xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 744a060193833d1e3b4db51fd9a2ecd996659613)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/sunddi.h>
61 #include <sys/spa_boot.h>
62 
63 #include "zfs_prop.h"
64 #include "zfs_comutil.h"
65 
66 int zio_taskq_threads[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
67 	/*	ISSUE	INTR					*/
68 	{	1,	1	},	/* ZIO_TYPE_NULL	*/
69 	{	1,	8	},	/* ZIO_TYPE_READ	*/
70 	{	8,	1	},	/* ZIO_TYPE_WRITE	*/
71 	{	1,	1	},	/* ZIO_TYPE_FREE	*/
72 	{	1,	1	},	/* ZIO_TYPE_CLAIM	*/
73 	{	1,	1	},	/* ZIO_TYPE_IOCTL	*/
74 };
75 
76 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
77 static boolean_t spa_has_active_shared_spare(spa_t *spa);
78 
79 /*
80  * ==========================================================================
81  * SPA properties routines
82  * ==========================================================================
83  */
84 
85 /*
86  * Add a (source=src, propname=propval) list to an nvlist.
87  */
88 static void
89 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
90     uint64_t intval, zprop_source_t src)
91 {
92 	const char *propname = zpool_prop_to_name(prop);
93 	nvlist_t *propval;
94 
95 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
96 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
97 
98 	if (strval != NULL)
99 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
100 	else
101 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
102 
103 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
104 	nvlist_free(propval);
105 }
106 
107 /*
108  * Get property values from the spa configuration.
109  */
110 static void
111 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
112 {
113 	uint64_t size = spa_get_space(spa);
114 	uint64_t used = spa_get_alloc(spa);
115 	uint64_t cap, version;
116 	zprop_source_t src = ZPROP_SRC_NONE;
117 	spa_config_dirent_t *dp;
118 
119 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
120 
121 	/*
122 	 * readonly properties
123 	 */
124 	spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
125 	spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
126 	spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
127 	spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, size - used, src);
128 
129 	cap = (size == 0) ? 0 : (used * 100 / size);
130 	spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
131 
132 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
133 	spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
134 	    spa->spa_root_vdev->vdev_state, src);
135 
136 	/*
137 	 * settable properties that are not stored in the pool property object.
138 	 */
139 	version = spa_version(spa);
140 	if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
141 		src = ZPROP_SRC_DEFAULT;
142 	else
143 		src = ZPROP_SRC_LOCAL;
144 	spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
145 
146 	if (spa->spa_root != NULL)
147 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
148 		    0, ZPROP_SRC_LOCAL);
149 
150 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
151 		if (dp->scd_path == NULL) {
152 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
153 			    "none", 0, ZPROP_SRC_LOCAL);
154 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
155 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
156 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
157 		}
158 	}
159 }
160 
161 /*
162  * Get zpool property values.
163  */
164 int
165 spa_prop_get(spa_t *spa, nvlist_t **nvp)
166 {
167 	zap_cursor_t zc;
168 	zap_attribute_t za;
169 	objset_t *mos = spa->spa_meta_objset;
170 	int err;
171 
172 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
173 
174 	mutex_enter(&spa->spa_props_lock);
175 
176 	/*
177 	 * Get properties from the spa config.
178 	 */
179 	spa_prop_get_config(spa, nvp);
180 
181 	/* If no pool property object, no more prop to get. */
182 	if (spa->spa_pool_props_object == 0) {
183 		mutex_exit(&spa->spa_props_lock);
184 		return (0);
185 	}
186 
187 	/*
188 	 * Get properties from the MOS pool property object.
189 	 */
190 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
191 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
192 	    zap_cursor_advance(&zc)) {
193 		uint64_t intval = 0;
194 		char *strval = NULL;
195 		zprop_source_t src = ZPROP_SRC_DEFAULT;
196 		zpool_prop_t prop;
197 
198 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
199 			continue;
200 
201 		switch (za.za_integer_length) {
202 		case 8:
203 			/* integer property */
204 			if (za.za_first_integer !=
205 			    zpool_prop_default_numeric(prop))
206 				src = ZPROP_SRC_LOCAL;
207 
208 			if (prop == ZPOOL_PROP_BOOTFS) {
209 				dsl_pool_t *dp;
210 				dsl_dataset_t *ds = NULL;
211 
212 				dp = spa_get_dsl(spa);
213 				rw_enter(&dp->dp_config_rwlock, RW_READER);
214 				if (err = dsl_dataset_hold_obj(dp,
215 				    za.za_first_integer, FTAG, &ds)) {
216 					rw_exit(&dp->dp_config_rwlock);
217 					break;
218 				}
219 
220 				strval = kmem_alloc(
221 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
222 				    KM_SLEEP);
223 				dsl_dataset_name(ds, strval);
224 				dsl_dataset_rele(ds, FTAG);
225 				rw_exit(&dp->dp_config_rwlock);
226 			} else {
227 				strval = NULL;
228 				intval = za.za_first_integer;
229 			}
230 
231 			spa_prop_add_list(*nvp, prop, strval, intval, src);
232 
233 			if (strval != NULL)
234 				kmem_free(strval,
235 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
236 
237 			break;
238 
239 		case 1:
240 			/* string property */
241 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
242 			err = zap_lookup(mos, spa->spa_pool_props_object,
243 			    za.za_name, 1, za.za_num_integers, strval);
244 			if (err) {
245 				kmem_free(strval, za.za_num_integers);
246 				break;
247 			}
248 			spa_prop_add_list(*nvp, prop, strval, 0, src);
249 			kmem_free(strval, za.za_num_integers);
250 			break;
251 
252 		default:
253 			break;
254 		}
255 	}
256 	zap_cursor_fini(&zc);
257 	mutex_exit(&spa->spa_props_lock);
258 out:
259 	if (err && err != ENOENT) {
260 		nvlist_free(*nvp);
261 		*nvp = NULL;
262 		return (err);
263 	}
264 
265 	return (0);
266 }
267 
268 /*
269  * Validate the given pool properties nvlist and modify the list
270  * for the property values to be set.
271  */
272 static int
273 spa_prop_validate(spa_t *spa, nvlist_t *props)
274 {
275 	nvpair_t *elem;
276 	int error = 0, reset_bootfs = 0;
277 	uint64_t objnum;
278 
279 	elem = NULL;
280 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
281 		zpool_prop_t prop;
282 		char *propname, *strval;
283 		uint64_t intval;
284 		objset_t *os;
285 		char *slash;
286 
287 		propname = nvpair_name(elem);
288 
289 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
290 			return (EINVAL);
291 
292 		switch (prop) {
293 		case ZPOOL_PROP_VERSION:
294 			error = nvpair_value_uint64(elem, &intval);
295 			if (!error &&
296 			    (intval < spa_version(spa) || intval > SPA_VERSION))
297 				error = EINVAL;
298 			break;
299 
300 		case ZPOOL_PROP_DELEGATION:
301 		case ZPOOL_PROP_AUTOREPLACE:
302 		case ZPOOL_PROP_LISTSNAPS:
303 			error = nvpair_value_uint64(elem, &intval);
304 			if (!error && intval > 1)
305 				error = EINVAL;
306 			break;
307 
308 		case ZPOOL_PROP_BOOTFS:
309 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
310 				error = ENOTSUP;
311 				break;
312 			}
313 
314 			/*
315 			 * Make sure the vdev config is bootable
316 			 */
317 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
318 				error = ENOTSUP;
319 				break;
320 			}
321 
322 			reset_bootfs = 1;
323 
324 			error = nvpair_value_string(elem, &strval);
325 
326 			if (!error) {
327 				uint64_t compress;
328 
329 				if (strval == NULL || strval[0] == '\0') {
330 					objnum = zpool_prop_default_numeric(
331 					    ZPOOL_PROP_BOOTFS);
332 					break;
333 				}
334 
335 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
336 				    DS_MODE_USER | DS_MODE_READONLY, &os))
337 					break;
338 
339 				/* We don't support gzip bootable datasets */
340 				if ((error = dsl_prop_get_integer(strval,
341 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
342 				    &compress, NULL)) == 0 &&
343 				    !BOOTFS_COMPRESS_VALID(compress)) {
344 					error = ENOTSUP;
345 				} else {
346 					objnum = dmu_objset_id(os);
347 				}
348 				dmu_objset_close(os);
349 			}
350 			break;
351 
352 		case ZPOOL_PROP_FAILUREMODE:
353 			error = nvpair_value_uint64(elem, &intval);
354 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
355 			    intval > ZIO_FAILURE_MODE_PANIC))
356 				error = EINVAL;
357 
358 			/*
359 			 * This is a special case which only occurs when
360 			 * the pool has completely failed. This allows
361 			 * the user to change the in-core failmode property
362 			 * without syncing it out to disk (I/Os might
363 			 * currently be blocked). We do this by returning
364 			 * EIO to the caller (spa_prop_set) to trick it
365 			 * into thinking we encountered a property validation
366 			 * error.
367 			 */
368 			if (!error && spa_suspended(spa)) {
369 				spa->spa_failmode = intval;
370 				error = EIO;
371 			}
372 			break;
373 
374 		case ZPOOL_PROP_CACHEFILE:
375 			if ((error = nvpair_value_string(elem, &strval)) != 0)
376 				break;
377 
378 			if (strval[0] == '\0')
379 				break;
380 
381 			if (strcmp(strval, "none") == 0)
382 				break;
383 
384 			if (strval[0] != '/') {
385 				error = EINVAL;
386 				break;
387 			}
388 
389 			slash = strrchr(strval, '/');
390 			ASSERT(slash != NULL);
391 
392 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
393 			    strcmp(slash, "/..") == 0)
394 				error = EINVAL;
395 			break;
396 		}
397 
398 		if (error)
399 			break;
400 	}
401 
402 	if (!error && reset_bootfs) {
403 		error = nvlist_remove(props,
404 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
405 
406 		if (!error) {
407 			error = nvlist_add_uint64(props,
408 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
409 		}
410 	}
411 
412 	return (error);
413 }
414 
415 int
416 spa_prop_set(spa_t *spa, nvlist_t *nvp)
417 {
418 	int error;
419 
420 	if ((error = spa_prop_validate(spa, nvp)) != 0)
421 		return (error);
422 
423 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
424 	    spa, nvp, 3));
425 }
426 
427 /*
428  * If the bootfs property value is dsobj, clear it.
429  */
430 void
431 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
432 {
433 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
434 		VERIFY(zap_remove(spa->spa_meta_objset,
435 		    spa->spa_pool_props_object,
436 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
437 		spa->spa_bootfs = 0;
438 	}
439 }
440 
441 /*
442  * ==========================================================================
443  * SPA state manipulation (open/create/destroy/import/export)
444  * ==========================================================================
445  */
446 
447 static int
448 spa_error_entry_compare(const void *a, const void *b)
449 {
450 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
451 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
452 	int ret;
453 
454 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
455 	    sizeof (zbookmark_t));
456 
457 	if (ret < 0)
458 		return (-1);
459 	else if (ret > 0)
460 		return (1);
461 	else
462 		return (0);
463 }
464 
465 /*
466  * Utility function which retrieves copies of the current logs and
467  * re-initializes them in the process.
468  */
469 void
470 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
471 {
472 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
473 
474 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
475 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
476 
477 	avl_create(&spa->spa_errlist_scrub,
478 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
479 	    offsetof(spa_error_entry_t, se_avl));
480 	avl_create(&spa->spa_errlist_last,
481 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
482 	    offsetof(spa_error_entry_t, se_avl));
483 }
484 
485 /*
486  * Activate an uninitialized pool.
487  */
488 static void
489 spa_activate(spa_t *spa)
490 {
491 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
492 
493 	spa->spa_state = POOL_STATE_ACTIVE;
494 
495 	spa->spa_normal_class = metaslab_class_create();
496 	spa->spa_log_class = metaslab_class_create();
497 
498 	for (int t = 0; t < ZIO_TYPES; t++) {
499 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
500 			spa->spa_zio_taskq[t][q] = taskq_create("spa_zio",
501 			    zio_taskq_threads[t][q], maxclsyspri, 50,
502 			    INT_MAX, TASKQ_PREPOPULATE);
503 		}
504 	}
505 
506 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
507 	    offsetof(vdev_t, vdev_config_dirty_node));
508 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
509 	    offsetof(vdev_t, vdev_state_dirty_node));
510 
511 	txg_list_create(&spa->spa_vdev_txg_list,
512 	    offsetof(struct vdev, vdev_txg_node));
513 
514 	avl_create(&spa->spa_errlist_scrub,
515 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
516 	    offsetof(spa_error_entry_t, se_avl));
517 	avl_create(&spa->spa_errlist_last,
518 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
519 	    offsetof(spa_error_entry_t, se_avl));
520 }
521 
522 /*
523  * Opposite of spa_activate().
524  */
525 static void
526 spa_deactivate(spa_t *spa)
527 {
528 	ASSERT(spa->spa_sync_on == B_FALSE);
529 	ASSERT(spa->spa_dsl_pool == NULL);
530 	ASSERT(spa->spa_root_vdev == NULL);
531 
532 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
533 
534 	txg_list_destroy(&spa->spa_vdev_txg_list);
535 
536 	list_destroy(&spa->spa_config_dirty_list);
537 	list_destroy(&spa->spa_state_dirty_list);
538 
539 	for (int t = 0; t < ZIO_TYPES; t++) {
540 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
541 			taskq_destroy(spa->spa_zio_taskq[t][q]);
542 			spa->spa_zio_taskq[t][q] = NULL;
543 		}
544 	}
545 
546 	metaslab_class_destroy(spa->spa_normal_class);
547 	spa->spa_normal_class = NULL;
548 
549 	metaslab_class_destroy(spa->spa_log_class);
550 	spa->spa_log_class = NULL;
551 
552 	/*
553 	 * If this was part of an import or the open otherwise failed, we may
554 	 * still have errors left in the queues.  Empty them just in case.
555 	 */
556 	spa_errlog_drain(spa);
557 
558 	avl_destroy(&spa->spa_errlist_scrub);
559 	avl_destroy(&spa->spa_errlist_last);
560 
561 	spa->spa_state = POOL_STATE_UNINITIALIZED;
562 }
563 
564 /*
565  * Verify a pool configuration, and construct the vdev tree appropriately.  This
566  * will create all the necessary vdevs in the appropriate layout, with each vdev
567  * in the CLOSED state.  This will prep the pool before open/creation/import.
568  * All vdev validation is done by the vdev_alloc() routine.
569  */
570 static int
571 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
572     uint_t id, int atype)
573 {
574 	nvlist_t **child;
575 	uint_t c, children;
576 	int error;
577 
578 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
579 		return (error);
580 
581 	if ((*vdp)->vdev_ops->vdev_op_leaf)
582 		return (0);
583 
584 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
585 	    &child, &children);
586 
587 	if (error == ENOENT)
588 		return (0);
589 
590 	if (error) {
591 		vdev_free(*vdp);
592 		*vdp = NULL;
593 		return (EINVAL);
594 	}
595 
596 	for (c = 0; c < children; c++) {
597 		vdev_t *vd;
598 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
599 		    atype)) != 0) {
600 			vdev_free(*vdp);
601 			*vdp = NULL;
602 			return (error);
603 		}
604 	}
605 
606 	ASSERT(*vdp != NULL);
607 
608 	return (0);
609 }
610 
611 /*
612  * Opposite of spa_load().
613  */
614 static void
615 spa_unload(spa_t *spa)
616 {
617 	int i;
618 
619 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
620 
621 	/*
622 	 * Stop async tasks.
623 	 */
624 	spa_async_suspend(spa);
625 
626 	/*
627 	 * Stop syncing.
628 	 */
629 	if (spa->spa_sync_on) {
630 		txg_sync_stop(spa->spa_dsl_pool);
631 		spa->spa_sync_on = B_FALSE;
632 	}
633 
634 	/*
635 	 * Wait for any outstanding async I/O to complete.
