1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_ONLINE_PERCENT, /* value is % of online CPUs */ 91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 92 ZTI_MODE_NULL, /* don't create a taskq */ 93 ZTI_NMODES 94 } zti_modes_t; 95 96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 97 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 98 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 99 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 100 101 #define ZTI_N(n) ZTI_P(n, 1) 102 #define ZTI_ONE ZTI_N(1) 103 104 typedef struct zio_taskq_info { 105 zti_modes_t zti_mode; 106 uint_t zti_value; 107 uint_t zti_count; 108 } zio_taskq_info_t; 109 110 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 111 "issue", "issue_high", "intr", "intr_high" 112 }; 113 114 /* 115 * This table defines the taskq settings for each ZFS I/O type. When 116 * initializing a pool, we use this table to create an appropriately sized 117 * taskq. Some operations are low volume and therefore have a small, static 118 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 119 * macros. Other operations process a large amount of data; the ZTI_BATCH 120 * macro causes us to create a taskq oriented for throughput. Some operations 121 * are so high frequency and short-lived that the taskq itself can become a a 122 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 123 * additional degree of parallelism specified by the number of threads per- 124 * taskq and the number of taskqs; when dispatching an event in this case, the 125 * particular taskq is chosen at random. 126 * 127 * The different taskq priorities are to handle the different contexts (issue 128 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 129 * need to be handled with minimum delay. 130 */ 131 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 132 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 133 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 134 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */ 135 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 136 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 138 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 139 }; 140 141 static void spa_sync_version(void *arg, dmu_tx_t *tx); 142 static void spa_sync_props(void *arg, dmu_tx_t *tx); 143 static boolean_t spa_has_active_shared_spare(spa_t *spa); 144 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 145 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 146 char **ereport); 147 static void spa_vdev_resilver_done(spa_t *spa); 148 149 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 150 id_t zio_taskq_psrset_bind = PS_NONE; 151 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 152 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 153 154 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 155 extern int zfs_sync_pass_deferred_free; 156 157 /* 158 * This (illegal) pool name is used when temporarily importing a spa_t in order 159 * to get the vdev stats associated with the imported devices. 160 */ 161 #define TRYIMPORT_NAME "$import" 162 163 /* 164 * ========================================================================== 165 * SPA properties routines 166 * ========================================================================== 167 */ 168 169 /* 170 * Add a (source=src, propname=propval) list to an nvlist. 171 */ 172 static void 173 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 174 uint64_t intval, zprop_source_t src) 175 { 176 const char *propname = zpool_prop_to_name(prop); 177 nvlist_t *propval; 178 179 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 180 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 181 182 if (strval != NULL) 183 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 184 else 185 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 186 187 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 188 nvlist_free(propval); 189 } 190 191 /* 192 * Get property values from the spa configuration. 193 */ 194 static void 195 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 196 { 197 vdev_t *rvd = spa->spa_root_vdev; 198 dsl_pool_t *pool = spa->spa_dsl_pool; 199 uint64_t size; 200 uint64_t alloc; 201 uint64_t space; 202 uint64_t cap, version; 203 zprop_source_t src = ZPROP_SRC_NONE; 204 spa_config_dirent_t *dp; 205 206 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 207 208 if (rvd != NULL) { 209 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 210 size = metaslab_class_get_space(spa_normal_class(spa)); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 213 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 214 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 215 size - alloc, src); 216 217 space = 0; 218 for (int c = 0; c < rvd->vdev_children; c++) { 219 vdev_t *tvd = rvd->vdev_child[c]; 220 space += tvd->vdev_max_asize - tvd->vdev_asize; 221 } 222 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 223 src); 224 225 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 226 (spa_mode(spa) == FREAD), src); 227 228 cap = (size == 0) ? 0 : (alloc * 100 / size); 229 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 230 231 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 232 ddt_get_pool_dedup_ratio(spa), src); 233 234 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 235 rvd->vdev_state, src); 236 237 version = spa_version(spa); 238 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 239 src = ZPROP_SRC_DEFAULT; 240 else 241 src = ZPROP_SRC_LOCAL; 242 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 243 } 244 245 if (pool != NULL) { 246 dsl_dir_t *freedir = pool->dp_free_dir; 247 248 /* 249 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 250 * when opening pools before this version freedir will be NULL. 251 */ 252 if (freedir != NULL) { 253 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 254 freedir->dd_phys->dd_used_bytes, src); 255 } else { 256 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 257 NULL, 0, src); 258 } 259 } 260 261 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 262 263 if (spa->spa_comment != NULL) { 264 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 265 0, ZPROP_SRC_LOCAL); 266 } 267 268 if (spa->spa_root != NULL) 269 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 270 0, ZPROP_SRC_LOCAL); 271 272 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 273 if (dp->scd_path == NULL) { 274 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 275 "none", 0, ZPROP_SRC_LOCAL); 276 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 277 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 278 dp->scd_path, 0, ZPROP_SRC_LOCAL); 279 } 280 } 281 } 282 283 /* 284 * Get zpool property values. 285 */ 286 int 287 spa_prop_get(spa_t *spa, nvlist_t **nvp) 288 { 289 objset_t *mos = spa->spa_meta_objset; 290 zap_cursor_t zc; 291 zap_attribute_t za; 292 int err; 293 294 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 295 296 mutex_enter(&spa->spa_props_lock); 297 298 /* 299 * Get properties from the spa config. 300 */ 301 spa_prop_get_config(spa, nvp); 302 303 /* If no pool property object, no more prop to get. */ 304 if (mos == NULL || spa->spa_pool_props_object == 0) { 305 mutex_exit(&spa->spa_props_lock); 306 return (0); 307 } 308 309 /* 310 * Get properties from the MOS pool property object. 311 */ 312 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 313 (err = zap_cursor_retrieve(&zc, &za)) == 0; 314 zap_cursor_advance(&zc)) { 315 uint64_t intval = 0; 316 char *strval = NULL; 317 zprop_source_t src = ZPROP_SRC_DEFAULT; 318 zpool_prop_t prop; 319 320 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 321 continue; 322 323 switch (za.za_integer_length) { 324 case 8: 325 /* integer property */ 326 if (za.za_first_integer != 327 zpool_prop_default_numeric(prop)) 328 src = ZPROP_SRC_LOCAL; 329 330 if (prop == ZPOOL_PROP_BOOTFS) { 331 dsl_pool_t *dp; 332 dsl_dataset_t *ds = NULL; 333 334 dp = spa_get_dsl(spa); 335 dsl_pool_config_enter(dp, FTAG); 336 if (err = dsl_dataset_hold_obj(dp, 337 za.za_first_integer, FTAG, &ds)) { 338 dsl_pool_config_exit(dp, FTAG); 339 break; 340 } 341 342 strval = kmem_alloc( 343 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 344 KM_SLEEP); 345 dsl_dataset_name(ds, strval); 346 dsl_dataset_rele(ds, FTAG); 347 dsl_pool_config_exit(dp, FTAG); 348 } else { 349 strval = NULL; 350 intval = za.za_first_integer; 351 } 352 353 spa_prop_add_list(*nvp, prop, strval, intval, src); 354 355 if (strval != NULL) 356 kmem_free(strval, 357 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 358 359 break; 360 361 case 1: 362 /* string property */ 363 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 364 err = zap_lookup(mos, spa->spa_pool_props_object, 365 za.za_name, 1, za.za_num_integers, strval); 366 if (err) { 367 kmem_free(strval, za.za_num_integers); 368 break; 369 } 370 spa_prop_add_list(*nvp, prop, strval, 0, src); 371 kmem_free(strval, za.za_num_integers); 372 break; 373 374 default: 375 break; 376 } 377 } 378 zap_cursor_fini(&zc); 379 mutex_exit(&spa->spa_props_lock); 380 out: 381 if (err && err != ENOENT) { 382 nvlist_free(*nvp); 383 *nvp = NULL; 384 return (err); 385 } 386 387 return (0); 388 } 389 390 /* 391 * Validate the given pool properties nvlist and modify the list 392 * for the property values to be set. 393 */ 394 static int 395 spa_prop_validate(spa_t *spa, nvlist_t *props) 396 { 397 nvpair_t *elem; 398 int error = 0, reset_bootfs = 0; 399 uint64_t objnum = 0; 400 boolean_t has_feature = B_FALSE; 401 402 elem = NULL; 403 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 404 uint64_t intval; 405 char *strval, *slash, *check, *fname; 406 const char *propname = nvpair_name(elem); 407 zpool_prop_t prop = zpool_name_to_prop(propname); 408 409 switch (prop) { 410 case ZPROP_INVAL: 411 if (!zpool_prop_feature(propname)) { 412 error = SET_ERROR(EINVAL); 413 break; 414 } 415 416 /* 417 * Sanitize the input. 418 */ 419 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 420 error = SET_ERROR(EINVAL); 421 break; 422 } 423 424 if (nvpair_value_uint64(elem, &intval) != 0) { 425 error = SET_ERROR(EINVAL); 426 break; 427 } 428 429 if (intval != 0) { 430 error = SET_ERROR(EINVAL); 431 break; 432 } 433 434 fname = strchr(propname, '@') + 1; 435 if (zfeature_lookup_name(fname, NULL) != 0) { 436 error = SET_ERROR(EINVAL); 437 break; 438 } 439 440 has_feature = B_TRUE; 441 break; 442 443 case ZPOOL_PROP_VERSION: 444 error = nvpair_value_uint64(elem, &intval); 445 if (!error && 446 (intval < spa_version(spa) || 447 intval > SPA_VERSION_BEFORE_FEATURES || 448 has_feature)) 449 error = SET_ERROR(EINVAL); 450 break; 451 452 case ZPOOL_PROP_DELEGATION: 453 case ZPOOL_PROP_AUTOREPLACE: 454 case ZPOOL_PROP_LISTSNAPS: 455 case ZPOOL_PROP_AUTOEXPAND: 456 error = nvpair_value_uint64(elem, &intval); 457 if (!error && intval > 1) 458 error = SET_ERROR(EINVAL); 459 break; 460 461 case ZPOOL_PROP_BOOTFS: 462 /* 463 * If the pool version is less than SPA_VERSION_BOOTFS, 464 * or the pool is still being created (version == 0), 465 * the bootfs property cannot be set. 466 */ 467 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 468 error = SET_ERROR(ENOTSUP); 469 break; 470 } 471 472 /* 473 * Make sure the vdev config is bootable 474 */ 475 if (!vdev_is_bootable(spa->spa_root_vdev)) { 476 error = SET_ERROR(ENOTSUP); 477 break; 478 } 479 480 reset_bootfs = 1; 481 482 error = nvpair_value_string(elem, &strval); 483 484 if (!error) { 485 objset_t *os; 486 uint64_t compress; 487 488 if (strval == NULL || strval[0] == '\0') { 489 objnum = zpool_prop_default_numeric( 490 ZPOOL_PROP_BOOTFS); 491 break; 492 } 493 494 if (error = dmu_objset_hold(strval, FTAG, &os)) 495 break; 496 497 /* Must be ZPL and not gzip compressed. */ 498 499 if (dmu_objset_type(os) != DMU_OST_ZFS) { 500 error = SET_ERROR(ENOTSUP); 501 } else if ((error = 502 dsl_prop_get_int_ds(dmu_objset_ds(os), 503 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 504 &compress)) == 0 && 505 !BOOTFS_COMPRESS_VALID(compress)) { 506 error = SET_ERROR(ENOTSUP); 507 } else { 508 objnum = dmu_objset_id(os); 509 } 510 dmu_objset_rele(os, FTAG); 511 } 512 break; 513 514 case ZPOOL_PROP_FAILUREMODE: 515 error = nvpair_value_uint64(elem, &intval); 516 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 517 intval > ZIO_FAILURE_MODE_PANIC)) 518 error = SET_ERROR(EINVAL); 519 520 /* 521 * This is a special case which only occurs when 522 * the pool has completely failed. This allows 523 * the user to change the in-core failmode property 524 * without syncing it out to disk (I/Os might 525 * currently be blocked). We do this by returning 526 * EIO to the caller (spa_prop_set) to trick it 527 * into thinking we encountered a property validation 528 * error. 529 */ 530 if (!error && spa_suspended(spa)) { 531 spa->spa_failmode = intval; 532 error = SET_ERROR(EIO); 533 } 534 break; 535 536 case ZPOOL_PROP_CACHEFILE: 537 if ((error = nvpair_value_string(elem, &strval)) != 0) 538 break; 539 540 if (strval[0] == '\0') 541 break; 542 543 if (strcmp(strval, "none") == 0) 544 break; 545 546 if (strval[0] != '/') { 547 error = SET_ERROR(EINVAL); 548 break; 549 } 550 551 slash = strrchr(strval, '/'); 552 ASSERT(slash != NULL); 553 554 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 555 strcmp(slash, "/..") == 0) 556 error = SET_ERROR(EINVAL); 557 break; 558 559 case ZPOOL_PROP_COMMENT: 560 if ((error = nvpair_value_string(elem, &strval)) != 0) 561 break; 562 for (check = strval; *check != '\0'; check++) { 563 /* 564 * The kernel doesn't have an easy isprint() 565 * check. For this kernel check, we merely 566 * check ASCII apart from DEL. Fix this if 567 * there is an easy-to-use kernel isprint(). 568 */ 569 if (*check >= 0x7f) { 570 error = SET_ERROR(EINVAL); 571 break; 572 } 573 check++; 574 } 575 if (strlen(strval) > ZPROP_MAX_COMMENT) 576 error = E2BIG; 577 break; 578 579 case ZPOOL_PROP_DEDUPDITTO: 580 if (spa_version(spa) < SPA_VERSION_DEDUP) 581 error = SET_ERROR(ENOTSUP); 582 else 583 error = nvpair_value_uint64(elem, &intval); 584 if (error == 0 && 585 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 586 error = SET_ERROR(EINVAL); 587 break; 588 } 589 590 if (error) 591 break; 592 } 593 594 if (!error && reset_bootfs) { 595 error = nvlist_remove(props, 596 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 597 598 if (!error) { 599 error = nvlist_add_uint64(props, 600 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 601 } 602 } 603 604 return (error); 605 } 606 607 void 608 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 609 { 610 char *cachefile; 611 spa_config_dirent_t *dp; 612 613 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 614 &cachefile) != 0) 615 return; 616 617 dp = kmem_alloc(sizeof (spa_config_dirent_t), 618 KM_SLEEP); 619 620 if (cachefile[0] == '\0') 621 dp->scd_path = spa_strdup(spa_config_path); 622 else if (strcmp(cachefile, "none") == 0) 623 dp->scd_path = NULL; 624 else 625 dp->scd_path = spa_strdup(cachefile); 626 627 list_insert_head(&spa->spa_config_list, dp); 628 if (need_sync) 629 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 630 } 631 632 int 633 spa_prop_set(spa_t *spa, nvlist_t *nvp) 634 { 635 int error; 636 nvpair_t *elem = NULL; 637 boolean_t need_sync = B_FALSE; 638 639 if ((error = spa_prop_validate(spa, nvp)) != 0) 640 return (error); 641 642 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 643 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 644 645 if (prop == ZPOOL_PROP_CACHEFILE || 646 prop == ZPOOL_PROP_ALTROOT || 647 prop == ZPOOL_PROP_READONLY) 648 continue; 649 650 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 651 uint64_t ver; 652 653 if (prop == ZPOOL_PROP_VERSION) { 654 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 655 } else { 656 ASSERT(zpool_prop_feature(nvpair_name(elem))); 657 ver = SPA_VERSION_FEATURES; 658 need_sync = B_TRUE; 659 } 660 661 /* Save time if the version is already set. */ 662 if (ver == spa_version(spa)) 663 continue; 664 665 /* 666 * In addition to the pool directory object, we might 667 * create the pool properties object, the features for 668 * read object, the features for write object, or the 669 * feature descriptions object. 670 */ 671 error = dsl_sync_task(spa->spa_name, NULL, 672 spa_sync_version, &ver, 6); 673 if (error) 674 return (error); 675 continue; 676 } 677 678 need_sync = B_TRUE; 679 break; 680 } 681 682 if (need_sync) { 683 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 684 nvp, 6)); 685 } 686 687 return (0); 688 } 689 690 /* 691 * If the bootfs property value is dsobj, clear it. 692 */ 693 void 694 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 695 { 696 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 697 VERIFY(zap_remove(spa->spa_meta_objset, 698 spa->spa_pool_props_object, 699 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 700 spa->spa_bootfs = 0; 701 } 702 } 703 704 /*ARGSUSED*/ 705 static int 706 spa_change_guid_check(void *arg, dmu_tx_t *tx) 707 { 708 uint64_t *newguid = arg; 709 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 710 vdev_t *rvd = spa->spa_root_vdev; 711 uint64_t vdev_state; 712 713 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 714 vdev_state = rvd->vdev_state; 715 spa_config_exit(spa, SCL_STATE, FTAG); 716 717 if (vdev_state != VDEV_STATE_HEALTHY) 718 return (SET_ERROR(ENXIO)); 719 720 ASSERT3U(spa_guid(spa), !=, *newguid); 721 722 return (0); 723 } 724 725 static void 726 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 727 { 728 uint64_t *newguid = arg; 729 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 730 uint64_t oldguid; 731 vdev_t *rvd = spa->spa_root_vdev; 732 733 oldguid = spa_guid(spa); 734 735 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 736 rvd->vdev_guid = *newguid; 737 rvd->vdev_guid_sum += (*newguid - oldguid); 738 vdev_config_dirty(rvd); 739 spa_config_exit(spa, SCL_STATE, FTAG); 740 741 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 742 oldguid, *newguid); 743 } 744 745 /* 746 * Change the GUID for the pool. This is done so that we can later 747 * re-import a pool built from a clone of our own vdevs. We will modify 748 * the root vdev's guid, our own pool guid, and then mark all of our 749 * vdevs dirty. Note that we must make sure that all our vdevs are 750 * online when we do this, or else any vdevs that weren't present 751 * would be orphaned from our pool. We are also going to issue a 752 * sysevent to update any watchers. 753 */ 754 int 755 spa_change_guid(spa_t *spa) 756 { 757 int error; 758 uint64_t guid; 759 760 mutex_enter(&spa_namespace_lock); 761 guid = spa_generate_guid(NULL); 762 763 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 764 spa_change_guid_sync, &guid, 5); 765 766 if (error == 0) { 767 spa_config_sync(spa, B_FALSE, B_TRUE); 768 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 769 } 770 771 mutex_exit(&spa_namespace_lock); 772 773 return (error); 774 } 775 776 /* 777 * ========================================================================== 778 * SPA state manipulation (open/create/destroy/import/export) 779 * ========================================================================== 780 */ 781 782 static int 783 spa_error_entry_compare(const void *a, const void *b) 784 { 785 spa_error_entry_t *sa = (spa_error_entry_t *)a; 786 spa_error_entry_t *sb = (spa_error_entry_t *)b; 787 int ret; 788 789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 790 sizeof (zbookmark_t)); 791 792 if (ret < 0) 793 return (-1); 794 else if (ret > 0) 795 return (1); 796 else 797 return (0); 798 } 799 800 /* 801 * Utility function which retrieves copies of the current logs and 802 * re-initializes them in the process. 803 */ 804 void 805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 806 { 807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 808 809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 811 812 avl_create(&spa->spa_errlist_scrub, 813 spa_error_entry_compare, sizeof (spa_error_entry_t), 814 offsetof(spa_error_entry_t, se_avl)); 815 avl_create(&spa->spa_errlist_last, 816 spa_error_entry_compare, sizeof (spa_error_entry_t), 817 offsetof(spa_error_entry_t, se_avl)); 818 } 819 820 static void 821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 822 { 823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 824 enum zti_modes mode = ztip->zti_mode; 825 uint_t value = ztip->zti_value; 826 uint_t count = ztip->zti_count; 827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 828 char name[32]; 829 uint_t flags = 0; 830 boolean_t batch = B_FALSE; 831 832 if (mode == ZTI_MODE_NULL) { 833 tqs->stqs_count = 0; 834 tqs->stqs_taskq = NULL; 835 return; 836 } 837 838 ASSERT3U(count, >, 0); 839 840 tqs->stqs_count = count; 841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 842 843 for (uint_t i = 0; i < count; i++) { 844 taskq_t *tq; 845 846 switch (mode) { 847 case ZTI_MODE_FIXED: 848 ASSERT3U(value, >=, 1); 849 value = MAX(value, 1); 850 break; 851 852 case ZTI_MODE_BATCH: 853 batch = B_TRUE; 854 flags |= TASKQ_THREADS_CPU_PCT; 855 value = zio_taskq_batch_pct; 856 break; 857 858 case ZTI_MODE_ONLINE_PERCENT: 859 flags |= TASKQ_THREADS_CPU_PCT; 860 break; 861 862 default: 863 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 864 "spa_activate()", 865 zio_type_name[t], zio_taskq_types[q], mode, value); 866 break; 867 } 868 869 if (count > 1) { 870 (void) snprintf(name, sizeof (name), "%s_%s_%u", 871 zio_type_name[t], zio_taskq_types[q], i); 872 } else { 873 (void) snprintf(name, sizeof (name), "%s_%s", 874 zio_type_name[t], zio_taskq_types[q]); 875 } 876 877 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 878 if (batch) 879 flags |= TASKQ_DC_BATCH; 880 881 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 882 spa->spa_proc, zio_taskq_basedc, flags); 883 } else { 884 tq = taskq_create_proc(name, value, maxclsyspri, 50, 885 INT_MAX, spa->spa_proc, flags); 886 } 887 888 tqs->stqs_taskq[i] = tq; 889 } 890 } 891 892 static void 893 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 894 { 895 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 896 897 if (tqs->stqs_taskq == NULL) { 898 ASSERT0(tqs->stqs_count); 899 return; 900 } 901 902 for (uint_t i = 0; i < tqs->stqs_count; i++) { 903 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 904 taskq_destroy(tqs->stqs_taskq[i]); 905 } 906 907 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 908 tqs->stqs_taskq = NULL; 909 } 910 911 /* 912 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 913 * Note that a type may have multiple discrete taskqs to avoid lock contention 914 * on the taskq itself. In that case we choose which taskq at random by using 915 * the low bits of gethrtime(). 916 */ 917 void 918 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 919 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 920 { 921 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 922 taskq_t *tq; 923 924 ASSERT3P(tqs->stqs_taskq, !=, NULL); 925 ASSERT3U(tqs->stqs_count, !