 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 3996 3997 if (error != 0) { 3998 spa_load_failed(spa, "unable to retrieve checkpointed " 3999 "uberblock from the MOS config [error=%d]", error); 4000 4001 if (error == ENOENT) 4002 error = ZFS_ERR_NO_CHECKPOINT; 4003 4004 return (error); 4005 } 4006 4007 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 4008 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 4009 4010 /* 4011 * We need to update the txg and timestamp of the checkpointed 4012 * uberblock to be higher than the latest one. This ensures that 4013 * the checkpointed uberblock is selected if we were to close and 4014 * reopen the pool right after we've written it in the vdev labels. 4015 * (also see block comment in vdev_uberblock_compare) 4016 */ 4017 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 4018 checkpoint.ub_timestamp = gethrestime_sec(); 4019 4020 /* 4021 * Set current uberblock to be the checkpointed uberblock. 4022 */ 4023 spa->spa_uberblock = checkpoint; 4024 4025 /* 4026 * If we are doing a normal rewind, then the pool is open for 4027 * writing and we sync the "updated" checkpointed uberblock to 4028 * disk. Once this is done, we've basically rewound the whole 4029 * pool and there is no way back. 4030 * 4031 * There are cases when we don't want to attempt and sync the 4032 * checkpointed uberblock to disk because we are opening a 4033 * pool as read-only. Specifically, verifying the checkpointed 4034 * state with zdb, and importing the checkpointed state to get 4035 * a "preview" of its content. 4036 */ 4037 if (spa_writeable(spa)) { 4038 vdev_t *rvd = spa->spa_root_vdev; 4039 4040 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4041 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 4042 int svdcount = 0; 4043 int children = rvd->vdev_children; 4044 int c0 = spa_get_random(children); 4045 4046 for (int c = 0; c < children; c++) { 4047 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 4048 4049 /* Stop when revisiting the first vdev */ 4050 if (c > 0 && svd[0] == vd) 4051 break; 4052 4053 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 4054 !vdev_is_concrete(vd)) 4055 continue; 4056 4057 svd[svdcount++] = vd; 4058 if (svdcount == SPA_SYNC_MIN_VDEVS) 4059 break; 4060 } 4061 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 4062 if (error == 0) 4063 spa->spa_last_synced_guid = rvd->vdev_guid; 4064 spa_config_exit(spa, SCL_ALL, FTAG); 4065 4066 if (error != 0) { 4067 spa_load_failed(spa, "failed to write checkpointed " 4068 "uberblock to the vdev labels [error=%d]", error); 4069 return (error); 4070 } 4071 } 4072 4073 return (0); 4074 } 4075 4076 static int 4077 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 4078 boolean_t *update_config_cache) 4079 { 4080 int error; 4081 4082 /* 4083 * Parse the config for pool, open and validate vdevs, 4084 * select an uberblock, and use that uberblock to open 4085 * the MOS. 4086 */ 4087 error = spa_ld_mos_init(spa, type); 4088 if (error != 0) 4089 return (error); 4090 4091 /* 4092 * Retrieve the trusted config stored in the MOS and use it to create 4093 * a new, exact version of the vdev tree, then reopen all vdevs. 4094 */ 4095 error = spa_ld_trusted_config(spa, type, B_FALSE); 4096 if (error == EAGAIN) { 4097 if (update_config_cache != NULL) 4098 *update_config_cache = B_TRUE; 4099 4100 /* 4101 * Redo the loading process with the trusted config if it is 4102 * too different from the untrusted config. 4103 */ 4104 spa_ld_prepare_for_reload(spa); 4105 spa_load_note(spa, "RELOADING"); 4106 error = spa_ld_mos_init(spa, type); 4107 if (error != 0) 4108 return (error); 4109 4110 error = spa_ld_trusted_config(spa, type, B_TRUE); 4111 if (error != 0) 4112 return (error); 4113 4114 } else if (error != 0) { 4115 return (error); 4116 } 4117 4118 return (0); 4119 } 4120 4121 /* 4122 * Load an existing storage pool, using the config provided. This config 4123 * describes which vdevs are part of the pool and is later validated against 4124 * partial configs present in each vdev's label and an entire copy of the 4125 * config stored in the MOS. 4126 */ 4127 static int 4128 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport) 4129 { 4130 int error = 0; 4131 boolean_t missing_feat_write = B_FALSE; 4132 boolean_t checkpoint_rewind = 4133 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4134 boolean_t update_config_cache = B_FALSE; 4135 4136 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4137 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4138 4139 spa_load_note(spa, "LOADING"); 4140 4141 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 4142 if (error != 0) 4143 return (error); 4144 4145 /* 4146 * If we are rewinding to the checkpoint then we need to repeat 4147 * everything we've done so far in this function but this time 4148 * selecting the checkpointed uberblock and using that to open 4149 * the MOS. 4150 */ 4151 if (checkpoint_rewind) { 4152 /* 4153 * If we are rewinding to the checkpoint update config cache 4154 * anyway. 4155 */ 4156 update_config_cache = B_TRUE; 4157 4158 /* 4159 * Extract the checkpointed uberblock from the current MOS 4160 * and use this as the pool's uberblock from now on. If the 4161 * pool is imported as writeable we also write the checkpoint 4162 * uberblock to the labels, making the rewind permanent. 4163 */ 4164 error = spa_ld_checkpoint_rewind(spa); 4165 if (error != 0) 4166 return (error); 4167 4168 /* 4169 * Redo the loading process process again with the 4170 * checkpointed uberblock. 4171 */ 4172 spa_ld_prepare_for_reload(spa); 4173 spa_load_note(spa, "LOADING checkpointed uberblock"); 4174 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 4175 if (error != 0) 4176 return (error); 4177 } 4178 4179 /* 4180 * Retrieve the checkpoint txg if the pool has a checkpoint. 4181 */ 4182 error = spa_ld_read_checkpoint_txg(spa); 4183 if (error != 0) 4184 return (error); 4185 4186 /* 4187 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 4188 * from the pool and their contents were re-mapped to other vdevs. Note 4189 * that everything that we read before this step must have been 4190 * rewritten on concrete vdevs after the last device removal was 4191 * initiated. Otherwise we could be reading from indirect vdevs before 4192 * we have loaded their mappings. 4193 */ 4194 error = spa_ld_open_indirect_vdev_metadata(spa); 4195 if (error != 0) 4196 return (error); 4197 4198 /* 4199 * Retrieve the full list of active features from the MOS and check if 4200 * they are all supported. 4201 */ 4202 error = spa_ld_check_features(spa, &missing_feat_write); 4203 if (error != 0) 4204 return (error); 4205 4206 /* 4207 * Load several special directories from the MOS needed by the dsl_pool 4208 * layer. 4209 */ 4210 error = spa_ld_load_special_directories(spa); 4211 if (error != 0) 4212 return (error); 4213 4214 /* 4215 * Retrieve pool properties from the MOS. 4216 */ 4217 error = spa_ld_get_props(spa); 4218 if (error != 0) 4219 return (error); 4220 4221 /* 4222 * Retrieve the list of auxiliary devices - cache devices and spares - 4223 * and open them. 4224 */ 4225 error = spa_ld_open_aux_vdevs(spa, type); 4226 if (error != 0) 4227 return (error); 4228 4229 /* 4230 * Load the metadata for all vdevs. Also check if unopenable devices 4231 * should be autoreplaced. 4232 */ 4233 error = spa_ld_load_vdev_metadata(spa); 4234 if (error != 0) 4235 return (error); 4236 4237 error = spa_ld_load_dedup_tables(spa); 4238 if (error != 0) 4239 return (error); 4240 4241 /* 4242 * Verify the logs now to make sure we don't have any unexpected errors 4243 * when we claim log blocks later. 4244 */ 4245 error = spa_ld_verify_logs(spa, type, ereport); 4246 if (error != 0) 4247 return (error); 4248 4249 if (missing_feat_write) { 4250 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 4251 4252 /* 4253 * At this point, we know that we can open the pool in 4254 * read-only mode but not read-write mode. We now have enough 4255 * information and can return to userland. 4256 */ 4257 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 4258 ENOTSUP)); 4259 } 4260 4261 /* 4262 * Traverse the last txgs to make sure the pool was left off in a safe 4263 * state. When performing an extreme rewind, we verify the whole pool, 4264 * which can take a very long time. 4265 */ 4266 error = spa_ld_verify_pool_data(spa); 4267 if (error != 0) 4268 return (error); 4269 4270 /* 4271 * Calculate the deflated space for the pool. This must be done before 4272 * we write anything to the pool because we'd need to update the space 4273 * accounting using the deflated sizes. 4274 */ 4275 spa_update_dspace(spa); 4276 4277 /* 4278 * We have now retrieved all the information we needed to open the 4279 * pool. If we are importing the pool in read-write mode, a few 4280 * additional steps must be performed to finish the import. 4281 */ 4282 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 4283 spa->spa_load_max_txg == UINT64_MAX)) { 4284 uint64_t config_cache_txg = spa->spa_config_txg; 4285 4286 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 4287 4288 /* 4289 * In case of a checkpoint rewind, log the original txg 4290 * of the checkpointed uberblock. 4291 */ 4292 if (checkpoint_rewind) { 4293 spa_history_log_internal(spa, "checkpoint rewind", 4294 NULL, "rewound state to txg=%llu", 4295 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 4296 } 4297 4298 /* 4299 * Traverse the ZIL and claim all blocks. 4300 */ 4301 spa_ld_claim_log_blocks(spa); 4302 4303 /* 4304 * Kick-off the syncing thread. 4305 */ 4306 spa->spa_sync_on = B_TRUE; 4307 txg_sync_start(spa->spa_dsl_pool); 4308 mmp_thread_start(spa); 4309 4310 /* 4311 * Wait for all claims to sync. We sync up to the highest 4312 * claimed log block birth time so that claimed log blocks 4313 * don't appear to be from the future. spa_claim_max_txg 4314 * will have been set for us by ZIL traversal operations 4315 * performed above. 4316 */ 4317 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 4318 4319 /* 4320 * Check if we need to request an update of the config. On the 4321 * next sync, we would update the config stored in vdev labels 4322 * and the cachefile (by default /etc/zfs/zpool.cache). 4323 */ 4324 spa_ld_check_for_config_update(spa, config_cache_txg, 4325 update_config_cache); 4326 4327 /* 4328 * Check all DTLs to see if anything needs resilvering. 4329 */ 4330 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 4331 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 4332 spa_async_request(spa, SPA_ASYNC_RESILVER); 4333 4334 /* 4335 * Log the fact that we booted up (so that we can detect if 4336 * we rebooted in the middle of an operation). 4337 */ 4338 spa_history_log_version(spa, "open"); 4339 4340 spa_restart_removal(spa); 4341 spa_spawn_aux_threads(spa); 4342 4343 /* 4344 * Delete any inconsistent datasets. 4345 * 4346 * Note: 4347 * Since we may be issuing deletes for clones here, 4348 * we make sure to do so after we've spawned all the 4349 * auxiliary threads above (from which the livelist 4350 * deletion zthr is part of). 4351 */ 4352 (void) dmu_objset_find(spa_name(spa), 4353 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 4354 4355 /* 4356 * Clean up any stale temporary dataset userrefs. 4357 */ 4358 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 4359 4360 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4361 vdev_initialize_restart(spa->spa_root_vdev); 4362 vdev_trim_restart(spa->spa_root_vdev); 4363 vdev_autotrim_restart(spa); 4364 spa_config_exit(spa, SCL_CONFIG, FTAG); 4365 } 4366 4367 spa_import_progress_remove(spa); 4368 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 4369 4370 spa_load_note(spa, "LOADED"); 4371 4372 return (0); 4373 } 4374 4375 static int 4376 spa_load_retry(spa_t *spa, spa_load_state_t state) 4377 { 4378 int mode = spa->spa_mode; 4379 4380 spa_unload(spa); 4381 spa_deactivate(spa); 4382 4383 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 4384 4385 spa_activate(spa, mode); 4386 spa_async_suspend(spa); 4387 4388 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 4389 (u_longlong_t)spa->spa_load_max_txg); 4390 4391 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 4392 } 4393 4394 /* 4395 * If spa_load() fails this function will try loading prior txg's. If 4396 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 4397 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 4398 * function will not rewind the pool and will return the same error as 4399 * spa_load(). 4400 */ 4401 static int 4402 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 4403 int rewind_flags) 4404 { 4405 nvlist_t *loadinfo = NULL; 4406 nvlist_t *config = NULL; 4407 int load_error, rewind_error; 4408 uint64_t safe_rewind_txg; 4409 uint64_t min_txg; 4410 4411 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 4412 spa->spa_load_max_txg = spa->spa_load_txg; 4413 spa_set_log_state(spa, SPA_LOG_CLEAR); 4414 } else { 4415 spa->spa_load_max_txg = max_request; 4416 if (max_request != UINT64_MAX) 4417 spa->spa_extreme_rewind = B_TRUE; 4418 } 4419 4420 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 4421 if (load_error == 0) 4422 return (0); 4423 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 4424 /* 4425 * When attempting checkpoint-rewind on a pool with no 4426 * checkpoint, we should not attempt to load uberblocks 4427 * from previous txgs when spa_load fails. 4428 */ 4429 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4430 spa_import_progress_remove(spa); 4431 return (load_error); 4432 } 4433 4434 if (spa->spa_root_vdev != NULL) 4435 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4436 4437 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 4438 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 4439 4440 if (rewind_flags & ZPOOL_NEVER_REWIND) { 4441 nvlist_free(config); 4442 spa_import_progress_remove(spa); 4443 return (load_error); 4444 } 4445 4446 if (state == SPA_LOAD_RECOVER) { 4447 /* Price of rolling back is discarding txgs, including log */ 4448 spa_set_log_state(spa, SPA_LOG_CLEAR); 4449 } else { 4450 /* 4451 * If we aren't rolling back save the load info from our first 4452 * import attempt so that we can restore it after attempting 4453 * to rewind. 4454 */ 4455 loadinfo = spa->spa_load_info; 4456 spa->spa_load_info = fnvlist_alloc(); 4457 } 4458 4459 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 4460 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 4461 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 4462 TXG_INITIAL : safe_rewind_txg; 4463 4464 /* 4465 * Continue as long as we're finding errors, we're still within 4466 * the acceptable rewind range, and we're still finding uberblocks 4467 */ 4468 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 4469 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 4470 if (spa->spa_load_max_txg < safe_rewind_txg) 4471 spa->spa_extreme_rewind = B_TRUE; 4472 rewind_error = spa_load_retry(spa, state); 4473 } 4474 4475 spa->spa_extreme_rewind = B_FALSE; 4476 spa->spa_load_max_txg = UINT64_MAX; 4477 4478 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 4479 spa_config_set(spa, config); 4480 else 4481 nvlist_free(config); 4482 4483 if (state == SPA_LOAD_RECOVER) { 4484 ASSERT3P(loadinfo, ==, NULL); 4485 spa_import_progress_remove(spa); 4486 return (rewind_error); 4487 } else { 4488 /* Store the rewind info as part of the initial load info */ 4489 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 4490 spa->spa_load_info); 4491 4492 /* Restore the initial load info */ 4493 fnvlist_free(spa->spa_load_info); 4494 spa->spa_load_info = loadinfo; 4495 4496 spa_import_progress_remove(spa); 4497 return (load_error); 4498 } 4499 } 4500 4501 /* 4502 * Pool Open/Import 4503 * 4504 * The import case is identical to an open except that the configuration is sent 4505 * down from userland, instead of grabbed from the configuration cache. For the 4506 * case of an open, the pool configuration will exist in the 4507 * POOL_STATE_UNINITIALIZED state. 4508 * 4509 * The stats information (gen/count/ustats) is used to gather vdev statistics at 4510 * the same time open the pool, without having to keep around the spa_t in some 4511 * ambiguous state. 4512 */ 4513 static int 4514 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 4515 nvlist_t **config) 4516 { 4517 spa_t *spa; 4518 spa_load_state_t state = SPA_LOAD_OPEN; 4519 int error; 4520 int locked = B_FALSE; 4521 4522 *spapp = NULL; 4523 4524 /* 4525 * As disgusting as this is, we need to support recursive calls to this 4526 * function because dsl_dir_open() is called during spa_load(), and ends 4527 * up calling spa_open() again. The real fix is to figure out how to 4528 * avoid dsl_dir_open() calling this in the first place. 4529 */ 4530 if (mutex_owner(&spa_namespace_lock) != curthread) { 4531 mutex_enter(&spa_namespace_lock); 4532 locked = B_TRUE; 4533 } 4534 4535 if ((spa = spa_lookup(pool)) == NULL) { 4536 if (locked) 4537 mutex_exit(&spa_namespace_lock); 4538 return (SET_ERROR(ENOENT)); 4539 } 4540 4541 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 4542 zpool_load_policy_t policy; 4543 4544 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 4545 &policy); 4546 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 4547 state = SPA_LOAD_RECOVER; 4548 4549 spa_activate(spa, spa_mode_global); 4550 4551 if (state != SPA_LOAD_RECOVER) 4552 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4553 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 4554 4555 zfs_dbgmsg("spa_open_common: opening %s", pool); 4556 error = spa_load_best(spa, state, policy.zlp_txg, 4557 policy.zlp_rewind); 4558 4559 if (error == EBADF) { 4560 /* 4561 * If vdev_validate() returns failure (indicated by 4562 * EBADF), it indicates that one of the vdevs indicates 4563 * that the pool has been exported or destroyed. If 4564 * this is the case, the config cache is out of sync and 4565 * we should remove the pool from the namespace. 4566 */ 4567 spa_unload(spa); 4568 spa_deactivate(spa); 4569 spa_write_cachefile(spa, B_TRUE, B_TRUE); 4570 spa_remove(spa); 4571 if (locked) 4572 mutex_exit(&spa_namespace_lock); 4573 return (SET_ERROR(ENOENT)); 4574 } 4575 4576 if (error) { 4577 /* 4578 * We can't open the pool, but we still have useful 4579 * information: the state of each vdev after the 4580 * attempted vdev_open(). Return this to the user. 4581 */ 4582 if (config != NULL && spa->spa_config) { 4583 VERIFY(nvlist_dup(spa->spa_config, config, 4584 KM_SLEEP) == 0); 4585 VERIFY(nvlist_add_nvlist(*config, 4586 ZPOOL_CONFIG_LOAD_INFO, 4587 spa->spa_load_info) == 0); 4588 } 4589 spa_unload(spa); 4590 spa_deactivate(spa); 4591 spa->spa_last_open_failed = error; 4592 if (locked) 4593 mutex_exit(&spa_namespace_lock); 4594 *spapp = NULL; 4595 return (error); 4596 } 4597 } 4598 4599 spa_open_ref(spa, tag); 4600 4601 if (config != NULL) 4602 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4603 4604 /* 4605 * If we've recovered the pool, pass back any information we 4606 * gathered while doing the load. 4607 */ 4608 if (state == SPA_LOAD_RECOVER) { 4609 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 4610 spa->spa_load_info) == 0); 4611 } 4612 4613 if (locked) { 4614 spa->spa_last_open_failed = 0; 4615 spa->spa_last_ubsync_txg = 0; 4616 spa->spa_load_txg = 0; 4617 mutex_exit(&spa_namespace_lock); 4618 } 4619 4620 *spapp = spa; 4621 4622 return (0); 4623 } 4624 4625 int 4626 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 4627 nvlist_t **config) 4628 { 4629 return (spa_open_common(name, spapp, tag, policy, config)); 4630 } 4631 4632 int 4633 spa_open(const char *name, spa_t **spapp, void *tag) 4634 { 4635 return (spa_open_common(name, spapp, tag, NULL, NULL)); 4636 } 4637 4638 /* 4639 * Lookup the given spa_t, incrementing the inject count in the process, 4640 * preventing it from being exported or destroyed. 