636 	 */
637 	mutex_enter(&spa->spa_async_root_lock);
638 	while (spa->spa_async_root_count != 0)
639 		cv_wait(&spa->spa_async_root_cv, &spa->spa_async_root_lock);
640 	mutex_exit(&spa->spa_async_root_lock);
641 
642 	/*
643 	 * Drop and purge level 2 cache
644 	 */
645 	spa_l2cache_drop(spa);
646 
647 	/*
648 	 * Close the dsl pool.
649 	 */
650 	if (spa->spa_dsl_pool) {
651 		dsl_pool_close(spa->spa_dsl_pool);
652 		spa->spa_dsl_pool = NULL;
653 	}
654 
655 	/*
656 	 * Close all vdevs.
657 	 */
658 	if (spa->spa_root_vdev)
659 		vdev_free(spa->spa_root_vdev);
660 	ASSERT(spa->spa_root_vdev == NULL);
661 
662 	for (i = 0; i < spa->spa_spares.sav_count; i++)
663 		vdev_free(spa->spa_spares.sav_vdevs[i]);
664 	if (spa->spa_spares.sav_vdevs) {
665 		kmem_free(spa->spa_spares.sav_vdevs,
666 		    spa->spa_spares.sav_count * sizeof (void *));
667 		spa->spa_spares.sav_vdevs = NULL;
668 	}
669 	if (spa->spa_spares.sav_config) {
670 		nvlist_free(spa->spa_spares.sav_config);
671 		spa->spa_spares.sav_config = NULL;
672 	}
673 	spa->spa_spares.sav_count = 0;
674 
675 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
676 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
677 	if (spa->spa_l2cache.sav_vdevs) {
678 		kmem_free(spa->spa_l2cache.sav_vdevs,
679 		    spa->spa_l2cache.sav_count * sizeof (void *));
680 		spa->spa_l2cache.sav_vdevs = NULL;
681 	}
682 	if (spa->spa_l2cache.sav_config) {
683 		nvlist_free(spa->spa_l2cache.sav_config);
684 		spa->spa_l2cache.sav_config = NULL;
685 	}
686 	spa->spa_l2cache.sav_count = 0;
687 
688 	spa->spa_async_suspended = 0;
689 }
690 
691 /*
692  * Load (or re-load) the current list of vdevs describing the active spares for
693  * this pool.  When this is called, we have some form of basic information in
694  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
695  * then re-generate a more complete list including status information.
696  */
697 static void
698 spa_load_spares(spa_t *spa)
699 {
700 	nvlist_t **spares;
701 	uint_t nspares;
702 	int i;
703 	vdev_t *vd, *tvd;
704 
705 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
706 
707 	/*
708 	 * First, close and free any existing spare vdevs.
709 	 */
710 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
711 		vd = spa->spa_spares.sav_vdevs[i];
712 
713 		/* Undo the call to spa_activate() below */
714 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
715 		    B_FALSE)) != NULL && tvd->vdev_isspare)
716 			spa_spare_remove(tvd);
717 		vdev_close(vd);
718 		vdev_free(vd);
719 	}
720 
721 	if (spa->spa_spares.sav_vdevs)
722 		kmem_free(spa->spa_spares.sav_vdevs,
723 		    spa->spa_spares.sav_count * sizeof (void *));
724 
725 	if (spa->spa_spares.sav_config == NULL)
726 		nspares = 0;
727 	else
728 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
729 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
730 
731 	spa->spa_spares.sav_count = (int)nspares;
732 	spa->spa_spares.sav_vdevs = NULL;
733 
734 	if (nspares == 0)
735 		return;
736 
737 	/*
738 	 * Construct the array of vdevs, opening them to get status in the
739 	 * process.   For each spare, there is potentially two different vdev_t
740 	 * structures associated with it: one in the list of spares (used only
741 	 * for basic validation purposes) and one in the active vdev
742 	 * configuration (if it's spared in).  During this phase we open and
743 	 * validate each vdev on the spare list.  If the vdev also exists in the
744 	 * active configuration, then we also mark this vdev as an active spare.
745 	 */
746 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
747 	    KM_SLEEP);
748 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
749 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
750 		    VDEV_ALLOC_SPARE) == 0);
751 		ASSERT(vd != NULL);
752 
753 		spa->spa_spares.sav_vdevs[i] = vd;
754 
755 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
756 		    B_FALSE)) != NULL) {
757 			if (!tvd->vdev_isspare)
758 				spa_spare_add(tvd);
759 
760 			/*
761 			 * We only mark the spare active if we were successfully
762 			 * able to load the vdev.  Otherwise, importing a pool
763 			 * with a bad active spare would result in strange
764 			 * behavior, because multiple pool would think the spare
765 			 * is actively in use.
766 			 *
767 			 * There is a vulnerability here to an equally bizarre
768 			 * circumstance, where a dead active spare is later
769 			 * brought back to life (onlined or otherwise).  Given
770 			 * the rarity of this scenario, and the extra complexity
771 			 * it adds, we ignore the possibility.
772 			 */
773 			if (!vdev_is_dead(tvd))
774 				spa_spare_activate(tvd);
775 		}
776 
777 		vd->vdev_top = vd;
778 
779 		if (vdev_open(vd) != 0)
780 			continue;
781 
782 		if (vdev_validate_aux(vd) == 0)
783 			spa_spare_add(vd);
784 	}
785 
786 	/*
787 	 * Recompute the stashed list of spares, with status information
788 	 * this time.
789 	 */
790 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
791 	    DATA_TYPE_NVLIST_ARRAY) == 0);
792 
793 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
794 	    KM_SLEEP);
795 	for (i = 0; i < spa->spa_spares.sav_count; i++)
796 		spares[i] = vdev_config_generate(spa,
797 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
798 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
799 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
800 	for (i = 0; i < spa->spa_spares.sav_count; i++)
801 		nvlist_free(spares[i]);
802 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
803 }
804 
805 /*
806  * Load (or re-load) the current list of vdevs describing the active l2cache for
807  * this pool.  When this is called, we have some form of basic information in
808  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
809  * then re-generate a more complete list including status information.
810  * Devices which are already active have their details maintained, and are
811  * not re-opened.
812  */
813 static void
814 spa_load_l2cache(spa_t *spa)
815 {
816 	nvlist_t **l2cache;
817 	uint_t nl2cache;
818 	int i, j, oldnvdevs;
819 	uint64_t guid, size;
820 	vdev_t *vd, **oldvdevs, **newvdevs;
821 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
822 
823 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
824 
825 	if (sav->sav_config != NULL) {
826 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
827 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
828 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
829 	} else {
830 		nl2cache = 0;
831 	}
832 
833 	oldvdevs = sav->sav_vdevs;
834 	oldnvdevs = sav->sav_count;
835 	sav->sav_vdevs = NULL;
836 	sav->sav_count = 0;
837 
838 	/*
839 	 * Process new nvlist of vdevs.
840 	 */
841 	for (i = 0; i < nl2cache; i++) {
842 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
843 		    &guid) == 0);
844 
845 		newvdevs[i] = NULL;
846 		for (j = 0; j < oldnvdevs; j++) {
847 			vd = oldvdevs[j];
848 			if (vd != NULL && guid == vd->vdev_guid) {
849 				/*
850 				 * Retain previous vdev for add/remove ops.
851 				 */
852 				newvdevs[i] = vd;
853 				oldvdevs[j] = NULL;
854 				break;
855 			}
856 		}
857 
858 		if (newvdevs[i] == NULL) {
859 			/*
860 			 * Create new vdev
861 			 */
862 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
863 			    VDEV_ALLOC_L2CACHE) == 0);
864 			ASSERT(vd != NULL);
865 			newvdevs[i] = vd;
866 
867 			/*
868 			 * Commit this vdev as an l2cache device,
869 			 * even if it fails to open.
870 			 */
871 			spa_l2cache_add(vd);
872 
873 			vd->vdev_top = vd;
874 			vd->vdev_aux = sav;
875 
876 			spa_l2cache_activate(vd);
877 
878 			if (vdev_open(vd) != 0)
879 				continue;
880 
881 			(void) vdev_validate_aux(vd);
882 
883 			if (!vdev_is_dead(vd)) {
884 				size = vdev_get_rsize(vd);
885 				l2arc_add_vdev(spa, vd,
886 				    VDEV_LABEL_START_SIZE,
887 				    size - VDEV_LABEL_START_SIZE);
888 			}
889 		}
890 	}
891 
892 	/*
893 	 * Purge vdevs that were dropped
894 	 */
895 	for (i = 0; i < oldnvdevs; i++) {
896 		uint64_t pool;
897 
898 		vd = oldvdevs[i];
899 		if (vd != NULL) {
900 			if ((spa_mode & FWRITE) &&
901 			    spa_l2cache_exists(vd->vdev_guid, &pool) &&
902 			    pool != 0ULL &&
903 			    l2arc_vdev_present(vd)) {
904 				l2arc_remove_vdev(vd);
905 			}
906 			(void) vdev_close(vd);
907 			spa_l2cache_remove(vd);
908 		}
909 	}
910 
911 	if (oldvdevs)
912 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
913 
914 	if (sav->sav_config == NULL)
915 		goto out;
916 
917 	sav->sav_vdevs = newvdevs;
918 	sav->sav_count = (int)nl2cache;
919 
920 	/*
921 	 * Recompute the stashed list of l2cache devices, with status
922 	 * information this time.
923 	 */
924 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
925 	    DATA_TYPE_NVLIST_ARRAY) == 0);
926 
927 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
928 	for (i = 0; i < sav->sav_count; i++)
929 		l2cache[i] = vdev_config_generate(spa,
930 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
931 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
932 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
933 out:
934 	for (i = 0; i < sav->sav_count; i++)
935 		nvlist_free(l2cache[i]);
936 	if (sav->sav_count)
937 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
938 }
939 
940 static int
941 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
942 {
943 	dmu_buf_t *db;
944 	char *packed = NULL;
945 	size_t nvsize = 0;
946 	int error;
947 	*value = NULL;
948 
949 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
950 	nvsize = *(uint64_t *)db->db_data;
951 	dmu_buf_rele(db, FTAG);
952 
953 	packed = kmem_alloc(nvsize, KM_SLEEP);
954 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
955 	if (error == 0)
956 		error = nvlist_unpack(packed, nvsize, value, 0);
957 	kmem_free(packed, nvsize);
958 
959 	return (error);
960 }
961 
962 /*
963  * Checks to see if the given vdev could not be opened, in which case we post a
964  * sysevent to notify the autoreplace code that the device has been removed.
965  */
966 static void
967 spa_check_removed(vdev_t *vd)
968 {
969 	int c;
970 
971 	for (c = 0; c < vd->vdev_children; c++)
972 		spa_check_removed(vd->vdev_child[c]);
973 
974 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
975 		zfs_post_autoreplace(vd->vdev_spa, vd);
976 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
977 	}
978 }
979 
980 /*
981  * Check for missing log devices
982  */
983 int
984 spa_check_logs(spa_t *spa)
985 {
986 	switch (spa->spa_log_state) {
987 	case SPA_LOG_MISSING:
988 		/* need to recheck in case slog has been restored */
989 	case SPA_LOG_UNKNOWN:
990 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
991 		    DS_FIND_CHILDREN)) {
992 			spa->spa_log_state = SPA_LOG_MISSING;
993 			return (1);
994 		}
995 		break;
996 
997 	case SPA_LOG_CLEAR:
998 		(void) dmu_objset_find(spa->spa_name, zil_clear_log_chain, NULL,
999 		    DS_FIND_CHILDREN);
1000 		break;
1001 	}
1002 	spa->spa_log_state = SPA_LOG_GOOD;
1003 	return (0);
1004 }
1005 
1006 /*
1007  * Load an existing storage pool, using the pool's builtin spa_config as a
1008  * source of configuration information.
1009  */
1010 static int
1011 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1012 {
1013 	int error = 0;
1014 	nvlist_t *nvroot = NULL;
1015 	vdev_t *rvd;
1016 	uberblock_t *ub = &spa->spa_uberblock;
1017 	uint64_t config_cache_txg = spa->spa_config_txg;
1018 	uint64_t pool_guid;
1019 	uint64_t version;
1020 	uint64_t autoreplace = 0;
1021 	char *ereport = FM_EREPORT_ZFS_POOL;
1022 
1023 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1024 
1025 	spa->spa_load_state = state;
1026 
1027 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1028 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1029 		error = EINVAL;
1030 		goto out;
1031 	}
1032 
1033 	/*
1034 	 * Versioning wasn't explicitly added to the label until later, so if
1035 	 * it's not present treat it as the initial version.
1036 	 */
1037 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1038 		version = SPA_VERSION_INITIAL;
1039 
1040 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1041 	    &spa->spa_config_txg);
1042 
1043 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1044 	    spa_guid_exists(pool_guid, 0)) {
1045 		error = EEXIST;
1046 		goto out;
1047 	}
1048 
1049 	spa->spa_load_guid = pool_guid;
1050 
1051 	/*
1052 	 * Parse the configuration into a vdev tree.  We explicitly set the
1053 	 * value that will be returned by spa_version() since parsing the
1054 	 * configuration requires knowing the version number.
1055 	 */
1056 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1057 	spa->spa_ubsync.ub_version = version;
1058 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1059 	spa_config_exit(spa, SCL_ALL, FTAG);
1060 
1061 	if (error != 0)
1062 		goto out;
1063 
1064 	ASSERT(spa->spa_root_vdev == rvd);
1065 	ASSERT(spa_guid(spa) == pool_guid);
1066 
1067 	/*
1068 	 * Try to open all vdevs, loading each label in the process.
1069 	 */
1070 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1071 	error = vdev_open(rvd);
1072 	spa_config_exit(spa, SCL_ALL, FTAG);
1073 	if (error != 0)
1074 		goto out;
1075 
1076 	/*
1077 	 * Validate the labels for all leaf vdevs.  We need to grab the config
1078 	 * lock because all label I/O is done with ZIO_FLAG_CONFIG_WRITER.
1079 	 */
1080 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1081 	error = vdev_validate(rvd);
1082 	spa_config_exit(spa, SCL_ALL, FTAG);
1083 
1084 	if (error != 0)
1085 		goto out;
1086 
1087 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1088 		error = ENXIO;
1089 		goto out;
1090 	}
1091 
1092 	/*
1093 	 * Find the best uberblock.
1094 	 */
1095 	vdev_uberblock_load(NULL, rvd, ub);
1096 
1097 	/*
1098 	 * If we weren't able to find a single valid uberblock, return failure.
1099 	 */
1100 	if (ub->ub_txg == 0) {
1101 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1102 		    VDEV_AUX_CORRUPT_DATA);
1103 		error = ENXIO;
1104 		goto out;
1105 	}
1106 
1107 	/*
1108 	 * If the pool is newer than the code, we can't open it.
1109 	 */
1110 	if (ub->ub_version > SPA_VERSION) {
1111 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1112 		    VDEV_AUX_VERSION_NEWER);
1113 		error = ENOTSUP;
1114 		goto out;
1115 	}
1116 
1117 	/*
1118 	 * If the vdev guid sum doesn't match the uberblock, we have an
1119 	 * incomplete configuration.
1120 	 */
1121 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1122 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1123 		    VDEV_AUX_BAD_GUID_SUM);
1124 		error = ENXIO;
1125 		goto out;
1126 	}
1127 
1128 	/*
1129 	 * Initialize internal SPA structures.
