xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 638bc9f013400030354ab6566ae2a5726f7580fa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
31  * Copyright 2019 Joyent, Inc.
32  * Copyright (c) 2017, Intel Corporation.
33  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
34  * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org>
35  */
36 
37 /*
38  * SPA: Storage Pool Allocator
39  *
40  * This file contains all the routines used when modifying on-disk SPA state.
41  * This includes opening, importing, destroying, exporting a pool, and syncing a
42  * pool.
43  */
44 
45 #include <sys/zfs_context.h>
46 #include <sys/fm/fs/zfs.h>
47 #include <sys/spa_impl.h>
48 #include <sys/zio.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/dmu.h>
51 #include <sys/dmu_tx.h>
52 #include <sys/zap.h>
53 #include <sys/zil.h>
54 #include <sys/ddt.h>
55 #include <sys/vdev_impl.h>
56 #include <sys/vdev_removal.h>
57 #include <sys/vdev_indirect_mapping.h>
58 #include <sys/vdev_indirect_births.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/metaslab.h>
62 #include <sys/metaslab_impl.h>
63 #include <sys/mmp.h>
64 #include <sys/uberblock_impl.h>
65 #include <sys/txg.h>
66 #include <sys/avl.h>
67 #include <sys/bpobj.h>
68 #include <sys/dmu_traverse.h>
69 #include <sys/dmu_objset.h>
70 #include <sys/unique.h>
71 #include <sys/dsl_pool.h>
72 #include <sys/dsl_dataset.h>
73 #include <sys/dsl_dir.h>
74 #include <sys/dsl_prop.h>
75 #include <sys/dsl_synctask.h>
76 #include <sys/fs/zfs.h>
77 #include <sys/arc.h>
78 #include <sys/callb.h>
79 #include <sys/systeminfo.h>
80 #include <sys/spa_boot.h>
81 #include <sys/zfs_ioctl.h>
82 #include <sys/dsl_scan.h>
83 #include <sys/zfeature.h>
84 #include <sys/dsl_destroy.h>
85 #include <sys/abd.h>
86 
87 #ifdef	_KERNEL
88 #include <sys/bootprops.h>
89 #include <sys/callb.h>
90 #include <sys/cpupart.h>
91 #include <sys/pool.h>
92 #include <sys/sysdc.h>
93 #include <sys/zone.h>
94 #endif	/* _KERNEL */
95 
96 #include "zfs_prop.h"
97 #include "zfs_comutil.h"
98 
99 /*
100  * The interval, in seconds, at which failed configuration cache file writes
101  * should be retried.
102  */
103 int zfs_ccw_retry_interval = 300;
104 
105 typedef enum zti_modes {
106 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
107 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
108 	ZTI_MODE_NULL,			/* don't create a taskq */
109 	ZTI_NMODES
110 } zti_modes_t;
111 
112 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
113 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
114 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
115 
116 #define	ZTI_N(n)	ZTI_P(n, 1)
117 #define	ZTI_ONE		ZTI_N(1)
118 
119 typedef struct zio_taskq_info {
120 	zti_modes_t zti_mode;
121 	uint_t zti_value;
122 	uint_t zti_count;
123 } zio_taskq_info_t;
124 
125 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
126 	"issue", "issue_high", "intr", "intr_high"
127 };
128 
129 /*
130  * This table defines the taskq settings for each ZFS I/O type. When
131  * initializing a pool, we use this table to create an appropriately sized
132  * taskq. Some operations are low volume and therefore have a small, static
133  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
134  * macros. Other operations process a large amount of data; the ZTI_BATCH
135  * macro causes us to create a taskq oriented for throughput. Some operations
136  * are so high frequency and short-lived that the taskq itself can become a
137  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
138  * additional degree of parallelism specified by the number of threads per-
139  * taskq and the number of taskqs; when dispatching an event in this case, the
140  * particular taskq is chosen at random.
141  *
142  * The different taskq priorities are to handle the different contexts (issue
143  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
144  * need to be handled with minimum delay.
145  */
146 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
147 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
148 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
149 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
150 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
151 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
152 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
153 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
154 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
155 };
156 
157 static void spa_sync_version(void *arg, dmu_tx_t *tx);
158 static void spa_sync_props(void *arg, dmu_tx_t *tx);
159 static boolean_t spa_has_active_shared_spare(spa_t *spa);
160 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
161 static void spa_vdev_resilver_done(spa_t *spa);
162 
163 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
164 id_t		zio_taskq_psrset_bind = PS_NONE;
165 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
166 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
167 
168 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
169 extern int	zfs_sync_pass_deferred_free;
170 
171 /*
172  * Report any spa_load_verify errors found, but do not fail spa_load.
173  * This is used by zdb to analyze non-idle pools.
174  */
175 boolean_t	spa_load_verify_dryrun = B_FALSE;
176 
177 /*
178  * This (illegal) pool name is used when temporarily importing a spa_t in order
179  * to get the vdev stats associated with the imported devices.
180  */
181 #define	TRYIMPORT_NAME	"$import"
182 
183 /*
184  * For debugging purposes: print out vdev tree during pool import.
185  */
186 boolean_t	spa_load_print_vdev_tree = B_FALSE;
187 
188 /*
189  * A non-zero value for zfs_max_missing_tvds means that we allow importing
190  * pools with missing top-level vdevs. This is strictly intended for advanced
191  * pool recovery cases since missing data is almost inevitable. Pools with
192  * missing devices can only be imported read-only for safety reasons, and their
193  * fail-mode will be automatically set to "continue".
194  *
195  * With 1 missing vdev we should be able to import the pool and mount all
196  * datasets. User data that was not modified after the missing device has been
197  * added should be recoverable. This means that snapshots created prior to the
198  * addition of that device should be completely intact.
199  *
200  * With 2 missing vdevs, some datasets may fail to mount since there are
201  * dataset statistics that are stored as regular metadata. Some data might be
202  * recoverable if those vdevs were added recently.
203  *
204  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
205  * may be missing entirely. Chances of data recovery are very low. Note that
206  * there are also risks of performing an inadvertent rewind as we might be
207  * missing all the vdevs with the latest uberblocks.
208  */
209 uint64_t	zfs_max_missing_tvds = 0;
210 
211 /*
212  * The parameters below are similar to zfs_max_missing_tvds but are only
213  * intended for a preliminary open of the pool with an untrusted config which
214  * might be incomplete or out-dated.
215  *
216  * We are more tolerant for pools opened from a cachefile since we could have
217  * an out-dated cachefile where a device removal was not registered.
218  * We could have set the limit arbitrarily high but in the case where devices
219  * are really missing we would want to return the proper error codes; we chose
220  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
221  * and we get a chance to retrieve the trusted config.
222  */
223 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
224 
225 /*
226  * In the case where config was assembled by scanning device paths (/dev/dsks
227  * by default) we are less tolerant since all the existing devices should have
228  * been detected and we want spa_load to return the right error codes.
229  */
230 uint64_t	zfs_max_missing_tvds_scan = 0;
231 
232 /*
233  * Interval in seconds at which to poll spare vdevs for health.
234  * Setting this to zero disables spare polling.
235  * Set to three hours by default.
236  */
237 uint_t		spa_spare_poll_interval_seconds = 60 * 60 * 3;
238 
239 /*
240  * Debugging aid that pauses spa_sync() towards the end.
241  */
242 boolean_t	zfs_pause_spa_sync = B_FALSE;
243 
244 /*
245  * ==========================================================================
246  * SPA properties routines
247  * ==========================================================================
248  */
249 
250 /*
251  * Add a (source=src, propname=propval) list to an nvlist.
252  */
253 static void
254 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
255     uint64_t intval, zprop_source_t src)
256 {
257 	const char *propname = zpool_prop_to_name(prop);
258 	nvlist_t *propval;
259 
260 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
261 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
262 
263 	if (strval != NULL)
264 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
265 	else
266 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
267 
268 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
269 	nvlist_free(propval);
270 }
271 
272 /*
273  * Get property values from the spa configuration.
274  */
275 static void
276 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
277 {
278 	vdev_t *rvd = spa->spa_root_vdev;
279 	dsl_pool_t *pool = spa->spa_dsl_pool;
280 	uint64_t size, alloc, cap, version;
281 	zprop_source_t src = ZPROP_SRC_NONE;
282 	spa_config_dirent_t *dp;
283 	metaslab_class_t *mc = spa_normal_class(spa);
284 
285 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
286 
287 	if (rvd != NULL) {
288 		alloc = metaslab_class_get_alloc(mc);
289 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
290 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
291 
292 		size = metaslab_class_get_space(mc);
293 		size += metaslab_class_get_space(spa_special_class(spa));
294 		size += metaslab_class_get_space(spa_dedup_class(spa));
295 
296 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
297 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
298 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
299 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
300 		    size - alloc, src);
301 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
302 		    spa->spa_checkpoint_info.sci_dspace, src);
303 
304 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
305 		    metaslab_class_fragmentation(mc), src);
306 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
307 		    metaslab_class_expandable_space(mc), src);
308 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
309 		    (spa_mode(spa) == FREAD), src);
310 
311 		cap = (size == 0) ? 0 : (alloc * 100 / size);
312 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
313 
314 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
315 		    ddt_get_pool_dedup_ratio(spa), src);
316 
317 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
318 		    rvd->vdev_state, src);
319 
320 		version = spa_version(spa);
321 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
322 			src = ZPROP_SRC_DEFAULT;
323 		else
324 			src = ZPROP_SRC_LOCAL;
325 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
326 	}
327 
328 	if (pool != NULL) {
329 		/*
330 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
331 		 * when opening pools before this version freedir will be NULL.