4641 */ 4642 spa_t * 4643 spa_inject_addref(char *name) 4644 { 4645 spa_t *spa; 4646 4647 mutex_enter(&spa_namespace_lock); 4648 if ((spa = spa_lookup(name)) == NULL) { 4649 mutex_exit(&spa_namespace_lock); 4650 return (NULL); 4651 } 4652 spa->spa_inject_ref++; 4653 mutex_exit(&spa_namespace_lock); 4654 4655 return (spa); 4656 } 4657 4658 void 4659 spa_inject_delref(spa_t *spa) 4660 { 4661 mutex_enter(&spa_namespace_lock); 4662 spa->spa_inject_ref--; 4663 mutex_exit(&spa_namespace_lock); 4664 } 4665 4666 /* 4667 * Add spares device information to the nvlist. 4668 */ 4669 static void 4670 spa_add_spares(spa_t *spa, nvlist_t *config) 4671 { 4672 nvlist_t **spares; 4673 uint_t i, nspares; 4674 nvlist_t *nvroot; 4675 uint64_t guid; 4676 vdev_stat_t *vs; 4677 uint_t vsc; 4678 uint64_t pool; 4679 4680 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4681 4682 if (spa->spa_spares.sav_count == 0) 4683 return; 4684 4685 VERIFY(nvlist_lookup_nvlist(config, 4686 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 4687 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4688 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 4689 if (nspares != 0) { 4690 VERIFY(nvlist_add_nvlist_array(nvroot, 4691 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4692 VERIFY(nvlist_lookup_nvlist_array(nvroot, 4693 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 4694 4695 /* 4696 * Go through and find any spares which have since been 4697 * repurposed as an active spare. If this is the case, update 4698 * their status appropriately. 4699 */ 4700 for (i = 0; i < nspares; i++) { 4701 VERIFY(nvlist_lookup_uint64(spares[i], 4702 ZPOOL_CONFIG_GUID, &guid) == 0); 4703 if (spa_spare_exists(guid, &pool, NULL) && 4704 pool != 0ULL) { 4705 VERIFY(nvlist_lookup_uint64_array( 4706 spares[i], ZPOOL_CONFIG_VDEV_STATS, 4707 (uint64_t **)&vs, &vsc) == 0); 4708 vs->vs_state = VDEV_STATE_CANT_OPEN; 4709 vs->vs_aux = VDEV_AUX_SPARED; 4710 } 4711 } 4712 } 4713 } 4714 4715 /* 4716 * Add l2cache device information to the nvlist, including vdev stats. 4717 */ 4718 static void 4719 spa_add_l2cache(spa_t *spa, nvlist_t *config) 4720 { 4721 nvlist_t **l2cache; 4722 uint_t i, j, nl2cache; 4723 nvlist_t *nvroot; 4724 uint64_t guid; 4725 vdev_t *vd; 4726 vdev_stat_t *vs; 4727 uint_t vsc; 4728 4729 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4730 4731 if (spa->spa_l2cache.sav_count == 0) 4732 return; 4733 4734 VERIFY(nvlist_lookup_nvlist(config, 4735 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 4736 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4737 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 4738 if (nl2cache != 0) { 4739 VERIFY(nvlist_add_nvlist_array(nvroot, 4740 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4741 VERIFY(nvlist_lookup_nvlist_array(nvroot, 4742 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 4743 4744 /* 4745 * Update level 2 cache device stats. 4746 */ 4747 4748 for (i = 0; i < nl2cache; i++) { 4749 VERIFY(nvlist_lookup_uint64(l2cache[i], 4750 ZPOOL_CONFIG_GUID, &guid) == 0); 4751 4752 vd = NULL; 4753 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 4754 if (guid == 4755 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 4756 vd = spa->spa_l2cache.sav_vdevs[j]; 4757 break; 4758 } 4759 } 4760 ASSERT(vd != NULL); 4761 4762 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 4763 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 4764 == 0); 4765 vdev_get_stats(vd, vs); 4766 vdev_config_generate_stats(vd, l2cache[i]); 4767 4768 } 4769 } 4770 } 4771 4772 static void 4773 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 4774 { 4775 nvlist_t *features; 4776 zap_cursor_t zc; 4777 zap_attribute_t za; 4778 4779 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4780 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4781 4782 if (spa->spa_feat_for_read_obj != 0) { 4783 for (zap_cursor_init(&zc, spa->spa_meta_objset, 4784 spa->spa_feat_for_read_obj); 4785 zap_cursor_retrieve(&zc, &za) == 0; 4786 zap_cursor_advance(&zc)) { 4787 ASSERT(za.za_integer_length == sizeof (uint64_t) && 4788 za.za_num_integers == 1); 4789 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 4790 za.za_first_integer)); 4791 } 4792 zap_cursor_fini(&zc); 4793 } 4794 4795 if (spa->spa_feat_for_write_obj != 0) { 4796 for (zap_cursor_init(&zc, spa->spa_meta_objset, 4797 spa->spa_feat_for_write_obj); 4798 zap_cursor_retrieve(&zc, &za) == 0; 4799 zap_cursor_advance(&zc)) { 4800 ASSERT(za.za_integer_length == sizeof (uint64_t) && 4801 za.za_num_integers == 1); 4802 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 4803 za.za_first_integer)); 4804 } 4805 zap_cursor_fini(&zc); 4806 } 4807 4808 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 4809 features) == 0); 4810 nvlist_free(features); 4811 } 4812 4813 int 4814 spa_get_stats(const char *name, nvlist_t **config, 4815 char *altroot, size_t buflen) 4816 { 4817 int error; 4818 spa_t *spa; 4819 4820 *config = NULL; 4821 error = spa_open_common(name, &spa, FTAG, NULL, config); 4822 4823 if (spa != NULL) { 4824 /* 4825 * This still leaves a window of inconsistency where the spares 4826 * or l2cache devices could change and the config would be 4827 * self-inconsistent. 4828 */ 4829 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4830 4831 if (*config != NULL) { 4832 uint64_t loadtimes[2]; 4833 4834 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 4835 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 4836 VERIFY(nvlist_add_uint64_array(*config, 4837 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 4838 4839 VERIFY(nvlist_add_uint64(*config, 4840 ZPOOL_CONFIG_ERRCOUNT, 4841 spa_get_errlog_size(spa)) == 0); 4842 4843 if (spa_suspended(spa)) { 4844 VERIFY(nvlist_add_uint64(*config, 4845 ZPOOL_CONFIG_SUSPENDED, 4846 spa->spa_failmode) == 0); 4847 VERIFY(nvlist_add_uint64(*config, 4848 ZPOOL_CONFIG_SUSPENDED_REASON, 4849 spa->spa_suspended) == 0); 4850 } 4851 4852 spa_add_spares(spa, *config); 4853 spa_add_l2cache(spa, *config); 4854 spa_add_feature_stats(spa, *config); 4855 } 4856 } 4857 4858 /* 4859 * We want to get the alternate root even for faulted pools, so we cheat 4860 * and call spa_lookup() directly. 4861 */ 4862 if (altroot) { 4863 if (spa == NULL) { 4864 mutex_enter(&spa_namespace_lock); 4865 spa = spa_lookup(name); 4866 if (spa) 4867 spa_altroot(spa, altroot, buflen); 4868 else 4869 altroot[0] = '\0'; 4870 spa = NULL; 4871 mutex_exit(&spa_namespace_lock); 4872 } else { 4873 spa_altroot(spa, altroot, buflen); 4874 } 4875 } 4876 4877 if (spa != NULL) { 4878 spa_config_exit(spa, SCL_CONFIG, FTAG); 4879 spa_close(spa, FTAG); 4880 } 4881 4882 return (error); 4883 } 4884 4885 /* 4886 * Validate that the auxiliary device array is well formed. We must have an 4887 * array of nvlists, each which describes a valid leaf vdev. If this is an 4888 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 4889 * specified, as long as they are well-formed. 4890 */ 4891 static int 4892 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 4893 spa_aux_vdev_t *sav, const char *config, uint64_t version, 4894 vdev_labeltype_t label) 4895 { 4896 nvlist_t **dev; 4897 uint_t i, ndev; 4898 vdev_t *vd; 4899 int error; 4900 4901 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4902 4903 /* 4904 * It's acceptable to have no devs specified. 4905 */ 4906 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 4907 return (0); 4908 4909 if (ndev == 0) 4910 return (SET_ERROR(EINVAL)); 4911 4912 /* 4913 * Make sure the pool is formatted with a version that supports this 4914 * device type. 4915 */ 4916 if (spa_version(spa) < version) 4917 return (SET_ERROR(ENOTSUP)); 4918 4919 /* 4920 * Set the pending device list so we correctly handle device in-use 4921 * checking. 4922 */ 4923 sav->sav_pending = dev; 4924 sav->sav_npending = ndev; 4925 4926 for (i = 0; i < ndev; i++) { 4927 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 4928 mode)) != 0) 4929 goto out; 4930 4931 if (!vd->vdev_ops->vdev_op_leaf) { 4932 vdev_free(vd); 4933 error = SET_ERROR(EINVAL); 4934 goto out; 4935 } 4936 4937 vd->vdev_top = vd; 4938 4939 if ((error = vdev_open(vd)) == 0 && 4940 (error = vdev_label_init(vd, crtxg, label)) == 0) { 4941 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 4942 vd->vdev_guid) == 0); 4943 } 4944 4945 vdev_free(vd); 4946 4947 if (error && 4948 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 4949 goto out; 4950 else 4951 error = 0; 4952 } 4953 4954 out: 4955 sav->sav_pending = NULL; 4956 sav->sav_npending = 0; 4957 return (error); 4958 } 4959 4960 static int 4961 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 4962 { 4963 int error; 4964 4965 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4966 4967 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 4968 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 4969 VDEV_LABEL_SPARE)) != 0) { 4970 return (error); 4971 } 4972 4973 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 4974 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 4975 VDEV_LABEL_L2CACHE)); 4976 } 4977 4978 static void 4979 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 4980 const char *config) 4981 { 4982 int i; 4983 4984 if (sav->sav_config != NULL) { 4985 nvlist_t **olddevs; 4986 uint_t oldndevs; 4987 nvlist_t **newdevs; 4988 4989 /* 4990 * Generate new dev list by concatentating with the 4991 * current dev list. 4992 */ 4993 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 4994 &olddevs, &oldndevs) == 0); 4995 4996 newdevs = kmem_alloc(sizeof (void *) * 4997 (ndevs + oldndevs), KM_SLEEP); 4998 for (i = 0; i < oldndevs; i++) 4999 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 5000 KM_SLEEP) == 0); 5001 for (i = 0; i < ndevs; i++) 5002 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 5003 KM_SLEEP) == 0); 5004 5005 VERIFY(nvlist_remove(sav->sav_config, config, 5006 DATA_TYPE_NVLIST_ARRAY) == 0); 5007 5008 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 5009 config, newdevs, ndevs + oldndevs) == 0); 5010 for (i = 0; i < oldndevs + ndevs; i++) 5011 nvlist_free(newdevs[i]); 5012 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 5013 } else { 5014 /* 5015 * Generate a new dev list. 5016 */ 5017 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 5018 KM_SLEEP) == 0); 5019 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 5020 devs, ndevs) == 0); 5021 } 5022 } 5023 5024 /* 5025 * Stop and drop level 2 ARC devices 5026 */ 5027 void 5028 spa_l2cache_drop(spa_t *spa) 5029 { 5030 vdev_t *vd; 5031 int i; 5032 spa_aux_vdev_t *sav = &spa->spa_l2cache; 5033 5034 for (i = 0; i < sav->sav_count; i++) { 5035 uint64_t pool; 5036 5037 vd = sav->sav_vdevs[i]; 5038 ASSERT(vd != NULL); 5039 5040 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 5041 pool != 0ULL && l2arc_vdev_present(vd)) 5042 l2arc_remove_vdev(vd); 5043 } 5044 } 5045 5046 /* 5047 * Verify encryption parameters for spa creation. If we are encrypting, we must 5048 * have the encryption feature flag enabled. 5049 */ 5050 static int 5051 spa_create_check_encryption_params(dsl_crypto_params_t *dcp, 5052 boolean_t has_encryption) 5053 { 5054 if (dcp->cp_crypt != ZIO_CRYPT_OFF && 5055 dcp->cp_crypt != ZIO_CRYPT_INHERIT && 5056 !has_encryption) 5057 return (SET_ERROR(ENOTSUP)); 5058 5059 return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); 5060 } 5061 5062 /* 5063 * Pool Creation 5064 */ 5065 int 5066 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 5067 nvlist_t *zplprops, dsl_crypto_params_t *dcp) 5068 { 5069 spa_t *spa; 5070 char *altroot = NULL; 5071 vdev_t *rvd; 5072 dsl_pool_t *dp; 5073 dmu_tx_t *tx; 5074 int error = 0; 5075 uint64_t txg = TXG_INITIAL; 5076 nvlist_t **spares, **l2cache; 5077 uint_t nspares, nl2cache; 5078 uint64_t version, obj; 5079 boolean_t has_features; 5080 char *poolname; 5081 nvlist_t *nvl; 5082 boolean_t has_encryption; 5083 spa_feature_t feat; 5084 char *feat_name; 5085 5086 if (props == NULL || 5087 nvlist_lookup_string(props, 5088 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0) 5089 poolname = (char *)pool; 5090 5091 /* 5092 * If this pool already exists, return failure. 5093 */ 5094 mutex_enter(&spa_namespace_lock); 5095 if (spa_lookup(poolname) != NULL) { 5096 mutex_exit(&spa_namespace_lock); 5097 return (SET_ERROR(EEXIST)); 5098 } 5099 5100 /* 5101 * Allocate a new spa_t structure. 5102 */ 5103 nvl = fnvlist_alloc(); 5104 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 5105 (void) nvlist_lookup_string(props, 5106 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5107 spa = spa_add(poolname, nvl, altroot); 5108 fnvlist_free(nvl); 5109 spa_activate(spa, spa_mode_global); 5110 5111 if (props && (error = spa_prop_validate(spa, props))) { 5112 spa_deactivate(spa); 5113 spa_remove(spa); 5114 mutex_exit(&spa_namespace_lock); 5115 return (error); 5116 } 5117 5118 /* 5119 * Temporary pool names should never be written to disk. 5120 */ 5121 if (poolname != pool) 5122 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 5123 5124 has_features = B_FALSE; 5125 has_encryption = B_FALSE; 5126 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 5127 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 5128 if (zpool_prop_feature(nvpair_name(elem))) { 5129 has_features = B_TRUE; 5130 feat_name = strchr(nvpair_name(elem), '@') + 1; 5131 VERIFY0(zfeature_lookup_name(feat_name, &feat)); 5132 if (feat == SPA_FEATURE_ENCRYPTION) 5133 has_encryption = B_TRUE; 5134 } 5135 } 5136 5137 /* verify encryption params, if they were provided */ 5138 if (dcp != NULL) { 5139 error = spa_create_check_encryption_params(dcp, has_encryption); 5140 if (error != 0) { 5141 spa_deactivate(spa); 5142 spa_remove(spa); 5143 mutex_exit(&spa_namespace_lock); 5144 return (error); 5145 } 5146 } 5147 5148 if (has_features || nvlist_lookup_uint64(props, 5149 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 5150 version = SPA_VERSION; 5151 } 5152 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5153 5154 spa->spa_first_txg = txg; 5155 spa->spa_uberblock.ub_txg = txg - 1; 5156 spa->spa_uberblock.ub_version = version; 5157 spa->spa_ubsync = spa->spa_uberblock; 5158 spa->spa_load_state = SPA_LOAD_CREATE; 5159 spa->spa_removing_phys.sr_state = DSS_NONE; 5160 spa->spa_removing_phys.sr_removing_vdev = -1; 5161 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 5162 spa->spa_indirect_vdevs_loaded = B_TRUE; 5163 5164 /* 5165 * Create "The Godfather" zio to hold all async IOs 5166 */ 5167 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 5168 KM_SLEEP); 5169 for (int i = 0; i < max_ncpus; i++) { 5170 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 5171 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 5172 ZIO_FLAG_GODFATHER); 5173 } 5174 5175 /* 5176 * Create the root vdev. 5177 */ 5178 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5179 5180 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 5181 5182 ASSERT(error != 0 || rvd != NULL); 5183 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 5184 5185 if (error == 0 && !zfs_allocatable_devs(nvroot)) 5186 error = SET_ERROR(EINVAL); 5187 5188 if (error == 0 && 5189 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 5190 (error = spa_validate_aux(spa, nvroot, txg, 5191 VDEV_ALLOC_ADD)) == 0) { 5192 /* 5193 * instantiate the metaslab groups (this will dirty the vdevs) 5194 * we can no longer error exit past this point 5195 */ 5196 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 5197 vdev_t *vd = rvd->vdev_child[c]; 5198 5199 vdev_metaslab_set_size(vd); 5200 vdev_expand(vd, txg); 5201 } 5202 } 5203 5204 spa_config_exit(spa, SCL_ALL, FTAG); 5205 5206 if (error != 0) { 5207 spa_unload(spa); 5208 spa_deactivate(spa); 5209 spa_remove(spa); 5210 mutex_exit(&spa_namespace_lock); 5211 return (error); 5212 } 5213 5214 /* 5215 * Get the list of spares, if specified. 5216 */ 5217 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5218 &spares, &nspares) == 0) { 5219 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 5220 KM_SLEEP) == 0); 5221 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 5222 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 5223 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5224 spa_load_spares(spa); 5225 spa_config_exit(spa, SCL_ALL, FTAG); 5226 spa->spa_spares.sav_sync = B_TRUE; 5227 } 5228 5229 /* 5230 * Get the list of level 2 cache devices, if specified. 5231 */ 5232 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5233 &l2cache, &nl2cache) == 0) { 5234 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 5235 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5236 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 5237 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 5238 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5239 spa_load_l2cache(spa); 5240 spa_config_exit(spa, SCL_ALL, FTAG); 5241 spa->spa_l2cache.sav_sync = B_TRUE; 5242 } 5243 5244 spa->spa_is_initializing = B_TRUE; 5245 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); 5246 spa->spa_is_initializing = B_FALSE; 5247 5248 /* 5249 * Create DDTs (dedup tables). 5250 */ 5251 ddt_create(spa); 5252 5253 spa_update_dspace(spa); 5254 5255 tx = dmu_tx_create_assigned(dp, txg); 5256 5257 /* 5258 * Create the pool config object. 5259 */ 5260 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 5261 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 5262 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 5263 5264 if (zap_add(spa->spa_meta_objset, 5265 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 5266 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 5267 cmn_err(CE_PANIC, "failed to add pool config"); 5268 } 5269 5270 if (zap_add(spa->spa_meta_objset, 5271 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 5272 sizeof (uint64_t), 1, &version, tx) != 0) { 5273 cmn_err(CE_PANIC, "failed to add pool version"); 5274 } 5275 5276 /* Newly created pools with the right version are always deflated. */ 5277 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 5278 spa->spa_deflate = TRUE; 5279 if (zap_add(spa->spa_meta_objset, 5280 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5281 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 5282 cmn_err(CE_PANIC, "failed to add deflate"); 5283 } 5284 } 5285 5286 /* 5287 * Create the deferred-free bpobj. Turn off compression 5288 * because sync-to-convergence takes longer if the blocksize 5289 * keeps changing. 