=, 0); 926 927 if (tqs->stqs_count == 1) { 928 tq = tqs->stqs_taskq[0]; 929 } else { 930 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 931 } 932 933 taskq_dispatch_ent(tq, func, arg, flags, ent); 934 } 935 936 static void 937 spa_create_zio_taskqs(spa_t *spa) 938 { 939 for (int t = 0; t < ZIO_TYPES; t++) { 940 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 941 spa_taskqs_init(spa, t, q); 942 } 943 } 944 } 945 946 #ifdef _KERNEL 947 static void 948 spa_thread(void *arg) 949 { 950 callb_cpr_t cprinfo; 951 952 spa_t *spa = arg; 953 user_t *pu = PTOU(curproc); 954 955 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 956 spa->spa_name); 957 958 ASSERT(curproc != &p0); 959 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 960 "zpool-%s", spa->spa_name); 961 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 962 963 /* bind this thread to the requested psrset */ 964 if (zio_taskq_psrset_bind != PS_NONE) { 965 pool_lock(); 966 mutex_enter(&cpu_lock); 967 mutex_enter(&pidlock); 968 mutex_enter(&curproc->p_lock); 969 970 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 971 0, NULL, NULL) == 0) { 972 curthread->t_bind_pset = zio_taskq_psrset_bind; 973 } else { 974 cmn_err(CE_WARN, 975 "Couldn't bind process for zfs pool \"%s\" to " 976 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 977 } 978 979 mutex_exit(&curproc->p_lock); 980 mutex_exit(&pidlock); 981 mutex_exit(&cpu_lock); 982 pool_unlock(); 983 } 984 985 if (zio_taskq_sysdc) { 986 sysdc_thread_enter(curthread, 100, 0); 987 } 988 989 spa->spa_proc = curproc; 990 spa->spa_did = curthread->t_did; 991 992 spa_create_zio_taskqs(spa); 993 994 mutex_enter(&spa->spa_proc_lock); 995 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 996 997 spa->spa_proc_state = SPA_PROC_ACTIVE; 998 cv_broadcast(&spa->spa_proc_cv); 999 1000 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1001 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1002 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1003 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1004 1005 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1006 spa->spa_proc_state = SPA_PROC_GONE; 1007 spa->spa_proc = &p0; 1008 cv_broadcast(&spa->spa_proc_cv); 1009 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1010 1011 mutex_enter(&curproc->p_lock); 1012 lwp_exit(); 1013 } 1014 #endif 1015 1016 /* 1017 * Activate an uninitialized pool. 1018 */ 1019 static void 1020 spa_activate(spa_t *spa, int mode) 1021 { 1022 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1023 1024 spa->spa_state = POOL_STATE_ACTIVE; 1025 spa->spa_mode = mode; 1026 1027 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1028 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1029 1030 /* Try to create a covering process */ 1031 mutex_enter(&spa->spa_proc_lock); 1032 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1033 ASSERT(spa->spa_proc == &p0); 1034 spa->spa_did = 0; 1035 1036 /* Only create a process if we're going to be around a while. */ 1037 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1038 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1039 NULL, 0) == 0) { 1040 spa->spa_proc_state = SPA_PROC_CREATED; 1041 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1042 cv_wait(&spa->spa_proc_cv, 1043 &spa->spa_proc_lock); 1044 } 1045 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1046 ASSERT(spa->spa_proc != &p0); 1047 ASSERT(spa->spa_did != 0); 1048 } else { 1049 #ifdef _KERNEL 1050 cmn_err(CE_WARN, 1051 "Couldn't create process for zfs pool \"%s\"\n", 1052 spa->spa_name); 1053 #endif 1054 } 1055 } 1056 mutex_exit(&spa->spa_proc_lock); 1057 1058 /* If we didn't create a process, we need to create our taskqs. */ 1059 if (spa->spa_proc == &p0) { 1060 spa_create_zio_taskqs(spa); 1061 } 1062 1063 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1064 offsetof(vdev_t, vdev_config_dirty_node)); 1065 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1066 offsetof(vdev_t, vdev_state_dirty_node)); 1067 1068 txg_list_create(&spa->spa_vdev_txg_list, 1069 offsetof(struct vdev, vdev_txg_node)); 1070 1071 avl_create(&spa->spa_errlist_scrub, 1072 spa_error_entry_compare, sizeof (spa_error_entry_t), 1073 offsetof(spa_error_entry_t, se_avl)); 1074 avl_create(&spa->spa_errlist_last, 1075 spa_error_entry_compare, sizeof (spa_error_entry_t), 1076 offsetof(spa_error_entry_t, se_avl)); 1077 } 1078 1079 /* 1080 * Opposite of spa_activate(). 1081 */ 1082 static void 1083 spa_deactivate(spa_t *spa) 1084 { 1085 ASSERT(spa->spa_sync_on == B_FALSE); 1086 ASSERT(spa->spa_dsl_pool == NULL); 1087 ASSERT(spa->spa_root_vdev == NULL); 1088 ASSERT(spa->spa_async_zio_root == NULL); 1089 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1090 1091 txg_list_destroy(&spa->spa_vdev_txg_list); 1092 1093 list_destroy(&spa->spa_config_dirty_list); 1094 list_destroy(&spa->spa_state_dirty_list); 1095 1096 for (int t = 0; t < ZIO_TYPES; t++) { 1097 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1098 spa_taskqs_fini(spa, t, q); 1099 } 1100 } 1101 1102 metaslab_class_destroy(spa->spa_normal_class); 1103 spa->spa_normal_class = NULL; 1104 1105 metaslab_class_destroy(spa->spa_log_class); 1106 spa->spa_log_class = NULL; 1107 1108 /* 1109 * If this was part of an import or the open otherwise failed, we may 1110 * still have errors left in the queues. Empty them just in case. 1111 */ 1112 spa_errlog_drain(spa); 1113 1114 avl_destroy(&spa->spa_errlist_scrub); 1115 avl_destroy(&spa->spa_errlist_last); 1116 1117 spa->spa_state = POOL_STATE_UNINITIALIZED; 1118 1119 mutex_enter(&spa->spa_proc_lock); 1120 if (spa->spa_proc_state != SPA_PROC_NONE) { 1121 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1122 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1123 cv_broadcast(&spa->spa_proc_cv); 1124 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1125 ASSERT(spa->spa_proc != &p0); 1126 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1127 } 1128 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1129 spa->spa_proc_state = SPA_PROC_NONE; 1130 } 1131 ASSERT(spa->spa_proc == &p0); 1132 mutex_exit(&spa->spa_proc_lock); 1133 1134 /* 1135 * We want to make sure spa_thread() has actually exited the ZFS 1136 * module, so that the module can't be unloaded out from underneath 1137 * it. 1138 */ 1139 if (spa->spa_did != 0) { 1140 thread_join(spa->spa_did); 1141 spa->spa_did = 0; 1142 } 1143 } 1144 1145 /* 1146 * Verify a pool configuration, and construct the vdev tree appropriately. This 1147 * will create all the necessary vdevs in the appropriate layout, with each vdev 1148 * in the CLOSED state. This will prep the pool before open/creation/import. 1149 * All vdev validation is done by the vdev_alloc() routine. 1150 */ 1151 static int 1152 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1153 uint_t id, int atype) 1154 { 1155 nvlist_t **child; 1156 uint_t children; 1157 int error; 1158 1159 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1160 return (error); 1161 1162 if ((*vdp)->vdev_ops->vdev_op_leaf) 1163 return (0); 1164 1165 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1166 &child, &children); 1167 1168 if (error == ENOENT) 1169 return (0); 1170 1171 if (error) { 1172 vdev_free(*vdp); 1173 *vdp = NULL; 1174 return (SET_ERROR(EINVAL)); 1175 } 1176 1177 for (int c = 0; c < children; c++) { 1178 vdev_t *vd; 1179 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1180 atype)) != 0) { 1181 vdev_free(*vdp); 1182 *vdp = NULL; 1183 return (error); 1184 } 1185 } 1186 1187 ASSERT(*vdp != NULL); 1188 1189 return (0); 1190 } 1191 1192 /* 1193 * Opposite of spa_load(). 1194 */ 1195 static void 1196 spa_unload(spa_t *spa) 1197 { 1198 int i; 1199 1200 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1201 1202 /* 1203 * Stop async tasks. 1204 */ 1205 spa_async_suspend(spa); 1206 1207 /* 1208 * Stop syncing. 1209 */ 1210 if (spa->spa_sync_on) { 1211 txg_sync_stop(spa->spa_dsl_pool); 1212 spa->spa_sync_on = B_FALSE; 1213 } 1214 1215 /* 1216 * Wait for any outstanding async I/O to complete. 1217 */ 1218 if (spa->spa_async_zio_root != NULL) { 1219 (void) zio_wait(spa->spa_async_zio_root); 1220 spa->spa_async_zio_root = NULL; 1221 } 1222 1223 bpobj_close(&spa->spa_deferred_bpobj); 1224 1225 /* 1226 * Close the dsl pool. 1227 */ 1228 if (spa->spa_dsl_pool) { 1229 dsl_pool_close(spa->spa_dsl_pool); 1230 spa->spa_dsl_pool = NULL; 1231 spa->spa_meta_objset = NULL; 1232 } 1233 1234 ddt_unload(spa); 1235 1236 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1237 1238 /* 1239 * Drop and purge level 2 cache 1240 */ 1241 spa_l2cache_drop(spa); 1242 1243 /* 1244 * Close all vdevs. 1245 */ 1246 if (spa->spa_root_vdev) 1247 vdev_free(spa->spa_root_vdev); 1248 ASSERT(spa->spa_root_vdev == NULL); 1249 1250 for (i = 0; i < spa->spa_spares.sav_count; i++) 1251 vdev_free(spa->spa_spares.sav_vdevs[i]); 1252 if (spa->spa_spares.sav_vdevs) { 1253 kmem_free(spa->spa_spares.sav_vdevs, 1254 spa->spa_spares.sav_count * sizeof (void *)); 1255 spa->spa_spares.sav_vdevs = NULL; 1256 } 1257 if (spa->spa_spares.sav_config) { 1258 nvlist_free(spa->spa_spares.sav_config); 1259 spa->spa_spares.sav_config = NULL; 1260 } 1261 spa->spa_spares.sav_count = 0; 1262 1263 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1264 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1265 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1266 } 1267 if (spa->spa_l2cache.sav_vdevs) { 1268 kmem_free(spa->spa_l2cache.sav_vdevs, 1269 spa->spa_l2cache.sav_count * sizeof (void *)); 1270 spa->spa_l2cache.sav_vdevs = NULL; 1271 } 1272 if (spa->spa_l2cache.sav_config) { 1273 nvlist_free(spa->spa_l2cache.sav_config); 1274 spa->spa_l2cache.sav_config = NULL; 1275 } 1276 spa->spa_l2cache.sav_count = 0; 1277 1278 spa->spa_async_suspended = 0; 1279 1280 if (spa->spa_comment != NULL) { 1281 spa_strfree(spa->spa_comment); 1282 spa->spa_comment = NULL; 1283 } 1284 1285 spa_config_exit(spa, SCL_ALL, FTAG); 1286 } 1287 1288 /* 1289 * Load (or re-load) the current list of vdevs describing the active spares for 1290 * this pool. When this is called, we have some form of basic information in 1291 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1292 * then re-generate a more complete list including status information. 1293 */ 1294 static void 1295 spa_load_spares(spa_t *spa) 1296 { 1297 nvlist_t **spares; 1298 uint_t nspares; 1299 int i; 1300 vdev_t *vd, *tvd; 1301 1302 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1303 1304 /* 1305 * First, close and free any existing spare vdevs. 1306 */ 1307 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1308 vd = spa->spa_spares.sav_vdevs[i]; 1309 1310 /* Undo the call to spa_activate() below */ 1311 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1312 B_FALSE)) != NULL && tvd->vdev_isspare) 1313 spa_spare_remove(tvd); 1314 vdev_close(vd); 1315 vdev_free(vd); 1316 } 1317 1318 if (spa->spa_spares.sav_vdevs) 1319 kmem_free(spa->spa_spares.sav_vdevs, 1320 spa->spa_spares.sav_count * sizeof (void *)); 1321 1322 if (spa->spa_spares.sav_config == NULL) 1323 nspares = 0; 1324 else 1325 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1326 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1327 1328 spa->spa_spares.sav_count = (int)nspares; 1329 spa->spa_spares.sav_vdevs = NULL; 1330 1331 if (nspares == 0) 1332 return; 1333 1334 /* 1335 * Construct the array of vdevs, opening them to get status in the 1336 * process. For each spare, there is potentially two different vdev_t 1337 * structures associated with it: one in the list of spares (used only 1338 * for basic validation purposes) and one in the active vdev 1339 * configuration (if it's spared in). During this phase we open and 1340 * validate each vdev on the spare list. If the vdev also exists in the 1341 * active configuration, then we also mark this vdev as an active spare. 1342 */ 1343 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1344 KM_SLEEP); 1345 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1346 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1347 VDEV_ALLOC_SPARE) == 0); 1348 ASSERT(vd != NULL); 1349 1350 spa->spa_spares.sav_vdevs[i] = vd; 1351 1352 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1353 B_FALSE)) != NULL) { 1354 if (!tvd->vdev_isspare) 1355 spa_spare_add(tvd); 1356 1357 /* 1358 * We only mark the spare active if we were successfully 1359 * able to load the vdev. Otherwise, importing a pool 1360 * with a bad active spare would result in strange 1361 * behavior, because multiple pool would think the spare 1362 * is actively in use. 1363 * 1364 * There is a vulnerability here to an equally bizarre 1365 * circumstance, where a dead active spare is later 1366 * brought back to life (onlined or otherwise). Given 1367 * the rarity of this scenario, and the extra complexity 1368 * it adds, we ignore the possibility. 1369 */ 1370 if (!vdev_is_dead(tvd)) 1371 spa_spare_activate(tvd); 1372 } 1373 1374 vd->vdev_top = vd; 1375 vd->vdev_aux = &spa->spa_spares; 1376 1377 if (vdev_open(vd) != 0) 1378 continue; 1379 1380 if (vdev_validate_aux(vd) == 0) 1381 spa_spare_add(vd); 1382 } 1383 1384 /* 1385 * Recompute the stashed list of spares, with status information 1386 * this time. 1387 */ 1388 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1389 DATA_TYPE_NVLIST_ARRAY) == 0); 1390 1391 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1392 KM_SLEEP); 1393 for (i = 0; i < spa->spa_spares.sav_count; i++) 1394 spares[i] = vdev_config_generate(spa, 1395 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1396 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1397 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1398 for (i = 0; i < spa->spa_spares.sav_count; i++) 1399 nvlist_free(spares[i]); 1400 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1401 } 1402 1403 /* 1404 * Load (or re-load) the current list of vdevs describing the active l2cache for 1405 * this pool. When this is called, we have some form of basic information in 1406 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1407 * then re-generate a more complete list including status information. 1408 * Devices which are already active have their details maintained, and are 1409 * not re-opened. 1410 */ 1411 static void 1412 spa_load_l2cache(spa_t *spa) 1413 { 1414 nvlist_t **l2cache; 1415 uint_t nl2cache; 1416 int i, j, oldnvdevs; 1417 uint64_t guid; 1418 vdev_t *vd, **oldvdevs, **newvdevs; 1419 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1420 1421 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1422 1423 if (sav->sav_config != NULL) { 1424 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1425 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1426 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1427 } else { 1428 nl2cache = 0; 1429 newvdevs = NULL; 1430 } 1431 1432 oldvdevs = sav->sav_vdevs; 1433 oldnvdevs = sav->sav_count; 1434 sav->sav_vdevs = NULL; 1435 sav->sav_count = 0; 1436 1437 /* 1438 * Process new nvlist of vdevs. 1439 */ 1440 for (i = 0; i < nl2cache; i++) { 1441 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1442 &guid) == 0); 1443 1444 newvdevs[i] = NULL; 1445 for (j = 0; j < oldnvdevs; j++) { 1446 vd = oldvdevs[j]; 1447 if (vd != NULL && guid == vd->vdev_guid) { 1448 /* 1449 * Retain previous vdev for add/remove ops. 1450 */ 1451 newvdevs[i] = vd; 1452 oldvdevs[j] = NULL; 1453 break; 1454 } 1455 } 1456 1457 if (newvdevs[i] == NULL) { 1458 /* 1459 * Create new vdev 1460 */ 1461 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1462 VDEV_ALLOC_L2CACHE) == 0); 1463 ASSERT(vd != NULL); 1464 newvdevs[i] = vd; 1465 1466 /* 1467 * Commit this vdev as an l2cache device, 1468 * even if it fails to open. 1469 */ 1470 spa_l2cache_add(vd); 1471 1472 vd->vdev_top = vd; 1473 vd->vdev_aux = sav; 1474 1475 spa_l2cache_activate(vd); 1476 1477 if (vdev_open(vd) != 0) 1478 continue; 1479 1480 (void) vdev_validate_aux(vd); 1481 1482 if (!vdev_is_dead(vd)) 1483 l2arc_add_vdev(spa, vd); 1484 } 1485 } 1486 1487 /* 1488 * Purge vdevs that were dropped 1489 */ 1490 for (i = 0; i < oldnvdevs; i++) { 1491 uint64_t pool; 1492 1493 vd = oldvdevs[i]; 1494 if (vd != NULL) { 1495 ASSERT(vd->vdev_isl2cache); 1496 1497 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1498 pool != 0ULL && l2arc_vdev_present(vd)) 1499 l2arc_remove_vdev(vd); 1500 vdev_clear_stats(vd); 1501 vdev_free(vd); 1502 } 1503 } 1504 1505 if (oldvdevs) 1506 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1507 1508 if (sav->sav_config == NULL) 1509 goto out; 1510 1511 sav->sav_vdevs = newvdevs; 1512 sav->sav_count = (int)nl2cache; 1513 1514 /* 1515 * Recompute the stashed list of l2cache devices, with status 1516 * information this time. 1517 */ 1518 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1519 DATA_TYPE_NVLIST_ARRAY) == 0); 1520 1521 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1522 for (i = 0; i < sav->sav_count; i++) 1523 l2cache[i] = vdev_config_generate(spa, 1524 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1525 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1526 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1527 out: 1528 for (i = 0; i < sav->sav_count; i++) 1529 nvlist_free(l2cache[i]); 1530 if (sav->sav_count) 1531 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1532 } 1533 1534 static int 1535 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1536 { 1537 dmu_buf_t *db; 1538 char *packed = NULL; 1539 size_t nvsize = 0; 1540 int error; 1541 *value = NULL; 1542 1543 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1544 nvsize = *(uint64_t *)db->db_data; 1545 dmu_buf_rele(db, FTAG); 1546 1547 packed = kmem_alloc(nvsize, KM_SLEEP); 1548 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1549 DMU_READ_PREFETCH); 1550 if (error == 0) 1551 error = nvlist_unpack(packed, nvsize, value, 0); 1552 kmem_free(packed, nvsize); 1553 1554 return (error); 1555 } 1556 1557 /* 1558 * Checks to see if the given vdev could not be opened, in which case we post a 1559 * sysevent to notify the autoreplace code that the device has been removed. 1560 */ 1561 static void 1562 spa_check_removed(vdev_t *vd) 1563 { 1564 for (int c = 0; c < vd->vdev_children; c++) 1565 spa_check_removed(vd->vdev_child[c]); 1566 1567 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1568 !vd->vdev_ishole) { 1569 zfs_post_autoreplace(vd->vdev_spa, vd); 1570 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1571 } 1572 } 1573 1574 /* 1575 * Validate the current config against the MOS config 1576 */ 1577 static boolean_t 1578 spa_config_valid(spa_t *spa, nvlist_t *config) 1579 { 1580 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1581 nvlist_t *nv; 1582 1583 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1584 1585 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1586 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1587 1588 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1589 1590 /* 1591 * If we're doing a normal import, then build up any additional 1592 * diagnostic information about missing devices in this config. 1593 * We'll pass this up to the user for further processing. 1594 */ 1595 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1596 nvlist_t **child, *nv; 1597 uint64_t idx = 0; 1598 1599 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1600 KM_SLEEP); 1601 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1602 1603 for (int c = 0; c < rvd->vdev_children; c++) { 1604 vdev_t *tvd = rvd->vdev_child[c]; 1605 vdev_t *mtvd = mrvd->vdev_child[c]; 1606 1607 if (tvd->vdev_ops == &vdev_missing_ops && 1608 mtvd->vdev_ops != &vdev_missing_ops && 1609 mtvd->vdev_islog) 1610 child[idx++] = vdev_config_generate(spa, mtvd, 1611 B_FALSE, 0); 1612 } 1613 1614 if (idx) { 1615 VERIFY(nvlist_add_nvlist_array(nv, 1616 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1617 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1618 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1619 1620 for (int i = 0; i < idx; i++) 1621 nvlist_free(child[i]); 1622 } 1623 nvlist_free(nv); 1624 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1625 } 1626 1627 /* 1628 * Compare the root vdev tree with the information we have 1629 * from the MOS config (mrvd). Check each top-level vdev 1630 * with the corresponding MOS config top-level (mtvd). 1631 */ 1632 for (int c = 0; c < rvd->vdev_children; c++) { 1633 vdev_t *tvd = rvd->vdev_child[c]; 1634 vdev_t *mtvd = mrvd->vdev_child[c]; 1635 1636 /* 1637 * Resolve any "missing" vdevs in the current configuration. 1638 * If we find that the MOS config has more accurate information 1639 * about the top-level vdev then use that vdev instead. 1640 */ 1641 if (tvd->vdev_ops == &vdev_missing_ops && 1642 mtvd->vdev_ops != &vdev_missing_ops) { 1643 1644 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1645 continue; 1646 1647 /* 1648 * Device specific actions. 1649 */ 1650 if (mtvd->vdev_islog) { 1651 spa_set_log_state(spa, SPA_LOG_CLEAR); 1652 } else { 1653 /* 1654 * XXX - once we have 'readonly' pool 1655 * support we should be able to handle 1656 * missing data devices by transitioning 1657 * the pool to readonly. 1658 */ 1659 continue; 1660 } 1661 1662 /* 1663 * Swap the missing vdev with the data we were 1664 * able to obtain from the MOS config. 1665 */ 1666 vdev_remove_child(rvd, tvd); 1667 vdev_remove_child(mrvd, mtvd); 1668 1669 vdev_add_child(rvd, mtvd); 1670 vdev_add_child(mrvd, tvd); 1671 1672 spa_config_exit(spa, SCL_ALL, FTAG); 1673 vdev_load(mtvd); 1674 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1675 1676 vdev_reopen(rvd); 1677 } else if (mtvd->vdev_islog) { 1678 /* 1679 * Load the slog device's state from the MOS config 1680 * since it's possible that the label does not 1681 * contain the most up-to-date information. 1682 */ 1683 vdev_load_log_state(tvd, mtvd); 1684 vdev_reopen(tvd); 1685 } 1686 } 1687 vdev_free(mrvd); 1688 spa_config_exit(spa, SCL_ALL, FTAG); 1689 1690 /* 1691 * Ensure we were able to validate the config. 1692 */ 1693 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1694 } 1695 1696 /* 1697 * Check for missing log devices 1698 */ 1699 static boolean_t 1700 spa_check_logs(spa_t *spa) 1701 { 1702 boolean_t rv = B_FALSE; 1703 1704 switch (spa->spa_log_state) { 1705 case SPA_LOG_MISSING: 1706 /* need to recheck in case slog has been restored */ 1707 case SPA_LOG_UNKNOWN: 1708 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1709 NULL, DS_FIND_CHILDREN) != 0); 1710 if (rv) 1711 spa_set_log_state(spa, SPA_LOG_MISSING); 1712 break; 1713 } 1714 return (rv); 1715 } 1716 1717 static boolean_t 1718 spa_passivate_log(spa_t *spa) 1719 { 1720 vdev_t *rvd = spa->spa_root_vdev; 1721 boolean_t slog_found = B_FALSE; 1722 1723 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1724 1725 if (!spa_has_slogs(spa)) 1726 return (B_FALSE); 1727 1728 for (int c = 0; c < rvd->vdev_children; c++) { 1729 vdev_t *tvd = rvd->vdev_child[c]; 1730 metaslab_group_t *mg = tvd->vdev_mg; 1731 1732 if (tvd->vdev_islog) { 1733 metaslab_group_passivate(mg); 1734 slog_found = B_TRUE; 1735 } 1736 } 1737 1738 return (slog_found); 1739 } 1740 1741 static void 1742 spa_activate_log(spa_t *spa) 1743 { 1744 vdev_t *rvd = spa->spa_root_vdev; 1745 1746 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1747 1748 for (int c = 0; c < rvd->vdev_children; c++) { 1749 vdev_t *tvd = rvd->vdev_child[c]; 1750 metaslab_group_t *mg = tvd->vdev_mg; 1751 1752 if (tvd->vdev_islog) 1753 metaslab_group_activate(mg); 1754 } 1755 } 1756 1757 int 1758 spa_offline_log(spa_t *spa) 1759 { 1760 int error; 1761 1762 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1763 NULL, DS_FIND_CHILDREN); 1764 if (error == 0) { 1765 /* 1766 * We successfully offlined the log device, sync out the 1767 * current txg so that the "stubby" block can be removed 1768 * by zil_sync(). 