1130 	 */
1131 	spa->spa_state = POOL_STATE_ACTIVE;
1132 	spa->spa_ubsync = spa->spa_uberblock;
1133 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1134 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1135 	if (error) {
1136 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1137 		    VDEV_AUX_CORRUPT_DATA);
1138 		goto out;
1139 	}
1140 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1141 
1142 	if (zap_lookup(spa->spa_meta_objset,
1143 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1144 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1145 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1146 		    VDEV_AUX_CORRUPT_DATA);
1147 		error = EIO;
1148 		goto out;
1149 	}
1150 
1151 	if (!mosconfig) {
1152 		nvlist_t *newconfig;
1153 		uint64_t hostid;
1154 
1155 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1156 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1157 			    VDEV_AUX_CORRUPT_DATA);
1158 			error = EIO;
1159 			goto out;
1160 		}
1161 
1162 		if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1163 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1164 			char *hostname;
1165 			unsigned long myhostid = 0;
1166 
1167 			VERIFY(nvlist_lookup_string(newconfig,
1168 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1169 
1170 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1171 			if (hostid != 0 && myhostid != 0 &&
1172 			    (unsigned long)hostid != myhostid) {
1173 				cmn_err(CE_WARN, "pool '%s' could not be "
1174 				    "loaded as it was last accessed by "
1175 				    "another system (host: %s hostid: 0x%lx). "
1176 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1177 				    spa_name(spa), hostname,
1178 				    (unsigned long)hostid);
1179 				error = EBADF;
1180 				goto out;
1181 			}
1182 		}
1183 
1184 		spa_config_set(spa, newconfig);
1185 		spa_unload(spa);
1186 		spa_deactivate(spa);
1187 		spa_activate(spa);
1188 
1189 		return (spa_load(spa, newconfig, state, B_TRUE));
1190 	}
1191 
1192 	if (zap_lookup(spa->spa_meta_objset,
1193 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1194 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1195 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1196 		    VDEV_AUX_CORRUPT_DATA);
1197 		error = EIO;
1198 		goto out;
1199 	}
1200 
1201 	/*
1202 	 * Load the bit that tells us to use the new accounting function
1203 	 * (raid-z deflation).  If we have an older pool, this will not
1204 	 * be present.
1205 	 */
1206 	error = zap_lookup(spa->spa_meta_objset,
1207 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1208 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1209 	if (error != 0 && error != ENOENT) {
1210 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1211 		    VDEV_AUX_CORRUPT_DATA);
1212 		error = EIO;
1213 		goto out;
1214 	}
1215 
1216 	/*
1217 	 * Load the persistent error log.  If we have an older pool, this will
1218 	 * not be present.
1219 	 */
1220 	error = zap_lookup(spa->spa_meta_objset,
1221 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1222 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1223 	if (error != 0 && error != ENOENT) {
1224 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1225 		    VDEV_AUX_CORRUPT_DATA);
1226 		error = EIO;
1227 		goto out;
1228 	}
1229 
1230 	error = zap_lookup(spa->spa_meta_objset,
1231 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1232 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1233 	if (error != 0 && error != ENOENT) {
1234 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1235 		    VDEV_AUX_CORRUPT_DATA);
1236 		error = EIO;
1237 		goto out;
1238 	}
1239 
1240 	/*
1241 	 * Load the history object.  If we have an older pool, this
1242 	 * will not be present.
1243 	 */
1244 	error = zap_lookup(spa->spa_meta_objset,
1245 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1246 	    sizeof (uint64_t), 1, &spa->spa_history);
1247 	if (error != 0 && error != ENOENT) {
1248 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1249 		    VDEV_AUX_CORRUPT_DATA);
1250 		error = EIO;
1251 		goto out;
1252 	}
1253 
1254 	/*
1255 	 * Load any hot spares for this pool.
1256 	 */
1257 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1258 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1259 	if (error != 0 && error != ENOENT) {
1260 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1261 		    VDEV_AUX_CORRUPT_DATA);
1262 		error = EIO;
1263 		goto out;
1264 	}
1265 	if (error == 0) {
1266 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1267 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1268 		    &spa->spa_spares.sav_config) != 0) {
1269 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1270 			    VDEV_AUX_CORRUPT_DATA);
1271 			error = EIO;
1272 			goto out;
1273 		}
1274 
1275 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1276 		spa_load_spares(spa);
1277 		spa_config_exit(spa, SCL_ALL, FTAG);
1278 	}
1279 
1280 	/*
1281 	 * Load any level 2 ARC devices for this pool.
1282 	 */
1283 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1284 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1285 	    &spa->spa_l2cache.sav_object);
1286 	if (error != 0 && error != ENOENT) {
1287 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1288 		    VDEV_AUX_CORRUPT_DATA);
1289 		error = EIO;
1290 		goto out;
1291 	}
1292 	if (error == 0) {
1293 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1294 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1295 		    &spa->spa_l2cache.sav_config) != 0) {
1296 			vdev_set_state(rvd, B_TRUE,
1297 			    VDEV_STATE_CANT_OPEN,
1298 			    VDEV_AUX_CORRUPT_DATA);
1299 			error = EIO;
1300 			goto out;
1301 		}
1302 
1303 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1304 		spa_load_l2cache(spa);
1305 		spa_config_exit(spa, SCL_ALL, FTAG);
1306 	}
1307 
1308 	if (spa_check_logs(spa)) {
1309 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1310 		    VDEV_AUX_BAD_LOG);
1311 		error = ENXIO;
1312 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1313 		goto out;
1314 	}
1315 
1316 
1317 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1318 
1319 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1320 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1321 
1322 	if (error && error != ENOENT) {
1323 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1324 		    VDEV_AUX_CORRUPT_DATA);
1325 		error = EIO;
1326 		goto out;
1327 	}
1328 
1329 	if (error == 0) {
1330 		(void) zap_lookup(spa->spa_meta_objset,
1331 		    spa->spa_pool_props_object,
1332 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1333 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1334 		(void) zap_lookup(spa->spa_meta_objset,
1335 		    spa->spa_pool_props_object,
1336 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1337 		    sizeof (uint64_t), 1, &autoreplace);
1338 		(void) zap_lookup(spa->spa_meta_objset,
1339 		    spa->spa_pool_props_object,
1340 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1341 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1342 		(void) zap_lookup(spa->spa_meta_objset,
1343 		    spa->spa_pool_props_object,
1344 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1345 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1346 	}
1347 
1348 	/*
1349 	 * If the 'autoreplace' property is set, then post a resource notifying
1350 	 * the ZFS DE that it should not issue any faults for unopenable
1351 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1352 	 * unopenable vdevs so that the normal autoreplace handler can take
1353 	 * over.
1354 	 */
1355 	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1356 		spa_check_removed(spa->spa_root_vdev);
1357 
1358 	/*
1359 	 * Load the vdev state for all toplevel vdevs.
1360 	 */
1361 	vdev_load(rvd);
1362 
1363 	/*
1364 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1365 	 */
1366 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1367 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1368 	spa_config_exit(spa, SCL_ALL, FTAG);
1369 
1370 	/*
1371 	 * Check the state of the root vdev.  If it can't be opened, it
1372 	 * indicates one or more toplevel vdevs are faulted.
1373 	 */
1374 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1375 		error = ENXIO;
1376 		goto out;
1377 	}
1378 
1379 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
1380 		dmu_tx_t *tx;
1381 		int need_update = B_FALSE;
1382 		int c;
1383 
1384 		/*
1385 		 * Claim log blocks that haven't been committed yet.
1386 		 * This must all happen in a single txg.
1387 		 */
1388 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1389 		    spa_first_txg(spa));
1390 		(void) dmu_objset_find(spa_name(spa),
1391 		    zil_claim, tx, DS_FIND_CHILDREN);
1392 		dmu_tx_commit(tx);
1393 
1394 		spa->spa_sync_on = B_TRUE;
1395 		txg_sync_start(spa->spa_dsl_pool);
1396 
1397 		/*
1398 		 * Wait for all claims to sync.
1399 		 */
1400 		txg_wait_synced(spa->spa_dsl_pool, 0);
1401 
1402 		/*
1403 		 * If the config cache is stale, or we have uninitialized
1404 		 * metaslabs (see spa_vdev_add()), then update the config.
1405 		 */
1406 		if (config_cache_txg != spa->spa_config_txg ||
1407 		    state == SPA_LOAD_IMPORT)
1408 			need_update = B_TRUE;
1409 
1410 		for (c = 0; c < rvd->vdev_children; c++)
1411 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1412 				need_update = B_TRUE;
1413 
1414 		/*
1415 		 * Update the config cache asychronously in case we're the
1416 		 * root pool, in which case the config cache isn't writable yet.
1417 		 */
1418 		if (need_update)
1419 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1420 	}
1421 
1422 	error = 0;
1423 out:
1424 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1425 	if (error && error != EBADF)
1426 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1427 	spa->spa_load_state = SPA_LOAD_NONE;
1428 	spa->spa_ena = 0;
1429 
1430 	return (error);
1431 }
1432 
1433 /*
1434  * Pool Open/Import
1435  *
1436  * The import case is identical to an open except that the configuration is sent
1437  * down from userland, instead of grabbed from the configuration cache.  For the
1438  * case of an open, the pool configuration will exist in the
1439  * POOL_STATE_UNINITIALIZED state.
1440  *
1441  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1442  * the same time open the pool, without having to keep around the spa_t in some
1443  * ambiguous state.
1444  */
1445 static int
1446 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1447 {
1448 	spa_t *spa;
1449 	int error;
1450 	int locked = B_FALSE;
1451 
1452 	*spapp = NULL;
1453 
1454 	/*
1455 	 * As disgusting as this is, we need to support recursive calls to this
1456 	 * function because dsl_dir_open() is called during spa_load(), and ends
1457 	 * up calling spa_open() again.  The real fix is to figure out how to
1458 	 * avoid dsl_dir_open() calling this in the first place.
1459 	 */
1460 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1461 		mutex_enter(&spa_namespace_lock);
1462 		locked = B_TRUE;
1463 	}
1464 
1465 	if ((spa = spa_lookup(pool)) == NULL) {
1466 		if (locked)
1467 			mutex_exit(&spa_namespace_lock);
1468 		return (ENOENT);
1469 	}
1470 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1471 
1472 		spa_activate(spa);
1473 
1474 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1475 
1476 		if (error == EBADF) {
1477 			/*
1478 			 * If vdev_validate() returns failure (indicated by
1479 			 * EBADF), it indicates that one of the vdevs indicates
1480 			 * that the pool has been exported or destroyed.  If
1481 			 * this is the case, the config cache is out of sync and
1482 			 * we should remove the pool from the namespace.
1483 			 */
1484 			spa_unload(spa);
1485 			spa_deactivate(spa);
1486 			spa_config_sync(spa, B_TRUE, B_TRUE);
1487 			spa_remove(spa);
1488 			if (locked)
1489 				mutex_exit(&spa_namespace_lock);
1490 			return (ENOENT);
1491 		}
1492 
1493 		if (error) {
1494 			/*
1495 			 * We can't open the pool, but we still have useful
1496 			 * information: the state of each vdev after the
1497 			 * attempted vdev_open().  Return this to the user.
1498 			 */
1499 			if (config != NULL && spa->spa_root_vdev != NULL)
1500 				*config = spa_config_generate(spa, NULL, -1ULL,
1501 				    B_TRUE);
1502 			spa_unload(spa);
1503 			spa_deactivate(spa);
1504 			spa->spa_last_open_failed = B_TRUE;
1505 			if (locked)
1506 				mutex_exit(&spa_namespace_lock);
1507 			*spapp = NULL;
1508 			return (error);
1509 		} else {
1510 			spa->spa_last_open_failed = B_FALSE;
1511 		}
1512 	}
1513 
1514 	spa_open_ref(spa, tag);
1515 
1516 	if (locked)
1517 		mutex_exit(&spa_namespace_lock);
1518 
1519 	*spapp = spa;
1520 
1521 	if (config != NULL)
1522 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1523 
1524 	return (0);
1525 }
1526 
1527 int
1528 spa_open(const char *name, spa_t **spapp, void *tag)
1529 {
1530 	return (spa_open_common(name, spapp, tag, NULL));
1531 }
1532 
1533 /*
1534  * Lookup the given spa_t, incrementing the inject count in the process,
1535  * preventing it from being exported or destroyed.
1536  */
1537 spa_t *
1538 spa_inject_addref(char *name)
1539 {
1540 	spa_t *spa;
1541 
1542 	mutex_enter(&spa_namespace_lock);
1543 	if ((spa = spa_lookup(name)) == NULL) {
1544 		mutex_exit(&spa_namespace_lock);
1545 		return (NULL);
1546 	}
1547 	spa->spa_inject_ref++;
1548 	mutex_exit(&spa_namespace_lock);
1549 
1550 	return (spa);
1551 }
1552 
1553 void
1554 spa_inject_delref(spa_t *spa)
1555 {
1556 	mutex_enter(&spa_namespace_lock);
1557 	spa->spa_inject_ref--;
1558 	mutex_exit(&spa_namespace_lock);
1559 }
1560 
1561 /*
1562  * Add spares device information to the nvlist.
1563  */
1564 static void
1565 spa_add_spares(spa_t *spa, nvlist_t *config)
1566 {
1567 	nvlist_t **spares;
1568 	uint_t i, nspares;
1569 	nvlist_t *nvroot;
1570 	uint64_t guid;
1571 	vdev_stat_t *vs;
1572 	uint_t vsc;
1573 	uint64_t pool;
1574 
1575 	if (spa->spa_spares.sav_count == 0)
1576 		return;
1577 
1578 	VERIFY(nvlist_lookup_nvlist(config,
1579 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1580 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1581 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1582 	if (nspares != 0) {
1583 		VERIFY(nvlist_add_nvlist_array(nvroot,
1584 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1585 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1586 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1587 
1588 		/*
1589 		 * Go through and find any spares which have since been
1590 		 * repurposed as an active spare.  If this is the case, update
1591 		 * their status appropriately.
1592 		 */
1593 		for (i = 0; i < nspares; i++) {
1594 			VERIFY(nvlist_lookup_uint64(spares[i],
1595 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1596 			if (spa_spare_exists(guid, &pool, NULL) &&
1597 			    pool != 0ULL) {
1598 				VERIFY(nvlist_lookup_uint64_array(
1599 				    spares[i], ZPOOL_CONFIG_STATS,
1600 				    (uint64_t **)&vs, &vsc) == 0);
1601 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1602 				vs->vs_aux = VDEV_AUX_SPARED;
1603 			}
1604 		}
1605 	}
1606 }
1607 
1608 /*
1609  * Add l2cache device information to the nvlist, including vdev stats.
1610  */
1611 static void
1612 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1613 {
1614 	nvlist_t **l2cache;
1615 	uint_t i, j, nl2cache;
1616 	nvlist_t *nvroot;
1617 	uint64_t guid;
1618 	vdev_t *vd;
1619 	vdev_stat_t *vs;
1620 	uint_t vsc;
1621 
1622 	if (spa->spa_l2cache.sav_count == 0)
1623 		return;
1624 
1625 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1626 
1627 	VERIFY(nvlist_lookup_nvlist(config,
1628 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1629 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1630 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1631 	if (nl2cache != 0) {
1632 		VERIFY(nvlist_add_nvlist_array(nvroot,
1633 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1634 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1635 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1636 
1637 		/*
1638 		 * Update level 2 cache device stats.
1639 		 */
1640 
1641 		for (i = 0; i < nl2cache; i++) {
1642 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1643 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1644 
1645 			vd = NULL;
1646 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1647 				if (guid ==
1648 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1649 					vd = spa->spa_l2cache.sav_vdevs[j];
1650 					break;
1651 				}
1652 			}
1653 			ASSERT(vd != NULL);
1654 
1655 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1656 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1657 			vdev_get_stats(vd, vs);
1658 		}
1659 	}
1660 
1661 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1662 }
1663 
1664 int
1665 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1666 {
1667 	int error;
1668 	spa_t *spa;
1669 
1670 	*config = NULL;
1671 	error = spa_open_common(name, &spa, FTAG, config);
1672 
1673 	if (spa && *config != NULL) {
1674 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1675 		    spa_get_errlog_size(spa)) == 0);
1676 
1677 		if (spa_suspended(spa))
1678 			VERIFY(nvlist_add_uint64(*config,
1679 			    ZPOOL_CONFIG_SUSPENDED, spa->spa_failmode) == 0);
1680 
1681 		spa_add_spares(spa, *config);
1682 		spa_add_l2cache(spa, *config);
1683 	}
1684 
1685 	/*
1686 	 * We want to get the alternate root even for faulted pools, so we cheat
1687 	 * and call spa_lookup() directly.
1688 	 */
1689 	if (altroot) {
1690 		if (spa == NULL) {
1691 			mutex_enter(&spa_namespace_lock);
1692 			spa = spa_lookup(name);
1693 			if (spa)
1694 				spa_altroot(spa, altroot, buflen);
1695 			else
1696 				altroot[0] = '\0';
1697 			spa = NULL;
1698 			mutex_exit(&spa_namespace_lock);
1699 		} else {
1700 			spa_altroot(spa, altroot, buflen);
1701 		}
1702 	}
1703 
1704 	if (spa != NULL)
1705 		spa_close(spa, FTAG);
1706 
1707 	return (error);
1708 }
1709 
1710 /*
1711  * Validate that the auxiliary device array is well formed.  We must have an
1712  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1713  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1714  * specified, as long as they are well-formed.