332 		 */
333 		if (pool->dp_free_dir != NULL) {
334 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
335 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
336 			    src);
337 		} else {
338 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
339 			    NULL, 0, src);
340 		}
341 
342 		if (pool->dp_leak_dir != NULL) {
343 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
344 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
345 			    src);
346 		} else {
347 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
348 			    NULL, 0, src);
349 		}
350 	}
351 
352 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
353 
354 	if (spa->spa_comment != NULL) {
355 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
356 		    0, ZPROP_SRC_LOCAL);
357 	}
358 
359 	if (spa->spa_root != NULL)
360 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
361 		    0, ZPROP_SRC_LOCAL);
362 
363 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
364 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
365 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
366 	} else {
367 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
368 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
369 	}
370 
371 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
372 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
373 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
374 	} else {
375 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
376 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
377 	}
378 
379 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
380 		if (dp->scd_path == NULL) {
381 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
382 			    "none", 0, ZPROP_SRC_LOCAL);
383 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
384 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
385 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
386 		}
387 	}
388 }
389 
390 /*
391  * Get zpool property values.
392  */
393 int
394 spa_prop_get(spa_t *spa, nvlist_t **nvp)
395 {
396 	objset_t *mos = spa->spa_meta_objset;
397 	zap_cursor_t zc;
398 	zap_attribute_t za;
399 	int err;
400 
401 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
402 
403 	mutex_enter(&spa->spa_props_lock);
404 
405 	/*
406 	 * Get properties from the spa config.
407 	 */
408 	spa_prop_get_config(spa, nvp);
409 
410 	/* If no pool property object, no more prop to get. */
411 	if (mos == NULL || spa->spa_pool_props_object == 0) {
412 		mutex_exit(&spa->spa_props_lock);
413 		return (0);
414 	}
415 
416 	/*
417 	 * Get properties from the MOS pool property object.
418 	 */
419 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
420 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
421 	    zap_cursor_advance(&zc)) {
422 		uint64_t intval = 0;
423 		char *strval = NULL;
424 		zprop_source_t src = ZPROP_SRC_DEFAULT;
425 		zpool_prop_t prop;
426 
427 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
428 			continue;
429 
430 		switch (za.za_integer_length) {
431 		case 8:
432 			/* integer property */
433 			if (za.za_first_integer !=
434 			    zpool_prop_default_numeric(prop))
435 				src = ZPROP_SRC_LOCAL;
436 
437 			if (prop == ZPOOL_PROP_BOOTFS) {
438 				dsl_pool_t *dp;
439 				dsl_dataset_t *ds = NULL;
440 
441 				dp = spa_get_dsl(spa);
442 				dsl_pool_config_enter(dp, FTAG);
443 				err = dsl_dataset_hold_obj(dp,
444 				    za.za_first_integer, FTAG, &ds);
445 				if (err != 0) {
446 					dsl_pool_config_exit(dp, FTAG);
447 					break;
448 				}
449 
450 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
451 				    KM_SLEEP);
452 				dsl_dataset_name(ds, strval);
453 				dsl_dataset_rele(ds, FTAG);
454 				dsl_pool_config_exit(dp, FTAG);
455 			} else {
456 				strval = NULL;
457 				intval = za.za_first_integer;
458 			}
459 
460 			spa_prop_add_list(*nvp, prop, strval, intval, src);
461 
462 			if (strval != NULL)
463 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
464 
465 			break;
466 
467 		case 1:
468 			/* string property */
469 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
470 			err = zap_lookup(mos, spa->spa_pool_props_object,
471 			    za.za_name, 1, za.za_num_integers, strval);
472 			if (err) {
473 				kmem_free(strval, za.za_num_integers);
474 				break;
475 			}
476 			spa_prop_add_list(*nvp, prop, strval, 0, src);
477 			kmem_free(strval, za.za_num_integers);
478 			break;
479 
480 		default:
481 			break;
482 		}
483 	}
484 	zap_cursor_fini(&zc);
485 	mutex_exit(&spa->spa_props_lock);
486 out:
487 	if (err && err != ENOENT) {
488 		nvlist_free(*nvp);
489 		*nvp = NULL;
490 		return (err);
491 	}
492 
493 	return (0);
494 }
495 
496 /*
497  * Validate the given pool properties nvlist and modify the list
498  * for the property values to be set.
499  */
500 static int
501 spa_prop_validate(spa_t *spa, nvlist_t *props)
502 {
503 	nvpair_t *elem;
504 	int error = 0, reset_bootfs = 0;
505 	uint64_t objnum = 0;
506 	boolean_t has_feature = B_FALSE;
507 
508 	elem = NULL;
509 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
510 		uint64_t intval;
511 		char *strval, *slash, *check, *fname;
512 		const char *propname = nvpair_name(elem);
513 		zpool_prop_t prop = zpool_name_to_prop(propname);
514 
515 		switch (prop) {
516 		case ZPOOL_PROP_INVAL:
517 			if (!zpool_prop_feature(propname)) {
518 				error = SET_ERROR(EINVAL);
519 				break;
520 			}
521 
522 			/*
523 			 * Sanitize the input.
524 			 */
525 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
526 				error = SET_ERROR(EINVAL);
527 				break;
528 			}
529 
530 			if (nvpair_value_uint64(elem, &intval) != 0) {
531 				error = SET_ERROR(EINVAL);
532 				break;
533 			}
534 
535 			if (intval != 0) {
536 				error = SET_ERROR(EINVAL);
537 				break;
538 			}
539 
540 			fname = strchr(propname, '@') + 1;
541 			if (zfeature_lookup_name(fname, NULL) != 0) {
542 				error = SET_ERROR(EINVAL);
543 				break;
544 			}
545 
546 			has_feature = B_TRUE;
547 			break;
548 
549 		case ZPOOL_PROP_VERSION:
550 			error = nvpair_value_uint64(elem, &intval);
551 			if (!error &&
552 			    (intval < spa_version(spa) ||
553 			    intval > SPA_VERSION_BEFORE_FEATURES ||
554 			    has_feature))
555 				error = SET_ERROR(EINVAL);
556 			break;
557 
558 		case ZPOOL_PROP_DELEGATION:
559 		case ZPOOL_PROP_AUTOREPLACE:
560 		case ZPOOL_PROP_LISTSNAPS:
561 		case ZPOOL_PROP_AUTOEXPAND:
562 		case ZPOOL_PROP_AUTOTRIM:
563 			error = nvpair_value_uint64(elem, &intval);
564 			if (!error && intval > 1)
565 				error = SET_ERROR(EINVAL);
566 			break;
567 
568 		case ZPOOL_PROP_MULTIHOST:
569 			error = nvpair_value_uint64(elem, &intval);
570 			if (!error && intval > 1)
571 				error = SET_ERROR(EINVAL);
572 
573 			if (!error && !spa_get_hostid())
574 				error = SET_ERROR(ENOTSUP);
575 
576 			break;
577 
578 		case ZPOOL_PROP_BOOTFS:
579 			/*
580 			 * If the pool version is less than SPA_VERSION_BOOTFS,
581 			 * or the pool is still being created (version == 0),
582 			 * the bootfs property cannot be set.
583 			 */
584 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
585 				error = SET_ERROR(ENOTSUP);
586 				break;
587 			}
588 
589 			/*
590 			 * Make sure the vdev config is bootable
591 			 */
592 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
593 				error = SET_ERROR(ENOTSUP);
594 				break;
595 			}
596 
597 			reset_bootfs = 1;
598 
599 			error = nvpair_value_string(elem, &strval);
600 
601 			if (!error) {
602 				objset_t *os;
603 				uint64_t propval;
604 
605 				if (strval == NULL || strval[0] == '\0') {
606 					objnum = zpool_prop_default_numeric(
607 					    ZPOOL_PROP_BOOTFS);
608 					break;
609 				}
610 
611 				error = dmu_objset_hold(strval, FTAG, &os);
612 				if (error != 0)
613 					break;
614 
615 				/*
616 				 * Must be ZPL, and its property settings
617 				 * must be supported.
618 				 */
619 
620 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
621 					error = SET_ERROR(ENOTSUP);
622 				} else if ((error =
623 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
624 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
625 				    &propval)) == 0 &&
626 				    !BOOTFS_COMPRESS_VALID(propval)) {
627 					error = SET_ERROR(ENOTSUP);
628 				} else {
629 					objnum = dmu_objset_id(os);
630 				}
631 				dmu_objset_rele(os, FTAG);
632 			}
633 			break;
634 
635 		case ZPOOL_PROP_FAILUREMODE:
636 			error = nvpair_value_uint64(elem, &intval);
637 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
638 			    intval > ZIO_FAILURE_MODE_PANIC))
639 				error = SET_ERROR(EINVAL);
640 
641 			/*
642 			 * This is a special case which only occurs when
643 			 * the pool has completely failed. This allows
644 			 * the user to change the in-core failmode property
645 			 * without syncing it out to disk (I/Os might
646 			 * currently be blocked). We do this by returning
647 			 * EIO to the caller (spa_prop_set) to trick it
648 			 * into thinking we encountered a property validation
649 			 * error.