1769 */ 1770 txg_wait_synced(spa->spa_dsl_pool, 0); 1771 } 1772 return (error); 1773 } 1774 1775 static void 1776 spa_aux_check_removed(spa_aux_vdev_t *sav) 1777 { 1778 for (int i = 0; i < sav->sav_count; i++) 1779 spa_check_removed(sav->sav_vdevs[i]); 1780 } 1781 1782 void 1783 spa_claim_notify(zio_t *zio) 1784 { 1785 spa_t *spa = zio->io_spa; 1786 1787 if (zio->io_error) 1788 return; 1789 1790 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1791 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1792 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1793 mutex_exit(&spa->spa_props_lock); 1794 } 1795 1796 typedef struct spa_load_error { 1797 uint64_t sle_meta_count; 1798 uint64_t sle_data_count; 1799 } spa_load_error_t; 1800 1801 static void 1802 spa_load_verify_done(zio_t *zio) 1803 { 1804 blkptr_t *bp = zio->io_bp; 1805 spa_load_error_t *sle = zio->io_private; 1806 dmu_object_type_t type = BP_GET_TYPE(bp); 1807 int error = zio->io_error; 1808 1809 if (error) { 1810 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1811 type != DMU_OT_INTENT_LOG) 1812 atomic_add_64(&sle->sle_meta_count, 1); 1813 else 1814 atomic_add_64(&sle->sle_data_count, 1); 1815 } 1816 zio_data_buf_free(zio->io_data, zio->io_size); 1817 } 1818 1819 /*ARGSUSED*/ 1820 static int 1821 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1822 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1823 { 1824 if (bp != NULL) { 1825 zio_t *rio = arg; 1826 size_t size = BP_GET_PSIZE(bp); 1827 void *data = zio_data_buf_alloc(size); 1828 1829 zio_nowait(zio_read(rio, spa, bp, data, size, 1830 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1831 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1832 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1833 } 1834 return (0); 1835 } 1836 1837 static int 1838 spa_load_verify(spa_t *spa) 1839 { 1840 zio_t *rio; 1841 spa_load_error_t sle = { 0 }; 1842 zpool_rewind_policy_t policy; 1843 boolean_t verify_ok = B_FALSE; 1844 int error; 1845 1846 zpool_get_rewind_policy(spa->spa_config, &policy); 1847 1848 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1849 return (0); 1850 1851 rio = zio_root(spa, NULL, &sle, 1852 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1853 1854 error = traverse_pool(spa, spa->spa_verify_min_txg, 1855 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1856 1857 (void) zio_wait(rio); 1858 1859 spa->spa_load_meta_errors = sle.sle_meta_count; 1860 spa->spa_load_data_errors = sle.sle_data_count; 1861 1862 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1863 sle.sle_data_count <= policy.zrp_maxdata) { 1864 int64_t loss = 0; 1865 1866 verify_ok = B_TRUE; 1867 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1868 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1869 1870 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1871 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1872 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1873 VERIFY(nvlist_add_int64(spa->spa_load_info, 1874 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1875 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1876 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1877 } else { 1878 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1879 } 1880 1881 if (error) { 1882 if (error != ENXIO && error != EIO) 1883 error = SET_ERROR(EIO); 1884 return (error); 1885 } 1886 1887 return (verify_ok ? 0 : EIO); 1888 } 1889 1890 /* 1891 * Find a value in the pool props object. 1892 */ 1893 static void 1894 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1895 { 1896 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1897 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1898 } 1899 1900 /* 1901 * Find a value in the pool directory object. 1902 */ 1903 static int 1904 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1905 { 1906 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1907 name, sizeof (uint64_t), 1, val)); 1908 } 1909 1910 static int 1911 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1912 { 1913 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1914 return (err); 1915 } 1916 1917 /* 1918 * Fix up config after a partly-completed split. This is done with the 1919 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1920 * pool have that entry in their config, but only the splitting one contains 1921 * a list of all the guids of the vdevs that are being split off. 1922 * 1923 * This function determines what to do with that list: either rejoin 1924 * all the disks to the pool, or complete the splitting process. To attempt 1925 * the rejoin, each disk that is offlined is marked online again, and 1926 * we do a reopen() call. If the vdev label for every disk that was 1927 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1928 * then we call vdev_split() on each disk, and complete the split. 1929 * 1930 * Otherwise we leave the config alone, with all the vdevs in place in 1931 * the original pool. 1932 */ 1933 static void 1934 spa_try_repair(spa_t *spa, nvlist_t *config) 1935 { 1936 uint_t extracted; 1937 uint64_t *glist; 1938 uint_t i, gcount; 1939 nvlist_t *nvl; 1940 vdev_t **vd; 1941 boolean_t attempt_reopen; 1942 1943 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1944 return; 1945 1946 /* check that the config is complete */ 1947 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1948 &glist, &gcount) != 0) 1949 return; 1950 1951 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1952 1953 /* attempt to online all the vdevs & validate */ 1954 attempt_reopen = B_TRUE; 1955 for (i = 0; i < gcount; i++) { 1956 if (glist[i] == 0) /* vdev is hole */ 1957 continue; 1958 1959 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1960 if (vd[i] == NULL) { 1961 /* 1962 * Don't bother attempting to reopen the disks; 1963 * just do the split. 1964 */ 1965 attempt_reopen = B_FALSE; 1966 } else { 1967 /* attempt to re-online it */ 1968 vd[i]->vdev_offline = B_FALSE; 1969 } 1970 } 1971 1972 if (attempt_reopen) { 1973 vdev_reopen(spa->spa_root_vdev); 1974 1975 /* check each device to see what state it's in */ 1976 for (extracted = 0, i = 0; i < gcount; i++) { 1977 if (vd[i] != NULL && 1978 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1979 break; 1980 ++extracted; 1981 } 1982 } 1983 1984 /* 1985 * If every disk has been moved to the new pool, or if we never 1986 * even attempted to look at them, then we split them off for 1987 * good. 1988 */ 1989 if (!attempt_reopen || gcount == extracted) { 1990 for (i = 0; i < gcount; i++) 1991 if (vd[i] != NULL) 1992 vdev_split(vd[i]); 1993 vdev_reopen(spa->spa_root_vdev); 1994 } 1995 1996 kmem_free(vd, gcount * sizeof (vdev_t *)); 1997 } 1998 1999 static int 2000 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2001 boolean_t mosconfig) 2002 { 2003 nvlist_t *config = spa->spa_config; 2004 char *ereport = FM_EREPORT_ZFS_POOL; 2005 char *comment; 2006 int error; 2007 uint64_t pool_guid; 2008 nvlist_t *nvl; 2009 2010 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2011 return (SET_ERROR(EINVAL)); 2012 2013 ASSERT(spa->spa_comment == NULL); 2014 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2015 spa->spa_comment = spa_strdup(comment); 2016 2017 /* 2018 * Versioning wasn't explicitly added to the label until later, so if 2019 * it's not present treat it as the initial version. 2020 */ 2021 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2022 &spa->spa_ubsync.ub_version) != 0) 2023 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2024 2025 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2026 &spa->spa_config_txg); 2027 2028 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2029 spa_guid_exists(pool_guid, 0)) { 2030 error = SET_ERROR(EEXIST); 2031 } else { 2032 spa->spa_config_guid = pool_guid; 2033 2034 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2035 &nvl) == 0) { 2036 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2037 KM_SLEEP) == 0); 2038 } 2039 2040 nvlist_free(spa->spa_load_info); 2041 spa->spa_load_info = fnvlist_alloc(); 2042 2043 gethrestime(&spa->spa_loaded_ts); 2044 error = spa_load_impl(spa, pool_guid, config, state, type, 2045 mosconfig, &ereport); 2046 } 2047 2048 spa->spa_minref = refcount_count(&spa->spa_refcount); 2049 if (error) { 2050 if (error != EEXIST) { 2051 spa->spa_loaded_ts.tv_sec = 0; 2052 spa->spa_loaded_ts.tv_nsec = 0; 2053 } 2054 if (error != EBADF) { 2055 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2056 } 2057 } 2058 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2059 spa->spa_ena = 0; 2060 2061 return (error); 2062 } 2063 2064 /* 2065 * Load an existing storage pool, using the pool's builtin spa_config as a 2066 * source of configuration information. 2067 */ 2068 static int 2069 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2070 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2071 char **ereport) 2072 { 2073 int error = 0; 2074 nvlist_t *nvroot = NULL; 2075 nvlist_t *label; 2076 vdev_t *rvd; 2077 uberblock_t *ub = &spa->spa_uberblock; 2078 uint64_t children, config_cache_txg = spa->spa_config_txg; 2079 int orig_mode = spa->spa_mode; 2080 int parse; 2081 uint64_t obj; 2082 boolean_t missing_feat_write = B_FALSE; 2083 2084 /* 2085 * If this is an untrusted config, access the pool in read-only mode. 2086 * This prevents things like resilvering recently removed devices. 2087 */ 2088 if (!mosconfig) 2089 spa->spa_mode = FREAD; 2090 2091 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2092 2093 spa->spa_load_state = state; 2094 2095 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2096 return (SET_ERROR(EINVAL)); 2097 2098 parse = (type == SPA_IMPORT_EXISTING ? 2099 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2100 2101 /* 2102 * Create "The Godfather" zio to hold all async IOs 2103 */ 2104 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2105 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2106 2107 /* 2108 * Parse the configuration into a vdev tree. We explicitly set the 2109 * value that will be returned by spa_version() since parsing the 2110 * configuration requires knowing the version number. 2111 */ 2112 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2113 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2114 spa_config_exit(spa, SCL_ALL, FTAG); 2115 2116 if (error != 0) 2117 return (error); 2118 2119 ASSERT(spa->spa_root_vdev == rvd); 2120 2121 if (type != SPA_IMPORT_ASSEMBLE) { 2122 ASSERT(spa_guid(spa) == pool_guid); 2123 } 2124 2125 /* 2126 * Try to open all vdevs, loading each label in the process. 2127 */ 2128 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2129 error = vdev_open(rvd); 2130 spa_config_exit(spa, SCL_ALL, FTAG); 2131 if (error != 0) 2132 return (error); 2133 2134 /* 2135 * We need to validate the vdev labels against the configuration that 2136 * we have in hand, which is dependent on the setting of mosconfig. If 2137 * mosconfig is true then we're validating the vdev labels based on 2138 * that config. Otherwise, we're validating against the cached config 2139 * (zpool.cache) that was read when we loaded the zfs module, and then 2140 * later we will recursively call spa_load() and validate against 2141 * the vdev config. 2142 * 2143 * If we're assembling a new pool that's been split off from an 2144 * existing pool, the labels haven't yet been updated so we skip 2145 * validation for now. 2146 */ 2147 if (type != SPA_IMPORT_ASSEMBLE) { 2148 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2149 error = vdev_validate(rvd, mosconfig); 2150 spa_config_exit(spa, SCL_ALL, FTAG); 2151 2152 if (error != 0) 2153 return (error); 2154 2155 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2156 return (SET_ERROR(ENXIO)); 2157 } 2158 2159 /* 2160 * Find the best uberblock. 2161 */ 2162 vdev_uberblock_load(rvd, ub, &label); 2163 2164 /* 2165 * If we weren't able to find a single valid uberblock, return failure. 2166 */ 2167 if (ub->ub_txg == 0) { 2168 nvlist_free(label); 2169 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2170 } 2171 2172 /* 2173 * If the pool has an unsupported version we can't open it. 2174 */ 2175 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2176 nvlist_free(label); 2177 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2178 } 2179 2180 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2181 nvlist_t *features; 2182 2183 /* 2184 * If we weren't able to find what's necessary for reading the 2185 * MOS in the label, return failure. 2186 */ 2187 if (label == NULL || nvlist_lookup_nvlist(label, 2188 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2189 nvlist_free(label); 2190 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2191 ENXIO)); 2192 } 2193 2194 /* 2195 * Update our in-core representation with the definitive values 2196 * from the label. 2197 */ 2198 nvlist_free(spa->spa_label_features); 2199 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2200 } 2201 2202 nvlist_free(label); 2203 2204 /* 2205 * Look through entries in the label nvlist's features_for_read. If 2206 * there is a feature listed there which we don't understand then we 2207 * cannot open a pool. 2208 */ 2209 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2210 nvlist_t *unsup_feat; 2211 2212 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2213 0); 2214 2215 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2216 NULL); nvp != NULL; 2217 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2218 if (!zfeature_is_supported(nvpair_name(nvp))) { 2219 VERIFY(nvlist_add_string(unsup_feat, 2220 nvpair_name(nvp), "") == 0); 2221 } 2222 } 2223 2224 if (!nvlist_empty(unsup_feat)) { 2225 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2226 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2227 nvlist_free(unsup_feat); 2228 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2229 ENOTSUP)); 2230 } 2231 2232 nvlist_free(unsup_feat); 2233 } 2234 2235 /* 2236 * If the vdev guid sum doesn't match the uberblock, we have an 2237 * incomplete configuration. We first check to see if the pool 2238 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2239 * If it is, defer the vdev_guid_sum check till later so we 2240 * can handle missing vdevs. 2241 */ 2242 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2243 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2244 rvd->vdev_guid_sum != ub->ub_guid_sum) 2245 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2246 2247 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2248 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2249 spa_try_repair(spa, config); 2250 spa_config_exit(spa, SCL_ALL, FTAG); 2251 nvlist_free(spa->spa_config_splitting); 2252 spa->spa_config_splitting = NULL; 2253 } 2254 2255 /* 2256 * Initialize internal SPA structures. 2257 */ 2258 spa->spa_state = POOL_STATE_ACTIVE; 2259 spa->spa_ubsync = spa->spa_uberblock; 2260 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2261 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2262 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2263 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2264 spa->spa_claim_max_txg = spa->spa_first_txg; 2265 spa->spa_prev_software_version = ub->ub_software_version; 2266 2267 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2268 if (error) 2269 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2270 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2271 2272 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2273 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2274 2275 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2276 boolean_t missing_feat_read = B_FALSE; 2277 nvlist_t *unsup_feat, *enabled_feat; 2278 2279 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2280 &spa->spa_feat_for_read_obj) != 0) { 2281 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2282 } 2283 2284 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2285 &spa->spa_feat_for_write_obj) != 0) { 2286 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2287 } 2288 2289 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2290 &spa->spa_feat_desc_obj) != 0) { 2291 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2292 } 2293 2294 enabled_feat = fnvlist_alloc(); 2295 unsup_feat = fnvlist_alloc(); 2296 2297 if (!feature_is_supported(spa->spa_meta_objset, 2298 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj, 2299 unsup_feat, enabled_feat)) 2300 missing_feat_read = B_TRUE; 2301 2302 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2303 if (!feature_is_supported(spa->spa_meta_objset, 2304 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj, 2305 unsup_feat, enabled_feat)) { 2306 missing_feat_write = B_TRUE; 2307 } 2308 } 2309 2310 fnvlist_add_nvlist(spa->spa_load_info, 2311 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2312 2313 if (!nvlist_empty(unsup_feat)) { 2314 fnvlist_add_nvlist(spa->spa_load_info, 2315 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2316 } 2317 2318 fnvlist_free(enabled_feat); 2319 fnvlist_free(unsup_feat); 2320 2321 if (!missing_feat_read) { 2322 fnvlist_add_boolean(spa->spa_load_info, 2323 ZPOOL_CONFIG_CAN_RDONLY); 2324 } 2325 2326 /* 2327 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2328 * twofold: to determine whether the pool is available for 2329 * import in read-write mode and (if it is not) whether the 2330 * pool is available for import in read-only mode. If the pool 2331 * is available for import in read-write mode, it is displayed 2332 * as available in userland; if it is not available for import 2333 * in read-only mode, it is displayed as unavailable in 2334 * userland. If the pool is available for import in read-only 2335 * mode but not read-write mode, it is displayed as unavailable 2336 * in userland with a special note that the pool is actually 2337 * available for open in read-only mode. 2338 * 2339 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2340 * missing a feature for write, we must first determine whether 2341 * the pool can be opened read-only before returning to 2342 * userland in order to know whether to display the 2343 * abovementioned note. 2344 */ 2345 if (missing_feat_read || (missing_feat_write && 2346 spa_writeable(spa))) { 2347 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2348 ENOTSUP)); 2349 } 2350 } 2351 2352 spa->spa_is_initializing = B_TRUE; 2353 error = dsl_pool_open(spa->spa_dsl_pool); 2354 spa->spa_is_initializing = B_FALSE; 2355 if (error != 0) 2356 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2357 2358 if (!mosconfig) { 2359 uint64_t hostid; 2360 nvlist_t *policy = NULL, *nvconfig; 2361 2362 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2363 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2364 2365 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2366 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2367 char *hostname; 2368 unsigned long myhostid = 0; 2369 2370 VERIFY(nvlist_lookup_string(nvconfig, 2371 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2372 2373 #ifdef _KERNEL 2374 myhostid = zone_get_hostid(NULL); 2375 #else /* _KERNEL */ 2376 /* 2377 * We're emulating the system's hostid in userland, so 2378 * we can't use zone_get_hostid(). 2379 */ 2380 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2381 #endif /* _KERNEL */ 2382 if (hostid != 0 && myhostid != 0 && 2383 hostid != myhostid) { 2384 nvlist_free(nvconfig); 2385 cmn_err(CE_WARN, "pool '%s' could not be " 2386 "loaded as it was last accessed by " 2387 "another system (host: %s hostid: 0x%lx). " 2388 "See: http://illumos.org/msg/ZFS-8000-EY", 2389 spa_name(spa), hostname, 2390 (unsigned long)hostid); 2391 return (SET_ERROR(EBADF)); 2392 } 2393 } 2394 if (nvlist_lookup_nvlist(spa->spa_config, 2395 ZPOOL_REWIND_POLICY, &policy) == 0) 2396 VERIFY(nvlist_add_nvlist(nvconfig, 2397 ZPOOL_REWIND_POLICY, policy) == 0); 2398 2399 spa_config_set(spa, nvconfig); 2400 spa_unload(spa); 2401 spa_deactivate(spa); 2402 spa_activate(spa, orig_mode); 2403 2404 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2405 } 2406 2407 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2408 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2409 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2410 if (error != 0) 2411 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2412 2413 /* 2414 * Load the bit that tells us to use the new accounting function 2415 * (raid-z deflation). If we have an older pool, this will not 2416 * be present. 2417 */ 2418 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2419 if (error != 0 && error != ENOENT) 2420 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2421 2422 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2423 &spa->spa_creation_version); 2424 if (error != 0 && error != ENOENT) 2425 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2426 2427 /* 2428 * Load the persistent error log. If we have an older pool, this will 2429 * not be present. 2430 */ 2431 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2432 if (error != 0 && error != ENOENT) 2433 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2434 2435 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2436 &spa->spa_errlog_scrub); 2437 if (error != 0 && error != ENOENT) 2438 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2439 2440 /* 2441 * Load the history object. If we have an older pool, this 2442 * will not be present. 2443 */ 2444 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2445 if (error != 0 && error != ENOENT) 2446 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2447 2448 /* 2449 * If we're assembling the pool from the split-off vdevs of 2450 * an existing pool, we don't want to attach the spares & cache 2451 * devices. 2452 */ 2453 2454 /* 2455 * Load any hot spares for this pool. 2456 */ 2457 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2458 if (error != 0 && error != ENOENT) 2459 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2460 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2461 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2462 if (load_nvlist(spa, spa->spa_spares.sav_object, 2463 &spa->spa_spares.sav_config) != 0) 2464 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2465 2466 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2467 spa_load_spares(spa); 2468 spa_config_exit(spa, SCL_ALL, FTAG); 2469 } else if (error == 0) { 2470 spa->spa_spares.sav_sync = B_TRUE; 2471 } 2472 2473 /* 2474 * Load any level 2 ARC devices for this pool. 2475 */ 2476 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2477 &spa->spa_l2cache.sav_object); 2478 if (error != 0 && error != ENOENT) 2479 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2480 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2481 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2482 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2483 &spa->spa_l2cache.sav_config) != 0) 2484 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2485 2486 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2487 spa_load_l2cache(spa); 2488 spa_config_exit(spa, SCL_ALL, FTAG); 2489 } else if (error == 0) { 2490 spa->spa_l2cache.sav_sync = B_TRUE; 2491 } 2492 2493 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2494 2495 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2496 if (error && error != ENOENT) 2497 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2498 2499 if (error == 0) { 2500 uint64_t autoreplace; 2501 2502 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2503 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2504 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2505 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2506 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2507 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2508 &spa->spa_dedup_ditto); 2509 2510 spa->spa_autoreplace = (autoreplace != 0); 2511 } 2512 2513 /* 2514 * If the 'autoreplace' property is set, then post a resource notifying 2515 * the ZFS DE that it should not issue any faults for unopenable 2516 * devices. We also iterate over the vdevs, and post a sysevent for any 2517 * unopenable vdevs so that the normal autoreplace handler can take 2518 * over. 2519 */ 2520 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2521 spa_check_removed(spa->spa_root_vdev); 2522 /* 2523 * For the import case, this is done in spa_import(), because 2524 * at this point we're using the spare definitions from 2525 * the MOS config, not necessarily from the userland config. 