1715  */
1716 static int
1717 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1718     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1719     vdev_labeltype_t label)
1720 {
1721 	nvlist_t **dev;
1722 	uint_t i, ndev;
1723 	vdev_t *vd;
1724 	int error;
1725 
1726 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1727 
1728 	/*
1729 	 * It's acceptable to have no devs specified.
1730 	 */
1731 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1732 		return (0);
1733 
1734 	if (ndev == 0)
1735 		return (EINVAL);
1736 
1737 	/*
1738 	 * Make sure the pool is formatted with a version that supports this
1739 	 * device type.
1740 	 */
1741 	if (spa_version(spa) < version)
1742 		return (ENOTSUP);
1743 
1744 	/*
1745 	 * Set the pending device list so we correctly handle device in-use
1746 	 * checking.
1747 	 */
1748 	sav->sav_pending = dev;
1749 	sav->sav_npending = ndev;
1750 
1751 	for (i = 0; i < ndev; i++) {
1752 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1753 		    mode)) != 0)
1754 			goto out;
1755 
1756 		if (!vd->vdev_ops->vdev_op_leaf) {
1757 			vdev_free(vd);
1758 			error = EINVAL;
1759 			goto out;
1760 		}
1761 
1762 		/*
1763 		 * The L2ARC currently only supports disk devices in
1764 		 * kernel context.  For user-level testing, we allow it.
1765 		 */
1766 #ifdef _KERNEL
1767 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1768 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1769 			error = ENOTBLK;
1770 			goto out;
1771 		}
1772 #endif
1773 		vd->vdev_top = vd;
1774 
1775 		if ((error = vdev_open(vd)) == 0 &&
1776 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1777 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1778 			    vd->vdev_guid) == 0);
1779 		}
1780 
1781 		vdev_free(vd);
1782 
1783 		if (error &&
1784 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1785 			goto out;
1786 		else
1787 			error = 0;
1788 	}
1789 
1790 out:
1791 	sav->sav_pending = NULL;
1792 	sav->sav_npending = 0;
1793 	return (error);
1794 }
1795 
1796 static int
1797 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1798 {
1799 	int error;
1800 
1801 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1802 
1803 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1804 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1805 	    VDEV_LABEL_SPARE)) != 0) {
1806 		return (error);
1807 	}
1808 
1809 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1810 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
1811 	    VDEV_LABEL_L2CACHE));
1812 }
1813 
1814 static void
1815 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
1816     const char *config)
1817 {
1818 	int i;
1819 
1820 	if (sav->sav_config != NULL) {
1821 		nvlist_t **olddevs;
1822 		uint_t oldndevs;
1823 		nvlist_t **newdevs;
1824 
1825 		/*
1826 		 * Generate new dev list by concatentating with the
1827 		 * current dev list.
1828 		 */
1829 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
1830 		    &olddevs, &oldndevs) == 0);
1831 
1832 		newdevs = kmem_alloc(sizeof (void *) *
1833 		    (ndevs + oldndevs), KM_SLEEP);
1834 		for (i = 0; i < oldndevs; i++)
1835 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
1836 			    KM_SLEEP) == 0);
1837 		for (i = 0; i < ndevs; i++)
1838 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
1839 			    KM_SLEEP) == 0);
1840 
1841 		VERIFY(nvlist_remove(sav->sav_config, config,
1842 		    DATA_TYPE_NVLIST_ARRAY) == 0);
1843 
1844 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1845 		    config, newdevs, ndevs + oldndevs) == 0);
1846 		for (i = 0; i < oldndevs + ndevs; i++)
1847 			nvlist_free(newdevs[i]);
1848 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
1849 	} else {
1850 		/*
1851 		 * Generate a new dev list.
1852 		 */
1853 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
1854 		    KM_SLEEP) == 0);
1855 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
1856 		    devs, ndevs) == 0);
1857 	}
1858 }
1859 
1860 /*
1861  * Stop and drop level 2 ARC devices
1862  */
1863 void
1864 spa_l2cache_drop(spa_t *spa)
1865 {
1866 	vdev_t *vd;
1867 	int i;
1868 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1869 
1870 	for (i = 0; i < sav->sav_count; i++) {
1871 		uint64_t pool;
1872 
1873 		vd = sav->sav_vdevs[i];
1874 		ASSERT(vd != NULL);
1875 
1876 		if ((spa_mode & FWRITE) &&
1877 		    spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL &&
1878 		    l2arc_vdev_present(vd)) {
1879 			l2arc_remove_vdev(vd);
1880 		}
1881 		if (vd->vdev_isl2cache)
1882 			spa_l2cache_remove(vd);
1883 		vdev_clear_stats(vd);
1884 		(void) vdev_close(vd);
1885 	}
1886 }
1887 
1888 /*
1889  * Pool Creation
1890  */
1891 int
1892 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1893     const char *history_str, nvlist_t *zplprops)
1894 {
1895 	spa_t *spa;
1896 	char *altroot = NULL;
1897 	vdev_t *rvd;
1898 	dsl_pool_t *dp;
1899 	dmu_tx_t *tx;
1900 	int c, error = 0;
1901 	uint64_t txg = TXG_INITIAL;
1902 	nvlist_t **spares, **l2cache;
1903 	uint_t nspares, nl2cache;
1904 	uint64_t version;
1905 
1906 	/*
1907 	 * If this pool already exists, return failure.
1908 	 */
1909 	mutex_enter(&spa_namespace_lock);
1910 	if (spa_lookup(pool) != NULL) {
1911 		mutex_exit(&spa_namespace_lock);
1912 		return (EEXIST);
1913 	}
1914 
1915 	/*
1916 	 * Allocate a new spa_t structure.
1917 	 */
1918 	(void) nvlist_lookup_string(props,
1919 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1920 	spa = spa_add(pool, altroot);
1921 	spa_activate(spa);
1922 
1923 	spa->spa_uberblock.ub_txg = txg - 1;
1924 
1925 	if (props && (error = spa_prop_validate(spa, props))) {
1926 		spa_unload(spa);
1927 		spa_deactivate(spa);
1928 		spa_remove(spa);
1929 		mutex_exit(&spa_namespace_lock);
1930 		return (error);
1931 	}
1932 
1933 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
1934 	    &version) != 0)
1935 		version = SPA_VERSION;
1936 	ASSERT(version <= SPA_VERSION);
1937 	spa->spa_uberblock.ub_version = version;
1938 	spa->spa_ubsync = spa->spa_uberblock;
1939 
1940 	/*
1941 	 * Create the root vdev.
1942 	 */
1943 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1944 
1945 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1946 
1947 	ASSERT(error != 0 || rvd != NULL);
1948 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1949 
1950 	if (error == 0 && !zfs_allocatable_devs(nvroot))
1951 		error = EINVAL;
1952 
1953 	if (error == 0 &&
1954 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1955 	    (error = spa_validate_aux(spa, nvroot, txg,
1956 	    VDEV_ALLOC_ADD)) == 0) {
1957 		for (c = 0; c < rvd->vdev_children; c++)
1958 			vdev_init(rvd->vdev_child[c], txg);
1959 		vdev_config_dirty(rvd);
1960 	}
1961 
1962 	spa_config_exit(spa, SCL_ALL, FTAG);
1963 
1964 	if (error != 0) {
1965 		spa_unload(spa);
1966 		spa_deactivate(spa);
1967 		spa_remove(spa);
1968 		mutex_exit(&spa_namespace_lock);
1969 		return (error);
1970 	}
1971 
1972 	/*
1973 	 * Get the list of spares, if specified.
1974 	 */
1975 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1976 	    &spares, &nspares) == 0) {
1977 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
1978 		    KM_SLEEP) == 0);
1979 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1980 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1981 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1982 		spa_load_spares(spa);
1983 		spa_config_exit(spa, SCL_ALL, FTAG);
1984 		spa->spa_spares.sav_sync = B_TRUE;
1985 	}
1986 
1987 	/*
1988 	 * Get the list of level 2 cache devices, if specified.
1989 	 */
1990 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1991 	    &l2cache, &nl2cache) == 0) {
1992 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
1993 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1994 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
1995 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1996 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1997 		spa_load_l2cache(spa);
1998 		spa_config_exit(spa, SCL_ALL, FTAG);
1999 		spa->spa_l2cache.sav_sync = B_TRUE;
2000 	}
2001 
2002 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2003 	spa->spa_meta_objset = dp->dp_meta_objset;
2004 
2005 	tx = dmu_tx_create_assigned(dp, txg);
2006 
2007 	/*
2008 	 * Create the pool config object.
2009 	 */
2010 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2011 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2012 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2013 
2014 	if (zap_add(spa->spa_meta_objset,
2015 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2016 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2017 		cmn_err(CE_PANIC, "failed to add pool config");
2018 	}
2019 
2020 	/* Newly created pools with the right version are always deflated. */
2021 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2022 		spa->spa_deflate = TRUE;
2023 		if (zap_add(spa->spa_meta_objset,
2024 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2025 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2026 			cmn_err(CE_PANIC, "failed to add deflate");
2027 		}
2028 	}
2029 
2030 	/*
2031 	 * Create the deferred-free bplist object.  Turn off compression
2032 	 * because sync-to-convergence takes longer if the blocksize
2033 	 * keeps changing.
2034 	 */
2035 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2036 	    1 << 14, tx);
2037 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2038 	    ZIO_COMPRESS_OFF, tx);
2039 
2040 	if (zap_add(spa->spa_meta_objset,
2041 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2042 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2043 		cmn_err(CE_PANIC, "failed to add bplist");
2044 	}
2045 
2046 	/*
2047 	 * Create the pool's history object.
2048 	 */
2049 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2050 		spa_history_create_obj(spa, tx);
2051 
2052 	/*
2053 	 * Set pool properties.
2054 	 */
2055 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2056 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2057 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2058 	if (props)
2059 		spa_sync_props(spa, props, CRED(), tx);
2060 
2061 	dmu_tx_commit(tx);
2062 
2063 	spa->spa_sync_on = B_TRUE;
2064 	txg_sync_start(spa->spa_dsl_pool);
2065 
2066 	/*
2067 	 * We explicitly wait for the first transaction to complete so that our
2068 	 * bean counters are appropriately updated.
2069 	 */
2070 	txg_wait_synced(spa->spa_dsl_pool, txg);
2071 
2072 	spa_config_sync(spa, B_FALSE, B_TRUE);
2073 
2074 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2075 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2076 
2077 	mutex_exit(&spa_namespace_lock);
2078 
2079 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2080 
2081 	return (0);
2082 }
2083 
2084 /*
2085  * Import the given pool into the system.  We set up the necessary spa_t and
2086  * then call spa_load() to do the dirty work.
2087  */
2088 static int
2089 spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props,
2090     boolean_t isroot, boolean_t allowfaulted)
2091 {
2092 	spa_t *spa;
2093 	char *altroot = NULL;
2094 	int error, loaderr;
2095 	nvlist_t *nvroot;
2096 	nvlist_t **spares, **l2cache;
2097 	uint_t nspares, nl2cache;
2098 
2099 	/*
2100 	 * If a pool with this name exists, return failure.
2101 	 */
2102 	mutex_enter(&spa_namespace_lock);
2103 	if (spa_lookup(pool) != NULL) {
2104 		mutex_exit(&spa_namespace_lock);
2105 		return (EEXIST);
2106 	}
2107 
2108 	/*
2109 	 * Create and initialize the spa structure.
2110 	 */
2111 	(void) nvlist_lookup_string(props,
2112 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2113 	spa = spa_add(pool, altroot);
2114 	spa_activate(spa);
2115 
2116 	if (allowfaulted)
2117 		spa->spa_import_faulted = B_TRUE;
2118 	spa->spa_is_root = isroot;
2119 
2120 	/*
2121 	 * Pass off the heavy lifting to spa_load().
2122 	 * Pass TRUE for mosconfig (unless this is a root pool) because
2123 	 * the user-supplied config is actually the one to trust when
2124 	 * doing an import.
2125 	 */
2126 	loaderr = error = spa_load(spa, config, SPA_LOAD_IMPORT, !isroot);
2127 
2128 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2129 	/*
2130 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
2131 	 * and conflicts with spa_has_spare().
2132 	 */
2133 	if (!isroot && spa->spa_spares.sav_config) {
2134 		nvlist_free(spa->spa_spares.sav_config);
2135 		spa->spa_spares.sav_config = NULL;
2136 		spa_load_spares(spa);
2137 	}
2138 	if (!isroot && spa->spa_l2cache.sav_config) {
2139 		nvlist_free(spa->spa_l2cache.sav_config);
2140 		spa->spa_l2cache.sav_config = NULL;
2141 		spa_load_l2cache(spa);
2142 	}
2143 
2144 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2145 	    &nvroot) == 0);
2146 	if (error == 0)
2147 		error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE);
2148 	if (error == 0)
2149 		error = spa_validate_aux(spa, nvroot, -1ULL,
2150 		    VDEV_ALLOC_L2CACHE);
2151 	spa_config_exit(spa, SCL_ALL, FTAG);
2152 
2153 	if (error != 0 || (props && (error = spa_prop_set(spa, props)))) {
2154 		if (loaderr != 0 && loaderr != EINVAL && allowfaulted) {
2155 			/*
2156 			 * If we failed to load the pool, but 'allowfaulted' is
2157 			 * set, then manually set the config as if the config
2158 			 * passed in was specified in the cache file.
2159 			 */
2160 			error = 0;
2161 			spa->spa_import_faulted = B_FALSE;
2162 			if (spa->spa_config == NULL)
2163 				spa->spa_config = spa_config_generate(spa,
2164 				    NULL, -1ULL, B_TRUE);
2165 			spa_unload(spa);
2166 			spa_deactivate(spa);
2167 			spa_config_sync(spa, B_FALSE, B_TRUE);
2168 		} else {
2169 			spa_unload(spa);
2170 			spa_deactivate(spa);
2171 			spa_remove(spa);
2172 		}
2173 		mutex_exit(&spa_namespace_lock);
2174 		return (error);
2175 	}
2176 
2177 	/*
2178 	 * Override any spares and level 2 cache devices as specified by
2179 	 * the user, as these may have correct device names/devids, etc.
2180 	 */
2181 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2182 	    &spares, &nspares) == 0) {
2183 		if (spa->spa_spares.sav_config)
2184 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2185 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2186 		else
2187 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2188 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2189 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2190 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2191 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2192 		spa_load_spares(spa);
2193 		spa_config_exit(spa, SCL_ALL, FTAG);
2194 		spa->spa_spares.sav_sync = B_TRUE;
2195 	}
2196 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2197 	    &l2cache, &nl2cache) == 0) {
2198 		if (spa->spa_l2cache.sav_config)
2199 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2200 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2201 		else
2202 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2203 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2204 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2205 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2206 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2207 		spa_load_l2cache(spa);
2208 		spa_config_exit(spa, SCL_ALL, FTAG);
2209 		spa->spa_l2cache.sav_sync = B_TRUE;
2210 	}
2211 
2212 	if (spa_mode & FWRITE) {
2213 		/*
2214 		 * Update the config cache to include the newly-imported pool.
2215 		 */
2216 		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot);
2217 	}
2218 
2219 	spa->spa_import_faulted = B_FALSE;
2220 	mutex_exit(&spa_namespace_lock);
2221 
2222 	return (0);
2223 }
2224 
2225 #ifdef _KERNEL
2226 /*
2227  * Build a "root" vdev for a top level vdev read in from a rootpool
2228  * device label.
2229  */
2230 static void
2231 spa_build_rootpool_config(nvlist_t *config)
2232 {
2233 	nvlist_t *nvtop, *nvroot;
2234 	uint64_t pgid;
2235 
2236 	/*
2237 	 * Add this top-level vdev to the child array.