5290 */ 5291 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 5292 dmu_object_set_compress(spa->spa_meta_objset, obj, 5293 ZIO_COMPRESS_OFF, tx); 5294 if (zap_add(spa->spa_meta_objset, 5295 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 5296 sizeof (uint64_t), 1, &obj, tx) != 0) { 5297 cmn_err(CE_PANIC, "failed to add bpobj"); 5298 } 5299 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 5300 spa->spa_meta_objset, obj)); 5301 5302 /* 5303 * Create the pool's history object. 5304 */ 5305 if (version >= SPA_VERSION_ZPOOL_HISTORY) 5306 spa_history_create_obj(spa, tx); 5307 5308 /* 5309 * Generate some random noise for salted checksums to operate on. 5310 */ 5311 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 5312 sizeof (spa->spa_cksum_salt.zcs_bytes)); 5313 5314 /* 5315 * Set pool properties. 5316 */ 5317 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 5318 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 5319 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 5320 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 5321 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 5322 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); 5323 5324 if (props != NULL) { 5325 spa_configfile_set(spa, props, B_FALSE); 5326 spa_sync_props(props, tx); 5327 } 5328 5329 dmu_tx_commit(tx); 5330 5331 spa->spa_sync_on = B_TRUE; 5332 txg_sync_start(spa->spa_dsl_pool); 5333 mmp_thread_start(spa); 5334 5335 /* 5336 * We explicitly wait for the first transaction to complete so that our 5337 * bean counters are appropriately updated. 5338 */ 5339 txg_wait_synced(spa->spa_dsl_pool, txg); 5340 5341 spa_spawn_aux_threads(spa); 5342 5343 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5344 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 5345 5346 spa_history_log_version(spa, "create"); 5347 5348 /* 5349 * Don't count references from objsets that are already closed 5350 * and are making their way through the eviction process. 5351 */ 5352 spa_evicting_os_wait(spa); 5353 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 5354 spa->spa_load_state = SPA_LOAD_NONE; 5355 5356 mutex_exit(&spa_namespace_lock); 5357 5358 return (0); 5359 } 5360 5361 #ifdef _KERNEL 5362 /* 5363 * Get the root pool information from the root disk, then import the root pool 5364 * during the system boot up time. 5365 */ 5366 static nvlist_t * 5367 spa_generate_rootconf(const char *devpath, const char *devid, uint64_t *guid, 5368 uint64_t pool_guid) 5369 { 5370 nvlist_t *config; 5371 nvlist_t *nvtop, *nvroot; 5372 uint64_t pgid; 5373 5374 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 5375 return (NULL); 5376 5377 /* 5378 * Add this top-level vdev to the child array. 5379 */ 5380 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 5381 &nvtop) == 0); 5382 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5383 &pgid) == 0); 5384 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 5385 5386 if (pool_guid != 0 && pool_guid != pgid) { 5387 /* 5388 * The boot loader provided a pool GUID, but it does not match 5389 * the one we found in the label. Return failure so that we 5390 * can fall back to the full device scan. 5391 */ 5392 zfs_dbgmsg("spa_generate_rootconf: loader pool guid %llu != " 5393 "label pool guid %llu", (u_longlong_t)pool_guid, 5394 (u_longlong_t)pgid); 5395 nvlist_free(config); 5396 return (NULL); 5397 } 5398 5399 /* 5400 * Put this pool's top-level vdevs into a root vdev. 5401 */ 5402 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5403 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 5404 VDEV_TYPE_ROOT) == 0); 5405 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 5406 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 5407 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 5408 &nvtop, 1) == 0); 5409 5410 /* 5411 * Replace the existing vdev_tree with the new root vdev in 5412 * this pool's configuration (remove the old, add the new). 5413 */ 5414 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 5415 nvlist_free(nvroot); 5416 return (config); 5417 } 5418 5419 /* 5420 * Walk the vdev tree and see if we can find a device with "better" 5421 * configuration. A configuration is "better" if the label on that 5422 * device has a more recent txg. 5423 */ 5424 static void 5425 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 5426 { 5427 for (int c = 0; c < vd->vdev_children; c++) 5428 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 5429 5430 if (vd->vdev_ops->vdev_op_leaf) { 5431 nvlist_t *label; 5432 uint64_t label_txg; 5433 5434 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 5435 &label) != 0) 5436 return; 5437 5438 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 5439 &label_txg) == 0); 5440 5441 /* 5442 * Do we have a better boot device? 5443 */ 5444 if (label_txg > *txg) { 5445 *txg = label_txg; 5446 *avd = vd; 5447 } 5448 nvlist_free(label); 5449 } 5450 } 5451 5452 /* 5453 * Import a root pool. 5454 * 5455 * For x86. devpath_list will consist of devid and/or physpath name of 5456 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 5457 * The GRUB "findroot" command will return the vdev we should boot. 5458 * 5459 * For Sparc, devpath_list consists the physpath name of the booting device 5460 * no matter the rootpool is a single device pool or a mirrored pool. 5461 * e.g. 5462 * "/pci@1f,0/ide@d/disk@0,0:a" 5463 */ 5464 int 5465 spa_import_rootpool(char *devpath, char *devid, uint64_t pool_guid, 5466 uint64_t vdev_guid) 5467 { 5468 spa_t *spa; 5469 vdev_t *rvd, *bvd, *avd = NULL; 5470 nvlist_t *config, *nvtop; 5471 uint64_t guid, txg; 5472 char *pname; 5473 int error; 5474 const char *altdevpath = NULL; 5475 5476 /* 5477 * Read the label from the boot device and generate a configuration. 5478 */ 5479 config = spa_generate_rootconf(devpath, devid, &guid, pool_guid); 5480 #if defined(_OBP) && defined(_KERNEL) 5481 if (config == NULL) { 5482 if (strstr(devpath, "/iscsi/ssd") != NULL) { 5483 /* iscsi boot */ 5484 get_iscsi_bootpath_phy(devpath); 5485 config = spa_generate_rootconf(devpath, devid, &guid, 5486 pool_guid); 5487 } 5488 } 5489 #endif 5490 5491 /* 5492 * We were unable to import the pool using the /devices path or devid 5493 * provided by the boot loader. This may be the case if the boot 5494 * device has been connected to a different location in the system, or 5495 * if a new boot environment has changed the driver used to access the 5496 * boot device. 5497 * 5498 * Attempt an exhaustive scan of all visible block devices to see if we 5499 * can locate an alternative /devices path with a label that matches 5500 * the expected pool and vdev GUID. 5501 */ 5502 if (config == NULL && (altdevpath = 5503 vdev_disk_preroot_lookup(pool_guid, vdev_guid)) != NULL) { 5504 cmn_err(CE_NOTE, "Original /devices path (%s) not available; " 5505 "ZFS is trying an alternate path (%s)", devpath, 5506 altdevpath); 5507 config = spa_generate_rootconf(altdevpath, NULL, &guid, 5508 pool_guid); 5509 } 5510 5511 if (config == NULL) { 5512 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 5513 devpath); 5514 return (SET_ERROR(EIO)); 5515 } 5516 5517 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 5518 &pname) == 0); 5519 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 5520 5521 mutex_enter(&spa_namespace_lock); 5522 if ((spa = spa_lookup(pname)) != NULL) { 5523 /* 5524 * Remove the existing root pool from the namespace so that we 5525 * can replace it with the correct config we just read in. 5526 */ 5527 spa_remove(spa); 5528 } 5529 5530 spa = spa_add(pname, config, NULL); 5531 spa->spa_is_root = B_TRUE; 5532 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 5533 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 5534 &spa->spa_ubsync.ub_version) != 0) 5535 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 5536 5537 /* 5538 * Build up a vdev tree based on the boot device's label config. 5539 */ 5540 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 5541 &nvtop) == 0); 5542 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5543 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 5544 VDEV_ALLOC_ROOTPOOL); 5545 spa_config_exit(spa, SCL_ALL, FTAG); 5546 if (error) { 5547 mutex_exit(&spa_namespace_lock); 5548 nvlist_free(config); 5549 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 5550 pname); 5551 return (error); 5552 } 5553 5554 /* 5555 * Get the boot vdev. 5556 */ 5557 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 5558 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 5559 (u_longlong_t)guid); 5560 error = SET_ERROR(ENOENT); 5561 goto out; 5562 } 5563 5564 /* 5565 * Determine if there is a better boot device. 5566 */ 5567 avd = bvd; 5568 spa_alt_rootvdev(rvd, &avd, &txg); 5569 if (avd != bvd) { 5570 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 5571 "try booting from '%s'", avd->vdev_path); 5572 error = SET_ERROR(EINVAL); 5573 goto out; 5574 } 5575 5576 /* 5577 * If the boot device is part of a spare vdev then ensure that 5578 * we're booting off the active spare. 5579 */ 5580 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 5581 !bvd->vdev_isspare) { 5582 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 5583 "try booting from '%s'", 5584 bvd->vdev_parent-> 5585 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 5586 error = SET_ERROR(EINVAL); 5587 goto out; 5588 } 5589 5590 error = 0; 5591 out: 5592 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5593 vdev_free(rvd); 5594 spa_config_exit(spa, SCL_ALL, FTAG); 5595 mutex_exit(&spa_namespace_lock); 5596 5597 nvlist_free(config); 5598 return (error); 5599 } 5600 5601 #endif 5602 5603 /* 5604 * Import a non-root pool into the system. 5605 */ 5606 int 5607 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 5608 { 5609 spa_t *spa; 5610 char *altroot = NULL; 5611 spa_load_state_t state = SPA_LOAD_IMPORT; 5612 zpool_load_policy_t policy; 5613 uint64_t mode = spa_mode_global; 5614 uint64_t readonly = B_FALSE; 5615 int error; 5616 nvlist_t *nvroot; 5617 nvlist_t **spares, **l2cache; 5618 uint_t nspares, nl2cache; 5619 5620 /* 5621 * If a pool with this name exists, return failure. 5622 */ 5623 mutex_enter(&spa_namespace_lock); 5624 if (spa_lookup(pool) != NULL) { 5625 mutex_exit(&spa_namespace_lock); 5626 return (SET_ERROR(EEXIST)); 5627 } 5628 5629 /* 5630 * Create and initialize the spa structure. 5631 */ 5632 (void) nvlist_lookup_string(props, 5633 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5634 (void) nvlist_lookup_uint64(props, 5635 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 5636 if (readonly) 5637 mode = FREAD; 5638 spa = spa_add(pool, config, altroot); 5639 spa->spa_import_flags = flags; 5640 5641 /* 5642 * Verbatim import - Take a pool and insert it into the namespace 5643 * as if it had been loaded at boot. 5644 */ 5645 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 5646 if (props != NULL) 5647 spa_configfile_set(spa, props, B_FALSE); 5648 5649 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5650 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 5651 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 5652 mutex_exit(&spa_namespace_lock); 5653 return (0); 5654 } 5655 5656 spa_activate(spa, mode); 5657 5658 /* 5659 * Don't start async tasks until we know everything is healthy. 5660 */ 5661 spa_async_suspend(spa); 5662 5663 zpool_get_load_policy(config, &policy); 5664 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5665 state = SPA_LOAD_RECOVER; 5666 5667 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 5668 5669 if (state != SPA_LOAD_RECOVER) { 5670 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5671 zfs_dbgmsg("spa_import: importing %s", pool); 5672 } else { 5673 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 5674 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 5675 } 5676 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 5677 5678 /* 5679 * Propagate anything learned while loading the pool and pass it 5680 * back to caller (i.e. rewind info, missing devices, etc). 5681 */ 5682 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 5683 spa->spa_load_info) == 0); 5684 5685 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5686 /* 5687 * Toss any existing sparelist, as it doesn't have any validity 5688 * anymore, and conflicts with spa_has_spare(). 5689 */ 5690 if (spa->spa_spares.sav_config) { 5691 nvlist_free(spa->spa_spares.sav_config); 5692 spa->spa_spares.sav_config = NULL; 5693 spa_load_spares(spa); 5694 } 5695 if (spa->spa_l2cache.sav_config) { 5696 nvlist_free(spa->spa_l2cache.sav_config); 5697 spa->spa_l2cache.sav_config = NULL; 5698 spa_load_l2cache(spa); 5699 } 5700 5701 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 5702 &nvroot) == 0); 5703 if (error == 0) 5704 error = spa_validate_aux(spa, nvroot, -1ULL, 5705 VDEV_ALLOC_SPARE); 5706 if (error == 0) 5707 error = spa_validate_aux(spa, nvroot, -1ULL, 5708 VDEV_ALLOC_L2CACHE); 5709 spa_config_exit(spa, SCL_ALL, FTAG); 5710 5711 if (props != NULL) 5712 spa_configfile_set(spa, props, B_FALSE); 5713 5714 if (error != 0 || (props && spa_writeable(spa) && 5715 (error = spa_prop_set(spa, props)))) { 5716 spa_unload(spa); 5717 spa_deactivate(spa); 5718 spa_remove(spa); 5719 mutex_exit(&spa_namespace_lock); 5720 return (error); 5721 } 5722 5723 spa_async_resume(spa); 5724 5725 /* 5726 * Override any spares and level 2 cache devices as specified by 5727 * the user, as these may have correct device names/devids, etc. 5728 */ 5729 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5730 &spares, &nspares) == 0) { 5731 if (spa->spa_spares.sav_config) 5732 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 5733 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 5734 else 5735 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 5736 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5737 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 5738 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 5739 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5740 spa_load_spares(spa); 5741 spa_config_exit(spa, SCL_ALL, FTAG); 5742 spa->spa_spares.sav_sync = B_TRUE; 5743 } 5744 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5745 &l2cache, &nl2cache) == 0) { 5746 if (spa->spa_l2cache.sav_config) 5747 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 5748 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 5749 else 5750 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 5751 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5752 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 5753 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 5754 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5755 spa_load_l2cache(spa); 5756 spa_config_exit(spa, SCL_ALL, FTAG); 5757 spa->spa_l2cache.sav_sync = B_TRUE; 5758 } 5759 5760 /* 5761 * Check for any removed devices. 5762 */ 5763 if (spa->spa_autoreplace) { 5764 spa_aux_check_removed(&spa->spa_spares); 5765 spa_aux_check_removed(&spa->spa_l2cache); 5766 } 5767 5768 if (spa_writeable(spa)) { 5769 /* 5770 * Update the config cache to include the newly-imported pool. 5771 */ 5772 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5773 } 5774 5775 /* 5776 * It's possible that the pool was expanded while it was exported. 5777 * We kick off an async task to handle this for us. 5778 */ 5779 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 5780 5781 spa_history_log_version(spa, "import"); 5782 5783 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 5784 5785 mutex_exit(&spa_namespace_lock); 5786 5787 return (0); 5788 } 5789 5790 nvlist_t * 5791 spa_tryimport(nvlist_t *tryconfig) 5792 { 5793 nvlist_t *config = NULL; 5794 char *poolname, *cachefile; 5795 spa_t *spa; 5796 uint64_t state; 5797 int error; 5798 zpool_load_policy_t policy; 5799 5800 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 5801 return (NULL); 5802 5803 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 5804 return (NULL); 5805 5806 /* 5807 * Create and initialize the spa structure. 5808 */ 5809 mutex_enter(&spa_namespace_lock); 5810 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 5811 spa_activate(spa, FREAD); 5812 5813 /* 5814 * Rewind pool if a max txg was provided. 5815 */ 5816 zpool_get_load_policy(spa->spa_config, &policy); 5817 if (policy.zlp_txg != UINT64_MAX) { 5818 spa->spa_load_max_txg = policy.zlp_txg; 5819 spa->spa_extreme_rewind = B_TRUE; 5820 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 5821 poolname, (longlong_t)policy.zlp_txg); 5822 } else { 5823 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 5824 } 5825 5826 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 5827 == 0) { 5828 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 5829 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5830 } else { 5831 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 5832 } 5833 5834 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 5835 5836 /* 5837 * If 'tryconfig' was at least parsable, return the current config. 5838 */ 5839 if (spa->spa_root_vdev != NULL) { 5840 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5841 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 5842 poolname) == 0); 5843 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5844 state) == 0); 5845 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 5846 spa->spa_uberblock.ub_timestamp) == 0); 5847 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 5848 spa->spa_load_info) == 0); 5849 5850 /* 5851 * If the bootfs property exists on this pool then we 5852 * copy it out so that external consumers can tell which 5853 * pools are bootable. 5854 */ 5855 if ((!error || error == EEXIST) && spa->spa_bootfs) { 5856 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 5857 5858 /* 5859 * We have to play games with the name since the 5860 * pool was opened as TRYIMPORT_NAME. 5861 */ 5862 if (dsl_dsobj_to_dsname(spa_name(spa), 5863 spa->spa_bootfs, tmpname) == 0) { 5864 char *cp; 5865 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 5866 5867 cp = strchr(tmpname, '/'); 5868 if (cp == NULL) { 5869 (void) strlcpy(dsname, tmpname, 5870 MAXPATHLEN); 5871 } else { 5872 (void) snprintf(dsname, MAXPATHLEN, 5873 "%s/%s", poolname, ++cp); 5874 } 5875 VERIFY(nvlist_add_string(config, 5876 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 5877 kmem_free(dsname, MAXPATHLEN); 5878 } 5879 kmem_free(tmpname, MAXPATHLEN); 5880 } 5881 5882 /* 5883 * Add the list of hot spares and level 2 cache devices. 5884 */ 5885 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5886 spa_add_spares(spa, config); 5887 spa_add_l2cache(spa, config); 5888 spa_config_exit(spa, SCL_CONFIG, FTAG); 5889 } 5890 5891 spa_unload(spa); 5892 spa_deactivate(spa); 5893 spa_remove(spa); 5894 mutex_exit(&spa_namespace_lock); 5895 5896 return (config); 5897 } 5898 5899 /* 5900 * Pool export/destroy 5901 * 5902 * The act of destroying or exporting a pool is very simple. We make sure there 5903 * is no more pending I/O and any references to the pool are gone. Then, we 5904 * update the pool state and sync all the labels to disk, removing the 5905 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 5906 * we don't sync the labels or remove the configuration cache. 5907 */ 5908 static int 5909 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 5910 boolean_t force, boolean_t hardforce) 5911 { 5912 spa_t *spa; 5913 5914 if (oldconfig) 5915 *oldconfig = NULL; 5916 5917 if (!