2526 */ 2527 if (state != SPA_LOAD_IMPORT) { 2528 spa_aux_check_removed(&spa->spa_spares); 2529 spa_aux_check_removed(&spa->spa_l2cache); 2530 } 2531 } 2532 2533 /* 2534 * Load the vdev state for all toplevel vdevs. 2535 */ 2536 vdev_load(rvd); 2537 2538 /* 2539 * Propagate the leaf DTLs we just loaded all the way up the tree. 2540 */ 2541 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2542 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2543 spa_config_exit(spa, SCL_ALL, FTAG); 2544 2545 /* 2546 * Load the DDTs (dedup tables). 2547 */ 2548 error = ddt_load(spa); 2549 if (error != 0) 2550 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2551 2552 spa_update_dspace(spa); 2553 2554 /* 2555 * Validate the config, using the MOS config to fill in any 2556 * information which might be missing. If we fail to validate 2557 * the config then declare the pool unfit for use. If we're 2558 * assembling a pool from a split, the log is not transferred 2559 * over. 2560 */ 2561 if (type != SPA_IMPORT_ASSEMBLE) { 2562 nvlist_t *nvconfig; 2563 2564 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2565 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2566 2567 if (!spa_config_valid(spa, nvconfig)) { 2568 nvlist_free(nvconfig); 2569 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2570 ENXIO)); 2571 } 2572 nvlist_free(nvconfig); 2573 2574 /* 2575 * Now that we've validated the config, check the state of the 2576 * root vdev. If it can't be opened, it indicates one or 2577 * more toplevel vdevs are faulted. 2578 */ 2579 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2580 return (SET_ERROR(ENXIO)); 2581 2582 if (spa_check_logs(spa)) { 2583 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2584 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2585 } 2586 } 2587 2588 if (missing_feat_write) { 2589 ASSERT(state == SPA_LOAD_TRYIMPORT); 2590 2591 /* 2592 * At this point, we know that we can open the pool in 2593 * read-only mode but not read-write mode. We now have enough 2594 * information and can return to userland. 2595 */ 2596 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2597 } 2598 2599 /* 2600 * We've successfully opened the pool, verify that we're ready 2601 * to start pushing transactions. 2602 */ 2603 if (state != SPA_LOAD_TRYIMPORT) { 2604 if (error = spa_load_verify(spa)) 2605 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2606 error)); 2607 } 2608 2609 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2610 spa->spa_load_max_txg == UINT64_MAX)) { 2611 dmu_tx_t *tx; 2612 int need_update = B_FALSE; 2613 2614 ASSERT(state != SPA_LOAD_TRYIMPORT); 2615 2616 /* 2617 * Claim log blocks that haven't been committed yet. 2618 * This must all happen in a single txg. 2619 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2620 * invoked from zil_claim_log_block()'s i/o done callback. 2621 * Price of rollback is that we abandon the log. 2622 */ 2623 spa->spa_claiming = B_TRUE; 2624 2625 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2626 spa_first_txg(spa)); 2627 (void) dmu_objset_find(spa_name(spa), 2628 zil_claim, tx, DS_FIND_CHILDREN); 2629 dmu_tx_commit(tx); 2630 2631 spa->spa_claiming = B_FALSE; 2632 2633 spa_set_log_state(spa, SPA_LOG_GOOD); 2634 spa->spa_sync_on = B_TRUE; 2635 txg_sync_start(spa->spa_dsl_pool); 2636 2637 /* 2638 * Wait for all claims to sync. We sync up to the highest 2639 * claimed log block birth time so that claimed log blocks 2640 * don't appear to be from the future. spa_claim_max_txg 2641 * will have been set for us by either zil_check_log_chain() 2642 * (invoked from spa_check_logs()) or zil_claim() above. 2643 */ 2644 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2645 2646 /* 2647 * If the config cache is stale, or we have uninitialized 2648 * metaslabs (see spa_vdev_add()), then update the config. 2649 * 2650 * If this is a verbatim import, trust the current 2651 * in-core spa_config and update the disk labels. 2652 */ 2653 if (config_cache_txg != spa->spa_config_txg || 2654 state == SPA_LOAD_IMPORT || 2655 state == SPA_LOAD_RECOVER || 2656 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2657 need_update = B_TRUE; 2658 2659 for (int c = 0; c < rvd->vdev_children; c++) 2660 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2661 need_update = B_TRUE; 2662 2663 /* 2664 * Update the config cache asychronously in case we're the 2665 * root pool, in which case the config cache isn't writable yet. 2666 */ 2667 if (need_update) 2668 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2669 2670 /* 2671 * Check all DTLs to see if anything needs resilvering. 2672 */ 2673 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2674 vdev_resilver_needed(rvd, NULL, NULL)) 2675 spa_async_request(spa, SPA_ASYNC_RESILVER); 2676 2677 /* 2678 * Log the fact that we booted up (so that we can detect if 2679 * we rebooted in the middle of an operation). 2680 */ 2681 spa_history_log_version(spa, "open"); 2682 2683 /* 2684 * Delete any inconsistent datasets. 2685 */ 2686 (void) dmu_objset_find(spa_name(spa), 2687 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2688 2689 /* 2690 * Clean up any stale temporary dataset userrefs. 2691 */ 2692 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2693 } 2694 2695 return (0); 2696 } 2697 2698 static int 2699 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2700 { 2701 int mode = spa->spa_mode; 2702 2703 spa_unload(spa); 2704 spa_deactivate(spa); 2705 2706 spa->spa_load_max_txg--; 2707 2708 spa_activate(spa, mode); 2709 spa_async_suspend(spa); 2710 2711 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2712 } 2713 2714 /* 2715 * If spa_load() fails this function will try loading prior txg's. If 2716 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2717 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2718 * function will not rewind the pool and will return the same error as 2719 * spa_load(). 2720 */ 2721 static int 2722 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2723 uint64_t max_request, int rewind_flags) 2724 { 2725 nvlist_t *loadinfo = NULL; 2726 nvlist_t *config = NULL; 2727 int load_error, rewind_error; 2728 uint64_t safe_rewind_txg; 2729 uint64_t min_txg; 2730 2731 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2732 spa->spa_load_max_txg = spa->spa_load_txg; 2733 spa_set_log_state(spa, SPA_LOG_CLEAR); 2734 } else { 2735 spa->spa_load_max_txg = max_request; 2736 } 2737 2738 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2739 mosconfig); 2740 if (load_error == 0) 2741 return (0); 2742 2743 if (spa->spa_root_vdev != NULL) 2744 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2745 2746 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2747 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2748 2749 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2750 nvlist_free(config); 2751 return (load_error); 2752 } 2753 2754 if (state == SPA_LOAD_RECOVER) { 2755 /* Price of rolling back is discarding txgs, including log */ 2756 spa_set_log_state(spa, SPA_LOG_CLEAR); 2757 } else { 2758 /* 2759 * If we aren't rolling back save the load info from our first 2760 * import attempt so that we can restore it after attempting 2761 * to rewind. 2762 */ 2763 loadinfo = spa->spa_load_info; 2764 spa->spa_load_info = fnvlist_alloc(); 2765 } 2766 2767 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2768 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2769 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2770 TXG_INITIAL : safe_rewind_txg; 2771 2772 /* 2773 * Continue as long as we're finding errors, we're still within 2774 * the acceptable rewind range, and we're still finding uberblocks 2775 */ 2776 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2777 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2778 if (spa->spa_load_max_txg < safe_rewind_txg) 2779 spa->spa_extreme_rewind = B_TRUE; 2780 rewind_error = spa_load_retry(spa, state, mosconfig); 2781 } 2782 2783 spa->spa_extreme_rewind = B_FALSE; 2784 spa->spa_load_max_txg = UINT64_MAX; 2785 2786 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2787 spa_config_set(spa, config); 2788 2789 if (state == SPA_LOAD_RECOVER) { 2790 ASSERT3P(loadinfo, ==, NULL); 2791 return (rewind_error); 2792 } else { 2793 /* Store the rewind info as part of the initial load info */ 2794 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2795 spa->spa_load_info); 2796 2797 /* Restore the initial load info */ 2798 fnvlist_free(spa->spa_load_info); 2799 spa->spa_load_info = loadinfo; 2800 2801 return (load_error); 2802 } 2803 } 2804 2805 /* 2806 * Pool Open/Import 2807 * 2808 * The import case is identical to an open except that the configuration is sent 2809 * down from userland, instead of grabbed from the configuration cache. For the 2810 * case of an open, the pool configuration will exist in the 2811 * POOL_STATE_UNINITIALIZED state. 2812 * 2813 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2814 * the same time open the pool, without having to keep around the spa_t in some 2815 * ambiguous state. 2816 */ 2817 static int 2818 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2819 nvlist_t **config) 2820 { 2821 spa_t *spa; 2822 spa_load_state_t state = SPA_LOAD_OPEN; 2823 int error; 2824 int locked = B_FALSE; 2825 2826 *spapp = NULL; 2827 2828 /* 2829 * As disgusting as this is, we need to support recursive calls to this 2830 * function because dsl_dir_open() is called during spa_load(), and ends 2831 * up calling spa_open() again. The real fix is to figure out how to 2832 * avoid dsl_dir_open() calling this in the first place. 2833 */ 2834 if (mutex_owner(&spa_namespace_lock) != curthread) { 2835 mutex_enter(&spa_namespace_lock); 2836 locked = B_TRUE; 2837 } 2838 2839 if ((spa = spa_lookup(pool)) == NULL) { 2840 if (locked) 2841 mutex_exit(&spa_namespace_lock); 2842 return (SET_ERROR(ENOENT)); 2843 } 2844 2845 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2846 zpool_rewind_policy_t policy; 2847 2848 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2849 &policy); 2850 if (policy.zrp_request & ZPOOL_DO_REWIND) 2851 state = SPA_LOAD_RECOVER; 2852 2853 spa_activate(spa, spa_mode_global); 2854 2855 if (state != SPA_LOAD_RECOVER) 2856 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2857 2858 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2859 policy.zrp_request); 2860 2861 if (error == EBADF) { 2862 /* 2863 * If vdev_validate() returns failure (indicated by 2864 * EBADF), it indicates that one of the vdevs indicates 2865 * that the pool has been exported or destroyed. If 2866 * this is the case, the config cache is out of sync and 2867 * we should remove the pool from the namespace. 2868 */ 2869 spa_unload(spa); 2870 spa_deactivate(spa); 2871 spa_config_sync(spa, B_TRUE, B_TRUE); 2872 spa_remove(spa); 2873 if (locked) 2874 mutex_exit(&spa_namespace_lock); 2875 return (SET_ERROR(ENOENT)); 2876 } 2877 2878 if (error) { 2879 /* 2880 * We can't open the pool, but we still have useful 2881 * information: the state of each vdev after the 2882 * attempted vdev_open(). Return this to the user. 2883 */ 2884 if (config != NULL && spa->spa_config) { 2885 VERIFY(nvlist_dup(spa->spa_config, config, 2886 KM_SLEEP) == 0); 2887 VERIFY(nvlist_add_nvlist(*config, 2888 ZPOOL_CONFIG_LOAD_INFO, 2889 spa->spa_load_info) == 0); 2890 } 2891 spa_unload(spa); 2892 spa_deactivate(spa); 2893 spa->spa_last_open_failed = error; 2894 if (locked) 2895 mutex_exit(&spa_namespace_lock); 2896 *spapp = NULL; 2897 return (error); 2898 } 2899 } 2900 2901 spa_open_ref(spa, tag); 2902 2903 if (config != NULL) 2904 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2905 2906 /* 2907 * If we've recovered the pool, pass back any information we 2908 * gathered while doing the load. 2909 */ 2910 if (state == SPA_LOAD_RECOVER) { 2911 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2912 spa->spa_load_info) == 0); 2913 } 2914 2915 if (locked) { 2916 spa->spa_last_open_failed = 0; 2917 spa->spa_last_ubsync_txg = 0; 2918 spa->spa_load_txg = 0; 2919 mutex_exit(&spa_namespace_lock); 2920 } 2921 2922 *spapp = spa; 2923 2924 return (0); 2925 } 2926 2927 int 2928 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2929 nvlist_t **config) 2930 { 2931 return (spa_open_common(name, spapp, tag, policy, config)); 2932 } 2933 2934 int 2935 spa_open(const char *name, spa_t **spapp, void *tag) 2936 { 2937 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2938 } 2939 2940 /* 2941 * Lookup the given spa_t, incrementing the inject count in the process, 2942 * preventing it from being exported or destroyed. 2943 */ 2944 spa_t * 2945 spa_inject_addref(char *name) 2946 { 2947 spa_t *spa; 2948 2949 mutex_enter(&spa_namespace_lock); 2950 if ((spa = spa_lookup(name)) == NULL) { 2951 mutex_exit(&spa_namespace_lock); 2952 return (NULL); 2953 } 2954 spa->spa_inject_ref++; 2955 mutex_exit(&spa_namespace_lock); 2956 2957 return (spa); 2958 } 2959 2960 void 2961 spa_inject_delref(spa_t *spa) 2962 { 2963 mutex_enter(&spa_namespace_lock); 2964 spa->spa_inject_ref--; 2965 mutex_exit(&spa_namespace_lock); 2966 } 2967 2968 /* 2969 * Add spares device information to the nvlist. 2970 */ 2971 static void 2972 spa_add_spares(spa_t *spa, nvlist_t *config) 2973 { 2974 nvlist_t **spares; 2975 uint_t i, nspares; 2976 nvlist_t *nvroot; 2977 uint64_t guid; 2978 vdev_stat_t *vs; 2979 uint_t vsc; 2980 uint64_t pool; 2981 2982 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2983 2984 if (spa->spa_spares.sav_count == 0) 2985 return; 2986 2987 VERIFY(nvlist_lookup_nvlist(config, 2988 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2989 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2990 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2991 if (nspares != 0) { 2992 VERIFY(nvlist_add_nvlist_array(nvroot, 2993 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2994 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2995 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2996 2997 /* 2998 * Go through and find any spares which have since been 2999 * repurposed as an active spare. If this is the case, update 3000 * their status appropriately. 3001 */ 3002 for (i = 0; i < nspares; i++) { 3003 VERIFY(nvlist_lookup_uint64(spares[i], 3004 ZPOOL_CONFIG_GUID, &guid) == 0); 3005 if (spa_spare_exists(guid, &pool, NULL) && 3006 pool != 0ULL) { 3007 VERIFY(nvlist_lookup_uint64_array( 3008 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3009 (uint64_t **)&vs, &vsc) == 0); 3010 vs->vs_state = VDEV_STATE_CANT_OPEN; 3011 vs->vs_aux = VDEV_AUX_SPARED; 3012 } 3013 } 3014 } 3015 } 3016 3017 /* 3018 * Add l2cache device information to the nvlist, including vdev stats. 3019 */ 3020 static void 3021 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3022 { 3023 nvlist_t **l2cache; 3024 uint_t i, j, nl2cache; 3025 nvlist_t *nvroot; 3026 uint64_t guid; 3027 vdev_t *vd; 3028 vdev_stat_t *vs; 3029 uint_t vsc; 3030 3031 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3032 3033 if (spa->spa_l2cache.sav_count == 0) 3034 return; 3035 3036 VERIFY(nvlist_lookup_nvlist(config, 3037 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3038 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3039 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3040 if (nl2cache != 0) { 3041 VERIFY(nvlist_add_nvlist_array(nvroot, 3042 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3043 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3044 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3045 3046 /* 3047 * Update level 2 cache device stats. 3048 */ 3049 3050 for (i = 0; i < nl2cache; i++) { 3051 VERIFY(nvlist_lookup_uint64(l2cache[i], 3052 ZPOOL_CONFIG_GUID, &guid) == 0); 3053 3054 vd = NULL; 3055 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3056 if (guid == 3057 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3058 vd = spa->spa_l2cache.sav_vdevs[j]; 3059 break; 3060 } 3061 } 3062 ASSERT(vd != NULL); 3063 3064 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3065 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3066 == 0); 3067 vdev_get_stats(vd, vs); 3068 } 3069 } 3070 } 3071 3072 static void 3073 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3074 { 3075 nvlist_t *features; 3076 zap_cursor_t zc; 3077 zap_attribute_t za; 3078 3079 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3080 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3081 3082 if (spa->spa_feat_for_read_obj != 0) { 3083 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3084 spa->spa_feat_for_read_obj); 3085 zap_cursor_retrieve(&zc, &za) == 0; 3086 zap_cursor_advance(&zc)) { 3087 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3088 za.za_num_integers == 1); 3089 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3090 za.za_first_integer)); 3091 } 3092 zap_cursor_fini(&zc); 3093 } 3094 3095 if (spa->spa_feat_for_write_obj != 0) { 3096 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3097 spa->spa_feat_for_write_obj); 3098 zap_cursor_retrieve(&zc, &za) == 0; 3099 zap_cursor_advance(&zc)) { 3100 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3101 za.za_num_integers == 1); 3102 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3103 za.za_first_integer)); 3104 } 3105 zap_cursor_fini(&zc); 3106 } 3107 3108 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3109 features) == 0); 3110 nvlist_free(features); 3111 } 3112 3113 int 3114 spa_get_stats(const char *name, nvlist_t **config, 3115 char *altroot, size_t buflen) 3116 { 3117 int error; 3118 spa_t *spa; 3119 3120 *config = NULL; 3121 error = spa_open_common(name, &spa, FTAG, NULL, config); 3122 3123 if (spa != NULL) { 3124 /* 3125 * This still leaves a window of inconsistency where the spares 3126 * or l2cache devices could change and the config would be 3127 * self-inconsistent. 3128 */ 3129 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3130 3131 if (*config != NULL) { 3132 uint64_t loadtimes[2]; 3133 3134 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3135 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3136 VERIFY(nvlist_add_uint64_array(*config, 3137 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3138 3139 VERIFY(nvlist_add_uint64(*config, 3140 ZPOOL_CONFIG_ERRCOUNT, 3141 spa_get_errlog_size(spa)) == 0); 3142 3143 if (spa_suspended(spa)) 3144 VERIFY(nvlist_add_uint64(*config, 3145 ZPOOL_CONFIG_SUSPENDED, 3146 spa->spa_failmode) == 0); 3147 3148 spa_add_spares(spa, *config); 3149 spa_add_l2cache(spa, *config); 3150 spa_add_feature_stats(spa, *config); 3151 } 3152 } 3153 3154 /* 3155 * We want to get the alternate root even for faulted pools, so we cheat 3156 * and call spa_lookup() directly. 3157 */ 3158 if (altroot) { 3159 if (spa == NULL) { 3160 mutex_enter(&spa_namespace_lock); 3161 spa = spa_lookup(name); 3162 if (spa) 3163 spa_altroot(spa, altroot, buflen); 3164 else 3165 altroot[0] = '\0'; 3166 spa = NULL; 3167 mutex_exit(&spa_namespace_lock); 3168 } else { 3169 spa_altroot(spa, altroot, buflen); 3170 } 3171 } 3172 3173 if (spa != NULL) { 3174 spa_config_exit(spa, SCL_CONFIG, FTAG); 3175 spa_close(spa, FTAG); 3176 } 3177 3178 return (error); 3179 } 3180 3181 /* 3182 * Validate that the auxiliary device array is well formed. We must have an 3183 * array of nvlists, each which describes a valid leaf vdev. If this is an 3184 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3185 * specified, as long as they are well-formed. 3186 */ 3187 static int 3188 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3189 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3190 vdev_labeltype_t label) 3191 { 3192 nvlist_t **dev; 3193 uint_t i, ndev; 3194 vdev_t *vd; 3195 int error; 3196 3197 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3198 3199 /* 3200 * It's acceptable to have no devs specified. 3201 */ 3202 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3203 return (0); 3204 3205 if (ndev == 0) 3206 return (SET_ERROR(EINVAL)); 3207 3208 /* 3209 * Make sure the pool is formatted with a version that supports this 3210 * device type. 3211 */ 3212 if (spa_version(spa) < version) 3213 return (SET_ERROR(ENOTSUP)); 3214 3215 /* 3216 * Set the pending device list so we correctly handle device in-use 3217 * checking. 3218 */ 3219 sav->sav_pending = dev; 3220 sav->sav_npending = ndev; 3221 3222 for (i = 0; i < ndev; i++) { 3223 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3224 mode)) != 0) 3225 goto out; 3226 3227 if (!vd->vdev_ops->vdev_op_leaf) { 3228 vdev_free(vd); 3229 error = SET_ERROR(EINVAL); 3230 goto out; 3231 } 3232 3233 /* 3234 * The L2ARC currently only supports disk devices in 3235 * kernel context. For user-level testing, we allow it. 3236 */ 3237 #ifdef _KERNEL 3238 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3239 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3240 error = SET_ERROR(ENOTBLK); 3241 vdev_free(vd); 3242 goto out; 3243 } 3244 #endif 3245 vd->vdev_top = vd; 3246 3247 if ((error = vdev_open(vd)) == 0 && 3248 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3249 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3250 vd->vdev_guid) == 0); 3251 } 3252 3253 vdev_free(vd); 3254 3255 if (error && 3256 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3257 goto out; 3258 else 3259 error = 0; 3260 } 3261 3262 out: 3263 sav->sav_pending = NULL; 3264 sav->sav_npending = 0; 3265 return (error); 3266 } 3267 3268 static int 3269 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3270 { 3271 int error; 3272 3273 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3274 3275 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3276 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3277 VDEV_LABEL_SPARE)) != 0) { 3278 return (error); 3279 } 3280 3281 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3282 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3283 VDEV_LABEL_L2CACHE)); 3284 } 3285 3286 static void 3287 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3288 const char *config) 3289 { 3290 int i; 3291 3292 if (sav->sav_config != NULL) { 3293 nvlist_t **olddevs; 3294 uint_t oldndevs; 3295 nvlist_t **newdevs; 3296 3297 /* 3298 * Generate new dev list by concatentating with the 3299 * current dev list. 3300 */ 3301 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3302 &olddevs, &oldndevs) == 0); 3303 3304 newdevs = kmem_alloc(sizeof (void *) * 3305 (ndevs + oldndevs), KM_SLEEP); 3306 for (i = 0; i < oldndevs; i++) 3307 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3308 KM_SLEEP) == 0); 3309 for (i = 0; i < ndevs; i++) 3310 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3311 KM_SLEEP) == 0); 3312 3313 VERIFY(nvlist_remove(sav->sav_config, config, 3314 DATA_TYPE_NVLIST_ARRAY) == 0); 3315 3316 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3317 config, newdevs, ndevs + oldndevs) == 0); 3318 for (i = 0; i < oldndevs + ndevs; i++) 3319 nvlist_free(newdevs[i]); 3320 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3321 } else { 3322 /* 3323 * Generate a new dev list. 3324 */ 3325 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3326 KM_SLEEP) == 0); 3327 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3328 devs, ndevs) == 0); 3329 } 3330 } 3331 3332 /* 3333 * Stop and drop level 2 ARC devices 3334 */ 3335 void 3336 spa_l2cache_drop(spa_t *spa) 3337 { 3338 vdev_t *vd; 3339 int i; 3340 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3341 3342 for (i = 0; i < sav->sav_count; i++) { 3343 uint64_t pool; 3344 3345 vd = sav->sav_vdevs[i]; 3346 ASSERT(vd != NULL); 3347 3348 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3349 pool != 0ULL && l2arc_vdev_present(vd)) 3350 l2arc_remove_vdev(vd); 3351 } 3352 } 3353 3354 /* 3355 * Pool Creation 3356 */ 3357 int 3358 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3359 nvlist_t *zplprops) 3360 { 3361 spa_t *spa; 3362 char *altroot = NULL; 3363 vdev_t *rvd; 3364 dsl_pool_t *dp; 3365 dmu_tx_t *tx; 3366 int error = 0; 3367 uint64_t txg = TXG_INITIAL; 3368 nvlist_t **spares, **l2cache; 3369 uint_t nspares, nl2cache; 3370 uint64_t version, obj; 3371 boolean_t has_features; 3372 3373 /* 3374 * If this pool already exists, return failure. 