2238 	 */
2239 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop)
2240 	    == 0);
2241 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid)
2242 	    == 0);
2243 
2244 	/*
2245 	 * Put this pool's top-level vdevs into a root vdev.
2246 	 */
2247 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2248 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT)
2249 	    == 0);
2250 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2251 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2252 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2253 	    &nvtop, 1) == 0);
2254 
2255 	/*
2256 	 * Replace the existing vdev_tree with the new root vdev in
2257 	 * this pool's configuration (remove the old, add the new).
2258 	 */
2259 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2260 	nvlist_free(nvroot);
2261 }
2262 
2263 /*
2264  * Get the root pool information from the root disk, then import the root pool
2265  * during the system boot up time.
2266  */
2267 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2268 
2269 int
2270 spa_check_rootconf(char *devpath, char *devid, nvlist_t **bestconf,
2271     uint64_t *besttxg)
2272 {
2273 	nvlist_t *config;
2274 	uint64_t txg;
2275 	int error;
2276 
2277 	if (error = vdev_disk_read_rootlabel(devpath, devid, &config))
2278 		return (error);
2279 
2280 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2281 
2282 	if (bestconf != NULL)
2283 		*bestconf = config;
2284 	else
2285 		nvlist_free(config);
2286 	*besttxg = txg;
2287 	return (0);
2288 }
2289 
2290 boolean_t
2291 spa_rootdev_validate(nvlist_t *nv)
2292 {
2293 	uint64_t ival;
2294 
2295 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 ||
2296 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 ||
2297 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0)
2298 		return (B_FALSE);
2299 
2300 	return (B_TRUE);
2301 }
2302 
2303 
2304 /*
2305  * Given the boot device's physical path or devid, check if the device
2306  * is in a valid state.  If so, return the configuration from the vdev
2307  * label.
2308  */
2309 int
2310 spa_get_rootconf(char *devpath, char *devid, nvlist_t **bestconf)
2311 {
2312 	nvlist_t *conf = NULL;
2313 	uint64_t txg = 0;
2314 	nvlist_t *nvtop, **child;
2315 	char *type;
2316 	char *bootpath = NULL;
2317 	uint_t children, c;
2318 	char *tmp;
2319 	int error;
2320 
2321 	if (devpath && ((tmp = strchr(devpath, ' ')) != NULL))
2322 		*tmp = '\0';
2323 	if (error = spa_check_rootconf(devpath, devid, &conf, &txg)) {
2324 		cmn_err(CE_NOTE, "error reading device label");
2325 		return (error);
2326 	}
2327 	if (txg == 0) {
2328 		cmn_err(CE_NOTE, "this device is detached");
2329 		nvlist_free(conf);
2330 		return (EINVAL);
2331 	}
2332 
2333 	VERIFY(nvlist_lookup_nvlist(conf, ZPOOL_CONFIG_VDEV_TREE,
2334 	    &nvtop) == 0);
2335 	VERIFY(nvlist_lookup_string(nvtop, ZPOOL_CONFIG_TYPE, &type) == 0);
2336 
2337 	if (strcmp(type, VDEV_TYPE_DISK) == 0) {
2338 		if (spa_rootdev_validate(nvtop)) {
2339 			goto out;
2340 		} else {
2341 			nvlist_free(conf);
2342 			return (EINVAL);
2343 		}
2344 	}
2345 
2346 	ASSERT(strcmp(type, VDEV_TYPE_MIRROR) == 0);
2347 
2348 	VERIFY(nvlist_lookup_nvlist_array(nvtop, ZPOOL_CONFIG_CHILDREN,
2349 	    &child, &children) == 0);
2350 
2351 	/*
2352 	 * Go thru vdevs in the mirror to see if the given device
2353 	 * has the most recent txg. Only the device with the most
2354 	 * recent txg has valid information and should be booted.
2355 	 */
2356 	for (c = 0; c < children; c++) {
2357 		char *cdevid, *cpath;
2358 		uint64_t tmptxg;
2359 
2360 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_PHYS_PATH,
2361 		    &cpath) != 0)
2362 			return (EINVAL);
2363 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_DEVID,
2364 		    &cdevid) != 0)
2365 			return (EINVAL);
2366 		if ((spa_check_rootconf(cpath, cdevid, NULL,
2367 		    &tmptxg) == 0) && (tmptxg > txg)) {
2368 			txg = tmptxg;
2369 			VERIFY(nvlist_lookup_string(child[c],
2370 			    ZPOOL_CONFIG_PATH, &bootpath) == 0);
2371 		}
2372 	}
2373 
2374 	/* Does the best device match the one we've booted from? */
2375 	if (bootpath) {
2376 		cmn_err(CE_NOTE, "try booting from '%s'", bootpath);
2377 		return (EINVAL);
2378 	}
2379 out:
2380 	*bestconf = conf;
2381 	return (0);
2382 }
2383 
2384 /*
2385  * Import a root pool.
2386  *
2387  * For x86. devpath_list will consist of devid and/or physpath name of
2388  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2389  * The GRUB "findroot" command will return the vdev we should boot.
2390  *
2391  * For Sparc, devpath_list consists the physpath name of the booting device
2392  * no matter the rootpool is a single device pool or a mirrored pool.
2393  * e.g.
2394  *	"/pci@1f,0/ide@d/disk@0,0:a"
2395  */
2396 int
2397 spa_import_rootpool(char *devpath, char *devid)
2398 {
2399 	nvlist_t *conf = NULL;
2400 	char *pname;
2401 	int error;
2402 
2403 	/*
2404 	 * Get the vdev pathname and configuation from the most
2405 	 * recently updated vdev (highest txg).
2406 	 */
2407 	if (error = spa_get_rootconf(devpath, devid, &conf))
2408 		goto msg_out;
2409 
2410 	/*
2411 	 * Add type "root" vdev to the config.
2412 	 */
2413 	spa_build_rootpool_config(conf);
2414 
2415 	VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0);
2416 
2417 	/*
2418 	 * We specify 'allowfaulted' for this to be treated like spa_open()
2419 	 * instead of spa_import().  This prevents us from marking vdevs as
2420 	 * persistently unavailable, and generates FMA ereports as if it were a
2421 	 * pool open, not import.
2422 	 */
2423 	error = spa_import_common(pname, conf, NULL, B_TRUE, B_TRUE);
2424 	if (error == EEXIST)
2425 		error = 0;
2426 
2427 	nvlist_free(conf);
2428 	return (error);
2429 
2430 msg_out:
2431 	cmn_err(CE_NOTE, "\n"
2432 	    "  ***************************************************  \n"
2433 	    "  *  This device is not bootable!                   *  \n"
2434 	    "  *  It is either offlined or detached or faulted.  *  \n"
2435 	    "  *  Please try to boot from a different device.    *  \n"
2436 	    "  ***************************************************  ");
2437 
2438 	return (error);
2439 }
2440 #endif
2441 
2442 /*
2443  * Import a non-root pool into the system.
2444  */
2445 int
2446 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2447 {
2448 	return (spa_import_common(pool, config, props, B_FALSE, B_FALSE));
2449 }
2450 
2451 int
2452 spa_import_faulted(const char *pool, nvlist_t *config, nvlist_t *props)
2453 {
2454 	return (spa_import_common(pool, config, props, B_FALSE, B_TRUE));
2455 }
2456 
2457 
2458 /*
2459  * This (illegal) pool name is used when temporarily importing a spa_t in order
2460  * to get the vdev stats associated with the imported devices.
2461  */
2462 #define	TRYIMPORT_NAME	"$import"
2463 
2464 nvlist_t *
2465 spa_tryimport(nvlist_t *tryconfig)
2466 {
2467 	nvlist_t *config = NULL;
2468 	char *poolname;
2469 	spa_t *spa;
2470 	uint64_t state;
2471 
2472 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2473 		return (NULL);
2474 
2475 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2476 		return (NULL);
2477 
2478 	/*
2479 	 * Create and initialize the spa structure.
2480 	 */
2481 	mutex_enter(&spa_namespace_lock);
2482 	spa = spa_add(TRYIMPORT_NAME, NULL);
2483 	spa_activate(spa);
2484 
2485 	/*
2486 	 * Pass off the heavy lifting to spa_load().
2487 	 * Pass TRUE for mosconfig because the user-supplied config
2488 	 * is actually the one to trust when doing an import.
2489 	 */
2490 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2491 
2492 	/*
2493 	 * If 'tryconfig' was at least parsable, return the current config.
2494 	 */
2495 	if (spa->spa_root_vdev != NULL) {
2496 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2497 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2498 		    poolname) == 0);
2499 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2500 		    state) == 0);
2501 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2502 		    spa->spa_uberblock.ub_timestamp) == 0);
2503 
2504 		/*
2505 		 * If the bootfs property exists on this pool then we
2506 		 * copy it out so that external consumers can tell which
2507 		 * pools are bootable.
2508 		 */
2509 		if (spa->spa_bootfs) {
2510 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2511 
2512 			/*
2513 			 * We have to play games with the name since the
2514 			 * pool was opened as TRYIMPORT_NAME.
2515 			 */
2516 			if (dsl_dsobj_to_dsname(spa_name(spa),
2517 			    spa->spa_bootfs, tmpname) == 0) {
2518 				char *cp;
2519 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2520 
2521 				cp = strchr(tmpname, '/');
2522 				if (cp == NULL) {
2523 					(void) strlcpy(dsname, tmpname,
2524 					    MAXPATHLEN);
2525 				} else {
2526 					(void) snprintf(dsname, MAXPATHLEN,
2527 					    "%s/%s", poolname, ++cp);
2528 				}
2529 				VERIFY(nvlist_add_string(config,
2530 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2531 				kmem_free(dsname, MAXPATHLEN);
2532 			}
2533 			kmem_free(tmpname, MAXPATHLEN);
2534 		}
2535 
2536 		/*
2537 		 * Add the list of hot spares and level 2 cache devices.
2538 		 */
2539 		spa_add_spares(spa, config);
2540 		spa_add_l2cache(spa, config);
2541 	}
2542 
2543 	spa_unload(spa);
2544 	spa_deactivate(spa);
2545 	spa_remove(spa);
2546 	mutex_exit(&spa_namespace_lock);
2547 
2548 	return (config);
2549 }
2550 
2551 /*
2552  * Pool export/destroy
2553  *
2554  * The act of destroying or exporting a pool is very simple.  We make sure there
2555  * is no more pending I/O and any references to the pool are gone.  Then, we
2556  * update the pool state and sync all the labels to disk, removing the
2557  * configuration from the cache afterwards.
2558  */
2559 static int
2560 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2561     boolean_t force)
2562 {
2563 	spa_t *spa;
2564 
2565 	if (oldconfig)
2566 		*oldconfig = NULL;
2567 
2568 	if (!(spa_mode & FWRITE))
2569 		return (EROFS);
2570 
2571 	mutex_enter(&spa_namespace_lock);
2572 	if ((spa = spa_lookup(pool)) == NULL) {
2573 		mutex_exit(&spa_namespace_lock);
2574 		return (ENOENT);
2575 	}
2576 
2577 	/*
2578 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2579 	 * reacquire the namespace lock, and see if we can export.
2580 	 */
2581 	spa_open_ref(spa, FTAG);
2582 	mutex_exit(&spa_namespace_lock);
2583 	spa_async_suspend(spa);
2584 	mutex_enter(&spa_namespace_lock);
2585 	spa_close(spa, FTAG);
2586 
2587 	/*
2588 	 * The pool will be in core if it's openable,
2589 	 * in which case we can modify its state.
2590 	 */
2591 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2592 		/*
2593 		 * Objsets may be open only because they're dirty, so we
2594 		 * have to force it to sync before checking spa_refcnt.
2595 		 */
2596 		txg_wait_synced(spa->spa_dsl_pool, 0);
2597 
2598 		/*
2599 		 * A pool cannot be exported or destroyed if there are active
2600 		 * references.  If we are resetting a pool, allow references by
2601 		 * fault injection handlers.
2602 		 */
2603 		if (!spa_refcount_zero(spa) ||
2604 		    (spa->spa_inject_ref != 0 &&
2605 		    new_state != POOL_STATE_UNINITIALIZED)) {
2606 			spa_async_resume(spa);
2607 			mutex_exit(&spa_namespace_lock);
2608 			return (EBUSY);
2609 		}
2610 
2611 		/*
2612 		 * A pool cannot be exported if it has an active shared spare.
2613 		 * This is to prevent other pools stealing the active spare
2614 		 * from an exported pool. At user's own will, such pool can
2615 		 * be forcedly exported.
2616 		 */
2617 		if (!force && new_state == POOL_STATE_EXPORTED &&
2618 		    spa_has_active_shared_spare(spa)) {
2619 			spa_async_resume(spa);
2620 			mutex_exit(&spa_namespace_lock);
2621 			return (EXDEV);
2622 		}
2623 
2624 		/*
2625 		 * We want this to be reflected on every label,
2626 		 * so mark them all dirty.  spa_unload() will do the
2627 		 * final sync that pushes these changes out.
2628 		 */
2629 		if (new_state != POOL_STATE_UNINITIALIZED) {
2630 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2631 			spa->spa_state = new_state;
2632 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2633 			vdev_config_dirty(spa->spa_root_vdev);
2634 			spa_config_exit(spa, SCL_ALL, FTAG);
2635 		}
2636 	}
2637 
2638 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2639 
2640 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2641 		spa_unload(spa);
2642 		spa_deactivate(spa);
2643 	}
2644 
2645 	if (oldconfig && spa->spa_config)
2646 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2647 
2648 	if (new_state != POOL_STATE_UNINITIALIZED) {
2649 		spa_config_sync(spa, B_TRUE, B_TRUE);
2650 		spa_remove(spa);
2651 	}
2652 	mutex_exit(&spa_namespace_lock);
2653 
2654 	return (0);
2655 }
2656 
2657 /*
2658  * Destroy a storage pool.
2659  */
2660 int
2661 spa_destroy(char *pool)
2662 {
2663 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE));
2664 }
2665 
2666 /*
2667  * Export a storage pool.
2668  */
2669 int
2670 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force)
2671 {
2672 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force));
2673 }
2674 
2675 /*
2676  * Similar to spa_export(), this unloads the spa_t without actually removing it
2677  * from the namespace in any way.
2678  */
2679 int
2680 spa_reset(char *pool)
2681 {
2682 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2683 	    B_FALSE));
2684 }
2685 
2686 /*
2687  * ==========================================================================
2688  * Device manipulation
2689  * ==========================================================================
2690  */
2691 
2692 /*
2693  * Add a device to a storage pool.
2694  */
2695 int
2696 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2697 {
2698 	uint64_t txg;
2699 	int c, error;
2700 	vdev_t *rvd = spa->spa_root_vdev;
2701 	vdev_t *vd, *tvd;
2702 	nvlist_t **spares, **l2cache;
2703 	uint_t nspares, nl2cache;
2704 
2705 	txg = spa_vdev_enter(spa);
2706 
2707 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2708 	    VDEV_ALLOC_ADD)) != 0)
2709 		return (spa_vdev_exit(spa, NULL, txg, error));
2710 
2711 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
2712 
2713 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2714 	    &nspares) != 0)
2715 		nspares = 0;
2716 
2717 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2718 	    &nl2cache) != 0)
2719 		nl2cache = 0;
2720 
2721 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2722 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2723 
2724 	if (vd->vdev_children != 0 &&
2725 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
2726 		return (spa_vdev_exit(spa, vd, txg, error));
2727 
2728 	/*
2729 	 * We must validate the spares and l2cache devices after checking the
2730 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2731 	 */
2732 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2733 		return (spa_vdev_exit(spa, vd, txg, error));
2734 
2735 	/*
2736 	 * Transfer each new top-level vdev from vd to rvd.
2737 	 */
2738 	for (c = 0; c < vd->vdev_children; c++) {
2739 		tvd = vd->vdev_child[c];
2740 		vdev_remove_child(vd, tvd);
2741 		tvd->vdev_id = rvd->vdev_children;
2742 		vdev_add_child(rvd, tvd);
2743 		vdev_config_dirty(tvd);
2744 	}
2745 
2746 	if (nspares != 0) {
2747 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2748 		    ZPOOL_CONFIG_SPARES);
2749 		spa_load_spares(spa);
2750 		spa->spa_spares.sav_sync = B_TRUE;
2751 	}
2752 
2753 	if (nl2cache != 0) {
2754 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2755 		    ZPOOL_CONFIG_L2CACHE);
2756 		spa_load_l2cache(spa);
2757 		spa->spa_l2cache.sav_sync = B_TRUE;
2758 	}
2759 
2760 	/*
2761 	 * We have to be careful when adding new vdevs to an existing pool.