(spa_mode_global & FWRITE)) 5918 return (SET_ERROR(EROFS)); 5919 5920 mutex_enter(&spa_namespace_lock); 5921 if ((spa = spa_lookup(pool)) == NULL) { 5922 mutex_exit(&spa_namespace_lock); 5923 return (SET_ERROR(ENOENT)); 5924 } 5925 5926 /* 5927 * Put a hold on the pool, drop the namespace lock, stop async tasks, 5928 * reacquire the namespace lock, and see if we can export. 5929 */ 5930 spa_open_ref(spa, FTAG); 5931 mutex_exit(&spa_namespace_lock); 5932 spa_async_suspend(spa); 5933 mutex_enter(&spa_namespace_lock); 5934 spa_close(spa, FTAG); 5935 5936 /* 5937 * The pool will be in core if it's openable, 5938 * in which case we can modify its state. 5939 */ 5940 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 5941 5942 /* 5943 * Objsets may be open only because they're dirty, so we 5944 * have to force it to sync before checking spa_refcnt. 5945 */ 5946 txg_wait_synced(spa->spa_dsl_pool, 0); 5947 spa_evicting_os_wait(spa); 5948 5949 /* 5950 * A pool cannot be exported or destroyed if there are active 5951 * references. If we are resetting a pool, allow references by 5952 * fault injection handlers. 5953 */ 5954 if (!spa_refcount_zero(spa) || 5955 (spa->spa_inject_ref != 0 && 5956 new_state != POOL_STATE_UNINITIALIZED)) { 5957 spa_async_resume(spa); 5958 mutex_exit(&spa_namespace_lock); 5959 return (SET_ERROR(EBUSY)); 5960 } 5961 5962 /* 5963 * A pool cannot be exported if it has an active shared spare. 5964 * This is to prevent other pools stealing the active spare 5965 * from an exported pool. At user's own will, such pool can 5966 * be forcedly exported. 5967 */ 5968 if (!force && new_state == POOL_STATE_EXPORTED && 5969 spa_has_active_shared_spare(spa)) { 5970 spa_async_resume(spa); 5971 mutex_exit(&spa_namespace_lock); 5972 return (SET_ERROR(EXDEV)); 5973 } 5974 5975 /* 5976 * We're about to export or destroy this pool. Make sure 5977 * we stop all initialization and trim activity here before 5978 * we set the spa_final_txg. This will ensure that all 5979 * dirty data resulting from the initialization is 5980 * committed to disk before we unload the pool. 5981 */ 5982 if (spa->spa_root_vdev != NULL) { 5983 vdev_t *rvd = spa->spa_root_vdev; 5984 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); 5985 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); 5986 vdev_autotrim_stop_all(spa); 5987 } 5988 5989 /* 5990 * We want this to be reflected on every label, 5991 * so mark them all dirty. spa_unload() will do the 5992 * final sync that pushes these changes out. 5993 */ 5994 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 5995 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5996 spa->spa_state = new_state; 5997 spa->spa_final_txg = spa_last_synced_txg(spa) + 5998 TXG_DEFER_SIZE + 1; 5999 vdev_config_dirty(spa->spa_root_vdev); 6000 spa_config_exit(spa, SCL_ALL, FTAG); 6001 } 6002 } 6003 6004 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 6005 6006 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6007 spa_unload(spa); 6008 spa_deactivate(spa); 6009 } 6010 6011 if (oldconfig && spa->spa_config) 6012 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 6013 6014 if (new_state != POOL_STATE_UNINITIALIZED) { 6015 if (!hardforce) 6016 spa_write_cachefile(spa, B_TRUE, B_TRUE); 6017 spa_remove(spa); 6018 } 6019 mutex_exit(&spa_namespace_lock); 6020 6021 return (0); 6022 } 6023 6024 /* 6025 * Destroy a storage pool. 6026 */ 6027 int 6028 spa_destroy(char *pool) 6029 { 6030 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 6031 B_FALSE, B_FALSE)); 6032 } 6033 6034 /* 6035 * Export a storage pool. 6036 */ 6037 int 6038 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 6039 boolean_t hardforce) 6040 { 6041 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 6042 force, hardforce)); 6043 } 6044 6045 /* 6046 * Similar to spa_export(), this unloads the spa_t without actually removing it 6047 * from the namespace in any way. 6048 */ 6049 int 6050 spa_reset(char *pool) 6051 { 6052 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 6053 B_FALSE, B_FALSE)); 6054 } 6055 6056 /* 6057 * ========================================================================== 6058 * Device manipulation 6059 * ========================================================================== 6060 */ 6061 6062 /* 6063 * Add a device to a storage pool. 6064 */ 6065 int 6066 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 6067 { 6068 uint64_t txg; 6069 int error; 6070 vdev_t *rvd = spa->spa_root_vdev; 6071 vdev_t *vd, *tvd; 6072 nvlist_t **spares, **l2cache; 6073 uint_t nspares, nl2cache; 6074 6075 ASSERT(spa_writeable(spa)); 6076 6077 txg = spa_vdev_enter(spa); 6078 6079 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 6080 VDEV_ALLOC_ADD)) != 0) 6081 return (spa_vdev_exit(spa, NULL, txg, error)); 6082 6083 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 6084 6085 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 6086 &nspares) != 0) 6087 nspares = 0; 6088 6089 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 6090 &nl2cache) != 0) 6091 nl2cache = 0; 6092 6093 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 6094 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6095 6096 if (vd->vdev_children != 0 && 6097 (error = vdev_create(vd, txg, B_FALSE)) != 0) 6098 return (spa_vdev_exit(spa, vd, txg, error)); 6099 6100 /* 6101 * We must validate the spares and l2cache devices after checking the 6102 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 6103 */ 6104 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 6105 return (spa_vdev_exit(spa, vd, txg, error)); 6106 6107 /* 6108 * If we are in the middle of a device removal, we can only add 6109 * devices which match the existing devices in the pool. 6110 * If we are in the middle of a removal, or have some indirect 6111 * vdevs, we can not add raidz toplevels. 6112 */ 6113 if (spa->spa_vdev_removal != NULL || 6114 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 6115 for (int c = 0; c < vd->vdev_children; c++) { 6116 tvd = vd->vdev_child[c]; 6117 if (spa->spa_vdev_removal != NULL && 6118 tvd->vdev_ashift != spa->spa_max_ashift) { 6119 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6120 } 6121 /* Fail if top level vdev is raidz */ 6122 if (tvd->vdev_ops == &vdev_raidz_ops) { 6123 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6124 } 6125 /* 6126 * Need the top level mirror to be 6127 * a mirror of leaf vdevs only 6128 */ 6129 if (tvd->vdev_ops == &vdev_mirror_ops) { 6130 for (uint64_t cid = 0; 6131 cid < tvd->vdev_children; cid++) { 6132 vdev_t *cvd = tvd->vdev_child[cid]; 6133 if (!cvd->vdev_ops->vdev_op_leaf) { 6134 return (spa_vdev_exit(spa, vd, 6135 txg, EINVAL)); 6136 } 6137 } 6138 } 6139 } 6140 } 6141 6142 for (int c = 0; c < vd->vdev_children; c++) { 6143 tvd = vd->vdev_child[c]; 6144 vdev_remove_child(vd, tvd); 6145 tvd->vdev_id = rvd->vdev_children; 6146 vdev_add_child(rvd, tvd); 6147 vdev_config_dirty(tvd); 6148 } 6149 6150 if (nspares != 0) { 6151 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 6152 ZPOOL_CONFIG_SPARES); 6153 spa_load_spares(spa); 6154 spa->spa_spares.sav_sync = B_TRUE; 6155 } 6156 6157 if (nl2cache != 0) { 6158 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 6159 ZPOOL_CONFIG_L2CACHE); 6160 spa_load_l2cache(spa); 6161 spa->spa_l2cache.sav_sync = B_TRUE; 6162 } 6163 6164 /* 6165 * We have to be careful when adding new vdevs to an existing pool. 6166 * If other threads start allocating from these vdevs before we 6167 * sync the config cache, and we lose power, then upon reboot we may 6168 * fail to open the pool because there are DVAs that the config cache 6169 * can't translate. Therefore, we first add the vdevs without 6170 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 6171 * and then let spa_config_update() initialize the new metaslabs. 6172 * 6173 * spa_load() checks for added-but-not-initialized vdevs, so that 6174 * if we lose power at any point in this sequence, the remaining 6175 * steps will be completed the next time we load the pool. 6176 */ 6177 (void) spa_vdev_exit(spa, vd, txg, 0); 6178 6179 mutex_enter(&spa_namespace_lock); 6180 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6181 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 6182 mutex_exit(&spa_namespace_lock); 6183 6184 return (0); 6185 } 6186 6187 /* 6188 * Attach a device to a mirror. The arguments are the path to any device 6189 * in the mirror, and the nvroot for the new device. If the path specifies 6190 * a device that is not mirrored, we automatically insert the mirror vdev. 6191 * 6192 * If 'replacing' is specified, the new device is intended to replace the 6193 * existing device; in this case the two devices are made into their own 6194 * mirror using the 'replacing' vdev, which is functionally identical to 6195 * the mirror vdev (it actually reuses all the same ops) but has a few 6196 * extra rules: you can't attach to it after it's been created, and upon 6197 * completion of resilvering, the first disk (the one being replaced) 6198 * is automatically detached. 6199 */ 6200 int 6201 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 6202 { 6203 uint64_t txg, dtl_max_txg; 6204 vdev_t *rvd = spa->spa_root_vdev; 6205 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 6206 vdev_ops_t *pvops; 6207 char *oldvdpath, *newvdpath; 6208 int newvd_isspare; 6209 int error; 6210 6211 ASSERT(spa_writeable(spa)); 6212 6213 txg = spa_vdev_enter(spa); 6214 6215 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 6216 6217 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6218 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6219 error = (spa_has_checkpoint(spa)) ? 6220 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6221 return (spa_vdev_exit(spa, NULL, txg, error)); 6222 } 6223 6224 if (spa->spa_vdev_removal != NULL) 6225 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6226 6227 if (oldvd == NULL) 6228 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 6229 6230 if (!oldvd->vdev_ops->vdev_op_leaf) 6231 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6232 6233 pvd = oldvd->vdev_parent; 6234 6235 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 6236 VDEV_ALLOC_ATTACH)) != 0) 6237 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6238 6239 if (newrootvd->vdev_children != 1) 6240 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6241 6242 newvd = newrootvd->vdev_child[0]; 6243 6244 if (!newvd->vdev_ops->vdev_op_leaf) 6245 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6246 6247 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 6248 return (spa_vdev_exit(spa, newrootvd, txg, error)); 6249 6250 /* 6251 * Spares can't replace logs 6252 */ 6253 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 6254 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6255 6256 if (!replacing) { 6257 /* 6258 * For attach, the only allowable parent is a mirror or the root 6259 * vdev. 6260 */ 6261 if (pvd->vdev_ops != &vdev_mirror_ops && 6262 pvd->vdev_ops != &vdev_root_ops) 6263 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6264 6265 pvops = &vdev_mirror_ops; 6266 } else { 6267 /* 6268 * Active hot spares can only be replaced by inactive hot 6269 * spares. 6270 */ 6271 if (pvd->vdev_ops == &vdev_spare_ops && 6272 oldvd->vdev_isspare && 6273 !spa_has_spare(spa, newvd->vdev_guid)) 6274 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6275 6276 /* 6277 * If the source is a hot spare, and the parent isn't already a 6278 * spare, then we want to create a new hot spare. Otherwise, we 6279 * want to create a replacing vdev. The user is not allowed to 6280 * attach to a spared vdev child unless the 'isspare' state is 6281 * the same (spare replaces spare, non-spare replaces 6282 * non-spare). 6283 */ 6284 if (pvd->vdev_ops == &vdev_replacing_ops && 6285 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 6286 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6287 } else if (pvd->vdev_ops == &vdev_spare_ops && 6288 newvd->vdev_isspare != oldvd->vdev_isspare) { 6289 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6290 } 6291 6292 if (newvd->vdev_isspare) 6293 pvops = &vdev_spare_ops; 6294 else 6295 pvops = &vdev_replacing_ops; 6296 } 6297 6298 /* 6299 * Make sure the new device is big enough. 6300 */ 6301 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 6302 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 6303 6304 /* 6305 * The new device cannot have a higher alignment requirement 6306 * than the top-level vdev. 6307 */ 6308 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 6309 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 6310 6311 /* 6312 * If this is an in-place replacement, update oldvd's path and devid 6313 * to make it distinguishable from newvd, and unopenable from now on. 6314 */ 6315 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 6316 spa_strfree(oldvd->vdev_path); 6317 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 6318 KM_SLEEP); 6319 (void) sprintf(oldvd->vdev_path, "%s/%s", 6320 newvd->vdev_path, "old"); 6321 if (oldvd->vdev_devid != NULL) { 6322 spa_strfree(oldvd->vdev_devid); 6323 oldvd->vdev_devid = NULL; 6324 } 6325 } 6326 6327 /* mark the device being resilvered */ 6328 newvd->vdev_resilver_txg = txg; 6329 6330 /* 6331 * If the parent is not a mirror, or if we're replacing, insert the new 6332 * mirror/replacing/spare vdev above oldvd. 6333 */ 6334 if (pvd->vdev_ops != pvops) 6335 pvd = vdev_add_parent(oldvd, pvops); 6336 6337 ASSERT(pvd->vdev_top->vdev_parent == rvd); 6338 ASSERT(pvd->vdev_ops == pvops); 6339 ASSERT(oldvd->vdev_parent == pvd); 6340 6341 /* 6342 * Extract the new device from its root and add it to pvd. 6343 */ 6344 vdev_remove_child(newrootvd, newvd); 6345 newvd->vdev_id = pvd->vdev_children; 6346 newvd->vdev_crtxg = oldvd->vdev_crtxg; 6347 vdev_add_child(pvd, newvd); 6348 6349 tvd = newvd->vdev_top; 6350 ASSERT(pvd->vdev_top == tvd); 6351 ASSERT(tvd->vdev_parent == rvd); 6352 6353 vdev_config_dirty(tvd); 6354 6355 /* 6356 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 6357 * for any dmu_sync-ed blocks. It will propagate upward when 6358 * spa_vdev_exit() calls vdev_dtl_reassess(). 6359 */ 6360 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 6361 6362 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 6363 dtl_max_txg - TXG_INITIAL); 6364 6365 if (newvd->vdev_isspare) { 6366 spa_spare_activate(newvd); 6367 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 6368 } 6369 6370 oldvdpath = spa_strdup(oldvd->vdev_path); 6371 newvdpath = spa_strdup(newvd->vdev_path); 6372 newvd_isspare = newvd->vdev_isspare; 6373 6374 /* 6375 * Mark newvd's DTL dirty in this txg. 6376 */ 6377 vdev_dirty(tvd, VDD_DTL, newvd, txg); 6378 6379 /* 6380 * Schedule the resilver to restart in the future. We do this to 6381 * ensure that dmu_sync-ed blocks have been stitched into the 6382 * respective datasets. We do not do this if resilvers have been 6383 * deferred. 6384 */ 6385 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 6386 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 6387 vdev_defer_resilver(newvd); 6388 else 6389 dsl_scan_restart_resilver(spa->spa_dsl_pool, dtl_max_txg); 6390 6391 if (spa->spa_bootfs) 6392 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 6393 6394 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 6395 6396 /* 6397 * Commit the config 6398 */ 6399 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 6400 6401 spa_history_log_internal(spa, "vdev attach", NULL, 6402 "%s vdev=%s %s vdev=%s", 6403 replacing && newvd_isspare ? "spare in" : 6404 replacing ? "replace" : "attach", newvdpath, 6405 replacing ? "for" : "to", oldvdpath); 6406 6407 spa_strfree(oldvdpath); 6408 spa_strfree(newvdpath); 6409 6410 return (0); 6411 } 6412 6413 /* 6414 * Detach a device from a mirror or replacing vdev. 6415 * 6416 * If 'replace_done' is specified, only detach if the parent 6417 * is a replacing vdev. 6418 */ 6419 int 6420 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 6421 { 6422 uint64_t txg; 6423 int error; 6424 vdev_t *rvd = spa->spa_root_vdev; 6425 vdev_t *vd, *pvd, *cvd, *tvd; 6426 boolean_t unspare = B_FALSE; 6427 uint64_t unspare_guid = 0; 6428 char *vdpath; 6429 6430 ASSERT(spa_writeable(spa)); 6431 6432 txg = spa_vdev_enter(spa); 6433 6434 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 6435 6436 /* 6437 * Besides being called directly from the userland through the 6438 * ioctl interface, spa_vdev_detach() can be potentially called 6439 * at the end of spa_vdev_resilver_done(). 6440 * 6441 * In the regular case, when we have a checkpoint this shouldn't 6442 * happen as we never empty the DTLs of a vdev during the scrub 6443 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 6444 * should never get here when we have a checkpoint. 6445 * 6446 * That said, even in a case when we checkpoint the pool exactly 6447 * as spa_vdev_resilver_done() calls this function everything 6448 * should be fine as the resilver will return right away. 6449 */ 6450 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6451 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6452 error = (spa_has_checkpoint(spa)) ? 6453 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6454 return (spa_vdev_exit(spa, NULL, txg, error)); 6455 } 6456 6457 if (vd == NULL) 6458 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 6459 6460 if (!vd->vdev_ops->vdev_op_leaf) 6461 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6462 6463 pvd = vd->vdev_parent; 6464 6465 /* 6466 * If the parent/child relationship is not as expected, don't do it. 6467 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 6468 * vdev that's replacing B with C. The user's intent in replacing 6469 * is to go from M(A,B) to M(A,C). If the user decides to cancel 6470 * the replace by detaching C, the expected behavior is to end up 6471 * M(A,B). But suppose that right after deciding to detach C, 6472 * the replacement of B completes. We would have M(A,C), and then 6473 * ask to detach C, which would leave us with just A -- not what 6474 * the user wanted. To prevent this, we make sure that the 6475 * parent/child relationship hasn't changed -- in this example, 6476 * that C's parent is still the replacing vdev R. 6477 */ 6478 if (pvd->vdev_guid != pguid && pguid != 0) 6479 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6480 6481 /* 6482 * Only 'replacing' or 'spare' vdevs can be replaced. 6483 */ 6484 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 6485 pvd->vdev_ops != &vdev_spare_ops) 6486 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6487 6488 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 6489 spa_version(spa) >= SPA_VERSION_SPARES); 6490 6491 /* 6492 * Only mirror, replacing, and spare vdevs support detach. 