3375 */ 3376 mutex_enter(&spa_namespace_lock); 3377 if (spa_lookup(pool) != NULL) { 3378 mutex_exit(&spa_namespace_lock); 3379 return (SET_ERROR(EEXIST)); 3380 } 3381 3382 /* 3383 * Allocate a new spa_t structure. 3384 */ 3385 (void) nvlist_lookup_string(props, 3386 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3387 spa = spa_add(pool, NULL, altroot); 3388 spa_activate(spa, spa_mode_global); 3389 3390 if (props && (error = spa_prop_validate(spa, props))) { 3391 spa_deactivate(spa); 3392 spa_remove(spa); 3393 mutex_exit(&spa_namespace_lock); 3394 return (error); 3395 } 3396 3397 has_features = B_FALSE; 3398 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3399 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3400 if (zpool_prop_feature(nvpair_name(elem))) 3401 has_features = B_TRUE; 3402 } 3403 3404 if (has_features || nvlist_lookup_uint64(props, 3405 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3406 version = SPA_VERSION; 3407 } 3408 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3409 3410 spa->spa_first_txg = txg; 3411 spa->spa_uberblock.ub_txg = txg - 1; 3412 spa->spa_uberblock.ub_version = version; 3413 spa->spa_ubsync = spa->spa_uberblock; 3414 3415 /* 3416 * Create "The Godfather" zio to hold all async IOs 3417 */ 3418 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3419 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3420 3421 /* 3422 * Create the root vdev. 3423 */ 3424 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3425 3426 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3427 3428 ASSERT(error != 0 || rvd != NULL); 3429 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3430 3431 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3432 error = SET_ERROR(EINVAL); 3433 3434 if (error == 0 && 3435 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3436 (error = spa_validate_aux(spa, nvroot, txg, 3437 VDEV_ALLOC_ADD)) == 0) { 3438 for (int c = 0; c < rvd->vdev_children; c++) { 3439 vdev_metaslab_set_size(rvd->vdev_child[c]); 3440 vdev_expand(rvd->vdev_child[c], txg); 3441 } 3442 } 3443 3444 spa_config_exit(spa, SCL_ALL, FTAG); 3445 3446 if (error != 0) { 3447 spa_unload(spa); 3448 spa_deactivate(spa); 3449 spa_remove(spa); 3450 mutex_exit(&spa_namespace_lock); 3451 return (error); 3452 } 3453 3454 /* 3455 * Get the list of spares, if specified. 3456 */ 3457 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3458 &spares, &nspares) == 0) { 3459 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3460 KM_SLEEP) == 0); 3461 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3462 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3463 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3464 spa_load_spares(spa); 3465 spa_config_exit(spa, SCL_ALL, FTAG); 3466 spa->spa_spares.sav_sync = B_TRUE; 3467 } 3468 3469 /* 3470 * Get the list of level 2 cache devices, if specified. 3471 */ 3472 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3473 &l2cache, &nl2cache) == 0) { 3474 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3475 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3476 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3477 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3478 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3479 spa_load_l2cache(spa); 3480 spa_config_exit(spa, SCL_ALL, FTAG); 3481 spa->spa_l2cache.sav_sync = B_TRUE; 3482 } 3483 3484 spa->spa_is_initializing = B_TRUE; 3485 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3486 spa->spa_meta_objset = dp->dp_meta_objset; 3487 spa->spa_is_initializing = B_FALSE; 3488 3489 /* 3490 * Create DDTs (dedup tables). 3491 */ 3492 ddt_create(spa); 3493 3494 spa_update_dspace(spa); 3495 3496 tx = dmu_tx_create_assigned(dp, txg); 3497 3498 /* 3499 * Create the pool config object. 3500 */ 3501 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3502 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3503 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3504 3505 if (zap_add(spa->spa_meta_objset, 3506 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3507 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3508 cmn_err(CE_PANIC, "failed to add pool config"); 3509 } 3510 3511 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3512 spa_feature_create_zap_objects(spa, tx); 3513 3514 if (zap_add(spa->spa_meta_objset, 3515 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3516 sizeof (uint64_t), 1, &version, tx) != 0) { 3517 cmn_err(CE_PANIC, "failed to add pool version"); 3518 } 3519 3520 /* Newly created pools with the right version are always deflated. */ 3521 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3522 spa->spa_deflate = TRUE; 3523 if (zap_add(spa->spa_meta_objset, 3524 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3525 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3526 cmn_err(CE_PANIC, "failed to add deflate"); 3527 } 3528 } 3529 3530 /* 3531 * Create the deferred-free bpobj. Turn off compression 3532 * because sync-to-convergence takes longer if the blocksize 3533 * keeps changing. 3534 */ 3535 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3536 dmu_object_set_compress(spa->spa_meta_objset, obj, 3537 ZIO_COMPRESS_OFF, tx); 3538 if (zap_add(spa->spa_meta_objset, 3539 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3540 sizeof (uint64_t), 1, &obj, tx) != 0) { 3541 cmn_err(CE_PANIC, "failed to add bpobj"); 3542 } 3543 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3544 spa->spa_meta_objset, obj)); 3545 3546 /* 3547 * Create the pool's history object. 3548 */ 3549 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3550 spa_history_create_obj(spa, tx); 3551 3552 /* 3553 * Set pool properties. 3554 */ 3555 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3556 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3557 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3558 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3559 3560 if (props != NULL) { 3561 spa_configfile_set(spa, props, B_FALSE); 3562 spa_sync_props(props, tx); 3563 } 3564 3565 dmu_tx_commit(tx); 3566 3567 spa->spa_sync_on = B_TRUE; 3568 txg_sync_start(spa->spa_dsl_pool); 3569 3570 /* 3571 * We explicitly wait for the first transaction to complete so that our 3572 * bean counters are appropriately updated. 3573 */ 3574 txg_wait_synced(spa->spa_dsl_pool, txg); 3575 3576 spa_config_sync(spa, B_FALSE, B_TRUE); 3577 3578 spa_history_log_version(spa, "create"); 3579 3580 spa->spa_minref = refcount_count(&spa->spa_refcount); 3581 3582 mutex_exit(&spa_namespace_lock); 3583 3584 return (0); 3585 } 3586 3587 #ifdef _KERNEL 3588 /* 3589 * Get the root pool information from the root disk, then import the root pool 3590 * during the system boot up time. 3591 */ 3592 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3593 3594 static nvlist_t * 3595 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3596 { 3597 nvlist_t *config; 3598 nvlist_t *nvtop, *nvroot; 3599 uint64_t pgid; 3600 3601 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3602 return (NULL); 3603 3604 /* 3605 * Add this top-level vdev to the child array. 3606 */ 3607 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3608 &nvtop) == 0); 3609 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3610 &pgid) == 0); 3611 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3612 3613 /* 3614 * Put this pool's top-level vdevs into a root vdev. 3615 */ 3616 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3617 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3618 VDEV_TYPE_ROOT) == 0); 3619 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3620 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3621 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3622 &nvtop, 1) == 0); 3623 3624 /* 3625 * Replace the existing vdev_tree with the new root vdev in 3626 * this pool's configuration (remove the old, add the new). 3627 */ 3628 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3629 nvlist_free(nvroot); 3630 return (config); 3631 } 3632 3633 /* 3634 * Walk the vdev tree and see if we can find a device with "better" 3635 * configuration. A configuration is "better" if the label on that 3636 * device has a more recent txg. 3637 */ 3638 static void 3639 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3640 { 3641 for (int c = 0; c < vd->vdev_children; c++) 3642 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3643 3644 if (vd->vdev_ops->vdev_op_leaf) { 3645 nvlist_t *label; 3646 uint64_t label_txg; 3647 3648 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3649 &label) != 0) 3650 return; 3651 3652 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3653 &label_txg) == 0); 3654 3655 /* 3656 * Do we have a better boot device? 3657 */ 3658 if (label_txg > *txg) { 3659 *txg = label_txg; 3660 *avd = vd; 3661 } 3662 nvlist_free(label); 3663 } 3664 } 3665 3666 /* 3667 * Import a root pool. 3668 * 3669 * For x86. devpath_list will consist of devid and/or physpath name of 3670 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3671 * The GRUB "findroot" command will return the vdev we should boot. 3672 * 3673 * For Sparc, devpath_list consists the physpath name of the booting device 3674 * no matter the rootpool is a single device pool or a mirrored pool. 3675 * e.g. 3676 * "/pci@1f,0/ide@d/disk@0,0:a" 3677 */ 3678 int 3679 spa_import_rootpool(char *devpath, char *devid) 3680 { 3681 spa_t *spa; 3682 vdev_t *rvd, *bvd, *avd = NULL; 3683 nvlist_t *config, *nvtop; 3684 uint64_t guid, txg; 3685 char *pname; 3686 int error; 3687 3688 /* 3689 * Read the label from the boot device and generate a configuration. 3690 */ 3691 config = spa_generate_rootconf(devpath, devid, &guid); 3692 #if defined(_OBP) && defined(_KERNEL) 3693 if (config == NULL) { 3694 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3695 /* iscsi boot */ 3696 get_iscsi_bootpath_phy(devpath); 3697 config = spa_generate_rootconf(devpath, devid, &guid); 3698 } 3699 } 3700 #endif 3701 if (config == NULL) { 3702 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3703 devpath); 3704 return (SET_ERROR(EIO)); 3705 } 3706 3707 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3708 &pname) == 0); 3709 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3710 3711 mutex_enter(&spa_namespace_lock); 3712 if ((spa = spa_lookup(pname)) != NULL) { 3713 /* 3714 * Remove the existing root pool from the namespace so that we 3715 * can replace it with the correct config we just read in. 3716 */ 3717 spa_remove(spa); 3718 } 3719 3720 spa = spa_add(pname, config, NULL); 3721 spa->spa_is_root = B_TRUE; 3722 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3723 3724 /* 3725 * Build up a vdev tree based on the boot device's label config. 3726 */ 3727 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3728 &nvtop) == 0); 3729 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3730 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3731 VDEV_ALLOC_ROOTPOOL); 3732 spa_config_exit(spa, SCL_ALL, FTAG); 3733 if (error) { 3734 mutex_exit(&spa_namespace_lock); 3735 nvlist_free(config); 3736 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3737 pname); 3738 return (error); 3739 } 3740 3741 /* 3742 * Get the boot vdev. 3743 */ 3744 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3745 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3746 (u_longlong_t)guid); 3747 error = SET_ERROR(ENOENT); 3748 goto out; 3749 } 3750 3751 /* 3752 * Determine if there is a better boot device. 3753 */ 3754 avd = bvd; 3755 spa_alt_rootvdev(rvd, &avd, &txg); 3756 if (avd != bvd) { 3757 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3758 "try booting from '%s'", avd->vdev_path); 3759 error = SET_ERROR(EINVAL); 3760 goto out; 3761 } 3762 3763 /* 3764 * If the boot device is part of a spare vdev then ensure that 3765 * we're booting off the active spare. 3766 */ 3767 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3768 !bvd->vdev_isspare) { 3769 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3770 "try booting from '%s'", 3771 bvd->vdev_parent-> 3772 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3773 error = SET_ERROR(EINVAL); 3774 goto out; 3775 } 3776 3777 error = 0; 3778 out: 3779 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3780 vdev_free(rvd); 3781 spa_config_exit(spa, SCL_ALL, FTAG); 3782 mutex_exit(&spa_namespace_lock); 3783 3784 nvlist_free(config); 3785 return (error); 3786 } 3787 3788 #endif 3789 3790 /* 3791 * Import a non-root pool into the system. 3792 */ 3793 int 3794 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3795 { 3796 spa_t *spa; 3797 char *altroot = NULL; 3798 spa_load_state_t state = SPA_LOAD_IMPORT; 3799 zpool_rewind_policy_t policy; 3800 uint64_t mode = spa_mode_global; 3801 uint64_t readonly = B_FALSE; 3802 int error; 3803 nvlist_t *nvroot; 3804 nvlist_t **spares, **l2cache; 3805 uint_t nspares, nl2cache; 3806 3807 /* 3808 * If a pool with this name exists, return failure. 3809 */ 3810 mutex_enter(&spa_namespace_lock); 3811 if (spa_lookup(pool) != NULL) { 3812 mutex_exit(&spa_namespace_lock); 3813 return (SET_ERROR(EEXIST)); 3814 } 3815 3816 /* 3817 * Create and initialize the spa structure. 3818 */ 3819 (void) nvlist_lookup_string(props, 3820 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3821 (void) nvlist_lookup_uint64(props, 3822 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3823 if (readonly) 3824 mode = FREAD; 3825 spa = spa_add(pool, config, altroot); 3826 spa->spa_import_flags = flags; 3827 3828 /* 3829 * Verbatim import - Take a pool and insert it into the namespace 3830 * as if it had been loaded at boot. 3831 */ 3832 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3833 if (props != NULL) 3834 spa_configfile_set(spa, props, B_FALSE); 3835 3836 spa_config_sync(spa, B_FALSE, B_TRUE); 3837 3838 mutex_exit(&spa_namespace_lock); 3839 spa_history_log_version(spa, "import"); 3840 3841 return (0); 3842 } 3843 3844 spa_activate(spa, mode); 3845 3846 /* 3847 * Don't start async tasks until we know everything is healthy. 3848 */ 3849 spa_async_suspend(spa); 3850 3851 zpool_get_rewind_policy(config, &policy); 3852 if (policy.zrp_request & ZPOOL_DO_REWIND) 3853 state = SPA_LOAD_RECOVER; 3854 3855 /* 3856 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3857 * because the user-supplied config is actually the one to trust when 3858 * doing an import. 3859 */ 3860 if (state != SPA_LOAD_RECOVER) 3861 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3862 3863 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3864 policy.zrp_request); 3865 3866 /* 3867 * Propagate anything learned while loading the pool and pass it 3868 * back to caller (i.e. rewind info, missing devices, etc). 3869 */ 3870 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3871 spa->spa_load_info) == 0); 3872 3873 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3874 /* 3875 * Toss any existing sparelist, as it doesn't have any validity 3876 * anymore, and conflicts with spa_has_spare(). 3877 */ 3878 if (spa->spa_spares.sav_config) { 3879 nvlist_free(spa->spa_spares.sav_config); 3880 spa->spa_spares.sav_config = NULL; 3881 spa_load_spares(spa); 3882 } 3883 if (spa->spa_l2cache.sav_config) { 3884 nvlist_free(spa->spa_l2cache.sav_config); 3885 spa->spa_l2cache.sav_config = NULL; 3886 spa_load_l2cache(spa); 3887 } 3888 3889 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3890 &nvroot) == 0); 3891 if (error == 0) 3892 error = spa_validate_aux(spa, nvroot, -1ULL, 3893 VDEV_ALLOC_SPARE); 3894 if (error == 0) 3895 error = spa_validate_aux(spa, nvroot, -1ULL, 3896 VDEV_ALLOC_L2CACHE); 3897 spa_config_exit(spa, SCL_ALL, FTAG); 3898 3899 if (props != NULL) 3900 spa_configfile_set(spa, props, B_FALSE); 3901 3902 if (error != 0 || (props && spa_writeable(spa) && 3903 (error = spa_prop_set(spa, props)))) { 3904 spa_unload(spa); 3905 spa_deactivate(spa); 3906 spa_remove(spa); 3907 mutex_exit(&spa_namespace_lock); 3908 return (error); 3909 } 3910 3911 spa_async_resume(spa); 3912 3913 /* 3914 * Override any spares and level 2 cache devices as specified by 3915 * the user, as these may have correct device names/devids, etc. 3916 */ 3917 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3918 &spares, &nspares) == 0) { 3919 if (spa->spa_spares.sav_config) 3920 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3921 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3922 else 3923 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3924 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3925 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3926 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3927 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3928 spa_load_spares(spa); 3929 spa_config_exit(spa, SCL_ALL, FTAG); 3930 spa->spa_spares.sav_sync = B_TRUE; 3931 } 3932 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3933 &l2cache, &nl2cache) == 0) { 3934 if (spa->spa_l2cache.sav_config) 3935 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3936 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3937 else 3938 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3939 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3940 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3941 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3942 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3943 spa_load_l2cache(spa); 3944 spa_config_exit(spa, SCL_ALL, FTAG); 3945 spa->spa_l2cache.sav_sync = B_TRUE; 3946 } 3947 3948 /* 3949 * Check for any removed devices. 3950 */ 3951 if (spa->spa_autoreplace) { 3952 spa_aux_check_removed(&spa->spa_spares); 3953 spa_aux_check_removed(&spa->spa_l2cache); 3954 } 3955 3956 if (spa_writeable(spa)) { 3957 /* 3958 * Update the config cache to include the newly-imported pool. 3959 */ 3960 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3961 } 3962 3963 /* 3964 * It's possible that the pool was expanded while it was exported. 3965 * We kick off an async task to handle this for us. 3966 */ 3967 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3968 3969 mutex_exit(&spa_namespace_lock); 3970 spa_history_log_version(spa, "import"); 3971 3972 return (0); 3973 } 3974 3975 nvlist_t * 3976 spa_tryimport(nvlist_t *tryconfig) 3977 { 3978 nvlist_t *config = NULL; 3979 char *poolname; 3980 spa_t *spa; 3981 uint64_t state; 3982 int error; 3983 3984 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3985 return (NULL); 3986 3987 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3988 return (NULL); 3989 3990 /* 3991 * Create and initialize the spa structure. 3992 */ 3993 mutex_enter(&spa_namespace_lock); 3994 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3995 spa_activate(spa, FREAD); 3996 3997 /* 3998 * Pass off the heavy lifting to spa_load(). 3999 * Pass TRUE for mosconfig because the user-supplied config 4000 * is actually the one to trust when doing an import. 4001 */ 4002 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4003 4004 /* 4005 * If 'tryconfig' was at least parsable, return the current config. 4006 */ 4007 if (spa->spa_root_vdev != NULL) { 4008 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4009 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4010 poolname) == 0); 4011 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4012 state) == 0); 4013 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4014 spa->spa_uberblock.ub_timestamp) == 0); 4015 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4016 spa->spa_load_info) == 0); 4017 4018 /* 4019 * If the bootfs property exists on this pool then we 4020 * copy it out so that external consumers can tell which 4021 * pools are bootable. 4022 */ 4023 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4024 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4025 4026 /* 4027 * We have to play games with the name since the 4028 * pool was opened as TRYIMPORT_NAME. 4029 */ 4030 if (dsl_dsobj_to_dsname(spa_name(spa), 4031 spa->spa_bootfs, tmpname) == 0) { 4032 char *cp; 4033 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4034 4035 cp = strchr(tmpname, '/'); 4036 if (cp == NULL) { 4037 (void) strlcpy(dsname, tmpname, 4038 MAXPATHLEN); 4039 } else { 4040 (void) snprintf(dsname, MAXPATHLEN, 4041 "%s/%s", poolname, ++cp); 4042 } 4043 VERIFY(nvlist_add_string(config, 4044 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4045 kmem_free(dsname, MAXPATHLEN); 4046 } 4047 kmem_free(tmpname, MAXPATHLEN); 4048 } 4049 4050 /* 4051 * Add the list of hot spares and level 2 cache devices. 4052 */ 4053 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4054 spa_add_spares(spa, config); 4055 spa_add_l2cache(spa, config); 4056 spa_config_exit(spa, SCL_CONFIG, FTAG); 4057 } 4058 4059 spa_unload(spa); 4060 spa_deactivate(spa); 4061 spa_remove(spa); 4062 mutex_exit(&spa_namespace_lock); 4063 4064 return (config); 4065 } 4066 4067 /* 4068 * Pool export/destroy 4069 * 4070 * The act of destroying or exporting a pool is very simple. We make sure there 4071 * is no more pending I/O and any references to the pool are gone. Then, we 4072 * update the pool state and sync all the labels to disk, removing the 4073 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4074 * we don't sync the labels or remove the configuration cache. 4075 */ 4076 static int 4077 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4078 boolean_t force, boolean_t hardforce) 4079 { 4080 spa_t *spa; 4081 4082 if (oldconfig) 4083 *oldconfig = NULL; 4084 4085 if (!(spa_mode_global & FWRITE)) 4086 return (SET_ERROR(EROFS)); 4087 4088 mutex_enter(&spa_namespace_lock); 4089 if ((spa = spa_lookup(pool)) == NULL) { 4090 mutex_exit(&spa_namespace_lock); 4091 return (SET_ERROR(ENOENT)); 4092 } 4093 4094 /* 4095 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4096 * reacquire the namespace lock, and see if we can export. 4097 */ 4098 spa_open_ref(spa, FTAG); 4099 mutex_exit(&spa_namespace_lock); 4100 spa_async_suspend(spa); 4101 mutex_enter(&spa_namespace_lock); 4102 spa_close(spa, FTAG); 4103 4104 /* 4105 * The pool will be in core if it's openable, 4106 * in which case we can modify its state. 4107 */ 4108 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4109 /* 4110 * Objsets may be open only because they're dirty, so we 4111 * have to force it to sync before checking spa_refcnt. 4112 */ 4113 txg_wait_synced(spa->spa_dsl_pool, 0); 4114 4115 /* 4116 * A pool cannot be exported or destroyed if there are active 4117 * references. If we are resetting a pool, allow references by 4118 * fault injection handlers. 4119 */ 4120 if (!spa_refcount_zero(spa) || 4121 (spa->spa_inject_ref != 0 && 4122 new_state != POOL_STATE_UNINITIALIZED)) { 4123 spa_async_resume(spa); 4124 mutex_exit(&spa_namespace_lock); 4125 return (SET_ERROR(EBUSY)); 4126 } 4127 4128 /* 4129 * A pool cannot be exported if it has an active shared spare. 