2762 	 * If other threads start allocating from these vdevs before we
2763 	 * sync the config cache, and we lose power, then upon reboot we may
2764 	 * fail to open the pool because there are DVAs that the config cache
2765 	 * can't translate.  Therefore, we first add the vdevs without
2766 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2767 	 * and then let spa_config_update() initialize the new metaslabs.
2768 	 *
2769 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2770 	 * if we lose power at any point in this sequence, the remaining
2771 	 * steps will be completed the next time we load the pool.
2772 	 */
2773 	(void) spa_vdev_exit(spa, vd, txg, 0);
2774 
2775 	mutex_enter(&spa_namespace_lock);
2776 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2777 	mutex_exit(&spa_namespace_lock);
2778 
2779 	return (0);
2780 }
2781 
2782 /*
2783  * Attach a device to a mirror.  The arguments are the path to any device
2784  * in the mirror, and the nvroot for the new device.  If the path specifies
2785  * a device that is not mirrored, we automatically insert the mirror vdev.
2786  *
2787  * If 'replacing' is specified, the new device is intended to replace the
2788  * existing device; in this case the two devices are made into their own
2789  * mirror using the 'replacing' vdev, which is functionally identical to
2790  * the mirror vdev (it actually reuses all the same ops) but has a few
2791  * extra rules: you can't attach to it after it's been created, and upon
2792  * completion of resilvering, the first disk (the one being replaced)
2793  * is automatically detached.
2794  */
2795 int
2796 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2797 {
2798 	uint64_t txg, open_txg;
2799 	vdev_t *rvd = spa->spa_root_vdev;
2800 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2801 	vdev_ops_t *pvops;
2802 	dmu_tx_t *tx;
2803 	char *oldvdpath, *newvdpath;
2804 	int newvd_isspare;
2805 	int error;
2806 
2807 	txg = spa_vdev_enter(spa);
2808 
2809 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
2810 
2811 	if (oldvd == NULL)
2812 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2813 
2814 	if (!oldvd->vdev_ops->vdev_op_leaf)
2815 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2816 
2817 	pvd = oldvd->vdev_parent;
2818 
2819 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2820 	    VDEV_ALLOC_ADD)) != 0)
2821 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2822 
2823 	if (newrootvd->vdev_children != 1)
2824 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2825 
2826 	newvd = newrootvd->vdev_child[0];
2827 
2828 	if (!newvd->vdev_ops->vdev_op_leaf)
2829 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2830 
2831 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2832 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2833 
2834 	/*
2835 	 * Spares can't replace logs
2836 	 */
2837 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
2838 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2839 
2840 	if (!replacing) {
2841 		/*
2842 		 * For attach, the only allowable parent is a mirror or the root
2843 		 * vdev.
2844 		 */
2845 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2846 		    pvd->vdev_ops != &vdev_root_ops)
2847 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2848 
2849 		pvops = &vdev_mirror_ops;
2850 	} else {
2851 		/*
2852 		 * Active hot spares can only be replaced by inactive hot
2853 		 * spares.
2854 		 */
2855 		if (pvd->vdev_ops == &vdev_spare_ops &&
2856 		    pvd->vdev_child[1] == oldvd &&
2857 		    !spa_has_spare(spa, newvd->vdev_guid))
2858 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2859 
2860 		/*
2861 		 * If the source is a hot spare, and the parent isn't already a
2862 		 * spare, then we want to create a new hot spare.  Otherwise, we
2863 		 * want to create a replacing vdev.  The user is not allowed to
2864 		 * attach to a spared vdev child unless the 'isspare' state is
2865 		 * the same (spare replaces spare, non-spare replaces
2866 		 * non-spare).
2867 		 */
2868 		if (pvd->vdev_ops == &vdev_replacing_ops)
2869 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2870 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2871 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2872 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2873 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2874 		    newvd->vdev_isspare)
2875 			pvops = &vdev_spare_ops;
2876 		else
2877 			pvops = &vdev_replacing_ops;
2878 	}
2879 
2880 	/*
2881 	 * Compare the new device size with the replaceable/attachable
2882 	 * device size.
2883 	 */
2884 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2885 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2886 
2887 	/*
2888 	 * The new device cannot have a higher alignment requirement
2889 	 * than the top-level vdev.
2890 	 */
2891 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
2892 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
2893 
2894 	/*
2895 	 * If this is an in-place replacement, update oldvd's path and devid
2896 	 * to make it distinguishable from newvd, and unopenable from now on.
2897 	 */
2898 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
2899 		spa_strfree(oldvd->vdev_path);
2900 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
2901 		    KM_SLEEP);
2902 		(void) sprintf(oldvd->vdev_path, "%s/%s",
2903 		    newvd->vdev_path, "old");
2904 		if (oldvd->vdev_devid != NULL) {
2905 			spa_strfree(oldvd->vdev_devid);
2906 			oldvd->vdev_devid = NULL;
2907 		}
2908 	}
2909 
2910 	/*
2911 	 * If the parent is not a mirror, or if we're replacing, insert the new
2912 	 * mirror/replacing/spare vdev above oldvd.
2913 	 */
2914 	if (pvd->vdev_ops != pvops)
2915 		pvd = vdev_add_parent(oldvd, pvops);
2916 
2917 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
2918 	ASSERT(pvd->vdev_ops == pvops);
2919 	ASSERT(oldvd->vdev_parent == pvd);
2920 
2921 	/*
2922 	 * Extract the new device from its root and add it to pvd.
2923 	 */
2924 	vdev_remove_child(newrootvd, newvd);
2925 	newvd->vdev_id = pvd->vdev_children;
2926 	vdev_add_child(pvd, newvd);
2927 
2928 	/*
2929 	 * If newvd is smaller than oldvd, but larger than its rsize,
2930 	 * the addition of newvd may have decreased our parent's asize.
2931 	 */
2932 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
2933 
2934 	tvd = newvd->vdev_top;
2935 	ASSERT(pvd->vdev_top == tvd);
2936 	ASSERT(tvd->vdev_parent == rvd);
2937 
2938 	vdev_config_dirty(tvd);
2939 
2940 	/*
2941 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
2942 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
2943 	 */
2944 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
2945 
2946 	mutex_enter(&newvd->vdev_dtl_lock);
2947 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
2948 	    open_txg - TXG_INITIAL + 1);
2949 	mutex_exit(&newvd->vdev_dtl_lock);
2950 
2951 	if (newvd->vdev_isspare)
2952 		spa_spare_activate(newvd);
2953 	oldvdpath = spa_strdup(oldvd->vdev_path);
2954 	newvdpath = spa_strdup(newvd->vdev_path);
2955 	newvd_isspare = newvd->vdev_isspare;
2956 
2957 	/*
2958 	 * Mark newvd's DTL dirty in this txg.
2959 	 */
2960 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
2961 
2962 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
2963 
2964 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2965 	if (dmu_tx_assign(tx, TXG_WAIT) == 0) {
2966 		spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, tx,
2967 		    CRED(),  "%s vdev=%s %s vdev=%s",
2968 		    replacing && newvd_isspare ? "spare in" :
2969 		    replacing ? "replace" : "attach", newvdpath,
2970 		    replacing ? "for" : "to", oldvdpath);
2971 		dmu_tx_commit(tx);
2972 	} else {
2973 		dmu_tx_abort(tx);
2974 	}
2975 
2976 	spa_strfree(oldvdpath);
2977 	spa_strfree(newvdpath);
2978 
2979 	/*
2980 	 * Kick off a resilver to update newvd.
2981 	 */
2982 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
2983 
2984 	return (0);
2985 }
2986 
2987 /*
2988  * Detach a device from a mirror or replacing vdev.
2989  * If 'replace_done' is specified, only detach if the parent
2990  * is a replacing vdev.
2991  */
2992 int
2993 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
2994 {
2995 	uint64_t txg;
2996 	int c, t, error;
2997 	vdev_t *rvd = spa->spa_root_vdev;
2998 	vdev_t *vd, *pvd, *cvd, *tvd;
2999 	boolean_t unspare = B_FALSE;
3000 	uint64_t unspare_guid;
3001 	size_t len;
3002 
3003 	txg = spa_vdev_enter(spa);
3004 
3005 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3006 
3007 	if (vd == NULL)
3008 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3009 
3010 	if (!vd->vdev_ops->vdev_op_leaf)
3011 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3012 
3013 	pvd = vd->vdev_parent;
3014 
3015 	/*
3016 	 * If replace_done is specified, only remove this device if it's
3017 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3018 	 * disk can be removed.
3019 	 */
3020 	if (replace_done) {
3021 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3022 			if (vd->vdev_id != 0)
3023 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3024 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3025 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3026 		}
3027 	}
3028 
3029 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3030 	    spa_version(spa) >= SPA_VERSION_SPARES);
3031 
3032 	/*
3033 	 * Only mirror, replacing, and spare vdevs support detach.
3034 	 */
3035 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3036 	    pvd->vdev_ops != &vdev_mirror_ops &&
3037 	    pvd->vdev_ops != &vdev_spare_ops)
3038 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3039 
3040 	/*
3041 	 * If there's only one replica, you can't detach it.
3042 	 */
3043 	if (pvd->vdev_children <= 1)
3044 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3045 
3046 	/*
3047 	 * If all siblings have non-empty DTLs, this device may have the only
3048 	 * valid copy of the data, which means we cannot safely detach it.
3049 	 *
3050 	 * XXX -- as in the vdev_offline() case, we really want a more
3051 	 * precise DTL check.
3052 	 */
3053 	for (c = 0; c < pvd->vdev_children; c++) {
3054 		uint64_t dirty;
3055 
3056 		cvd = pvd->vdev_child[c];
3057 		if (cvd == vd)
3058 			continue;
3059 		if (vdev_is_dead(cvd))
3060 			continue;
3061 		mutex_enter(&cvd->vdev_dtl_lock);
3062 		dirty = cvd->vdev_dtl_map.sm_space |
3063 		    cvd->vdev_dtl_scrub.sm_space;
3064 		mutex_exit(&cvd->vdev_dtl_lock);
3065 		if (!dirty)
3066 			break;
3067 	}
3068 
3069 	if (c == pvd->vdev_children)
3070 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3071 
3072 	/*
3073 	 * If we are detaching the second disk from a replacing vdev, then
3074 	 * check to see if we changed the original vdev's path to have "/old"
3075 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3076 	 */
3077 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3078 	    pvd->vdev_child[0]->vdev_path != NULL &&
3079 	    pvd->vdev_child[1]->vdev_path != NULL) {
3080 		ASSERT(pvd->vdev_child[1] == vd);
3081 		cvd = pvd->vdev_child[0];
3082 		len = strlen(vd->vdev_path);
3083 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3084 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3085 			spa_strfree(cvd->vdev_path);
3086 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3087 		}
3088 	}
3089 
3090 	/*
3091 	 * If we are detaching the original disk from a spare, then it implies
3092 	 * that the spare should become a real disk, and be removed from the
3093 	 * active spare list for the pool.
3094 	 */
3095 	if (pvd->vdev_ops == &vdev_spare_ops &&
3096 	    vd->vdev_id == 0)
3097 		unspare = B_TRUE;
3098 
3099 	/*
3100 	 * Erase the disk labels so the disk can be used for other things.
3101 	 * This must be done after all other error cases are handled,
3102 	 * but before we disembowel vd (so we can still do I/O to it).
3103 	 * But if we can't do it, don't treat the error as fatal --
3104 	 * it may be that the unwritability of the disk is the reason
3105 	 * it's being detached!
3106 	 */
3107 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3108 
3109 	/*
3110 	 * Remove vd from its parent and compact the parent's children.
3111 	 */
3112 	vdev_remove_child(pvd, vd);
3113 	vdev_compact_children(pvd);
3114 
3115 	/*
3116 	 * Remember one of the remaining children so we can get tvd below.
3117 	 */
3118 	cvd = pvd->vdev_child[0];
3119 
3120 	/*
3121 	 * If we need to remove the remaining child from the list of hot spares,
3122 	 * do it now, marking the vdev as no longer a spare in the process.  We
3123 	 * must do this before vdev_remove_parent(), because that can change the
3124 	 * GUID if it creates a new toplevel GUID.
3125 	 */
3126 	if (unspare) {
3127 		ASSERT(cvd->vdev_isspare);
3128 		spa_spare_remove(cvd);
3129 		unspare_guid = cvd->vdev_guid;
3130 	}
3131 
3132 	/*
3133 	 * If the parent mirror/replacing vdev only has one child,
3134 	 * the parent is no longer needed.  Remove it from the tree.
3135 	 */
3136 	if (pvd->vdev_children == 1)
3137 		vdev_remove_parent(cvd);
3138 
3139 	/*
3140 	 * We don't set tvd until now because the parent we just removed
3141 	 * may have been the previous top-level vdev.
3142 	 */
3143 	tvd = cvd->vdev_top;
3144 	ASSERT(tvd->vdev_parent == rvd);
3145 
3146 	/*
3147 	 * Reevaluate the parent vdev state.
3148 	 */
3149 	vdev_propagate_state(cvd);
3150 
3151 	/*
3152 	 * If the device we just detached was smaller than the others, it may be
3153 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
3154 	 * can't fail because the existing metaslabs are already in core, so
3155 	 * there's nothing to read from disk.
3156 	 */
3157 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
3158 
3159 	vdev_config_dirty(tvd);
3160 
3161 	/*
3162 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3163 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3164 	 * But first make sure we're not on any *other* txg's DTL list, to
3165 	 * prevent vd from being accessed after it's freed.
3166 	 */
3167 	for (t = 0; t < TXG_SIZE; t++)
3168 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3169 	vd->vdev_detached = B_TRUE;
3170 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3171 
3172 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3173 
3174 	error = spa_vdev_exit(spa, vd, txg, 0);
3175 
3176 	/*
3177 	 * If this was the removal of the original device in a hot spare vdev,
3178 	 * then we want to go through and remove the device from the hot spare
3179 	 * list of every other pool.
3180 	 */
3181 	if (unspare) {
3182 		spa = NULL;
3183 		mutex_enter(&spa_namespace_lock);
3184 		while ((spa = spa_next(spa)) != NULL) {
3185 			if (spa->spa_state != POOL_STATE_ACTIVE)
3186 				continue;
3187 			spa_open_ref(spa, FTAG);
3188 			mutex_exit(&spa_namespace_lock);
3189 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3190 			mutex_enter(&spa_namespace_lock);
3191 			spa_close(spa, FTAG);
3192 		}
3193 		mutex_exit(&spa_namespace_lock);
3194 	}
3195 
3196 	return (error);
3197 }
3198 
3199 static nvlist_t *
3200 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3201 {
3202 	for (int i = 0; i < count; i++) {
3203 		uint64_t guid;
3204 
3205 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3206 		    &guid) == 0);
3207 
3208 		if (guid == target_guid)
3209 			return (nvpp[i]);
3210 	}
3211 
3212 	return (NULL);
3213 }
3214 
3215 static void
3216 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3217 	nvlist_t *dev_to_remove)
3218 {
3219 	nvlist_t **newdev = NULL;
3220 
3221 	if (count > 1)
3222 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3223 
3224 	for (int i = 0, j = 0; i < count; i++) {
3225 		if (dev[i] == dev_to_remove)
3226 			continue;
3227 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3228 	}
3229 
3230 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3231 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3232 
3233 	for (int i = 0; i < count - 1; i++)
3234 		nvlist_free(newdev[i]);
3235 
3236 	if (count > 1)
3237 		kmem_free(newdev, (count - 1) * sizeof (void *));
3238 }
3239 
3240 /*
3241  * Remove a device from the pool.  Currently, this supports removing only hot
3242  * spares and level 2 ARC devices.