6493 */ 6494 if (pvd->vdev_ops != &vdev_replacing_ops && 6495 pvd->vdev_ops != &vdev_mirror_ops && 6496 pvd->vdev_ops != &vdev_spare_ops) 6497 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6498 6499 /* 6500 * If this device has the only valid copy of some data, 6501 * we cannot safely detach it. 6502 */ 6503 if (vdev_dtl_required(vd)) 6504 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6505 6506 ASSERT(pvd->vdev_children >= 2); 6507 6508 /* 6509 * If we are detaching the second disk from a replacing vdev, then 6510 * check to see if we changed the original vdev's path to have "/old" 6511 * at the end in spa_vdev_attach(). If so, undo that change now. 6512 */ 6513 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 6514 vd->vdev_path != NULL) { 6515 size_t len = strlen(vd->vdev_path); 6516 6517 for (int c = 0; c < pvd->vdev_children; c++) { 6518 cvd = pvd->vdev_child[c]; 6519 6520 if (cvd == vd || cvd->vdev_path == NULL) 6521 continue; 6522 6523 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 6524 strcmp(cvd->vdev_path + len, "/old") == 0) { 6525 spa_strfree(cvd->vdev_path); 6526 cvd->vdev_path = spa_strdup(vd->vdev_path); 6527 break; 6528 } 6529 } 6530 } 6531 6532 /* 6533 * If we are detaching the original disk from a spare, then it implies 6534 * that the spare should become a real disk, and be removed from the 6535 * active spare list for the pool. 6536 */ 6537 if (pvd->vdev_ops == &vdev_spare_ops && 6538 vd->vdev_id == 0 && 6539 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 6540 unspare = B_TRUE; 6541 6542 /* 6543 * Erase the disk labels so the disk can be used for other things. 6544 * This must be done after all other error cases are handled, 6545 * but before we disembowel vd (so we can still do I/O to it). 6546 * But if we can't do it, don't treat the error as fatal -- 6547 * it may be that the unwritability of the disk is the reason 6548 * it's being detached! 6549 */ 6550 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 6551 6552 /* 6553 * Remove vd from its parent and compact the parent's children. 6554 */ 6555 vdev_remove_child(pvd, vd); 6556 vdev_compact_children(pvd); 6557 6558 /* 6559 * Remember one of the remaining children so we can get tvd below. 6560 */ 6561 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 6562 6563 /* 6564 * If we need to remove the remaining child from the list of hot spares, 6565 * do it now, marking the vdev as no longer a spare in the process. 6566 * We must do this before vdev_remove_parent(), because that can 6567 * change the GUID if it creates a new toplevel GUID. For a similar 6568 * reason, we must remove the spare now, in the same txg as the detach; 6569 * otherwise someone could attach a new sibling, change the GUID, and 6570 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 6571 */ 6572 if (unspare) { 6573 ASSERT(cvd->vdev_isspare); 6574 spa_spare_remove(cvd); 6575 unspare_guid = cvd->vdev_guid; 6576 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 6577 cvd->vdev_unspare = B_TRUE; 6578 } 6579 6580 /* 6581 * If the parent mirror/replacing vdev only has one child, 6582 * the parent is no longer needed. Remove it from the tree. 6583 */ 6584 if (pvd->vdev_children == 1) { 6585 if (pvd->vdev_ops == &vdev_spare_ops) 6586 cvd->vdev_unspare = B_FALSE; 6587 vdev_remove_parent(cvd); 6588 } 6589 6590 /* 6591 * We don't set tvd until now because the parent we just removed 6592 * may have been the previous top-level vdev. 6593 */ 6594 tvd = cvd->vdev_top; 6595 ASSERT(tvd->vdev_parent == rvd); 6596 6597 /* 6598 * Reevaluate the parent vdev state. 6599 */ 6600 vdev_propagate_state(cvd); 6601 6602 /* 6603 * If the 'autoexpand' property is set on the pool then automatically 6604 * try to expand the size of the pool. For example if the device we 6605 * just detached was smaller than the others, it may be possible to 6606 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 6607 * first so that we can obtain the updated sizes of the leaf vdevs. 6608 */ 6609 if (spa->spa_autoexpand) { 6610 vdev_reopen(tvd); 6611 vdev_expand(tvd, txg); 6612 } 6613 6614 vdev_config_dirty(tvd); 6615 6616 /* 6617 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 6618 * vd->vdev_detached is set and free vd's DTL object in syncing context. 6619 * But first make sure we're not on any *other* txg's DTL list, to 6620 * prevent vd from being accessed after it's freed. 6621 */ 6622 vdpath = spa_strdup(vd->vdev_path); 6623 for (int t = 0; t < TXG_SIZE; t++) 6624 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 6625 vd->vdev_detached = B_TRUE; 6626 vdev_dirty(tvd, VDD_DTL, vd, txg); 6627 6628 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 6629 6630 /* hang on to the spa before we release the lock */ 6631 spa_open_ref(spa, FTAG); 6632 6633 error = spa_vdev_exit(spa, vd, txg, 0); 6634 6635 spa_history_log_internal(spa, "detach", NULL, 6636 "vdev=%s", vdpath); 6637 spa_strfree(vdpath); 6638 6639 /* 6640 * If this was the removal of the original device in a hot spare vdev, 6641 * then we want to go through and remove the device from the hot spare 6642 * list of every other pool. 6643 */ 6644 if (unspare) { 6645 spa_t *altspa = NULL; 6646 6647 mutex_enter(&spa_namespace_lock); 6648 while ((altspa = spa_next(altspa)) != NULL) { 6649 if (altspa->spa_state != POOL_STATE_ACTIVE || 6650 altspa == spa) 6651 continue; 6652 6653 spa_open_ref(altspa, FTAG); 6654 mutex_exit(&spa_namespace_lock); 6655 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 6656 mutex_enter(&spa_namespace_lock); 6657 spa_close(altspa, FTAG); 6658 } 6659 mutex_exit(&spa_namespace_lock); 6660 6661 /* search the rest of the vdevs for spares to remove */ 6662 spa_vdev_resilver_done(spa); 6663 } 6664 6665 /* all done with the spa; OK to release */ 6666 mutex_enter(&spa_namespace_lock); 6667 spa_close(spa, FTAG); 6668 mutex_exit(&spa_namespace_lock); 6669 6670 return (error); 6671 } 6672 6673 static int 6674 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 6675 list_t *vd_list) 6676 { 6677 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6678 6679 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6680 6681 /* Look up vdev and ensure it's a leaf. */ 6682 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 6683 if (vd == NULL || vd->vdev_detached) { 6684 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6685 return (SET_ERROR(ENODEV)); 6686 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 6687 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6688 return (SET_ERROR(EINVAL)); 6689 } else if (!vdev_writeable(vd)) { 6690 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6691 return (SET_ERROR(EROFS)); 6692 } 6693 mutex_enter(&vd->vdev_initialize_lock); 6694 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6695 6696 /* 6697 * When we activate an initialize action we check to see 6698 * if the vdev_initialize_thread is NULL. We do this instead 6699 * of using the vdev_initialize_state since there might be 6700 * a previous initialization process which has completed but 6701 * the thread is not exited. 6702 */ 6703 if (cmd_type == POOL_INITIALIZE_START && 6704 (vd->vdev_initialize_thread != NULL || 6705 vd->vdev_top->vdev_removing)) { 6706 mutex_exit(&vd->vdev_initialize_lock); 6707 return (SET_ERROR(EBUSY)); 6708 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 6709 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 6710 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 6711 mutex_exit(&vd->vdev_initialize_lock); 6712 return (SET_ERROR(ESRCH)); 6713 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 6714 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 6715 mutex_exit(&vd->vdev_initialize_lock); 6716 return (SET_ERROR(ESRCH)); 6717 } 6718 6719 switch (cmd_type) { 6720 case POOL_INITIALIZE_START: 6721 vdev_initialize(vd); 6722 break; 6723 case POOL_INITIALIZE_CANCEL: 6724 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); 6725 break; 6726 case POOL_INITIALIZE_SUSPEND: 6727 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); 6728 break; 6729 default: 6730 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 6731 } 6732 mutex_exit(&vd->vdev_initialize_lock); 6733 6734 return (0); 6735 } 6736 6737 int 6738 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 6739 nvlist_t *vdev_errlist) 6740 { 6741 int total_errors = 0; 6742 list_t vd_list; 6743 6744 list_create(&vd_list, sizeof (vdev_t), 6745 offsetof(vdev_t, vdev_initialize_node)); 6746 6747 /* 6748 * We hold the namespace lock through the whole function 6749 * to prevent any changes to the pool while we're starting or 6750 * stopping initialization. The config and state locks are held so that 6751 * we can properly assess the vdev state before we commit to 6752 * the initializing operation. 6753 */ 6754 mutex_enter(&spa_namespace_lock); 6755 6756 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 6757 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 6758 uint64_t vdev_guid = fnvpair_value_uint64(pair); 6759 6760 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, 6761 &vd_list); 6762 if (error != 0) { 6763 char guid_as_str[MAXNAMELEN]; 6764 6765 (void) snprintf(guid_as_str, sizeof (guid_as_str), 6766 "%llu", (unsigned long long)vdev_guid); 6767 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 6768 total_errors++; 6769 } 6770 } 6771 6772 /* Wait for all initialize threads to stop. */ 6773 vdev_initialize_stop_wait(spa, &vd_list); 6774 6775 /* Sync out the initializing state */ 6776 txg_wait_synced(spa->spa_dsl_pool, 0); 6777 mutex_exit(&spa_namespace_lock); 6778 6779 list_destroy(&vd_list); 6780 6781 return (total_errors); 6782 } 6783 6784 static int 6785 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 6786 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) 6787 { 6788 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6789 6790 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6791 6792 /* Look up vdev and ensure it's a leaf. */ 6793 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 6794 if (vd == NULL || vd->vdev_detached) { 6795 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6796 return (SET_ERROR(ENODEV)); 6797 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 6798 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6799 return (SET_ERROR(EINVAL)); 6800 } else if (!vdev_writeable(vd)) { 6801 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6802 return (SET_ERROR(EROFS)); 6803 } else if (!vd->vdev_has_trim) { 6804 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6805 return (SET_ERROR(EOPNOTSUPP)); 6806 } else if (secure && !vd->vdev_has_securetrim) { 6807 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6808 return (SET_ERROR(EOPNOTSUPP)); 6809 } 6810 mutex_enter(&vd->vdev_trim_lock); 6811 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6812 6813 /* 6814 * When we activate a TRIM action we check to see if the 6815 * vdev_trim_thread is NULL. We do this instead of using the 6816 * vdev_trim_state since there might be a previous TRIM process 6817 * which has completed but the thread is not exited. 6818 */ 6819 if (cmd_type == POOL_TRIM_START && 6820 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) { 6821 mutex_exit(&vd->vdev_trim_lock); 6822 return (SET_ERROR(EBUSY)); 6823 } else if (cmd_type == POOL_TRIM_CANCEL && 6824 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && 6825 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { 6826 mutex_exit(&vd->vdev_trim_lock); 6827 return (SET_ERROR(ESRCH)); 6828 } else if (cmd_type == POOL_TRIM_SUSPEND && 6829 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { 6830 mutex_exit(&vd->vdev_trim_lock); 6831 return (SET_ERROR(ESRCH)); 6832 } 6833 6834 switch (cmd_type) { 6835 case POOL_TRIM_START: 6836 vdev_trim(vd, rate, partial, secure); 6837 break; 6838 case POOL_TRIM_CANCEL: 6839 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); 6840 break; 6841 case POOL_TRIM_SUSPEND: 6842 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); 6843 break; 6844 default: 6845 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 6846 } 6847 mutex_exit(&vd->vdev_trim_lock); 6848 6849 return (0); 6850 } 6851 6852 /* 6853 * Initiates a manual TRIM for the requested vdevs. This kicks off individual 6854 * TRIM threads for each child vdev. These threads pass over all of the free 6855 * space in the vdev's metaslabs and issues TRIM commands for that space. 6856 */ 6857 int 6858 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, 6859 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) 6860 { 6861 int total_errors = 0; 6862 list_t vd_list; 6863 6864 list_create(&vd_list, sizeof (vdev_t), 6865 offsetof(vdev_t, vdev_trim_node)); 6866 6867 /* 6868 * We hold the namespace lock through the whole function 6869 * to prevent any changes to the pool while we're starting or 6870 * stopping TRIM. The config and state locks are held so that 6871 * we can properly assess the vdev state before we commit to 6872 * the TRIM operation. 6873 */ 6874 mutex_enter(&spa_namespace_lock); 6875 6876 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 6877 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 6878 uint64_t vdev_guid = fnvpair_value_uint64(pair); 6879 6880 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, 6881 rate, partial, secure, &vd_list); 6882 if (error != 0) { 6883 char guid_as_str[MAXNAMELEN]; 6884 6885 (void) snprintf(guid_as_str, sizeof (guid_as_str), 6886 "%llu", (unsigned long long)vdev_guid); 6887 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 6888 total_errors++; 6889 } 6890 } 6891 6892 /* Wait for all TRIM threads to stop. */ 6893 vdev_trim_stop_wait(spa, &vd_list); 6894 6895 /* Sync out the TRIM state */ 6896 txg_wait_synced(spa->spa_dsl_pool, 0); 6897 mutex_exit(&spa_namespace_lock); 6898 6899 list_destroy(&vd_list); 6900 6901 return (total_errors); 6902 } 6903 6904 /* 6905 * Split a set of devices from their mirrors, and create a new pool from them. 6906 */ 6907 int 6908 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 6909 nvlist_t *props, boolean_t exp) 6910 { 6911 int error = 0; 6912 uint64_t txg, *glist; 6913 spa_t *newspa; 6914 uint_t c, children, lastlog; 6915 nvlist_t **child, *nvl, *tmp; 6916 dmu_tx_t *tx; 6917 char *altroot = NULL; 6918 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 6919 boolean_t activate_slog; 6920 6921 ASSERT(spa_writeable(spa)); 6922 6923 txg = spa_vdev_enter(spa); 6924 6925 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6926 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6927 error = (spa_has_checkpoint(spa)) ? 6928 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6929 return (spa_vdev_exit(spa, NULL, txg, error)); 6930 } 6931 6932 /* clear the log and flush everything up to now */ 6933 activate_slog = spa_passivate_log(spa); 6934 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 6935 error = spa_reset_logs(spa); 6936 txg = spa_vdev_config_enter(spa); 6937 6938 if (activate_slog) 6939 spa_activate_log(spa); 6940 6941 if (error != 0) 6942 return (spa_vdev_exit(spa, NULL, txg, error)); 6943 6944 /* check new spa name before going any further */ 6945 if (spa_lookup(newname) != NULL) 6946 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 6947 6948 /* 6949 * scan through all the children to ensure they're all mirrors 6950 */ 6951 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 6952 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 6953 &children) != 0) 6954 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6955 6956 /* first, check to ensure we've got the right child count */ 6957 rvd = spa->spa_root_vdev; 6958 lastlog = 0; 6959 for (c = 0; c < rvd->vdev_children; c++) { 6960 vdev_t *vd = rvd->vdev_child[c]; 6961 6962 /* don't count the holes & logs as children */ 6963 if (vd->vdev_islog || !vdev_is_concrete(vd)) { 6964 if (lastlog == 0) 6965 lastlog = c; 6966 continue; 6967 } 6968 6969 lastlog = 0; 6970 } 6971 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 6972 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6973 6974 /* next, ensure no spare or cache devices are part of the split */ 6975 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 6976 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 6977 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6978 6979 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 6980 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 6981 6982 /* then, loop over each vdev and validate it */ 6983 for (c = 0; c < children; c++) { 6984 uint64_t is_hole = 0; 6985 6986 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 6987 &is_hole); 6988 6989 if (is_hole != 0) { 6990 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 6991 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 6992 continue; 6993 } else { 6994 error = SET_ERROR(EINVAL); 6995 break; 6996 } 6997 } 6998 6999 /* which disk is going to be split? */ 7000 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 7001 &glist[c]) != 0) { 7002 error = SET_ERROR(EINVAL); 7003 break; 7004 } 7005 7006 /* look it up in the spa */ 7007 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 7008 if (vml[c] == NULL) { 7009 error = SET_ERROR(ENODEV); 7010 break; 7011 } 7012 7013 /* make sure there's nothing stopping the split */ 7014 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 7015 vml[c]->vdev_islog || 7016 !vdev_is_concrete(vml[c]) || 7017 vml[c]->vdev_isspare || 7018 vml[c]->vdev_isl2cache || 7019 !vdev_writeable(vml[c]) || 7020 vml[c]->vdev_children != 0 || 7021 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 7022 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 7023 error = SET_ERROR(EINVAL); 7024 break; 7025 } 7026 7027 if (vdev_dtl_required(vml[c])) { 7028 error = SET_ERROR(EBUSY); 7029 break; 7030 } 7031 7032 /* we need certain info from the top level */ 7033 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 7034 vml[c]->vdev_top->vdev_ms_array) == 0); 7035 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 7036 vml[c]->vdev_top->vdev_ms_shift) == 0); 7037 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 7038 vml[c]->vdev_top->vdev_asize) == 0); 7039 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 7040 vml[c]->vdev_top->vdev_ashift) == 0); 7041 7042 /* transfer per-vdev ZAPs */ 7043 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 7044 VERIFY0(nvlist_add_uint64(child[c], 7045 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 7046 7047 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 7048 VERIFY0(nvlist_add_uint64(child[c], 7049 ZPOOL_CONFIG_VDEV_TOP_ZAP, 7050 vml[c]->vdev_parent->vdev_top_zap)); 7051 } 7052 7053 if (error != 0) { 7054 kmem_free(vml, children * sizeof (vdev_t *)); 7055 kmem_free(glist, children * sizeof (uint64_t)); 7056 return (spa_vdev_exit(spa, NULL, txg, error)); 7057 } 7058 7059 /* stop writers from using the disks */ 7060 for (c = 0; c < children; c++) { 7061 if (vml[c] != NULL) 7062 vml[c]->vdev_offline = B_TRUE; 7063 } 7064 vdev_reopen(spa->spa_root_vdev); 7065 7066 /* 7067 * Temporarily record the splitting vdevs in the spa config. This 7068 * will disappear once the config is regenerated. 