650 			 */
651 			if (!error && spa_suspended(spa)) {
652 				spa->spa_failmode = intval;
653 				error = SET_ERROR(EIO);
654 			}
655 			break;
656 
657 		case ZPOOL_PROP_CACHEFILE:
658 			if ((error = nvpair_value_string(elem, &strval)) != 0)
659 				break;
660 
661 			if (strval[0] == '\0')
662 				break;
663 
664 			if (strcmp(strval, "none") == 0)
665 				break;
666 
667 			if (strval[0] != '/') {
668 				error = SET_ERROR(EINVAL);
669 				break;
670 			}
671 
672 			slash = strrchr(strval, '/');
673 			ASSERT(slash != NULL);
674 
675 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
676 			    strcmp(slash, "/..") == 0)
677 				error = SET_ERROR(EINVAL);
678 			break;
679 
680 		case ZPOOL_PROP_COMMENT:
681 			if ((error = nvpair_value_string(elem, &strval)) != 0)
682 				break;
683 			for (check = strval; *check != '\0'; check++) {
684 				/*
685 				 * The kernel doesn't have an easy isprint()
686 				 * check.  For this kernel check, we merely
687 				 * check ASCII apart from DEL.  Fix this if
688 				 * there is an easy-to-use kernel isprint().
689 				 */
690 				if (*check >= 0x7f) {
691 					error = SET_ERROR(EINVAL);
692 					break;
693 				}
694 			}
695 			if (strlen(strval) > ZPROP_MAX_COMMENT)
696 				error = E2BIG;
697 			break;
698 
699 		case ZPOOL_PROP_DEDUPDITTO:
700 			if (spa_version(spa) < SPA_VERSION_DEDUP)
701 				error = SET_ERROR(ENOTSUP);
702 			else
703 				error = nvpair_value_uint64(elem, &intval);
704 			if (error == 0 &&
705 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
706 				error = SET_ERROR(EINVAL);
707 			break;
708 		}
709 
710 		if (error)
711 			break;
712 	}
713 
714 	if (!error && reset_bootfs) {
715 		error = nvlist_remove(props,
716 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
717 
718 		if (!error) {
719 			error = nvlist_add_uint64(props,
720 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
721 		}
722 	}
723 
724 	return (error);
725 }
726 
727 void
728 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
729 {
730 	char *cachefile;
731 	spa_config_dirent_t *dp;
732 
733 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
734 	    &cachefile) != 0)
735 		return;
736 
737 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
738 	    KM_SLEEP);
739 
740 	if (cachefile[0] == '\0')
741 		dp->scd_path = spa_strdup(spa_config_path);
742 	else if (strcmp(cachefile, "none") == 0)
743 		dp->scd_path = NULL;
744 	else
745 		dp->scd_path = spa_strdup(cachefile);
746 
747 	list_insert_head(&spa->spa_config_list, dp);
748 	if (need_sync)
749 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
750 }
751 
752 int
753 spa_prop_set(spa_t *spa, nvlist_t *nvp)
754 {
755 	int error;
756 	nvpair_t *elem = NULL;
757 	boolean_t need_sync = B_FALSE;
758 
759 	if ((error = spa_prop_validate(spa, nvp)) != 0)
760 		return (error);
761 
762 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
763 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
764 
765 		if (prop == ZPOOL_PROP_CACHEFILE ||
766 		    prop == ZPOOL_PROP_ALTROOT ||
767 		    prop == ZPOOL_PROP_READONLY)
768 			continue;
769 
770 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
771 			uint64_t ver;
772 
773 			if (prop == ZPOOL_PROP_VERSION) {
774 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
775 			} else {
776 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
777 				ver = SPA_VERSION_FEATURES;
778 				need_sync = B_TRUE;
779 			}
780 
781 			/* Save time if the version is already set. */
782 			if (ver == spa_version(spa))
783 				continue;
784 
785 			/*
786 			 * In addition to the pool directory object, we might
787 			 * create the pool properties object, the features for
788 			 * read object, the features for write object, or the
789 			 * feature descriptions object.
790 			 */
791 			error = dsl_sync_task(spa->spa_name, NULL,
792 			    spa_sync_version, &ver,
793 			    6, ZFS_SPACE_CHECK_RESERVED);
794 			if (error)
795 				return (error);
796 			continue;
797 		}
798 
799 		need_sync = B_TRUE;
800 		break;
801 	}
802 
803 	if (need_sync) {
804 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
805 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
806 	}
807 
808 	return (0);
809 }
810 
811 /*
812  * If the bootfs property value is dsobj, clear it.
813  */
814 void
815 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
816 {
817 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
818 		VERIFY(zap_remove(spa->spa_meta_objset,
819 		    spa->spa_pool_props_object,
820 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
821 		spa->spa_bootfs = 0;
822 	}
823 }
824 
825 /*ARGSUSED*/
826 static int
827 spa_change_guid_check(void *arg, dmu_tx_t *tx)
828 {
829 	uint64_t *newguid = arg;
830 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
831 	vdev_t *rvd = spa->spa_root_vdev;
832 	uint64_t vdev_state;
833 
834 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
835 		int error = (spa_has_checkpoint(spa)) ?
836 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
837 		return (SET_ERROR(error));
838 	}
839 
840 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
841 	vdev_state = rvd->vdev_state;
842 	spa_config_exit(spa, SCL_STATE, FTAG);
843 
844 	if (vdev_state != VDEV_STATE_HEALTHY)
845 		return (SET_ERROR(ENXIO));
846 
847 	ASSERT3U(spa_guid(spa), !=, *newguid);
848 
849 	return (0);
850 }
851 
852 static void
853 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
854 {
855 	uint64_t *newguid = arg;
856 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
857 	uint64_t oldguid;
858 	vdev_t *rvd = spa->spa_root_vdev;
859 
860 	oldguid = spa_guid(spa);
861 
862 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
863 	rvd->vdev_guid = *newguid;
864 	rvd->vdev_guid_sum += (*newguid - oldguid);
865 	vdev_config_dirty(rvd);
866 	spa_config_exit(spa, SCL_STATE, FTAG);
867 
868 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
869 	    oldguid, *newguid);
870 }
871 
872 /*
873  * Change the GUID for the pool.  This is done so that we can later
874  * re-import a pool built from a clone of our own vdevs.  We will modify
875  * the root vdev's guid, our own pool guid, and then mark all of our
876  * vdevs dirty.  Note that we must make sure that all our vdevs are
877  * online when we do this, or else any vdevs that weren't present
878  * would be orphaned from our pool.  We are also going to issue a
879  * sysevent to update any watchers.
880  */
881 int
882 spa_change_guid(spa_t *spa)
883 {
884 	int error;
885 	uint64_t guid;
886 
887 	mutex_enter(&spa->spa_vdev_top_lock);
888 	mutex_enter(&spa_namespace_lock);
889 	guid = spa_generate_guid(NULL);
890 
891 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
892 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
893 
894 	if (error == 0) {
895 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
896 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
897 	}
898 
899 	mutex_exit(&spa_namespace_lock);
900 	mutex_exit(&spa->spa_vdev_top_lock);
901 
902 	return (error);
903 }
904 
905 /*
906  * ==========================================================================
907  * SPA state manipulation (open/create/destroy/import/export)
908  * ==========================================================================
909  */
910 
911 static int
912 spa_error_entry_compare(const void *a, const void *b)
913 {
914 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
915 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
916 	int ret;
917 
918 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
919 	    sizeof (zbookmark_phys_t));
920 
921 	return (TREE_ISIGN(ret));
922 }
923 
924 /*
925  * Utility function which retrieves copies of the current logs and
926  * re-initializes them in the process.
927  */
928 void
929 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
930 {
931 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
932 
933 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
934 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
935 
936 	avl_create(&spa->spa_errlist_scrub,
937 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
938 	    offsetof(spa_error_entry_t, se_avl));
939 	avl_create(&spa->spa_errlist_last,
940 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
941 	    offsetof(spa_error_entry_t, se_avl));
942 }
943 
944 static void
945 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
946 {
947 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
948 	enum zti_modes mode = ztip->zti_mode;
949 	uint_t value = ztip->zti_value;
950 	uint_t count = ztip->zti_count;
951 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
952 	char name[32];
953 	uint_t flags = 0;
954 	boolean_t batch = B_FALSE;
955 
956 	if (mode == ZTI_MODE_NULL) {
957 		tqs->stqs_count = 0;
958 		tqs->stqs_taskq = NULL;
959 		return;
960 	}
961 
962 	ASSERT3U(count, >, 0);
963 
964 	tqs->stqs_count = count;
965 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
966 
967 	switch (mode) {
968 	case ZTI_MODE_FIXED:
969 		ASSERT3U(value, >=, 1);
970 		value = MAX(value, 1);
971 		break;
972 
973 	case ZTI_MODE_BATCH:
974 		batch = B_TRUE;
975 		flags |= TASKQ_THREADS_CPU_PCT;
976 		value = zio_taskq_batch_pct;
977 		break;
978 
979 	default:
980 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
981 		    "spa_activate()",
982 		    zio_type_name[t], zio_taskq_types[q], mode, value);
983 		break;
984 	}
985 
986 	for (uint_t i = 0; i < count; i++) {
987 		taskq_t *tq;
988 
989 		if (count > 1) {
990 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
991 			    zio_type_name[t], zio_taskq_types[q], i);
992 		} else {
993 			(void) snprintf(name, sizeof (name), "%s_%s",
994 			    zio_type_name[t], zio_taskq_types[q]);
995 		}
996 
997 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
998 			if (batch)
999 				flags |= TASKQ_DC_BATCH;
1000 
1001 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1002 			    spa->spa_proc, zio_taskq_basedc, flags);
1003 		} else {
1004 			pri_t pri = maxclsyspri;
1005 			/*
1006 			 * The write issue taskq can be extremely CPU
1007 			 * intensive.  Run it at slightly lower priority
1008 			 * than the other taskqs.