3243  */
3244 int
3245 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3246 {
3247 	vdev_t *vd;
3248 	nvlist_t **spares, **l2cache, *nv;
3249 	uint_t nspares, nl2cache;
3250 	uint64_t txg;
3251 	int error = 0;
3252 
3253 	txg = spa_vdev_enter(spa);
3254 
3255 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3256 
3257 	if (spa->spa_spares.sav_vdevs != NULL &&
3258 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3259 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3260 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3261 		/*
3262 		 * Only remove the hot spare if it's not currently in use
3263 		 * in this pool.
3264 		 */
3265 		if (vd == NULL || unspare) {
3266 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3267 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3268 			spa_load_spares(spa);
3269 			spa->spa_spares.sav_sync = B_TRUE;
3270 		} else {
3271 			error = EBUSY;
3272 		}
3273 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3274 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3275 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3276 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3277 		/*
3278 		 * Cache devices can always be removed.
3279 		 */
3280 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3281 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3282 		spa_load_l2cache(spa);
3283 		spa->spa_l2cache.sav_sync = B_TRUE;
3284 	} else if (vd != NULL) {
3285 		/*
3286 		 * Normal vdevs cannot be removed (yet).
3287 		 */
3288 		error = ENOTSUP;
3289 	} else {
3290 		/*
3291 		 * There is no vdev of any kind with the specified guid.
3292 		 */
3293 		error = ENOENT;
3294 	}
3295 
3296 	return (spa_vdev_exit(spa, NULL, txg, error));
3297 }
3298 
3299 /*
3300  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3301  * current spared, so we can detach it.
3302  */
3303 static vdev_t *
3304 spa_vdev_resilver_done_hunt(vdev_t *vd)
3305 {
3306 	vdev_t *newvd, *oldvd;
3307 	int c;
3308 
3309 	for (c = 0; c < vd->vdev_children; c++) {
3310 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3311 		if (oldvd != NULL)
3312 			return (oldvd);
3313 	}
3314 
3315 	/*
3316 	 * Check for a completed replacement.
3317 	 */
3318 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3319 		oldvd = vd->vdev_child[0];
3320 		newvd = vd->vdev_child[1];
3321 
3322 		mutex_enter(&newvd->vdev_dtl_lock);
3323 		if (newvd->vdev_dtl_map.sm_space == 0 &&
3324 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3325 			mutex_exit(&newvd->vdev_dtl_lock);
3326 			return (oldvd);
3327 		}
3328 		mutex_exit(&newvd->vdev_dtl_lock);
3329 	}
3330 
3331 	/*
3332 	 * Check for a completed resilver with the 'unspare' flag set.
3333 	 */
3334 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3335 		newvd = vd->vdev_child[0];
3336 		oldvd = vd->vdev_child[1];
3337 
3338 		mutex_enter(&newvd->vdev_dtl_lock);
3339 		if (newvd->vdev_unspare &&
3340 		    newvd->vdev_dtl_map.sm_space == 0 &&
3341 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3342 			newvd->vdev_unspare = 0;
3343 			mutex_exit(&newvd->vdev_dtl_lock);
3344 			return (oldvd);
3345 		}
3346 		mutex_exit(&newvd->vdev_dtl_lock);
3347 	}
3348 
3349 	return (NULL);
3350 }
3351 
3352 static void
3353 spa_vdev_resilver_done(spa_t *spa)
3354 {
3355 	vdev_t *vd;
3356 	vdev_t *pvd;
3357 	uint64_t guid;
3358 	uint64_t pguid = 0;
3359 
3360 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3361 
3362 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3363 		guid = vd->vdev_guid;
3364 		/*
3365 		 * If we have just finished replacing a hot spared device, then
3366 		 * we need to detach the parent's first child (the original hot
3367 		 * spare) as well.
3368 		 */
3369 		pvd = vd->vdev_parent;
3370 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3371 		    pvd->vdev_id == 0) {
3372 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3373 			ASSERT(pvd->vdev_parent->vdev_children == 2);
3374 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
3375 		}
3376 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3377 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
3378 			return;
3379 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
3380 			return;
3381 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3382 	}
3383 
3384 	spa_config_exit(spa, SCL_CONFIG, FTAG);
3385 }
3386 
3387 /*
3388  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
3389  * on spa_vdev_enter/exit() to synchronize the labels and cache.
3390  */
3391 int
3392 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3393 {
3394 	vdev_t *vd;
3395 	uint64_t txg;
3396 
3397 	txg = spa_vdev_enter(spa);
3398 
3399 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) {
3400 		/*
3401 		 * Determine if this is a reference to a hot spare device.  If
3402 		 * it is, update the path manually as there is no associated
3403 		 * vdev_t that can be synced to disk.
3404 		 */
3405 		nvlist_t **spares;
3406 		uint_t i, nspares;
3407 
3408 		if (spa->spa_spares.sav_config != NULL) {
3409 			VERIFY(nvlist_lookup_nvlist_array(
3410 			    spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
3411 			    &spares, &nspares) == 0);
3412 			for (i = 0; i < nspares; i++) {
3413 				uint64_t theguid;
3414 				VERIFY(nvlist_lookup_uint64(spares[i],
3415 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
3416 				if (theguid == guid) {
3417 					VERIFY(nvlist_add_string(spares[i],
3418 					    ZPOOL_CONFIG_PATH, newpath) == 0);
3419 					spa_load_spares(spa);
3420 					spa->spa_spares.sav_sync = B_TRUE;
3421 					return (spa_vdev_exit(spa, NULL, txg,
3422 					    0));
3423 				}
3424 			}
3425 		}
3426 
3427 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3428 	}
3429 
3430 	if (!vd->vdev_ops->vdev_op_leaf)
3431 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3432 
3433 	spa_strfree(vd->vdev_path);
3434 	vd->vdev_path = spa_strdup(newpath);
3435 
3436 	vdev_config_dirty(vd->vdev_top);
3437 
3438 	return (spa_vdev_exit(spa, NULL, txg, 0));
3439 }
3440 
3441 /*
3442  * ==========================================================================
3443  * SPA Scrubbing
3444  * ==========================================================================
3445  */
3446 
3447 int
3448 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3449 {
3450 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3451 
3452 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3453 		return (ENOTSUP);
3454 
3455 	/*
3456 	 * If a resilver was requested, but there is no DTL on a
3457 	 * writeable leaf device, we have nothing to do.
3458 	 */
3459 	if (type == POOL_SCRUB_RESILVER &&
3460 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3461 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3462 		return (0);
3463 	}
3464 
3465 	if (type == POOL_SCRUB_EVERYTHING &&
3466 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3467 	    spa->spa_dsl_pool->dp_scrub_isresilver)
3468 		return (EBUSY);
3469 
3470 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3471 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3472 	} else if (type == POOL_SCRUB_NONE) {
3473 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3474 	} else {
3475 		return (EINVAL);
3476 	}
3477 }
3478 
3479 /*
3480  * ==========================================================================
3481  * SPA async task processing
3482  * ==========================================================================
3483  */
3484 
3485 static void
3486 spa_async_remove(spa_t *spa, vdev_t *vd)
3487 {
3488 	if (vd->vdev_remove_wanted) {
3489 		vd->vdev_remove_wanted = 0;
3490 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3491 		vdev_clear(spa, vd);
3492 		vdev_state_dirty(vd->vdev_top);
3493 	}
3494 
3495 	for (int c = 0; c < vd->vdev_children; c++)
3496 		spa_async_remove(spa, vd->vdev_child[c]);
3497 }
3498 
3499 static void
3500 spa_async_probe(spa_t *spa, vdev_t *vd)
3501 {
3502 	if (vd->vdev_probe_wanted) {
3503 		vd->vdev_probe_wanted = 0;
3504 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
3505 	}
3506 
3507 	for (int c = 0; c < vd->vdev_children; c++)
3508 		spa_async_probe(spa, vd->vdev_child[c]);
3509 }
3510 
3511 static void
3512 spa_async_thread(spa_t *spa)
3513 {
3514 	int tasks;
3515 
3516 	ASSERT(spa->spa_sync_on);
3517 
3518 	mutex_enter(&spa->spa_async_lock);
3519 	tasks = spa->spa_async_tasks;
3520 	spa->spa_async_tasks = 0;
3521 	mutex_exit(&spa->spa_async_lock);
3522 
3523 	/*
3524 	 * See if the config needs to be updated.
3525 	 */
3526 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3527 		mutex_enter(&spa_namespace_lock);
3528 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3529 		mutex_exit(&spa_namespace_lock);
3530 	}
3531 
3532 	/*
3533 	 * See if any devices need to be marked REMOVED.
3534 	 */
3535 	if (tasks & SPA_ASYNC_REMOVE) {
3536 		spa_vdev_state_enter(spa);
3537 		spa_async_remove(spa, spa->spa_root_vdev);
3538 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3539 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3540 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
3541 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3542 		(void) spa_vdev_state_exit(spa, NULL, 0);
3543 	}
3544 
3545 	/*
3546 	 * See if any devices need to be probed.
3547 	 */
3548 	if (tasks & SPA_ASYNC_PROBE) {
3549 		spa_vdev_state_enter(spa);
3550 		spa_async_probe(spa, spa->spa_root_vdev);
3551 		(void) spa_vdev_state_exit(spa, NULL, 0);
3552 	}
3553 
3554 	/*
3555 	 * If any devices are done replacing, detach them.
3556 	 */
3557 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3558 		spa_vdev_resilver_done(spa);
3559 
3560 	/*
3561 	 * Kick off a resilver.
3562 	 */
3563 	if (tasks & SPA_ASYNC_RESILVER)
3564 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3565 
3566 	/*
3567 	 * Let the world know that we're done.
3568 	 */
3569 	mutex_enter(&spa->spa_async_lock);
3570 	spa->spa_async_thread = NULL;
3571 	cv_broadcast(&spa->spa_async_cv);
3572 	mutex_exit(&spa->spa_async_lock);
3573 	thread_exit();
3574 }
3575 
3576 void
3577 spa_async_suspend(spa_t *spa)
3578 {
3579 	mutex_enter(&spa->spa_async_lock);
3580 	spa->spa_async_suspended++;
3581 	while (spa->spa_async_thread != NULL)
3582 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3583 	mutex_exit(&spa->spa_async_lock);
3584 }
3585 
3586 void
3587 spa_async_resume(spa_t *spa)
3588 {
3589 	mutex_enter(&spa->spa_async_lock);
3590 	ASSERT(spa->spa_async_suspended != 0);
3591 	spa->spa_async_suspended--;
3592 	mutex_exit(&spa->spa_async_lock);
3593 }
3594 
3595 static void
3596 spa_async_dispatch(spa_t *spa)
3597 {
3598 	mutex_enter(&spa->spa_async_lock);
3599 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3600 	    spa->spa_async_thread == NULL &&
3601 	    rootdir != NULL && !vn_is_readonly(rootdir))
3602 		spa->spa_async_thread = thread_create(NULL, 0,
3603 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3604 	mutex_exit(&spa->spa_async_lock);
3605 }
3606 
3607 void
3608 spa_async_request(spa_t *spa, int task)
3609 {
3610 	mutex_enter(&spa->spa_async_lock);
3611 	spa->spa_async_tasks |= task;
3612 	mutex_exit(&spa->spa_async_lock);
3613 }
3614 
3615 /*
3616  * ==========================================================================
3617  * SPA syncing routines
3618  * ==========================================================================
3619  */
3620 
3621 static void
3622 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3623 {
3624 	bplist_t *bpl = &spa->spa_sync_bplist;
3625 	dmu_tx_t *tx;
3626 	blkptr_t blk;
3627 	uint64_t itor = 0;
3628 	zio_t *zio;
3629 	int error;
3630 	uint8_t c = 1;
3631 
3632 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
3633 
3634 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
3635 		ASSERT(blk.blk_birth < txg);
3636 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
3637 		    ZIO_FLAG_MUSTSUCCEED));
3638 	}
3639 
3640 	error = zio_wait(zio);
3641 	ASSERT3U(error, ==, 0);
3642 
3643 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3644 	bplist_vacate(bpl, tx);
3645 
3646 	/*
3647 	 * Pre-dirty the first block so we sync to convergence faster.
3648 	 * (Usually only the first block is needed.)
3649 	 */
3650 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3651 	dmu_tx_commit(tx);
3652 }
3653 
3654 static void
3655 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3656 {
3657 	char *packed = NULL;
3658 	size_t bufsize;
3659 	size_t nvsize = 0;
3660 	dmu_buf_t *db;
3661 
3662 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3663 
3664 	/*
3665 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3666 	 * information.  This avoids the dbuf_will_dirty() path and
3667 	 * saves us a pre-read to get data we don't actually care about.
3668 	 */
3669 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3670 	packed = kmem_alloc(bufsize, KM_SLEEP);
3671 
3672 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3673 	    KM_SLEEP) == 0);
3674 	bzero(packed + nvsize, bufsize - nvsize);
3675 
3676 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3677 
3678 	kmem_free(packed, bufsize);
3679 
3680 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3681 	dmu_buf_will_dirty(db, tx);
3682 	*(uint64_t *)db->db_data = nvsize;
3683 	dmu_buf_rele(db, FTAG);
3684 }
3685 
3686 static void
3687 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3688     const char *config, const char *entry)
3689 {
3690 	nvlist_t *nvroot;
3691 	nvlist_t **list;
3692 	int i;
3693 
3694 	if (!sav->sav_sync)
3695 		return;
3696 
3697 	/*
3698 	 * Update the MOS nvlist describing the list of available devices.
3699 	 * spa_validate_aux() will have already made sure this nvlist is
3700 	 * valid and the vdevs are labeled appropriately.
3701 	 */
3702 	if (sav->sav_object == 0) {
3703 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3704 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3705 		    sizeof (uint64_t), tx);
3706 		VERIFY(zap_update(spa->spa_meta_objset,
3707 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3708 		    &sav->sav_object, tx) == 0);
3709 	}
3710 
3711 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3712 	if (sav->sav_count == 0) {
3713 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3714 	} else {
3715 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3716 		for (i = 0; i < sav->sav_count; i++)
3717 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3718 			    B_FALSE, B_FALSE, B_TRUE);
3719 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3720 		    sav->sav_count) == 0);
3721 		for (i = 0; i < sav->sav_count; i++)
3722 			nvlist_free(list[i]);
3723 		kmem_free(list, sav->sav_count * sizeof (void *));
3724 	}
3725 
3726 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3727 	nvlist_free(nvroot);
3728 
3729 	sav->sav_sync = B_FALSE;
3730 }
3731 
3732 static void
3733 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3734 {
3735 	nvlist_t *config;
3736 
3737 	if (list_is_empty(&spa->spa_config_dirty_list))
3738 		return;
3739 
3740 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3741 
3742 	config = spa_config_generate(spa, spa->spa_root_vdev,
3743 	    dmu_tx_get_txg(tx), B_FALSE);
3744 
3745 	spa_config_exit(spa, SCL_STATE, FTAG);
3746 
3747 	if (spa->spa_config_syncing)
3748 		nvlist_free(spa->spa_config_syncing);
3749 	spa->spa_config_syncing = config;
3750 
3751 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3752 }
3753 
3754 /*
3755  * Set zpool properties.
3756  */
3757 static void
3758 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3759 {
3760 	spa_t *spa = arg1;
3761 	objset_t *mos = spa->spa_meta_objset;
3762 	nvlist_t *nvp = arg2;
3763 	nvpair_t *elem;
3764 	uint64_t intval;
3765 	char *strval;
3766 	zpool_prop_t prop;
3767 	const char *propname;
3768 	zprop_type_t proptype;
3769 	spa_config_dirent_t *dp;
3770 
3771 	mutex_enter(&spa->spa_props_lock);
3772 
3773 	elem = NULL;
3774 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
3775 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3776 		case ZPOOL_PROP_VERSION:
3777 			/*
3778 			 * Only set version for non-zpool-creation cases
3779 			 * (set/import). spa_create() needs special care
3780 			 * for version setting.