7069 */ 7070 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 7071 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 7072 glist, children) == 0); 7073 kmem_free(glist, children * sizeof (uint64_t)); 7074 7075 mutex_enter(&spa->spa_props_lock); 7076 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 7077 nvl) == 0); 7078 mutex_exit(&spa->spa_props_lock); 7079 spa->spa_config_splitting = nvl; 7080 vdev_config_dirty(spa->spa_root_vdev); 7081 7082 /* configure and create the new pool */ 7083 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 7084 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 7085 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 7086 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 7087 spa_version(spa)) == 0); 7088 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 7089 spa->spa_config_txg) == 0); 7090 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 7091 spa_generate_guid(NULL)) == 0); 7092 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 7093 (void) nvlist_lookup_string(props, 7094 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 7095 7096 /* add the new pool to the namespace */ 7097 newspa = spa_add(newname, config, altroot); 7098 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 7099 newspa->spa_config_txg = spa->spa_config_txg; 7100 spa_set_log_state(newspa, SPA_LOG_CLEAR); 7101 7102 /* release the spa config lock, retaining the namespace lock */ 7103 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 7104 7105 if (zio_injection_enabled) 7106 zio_handle_panic_injection(spa, FTAG, 1); 7107 7108 spa_activate(newspa, spa_mode_global); 7109 spa_async_suspend(newspa); 7110 7111 /* 7112 * Temporarily stop the initializing and TRIM activity. We set the 7113 * state to ACTIVE so that we know to resume initializing or TRIM 7114 * once the split has completed. 7115 */ 7116 list_t vd_initialize_list; 7117 list_create(&vd_initialize_list, sizeof (vdev_t), 7118 offsetof(vdev_t, vdev_initialize_node)); 7119 7120 list_t vd_trim_list; 7121 list_create(&vd_trim_list, sizeof (vdev_t), 7122 offsetof(vdev_t, vdev_trim_node)); 7123 7124 for (c = 0; c < children; c++) { 7125 if (vml[c] != NULL) { 7126 mutex_enter(&vml[c]->vdev_initialize_lock); 7127 vdev_initialize_stop(vml[c], 7128 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); 7129 mutex_exit(&vml[c]->vdev_initialize_lock); 7130 7131 mutex_enter(&vml[c]->vdev_trim_lock); 7132 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); 7133 mutex_exit(&vml[c]->vdev_trim_lock); 7134 } 7135 } 7136 7137 vdev_initialize_stop_wait(spa, &vd_initialize_list); 7138 vdev_trim_stop_wait(spa, &vd_trim_list); 7139 7140 list_destroy(&vd_initialize_list); 7141 list_destroy(&vd_trim_list); 7142 7143 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 7144 7145 /* create the new pool from the disks of the original pool */ 7146 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 7147 if (error) 7148 goto out; 7149 7150 /* if that worked, generate a real config for the new pool */ 7151 if (newspa->spa_root_vdev != NULL) { 7152 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 7153 NV_UNIQUE_NAME, KM_SLEEP) == 0); 7154 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 7155 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 7156 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 7157 B_TRUE)); 7158 } 7159 7160 /* set the props */ 7161 if (props != NULL) { 7162 spa_configfile_set(newspa, props, B_FALSE); 7163 error = spa_prop_set(newspa, props); 7164 if (error) 7165 goto out; 7166 } 7167 7168 /* flush everything */ 7169 txg = spa_vdev_config_enter(newspa); 7170 vdev_config_dirty(newspa->spa_root_vdev); 7171 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 7172 7173 if (zio_injection_enabled) 7174 zio_handle_panic_injection(spa, FTAG, 2); 7175 7176 spa_async_resume(newspa); 7177 7178 /* finally, update the original pool's config */ 7179 txg = spa_vdev_config_enter(spa); 7180 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 7181 error = dmu_tx_assign(tx, TXG_WAIT); 7182 if (error != 0) 7183 dmu_tx_abort(tx); 7184 for (c = 0; c < children; c++) { 7185 if (vml[c] != NULL) { 7186 vdev_split(vml[c]); 7187 if (error == 0) 7188 spa_history_log_internal(spa, "detach", tx, 7189 "vdev=%s", vml[c]->vdev_path); 7190 7191 vdev_free(vml[c]); 7192 } 7193 } 7194 spa->spa_avz_action = AVZ_ACTION_REBUILD; 7195 vdev_config_dirty(spa->spa_root_vdev); 7196 spa->spa_config_splitting = NULL; 7197 nvlist_free(nvl); 7198 if (error == 0) 7199 dmu_tx_commit(tx); 7200 (void) spa_vdev_exit(spa, NULL, txg, 0); 7201 7202 if (zio_injection_enabled) 7203 zio_handle_panic_injection(spa, FTAG, 3); 7204 7205 /* split is complete; log a history record */ 7206 spa_history_log_internal(newspa, "split", NULL, 7207 "from pool %s", spa_name(spa)); 7208 7209 kmem_free(vml, children * sizeof (vdev_t *)); 7210 7211 /* if we're not going to mount the filesystems in userland, export */ 7212 if (exp) 7213 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 7214 B_FALSE, B_FALSE); 7215 7216 return (error); 7217 7218 out: 7219 spa_unload(newspa); 7220 spa_deactivate(newspa); 7221 spa_remove(newspa); 7222 7223 txg = spa_vdev_config_enter(spa); 7224 7225 /* re-online all offlined disks */ 7226 for (c = 0; c < children; c++) { 7227 if (vml[c] != NULL) 7228 vml[c]->vdev_offline = B_FALSE; 7229 } 7230 7231 /* restart initializing or trimming disks as necessary */ 7232 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 7233 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 7234 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 7235 7236 vdev_reopen(spa->spa_root_vdev); 7237 7238 nvlist_free(spa->spa_config_splitting); 7239 spa->spa_config_splitting = NULL; 7240 (void) spa_vdev_exit(spa, NULL, txg, error); 7241 7242 kmem_free(vml, children * sizeof (vdev_t *)); 7243 return (error); 7244 } 7245 7246 /* 7247 * Find any device that's done replacing, or a vdev marked 'unspare' that's 7248 * currently spared, so we can detach it. 7249 */ 7250 static vdev_t * 7251 spa_vdev_resilver_done_hunt(vdev_t *vd) 7252 { 7253 vdev_t *newvd, *oldvd; 7254 7255 for (int c = 0; c < vd->vdev_children; c++) { 7256 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 7257 if (oldvd != NULL) 7258 return (oldvd); 7259 } 7260 7261 /* 7262 * Check for a completed replacement. We always consider the first 7263 * vdev in the list to be the oldest vdev, and the last one to be 7264 * the newest (see spa_vdev_attach() for how that works). In 7265 * the case where the newest vdev is faulted, we will not automatically 7266 * remove it after a resilver completes. This is OK as it will require 7267 * user intervention to determine which disk the admin wishes to keep. 7268 */ 7269 if (vd->vdev_ops == &vdev_replacing_ops) { 7270 ASSERT(vd->vdev_children > 1); 7271 7272 newvd = vd->vdev_child[vd->vdev_children - 1]; 7273 oldvd = vd->vdev_child[0]; 7274 7275 if (vdev_dtl_empty(newvd, DTL_MISSING) && 7276 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7277 !vdev_dtl_required(oldvd)) 7278 return (oldvd); 7279 } 7280 7281 /* 7282 * Check for a completed resilver with the 'unspare' flag set. 7283 * Also potentially update faulted state. 7284 */ 7285 if (vd->vdev_ops == &vdev_spare_ops) { 7286 vdev_t *first = vd->vdev_child[0]; 7287 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 7288 7289 if (last->vdev_unspare) { 7290 oldvd = first; 7291 newvd = last; 7292 } else if (first->vdev_unspare) { 7293 oldvd = last; 7294 newvd = first; 7295 } else { 7296 oldvd = NULL; 7297 } 7298 7299 if (oldvd != NULL && 7300 vdev_dtl_empty(newvd, DTL_MISSING) && 7301 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7302 !vdev_dtl_required(oldvd)) 7303 return (oldvd); 7304 7305 vdev_propagate_state(vd); 7306 7307 /* 7308 * If there are more than two spares attached to a disk, 7309 * and those spares are not required, then we want to 7310 * attempt to free them up now so that they can be used 7311 * by other pools. Once we're back down to a single 7312 * disk+spare, we stop removing them. 7313 */ 7314 if (vd->vdev_children > 2) { 7315 newvd = vd->vdev_child[1]; 7316 7317 if (newvd->vdev_isspare && last->vdev_isspare && 7318 vdev_dtl_empty(last, DTL_MISSING) && 7319 vdev_dtl_empty(last, DTL_OUTAGE) && 7320 !vdev_dtl_required(newvd)) 7321 return (newvd); 7322 } 7323 } 7324 7325 return (NULL); 7326 } 7327 7328 static void 7329 spa_vdev_resilver_done(spa_t *spa) 7330 { 7331 vdev_t *vd, *pvd, *ppvd; 7332 uint64_t guid, sguid, pguid, ppguid; 7333 7334 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7335 7336 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 7337 pvd = vd->vdev_parent; 7338 ppvd = pvd->vdev_parent; 7339 guid = vd->vdev_guid; 7340 pguid = pvd->vdev_guid; 7341 ppguid = ppvd->vdev_guid; 7342 sguid = 0; 7343 /* 7344 * If we have just finished replacing a hot spared device, then 7345 * we need to detach the parent's first child (the original hot 7346 * spare) as well. 7347 */ 7348 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 7349 ppvd->vdev_children == 2) { 7350 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 7351 sguid = ppvd->vdev_child[1]->vdev_guid; 7352 } 7353 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 7354 7355 spa_config_exit(spa, SCL_ALL, FTAG); 7356 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 7357 return; 7358 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 7359 return; 7360 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7361 } 7362 7363 spa_config_exit(spa, SCL_ALL, FTAG); 7364 } 7365 7366 /* 7367 * Update the stored path or FRU for this vdev. 7368 */ 7369 int 7370 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 7371 boolean_t ispath) 7372 { 7373 vdev_t *vd; 7374 boolean_t sync = B_FALSE; 7375 7376 ASSERT(spa_writeable(spa)); 7377 7378 spa_vdev_state_enter(spa, SCL_ALL); 7379 7380 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 7381 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 7382 7383 if (!vd->vdev_ops->vdev_op_leaf) 7384 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 7385 7386 if (ispath) { 7387 if (strcmp(value, vd->vdev_path) != 0) { 7388 spa_strfree(vd->vdev_path); 7389 vd->vdev_path = spa_strdup(value); 7390 sync = B_TRUE; 7391 } 7392 } else { 7393 if (vd->vdev_fru == NULL) { 7394 vd->vdev_fru = spa_strdup(value); 7395 sync = B_TRUE; 7396 } else if (strcmp(value, vd->vdev_fru) != 0) { 7397 spa_strfree(vd->vdev_fru); 7398 vd->vdev_fru = spa_strdup(value); 7399 sync = B_TRUE; 7400 } 7401 } 7402 7403 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 7404 } 7405 7406 int 7407 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 7408 { 7409 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 7410 } 7411 7412 int 7413 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 7414 { 7415 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 7416 } 7417 7418 /* 7419 * ========================================================================== 7420 * SPA Scanning 7421 * ========================================================================== 7422 */ 7423 int 7424 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 7425 { 7426 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7427 7428 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 7429 return (SET_ERROR(EBUSY)); 7430 7431 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 7432 } 7433 7434 int 7435 spa_scan_stop(spa_t *spa) 7436 { 7437 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7438 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 7439 return (SET_ERROR(EBUSY)); 7440 return (dsl_scan_cancel(spa->spa_dsl_pool)); 7441 } 7442 7443 int 7444 spa_scan(spa_t *spa, pool_scan_func_t func) 7445 { 7446 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7447 7448 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 7449 return (SET_ERROR(ENOTSUP)); 7450 7451 if (func == POOL_SCAN_RESILVER && 7452 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 7453 return (SET_ERROR(ENOTSUP)); 7454 7455 /* 7456 * If a resilver was requested, but there is no DTL on a 7457 * writeable leaf device, we have nothing to do. 7458 */ 7459 if (func == POOL_SCAN_RESILVER && 7460 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 7461 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 7462 return (0); 7463 } 7464 7465 return (dsl_scan(spa->spa_dsl_pool, func)); 7466 } 7467 7468 /* 7469 * ========================================================================== 7470 * SPA async task processing 7471 * ========================================================================== 7472 */ 7473 7474 static void 7475 spa_async_remove(spa_t *spa, vdev_t *vd) 7476 { 7477 if (vd->vdev_remove_wanted) { 7478 vd->vdev_remove_wanted = B_FALSE; 7479 vd->vdev_delayed_close = B_FALSE; 7480 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 7481 7482 /* 7483 * We want to clear the stats, but we don't want to do a full 7484 * vdev_clear() as that will cause us to throw away 7485 * degraded/faulted state as well as attempt to reopen the 7486 * device, all of which is a waste. 7487 */ 7488 vd->vdev_stat.vs_read_errors = 0; 7489 vd->vdev_stat.vs_write_errors = 0; 7490 vd->vdev_stat.vs_checksum_errors = 0; 7491 7492 vdev_state_dirty(vd->vdev_top); 7493 } 7494 7495 for (int c = 0; c < vd->vdev_children; c++) 7496 spa_async_remove(spa, vd->vdev_child[c]); 7497 } 7498 7499 static void 7500 spa_async_probe(spa_t *spa, vdev_t *vd) 7501 { 7502 if (vd->vdev_probe_wanted) { 7503 vd->vdev_probe_wanted = B_FALSE; 7504 vdev_reopen(vd); /* vdev_open() does the actual probe */ 7505 } 7506 7507 for (int c = 0; c < vd->vdev_children; c++) 7508 spa_async_probe(spa, vd->vdev_child[c]); 7509 } 7510 7511 static void 7512 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 7513 { 7514 sysevent_id_t eid; 7515 nvlist_t *attr; 7516 char *physpath; 7517 7518 if (!spa->spa_autoexpand) 7519 return; 7520 7521 for (int c = 0; c < vd->vdev_children; c++) { 7522 vdev_t *cvd = vd->vdev_child[c]; 7523 spa_async_autoexpand(spa, cvd); 7524 } 7525 7526 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 7527 return; 7528 7529 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 7530 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 7531 7532 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 7533 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 7534 7535 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 7536 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 7537 7538 nvlist_free(attr); 7539 kmem_free(physpath, MAXPATHLEN); 7540 } 7541 7542 static void 7543 spa_async_thread(void *arg) 7544 { 7545 spa_t *spa = (spa_t *)arg; 7546 dsl_pool_t *dp = spa->spa_dsl_pool; 7547 int tasks; 7548 7549 ASSERT(spa->spa_sync_on); 7550 7551 mutex_enter(&spa->spa_async_lock); 7552 tasks = spa->spa_async_tasks; 7553 spa->spa_async_tasks = 0; 7554 mutex_exit(&spa->spa_async_lock); 7555 7556 /* 7557 * See if the config needs to be updated. 7558 */ 7559 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 7560 uint64_t old_space, new_space; 7561 7562 mutex_enter(&spa_namespace_lock); 7563 old_space = metaslab_class_get_space(spa_normal_class(spa)); 7564 old_space += metaslab_class_get_space(spa_special_class(spa)); 7565 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 7566 7567 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 7568 7569 new_space = metaslab_class_get_space(spa_normal_class(spa)); 7570 new_space += metaslab_class_get_space(spa_special_class(spa)); 7571 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 7572 mutex_exit(&spa_namespace_lock); 7573 7574 /* 7575 * If the pool grew as a result of the config update, 7576 * then log an internal history event. 7577 */ 7578 if (new_space != old_space) { 7579 spa_history_log_internal(spa, "vdev online", NULL, 7580 "pool '%s' size: %llu(+%llu)", 7581 spa_name(spa), new_space, new_space - old_space); 7582 } 7583 } 7584 7585 /* 7586 * See if any devices need to be marked REMOVED. 7587 */ 7588 if (tasks & SPA_ASYNC_REMOVE) { 7589 spa_vdev_state_enter(spa, SCL_NONE); 7590 spa_async_remove(spa, spa->spa_root_vdev); 7591 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 7592 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 7593 for (int i = 0; i < spa->spa_spares.sav_count; i++) 7594 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 7595 (void) spa_vdev_state_exit(spa, NULL, 0); 7596 } 7597 7598 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 7599 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7600 spa_async_autoexpand(spa, spa->spa_root_vdev); 7601 spa_config_exit(spa, SCL_CONFIG, FTAG); 7602 } 7603 7604 /* 7605 * See if any devices need to be probed. 7606 */ 7607 if (tasks & SPA_ASYNC_PROBE) { 7608 spa_vdev_state_enter(spa, SCL_NONE); 7609 spa_async_probe(spa, spa->spa_root_vdev); 7610 for (int i = 0; i < spa->spa_spares.sav_count; i++) 7611 spa_async_probe(spa, spa->spa_spares.sav_vdevs[i]); 7612 (void) spa_vdev_state_exit(spa, NULL, 0); 7613 } 7614 7615 /* 7616 * If any devices are done replacing, detach them. 7617 */ 7618 if (tasks & SPA_ASYNC_RESILVER_DONE) 7619 spa_vdev_resilver_done(spa); 7620 7621 /* 7622 * Kick off a resilver. 7623 */ 7624 if (tasks & SPA_ASYNC_RESILVER && 7625 (!dsl_scan_resilvering(dp) || 7626 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 7627 dsl_scan_restart_resilver(dp, 0); 7628 7629 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 7630 mutex_enter(&spa_namespace_lock); 7631 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7632 vdev_initialize_restart(spa->spa_root_vdev); 7633 spa_config_exit(spa, SCL_CONFIG, FTAG); 7634 mutex_exit(&spa_namespace_lock); 7635 } 7636 7637 if (tasks & SPA_ASYNC_TRIM_RESTART) { 7638 mutex_enter(&spa_namespace_lock); 7639 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7640 vdev_trim_restart(spa->spa_root_vdev); 7641 spa_config_exit(spa, SCL_CONFIG, FTAG); 7642 mutex_exit(&spa_namespace_lock); 7643 } 7644 7645 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { 7646 mutex_enter(&spa_namespace_lock); 7647 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7648 vdev_autotrim_restart(spa); 7649 spa_config_exit(spa, SCL_CONFIG, FTAG); 7650 mutex_exit(&spa_namespace_lock); 7651 } 7652 7653 /* 7654 * Kick off L2 cache rebuilding. 