1009 			 */
1010 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1011 				pri--;
1012 
1013 			tq = taskq_create_proc(name, value, pri, 50,
1014 			    INT_MAX, spa->spa_proc, flags);
1015 		}
1016 
1017 		tqs->stqs_taskq[i] = tq;
1018 	}
1019 }
1020 
1021 static void
1022 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1023 {
1024 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1025 
1026 	if (tqs->stqs_taskq == NULL) {
1027 		ASSERT0(tqs->stqs_count);
1028 		return;
1029 	}
1030 
1031 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1032 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1033 		taskq_destroy(tqs->stqs_taskq[i]);
1034 	}
1035 
1036 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1037 	tqs->stqs_taskq = NULL;
1038 }
1039 
1040 /*
1041  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1042  * Note that a type may have multiple discrete taskqs to avoid lock contention
1043  * on the taskq itself. In that case we choose which taskq at random by using
1044  * the low bits of gethrtime().
1045  */
1046 void
1047 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1048     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1049 {
1050 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1051 	taskq_t *tq;
1052 
1053 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1054 	ASSERT3U(tqs->stqs_count, !=, 0);
1055 
1056 	if (tqs->stqs_count == 1) {
1057 		tq = tqs->stqs_taskq[0];
1058 	} else {
1059 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1060 	}
1061 
1062 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1063 }
1064 
1065 static void
1066 spa_create_zio_taskqs(spa_t *spa)
1067 {
1068 	for (int t = 0; t < ZIO_TYPES; t++) {
1069 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1070 			spa_taskqs_init(spa, t, q);
1071 		}
1072 	}
1073 }
1074 
1075 #ifdef _KERNEL
1076 static void
1077 spa_thread(void *arg)
1078 {
1079 	callb_cpr_t cprinfo;
1080 
1081 	spa_t *spa = arg;
1082 	user_t *pu = PTOU(curproc);
1083 
1084 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1085 	    spa->spa_name);
1086 
1087 	ASSERT(curproc != &p0);
1088 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1089 	    "zpool-%s", spa->spa_name);
1090 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1091 
1092 	/* bind this thread to the requested psrset */
1093 	if (zio_taskq_psrset_bind != PS_NONE) {
1094 		pool_lock();
1095 		mutex_enter(&cpu_lock);
1096 		mutex_enter(&pidlock);
1097 		mutex_enter(&curproc->p_lock);
1098 
1099 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1100 		    0, NULL, NULL) == 0)  {
1101 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1102 		} else {
1103 			cmn_err(CE_WARN,
1104 			    "Couldn't bind process for zfs pool \"%s\" to "
1105 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1106 		}
1107 
1108 		mutex_exit(&curproc->p_lock);
1109 		mutex_exit(&pidlock);
1110 		mutex_exit(&cpu_lock);
1111 		pool_unlock();
1112 	}
1113 
1114 	if (zio_taskq_sysdc) {
1115 		sysdc_thread_enter(curthread, 100, 0);
1116 	}
1117 
1118 	spa->spa_proc = curproc;
1119 	spa->spa_did = curthread->t_did;
1120 
1121 	spa_create_zio_taskqs(spa);
1122 
1123 	mutex_enter(&spa->spa_proc_lock);
1124 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1125 
1126 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1127 	cv_broadcast(&spa->spa_proc_cv);
1128 
1129 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1130 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1131 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1133 
1134 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1135 	spa->spa_proc_state = SPA_PROC_GONE;
1136 	spa->spa_proc = &p0;
1137 	cv_broadcast(&spa->spa_proc_cv);
1138 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1139 
1140 	mutex_enter(&curproc->p_lock);
1141 	lwp_exit();
1142 }
1143 #endif
1144 
1145 /*
1146  * Activate an uninitialized pool.
1147  */
1148 static void
1149 spa_activate(spa_t *spa, int mode)
1150 {
1151 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1152 
1153 	spa->spa_state = POOL_STATE_ACTIVE;
1154 	spa->spa_mode = mode;
1155 
1156 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1157 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1158 	spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1159 	spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1160 
1161 	/* Try to create a covering process */
1162 	mutex_enter(&spa->spa_proc_lock);
1163 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1164 	ASSERT(spa->spa_proc == &p0);
1165 	spa->spa_did = 0;
1166 
1167 	/* Only create a process if we're going to be around a while. */
1168 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1169 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1170 		    NULL, 0) == 0) {
1171 			spa->spa_proc_state = SPA_PROC_CREATED;
1172 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1173 				cv_wait(&spa->spa_proc_cv,
1174 				    &spa->spa_proc_lock);
1175 			}
1176 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1177 			ASSERT(spa->spa_proc != &p0);
1178 			ASSERT(spa->spa_did != 0);
1179 		} else {
1180 #ifdef _KERNEL
1181 			cmn_err(CE_WARN,
1182 			    "Couldn't create process for zfs pool \"%s\"\n",
1183 			    spa->spa_name);
1184 #endif
1185 		}
1186 	}
1187 	mutex_exit(&spa->spa_proc_lock);
1188 
1189 	/* If we didn't create a process, we need to create our taskqs. */
1190 	if (spa->spa_proc == &p0) {
1191 		spa_create_zio_taskqs(spa);
1192 	}
1193 
1194 	for (size_t i = 0; i < TXG_SIZE; i++) {
1195 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1196 		    ZIO_FLAG_CANFAIL);
1197 	}
1198 
1199 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1200 	    offsetof(vdev_t, vdev_config_dirty_node));
1201 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1202 	    offsetof(objset_t, os_evicting_node));
1203 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1204 	    offsetof(vdev_t, vdev_state_dirty_node));
1205 
1206 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1207 	    offsetof(struct vdev, vdev_txg_node));
1208 
1209 	avl_create(&spa->spa_errlist_scrub,
1210 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1211 	    offsetof(spa_error_entry_t, se_avl));
1212 	avl_create(&spa->spa_errlist_last,
1213 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1214 	    offsetof(spa_error_entry_t, se_avl));
1215 
1216 	spa_keystore_init(&spa->spa_keystore);
1217 
1218 	/*
1219 	 * The taskq to upgrade datasets in this pool. Currently used by
1220 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1221 	 */
1222 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1223 	    minclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1224 }
1225 
1226 /*
1227  * Opposite of spa_activate().
1228  */
1229 static void
1230 spa_deactivate(spa_t *spa)
1231 {
1232 	ASSERT(spa->spa_sync_on == B_FALSE);
1233 	ASSERT(spa->spa_dsl_pool == NULL);
1234 	ASSERT(spa->spa_root_vdev == NULL);
1235 	ASSERT(spa->spa_async_zio_root == NULL);
1236 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1237 
1238 	spa_evicting_os_wait(spa);
1239 
1240 	if (spa->spa_upgrade_taskq) {
1241 		taskq_destroy(spa->spa_upgrade_taskq);
1242 		spa->spa_upgrade_taskq = NULL;
1243 	}
1244 
1245 	txg_list_destroy(&spa->spa_vdev_txg_list);
1246 
1247 	list_destroy(&spa->spa_config_dirty_list);
1248 	list_destroy(&spa->spa_evicting_os_list);
1249 	list_destroy(&spa->spa_state_dirty_list);
1250 
1251 	for (int t = 0; t < ZIO_TYPES; t++) {
1252 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1253 			spa_taskqs_fini(spa, t, q);
1254 		}
1255 	}
1256 
1257 	for (size_t i = 0; i < TXG_SIZE; i++) {
1258 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1259 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1260 		spa->spa_txg_zio[i] = NULL;
1261 	}
1262 
1263 	metaslab_class_destroy(spa->spa_normal_class);
1264 	spa->spa_normal_class = NULL;
1265 
1266 	metaslab_class_destroy(spa->spa_log_class);
1267 	spa->spa_log_class = NULL;
1268 
1269 	metaslab_class_destroy(spa->spa_special_class);
1270 	spa->spa_special_class = NULL;
1271 
1272 	metaslab_class_destroy(spa->spa_dedup_class);
1273 	spa->spa_dedup_class = NULL;
1274 
1275 	/*
1276 	 * If this was part of an import or the open otherwise failed, we may
1277 	 * still have errors left in the queues.  Empty them just in case.
1278 	 */
1279 	spa_errlog_drain(spa);
1280 	avl_destroy(&spa->spa_errlist_scrub);
1281 	avl_destroy(&spa->spa_errlist_last);
1282 
1283 	spa_keystore_fini(&spa->spa_keystore);
1284 
1285 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1286 
1287 	mutex_enter(&spa->spa_proc_lock);
1288 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1289 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1290 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1291 		cv_broadcast(&spa->spa_proc_cv);
1292 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1293 			ASSERT(spa->spa_proc != &p0);
1294 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1295 		}
1296 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1297 		spa->spa_proc_state = SPA_PROC_NONE;
1298 	}
1299 	ASSERT(spa->spa_proc == &p0);
1300 	mutex_exit(&spa->spa_proc_lock);
1301 
1302 	/*
1303 	 * We want to make sure spa_thread() has actually exited the ZFS
1304 	 * module, so that the module can't be unloaded out from underneath
1305 	 * it.
1306 	 */
1307 	if (spa->spa_did != 0) {
1308 		thread_join(spa->spa_did);
1309 		spa->spa_did = 0;
1310 	}
1311 }
1312 
1313 /*
1314  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1315  * will create all the necessary vdevs in the appropriate layout, with each vdev
1316  * in the CLOSED state.  This will prep the pool before open/creation/import.
1317  * All vdev validation is done by the vdev_alloc() routine.