3781 			 */
3782 			if (tx->tx_txg != TXG_INITIAL) {
3783 				VERIFY(nvpair_value_uint64(elem,
3784 				    &intval) == 0);
3785 				ASSERT(intval <= SPA_VERSION);
3786 				ASSERT(intval >= spa_version(spa));
3787 				spa->spa_uberblock.ub_version = intval;
3788 				vdev_config_dirty(spa->spa_root_vdev);
3789 			}
3790 			break;
3791 
3792 		case ZPOOL_PROP_ALTROOT:
3793 			/*
3794 			 * 'altroot' is a non-persistent property. It should
3795 			 * have been set temporarily at creation or import time.
3796 			 */
3797 			ASSERT(spa->spa_root != NULL);
3798 			break;
3799 
3800 		case ZPOOL_PROP_CACHEFILE:
3801 			/*
3802 			 * 'cachefile' is a non-persistent property, but note
3803 			 * an async request that the config cache needs to be
3804 			 * udpated.
3805 			 */
3806 			VERIFY(nvpair_value_string(elem, &strval) == 0);
3807 
3808 			dp = kmem_alloc(sizeof (spa_config_dirent_t), KM_SLEEP);
3809 
3810 			if (strval[0] == '\0')
3811 				dp->scd_path = spa_strdup(spa_config_path);
3812 			else if (strcmp(strval, "none") == 0)
3813 				dp->scd_path = NULL;
3814 			else
3815 				dp->scd_path = spa_strdup(strval);
3816 
3817 			list_insert_head(&spa->spa_config_list, dp);
3818 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3819 			break;
3820 		default:
3821 			/*
3822 			 * Set pool property values in the poolprops mos object.
3823 			 */
3824 			if (spa->spa_pool_props_object == 0) {
3825 				objset_t *mos = spa->spa_meta_objset;
3826 
3827 				VERIFY((spa->spa_pool_props_object =
3828 				    zap_create(mos, DMU_OT_POOL_PROPS,
3829 				    DMU_OT_NONE, 0, tx)) > 0);
3830 
3831 				VERIFY(zap_update(mos,
3832 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3833 				    8, 1, &spa->spa_pool_props_object, tx)
3834 				    == 0);
3835 			}
3836 
3837 			/* normalize the property name */
3838 			propname = zpool_prop_to_name(prop);
3839 			proptype = zpool_prop_get_type(prop);
3840 
3841 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
3842 				ASSERT(proptype == PROP_TYPE_STRING);
3843 				VERIFY(nvpair_value_string(elem, &strval) == 0);
3844 				VERIFY(zap_update(mos,
3845 				    spa->spa_pool_props_object, propname,
3846 				    1, strlen(strval) + 1, strval, tx) == 0);
3847 
3848 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
3849 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3850 
3851 				if (proptype == PROP_TYPE_INDEX) {
3852 					const char *unused;
3853 					VERIFY(zpool_prop_index_to_string(
3854 					    prop, intval, &unused) == 0);
3855 				}
3856 				VERIFY(zap_update(mos,
3857 				    spa->spa_pool_props_object, propname,
3858 				    8, 1, &intval, tx) == 0);
3859 			} else {
3860 				ASSERT(0); /* not allowed */
3861 			}
3862 
3863 			switch (prop) {
3864 			case ZPOOL_PROP_DELEGATION:
3865 				spa->spa_delegation = intval;
3866 				break;
3867 			case ZPOOL_PROP_BOOTFS:
3868 				spa->spa_bootfs = intval;
3869 				break;
3870 			case ZPOOL_PROP_FAILUREMODE:
3871 				spa->spa_failmode = intval;
3872 				break;
3873 			default:
3874 				break;
3875 			}
3876 		}
3877 
3878 		/* log internal history if this is not a zpool create */
3879 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
3880 		    tx->tx_txg != TXG_INITIAL) {
3881 			spa_history_internal_log(LOG_POOL_PROPSET,
3882 			    spa, tx, cr, "%s %lld %s",
3883 			    nvpair_name(elem), intval, spa_name(spa));
3884 		}
3885 	}
3886 
3887 	mutex_exit(&spa->spa_props_lock);
3888 }
3889 
3890 /*
3891  * Sync the specified transaction group.  New blocks may be dirtied as
3892  * part of the process, so we iterate until it converges.
3893  */
3894 void
3895 spa_sync(spa_t *spa, uint64_t txg)
3896 {
3897 	dsl_pool_t *dp = spa->spa_dsl_pool;
3898 	objset_t *mos = spa->spa_meta_objset;
3899 	bplist_t *bpl = &spa->spa_sync_bplist;
3900 	vdev_t *rvd = spa->spa_root_vdev;
3901 	vdev_t *vd;
3902 	dmu_tx_t *tx;
3903 	int dirty_vdevs;
3904 	int error;
3905 
3906 	/*
3907 	 * Lock out configuration changes.
3908 	 */
3909 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3910 
3911 	spa->spa_syncing_txg = txg;
3912 	spa->spa_sync_pass = 0;
3913 
3914 	/*
3915 	 * If there are any pending vdev state changes, convert them
3916 	 * into config changes that go out with this transaction group.
3917 	 */
3918 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3919 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
3920 		vdev_state_clean(vd);
3921 		vdev_config_dirty(vd);
3922 	}
3923 	spa_config_exit(spa, SCL_STATE, FTAG);
3924 
3925 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
3926 
3927 	tx = dmu_tx_create_assigned(dp, txg);
3928 
3929 	/*
3930 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
3931 	 * set spa_deflate if we have no raid-z vdevs.
3932 	 */
3933 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
3934 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
3935 		int i;
3936 
3937 		for (i = 0; i < rvd->vdev_children; i++) {
3938 			vd = rvd->vdev_child[i];
3939 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
3940 				break;
3941 		}
3942 		if (i == rvd->vdev_children) {
3943 			spa->spa_deflate = TRUE;
3944 			VERIFY(0 == zap_add(spa->spa_meta_objset,
3945 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3946 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
3947 		}
3948 	}
3949 
3950 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
3951 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
3952 		dsl_pool_create_origin(dp, tx);
3953 
3954 		/* Keeping the origin open increases spa_minref */
3955 		spa->spa_minref += 3;
3956 	}
3957 
3958 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
3959 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
3960 		dsl_pool_upgrade_clones(dp, tx);
3961 	}
3962 
3963 	/*
3964 	 * If anything has changed in this txg, push the deferred frees
3965 	 * from the previous txg.  If not, leave them alone so that we
3966 	 * don't generate work on an otherwise idle system.
3967 	 */
3968 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
3969 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
3970 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
3971 		spa_sync_deferred_frees(spa, txg);
3972 
3973 	/*
3974 	 * Iterate to convergence.
3975 	 */
3976 	do {
3977 		spa->spa_sync_pass++;
3978 
3979 		spa_sync_config_object(spa, tx);
3980 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
3981 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
3982 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
3983 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
3984 		spa_errlog_sync(spa, txg);
3985 		dsl_pool_sync(dp, txg);
3986 
3987 		dirty_vdevs = 0;
3988 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
3989 			vdev_sync(vd, txg);
3990 			dirty_vdevs++;
3991 		}
3992 
3993 		bplist_sync(bpl, tx);
3994 	} while (dirty_vdevs);
3995 
3996 	bplist_close(bpl);
3997 
3998 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
3999 
4000 	/*
4001 	 * Rewrite the vdev configuration (which includes the uberblock)
4002 	 * to commit the transaction group.
4003 	 *
4004 	 * If there are no dirty vdevs, we sync the uberblock to a few
4005 	 * random top-level vdevs that are known to be visible in the
4006 	 * config cache (see spa_vdev_add() for a complete description).
4007 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4008 	 */
4009 	for (;;) {
4010 		/*
4011 		 * We hold SCL_STATE to prevent vdev open/close/etc.
4012 		 * while we're attempting to write the vdev labels.
4013 		 */
4014 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4015 
4016 		if (list_is_empty(&spa->spa_config_dirty_list)) {
4017 			vdev_t *svd[SPA_DVAS_PER_BP];
4018 			int svdcount = 0;
4019 			int children = rvd->vdev_children;
4020 			int c0 = spa_get_random(children);
4021 			int c;
4022 
4023 			for (c = 0; c < children; c++) {
4024 				vd = rvd->vdev_child[(c0 + c) % children];
4025 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4026 					continue;
4027 				svd[svdcount++] = vd;
4028 				if (svdcount == SPA_DVAS_PER_BP)
4029 					break;
4030 			}
4031 			error = vdev_config_sync(svd, svdcount, txg);
4032 		} else {
4033 			error = vdev_config_sync(rvd->vdev_child,
4034 			    rvd->vdev_children, txg);
4035 		}
4036 
4037 		spa_config_exit(spa, SCL_STATE, FTAG);
4038 
4039 		if (error == 0)
4040 			break;
4041 		zio_suspend(spa, NULL);
4042 		zio_resume_wait(spa);
4043 	}
4044 	dmu_tx_commit(tx);
4045 
4046 	/*
4047 	 * Clear the dirty config list.
4048 	 */
4049 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4050 		vdev_config_clean(vd);
4051 
4052 	/*
4053 	 * Now that the new config has synced transactionally,
4054 	 * let it become visible to the config cache.
4055 	 */
4056 	if (spa->spa_config_syncing != NULL) {
4057 		spa_config_set(spa, spa->spa_config_syncing);
4058 		spa->spa_config_txg = txg;
4059 		spa->spa_config_syncing = NULL;
4060 	}
4061 
4062 	spa->spa_ubsync = spa->spa_uberblock;
4063 
4064 	/*
4065 	 * Clean up the ZIL records for the synced txg.
4066 	 */
4067 	dsl_pool_zil_clean(dp);
4068 
4069 	/*
4070 	 * Update usable space statistics.
4071 	 */
4072 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4073 		vdev_sync_done(vd, txg);
4074 
4075 	/*
4076 	 * It had better be the case that we didn't dirty anything
4077 	 * since vdev_config_sync().
4078 	 */
4079 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4080 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4081 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4082 	ASSERT(bpl->bpl_queue == NULL);
4083 
4084 	spa_config_exit(spa, SCL_CONFIG, FTAG);
4085 
4086 	/*
4087 	 * If any async tasks have been requested, kick them off.
4088 	 */
4089 	spa_async_dispatch(spa);
4090 }
4091 
4092 /*
4093  * Sync all pools.  We don't want to hold the namespace lock across these
4094  * operations, so we take a reference on the spa_t and drop the lock during the
4095  * sync.
4096  */
4097 void
4098 spa_sync_allpools(void)
4099 {
4100 	spa_t *spa = NULL;
4101 	mutex_enter(&spa_namespace_lock);
4102 	while ((spa = spa_next(spa)) != NULL) {
4103 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4104 			continue;
4105 		spa_open_ref(spa, FTAG);
4106 		mutex_exit(&spa_namespace_lock);
4107 		txg_wait_synced(spa_get_dsl(spa), 0);
4108 		mutex_enter(&spa_namespace_lock);
4109 		spa_close(spa, FTAG);
4110 	}
4111 	mutex_exit(&spa_namespace_lock);
4112 }
4113 
4114 /*
4115  * ==========================================================================
4116  * Miscellaneous routines
4117  * ==========================================================================
4118  */
4119 
4120 /*
4121  * Remove all pools in the system.
4122  */
4123 void
4124 spa_evict_all(void)
4125 {
4126 	spa_t *spa;
4127 
4128 	/*
4129 	 * Remove all cached state.  All pools should be closed now,
4130 	 * so every spa in the AVL tree should be unreferenced.
4131 	 */
4132 	mutex_enter(&spa_namespace_lock);
4133 	while ((spa = spa_next(NULL)) != NULL) {
4134 		/*
4135 		 * Stop async tasks.  The async thread may need to detach
4136 		 * a device that's been replaced, which requires grabbing
4137 		 * spa_namespace_lock, so we must drop it here.
4138 		 */
4139 		spa_open_ref(spa, FTAG);
4140 		mutex_exit(&spa_namespace_lock);
4141 		spa_async_suspend(spa);
4142 		mutex_enter(&spa_namespace_lock);
4143 		spa_close(spa, FTAG);
4144 
4145 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4146 			spa_unload(spa);
4147 			spa_deactivate(spa);
4148 		}
4149 		spa_remove(spa);
4150 	}
4151 	mutex_exit(&spa_namespace_lock);
4152 }
4153 
4154 vdev_t *
4155 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache)
4156 {
4157 	vdev_t *vd;
4158 	int i;
4159 
4160 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4161 		return (vd);
4162 
4163 	if (l2cache) {
4164 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4165 			vd = spa->spa_l2cache.sav_vdevs[i];
4166 			if (vd->vdev_guid == guid)
4167 				return (vd);
4168 		}
4169 	}
4170 
4171 	return (NULL);
4172 }
4173 
4174 void
4175 spa_upgrade(spa_t *spa, uint64_t version)
4176 {
4177 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4178 
4179 	/*
4180 	 * This should only be called for a non-faulted pool, and since a
4181 	 * future version would result in an unopenable pool, this shouldn't be
4182 	 * possible.
4183 	 */
4184 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4185 	ASSERT(version >= spa->spa_uberblock.ub_version);
4186 
4187 	spa->spa_uberblock.ub_version = version;
4188 	vdev_config_dirty(spa->spa_root_vdev);
4189 
4190 	spa_config_exit(spa, SCL_ALL, FTAG);
4191 
4192 	txg_wait_synced(spa_get_dsl(spa), 0);
4193 }
4194 
4195 boolean_t
4196 spa_has_spare(spa_t *spa, uint64_t guid)
4197 {
4198 	int i;
4199 	uint64_t spareguid;
4200 	spa_aux_vdev_t *sav = &spa->spa_spares;
4201 
4202 	for (i = 0; i < sav->sav_count; i++)
4203 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4204 			return (B_TRUE);
4205 
4206 	for (i = 0; i < sav->sav_npending; i++) {
4207 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4208 		    &spareguid) == 0 && spareguid == guid)
4209 			return (B_TRUE);
4210 	}
4211 
4212 	return (B_FALSE);
4213 }
4214 
4215 /*
4216  * Check if a pool has an active shared spare device.
4217  * Note: reference count of an active spare is 2, as a spare and as a replace
4218  */
4219 static boolean_t
4220 spa_has_active_shared_spare(spa_t *spa)
4221 {
4222 	int i, refcnt;
4223 	uint64_t pool;
4224 	spa_aux_vdev_t *sav = &spa->spa_spares;
4225 
4226 	for (i = 0; i < sav->sav_count; i++) {
4227 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4228 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4229 		    refcnt > 2)
4230 			return (B_TRUE);
4231 	}
4232 
4233 	return (B_FALSE);
4234 }
4235 
4236 /*
4237  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4238  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4239  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4240  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4241  * or zdb as real changes.
4242  */
4243 void
4244 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4245 {
4246 #ifdef _KERNEL
4247 	sysevent_t		*ev;
4248 	sysevent_attr_list_t	*attr = NULL;
4249 	sysevent_value_t	value;
4250 	sysevent_id_t		eid;
4251 
4252 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4253 	    SE_SLEEP);
4254 
4255 	value.value_type = SE_DATA_TYPE_STRING;
4256 	value.value.sv_string = spa_name(spa);
4257 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4258 		goto done;
4259 
4260 	value.value_type = SE_DATA_TYPE_UINT64;
4261 	value.value.sv_uint64 = spa_guid(spa);
4262 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4263 		goto done;
4264 
4265 	if (vd) {
4266 		value.value_type = SE_DATA_TYPE_UINT64;
4267 		value.value.sv_uint64 = vd->vdev_guid;
4268 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4269 		    SE_SLEEP) != 0)
4270 			goto done;
4271 
4272 		if (vd->vdev_path) {
4273 			value.value_type = SE_DATA_TYPE_STRING;
4274 			value.value.sv_string = vd->vdev_path;
4275 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4276 			    &value, SE_SLEEP) != 0)
4277 				goto done;
4278 		}
4279 	}
4280 
4281 	if (sysevent_attach_attributes(ev, attr) != 0)
4282 		goto done;
4283 	attr = NULL;
4284 
4285 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4286 
4287 done:
4288 	if (attr)
4289 		sysevent_free_attr(attr);
4290 	sysevent_free(ev);
4291 #endif
4292 }
4293