7655 */ 7656 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { 7657 mutex_enter(&spa_namespace_lock); 7658 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); 7659 l2arc_spa_rebuild_start(spa); 7660 spa_config_exit(spa, SCL_L2ARC, FTAG); 7661 mutex_exit(&spa_namespace_lock); 7662 } 7663 7664 /* 7665 * Let the world know that we're done. 7666 */ 7667 mutex_enter(&spa->spa_async_lock); 7668 spa->spa_async_thread = NULL; 7669 cv_broadcast(&spa->spa_async_cv); 7670 mutex_exit(&spa->spa_async_lock); 7671 thread_exit(); 7672 } 7673 7674 void 7675 spa_async_suspend(spa_t *spa) 7676 { 7677 mutex_enter(&spa->spa_async_lock); 7678 spa->spa_async_suspended++; 7679 while (spa->spa_async_thread != NULL) 7680 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 7681 mutex_exit(&spa->spa_async_lock); 7682 7683 spa_vdev_remove_suspend(spa); 7684 7685 zthr_t *condense_thread = spa->spa_condense_zthr; 7686 if (condense_thread != NULL) 7687 zthr_cancel(condense_thread); 7688 7689 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 7690 if (discard_thread != NULL) 7691 zthr_cancel(discard_thread); 7692 } 7693 7694 void 7695 spa_async_resume(spa_t *spa) 7696 { 7697 mutex_enter(&spa->spa_async_lock); 7698 ASSERT(spa->spa_async_suspended != 0); 7699 spa->spa_async_suspended--; 7700 mutex_exit(&spa->spa_async_lock); 7701 spa_restart_removal(spa); 7702 7703 zthr_t *condense_thread = spa->spa_condense_zthr; 7704 if (condense_thread != NULL) 7705 zthr_resume(condense_thread); 7706 7707 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 7708 if (discard_thread != NULL) 7709 zthr_resume(discard_thread); 7710 } 7711 7712 static boolean_t 7713 spa_async_tasks_pending(spa_t *spa) 7714 { 7715 uint_t non_config_tasks; 7716 uint_t config_task; 7717 boolean_t config_task_suspended; 7718 7719 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 7720 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 7721 if (spa->spa_ccw_fail_time == 0) { 7722 config_task_suspended = B_FALSE; 7723 } else { 7724 config_task_suspended = 7725 (gethrtime() - spa->spa_ccw_fail_time) < 7726 (zfs_ccw_retry_interval * NANOSEC); 7727 } 7728 7729 return (non_config_tasks || (config_task && !config_task_suspended)); 7730 } 7731 7732 static void 7733 spa_async_dispatch(spa_t *spa) 7734 { 7735 mutex_enter(&spa->spa_async_lock); 7736 if (spa_async_tasks_pending(spa) && 7737 !spa->spa_async_suspended && 7738 spa->spa_async_thread == NULL && 7739 rootdir != NULL) 7740 spa->spa_async_thread = thread_create(NULL, 0, 7741 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 7742 mutex_exit(&spa->spa_async_lock); 7743 } 7744 7745 void 7746 spa_async_request(spa_t *spa, int task) 7747 { 7748 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 7749 mutex_enter(&spa->spa_async_lock); 7750 spa->spa_async_tasks |= task; 7751 mutex_exit(&spa->spa_async_lock); 7752 } 7753 7754 int 7755 spa_async_tasks(spa_t *spa) 7756 { 7757 return (spa->spa_async_tasks); 7758 } 7759 7760 /* 7761 * ========================================================================== 7762 * SPA syncing routines 7763 * ========================================================================== 7764 */ 7765 7766 static int 7767 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 7768 { 7769 bpobj_t *bpo = arg; 7770 bpobj_enqueue(bpo, bp, tx); 7771 return (0); 7772 } 7773 7774 static int 7775 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 7776 { 7777 zio_t *zio = arg; 7778 7779 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 7780 zio->io_flags)); 7781 return (0); 7782 } 7783 7784 /* 7785 * Note: this simple function is not inlined to make it easier to dtrace the 7786 * amount of time spent syncing frees. 7787 */ 7788 static void 7789 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 7790 { 7791 zio_t *zio = zio_root(spa, NULL, NULL, 0); 7792 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 7793 VERIFY(zio_wait(zio) == 0); 7794 } 7795 7796 /* 7797 * Note: this simple function is not inlined to make it easier to dtrace the 7798 * amount of time spent syncing deferred frees. 7799 */ 7800 static void 7801 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 7802 { 7803 if (spa_sync_pass(spa) != 1) 7804 return; 7805 7806 /* 7807 * Note: 7808 * If the log space map feature is active, we stop deferring 7809 * frees to the next TXG and therefore running this function 7810 * would be considered a no-op as spa_deferred_bpobj should 7811 * not have any entries. 7812 * 7813 * That said we run this function anyway (instead of returning 7814 * immediately) for the edge-case scenario where we just 7815 * activated the log space map feature in this TXG but we have 7816 * deferred frees from the previous TXG. 7817 */ 7818 zio_t *zio = zio_root(spa, NULL, NULL, 0); 7819 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 7820 spa_free_sync_cb, zio, tx), ==, 0); 7821 VERIFY0(zio_wait(zio)); 7822 } 7823 7824 7825 static void 7826 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 7827 { 7828 char *packed = NULL; 7829 size_t bufsize; 7830 size_t nvsize = 0; 7831 dmu_buf_t *db; 7832 7833 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 7834 7835 /* 7836 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 7837 * information. This avoids the dmu_buf_will_dirty() path and 7838 * saves us a pre-read to get data we don't actually care about. 7839 */ 7840 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 7841 packed = kmem_alloc(bufsize, KM_SLEEP); 7842 7843 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 7844 KM_SLEEP) == 0); 7845 bzero(packed + nvsize, bufsize - nvsize); 7846 7847 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 7848 7849 kmem_free(packed, bufsize); 7850 7851 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 7852 dmu_buf_will_dirty(db, tx); 7853 *(uint64_t *)db->db_data = nvsize; 7854 dmu_buf_rele(db, FTAG); 7855 } 7856 7857 static void 7858 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 7859 const char *config, const char *entry) 7860 { 7861 nvlist_t *nvroot; 7862 nvlist_t **list; 7863 int i; 7864 7865 if (!sav->sav_sync) 7866 return; 7867 7868 /* 7869 * Update the MOS nvlist describing the list of available devices. 7870 * spa_validate_aux() will have already made sure this nvlist is 7871 * valid and the vdevs are labeled appropriately. 7872 */ 7873 if (sav->sav_object == 0) { 7874 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 7875 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 7876 sizeof (uint64_t), tx); 7877 VERIFY(zap_update(spa->spa_meta_objset, 7878 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 7879 &sav->sav_object, tx) == 0); 7880 } 7881 7882 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 7883 if (sav->sav_count == 0) { 7884 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 7885 } else { 7886 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 7887 for (i = 0; i < sav->sav_count; i++) 7888 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 7889 B_FALSE, VDEV_CONFIG_L2CACHE); 7890 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 7891 sav->sav_count) == 0); 7892 for (i = 0; i < sav->sav_count; i++) 7893 nvlist_free(list[i]); 7894 kmem_free(list, sav->sav_count * sizeof (void *)); 7895 } 7896 7897 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 7898 nvlist_free(nvroot); 7899 7900 sav->sav_sync = B_FALSE; 7901 } 7902 7903 /* 7904 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 7905 * The all-vdev ZAP must be empty. 7906 */ 7907 static void 7908 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 7909 { 7910 spa_t *spa = vd->vdev_spa; 7911 if (vd->vdev_top_zap != 0) { 7912 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 7913 vd->vdev_top_zap, tx)); 7914 } 7915 if (vd->vdev_leaf_zap != 0) { 7916 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 7917 vd->vdev_leaf_zap, tx)); 7918 } 7919 for (uint64_t i = 0; i < vd->vdev_children; i++) { 7920 spa_avz_build(vd->vdev_child[i], avz, tx); 7921 } 7922 } 7923 7924 static void 7925 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 7926 { 7927 nvlist_t *config; 7928 7929 /* 7930 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 7931 * its config may not be dirty but we still need to build per-vdev ZAPs. 7932 * Similarly, if the pool is being assembled (e.g. after a split), we 7933 * need to rebuild the AVZ although the config may not be dirty. 7934 */ 7935 if (list_is_empty(&spa->spa_config_dirty_list) && 7936 spa->spa_avz_action == AVZ_ACTION_NONE) 7937 return; 7938 7939 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7940 7941 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 7942 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 7943 spa->spa_all_vdev_zaps != 0); 7944 7945 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 7946 /* Make and build the new AVZ */ 7947 uint64_t new_avz = zap_create(spa->spa_meta_objset, 7948 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 7949 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 7950 7951 /* Diff old AVZ with new one */ 7952 zap_cursor_t zc; 7953 zap_attribute_t za; 7954 7955 for (zap_cursor_init(&zc, spa->spa_meta_objset, 7956 spa->spa_all_vdev_zaps); 7957 zap_cursor_retrieve(&zc, &za) == 0; 7958 zap_cursor_advance(&zc)) { 7959 uint64_t vdzap = za.za_first_integer; 7960 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 7961 vdzap) == ENOENT) { 7962 /* 7963 * ZAP is listed in old AVZ but not in new one; 7964 * destroy it 7965 */ 7966 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 7967 tx)); 7968 } 7969 } 7970 7971 zap_cursor_fini(&zc); 7972 7973 /* Destroy the old AVZ */ 7974 VERIFY0(zap_destroy(spa->spa_meta_objset, 7975 spa->spa_all_vdev_zaps, tx)); 7976 7977 /* Replace the old AVZ in the dir obj with the new one */ 7978 VERIFY0(zap_update(spa->spa_meta_objset, 7979 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 7980 sizeof (new_avz), 1, &new_avz, tx)); 7981 7982 spa->spa_all_vdev_zaps = new_avz; 7983 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 7984 zap_cursor_t zc; 7985 zap_attribute_t za; 7986 7987 /* Walk through the AVZ and destroy all listed ZAPs */ 7988 for (zap_cursor_init(&zc, spa->spa_meta_objset, 7989 spa->spa_all_vdev_zaps); 7990 zap_cursor_retrieve(&zc, &za) == 0; 7991 zap_cursor_advance(&zc)) { 7992 uint64_t zap = za.za_first_integer; 7993 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 7994 } 7995 7996 zap_cursor_fini(&zc); 7997 7998 /* Destroy and unlink the AVZ itself */ 7999 VERIFY0(zap_destroy(spa->spa_meta_objset, 8000 spa->spa_all_vdev_zaps, tx)); 8001 VERIFY0(zap_remove(spa->spa_meta_objset, 8002 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 8003 spa->spa_all_vdev_zaps = 0; 8004 } 8005 8006 if (spa->spa_all_vdev_zaps == 0) { 8007 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 8008 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 8009 DMU_POOL_VDEV_ZAP_MAP, tx); 8010 } 8011 spa->spa_avz_action = AVZ_ACTION_NONE; 8012 8013 /* Create ZAPs for vdevs that don't have them. */ 8014 vdev_construct_zaps(spa->spa_root_vdev, tx); 8015 8016 config = spa_config_generate(spa, spa->spa_root_vdev, 8017 dmu_tx_get_txg(tx), B_FALSE); 8018 8019 /* 8020 * If we're upgrading the spa version then make sure that 8021 * the config object gets updated with the correct version. 8022 */ 8023 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 8024 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 8025 spa->spa_uberblock.ub_version); 8026 8027 spa_config_exit(spa, SCL_STATE, FTAG); 8028 8029 nvlist_free(spa->spa_config_syncing); 8030 spa->spa_config_syncing = config; 8031 8032 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 8033 } 8034 8035 static void 8036 spa_sync_version(void *arg, dmu_tx_t *tx) 8037 { 8038 uint64_t *versionp = arg; 8039 uint64_t version = *versionp; 8040 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8041 8042 /* 8043 * Setting the version is special cased when first creating the pool. 8044 */ 8045 ASSERT(tx->tx_txg != TXG_INITIAL); 8046 8047 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 8048 ASSERT(version >= spa_version(spa)); 8049 8050 spa->spa_uberblock.ub_version = version; 8051 vdev_config_dirty(spa->spa_root_vdev); 8052 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 8053 } 8054 8055 /* 8056 * Set zpool properties. 8057 */ 8058 static void 8059 spa_sync_props(void *arg, dmu_tx_t *tx) 8060 { 8061 nvlist_t *nvp = arg; 8062 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8063 objset_t *mos = spa->spa_meta_objset; 8064 nvpair_t *elem = NULL; 8065 8066 mutex_enter(&spa->spa_props_lock); 8067 8068 while ((elem = nvlist_next_nvpair(nvp, elem))) { 8069 uint64_t intval; 8070 char *strval, *fname; 8071 zpool_prop_t prop; 8072 const char *propname; 8073 zprop_type_t proptype; 8074 spa_feature_t fid; 8075 8076 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 8077 case ZPOOL_PROP_INVAL: 8078 /* 8079 * We checked this earlier in spa_prop_validate(). 8080 */ 8081 ASSERT(zpool_prop_feature(nvpair_name(elem))); 8082 8083 fname = strchr(nvpair_name(elem), '@') + 1; 8084 VERIFY0(zfeature_lookup_name(fname, &fid)); 8085 8086 spa_feature_enable(spa, fid, tx); 8087 spa_history_log_internal(spa, "set", tx, 8088 "%s=enabled", nvpair_name(elem)); 8089 break; 8090 8091 case ZPOOL_PROP_VERSION: 8092 intval = fnvpair_value_uint64(elem); 8093 /* 8094 * The version is synced seperatly before other 8095 * properties and should be correct by now. 8096 */ 8097 ASSERT3U(spa_version(spa), >=, intval); 8098 break; 8099 8100 case ZPOOL_PROP_ALTROOT: 8101 /* 8102 * 'altroot' is a non-persistent property. It should 8103 * have been set temporarily at creation or import time. 8104 */ 8105 ASSERT(spa->spa_root != NULL); 8106 break; 8107 8108 case ZPOOL_PROP_READONLY: 8109 case ZPOOL_PROP_CACHEFILE: 8110 /* 8111 * 'readonly' and 'cachefile' are also non-persisitent 8112 * properties. 8113 */ 8114 break; 8115 case ZPOOL_PROP_COMMENT: 8116 strval = fnvpair_value_string(elem); 8117 if (spa->spa_comment != NULL) 8118 spa_strfree(spa->spa_comment); 8119 spa->spa_comment = spa_strdup(strval); 8120 /* 8121 * We need to dirty the configuration on all the vdevs 8122 * so that their labels get updated. It's unnecessary 8123 * to do this for pool creation since the vdev's 8124 * configuratoin has already been dirtied. 8125 */ 8126 if (tx->tx_txg != TXG_INITIAL) 8127 vdev_config_dirty(spa->spa_root_vdev); 8128 spa_history_log_internal(spa, "set", tx, 8129 "%s=%s", nvpair_name(elem), strval); 8130 break; 8131 default: 8132 /* 8133 * Set pool property values in the poolprops mos object. 8134 */ 8135 if (spa->spa_pool_props_object == 0) { 8136 spa->spa_pool_props_object = 8137 zap_create_link(mos, DMU_OT_POOL_PROPS, 8138 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 8139 tx); 8140 } 8141 8142 /* normalize the property name */ 8143 propname = zpool_prop_to_name(prop); 8144 proptype = zpool_prop_get_type(prop); 8145 8146 if (nvpair_type(elem) == DATA_TYPE_STRING) { 8147 ASSERT(proptype == PROP_TYPE_STRING); 8148 strval = fnvpair_value_string(elem); 8149 VERIFY0(zap_update(mos, 8150 spa->spa_pool_props_object, propname, 8151 1, strlen(strval) + 1, strval, tx)); 8152 spa_history_log_internal(spa, "set", tx, 8153 "%s=%s", nvpair_name(elem), strval); 8154 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 8155 intval = fnvpair_value_uint64(elem); 8156 8157 if (proptype == PROP_TYPE_INDEX) { 8158 const char *unused; 8159 VERIFY0(zpool_prop_index_to_string( 8160 prop, intval, &unused)); 8161 } 8162 VERIFY0(zap_update(mos, 8163 spa->spa_pool_props_object, propname, 8164 8, 1, &intval, tx)); 8165 spa_history_log_internal(spa, "set", tx, 8166 "%s=%lld", nvpair_name(elem), intval); 8167 } else { 8168 ASSERT(0); /* not allowed */ 8169 } 8170 8171 switch (prop) { 8172 case ZPOOL_PROP_DELEGATION: 8173 spa->spa_delegation = intval; 8174 break; 8175 case ZPOOL_PROP_BOOTFS: 8176 spa->spa_bootfs = intval; 8177 break; 8178 case ZPOOL_PROP_FAILUREMODE: 8179 spa->spa_failmode = intval; 8180 break; 8181 case ZPOOL_PROP_AUTOTRIM: 8182 spa->spa_autotrim = intval; 8183 spa_async_request(spa, 8184 SPA_ASYNC_AUTOTRIM_RESTART); 8185 break; 8186 case ZPOOL_PROP_AUTOEXPAND: 8187 spa->spa_autoexpand = intval; 8188 if (tx->tx_txg != TXG_INITIAL) 8189 spa_async_request(spa, 8190 SPA_ASYNC_AUTOEXPAND); 8191 break; 8192 case ZPOOL_PROP_MULTIHOST: 8193 spa->spa_multihost = intval; 8194 break; 8195 case ZPOOL_PROP_DEDUPDITTO: 8196 spa->spa_dedup_ditto = intval; 8197 break; 8198 default: 8199 break; 8200 } 8201 } 8202 8203 } 8204 8205 mutex_exit(&spa->spa_props_lock); 8206 } 8207 8208 /* 8209 * Perform one-time upgrade on-disk changes. spa_version() does not 8210 * reflect the new version this txg, so there must be no changes this 8211 * txg to anything that the upgrade code depends on after it executes. 8212 * Therefore this must be called after dsl_pool_sync() does the sync 8213 * tasks. 8214 */ 8215 static void 8216 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 8217 { 8218 if (spa_sync_pass(spa) != 1) 8219 return; 8220 8221 dsl_pool_t *dp = spa->spa_dsl_pool; 8222 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 8223 8224 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 8225 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 8226 dsl_pool_create_origin(dp, tx); 8227 8228 /* Keeping the origin open increases spa_minref */ 8229 spa->spa_minref += 3; 8230 } 8231 8232 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 8233 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 8234 dsl_pool_upgrade_clones(dp, tx); 8235 } 8236 8237 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 8238 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 8239 dsl_pool_upgrade_dir_clones(dp, tx); 8240 8241 /* Keeping the freedir open increases spa_minref */ 8242 spa->spa_minref += 3; 8243 } 8244 8245 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 8246 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8247 spa_feature_create_zap_objects(spa, tx); 8248 } 8249 8250 /* 8251 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 8252 * when possibility to use lz4 compression for metadata was added 8253 * Old pools that have this feature enabled must be upgraded to have 8254 * this feature active 8255 */ 8256 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8257 boolean_t lz4_en = spa_feature_is_enabled(spa, 8258 SPA_FEATURE_LZ4_COMPRESS); 8259 boolean_t lz4_ac = spa_feature_is_active(spa, 8260 SPA_FEATURE_LZ4_COMPRESS); 8261 8262 if (lz4_en && !lz4_ac) 8263 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 8264 } 8265 8266 /* 8267 * If we haven't written the salt, do so now. Note that the 8268 * feature may not be activated yet, but that's fine since 8269 * the presence of this ZAP entry is backwards compatible. 8270 */ 8271 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 8272 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 8273 VERIFY0(zap_add(spa->spa_meta_objset, 8274 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 8275 sizeof (spa->spa_cksum_salt.zcs_bytes), 8276 spa->spa_cksum_salt.zcs_bytes, tx)); 8277 } 8278 8279 rrw_exit(&dp->dp_config_rwlock, FTAG); 8280 } 8281 8282 static void 8283 vdev_indirect_state_sync_verify(vdev_t *vd) 8284 { 8285 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 8286 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 8287 8288 if (vd->vdev_ops == &vdev_indirect_ops) { 8289 ASSERT(vim != NULL); 8290 ASSERT(vib != NULL); 8291 } 8292 8293 if (vdev_obsolete_sm_object(vd) != 0) { 8294 ASSERT(vd->vdev_obsolete_sm != NULL); 8295 ASSERT(vd->vdev_removing || 8296 vd->vdev_ops == &vdev_indirect_ops); 8297 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 8298 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 8299 8300 ASSERT3U(vdev_obsolete_sm_object(vd), ==, 8301 space_map_object(vd->vdev_obsolete_sm)); 8302 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 8303 space_map_allocated(vd->vdev_obsolete_sm)); 8304 } 8305 ASSERT(vd->vdev_obsolete_segments != NULL); 8306 8307 /* 8308 * Since frees / remaps to an indirect vdev can only 8309 * happen in syncing context, the obsolete segments 8310 * tree must be empty when we start syncing. 8311 */ 8312 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 8313 } 8314 8315 /* 8316 * Set the top-level vdev's max queue depth. Evaluate each top-level's 8317 * async write queue depth in case it changed. The max queue depth will 8318 * not change in the middle of syncing out this txg. 8319 */ 8320 static void 8321 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 8322 { 8323 ASSERT(spa_writeable(spa)); 8324 8325 vdev_t *rvd = spa->spa_root_vdev; 8326 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 8327 zfs_vdev_queue_depth_pct / 100; 8328 metaslab_class_t *normal = spa_normal_class(spa); 8329 metaslab_class_t *special = spa_special_class(spa); 8330 metaslab_class_t *dedup = spa_dedup_class(spa); 8331 8332 uint64_t slots_per_allocator = 0; 8333 for (int c = 0; c < rvd->vdev_children; c++) { 8334 vdev_t *tvd = rvd->vdev_child[c]; 8335 8336 metaslab_group_t *mg = tvd->vdev_mg; 8337 if (mg == NULL || !metaslab_group_initialized(mg)) 8338 continue; 8339 8340 metaslab_class_t *mc = mg->mg_class; 8341 if (mc != normal && mc != special && mc != dedup) 8342 continue; 8343 8344 /* 8345 * It is safe to do a lock-free check here because only async 8346 * allocations look at mg_max_alloc_queue_depth, and async 8347 * allocations all happen from spa_sync(). 