4130 * This is to prevent other pools stealing the active spare 4131 * from an exported pool. At user's own will, such pool can 4132 * be forcedly exported. 4133 */ 4134 if (!force && new_state == POOL_STATE_EXPORTED && 4135 spa_has_active_shared_spare(spa)) { 4136 spa_async_resume(spa); 4137 mutex_exit(&spa_namespace_lock); 4138 return (SET_ERROR(EXDEV)); 4139 } 4140 4141 /* 4142 * We want this to be reflected on every label, 4143 * so mark them all dirty. spa_unload() will do the 4144 * final sync that pushes these changes out. 4145 */ 4146 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4147 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4148 spa->spa_state = new_state; 4149 spa->spa_final_txg = spa_last_synced_txg(spa) + 4150 TXG_DEFER_SIZE + 1; 4151 vdev_config_dirty(spa->spa_root_vdev); 4152 spa_config_exit(spa, SCL_ALL, FTAG); 4153 } 4154 } 4155 4156 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4157 4158 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4159 spa_unload(spa); 4160 spa_deactivate(spa); 4161 } 4162 4163 if (oldconfig && spa->spa_config) 4164 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4165 4166 if (new_state != POOL_STATE_UNINITIALIZED) { 4167 if (!hardforce) 4168 spa_config_sync(spa, B_TRUE, B_TRUE); 4169 spa_remove(spa); 4170 } 4171 mutex_exit(&spa_namespace_lock); 4172 4173 return (0); 4174 } 4175 4176 /* 4177 * Destroy a storage pool. 4178 */ 4179 int 4180 spa_destroy(char *pool) 4181 { 4182 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4183 B_FALSE, B_FALSE)); 4184 } 4185 4186 /* 4187 * Export a storage pool. 4188 */ 4189 int 4190 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4191 boolean_t hardforce) 4192 { 4193 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4194 force, hardforce)); 4195 } 4196 4197 /* 4198 * Similar to spa_export(), this unloads the spa_t without actually removing it 4199 * from the namespace in any way. 4200 */ 4201 int 4202 spa_reset(char *pool) 4203 { 4204 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4205 B_FALSE, B_FALSE)); 4206 } 4207 4208 /* 4209 * ========================================================================== 4210 * Device manipulation 4211 * ========================================================================== 4212 */ 4213 4214 /* 4215 * Add a device to a storage pool. 4216 */ 4217 int 4218 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4219 { 4220 uint64_t txg, id; 4221 int error; 4222 vdev_t *rvd = spa->spa_root_vdev; 4223 vdev_t *vd, *tvd; 4224 nvlist_t **spares, **l2cache; 4225 uint_t nspares, nl2cache; 4226 4227 ASSERT(spa_writeable(spa)); 4228 4229 txg = spa_vdev_enter(spa); 4230 4231 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4232 VDEV_ALLOC_ADD)) != 0) 4233 return (spa_vdev_exit(spa, NULL, txg, error)); 4234 4235 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4236 4237 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4238 &nspares) != 0) 4239 nspares = 0; 4240 4241 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4242 &nl2cache) != 0) 4243 nl2cache = 0; 4244 4245 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4246 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4247 4248 if (vd->vdev_children != 0 && 4249 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4250 return (spa_vdev_exit(spa, vd, txg, error)); 4251 4252 /* 4253 * We must validate the spares and l2cache devices after checking the 4254 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4255 */ 4256 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4257 return (spa_vdev_exit(spa, vd, txg, error)); 4258 4259 /* 4260 * Transfer each new top-level vdev from vd to rvd. 4261 */ 4262 for (int c = 0; c < vd->vdev_children; c++) { 4263 4264 /* 4265 * Set the vdev id to the first hole, if one exists. 4266 */ 4267 for (id = 0; id < rvd->vdev_children; id++) { 4268 if (rvd->vdev_child[id]->vdev_ishole) { 4269 vdev_free(rvd->vdev_child[id]); 4270 break; 4271 } 4272 } 4273 tvd = vd->vdev_child[c]; 4274 vdev_remove_child(vd, tvd); 4275 tvd->vdev_id = id; 4276 vdev_add_child(rvd, tvd); 4277 vdev_config_dirty(tvd); 4278 } 4279 4280 if (nspares != 0) { 4281 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4282 ZPOOL_CONFIG_SPARES); 4283 spa_load_spares(spa); 4284 spa->spa_spares.sav_sync = B_TRUE; 4285 } 4286 4287 if (nl2cache != 0) { 4288 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4289 ZPOOL_CONFIG_L2CACHE); 4290 spa_load_l2cache(spa); 4291 spa->spa_l2cache.sav_sync = B_TRUE; 4292 } 4293 4294 /* 4295 * We have to be careful when adding new vdevs to an existing pool. 4296 * If other threads start allocating from these vdevs before we 4297 * sync the config cache, and we lose power, then upon reboot we may 4298 * fail to open the pool because there are DVAs that the config cache 4299 * can't translate. Therefore, we first add the vdevs without 4300 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4301 * and then let spa_config_update() initialize the new metaslabs. 4302 * 4303 * spa_load() checks for added-but-not-initialized vdevs, so that 4304 * if we lose power at any point in this sequence, the remaining 4305 * steps will be completed the next time we load the pool. 4306 */ 4307 (void) spa_vdev_exit(spa, vd, txg, 0); 4308 4309 mutex_enter(&spa_namespace_lock); 4310 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4311 mutex_exit(&spa_namespace_lock); 4312 4313 return (0); 4314 } 4315 4316 /* 4317 * Attach a device to a mirror. The arguments are the path to any device 4318 * in the mirror, and the nvroot for the new device. If the path specifies 4319 * a device that is not mirrored, we automatically insert the mirror vdev. 4320 * 4321 * If 'replacing' is specified, the new device is intended to replace the 4322 * existing device; in this case the two devices are made into their own 4323 * mirror using the 'replacing' vdev, which is functionally identical to 4324 * the mirror vdev (it actually reuses all the same ops) but has a few 4325 * extra rules: you can't attach to it after it's been created, and upon 4326 * completion of resilvering, the first disk (the one being replaced) 4327 * is automatically detached. 4328 */ 4329 int 4330 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4331 { 4332 uint64_t txg, dtl_max_txg; 4333 vdev_t *rvd = spa->spa_root_vdev; 4334 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4335 vdev_ops_t *pvops; 4336 char *oldvdpath, *newvdpath; 4337 int newvd_isspare; 4338 int error; 4339 4340 ASSERT(spa_writeable(spa)); 4341 4342 txg = spa_vdev_enter(spa); 4343 4344 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4345 4346 if (oldvd == NULL) 4347 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4348 4349 if (!oldvd->vdev_ops->vdev_op_leaf) 4350 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4351 4352 pvd = oldvd->vdev_parent; 4353 4354 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4355 VDEV_ALLOC_ATTACH)) != 0) 4356 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4357 4358 if (newrootvd->vdev_children != 1) 4359 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4360 4361 newvd = newrootvd->vdev_child[0]; 4362 4363 if (!newvd->vdev_ops->vdev_op_leaf) 4364 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4365 4366 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4367 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4368 4369 /* 4370 * Spares can't replace logs 4371 */ 4372 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4373 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4374 4375 if (!replacing) { 4376 /* 4377 * For attach, the only allowable parent is a mirror or the root 4378 * vdev. 4379 */ 4380 if (pvd->vdev_ops != &vdev_mirror_ops && 4381 pvd->vdev_ops != &vdev_root_ops) 4382 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4383 4384 pvops = &vdev_mirror_ops; 4385 } else { 4386 /* 4387 * Active hot spares can only be replaced by inactive hot 4388 * spares. 4389 */ 4390 if (pvd->vdev_ops == &vdev_spare_ops && 4391 oldvd->vdev_isspare && 4392 !spa_has_spare(spa, newvd->vdev_guid)) 4393 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4394 4395 /* 4396 * If the source is a hot spare, and the parent isn't already a 4397 * spare, then we want to create a new hot spare. Otherwise, we 4398 * want to create a replacing vdev. The user is not allowed to 4399 * attach to a spared vdev child unless the 'isspare' state is 4400 * the same (spare replaces spare, non-spare replaces 4401 * non-spare). 4402 */ 4403 if (pvd->vdev_ops == &vdev_replacing_ops && 4404 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4405 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4406 } else if (pvd->vdev_ops == &vdev_spare_ops && 4407 newvd->vdev_isspare != oldvd->vdev_isspare) { 4408 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4409 } 4410 4411 if (newvd->vdev_isspare) 4412 pvops = &vdev_spare_ops; 4413 else 4414 pvops = &vdev_replacing_ops; 4415 } 4416 4417 /* 4418 * Make sure the new device is big enough. 4419 */ 4420 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4421 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4422 4423 /* 4424 * The new device cannot have a higher alignment requirement 4425 * than the top-level vdev. 4426 */ 4427 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4428 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4429 4430 /* 4431 * If this is an in-place replacement, update oldvd's path and devid 4432 * to make it distinguishable from newvd, and unopenable from now on. 4433 */ 4434 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4435 spa_strfree(oldvd->vdev_path); 4436 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4437 KM_SLEEP); 4438 (void) sprintf(oldvd->vdev_path, "%s/%s", 4439 newvd->vdev_path, "old"); 4440 if (oldvd->vdev_devid != NULL) { 4441 spa_strfree(oldvd->vdev_devid); 4442 oldvd->vdev_devid = NULL; 4443 } 4444 } 4445 4446 /* mark the device being resilvered */ 4447 newvd->vdev_resilvering = B_TRUE; 4448 4449 /* 4450 * If the parent is not a mirror, or if we're replacing, insert the new 4451 * mirror/replacing/spare vdev above oldvd. 4452 */ 4453 if (pvd->vdev_ops != pvops) 4454 pvd = vdev_add_parent(oldvd, pvops); 4455 4456 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4457 ASSERT(pvd->vdev_ops == pvops); 4458 ASSERT(oldvd->vdev_parent == pvd); 4459 4460 /* 4461 * Extract the new device from its root and add it to pvd. 4462 */ 4463 vdev_remove_child(newrootvd, newvd); 4464 newvd->vdev_id = pvd->vdev_children; 4465 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4466 vdev_add_child(pvd, newvd); 4467 4468 tvd = newvd->vdev_top; 4469 ASSERT(pvd->vdev_top == tvd); 4470 ASSERT(tvd->vdev_parent == rvd); 4471 4472 vdev_config_dirty(tvd); 4473 4474 /* 4475 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4476 * for any dmu_sync-ed blocks. It will propagate upward when 4477 * spa_vdev_exit() calls vdev_dtl_reassess(). 4478 */ 4479 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4480 4481 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4482 dtl_max_txg - TXG_INITIAL); 4483 4484 if (newvd->vdev_isspare) { 4485 spa_spare_activate(newvd); 4486 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4487 } 4488 4489 oldvdpath = spa_strdup(oldvd->vdev_path); 4490 newvdpath = spa_strdup(newvd->vdev_path); 4491 newvd_isspare = newvd->vdev_isspare; 4492 4493 /* 4494 * Mark newvd's DTL dirty in this txg. 4495 */ 4496 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4497 4498 /* 4499 * Restart the resilver 4500 */ 4501 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4502 4503 /* 4504 * Commit the config 4505 */ 4506 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4507 4508 spa_history_log_internal(spa, "vdev attach", NULL, 4509 "%s vdev=%s %s vdev=%s", 4510 replacing && newvd_isspare ? "spare in" : 4511 replacing ? "replace" : "attach", newvdpath, 4512 replacing ? "for" : "to", oldvdpath); 4513 4514 spa_strfree(oldvdpath); 4515 spa_strfree(newvdpath); 4516 4517 if (spa->spa_bootfs) 4518 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4519 4520 return (0); 4521 } 4522 4523 /* 4524 * Detach a device from a mirror or replacing vdev. 4525 * 4526 * If 'replace_done' is specified, only detach if the parent 4527 * is a replacing vdev. 4528 */ 4529 int 4530 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4531 { 4532 uint64_t txg; 4533 int error; 4534 vdev_t *rvd = spa->spa_root_vdev; 4535 vdev_t *vd, *pvd, *cvd, *tvd; 4536 boolean_t unspare = B_FALSE; 4537 uint64_t unspare_guid = 0; 4538 char *vdpath; 4539 4540 ASSERT(spa_writeable(spa)); 4541 4542 txg = spa_vdev_enter(spa); 4543 4544 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4545 4546 if (vd == NULL) 4547 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4548 4549 if (!vd->vdev_ops->vdev_op_leaf) 4550 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4551 4552 pvd = vd->vdev_parent; 4553 4554 /* 4555 * If the parent/child relationship is not as expected, don't do it. 4556 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4557 * vdev that's replacing B with C. The user's intent in replacing 4558 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4559 * the replace by detaching C, the expected behavior is to end up 4560 * M(A,B). But suppose that right after deciding to detach C, 4561 * the replacement of B completes. We would have M(A,C), and then 4562 * ask to detach C, which would leave us with just A -- not what 4563 * the user wanted. To prevent this, we make sure that the 4564 * parent/child relationship hasn't changed -- in this example, 4565 * that C's parent is still the replacing vdev R. 4566 */ 4567 if (pvd->vdev_guid != pguid && pguid != 0) 4568 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4569 4570 /* 4571 * Only 'replacing' or 'spare' vdevs can be replaced. 4572 */ 4573 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4574 pvd->vdev_ops != &vdev_spare_ops) 4575 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4576 4577 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4578 spa_version(spa) >= SPA_VERSION_SPARES); 4579 4580 /* 4581 * Only mirror, replacing, and spare vdevs support detach. 4582 */ 4583 if (pvd->vdev_ops != &vdev_replacing_ops && 4584 pvd->vdev_ops != &vdev_mirror_ops && 4585 pvd->vdev_ops != &vdev_spare_ops) 4586 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4587 4588 /* 4589 * If this device has the only valid copy of some data, 4590 * we cannot safely detach it. 4591 */ 4592 if (vdev_dtl_required(vd)) 4593 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4594 4595 ASSERT(pvd->vdev_children >= 2); 4596 4597 /* 4598 * If we are detaching the second disk from a replacing vdev, then 4599 * check to see if we changed the original vdev's path to have "/old" 4600 * at the end in spa_vdev_attach(). If so, undo that change now. 4601 */ 4602 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4603 vd->vdev_path != NULL) { 4604 size_t len = strlen(vd->vdev_path); 4605 4606 for (int c = 0; c < pvd->vdev_children; c++) { 4607 cvd = pvd->vdev_child[c]; 4608 4609 if (cvd == vd || cvd->vdev_path == NULL) 4610 continue; 4611 4612 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4613 strcmp(cvd->vdev_path + len, "/old") == 0) { 4614 spa_strfree(cvd->vdev_path); 4615 cvd->vdev_path = spa_strdup(vd->vdev_path); 4616 break; 4617 } 4618 } 4619 } 4620 4621 /* 4622 * If we are detaching the original disk from a spare, then it implies 4623 * that the spare should become a real disk, and be removed from the 4624 * active spare list for the pool. 4625 */ 4626 if (pvd->vdev_ops == &vdev_spare_ops && 4627 vd->vdev_id == 0 && 4628 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4629 unspare = B_TRUE; 4630 4631 /* 4632 * Erase the disk labels so the disk can be used for other things. 4633 * This must be done after all other error cases are handled, 4634 * but before we disembowel vd (so we can still do I/O to it). 4635 * But if we can't do it, don't treat the error as fatal -- 4636 * it may be that the unwritability of the disk is the reason 4637 * it's being detached! 4638 */ 4639 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4640 4641 /* 4642 * Remove vd from its parent and compact the parent's children. 4643 */ 4644 vdev_remove_child(pvd, vd); 4645 vdev_compact_children(pvd); 4646 4647 /* 4648 * Remember one of the remaining children so we can get tvd below. 4649 */ 4650 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4651 4652 /* 4653 * If we need to remove the remaining child from the list of hot spares, 4654 * do it now, marking the vdev as no longer a spare in the process. 4655 * We must do this before vdev_remove_parent(), because that can 4656 * change the GUID if it creates a new toplevel GUID. For a similar 4657 * reason, we must remove the spare now, in the same txg as the detach; 4658 * otherwise someone could attach a new sibling, change the GUID, and 4659 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4660 */ 4661 if (unspare) { 4662 ASSERT(cvd->vdev_isspare); 4663 spa_spare_remove(cvd); 4664 unspare_guid = cvd->vdev_guid; 4665 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4666 cvd->vdev_unspare = B_TRUE; 4667 } 4668 4669 /* 4670 * If the parent mirror/replacing vdev only has one child, 4671 * the parent is no longer needed. Remove it from the tree. 4672 */ 4673 if (pvd->vdev_children == 1) { 4674 if (pvd->vdev_ops == &vdev_spare_ops) 4675 cvd->vdev_unspare = B_FALSE; 4676 vdev_remove_parent(cvd); 4677 cvd->vdev_resilvering = B_FALSE; 4678 } 4679 4680 4681 /* 4682 * We don't set tvd until now because the parent we just removed 4683 * may have been the previous top-level vdev. 4684 */ 4685 tvd = cvd->vdev_top; 4686 ASSERT(tvd->vdev_parent == rvd); 4687 4688 /* 4689 * Reevaluate the parent vdev state. 4690 */ 4691 vdev_propagate_state(cvd); 4692 4693 /* 4694 * If the 'autoexpand' property is set on the pool then automatically 4695 * try to expand the size of the pool. For example if the device we 4696 * just detached was smaller than the others, it may be possible to 4697 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4698 * first so that we can obtain the updated sizes of the leaf vdevs. 4699 */ 4700 if (spa->spa_autoexpand) { 4701 vdev_reopen(tvd); 4702 vdev_expand(tvd, txg); 4703 } 4704 4705 vdev_config_dirty(tvd); 4706 4707 /* 4708 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4709 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4710 * But first make sure we're not on any *other* txg's DTL list, to 4711 * prevent vd from being accessed after it's freed. 4712 */ 4713 vdpath = spa_strdup(vd->vdev_path); 4714 for (int t = 0; t < TXG_SIZE; t++) 4715 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4716 vd->vdev_detached = B_TRUE; 4717 vdev_dirty(tvd, VDD_DTL, vd, txg); 4718 4719 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4720 4721 /* hang on to the spa before we release the lock */ 4722 spa_open_ref(spa, FTAG); 4723 4724 error = spa_vdev_exit(spa, vd, txg, 0); 4725 4726 spa_history_log_internal(spa, "detach", NULL, 4727 "vdev=%s", vdpath); 4728 spa_strfree(vdpath); 4729 4730 /* 4731 * If this was the removal of the original device in a hot spare vdev, 4732 * then we want to go through and remove the device from the hot spare 4733 * list of every other pool. 4734 */ 4735 if (unspare) { 4736 spa_t *altspa = NULL; 4737 4738 mutex_enter(&spa_namespace_lock); 4739 while ((altspa = spa_next(altspa)) != NULL) { 4740 if (altspa->spa_state != POOL_STATE_ACTIVE || 4741 altspa == spa) 4742 continue; 4743 4744 spa_open_ref(altspa, FTAG); 4745 mutex_exit(&spa_namespace_lock); 4746 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4747 mutex_enter(&spa_namespace_lock); 4748 spa_close(altspa, FTAG); 4749 } 4750 mutex_exit(&spa_namespace_lock); 4751 4752 /* search the rest of the vdevs for spares to remove */ 4753 spa_vdev_resilver_done(spa); 4754 } 4755 4756 /* all done with the spa; OK to release */ 4757 mutex_enter(&spa_namespace_lock); 4758 spa_close(spa, FTAG); 4759 mutex_exit(&spa_namespace_lock); 4760 4761 return (error); 4762 } 4763 4764 /* 4765 * Split a set of devices from their mirrors, and create a new pool from them. 4766 */ 4767 int 4768 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4769 nvlist_t *props, boolean_t exp) 4770 { 4771 int error = 0; 4772 uint64_t txg, *glist; 4773 spa_t *newspa; 4774 uint_t c, children, lastlog; 4775 nvlist_t **child, *nvl, *tmp; 4776 dmu_tx_t *tx; 4777 char *altroot = NULL; 4778 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4779 boolean_t activate_slog; 4780 4781 ASSERT(spa_writeable(spa)); 4782 4783 txg = spa_vdev_enter(spa); 4784 4785 /* clear the log and flush everything up to now */ 4786 activate_slog = spa_passivate_log(spa); 4787 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4788 error = spa_offline_log(spa); 4789 txg = spa_vdev_config_enter(spa); 4790 4791 if (activate_slog) 4792 spa_activate_log(spa); 4793 4794 if (error != 0) 4795 return (spa_vdev_exit(spa, NULL, txg, error)); 4796 4797 /* check new spa name before going any further */ 4798 if (spa_lookup(newname) != NULL) 4799 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4800 4801 /* 4802 * scan through all the children to ensure they're all mirrors 4803 */ 4804 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4805 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4806 &children) != 0) 4807 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4808 4809 /* first, check to ensure we've got the right child count */ 4810 rvd = spa->spa_root_vdev; 4811 lastlog = 0; 4812 for (c = 0; c < rvd->vdev_children; c++) { 4813 vdev_t *vd = rvd->vdev_child[c]; 4814 4815 /* don't count the holes & logs as children */ 4816 if (vd->vdev_islog || vd->vdev_ishole) { 4817 if (lastlog == 0) 4818 lastlog = c; 4819 continue; 4820 } 4821 4822 lastlog = 0; 4823 } 4824 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4825 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4826 4827 /* next, ensure no spare or cache devices are part of the split */ 4828 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4829 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4830 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4831 4832 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4833 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4834 4835 /* then, loop over each vdev and validate it */ 4836 for (c = 0; c < children; c++) { 4837 uint64_t is_hole = 0; 4838 4839 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4840 &is_hole); 4841 4842 if (is_hole != 0) { 4843 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4844 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4845 continue; 4846 } else { 4847 error = SET_ERROR(EINVAL); 4848 break; 4849 } 4850 } 4851 4852 /* which disk is going to be split? */ 4853 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4854 &glist[c]) != 0) { 4855 error = SET_ERROR(EINVAL); 4856 break; 4857 } 4858 4859 /* look it up in the spa */ 4860 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4861 if (vml[c] == NULL) { 4862 error = SET_ERROR(ENODEV); 4863 break; 4864 } 4865 4866 /* make sure there's nothing stopping the split */ 4867 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4868 vml[c]->vdev_islog || 4869 vml[c]->vdev_ishole || 4870 vml[c]->vdev_isspare || 4871 vml[c]->vdev_isl2cache || 4872 !vdev_writeable(vml[c]) || 4873 vml[c]->vdev_children != 0 || 4874 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4875 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4876 error = SET_ERROR(EINVAL); 4877 break; 4878 } 4879 4880 if (vdev_dtl_required(vml[c])) { 4881 error = SET_ERROR(EBUSY); 4882 break; 4883 } 4884 4885 /* we need certain info from the top level */ 4886 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4887 vml[c]->vdev_top->vdev_ms_array) == 0); 4888 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4889 vml[c]->vdev_top->vdev_ms_shift) == 0); 4890 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4891 vml[c]->vdev_top->vdev_asize) == 0); 4892 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4893 vml[c]->vdev_top->vdev_ashift) == 0); 4894 } 4895 4896 if (error != 0) { 4897 kmem_free(vml, children * sizeof (vdev_t *)); 4898 kmem_free(glist, children * sizeof (uint64_t)); 4899 return (spa_vdev_exit(spa, NULL, txg, error)); 4900 } 4901 4902 /* stop writers from using the disks */ 4903 for (c = 0; c < children; c++) { 4904 if (vml[c] != NULL) 4905 vml[c]->vdev_offline = B_TRUE; 4906 } 4907 vdev_reopen(spa->spa_root_vdev); 4908 4909 /* 4910 * Temporarily record the splitting vdevs in the spa config. This 4911 * will disappear once the config is regenerated. 