1318  */
1319 static int
1320 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1321     uint_t id, int atype)
1322 {
1323 	nvlist_t **child;
1324 	uint_t children;
1325 	int error;
1326 
1327 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1328 		return (error);
1329 
1330 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1331 		return (0);
1332 
1333 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1334 	    &child, &children);
1335 
1336 	if (error == ENOENT)
1337 		return (0);
1338 
1339 	if (error) {
1340 		vdev_free(*vdp);
1341 		*vdp = NULL;
1342 		return (SET_ERROR(EINVAL));
1343 	}
1344 
1345 	for (int c = 0; c < children; c++) {
1346 		vdev_t *vd;
1347 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1348 		    atype)) != 0) {
1349 			vdev_free(*vdp);
1350 			*vdp = NULL;
1351 			return (error);
1352 		}
1353 	}
1354 
1355 	ASSERT(*vdp != NULL);
1356 
1357 	return (0);
1358 }
1359 
1360 static boolean_t
1361 spa_should_flush_logs_on_unload(spa_t *spa)
1362 {
1363 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1364 		return (B_FALSE);
1365 
1366 	if (!spa_writeable(spa))
1367 		return (B_FALSE);
1368 
1369 	if (!spa->spa_sync_on)
1370 		return (B_FALSE);
1371 
1372 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1373 		return (B_FALSE);
1374 
1375 	if (zfs_keep_log_spacemaps_at_export)
1376 		return (B_FALSE);
1377 
1378 	return (B_TRUE);
1379 }
1380 
1381 /*
1382  * Opens a transaction that will set the flag that will instruct
1383  * spa_sync to attempt to flush all the metaslabs for that txg.
1384  */
1385 static void
1386 spa_unload_log_sm_flush_all(spa_t *spa)
1387 {
1388 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1389 
1390 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1391 
1392 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1393 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1394 
1395 	dmu_tx_commit(tx);
1396 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1397 }
1398 
1399 static void
1400 spa_unload_log_sm_metadata(spa_t *spa)
1401 {
1402 	void *cookie = NULL;
1403 	spa_log_sm_t *sls;
1404 
1405 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1406 	    &cookie)) != NULL) {
1407 		VERIFY0(sls->sls_mscount);
1408 		kmem_free(sls, sizeof (spa_log_sm_t));
1409 	}
1410 
1411 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1412 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1413 		VERIFY0(e->lse_mscount);
1414 		list_remove(&spa->spa_log_summary, e);
1415 		kmem_free(e, sizeof (log_summary_entry_t));
1416 	}
1417 
1418 	spa->spa_unflushed_stats.sus_nblocks = 0;
1419 	spa->spa_unflushed_stats.sus_memused = 0;
1420 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1421 }
1422 
1423 /*
1424  * Opposite of spa_load().
1425  */
1426 static void
1427 spa_unload(spa_t *spa)
1428 {
1429 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1430 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1431 
1432 	spa_import_progress_remove(spa);
1433 	spa_load_note(spa, "UNLOADING");
1434 
1435 	/*
1436 	 * If the log space map feature is enabled and the pool is getting
1437 	 * exported (but not destroyed), we want to spend some time flushing
1438 	 * as many metaslabs as we can in an attempt to destroy log space
1439 	 * maps and save import time.
1440 	 */
1441 	if (spa_should_flush_logs_on_unload(spa))
1442 		spa_unload_log_sm_flush_all(spa);
1443 
1444 	/*
1445 	 * Stop async tasks.
1446 	 */
1447 	spa_async_suspend(spa);
1448 
1449 	if (spa->spa_root_vdev) {
1450 		vdev_t *root_vdev = spa->spa_root_vdev;
1451 		vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1452 		vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1453 		vdev_autotrim_stop_all(spa);
1454 	}
1455 
1456 	/*
1457 	 * Stop syncing.
1458 	 */
1459 	if (spa->spa_sync_on) {
1460 		txg_sync_stop(spa->spa_dsl_pool);
1461 		spa->spa_sync_on = B_FALSE;
1462 	}
1463 
1464 	/*
1465 	 * This ensures that there is no async metaslab prefetching
1466 	 * while we attempt to unload the spa.
1467 	 */
1468 	if (spa->spa_root_vdev != NULL) {
1469 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1470 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1471 			if (vc->vdev_mg != NULL)
1472 				taskq_wait(vc->vdev_mg->mg_taskq);
1473 		}
1474 	}
1475 
1476 	if (spa->spa_mmp.mmp_thread)
1477 		mmp_thread_stop(spa);
1478 
1479 	/*
1480 	 * Wait for any outstanding async I/O to complete.
1481 	 */
1482 	if (spa->spa_async_zio_root != NULL) {
1483 		for (int i = 0; i < max_ncpus; i++)
1484 			(void) zio_wait(spa->spa_async_zio_root[i]);
1485 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1486 		spa->spa_async_zio_root = NULL;
1487 	}
1488 
1489 	if (spa->spa_vdev_removal != NULL) {
1490 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1491 		spa->spa_vdev_removal = NULL;
1492 	}
1493 
1494 	if (spa->spa_condense_zthr != NULL) {
1495 		zthr_destroy(spa->spa_condense_zthr);
1496 		spa->spa_condense_zthr = NULL;
1497 	}
1498 
1499 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1500 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1501 		spa->spa_checkpoint_discard_zthr = NULL;
1502 	}
1503 
1504 	spa_condense_fini(spa);
1505 
1506 	bpobj_close(&spa->spa_deferred_bpobj);
1507 
1508 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1509 
1510 	/*
1511 	 * Close all vdevs.
1512 	 */
1513 	if (spa->spa_root_vdev)
1514 		vdev_free(spa->spa_root_vdev);
1515 	ASSERT(spa->spa_root_vdev == NULL);
1516 
1517 	/*
1518 	 * Close the dsl pool.
1519 	 */
1520 	if (spa->spa_dsl_pool) {
1521 		dsl_pool_close(spa->spa_dsl_pool);
1522 		spa->spa_dsl_pool = NULL;
1523 		spa->spa_meta_objset = NULL;
1524 	}
1525 
1526 	ddt_unload(spa);
1527 	spa_unload_log_sm_metadata(spa);
1528 
1529 	/*
1530 	 * Drop and purge level 2 cache
1531 	 */
1532 	spa_l2cache_drop(spa);
1533 
1534 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1535 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1536 	if (spa->spa_spares.sav_vdevs) {
1537 		kmem_free(spa->spa_spares.sav_vdevs,
1538 		    spa->spa_spares.sav_count * sizeof (void *));
1539 		spa->spa_spares.sav_vdevs = NULL;
1540 	}
1541 	if (spa->spa_spares.sav_config) {
1542 		nvlist_free(spa->spa_spares.sav_config);
1543 		spa->spa_spares.sav_config = NULL;
1544 	}
1545 	spa->spa_spares.sav_count = 0;
1546 
1547 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1548 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1549 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1550 	}
1551 	if (spa->spa_l2cache.sav_vdevs) {
1552 		kmem_free(spa->spa_l2cache.sav_vdevs,
1553 		    spa->spa_l2cache.sav_count * sizeof (void *));
1554 		spa->spa_l2cache.sav_vdevs = NULL;
1555 	}
1556 	if (spa->spa_l2cache.sav_config) {
1557 		nvlist_free(spa->spa_l2cache.sav_config);
1558 		spa->spa_l2cache.sav_config = NULL;
1559 	}
1560 	spa->spa_l2cache.sav_count = 0;
1561 
1562 	spa->spa_async_suspended = 0;
1563 
1564 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1565 
1566 	if (spa->spa_comment != NULL) {
1567 		spa_strfree(spa->spa_comment);
1568 		spa->spa_comment = NULL;
1569 	}
1570 
1571 	spa_config_exit(spa, SCL_ALL, spa);
1572 }
1573 
1574 /*
1575  * Load (or re-load) the current list of vdevs describing the active spares for
1576  * this pool.  When this is called, we have some form of basic information in
1577  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1578  * then re-generate a more complete list including status information.
1579  */
1580 void
1581 spa_load_spares(spa_t *spa)
1582 {
1583 	nvlist_t **spares;
1584 	uint_t nspares;
1585 	int i;
1586 	vdev_t *vd, *tvd;
1587 
1588 #ifndef _KERNEL
1589 	/*
1590 	 * zdb opens both the current state of the pool and the
1591 	 * checkpointed state (if present), with a different spa_t.
1592 	 *
1593 	 * As spare vdevs are shared among open pools, we skip loading
1594 	 * them when we load the checkpointed state of the pool.
1595 	 */
1596 	if (!spa_writeable(spa))
1597 		return;
1598 #endif
1599 
1600 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1601 
1602 	/*
1603 	 * First, close and free any existing spare vdevs.
1604 	 */
1605 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1606 		vd = spa->spa_spares.sav_vdevs[i];
1607 
1608 		/* Undo the call to spa_activate() below */
1609 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1610 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1611 			spa_spare_remove(tvd);
1612 		vdev_close(vd);
1613 		vdev_free(vd);
1614 	}
1615 
1616 	if (spa->spa_spares.sav_vdevs)
1617 		kmem_free(spa->spa_spares.sav_vdevs,
1618 		    spa->spa_spares.sav_count * sizeof (void *));
1619 
1620 	if (spa->spa_spares.sav_config == NULL)
1621 		nspares = 0;
1622 	else
1623 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1624 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1625 
1626 	spa->spa_spares.sav_count = (int)nspares;
1627 	spa->spa_spares.sav_vdevs = NULL;
1628 
1629 	if (nspares == 0)
1630 		return;
1631 
1632 	/*
1633 	 * Construct the array of vdevs, opening them to get status in the
1634 	 * process.   For each spare, there is potentially two different vdev_t
1635 	 * structures associated with it: one in the list of spares (used only
1636 	 * for basic validation purposes) and one in the active vdev
1637 	 * configuration (if it's spared in).  During this phase we open and
1638 	 * validate each vdev on the spare list.  If the vdev also exists in the
1639 	 * active configuration, then we also mark this vdev as an active spare.