8348 */ 8349 for (int i = 0; i < spa->spa_alloc_count; i++) 8350 ASSERT0(zfs_refcount_count( 8351 &(mg->mg_alloc_queue_depth[i]))); 8352 mg->mg_max_alloc_queue_depth = max_queue_depth; 8353 8354 for (int i = 0; i < spa->spa_alloc_count; i++) { 8355 mg->mg_cur_max_alloc_queue_depth[i] = 8356 zfs_vdev_def_queue_depth; 8357 } 8358 slots_per_allocator += zfs_vdev_def_queue_depth; 8359 } 8360 8361 for (int i = 0; i < spa->spa_alloc_count; i++) { 8362 ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i])); 8363 ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i])); 8364 ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i])); 8365 normal->mc_alloc_max_slots[i] = slots_per_allocator; 8366 special->mc_alloc_max_slots[i] = slots_per_allocator; 8367 dedup->mc_alloc_max_slots[i] = slots_per_allocator; 8368 } 8369 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8370 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8371 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8372 } 8373 8374 static void 8375 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 8376 { 8377 ASSERT(spa_writeable(spa)); 8378 8379 vdev_t *rvd = spa->spa_root_vdev; 8380 for (int c = 0; c < rvd->vdev_children; c++) { 8381 vdev_t *vd = rvd->vdev_child[c]; 8382 vdev_indirect_state_sync_verify(vd); 8383 8384 if (vdev_indirect_should_condense(vd)) { 8385 spa_condense_indirect_start_sync(vd, tx); 8386 break; 8387 } 8388 } 8389 } 8390 8391 static void 8392 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 8393 { 8394 objset_t *mos = spa->spa_meta_objset; 8395 dsl_pool_t *dp = spa->spa_dsl_pool; 8396 uint64_t txg = tx->tx_txg; 8397 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 8398 8399 do { 8400 int pass = ++spa->spa_sync_pass; 8401 8402 spa_sync_config_object(spa, tx); 8403 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 8404 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 8405 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 8406 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 8407 spa_errlog_sync(spa, txg); 8408 dsl_pool_sync(dp, txg); 8409 8410 if (pass < zfs_sync_pass_deferred_free || 8411 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 8412 /* 8413 * If the log space map feature is active we don't 8414 * care about deferred frees and the deferred bpobj 8415 * as the log space map should effectively have the 8416 * same results (i.e. appending only to one object). 8417 */ 8418 spa_sync_frees(spa, free_bpl, tx); 8419 } else { 8420 /* 8421 * We can not defer frees in pass 1, because 8422 * we sync the deferred frees later in pass 1. 8423 */ 8424 ASSERT3U(pass, >, 1); 8425 bplist_iterate(free_bpl, bpobj_enqueue_cb, 8426 &spa->spa_deferred_bpobj, tx); 8427 } 8428 8429 ddt_sync(spa, txg); 8430 dsl_scan_sync(dp, tx); 8431 svr_sync(spa, tx); 8432 spa_sync_upgrades(spa, tx); 8433 8434 spa_flush_metaslabs(spa, tx); 8435 8436 vdev_t *vd = NULL; 8437 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 8438 != NULL) 8439 vdev_sync(vd, txg); 8440 8441 /* 8442 * Note: We need to check if the MOS is dirty because we could 8443 * have marked the MOS dirty without updating the uberblock 8444 * (e.g. if we have sync tasks but no dirty user data). We need 8445 * to check the uberblock's rootbp because it is updated if we 8446 * have synced out dirty data (though in this case the MOS will 8447 * most likely also be dirty due to second order effects, we 8448 * don't want to rely on that here). 8449 */ 8450 if (pass == 1 && 8451 spa->spa_uberblock.ub_rootbp.blk_birth < txg && 8452 !dmu_objset_is_dirty(mos, txg)) { 8453 /* 8454 * Nothing changed on the first pass, therefore this 8455 * TXG is a no-op. Avoid syncing deferred frees, so 8456 * that we can keep this TXG as a no-op. 8457 */ 8458 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 8459 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 8460 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 8461 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 8462 break; 8463 } 8464 8465 spa_sync_deferred_frees(spa, tx); 8466 } while (dmu_objset_is_dirty(mos, txg)); 8467 } 8468 8469 /* 8470 * Rewrite the vdev configuration (which includes the uberblock) to 8471 * commit the transaction group. 8472 * 8473 * If there are no dirty vdevs, we sync the uberblock to a few random 8474 * top-level vdevs that are known to be visible in the config cache 8475 * (see spa_vdev_add() for a complete description). If there *are* dirty 8476 * vdevs, sync the uberblock to all vdevs. 8477 */ 8478 static void 8479 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 8480 { 8481 vdev_t *rvd = spa->spa_root_vdev; 8482 uint64_t txg = tx->tx_txg; 8483 8484 for (;;) { 8485 int error = 0; 8486 8487 /* 8488 * We hold SCL_STATE to prevent vdev open/close/etc. 8489 * while we're attempting to write the vdev labels. 8490 */ 8491 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8492 8493 if (list_is_empty(&spa->spa_config_dirty_list)) { 8494 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 8495 int svdcount = 0; 8496 int children = rvd->vdev_children; 8497 int c0 = spa_get_random(children); 8498 8499 for (int c = 0; c < children; c++) { 8500 vdev_t *vd = 8501 rvd->vdev_child[(c0 + c) % children]; 8502 8503 /* Stop when revisiting the first vdev */ 8504 if (c > 0 && svd[0] == vd) 8505 break; 8506 8507 if (vd->vdev_ms_array == 0 || 8508 vd->vdev_islog || 8509 !vdev_is_concrete(vd)) 8510 continue; 8511 8512 svd[svdcount++] = vd; 8513 if (svdcount == SPA_SYNC_MIN_VDEVS) 8514 break; 8515 } 8516 error = vdev_config_sync(svd, svdcount, txg); 8517 } else { 8518 error = vdev_config_sync(rvd->vdev_child, 8519 rvd->vdev_children, txg); 8520 } 8521 8522 if (error == 0) 8523 spa->spa_last_synced_guid = rvd->vdev_guid; 8524 8525 spa_config_exit(spa, SCL_STATE, FTAG); 8526 8527 if (error == 0) 8528 break; 8529 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 8530 zio_resume_wait(spa); 8531 } 8532 } 8533 8534 /* 8535 * Sync the specified transaction group. New blocks may be dirtied as 8536 * part of the process, so we iterate until it converges. 8537 */ 8538 void 8539 spa_sync(spa_t *spa, uint64_t txg) 8540 { 8541 vdev_t *vd = NULL; 8542 8543 VERIFY(spa_writeable(spa)); 8544 8545 /* 8546 * Wait for i/os issued in open context that need to complete 8547 * before this txg syncs. 8548 */ 8549 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 8550 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 8551 ZIO_FLAG_CANFAIL); 8552 8553 /* 8554 * Lock out configuration changes. 8555 */ 8556 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8557 8558 spa->spa_syncing_txg = txg; 8559 spa->spa_sync_pass = 0; 8560 8561 for (int i = 0; i < spa->spa_alloc_count; i++) { 8562 mutex_enter(&spa->spa_alloc_locks[i]); 8563 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 8564 mutex_exit(&spa->spa_alloc_locks[i]); 8565 } 8566 8567 /* 8568 * If there are any pending vdev state changes, convert them 8569 * into config changes that go out with this transaction group. 8570 */ 8571 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8572 while (list_head(&spa->spa_state_dirty_list) != NULL) { 8573 /* 8574 * We need the write lock here because, for aux vdevs, 8575 * calling vdev_config_dirty() modifies sav_config. 8576 * This is ugly and will become unnecessary when we 8577 * eliminate the aux vdev wart by integrating all vdevs 8578 * into the root vdev tree. 8579 */ 8580 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8581 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 8582 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 8583 vdev_state_clean(vd); 8584 vdev_config_dirty(vd); 8585 } 8586 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8587 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 8588 } 8589 spa_config_exit(spa, SCL_STATE, FTAG); 8590 8591 dsl_pool_t *dp = spa->spa_dsl_pool; 8592 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 8593 8594 spa->spa_sync_starttime = gethrtime(); 8595 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 8596 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 8597 8598 /* 8599 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 8600 * set spa_deflate if we have no raid-z vdevs. 8601 */ 8602 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 8603 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 8604 vdev_t *rvd = spa->spa_root_vdev; 8605 8606 int i; 8607 for (i = 0; i < rvd->vdev_children; i++) { 8608 vd = rvd->vdev_child[i]; 8609 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 8610 break; 8611 } 8612 if (i == rvd->vdev_children) { 8613 spa->spa_deflate = TRUE; 8614 VERIFY0(zap_add(spa->spa_meta_objset, 8615 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 8616 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 8617 } 8618 } 8619 8620 spa_sync_adjust_vdev_max_queue_depth(spa); 8621 8622 spa_sync_condense_indirect(spa, tx); 8623 8624 spa_sync_iterate_to_convergence(spa, tx); 8625 8626 #ifdef ZFS_DEBUG 8627 if (!list_is_empty(&spa->spa_config_dirty_list)) { 8628 /* 8629 * Make sure that the number of ZAPs for all the vdevs matches 8630 * the number of ZAPs in the per-vdev ZAP list. This only gets 8631 * called if the config is dirty; otherwise there may be 8632 * outstanding AVZ operations that weren't completed in 8633 * spa_sync_config_object. 8634 */ 8635 uint64_t all_vdev_zap_entry_count; 8636 ASSERT0(zap_count(spa->spa_meta_objset, 8637 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 8638 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 8639 all_vdev_zap_entry_count); 8640 } 8641 #endif 8642 8643 if (spa->spa_vdev_removal != NULL) { 8644 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 8645 } 8646 8647 spa_sync_rewrite_vdev_config(spa, tx); 8648 dmu_tx_commit(tx); 8649 8650 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 8651 8652 /* 8653 * Clear the dirty config list. 8654 */ 8655 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 8656 vdev_config_clean(vd); 8657 8658 /* 8659 * Now that the new config has synced transactionally, 8660 * let it become visible to the config cache. 8661 */ 8662 if (spa->spa_config_syncing != NULL) { 8663 spa_config_set(spa, spa->spa_config_syncing); 8664 spa->spa_config_txg = txg; 8665 spa->spa_config_syncing = NULL; 8666 } 8667 8668 dsl_pool_sync_done(dp, txg); 8669 8670 for (int i = 0; i < spa->spa_alloc_count; i++) { 8671 mutex_enter(&spa->spa_alloc_locks[i]); 8672 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 8673 mutex_exit(&spa->spa_alloc_locks[i]); 8674 } 8675 8676 /* 8677 * Update usable space statistics. 8678 */ 8679 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 8680 != NULL) 8681 vdev_sync_done(vd, txg); 8682 8683 metaslab_class_evict_old(spa->spa_normal_class, txg); 8684 metaslab_class_evict_old(spa->spa_log_class, txg); 8685 8686 spa_sync_close_syncing_log_sm(spa); 8687 8688 spa_update_dspace(spa); 8689 8690 /* 8691 * It had better be the case that we didn't dirty anything 8692 * since vdev_config_sync(). 8693 */ 8694 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 8695 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 8696 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 8697 8698 while (zfs_pause_spa_sync) 8699 delay(1); 8700 8701 spa->spa_sync_pass = 0; 8702 8703 /* 8704 * Update the last synced uberblock here. We want to do this at 8705 * the end of spa_sync() so that consumers of spa_last_synced_txg() 8706 * will be guaranteed that all the processing associated with 8707 * that txg has been completed. 8708 */ 8709 spa->spa_ubsync = spa->spa_uberblock; 8710 spa_config_exit(spa, SCL_CONFIG, FTAG); 8711 8712 spa_handle_ignored_writes(spa); 8713 8714 /* Mark unused spares as needing a health check. */ 8715 if (spa_spare_poll_interval_seconds != 0 && 8716 NSEC2SEC(gethrtime() - spa->spa_spares_last_polled) > 8717 spa_spare_poll_interval_seconds) { 8718 spa_spare_poll(spa); 8719 spa->spa_spares_last_polled = gethrtime(); 8720 } 8721 8722 /* 8723 * If any async tasks have been requested, kick them off. 8724 */ 8725 spa_async_dispatch(spa); 8726 } 8727 8728 /* 8729 * Sync all pools. We don't want to hold the namespace lock across these 8730 * operations, so we take a reference on the spa_t and drop the lock during the 8731 * sync. 8732 */ 8733 void 8734 spa_sync_allpools(void) 8735 { 8736 spa_t *spa = NULL; 8737 mutex_enter(&spa_namespace_lock); 8738 while ((spa = spa_next(spa)) != NULL) { 8739 if (spa_state(spa) != POOL_STATE_ACTIVE || 8740 !spa_writeable(spa) || spa_suspended(spa)) 8741 continue; 8742 spa_open_ref(spa, FTAG); 8743 mutex_exit(&spa_namespace_lock); 8744 txg_wait_synced(spa_get_dsl(spa), 0); 8745 mutex_enter(&spa_namespace_lock); 8746 spa_close(spa, FTAG); 8747 } 8748 mutex_exit(&spa_namespace_lock); 8749 } 8750 8751 /* 8752 * ========================================================================== 8753 * Miscellaneous routines 8754 * ========================================================================== 8755 */ 8756 8757 /* 8758 * Remove all pools in the system. 8759 */ 8760 void 8761 spa_evict_all(void) 8762 { 8763 spa_t *spa; 8764 8765 /* 8766 * Remove all cached state. All pools should be closed now, 8767 * so every spa in the AVL tree should be unreferenced. 8768 */ 8769 mutex_enter(&spa_namespace_lock); 8770 while ((spa = spa_next(NULL)) != NULL) { 8771 /* 8772 * Stop async tasks. The async thread may need to detach 8773 * a device that's been replaced, which requires grabbing 8774 * spa_namespace_lock, so we must drop it here. 8775 */ 8776 spa_open_ref(spa, FTAG); 8777 mutex_exit(&spa_namespace_lock); 8778 spa_async_suspend(spa); 8779 mutex_enter(&spa_namespace_lock); 8780 spa_close(spa, FTAG); 8781 8782 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 8783 spa_unload(spa); 8784 spa_deactivate(spa); 8785 } 8786 spa_remove(spa); 8787 } 8788 mutex_exit(&spa_namespace_lock); 8789 } 8790 8791 vdev_t * 8792 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 8793 { 8794 vdev_t *vd; 8795 int i; 8796 8797 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 8798 return (vd); 8799 8800 if (aux) { 8801 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 8802 vd = spa->spa_l2cache.sav_vdevs[i]; 8803 if (vd->vdev_guid == guid) 8804 return (vd); 8805 } 8806 8807 for (i = 0; i < spa->spa_spares.sav_count; i++) { 8808 vd = spa->spa_spares.sav_vdevs[i]; 8809 if (vd->vdev_guid == guid) 8810 return (vd); 8811 } 8812 } 8813 8814 return (NULL); 8815 } 8816 8817 void 8818 spa_upgrade(spa_t *spa, uint64_t version) 8819 { 8820 ASSERT(spa_writeable(spa)); 8821 8822 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8823 8824 /* 8825 * This should only be called for a non-faulted pool, and since a 8826 * future version would result in an unopenable pool, this shouldn't be 8827 * possible. 8828 */ 8829 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 8830 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 8831 8832 spa->spa_uberblock.ub_version = version; 8833 vdev_config_dirty(spa->spa_root_vdev); 8834 8835 spa_config_exit(spa, SCL_ALL, FTAG); 8836 8837 txg_wait_synced(spa_get_dsl(spa), 0); 8838 } 8839 8840 boolean_t 8841 spa_has_spare(spa_t *spa, uint64_t guid) 8842 { 8843 int i; 8844 uint64_t spareguid; 8845 spa_aux_vdev_t *sav = &spa->spa_spares; 8846 8847 for (i = 0; i < sav->sav_count; i++) 8848 if (sav->sav_vdevs[i]->vdev_guid == guid) 8849 return (B_TRUE); 8850 8851 for (i = 0; i < sav->sav_npending; i++) { 8852 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 8853 &spareguid) == 0 && spareguid == guid) 8854 return (B_TRUE); 8855 } 8856 8857 return (B_FALSE); 8858 } 8859 8860 /* 8861 * Check if a pool has an active shared spare device. 8862 * Note: reference count of an active spare is 2, as a spare and as a replace 8863 */ 8864 static boolean_t 8865 spa_has_active_shared_spare(spa_t *spa) 8866 { 8867 int i, refcnt; 8868 uint64_t pool; 8869 spa_aux_vdev_t *sav = &spa->spa_spares; 8870 8871 for (i = 0; i < sav->sav_count; i++) { 8872 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 8873 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 8874 refcnt > 2) 8875 return (B_TRUE); 8876 } 8877 8878 return (B_FALSE); 8879 } 8880 8881 uint64_t 8882 spa_total_metaslabs(spa_t *spa) 8883 { 8884 vdev_t *rvd = spa->spa_root_vdev; 8885 uint64_t m = 0; 8886 8887 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 8888 vdev_t *vd = rvd->vdev_child[c]; 8889 if (!vdev_is_concrete(vd)) 8890 continue; 8891 m += vd->vdev_ms_count; 8892 } 8893 return (m); 8894 } 8895 8896 sysevent_t * 8897 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 8898 { 8899 sysevent_t *ev = NULL; 8900 #ifdef _KERNEL 8901 sysevent_attr_list_t *attr = NULL; 8902 sysevent_value_t value; 8903 8904 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 8905 SE_SLEEP); 8906 ASSERT(ev != NULL); 8907 8908 value.value_type = SE_DATA_TYPE_STRING; 8909 value.value.sv_string = spa_name(spa); 8910 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 8911 goto done; 8912 8913 value.value_type = SE_DATA_TYPE_UINT64; 8914 value.value.sv_uint64 = spa_guid(spa); 8915 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 8916 goto done; 8917 8918 if (vd) { 8919 value.value_type = SE_DATA_TYPE_UINT64; 8920 value.value.sv_uint64 = vd->vdev_guid; 8921 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 8922 SE_SLEEP) != 0) 8923 goto done; 8924 8925 if (vd->vdev_path) { 8926 value.value_type = SE_DATA_TYPE_STRING; 8927 value.value.sv_string = vd->vdev_path; 8928 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 8929 &value, SE_SLEEP) != 0) 8930 goto done; 8931 } 8932 } 8933 8934 if (hist_nvl != NULL) { 8935 fnvlist_merge((nvlist_t *)attr, hist_nvl); 8936 } 8937 8938 if (sysevent_attach_attributes(ev, attr) != 0) 8939 goto done; 8940 attr = NULL; 8941 8942 done: 8943 if (attr) 8944 sysevent_free_attr(attr); 8945 8946 #endif 8947 return (ev); 8948 } 8949 8950 void 8951 spa_event_post(sysevent_t *ev) 8952 { 8953 #ifdef _KERNEL 8954 sysevent_id_t eid; 8955 8956 (void) log_sysevent(ev, SE_SLEEP, &eid); 8957 sysevent_free(ev); 8958 #endif 8959 } 8960 8961 void 8962 spa_event_discard(sysevent_t *ev) 8963 { 8964 #ifdef _KERNEL 8965 sysevent_free(ev); 8966 #endif 8967 } 8968 8969 /* 8970 * Post a sysevent corresponding to the given event. The 'name' must be one of 8971 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 8972 * filled in from the spa and (optionally) the vdev and history nvl. This 8973 * doesn't do anything in the userland libzpool, as we don't want consumers to 8974 * misinterpret ztest or zdb as real changes. 8975 */ 8976 void 8977 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 8978 { 8979 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 8980 } 8981