4912 */ 4913 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4914 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4915 glist, children) == 0); 4916 kmem_free(glist, children * sizeof (uint64_t)); 4917 4918 mutex_enter(&spa->spa_props_lock); 4919 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4920 nvl) == 0); 4921 mutex_exit(&spa->spa_props_lock); 4922 spa->spa_config_splitting = nvl; 4923 vdev_config_dirty(spa->spa_root_vdev); 4924 4925 /* configure and create the new pool */ 4926 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4927 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4928 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4929 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4930 spa_version(spa)) == 0); 4931 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4932 spa->spa_config_txg) == 0); 4933 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4934 spa_generate_guid(NULL)) == 0); 4935 (void) nvlist_lookup_string(props, 4936 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4937 4938 /* add the new pool to the namespace */ 4939 newspa = spa_add(newname, config, altroot); 4940 newspa->spa_config_txg = spa->spa_config_txg; 4941 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4942 4943 /* release the spa config lock, retaining the namespace lock */ 4944 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4945 4946 if (zio_injection_enabled) 4947 zio_handle_panic_injection(spa, FTAG, 1); 4948 4949 spa_activate(newspa, spa_mode_global); 4950 spa_async_suspend(newspa); 4951 4952 /* create the new pool from the disks of the original pool */ 4953 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4954 if (error) 4955 goto out; 4956 4957 /* if that worked, generate a real config for the new pool */ 4958 if (newspa->spa_root_vdev != NULL) { 4959 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4960 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4961 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4962 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4963 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4964 B_TRUE)); 4965 } 4966 4967 /* set the props */ 4968 if (props != NULL) { 4969 spa_configfile_set(newspa, props, B_FALSE); 4970 error = spa_prop_set(newspa, props); 4971 if (error) 4972 goto out; 4973 } 4974 4975 /* flush everything */ 4976 txg = spa_vdev_config_enter(newspa); 4977 vdev_config_dirty(newspa->spa_root_vdev); 4978 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4979 4980 if (zio_injection_enabled) 4981 zio_handle_panic_injection(spa, FTAG, 2); 4982 4983 spa_async_resume(newspa); 4984 4985 /* finally, update the original pool's config */ 4986 txg = spa_vdev_config_enter(spa); 4987 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4988 error = dmu_tx_assign(tx, TXG_WAIT); 4989 if (error != 0) 4990 dmu_tx_abort(tx); 4991 for (c = 0; c < children; c++) { 4992 if (vml[c] != NULL) { 4993 vdev_split(vml[c]); 4994 if (error == 0) 4995 spa_history_log_internal(spa, "detach", tx, 4996 "vdev=%s", vml[c]->vdev_path); 4997 vdev_free(vml[c]); 4998 } 4999 } 5000 vdev_config_dirty(spa->spa_root_vdev); 5001 spa->spa_config_splitting = NULL; 5002 nvlist_free(nvl); 5003 if (error == 0) 5004 dmu_tx_commit(tx); 5005 (void) spa_vdev_exit(spa, NULL, txg, 0); 5006 5007 if (zio_injection_enabled) 5008 zio_handle_panic_injection(spa, FTAG, 3); 5009 5010 /* split is complete; log a history record */ 5011 spa_history_log_internal(newspa, "split", NULL, 5012 "from pool %s", spa_name(spa)); 5013 5014 kmem_free(vml, children * sizeof (vdev_t *)); 5015 5016 /* if we're not going to mount the filesystems in userland, export */ 5017 if (exp) 5018 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5019 B_FALSE, B_FALSE); 5020 5021 return (error); 5022 5023 out: 5024 spa_unload(newspa); 5025 spa_deactivate(newspa); 5026 spa_remove(newspa); 5027 5028 txg = spa_vdev_config_enter(spa); 5029 5030 /* re-online all offlined disks */ 5031 for (c = 0; c < children; c++) { 5032 if (vml[c] != NULL) 5033 vml[c]->vdev_offline = B_FALSE; 5034 } 5035 vdev_reopen(spa->spa_root_vdev); 5036 5037 nvlist_free(spa->spa_config_splitting); 5038 spa->spa_config_splitting = NULL; 5039 (void) spa_vdev_exit(spa, NULL, txg, error); 5040 5041 kmem_free(vml, children * sizeof (vdev_t *)); 5042 return (error); 5043 } 5044 5045 static nvlist_t * 5046 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5047 { 5048 for (int i = 0; i < count; i++) { 5049 uint64_t guid; 5050 5051 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5052 &guid) == 0); 5053 5054 if (guid == target_guid) 5055 return (nvpp[i]); 5056 } 5057 5058 return (NULL); 5059 } 5060 5061 static void 5062 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5063 nvlist_t *dev_to_remove) 5064 { 5065 nvlist_t **newdev = NULL; 5066 5067 if (count > 1) 5068 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5069 5070 for (int i = 0, j = 0; i < count; i++) { 5071 if (dev[i] == dev_to_remove) 5072 continue; 5073 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5074 } 5075 5076 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5077 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5078 5079 for (int i = 0; i < count - 1; i++) 5080 nvlist_free(newdev[i]); 5081 5082 if (count > 1) 5083 kmem_free(newdev, (count - 1) * sizeof (void *)); 5084 } 5085 5086 /* 5087 * Evacuate the device. 5088 */ 5089 static int 5090 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5091 { 5092 uint64_t txg; 5093 int error = 0; 5094 5095 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5096 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5097 ASSERT(vd == vd->vdev_top); 5098 5099 /* 5100 * Evacuate the device. We don't hold the config lock as writer 5101 * since we need to do I/O but we do keep the 5102 * spa_namespace_lock held. Once this completes the device 5103 * should no longer have any blocks allocated on it. 5104 */ 5105 if (vd->vdev_islog) { 5106 if (vd->vdev_stat.vs_alloc != 0) 5107 error = spa_offline_log(spa); 5108 } else { 5109 error = SET_ERROR(ENOTSUP); 5110 } 5111 5112 if (error) 5113 return (error); 5114 5115 /* 5116 * The evacuation succeeded. Remove any remaining MOS metadata 5117 * associated with this vdev, and wait for these changes to sync. 5118 */ 5119 ASSERT0(vd->vdev_stat.vs_alloc); 5120 txg = spa_vdev_config_enter(spa); 5121 vd->vdev_removing = B_TRUE; 5122 vdev_dirty(vd, 0, NULL, txg); 5123 vdev_config_dirty(vd); 5124 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5125 5126 return (0); 5127 } 5128 5129 /* 5130 * Complete the removal by cleaning up the namespace. 5131 */ 5132 static void 5133 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5134 { 5135 vdev_t *rvd = spa->spa_root_vdev; 5136 uint64_t id = vd->vdev_id; 5137 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5138 5139 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5140 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5141 ASSERT(vd == vd->vdev_top); 5142 5143 /* 5144 * Only remove any devices which are empty. 5145 */ 5146 if (vd->vdev_stat.vs_alloc != 0) 5147 return; 5148 5149 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5150 5151 if (list_link_active(&vd->vdev_state_dirty_node)) 5152 vdev_state_clean(vd); 5153 if (list_link_active(&vd->vdev_config_dirty_node)) 5154 vdev_config_clean(vd); 5155 5156 vdev_free(vd); 5157 5158 if (last_vdev) { 5159 vdev_compact_children(rvd); 5160 } else { 5161 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5162 vdev_add_child(rvd, vd); 5163 } 5164 vdev_config_dirty(rvd); 5165 5166 /* 5167 * Reassess the health of our root vdev. 5168 */ 5169 vdev_reopen(rvd); 5170 } 5171 5172 /* 5173 * Remove a device from the pool - 5174 * 5175 * Removing a device from the vdev namespace requires several steps 5176 * and can take a significant amount of time. As a result we use 5177 * the spa_vdev_config_[enter/exit] functions which allow us to 5178 * grab and release the spa_config_lock while still holding the namespace 5179 * lock. During each step the configuration is synced out. 5180 * 5181 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5182 * devices. 5183 */ 5184 int 5185 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5186 { 5187 vdev_t *vd; 5188 metaslab_group_t *mg; 5189 nvlist_t **spares, **l2cache, *nv; 5190 uint64_t txg = 0; 5191 uint_t nspares, nl2cache; 5192 int error = 0; 5193 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5194 5195 ASSERT(spa_writeable(spa)); 5196 5197 if (!locked) 5198 txg = spa_vdev_enter(spa); 5199 5200 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5201 5202 if (spa->spa_spares.sav_vdevs != NULL && 5203 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5204 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5205 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5206 /* 5207 * Only remove the hot spare if it's not currently in use 5208 * in this pool. 5209 */ 5210 if (vd == NULL || unspare) { 5211 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5212 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5213 spa_load_spares(spa); 5214 spa->spa_spares.sav_sync = B_TRUE; 5215 } else { 5216 error = SET_ERROR(EBUSY); 5217 } 5218 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5219 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5220 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5221 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5222 /* 5223 * Cache devices can always be removed. 5224 */ 5225 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5226 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5227 spa_load_l2cache(spa); 5228 spa->spa_l2cache.sav_sync = B_TRUE; 5229 } else if (vd != NULL && vd->vdev_islog) { 5230 ASSERT(!locked); 5231 ASSERT(vd == vd->vdev_top); 5232 5233 /* 5234 * XXX - Once we have bp-rewrite this should 5235 * become the common case. 5236 */ 5237 5238 mg = vd->vdev_mg; 5239 5240 /* 5241 * Stop allocating from this vdev. 5242 */ 5243 metaslab_group_passivate(mg); 5244 5245 /* 5246 * Wait for the youngest allocations and frees to sync, 5247 * and then wait for the deferral of those frees to finish. 5248 */ 5249 spa_vdev_config_exit(spa, NULL, 5250 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5251 5252 /* 5253 * Attempt to evacuate the vdev. 5254 */ 5255 error = spa_vdev_remove_evacuate(spa, vd); 5256 5257 txg = spa_vdev_config_enter(spa); 5258 5259 /* 5260 * If we couldn't evacuate the vdev, unwind. 5261 */ 5262 if (error) { 5263 metaslab_group_activate(mg); 5264 return (spa_vdev_exit(spa, NULL, txg, error)); 5265 } 5266 5267 /* 5268 * Clean up the vdev namespace. 5269 */ 5270 spa_vdev_remove_from_namespace(spa, vd); 5271 5272 } else if (vd != NULL) { 5273 /* 5274 * Normal vdevs cannot be removed (yet). 5275 */ 5276 error = SET_ERROR(ENOTSUP); 5277 } else { 5278 /* 5279 * There is no vdev of any kind with the specified guid. 5280 */ 5281 error = SET_ERROR(ENOENT); 5282 } 5283 5284 if (!locked) 5285 return (spa_vdev_exit(spa, NULL, txg, error)); 5286 5287 return (error); 5288 } 5289 5290 /* 5291 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5292 * currently spared, so we can detach it. 5293 */ 5294 static vdev_t * 5295 spa_vdev_resilver_done_hunt(vdev_t *vd) 5296 { 5297 vdev_t *newvd, *oldvd; 5298 5299 for (int c = 0; c < vd->vdev_children; c++) { 5300 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5301 if (oldvd != NULL) 5302 return (oldvd); 5303 } 5304 5305 /* 5306 * Check for a completed replacement. We always consider the first 5307 * vdev in the list to be the oldest vdev, and the last one to be 5308 * the newest (see spa_vdev_attach() for how that works). In 5309 * the case where the newest vdev is faulted, we will not automatically 5310 * remove it after a resilver completes. This is OK as it will require 5311 * user intervention to determine which disk the admin wishes to keep. 5312 */ 5313 if (vd->vdev_ops == &vdev_replacing_ops) { 5314 ASSERT(vd->vdev_children > 1); 5315 5316 newvd = vd->vdev_child[vd->vdev_children - 1]; 5317 oldvd = vd->vdev_child[0]; 5318 5319 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5320 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5321 !vdev_dtl_required(oldvd)) 5322 return (oldvd); 5323 } 5324 5325 /* 5326 * Check for a completed resilver with the 'unspare' flag set. 5327 */ 5328 if (vd->vdev_ops == &vdev_spare_ops) { 5329 vdev_t *first = vd->vdev_child[0]; 5330 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5331 5332 if (last->vdev_unspare) { 5333 oldvd = first; 5334 newvd = last; 5335 } else if (first->vdev_unspare) { 5336 oldvd = last; 5337 newvd = first; 5338 } else { 5339 oldvd = NULL; 5340 } 5341 5342 if (oldvd != NULL && 5343 vdev_dtl_empty(newvd, DTL_MISSING) && 5344 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5345 !vdev_dtl_required(oldvd)) 5346 return (oldvd); 5347 5348 /* 5349 * If there are more than two spares attached to a disk, 5350 * and those spares are not required, then we want to 5351 * attempt to free them up now so that they can be used 5352 * by other pools. Once we're back down to a single 5353 * disk+spare, we stop removing them. 5354 */ 5355 if (vd->vdev_children > 2) { 5356 newvd = vd->vdev_child[1]; 5357 5358 if (newvd->vdev_isspare && last->vdev_isspare && 5359 vdev_dtl_empty(last, DTL_MISSING) && 5360 vdev_dtl_empty(last, DTL_OUTAGE) && 5361 !vdev_dtl_required(newvd)) 5362 return (newvd); 5363 } 5364 } 5365 5366 return (NULL); 5367 } 5368 5369 static void 5370 spa_vdev_resilver_done(spa_t *spa) 5371 { 5372 vdev_t *vd, *pvd, *ppvd; 5373 uint64_t guid, sguid, pguid, ppguid; 5374 5375 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5376 5377 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5378 pvd = vd->vdev_parent; 5379 ppvd = pvd->vdev_parent; 5380 guid = vd->vdev_guid; 5381 pguid = pvd->vdev_guid; 5382 ppguid = ppvd->vdev_guid; 5383 sguid = 0; 5384 /* 5385 * If we have just finished replacing a hot spared device, then 5386 * we need to detach the parent's first child (the original hot 5387 * spare) as well. 5388 */ 5389 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5390 ppvd->vdev_children == 2) { 5391 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5392 sguid = ppvd->vdev_child[1]->vdev_guid; 5393 } 5394 spa_config_exit(spa, SCL_ALL, FTAG); 5395 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5396 return; 5397 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5398 return; 5399 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5400 } 5401 5402 spa_config_exit(spa, SCL_ALL, FTAG); 5403 } 5404 5405 /* 5406 * Update the stored path or FRU for this vdev. 5407 */ 5408 int 5409 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5410 boolean_t ispath) 5411 { 5412 vdev_t *vd; 5413 boolean_t sync = B_FALSE; 5414 5415 ASSERT(spa_writeable(spa)); 5416 5417 spa_vdev_state_enter(spa, SCL_ALL); 5418 5419 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5420 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5421 5422 if (!vd->vdev_ops->vdev_op_leaf) 5423 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5424 5425 if (ispath) { 5426 if (strcmp(value, vd->vdev_path) != 0) { 5427 spa_strfree(vd->vdev_path); 5428 vd->vdev_path = spa_strdup(value); 5429 sync = B_TRUE; 5430 } 5431 } else { 5432 if (vd->vdev_fru == NULL) { 5433 vd->vdev_fru = spa_strdup(value); 5434 sync = B_TRUE; 5435 } else if (strcmp(value, vd->vdev_fru) != 0) { 5436 spa_strfree(vd->vdev_fru); 5437 vd->vdev_fru = spa_strdup(value); 5438 sync = B_TRUE; 5439 } 5440 } 5441 5442 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5443 } 5444 5445 int 5446 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5447 { 5448 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5449 } 5450 5451 int 5452 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5453 { 5454 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5455 } 5456 5457 /* 5458 * ========================================================================== 5459 * SPA Scanning 5460 * ========================================================================== 5461 */ 5462 5463 int 5464 spa_scan_stop(spa_t *spa) 5465 { 5466 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5467 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5468 return (SET_ERROR(EBUSY)); 5469 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5470 } 5471 5472 int 5473 spa_scan(spa_t *spa, pool_scan_func_t func) 5474 { 5475 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5476 5477 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5478 return (SET_ERROR(ENOTSUP)); 5479 5480 /* 5481 * If a resilver was requested, but there is no DTL on a 5482 * writeable leaf device, we have nothing to do. 5483 */ 5484 if (func == POOL_SCAN_RESILVER && 5485 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5486 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5487 return (0); 5488 } 5489 5490 return (dsl_scan(spa->spa_dsl_pool, func)); 5491 } 5492 5493 /* 5494 * ========================================================================== 5495 * SPA async task processing 5496 * ========================================================================== 5497 */ 5498 5499 static void 5500 spa_async_remove(spa_t *spa, vdev_t *vd) 5501 { 5502 if (vd->vdev_remove_wanted) { 5503 vd->vdev_remove_wanted = B_FALSE; 5504 vd->vdev_delayed_close = B_FALSE; 5505 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5506 5507 /* 5508 * We want to clear the stats, but we don't want to do a full 5509 * vdev_clear() as that will cause us to throw away 5510 * degraded/faulted state as well as attempt to reopen the 5511 * device, all of which is a waste. 5512 */ 5513 vd->vdev_stat.vs_read_errors = 0; 5514 vd->vdev_stat.vs_write_errors = 0; 5515 vd->vdev_stat.vs_checksum_errors = 0; 5516 5517 vdev_state_dirty(vd->vdev_top); 5518 } 5519 5520 for (int c = 0; c < vd->vdev_children; c++) 5521 spa_async_remove(spa, vd->vdev_child[c]); 5522 } 5523 5524 static void 5525 spa_async_probe(spa_t *spa, vdev_t *vd) 5526 { 5527 if (vd->vdev_probe_wanted) { 5528 vd->vdev_probe_wanted = B_FALSE; 5529 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5530 } 5531 5532 for (int c = 0; c < vd->vdev_children; c++) 5533 spa_async_probe(spa, vd->vdev_child[c]); 5534 } 5535 5536 static void 5537 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5538 { 5539 sysevent_id_t eid; 5540 nvlist_t *attr; 5541 char *physpath; 5542 5543 if (!spa->spa_autoexpand) 5544 return; 5545 5546 for (int c = 0; c < vd->vdev_children; c++) { 5547 vdev_t *cvd = vd->vdev_child[c]; 5548 spa_async_autoexpand(spa, cvd); 5549 } 5550 5551 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5552 return; 5553 5554 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5555 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5556 5557 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5558 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5559 5560 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5561 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5562 5563 nvlist_free(attr); 5564 kmem_free(physpath, MAXPATHLEN); 5565 } 5566 5567 static void 5568 spa_async_thread(spa_t *spa) 5569 { 5570 int tasks; 5571 5572 ASSERT(spa->spa_sync_on); 5573 5574 mutex_enter(&spa->spa_async_lock); 5575 tasks = spa->spa_async_tasks; 5576 spa->spa_async_tasks = 0; 5577 mutex_exit(&spa->spa_async_lock); 5578 5579 /* 5580 * See if the config needs to be updated. 5581 */ 5582 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5583 uint64_t old_space, new_space; 5584 5585 mutex_enter(&spa_namespace_lock); 5586 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5587 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5588 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5589 mutex_exit(&spa_namespace_lock); 5590 5591 /* 5592 * If the pool grew as a result of the config update, 5593 * then log an internal history event. 5594 */ 5595 if (new_space != old_space) { 5596 spa_history_log_internal(spa, "vdev online", NULL, 5597 "pool '%s' size: %llu(+%llu)", 5598 spa_name(spa), new_space, new_space - old_space); 5599 } 5600 } 5601 5602 /* 5603 * See if any devices need to be marked REMOVED. 5604 */ 5605 if (tasks & SPA_ASYNC_REMOVE) { 5606 spa_vdev_state_enter(spa, SCL_NONE); 5607 spa_async_remove(spa, spa->spa_root_vdev); 5608 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5609 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5610 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5611 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5612 (void) spa_vdev_state_exit(spa, NULL, 0); 5613 } 5614 5615 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5616 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5617 spa_async_autoexpand(spa, spa->spa_root_vdev); 5618 spa_config_exit(spa, SCL_CONFIG, FTAG); 5619 } 5620 5621 /* 5622 * See if any devices need to be probed. 5623 */ 5624 if (tasks & SPA_ASYNC_PROBE) { 5625 spa_vdev_state_enter(spa, SCL_NONE); 5626 spa_async_probe(spa, spa->spa_root_vdev); 5627 (void) spa_vdev_state_exit(spa, NULL, 0); 5628 } 5629 5630 /* 5631 * If any devices are done replacing, detach them. 5632 */ 5633 if (tasks & SPA_ASYNC_RESILVER_DONE) 5634 spa_vdev_resilver_done(spa); 5635 5636 /* 5637 * Kick off a resilver. 