1640 	 */
1641 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1642 	    KM_SLEEP);
1643 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1644 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1645 		    VDEV_ALLOC_SPARE) == 0);
1646 		ASSERT(vd != NULL);
1647 
1648 		spa->spa_spares.sav_vdevs[i] = vd;
1649 
1650 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1651 		    B_FALSE)) != NULL) {
1652 			if (!tvd->vdev_isspare)
1653 				spa_spare_add(tvd);
1654 
1655 			/*
1656 			 * We only mark the spare active if we were successfully
1657 			 * able to load the vdev.  Otherwise, importing a pool
1658 			 * with a bad active spare would result in strange
1659 			 * behavior, because multiple pool would think the spare
1660 			 * is actively in use.
1661 			 *
1662 			 * There is a vulnerability here to an equally bizarre
1663 			 * circumstance, where a dead active spare is later
1664 			 * brought back to life (onlined or otherwise).  Given
1665 			 * the rarity of this scenario, and the extra complexity
1666 			 * it adds, we ignore the possibility.
1667 			 */
1668 			if (!vdev_is_dead(tvd))
1669 				spa_spare_activate(tvd);
1670 		}
1671 
1672 		vd->vdev_top = vd;
1673 		vd->vdev_aux = &spa->spa_spares;
1674 
1675 		if (vdev_open(vd) != 0)
1676 			continue;
1677 
1678 		if (vdev_validate_aux(vd) == 0)
1679 			spa_spare_add(vd);
1680 	}
1681 
1682 	/*
1683 	 * Recompute the stashed list of spares, with status information
1684 	 * this time.
1685 	 */
1686 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1687 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1688 
1689 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1690 	    KM_SLEEP);
1691 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1692 		spares[i] = vdev_config_generate(spa,
1693 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1694 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1695 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1696 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1697 		nvlist_free(spares[i]);
1698 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1699 }
1700 
1701 /*
1702  * Load (or re-load) the current list of vdevs describing the active l2cache for
1703  * this pool.  When this is called, we have some form of basic information in
1704  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1705  * then re-generate a more complete list including status information.
1706  * Devices which are already active have their details maintained, and are
1707  * not re-opened.
1708  */
1709 void
1710 spa_load_l2cache(spa_t *spa)
1711 {
1712 	nvlist_t **l2cache;
1713 	uint_t nl2cache;
1714 	int i, j, oldnvdevs;
1715 	uint64_t guid;
1716 	vdev_t *vd, **oldvdevs, **newvdevs;
1717 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1718 
1719 #ifndef _KERNEL
1720 	/*
1721 	 * zdb opens both the current state of the pool and the
1722 	 * checkpointed state (if present), with a different spa_t.
1723 	 *
1724 	 * As L2 caches are part of the ARC which is shared among open
1725 	 * pools, we skip loading them when we load the checkpointed
1726 	 * state of the pool.
1727 	 */
1728 	if (!spa_writeable(spa))
1729 		return;
1730 #endif
1731 
1732 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1733 
1734 	if (sav->sav_config != NULL) {
1735 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1736 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1737 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1738 	} else {
1739 		nl2cache = 0;
1740 		newvdevs = NULL;
1741 	}
1742 
1743 	oldvdevs = sav->sav_vdevs;
1744 	oldnvdevs = sav->sav_count;
1745 	sav->sav_vdevs = NULL;
1746 	sav->sav_count = 0;
1747 
1748 	/*
1749 	 * Process new nvlist of vdevs.
1750 	 */
1751 	for (i = 0; i < nl2cache; i++) {
1752 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1753 		    &guid) == 0);
1754 
1755 		newvdevs[i] = NULL;
1756 		for (j = 0; j < oldnvdevs; j++) {
1757 			vd = oldvdevs[j];
1758 			if (vd != NULL && guid == vd->vdev_guid) {
1759 				/*
1760 				 * Retain previous vdev for add/remove ops.
1761 				 */
1762 				newvdevs[i] = vd;
1763 				oldvdevs[j] = NULL;
1764 				break;
1765 			}
1766 		}
1767 
1768 		if (newvdevs[i] == NULL) {
1769 			/*
1770 			 * Create new vdev
1771 			 */
1772 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1773 			    VDEV_ALLOC_L2CACHE) == 0);
1774 			ASSERT(vd != NULL);
1775 			newvdevs[i] = vd;
1776 
1777 			/*
1778 			 * Commit this vdev as an l2cache device,
1779 			 * even if it fails to open.
1780 			 */
1781 			spa_l2cache_add(vd);
1782 
1783 			vd->vdev_top = vd;
1784 			vd->vdev_aux = sav;
1785 
1786 			spa_l2cache_activate(vd);
1787 
1788 			if (vdev_open(vd) != 0)
1789 				continue;
1790 
1791 			(void) vdev_validate_aux(vd);
1792 
1793 			if (!vdev_is_dead(vd))
1794 				l2arc_add_vdev(spa, vd);
1795 		}
1796 	}
1797 
1798 	/*
1799 	 * Purge vdevs that were dropped
1800 	 */
1801 	for (i = 0; i < oldnvdevs; i++) {
1802 		uint64_t pool;
1803 
1804 		vd = oldvdevs[i];
1805 		if (vd != NULL) {
1806 			ASSERT(vd->vdev_isl2cache);
1807 
1808 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1809 			    pool != 0ULL && l2arc_vdev_present(vd))
1810 				l2arc_remove_vdev(vd);
1811 			vdev_clear_stats(vd);
1812 			vdev_free(vd);
1813 		}
1814 	}
1815 
1816 	if (oldvdevs)
1817 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1818 
1819 	if (sav->sav_config == NULL)
1820 		goto out;
1821 
1822 	sav->sav_vdevs = newvdevs;
1823 	sav->sav_count = (int)nl2cache;
1824 
1825 	/*
1826 	 * Recompute the stashed list of l2cache devices, with status
1827 	 * information this time.
1828 	 */
1829 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1830 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1831 
1832 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1833 	for (i = 0; i < sav->sav_count; i++)
1834 		l2cache[i] = vdev_config_generate(spa,
1835 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1836 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1837 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1838 out:
1839 	for (i = 0; i < sav->sav_count; i++)
1840 		nvlist_free(l2cache[i]);
1841 	if (sav->sav_count)
1842 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1843 }
1844 
1845 static int
1846 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1847 {
1848 	dmu_buf_t *db;
1849 	char *packed = NULL;
1850 	size_t nvsize = 0;
1851 	int error;
1852 	*value = NULL;
1853 
1854 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1855 	if (error != 0)
1856 		return (error);
1857 
1858 	nvsize = *(uint64_t *)db->db_data;
1859 	dmu_buf_rele(db, FTAG);
1860 
1861 	packed = kmem_alloc(nvsize, KM_SLEEP);
1862 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1863 	    DMU_READ_PREFETCH);
1864 	if (error == 0)
1865 		error = nvlist_unpack(packed, nvsize, value, 0);
1866 	kmem_free(packed, nvsize);
1867 
1868 	return (error);
1869 }
1870 
1871 /*
1872  * Concrete top-level vdevs that are not missing and are not logs. At every
1873  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1874  */
1875 static uint64_t
1876 spa_healthy_core_tvds(spa_t *spa)
1877 {
1878 	vdev_t *rvd = spa->spa_root_vdev;
1879 	uint64_t tvds = 0;
1880 
1881 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1882 		vdev_t *vd = rvd->vdev_child[i];
1883 		if (vd->vdev_islog)
1884 			continue;
1885 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1886 			tvds++;
1887 	}
1888 
1889 	return (tvds);
1890 }
1891 
1892 /*
1893  * Checks to see if the given vdev could not be opened, in which case we post a
1894  * sysevent to notify the autoreplace code that the device has been removed.
1895  */
1896 static void
1897 spa_check_removed(vdev_t *vd)
1898 {
1899 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1900 		spa_check_removed(vd->vdev_child[c]);
1901 
1902 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1903 	    vdev_is_concrete(vd)) {
1904 		zfs_post_autoreplace(vd->vdev_spa, vd);
1905 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1906 	}
1907 }
1908 
1909 static int
1910 spa_check_for_missing_logs(spa_t *spa)
1911 {
1912 	vdev_t *rvd = spa->spa_root_vdev;
1913 
1914 	/*
1915 	 * If we're doing a normal import, then build up any additional
1916 	 * diagnostic information about missing log devices.
1917 	 * We'll pass this up to the user for further processing.
1918 	 */
1919 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1920 		nvlist_t **child, *nv;
1921 		uint64_t idx = 0;
1922 
1923 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1924 		    KM_SLEEP);
1925 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1926 
1927 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1928 			vdev_t *tvd = rvd->vdev_child[c];
1929 
1930 			/*
1931 			 * We consider a device as missing only if it failed
1932 			 * to open (i.e. offline or faulted is not considered
1933 			 * as missing).
1934 			 */
1935 			if (tvd->vdev_islog &&
1936 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1937 				child[idx++] = vdev_config_generate(spa, tvd,
1938 				    B_FALSE, VDEV_CONFIG_MISSING);
1939 			}
1940 		}
1941 
1942 		if (idx > 0) {
1943 			fnvlist_add_nvlist_array(nv,
1944 			    ZPOOL_CONFIG_CHILDREN, child, idx);
1945 			fnvlist_add_nvlist(spa->spa_load_info,
1946 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1947 
1948 			for (uint64_t i = 0; i < idx; i++)
1949 				nvlist_free(child[i]);
1950 		}
1951 		nvlist_free(nv);
1952 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1953 
1954 		if (idx > 0) {
1955 			spa_load_failed(spa, "some log devices are missing");
1956 			vdev_dbgmsg_print_tree(rvd, 2);
1957 			return (SET_ERROR(ENXIO));
1958 		}
1959 	} else {
1960 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1961 			vdev_t *tvd = rvd->vdev_child[c];
1962 
1963 			if (tvd->vdev_islog &&
1964 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1965 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1966 				spa_load_note(spa, "some log devices are "
1967 				    "missing, ZIL is dropped.");
1968 				vdev_dbgmsg_print_tree(rvd, 2);
1969 				break;
1970 			}
1971 		}
1972 	}
1973 
1974 	return (0);
1975 }
1976 
1977 /*
1978  * Check for missing log devices
1979  */
1980 static boolean_t
1981 spa_check_logs(spa_t *spa)
1982 {
1983 	boolean_t rv = B_FALSE;
1984 	dsl_pool_t *dp = spa_get_dsl(spa);
1985 
1986 	switch (spa->spa_log_state) {
1987 	case SPA_LOG_MISSING:
1988 		/* need to recheck in case slog has been restored */
1989 	case SPA_LOG_UNKNOWN:
1990 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1991 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1992 		if (rv)
1993 			spa_set_log_state(spa, SPA_LOG_MISSING);
1994 		break;
1995 	}
1996 	return (rv);
1997 }
1998 
1999 static boolean_t
2000 spa_passivate_log(spa_t *spa)
2001 {
2002 	vdev_t *rvd = spa->spa_root_vdev;
2003 	boolean_t slog_found = B_FALSE;
2004 
2005 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2006 
2007 	if (!spa_has_slogs(spa))
2008 		return (B_FALSE);
2009 
2010 	for (int c = 0; c < rvd->vdev_children; c++) {
2011 		vdev_t *tvd = rvd->vdev_child[c];
2012 		metaslab_group_t *mg = tvd->vdev_mg;
2013 
2014 		if (tvd->vdev_islog) {
2015 			metaslab_group_passivate(mg);
2016 			slog_found = B_TRUE;
2017 		}
2018 	}
2019 
2020 	return (slog_found);
2021 }
2022 
2023 static void
2024 spa_activate_log(spa_t *spa)
2025 {
2026 	vdev_t *rvd = spa->spa_root_vdev;
2027 
2028 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2029 
2030 	for (int c = 0; c < rvd->vdev_children; c++) {
2031 		vdev_t *tvd = rvd->vdev_child[c];
2032 		metaslab_group_t *mg = tvd->vdev_mg;
2033 
2034 		if (tvd->vdev_islog)
2035 			metaslab_group_activate(mg);
2036 	}
2037 }
2038 
2039 int
2040 spa_reset_logs(spa_t *spa)
2041 {
2042 	int error;
2043 
2044 	error = dmu_objset_find(spa_name(spa), zil_reset,
2045 	    NULL, DS_FIND_CHILDREN);
2046 	if (error == 0) {
2047 		/*
2048 		 * We successfully offlined the log device, sync out the
2049 		 * current txg so that the "stubby" block can be removed
2050 		 * by zil_sync().
2051 		 */
2052 		txg_wait_synced(spa->spa_dsl_pool, 0);
2053 	}
2054 	return (error);
2055 }
2056 
2057 static void
2058 spa_aux_check_removed(spa_aux_vdev_t *sav)
2059 {
2060 	for (int i = 0; i < sav->sav_count; i++)
2061 		spa_check_removed(sav->sav_vdevs[i]);
2062 }
2063 
2064 void
2065 spa_claim_notify(zio_t *zio)
2066 {
2067 	spa_t *spa = zio->io_spa;
2068 
2069 	if (zio->io_error)
2070 		return;
2071 
2072 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2073 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2074 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2075 	mutex_exit(&spa->spa_props_lock);
2076 }
2077 
2078 typedef struct spa_load_error {
2079 	uint64_t	sle_meta_count;
2080 	uint64_t	sle_data_count;
2081 } spa_load_error_t;
2082 
2083 static void
2084 spa_load_verify_done(zio_t *zio)
2085 {
2086 	blkptr_t *bp = zio->io_bp;
2087 	spa_load_error_t *sle = zio->io_private;
2088 	dmu_object_type_t type = BP_GET_TYPE(bp);
2089 	int error = zio->io_error;
2090 	spa_t *spa = zio->io_spa;
2091 
2092 	abd_free(zio->io_abd);
2093 	if (error) {
2094 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2095 		    type != DMU_OT_INTENT_LOG)
2096 			atomic_inc_64(&sle->sle_meta_count);
2097 		else
2098 			atomic_inc_64(&sle->sle_data_count);
2099 	}
2100 
2101 	mutex_enter(&spa->spa_scrub_lock);
2102 	spa->spa_load_verify_ios--;
2103 	cv_broadcast(&spa->spa_scrub_io_cv);
2104 	mutex_exit(&spa->spa_scrub_lock);
2105 }
2106 
2107 /*
2108  * Maximum number of concurrent scrub i/os to create while verifying
2109  * a pool while importing it.
2110  */
2111 int spa_load_verify_maxinflight = 10000;
2112 boolean_t spa_load_verify_metadata = B_TRUE;
2113 boolean_t spa_load_verify_data = B_TRUE;
2114 
2115 /*ARGSUSED*/
2116 static int
2117 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2118     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2119 {
2120 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2121 		return (0);
2122 	/*
2123 	 * Note: normally this routine will not be called if
2124 	 * spa_load_verify_metadata is not set.  However, it may be useful
2125 	 * to manually set the flag after the traversal has begun.
2126 	 */
2127 	if (!spa_load_verify_metadata)
2128 		return (0);
2129 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2130 		return (0);
2131 
2132 	zio_t *rio = arg;
2133 	size_t size = BP_GET_PSIZE(bp);
2134 
2135 	mutex_enter(&spa->spa_scrub_lock);
2136 	while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2137 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2138 	spa->spa_load_verify_ios++;
2139 	mutex_exit(&spa->spa_scrub_lock);
2140 
2141 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2142 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2143 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2144 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2145 	return (0);
2146 }
2147 
2148 /* ARGSUSED */
2149 int
2150 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2151 {
2152 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2153 		return (SET_ERROR(ENAMETOOLONG));
2154 
2155 	return (0);
2156 }
2157 
2158 static int
2159 spa_load_verify(spa_t *spa)
2160 {
2161 	zio_t *rio;
2162 	spa_load_error_t sle = { 0 };
2163 	zpool_load_policy_t policy;
2164 	boolean_t verify_ok = B_FALSE;
2165 	int error = 0;
2166 
2167 	zpool_get_load_policy(spa->spa_config, &policy);
2168 
2169 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2170 		return (0);
2171 
2172 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2173 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2174 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2175 	    DS_FIND_CHILDREN);
2176 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2177 	if (error != 0)
2178 		return (error);
2179 
2180 	rio = zio_root(spa, NULL, &sle,
2181 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2182 
2183 	if (spa_load_verify_metadata) {
2184 		if (spa->spa_extreme_rewind) {
2185 			spa_load_note(spa, "performing a complete scan of the "
2186 			    "pool since extreme rewind is on. This may take "
2187 			    "a very long time.\n  (spa_load_verify_data=%u, "
2188 			    "spa_load_verify_metadata=%u)",
2189 			    spa_load_verify_data, spa_load_verify_metadata);
2190 		}
2191 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2192 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2193 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2194 	}
2195 
2196 	(void) zio_wait(rio);
2197 
2198 	spa->spa_load_meta_errors = sle.sle_meta_count;
2199 	spa->spa_load_data_errors = sle.sle_data_count;
2200 
2201 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2202 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2203 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2204 		    (u_longlong_t)sle.sle_data_count);
2205 	}
2206 
2207 	if (spa_load_verify_dryrun ||
2208 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2209 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2210 		int64_t loss = 0;
2211 
2212 		verify_ok = B_TRUE;
2213 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2214 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2215 
2216 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2217 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2218 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2219 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2220 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2221 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2222 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2223 	} else {
2224 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2225 	}
2226 
2227 	if (spa_load_verify_dryrun)
2228 		return (0);
2229 
2230 	if (error) {
2231 		if (error != ENXIO && error != EIO)
2232 			error = SET_ERROR(EIO);
2233 		return (error);
2234 	}
2235 
2236 	return (verify_ok ? 0 : EIO);
2237 }
2238 
2239 /*
2240  * Find a value in the pool props object.
2241  */
2242 static void
2243 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2244 {
2245 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2246 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2247 }
2248 
2249 /*
2250  * Find a value in the pool directory object.
2251  */
2252 static int
2253 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2254 {
2255 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2256 	    name, sizeof (uint64_t), 1, val);
2257 
2258 	if (error != 0 && (error != ENOENT || log_enoent)) {
2259 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2260 		    "[error=%d]", name, error);
2261 	}
2262 
2263 	return (error);
2264 }
2265 
2266 static int
2267 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2268 {
2269 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2270 	return (SET_ERROR(err));
2271 }
2272 
2273 static void
2274 spa_spawn_aux_threads(spa_t *spa)
2275 {
2276 	ASSERT(spa_writeable(spa));
2277 
2278 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2279 
2280 	spa_start_indirect_condensing_thread(spa);
2281 
2282 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2283 	spa->spa_checkpoint_discard_zthr =
2284 	    zthr_create(spa_checkpoint_discard_thread_check,
2285 	    spa_checkpoint_discard_thread, spa);
2286 }
2287 
2288 /*
2289  * Fix up config after a partly-completed split.  This is done with the
2290  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2291  * pool have that entry in their config, but only the splitting one contains
2292  * a list of all the guids of the vdevs that are being split off.