5638 */ 5639 if (tasks & SPA_ASYNC_RESILVER) 5640 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5641 5642 /* 5643 * Let the world know that we're done. 5644 */ 5645 mutex_enter(&spa->spa_async_lock); 5646 spa->spa_async_thread = NULL; 5647 cv_broadcast(&spa->spa_async_cv); 5648 mutex_exit(&spa->spa_async_lock); 5649 thread_exit(); 5650 } 5651 5652 void 5653 spa_async_suspend(spa_t *spa) 5654 { 5655 mutex_enter(&spa->spa_async_lock); 5656 spa->spa_async_suspended++; 5657 while (spa->spa_async_thread != NULL) 5658 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5659 mutex_exit(&spa->spa_async_lock); 5660 } 5661 5662 void 5663 spa_async_resume(spa_t *spa) 5664 { 5665 mutex_enter(&spa->spa_async_lock); 5666 ASSERT(spa->spa_async_suspended != 0); 5667 spa->spa_async_suspended--; 5668 mutex_exit(&spa->spa_async_lock); 5669 } 5670 5671 static boolean_t 5672 spa_async_tasks_pending(spa_t *spa) 5673 { 5674 uint_t non_config_tasks; 5675 uint_t config_task; 5676 boolean_t config_task_suspended; 5677 5678 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5679 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5680 if (spa->spa_ccw_fail_time == 0) { 5681 config_task_suspended = B_FALSE; 5682 } else { 5683 config_task_suspended = 5684 (gethrtime() - spa->spa_ccw_fail_time) < 5685 (zfs_ccw_retry_interval * NANOSEC); 5686 } 5687 5688 return (non_config_tasks || (config_task && !config_task_suspended)); 5689 } 5690 5691 static void 5692 spa_async_dispatch(spa_t *spa) 5693 { 5694 mutex_enter(&spa->spa_async_lock); 5695 if (spa_async_tasks_pending(spa) && 5696 !spa->spa_async_suspended && 5697 spa->spa_async_thread == NULL && 5698 rootdir != NULL) 5699 spa->spa_async_thread = thread_create(NULL, 0, 5700 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5701 mutex_exit(&spa->spa_async_lock); 5702 } 5703 5704 void 5705 spa_async_request(spa_t *spa, int task) 5706 { 5707 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5708 mutex_enter(&spa->spa_async_lock); 5709 spa->spa_async_tasks |= task; 5710 mutex_exit(&spa->spa_async_lock); 5711 } 5712 5713 /* 5714 * ========================================================================== 5715 * SPA syncing routines 5716 * ========================================================================== 5717 */ 5718 5719 static int 5720 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5721 { 5722 bpobj_t *bpo = arg; 5723 bpobj_enqueue(bpo, bp, tx); 5724 return (0); 5725 } 5726 5727 static int 5728 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5729 { 5730 zio_t *zio = arg; 5731 5732 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5733 zio->io_flags)); 5734 return (0); 5735 } 5736 5737 static void 5738 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5739 { 5740 char *packed = NULL; 5741 size_t bufsize; 5742 size_t nvsize = 0; 5743 dmu_buf_t *db; 5744 5745 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5746 5747 /* 5748 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5749 * information. This avoids the dbuf_will_dirty() path and 5750 * saves us a pre-read to get data we don't actually care about. 5751 */ 5752 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5753 packed = kmem_alloc(bufsize, KM_SLEEP); 5754 5755 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5756 KM_SLEEP) == 0); 5757 bzero(packed + nvsize, bufsize - nvsize); 5758 5759 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5760 5761 kmem_free(packed, bufsize); 5762 5763 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5764 dmu_buf_will_dirty(db, tx); 5765 *(uint64_t *)db->db_data = nvsize; 5766 dmu_buf_rele(db, FTAG); 5767 } 5768 5769 static void 5770 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5771 const char *config, const char *entry) 5772 { 5773 nvlist_t *nvroot; 5774 nvlist_t **list; 5775 int i; 5776 5777 if (!sav->sav_sync) 5778 return; 5779 5780 /* 5781 * Update the MOS nvlist describing the list of available devices. 5782 * spa_validate_aux() will have already made sure this nvlist is 5783 * valid and the vdevs are labeled appropriately. 5784 */ 5785 if (sav->sav_object == 0) { 5786 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5787 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5788 sizeof (uint64_t), tx); 5789 VERIFY(zap_update(spa->spa_meta_objset, 5790 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5791 &sav->sav_object, tx) == 0); 5792 } 5793 5794 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5795 if (sav->sav_count == 0) { 5796 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5797 } else { 5798 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5799 for (i = 0; i < sav->sav_count; i++) 5800 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5801 B_FALSE, VDEV_CONFIG_L2CACHE); 5802 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5803 sav->sav_count) == 0); 5804 for (i = 0; i < sav->sav_count; i++) 5805 nvlist_free(list[i]); 5806 kmem_free(list, sav->sav_count * sizeof (void *)); 5807 } 5808 5809 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5810 nvlist_free(nvroot); 5811 5812 sav->sav_sync = B_FALSE; 5813 } 5814 5815 static void 5816 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5817 { 5818 nvlist_t *config; 5819 5820 if (list_is_empty(&spa->spa_config_dirty_list)) 5821 return; 5822 5823 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5824 5825 config = spa_config_generate(spa, spa->spa_root_vdev, 5826 dmu_tx_get_txg(tx), B_FALSE); 5827 5828 /* 5829 * If we're upgrading the spa version then make sure that 5830 * the config object gets updated with the correct version. 5831 */ 5832 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5833 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5834 spa->spa_uberblock.ub_version); 5835 5836 spa_config_exit(spa, SCL_STATE, FTAG); 5837 5838 if (spa->spa_config_syncing) 5839 nvlist_free(spa->spa_config_syncing); 5840 spa->spa_config_syncing = config; 5841 5842 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5843 } 5844 5845 static void 5846 spa_sync_version(void *arg, dmu_tx_t *tx) 5847 { 5848 uint64_t *versionp = arg; 5849 uint64_t version = *versionp; 5850 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5851 5852 /* 5853 * Setting the version is special cased when first creating the pool. 5854 */ 5855 ASSERT(tx->tx_txg != TXG_INITIAL); 5856 5857 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5858 ASSERT(version >= spa_version(spa)); 5859 5860 spa->spa_uberblock.ub_version = version; 5861 vdev_config_dirty(spa->spa_root_vdev); 5862 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5863 } 5864 5865 /* 5866 * Set zpool properties. 5867 */ 5868 static void 5869 spa_sync_props(void *arg, dmu_tx_t *tx) 5870 { 5871 nvlist_t *nvp = arg; 5872 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5873 objset_t *mos = spa->spa_meta_objset; 5874 nvpair_t *elem = NULL; 5875 5876 mutex_enter(&spa->spa_props_lock); 5877 5878 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5879 uint64_t intval; 5880 char *strval, *fname; 5881 zpool_prop_t prop; 5882 const char *propname; 5883 zprop_type_t proptype; 5884 zfeature_info_t *feature; 5885 5886 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5887 case ZPROP_INVAL: 5888 /* 5889 * We checked this earlier in spa_prop_validate(). 5890 */ 5891 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5892 5893 fname = strchr(nvpair_name(elem), '@') + 1; 5894 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature)); 5895 5896 spa_feature_enable(spa, feature, tx); 5897 spa_history_log_internal(spa, "set", tx, 5898 "%s=enabled", nvpair_name(elem)); 5899 break; 5900 5901 case ZPOOL_PROP_VERSION: 5902 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5903 /* 5904 * The version is synced seperatly before other 5905 * properties and should be correct by now. 5906 */ 5907 ASSERT3U(spa_version(spa), >=, intval); 5908 break; 5909 5910 case ZPOOL_PROP_ALTROOT: 5911 /* 5912 * 'altroot' is a non-persistent property. It should 5913 * have been set temporarily at creation or import time. 5914 */ 5915 ASSERT(spa->spa_root != NULL); 5916 break; 5917 5918 case ZPOOL_PROP_READONLY: 5919 case ZPOOL_PROP_CACHEFILE: 5920 /* 5921 * 'readonly' and 'cachefile' are also non-persisitent 5922 * properties. 5923 */ 5924 break; 5925 case ZPOOL_PROP_COMMENT: 5926 VERIFY(nvpair_value_string(elem, &strval) == 0); 5927 if (spa->spa_comment != NULL) 5928 spa_strfree(spa->spa_comment); 5929 spa->spa_comment = spa_strdup(strval); 5930 /* 5931 * We need to dirty the configuration on all the vdevs 5932 * so that their labels get updated. It's unnecessary 5933 * to do this for pool creation since the vdev's 5934 * configuratoin has already been dirtied. 5935 */ 5936 if (tx->tx_txg != TXG_INITIAL) 5937 vdev_config_dirty(spa->spa_root_vdev); 5938 spa_history_log_internal(spa, "set", tx, 5939 "%s=%s", nvpair_name(elem), strval); 5940 break; 5941 default: 5942 /* 5943 * Set pool property values in the poolprops mos object. 5944 */ 5945 if (spa->spa_pool_props_object == 0) { 5946 spa->spa_pool_props_object = 5947 zap_create_link(mos, DMU_OT_POOL_PROPS, 5948 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5949 tx); 5950 } 5951 5952 /* normalize the property name */ 5953 propname = zpool_prop_to_name(prop); 5954 proptype = zpool_prop_get_type(prop); 5955 5956 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5957 ASSERT(proptype == PROP_TYPE_STRING); 5958 VERIFY(nvpair_value_string(elem, &strval) == 0); 5959 VERIFY(zap_update(mos, 5960 spa->spa_pool_props_object, propname, 5961 1, strlen(strval) + 1, strval, tx) == 0); 5962 spa_history_log_internal(spa, "set", tx, 5963 "%s=%s", nvpair_name(elem), strval); 5964 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5965 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5966 5967 if (proptype == PROP_TYPE_INDEX) { 5968 const char *unused; 5969 VERIFY(zpool_prop_index_to_string( 5970 prop, intval, &unused) == 0); 5971 } 5972 VERIFY(zap_update(mos, 5973 spa->spa_pool_props_object, propname, 5974 8, 1, &intval, tx) == 0); 5975 spa_history_log_internal(spa, "set", tx, 5976 "%s=%lld", nvpair_name(elem), intval); 5977 } else { 5978 ASSERT(0); /* not allowed */ 5979 } 5980 5981 switch (prop) { 5982 case ZPOOL_PROP_DELEGATION: 5983 spa->spa_delegation = intval; 5984 break; 5985 case ZPOOL_PROP_BOOTFS: 5986 spa->spa_bootfs = intval; 5987 break; 5988 case ZPOOL_PROP_FAILUREMODE: 5989 spa->spa_failmode = intval; 5990 break; 5991 case ZPOOL_PROP_AUTOEXPAND: 5992 spa->spa_autoexpand = intval; 5993 if (tx->tx_txg != TXG_INITIAL) 5994 spa_async_request(spa, 5995 SPA_ASYNC_AUTOEXPAND); 5996 break; 5997 case ZPOOL_PROP_DEDUPDITTO: 5998 spa->spa_dedup_ditto = intval; 5999 break; 6000 default: 6001 break; 6002 } 6003 } 6004 6005 } 6006 6007 mutex_exit(&spa->spa_props_lock); 6008 } 6009 6010 /* 6011 * Perform one-time upgrade on-disk changes. spa_version() does not 6012 * reflect the new version this txg, so there must be no changes this 6013 * txg to anything that the upgrade code depends on after it executes. 6014 * Therefore this must be called after dsl_pool_sync() does the sync 6015 * tasks. 6016 */ 6017 static void 6018 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6019 { 6020 dsl_pool_t *dp = spa->spa_dsl_pool; 6021 6022 ASSERT(spa->spa_sync_pass == 1); 6023 6024 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6025 6026 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6027 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6028 dsl_pool_create_origin(dp, tx); 6029 6030 /* Keeping the origin open increases spa_minref */ 6031 spa->spa_minref += 3; 6032 } 6033 6034 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6035 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6036 dsl_pool_upgrade_clones(dp, tx); 6037 } 6038 6039 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6040 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6041 dsl_pool_upgrade_dir_clones(dp, tx); 6042 6043 /* Keeping the freedir open increases spa_minref */ 6044 spa->spa_minref += 3; 6045 } 6046 6047 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6048 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6049 spa_feature_create_zap_objects(spa, tx); 6050 } 6051 rrw_exit(&dp->dp_config_rwlock, FTAG); 6052 } 6053 6054 /* 6055 * Sync the specified transaction group. New blocks may be dirtied as 6056 * part of the process, so we iterate until it converges. 6057 */ 6058 void 6059 spa_sync(spa_t *spa, uint64_t txg) 6060 { 6061 dsl_pool_t *dp = spa->spa_dsl_pool; 6062 objset_t *mos = spa->spa_meta_objset; 6063 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 6064 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6065 vdev_t *rvd = spa->spa_root_vdev; 6066 vdev_t *vd; 6067 dmu_tx_t *tx; 6068 int error; 6069 6070 VERIFY(spa_writeable(spa)); 6071 6072 /* 6073 * Lock out configuration changes. 6074 */ 6075 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6076 6077 spa->spa_syncing_txg = txg; 6078 spa->spa_sync_pass = 0; 6079 6080 /* 6081 * If there are any pending vdev state changes, convert them 6082 * into config changes that go out with this transaction group. 6083 */ 6084 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6085 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6086 /* 6087 * We need the write lock here because, for aux vdevs, 6088 * calling vdev_config_dirty() modifies sav_config. 6089 * This is ugly and will become unnecessary when we 6090 * eliminate the aux vdev wart by integrating all vdevs 6091 * into the root vdev tree. 6092 */ 6093 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6094 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6095 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6096 vdev_state_clean(vd); 6097 vdev_config_dirty(vd); 6098 } 6099 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6100 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6101 } 6102 spa_config_exit(spa, SCL_STATE, FTAG); 6103 6104 tx = dmu_tx_create_assigned(dp, txg); 6105 6106 spa->spa_sync_starttime = gethrtime(); 6107 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6108 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6109 6110 /* 6111 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6112 * set spa_deflate if we have no raid-z vdevs. 6113 */ 6114 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6115 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6116 int i; 6117 6118 for (i = 0; i < rvd->vdev_children; i++) { 6119 vd = rvd->vdev_child[i]; 6120 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6121 break; 6122 } 6123 if (i == rvd->vdev_children) { 6124 spa->spa_deflate = TRUE; 6125 VERIFY(0 == zap_add(spa->spa_meta_objset, 6126 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6127 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6128 } 6129 } 6130 6131 /* 6132 * If anything has changed in this txg, or if someone is waiting 6133 * for this txg to sync (eg, spa_vdev_remove()), push the 6134 * deferred frees from the previous txg. If not, leave them 6135 * alone so that we don't generate work on an otherwise idle 6136 * system. 6137 */ 6138 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6139 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6140 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6141 ((dsl_scan_active(dp->dp_scan) || 6142 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6143 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6144 VERIFY3U(bpobj_iterate(defer_bpo, 6145 spa_free_sync_cb, zio, tx), ==, 0); 6146 VERIFY0(zio_wait(zio)); 6147 } 6148 6149 /* 6150 * Iterate to convergence. 6151 */ 6152 do { 6153 int pass = ++spa->spa_sync_pass; 6154 6155 spa_sync_config_object(spa, tx); 6156 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6157 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6158 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6159 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6160 spa_errlog_sync(spa, txg); 6161 dsl_pool_sync(dp, txg); 6162 6163 if (pass < zfs_sync_pass_deferred_free) { 6164 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6165 bplist_iterate(free_bpl, spa_free_sync_cb, 6166 zio, tx); 6167 VERIFY(zio_wait(zio) == 0); 6168 } else { 6169 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6170 defer_bpo, tx); 6171 } 6172 6173 ddt_sync(spa, txg); 6174 dsl_scan_sync(dp, tx); 6175 6176 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6177 vdev_sync(vd, txg); 6178 6179 if (pass == 1) 6180 spa_sync_upgrades(spa, tx); 6181 6182 } while (dmu_objset_is_dirty(mos, txg)); 6183 6184 /* 6185 * Rewrite the vdev configuration (which includes the uberblock) 6186 * to commit the transaction group. 6187 * 6188 * If there are no dirty vdevs, we sync the uberblock to a few 6189 * random top-level vdevs that are known to be visible in the 6190 * config cache (see spa_vdev_add() for a complete description). 6191 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6192 */ 6193 for (;;) { 6194 /* 6195 * We hold SCL_STATE to prevent vdev open/close/etc. 6196 * while we're attempting to write the vdev labels. 6197 */ 6198 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6199 6200 if (list_is_empty(&spa->spa_config_dirty_list)) { 6201 vdev_t *svd[SPA_DVAS_PER_BP]; 6202 int svdcount = 0; 6203 int children = rvd->vdev_children; 6204 int c0 = spa_get_random(children); 6205 6206 for (int c = 0; c < children; c++) { 6207 vd = rvd->vdev_child[(c0 + c) % children]; 6208 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6209 continue; 6210 svd[svdcount++] = vd; 6211 if (svdcount == SPA_DVAS_PER_BP) 6212 break; 6213 } 6214 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6215 if (error != 0) 6216 error = vdev_config_sync(svd, svdcount, txg, 6217 B_TRUE); 6218 } else { 6219 error = vdev_config_sync(rvd->vdev_child, 6220 rvd->vdev_children, txg, B_FALSE); 6221 if (error != 0) 6222 error = vdev_config_sync(rvd->vdev_child, 6223 rvd->vdev_children, txg, B_TRUE); 6224 } 6225 6226 if (error == 0) 6227 spa->spa_last_synced_guid = rvd->vdev_guid; 6228 6229 spa_config_exit(spa, SCL_STATE, FTAG); 6230 6231 if (error == 0) 6232 break; 6233 zio_suspend(spa, NULL); 6234 zio_resume_wait(spa); 6235 } 6236 dmu_tx_commit(tx); 6237 6238 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6239 6240 /* 6241 * Clear the dirty config list. 6242 */ 6243 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6244 vdev_config_clean(vd); 6245 6246 /* 6247 * Now that the new config has synced transactionally, 6248 * let it become visible to the config cache. 6249 */ 6250 if (spa->spa_config_syncing != NULL) { 6251 spa_config_set(spa, spa->spa_config_syncing); 6252 spa->spa_config_txg = txg; 6253 spa->spa_config_syncing = NULL; 6254 } 6255 6256 spa->spa_ubsync = spa->spa_uberblock; 6257 6258 dsl_pool_sync_done(dp, txg); 6259 6260 /* 6261 * Update usable space statistics. 6262 */ 6263 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6264 vdev_sync_done(vd, txg); 6265 6266 spa_update_dspace(spa); 6267 6268 /* 6269 * It had better be the case that we didn't dirty anything 6270 * since vdev_config_sync(). 6271 */ 6272 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6273 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6274 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6275 6276 spa->spa_sync_pass = 0; 6277 6278 spa_config_exit(spa, SCL_CONFIG, FTAG); 6279 6280 spa_handle_ignored_writes(spa); 6281 6282 /* 6283 * If any async tasks have been requested, kick them off. 6284 */ 6285 spa_async_dispatch(spa); 6286 } 6287 6288 /* 6289 * Sync all pools. We don't want to hold the namespace lock across these 6290 * operations, so we take a reference on the spa_t and drop the lock during the 6291 * sync. 6292 */ 6293 void 6294 spa_sync_allpools(void) 6295 { 6296 spa_t *spa = NULL; 6297 mutex_enter(&spa_namespace_lock); 6298 while ((spa = spa_next(spa)) != NULL) { 6299 if (spa_state(spa) != POOL_STATE_ACTIVE || 6300 !spa_writeable(spa) || spa_suspended(spa)) 6301 continue; 6302 spa_open_ref(spa, FTAG); 6303 mutex_exit(&spa_namespace_lock); 6304 txg_wait_synced(spa_get_dsl(spa), 0); 6305 mutex_enter(&spa_namespace_lock); 6306 spa_close(spa, FTAG); 6307 } 6308 mutex_exit(&spa_namespace_lock); 6309 } 6310 6311 /* 6312 * ========================================================================== 6313 * Miscellaneous routines 6314 * ========================================================================== 6315 */ 6316 6317 /* 6318 * Remove all pools in the system. 6319 */ 6320 void 6321 spa_evict_all(void) 6322 { 6323 spa_t *spa; 6324 6325 /* 6326 * Remove all cached state. All pools should be closed now, 6327 * so every spa in the AVL tree should be unreferenced. 6328 */ 6329 mutex_enter(&spa_namespace_lock); 6330 while ((spa = spa_next(NULL)) != NULL) { 6331 /* 6332 * Stop async tasks. The async thread may need to detach 6333 * a device that's been replaced, which requires grabbing 6334 * spa_namespace_lock, so we must drop it here. 6335 */ 6336 spa_open_ref(spa, FTAG); 6337 mutex_exit(&spa_namespace_lock); 6338 spa_async_suspend(spa); 6339 mutex_enter(&spa_namespace_lock); 6340 spa_close(spa, FTAG); 6341 6342 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6343 spa_unload(spa); 6344 spa_deactivate(spa); 6345 } 6346 spa_remove(spa); 6347 } 6348 mutex_exit(&spa_namespace_lock); 6349 } 6350 6351 vdev_t * 6352 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6353 { 6354 vdev_t *vd; 6355 int i; 6356 6357 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6358 return (vd); 6359 6360 if (aux) { 6361 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6362 vd = spa->spa_l2cache.sav_vdevs[i]; 6363 if (vd->vdev_guid == guid) 6364 return (vd); 6365 } 6366 6367 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6368 vd = spa->spa_spares.sav_vdevs[i]; 6369 if (vd->vdev_guid == guid) 6370 return (vd); 6371 } 6372 } 6373 6374 return (NULL); 6375 } 6376 6377 void 6378 spa_upgrade(spa_t *spa, uint64_t version) 6379 { 6380 ASSERT(spa_writeable(spa)); 6381 6382 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6383 6384 /* 6385 * This should only be called for a non-faulted pool, and since a 6386 * future version would result in an unopenable pool, this shouldn't be 6387 * possible. 6388 */ 6389 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6390 ASSERT(version >= spa->spa_uberblock.ub_version); 6391 6392 spa->spa_uberblock.ub_version = version; 6393 vdev_config_dirty(spa->spa_root_vdev); 6394 6395 spa_config_exit(spa, SCL_ALL, FTAG); 6396 6397 txg_wait_synced(spa_get_dsl(spa), 0); 6398 } 6399 6400 boolean_t 6401 spa_has_spare(spa_t *spa, uint64_t guid) 6402 { 6403 int i; 6404 uint64_t spareguid; 6405 spa_aux_vdev_t *sav = &spa->spa_spares; 6406 6407 for (i = 0; i < sav->sav_count; i++) 6408 if (sav->sav_vdevs[i]->vdev_guid == guid) 6409 return (B_TRUE); 6410 6411 for (i = 0; i < sav->sav_npending; i++) { 6412 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6413 &spareguid) == 0 && spareguid == guid) 6414 return (B_TRUE); 6415 } 6416 6417 return (B_FALSE); 6418 } 6419 6420 /* 6421 * Check if a pool has an active shared spare device. 6422 * Note: reference count of an active spare is 2, as a spare and as a replace 6423 */ 6424 static boolean_t 6425 spa_has_active_shared_spare(spa_t *spa) 6426 { 6427 int i, refcnt; 6428 uint64_t pool; 6429 spa_aux_vdev_t *sav = &spa->spa_spares; 6430 6431 for (i = 0; i < sav->sav_count; i++) { 6432 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6433 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6434 refcnt > 2) 6435 return (B_TRUE); 6436 } 6437 6438 return (B_FALSE); 6439 } 6440 6441 /* 6442 * Post a sysevent corresponding to the given event. The 'name' must be one of 6443 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6444 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6445 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6446 * or zdb as real changes. 6447 */ 6448 void 6449 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6450 { 6451 #ifdef _KERNEL 6452 sysevent_t *ev; 6453 sysevent_attr_list_t *attr = NULL; 6454 sysevent_value_t value; 6455 sysevent_id_t eid; 6456 6457 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6458 SE_SLEEP); 6459 6460 value.value_type = SE_DATA_TYPE_STRING; 6461 value.value.sv_string = spa_name(spa); 6462 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6463 goto done; 6464 6465 value.value_type = SE_DATA_TYPE_UINT64; 6466 value.value.sv_uint64 = spa_guid(spa); 6467 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6468 goto done; 6469 6470 if (vd) { 6471 value.value_type = SE_DATA_TYPE_UINT64; 6472 value.value.sv_uint64 = vd->vdev_guid; 6473 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6474 SE_SLEEP) != 0) 6475 goto done; 6476 6477 if (vd->vdev_path) { 6478 value.value_type = SE_DATA_TYPE_STRING; 6479 value.value.sv_string = vd->vdev_path; 6480 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6481 &value, SE_SLEEP) != 0) 6482 goto done; 6483 } 6484 } 6485 6486 if (sysevent_attach_attributes(ev, attr) != 0) 6487 goto done; 6488 attr = NULL; 6489 6490 (void) log_sysevent(ev, SE_SLEEP, &eid); 6491 6492 done: 6493 if (attr) 6494 sysevent_free_attr(attr); 6495 sysevent_free(ev); 6496 #endif 6497 } 6498