2293  *
2294  * This function determines what to do with that list: either rejoin
2295  * all the disks to the pool, or complete the splitting process.  To attempt
2296  * the rejoin, each disk that is offlined is marked online again, and
2297  * we do a reopen() call.  If the vdev label for every disk that was
2298  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2299  * then we call vdev_split() on each disk, and complete the split.
2300  *
2301  * Otherwise we leave the config alone, with all the vdevs in place in
2302  * the original pool.
2303  */
2304 static void
2305 spa_try_repair(spa_t *spa, nvlist_t *config)
2306 {
2307 	uint_t extracted;
2308 	uint64_t *glist;
2309 	uint_t i, gcount;
2310 	nvlist_t *nvl;
2311 	vdev_t **vd;
2312 	boolean_t attempt_reopen;
2313 
2314 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2315 		return;
2316 
2317 	/* check that the config is complete */
2318 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2319 	    &glist, &gcount) != 0)
2320 		return;
2321 
2322 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2323 
2324 	/* attempt to online all the vdevs & validate */
2325 	attempt_reopen = B_TRUE;
2326 	for (i = 0; i < gcount; i++) {
2327 		if (glist[i] == 0)	/* vdev is hole */
2328 			continue;
2329 
2330 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2331 		if (vd[i] == NULL) {
2332 			/*
2333 			 * Don't bother attempting to reopen the disks;
2334 			 * just do the split.
2335 			 */
2336 			attempt_reopen = B_FALSE;
2337 		} else {
2338 			/* attempt to re-online it */
2339 			vd[i]->vdev_offline = B_FALSE;
2340 		}
2341 	}
2342 
2343 	if (attempt_reopen) {
2344 		vdev_reopen(spa->spa_root_vdev);
2345 
2346 		/* check each device to see what state it's in */
2347 		for (extracted = 0, i = 0; i < gcount; i++) {
2348 			if (vd[i] != NULL &&
2349 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2350 				break;
2351 			++extracted;
2352 		}
2353 	}
2354 
2355 	/*
2356 	 * If every disk has been moved to the new pool, or if we never
2357 	 * even attempted to look at them, then we split them off for
2358 	 * good.
2359 	 */
2360 	if (!attempt_reopen || gcount == extracted) {
2361 		for (i = 0; i < gcount; i++)
2362 			if (vd[i] != NULL)
2363 				vdev_split(vd[i]);
2364 		vdev_reopen(spa->spa_root_vdev);
2365 	}
2366 
2367 	kmem_free(vd, gcount * sizeof (vdev_t *));
2368 }
2369 
2370 static int
2371 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2372 {
2373 	char *ereport = FM_EREPORT_ZFS_POOL;
2374 	int error;
2375 
2376 	spa->spa_load_state = state;
2377 	(void) spa_import_progress_set_state(spa, spa_load_state(spa));
2378 
2379 	gethrestime(&spa->spa_loaded_ts);
2380 	error = spa_load_impl(spa, type, &ereport);
2381 
2382 	/*
2383 	 * Don't count references from objsets that are already closed
2384 	 * and are making their way through the eviction process.
2385 	 */
2386 	spa_evicting_os_wait(spa);
2387 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2388 	if (error) {
2389 		if (error != EEXIST) {
2390 			spa->spa_loaded_ts.tv_sec = 0;
2391 			spa->spa_loaded_ts.tv_nsec = 0;
2392 		}
2393 		if (error != EBADF) {
2394 			zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0, 0);
2395 		}
2396 	}
2397 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2398 	spa->spa_ena = 0;
2399 
2400 	(void) spa_import_progress_set_state(spa, spa_load_state(spa));
2401 
2402 	return (error);
2403 }
2404 
2405 /*
2406  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2407  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2408  * spa's per-vdev ZAP list.
2409  */
2410 static uint64_t
2411 vdev_count_verify_zaps(vdev_t *vd)
2412 {
2413 	spa_t *spa = vd->vdev_spa;
2414 	uint64_t total = 0;
2415 	if (vd->vdev_top_zap != 0) {
2416 		total++;
2417 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2418 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2419 	}
2420 	if (vd->vdev_leaf_zap != 0) {
2421 		total++;
2422 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2423 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2424 	}
2425 
2426 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2427 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2428 	}
2429 
2430 	return (total);
2431 }
2432 
2433 /*
2434  * Determine whether the activity check is required.
2435  */
2436 static boolean_t
2437 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2438     nvlist_t *config)
2439 {
2440 	uint64_t state = 0;
2441 	uint64_t hostid = 0;
2442 	uint64_t tryconfig_txg = 0;
2443 	uint64_t tryconfig_timestamp = 0;
2444 	uint16_t tryconfig_mmp_seq = 0;
2445 	nvlist_t *nvinfo;
2446 
2447 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2448 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2449 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2450 		    &tryconfig_txg);
2451 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2452 		    &tryconfig_timestamp);
2453 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2454 		    &tryconfig_mmp_seq);
2455 	}
2456 
2457 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2458 
2459 	/*
2460 	 * Disable the MMP activity check - This is used by zdb which
2461 	 * is intended to be used on potentially active pools.
2462 	 */
2463 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2464 		return (B_FALSE);
2465 
2466 	/*
2467 	 * Skip the activity check when the MMP feature is disabled.
2468 	 */
2469 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2470 		return (B_FALSE);
2471 
2472 	/*
2473 	 * If the tryconfig_ values are nonzero, they are the results of an
2474 	 * earlier tryimport.  If they all match the uberblock we just found,
2475 	 * then the pool has not changed and we return false so we do not test
2476 	 * a second time.
2477 	 */
2478 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2479 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2480 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
2481 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2482 		return (B_FALSE);
2483 
2484 	/*
2485 	 * Allow the activity check to be skipped when importing the pool
2486 	 * on the same host which last imported it.  Since the hostid from
2487 	 * configuration may be stale use the one read from the label.
2488 	 */
2489 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2490 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2491 
2492 	if (hostid == spa_get_hostid())
2493 		return (B_FALSE);
2494 
2495 	/*
2496 	 * Skip the activity test when the pool was cleanly exported.
2497 	 */
2498 	if (state != POOL_STATE_ACTIVE)
2499 		return (B_FALSE);
2500 
2501 	return (B_TRUE);
2502 }
2503 
2504 /*
2505  * Nanoseconds the activity check must watch for changes on-disk.
2506  */
2507 static uint64_t
2508 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
2509 {
2510 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2511 	uint64_t multihost_interval = MSEC2NSEC(
2512 	    MMP_INTERVAL_OK(zfs_multihost_interval));
2513 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
2514 	    multihost_interval);
2515 
2516 	/*
2517 	 * Local tunables determine a minimum duration except for the case
2518 	 * where we know when the remote host will suspend the pool if MMP
2519 	 * writes do not land.
2520 	 *
2521 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
2522 	 * these cases and times.
2523 	 */
2524 
2525 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
2526 
2527 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2528 	    MMP_FAIL_INT(ub) > 0) {
2529 
2530 		/* MMP on remote host will suspend pool after failed writes */
2531 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
2532 		    MMP_IMPORT_SAFETY_FACTOR / 100;
2533 
2534 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
2535 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
2536 		    "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
2537 		    MMP_INTERVAL(ub), import_intervals);
2538 
2539 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2540 	    MMP_FAIL_INT(ub) == 0) {
2541 
2542 		/* MMP on remote host will never suspend pool */
2543 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
2544 		    ub->ub_mmp_delay) * import_intervals);
2545 
2546 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
2547 		    "mmp_interval=%llu ub_mmp_delay=%llu "
2548 		    "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
2549 		    ub->ub_mmp_delay, import_intervals);
2550 
2551 	} else if (MMP_VALID(ub)) {
2552 		/*
2553 		 * zfs-0.7 compatability case
2554 		 */
2555 
2556 		import_delay = MAX(import_delay, (multihost_interval +
2557 		    ub->ub_mmp_delay) * import_intervals);
2558 
2559 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
2560 		    "import_intervals=%u leaves=%u", import_delay,
2561 		    ub->ub_mmp_delay, import_intervals,
2562 		    vdev_count_leaves(spa));
2563 	} else {
2564 		/* Using local tunings is the only reasonable option */
2565 		zfs_dbgmsg("pool last imported on non-MMP aware "
2566 		    "host using import_delay=%llu multihost_interval=%llu "
2567 		    "import_intervals=%u", import_delay, multihost_interval,
2568 		    import_intervals);
2569 	}
2570 
2571 	return (import_delay);
2572 }
2573 
2574 /*
2575  * Perform the import activity check.  If the user canceled the import or
2576  * we detected activity then fail.
2577  */
2578 static int
2579 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2580 {
2581 	uint64_t txg = ub->ub_txg;
2582 	uint64_t timestamp = ub->ub_timestamp;
2583 	uint64_t mmp_config = ub->ub_mmp_config;
2584 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
2585 	uint64_t import_delay;
2586 	hrtime_t import_expire;
2587 	nvlist_t *mmp_label = NULL;
2588 	vdev_t *rvd = spa->spa_root_vdev;
2589 	kcondvar_t cv;
2590 	kmutex_t mtx;
2591 	int error = 0;
2592 
2593 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
2594 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2595 	mutex_enter(&mtx);
2596 
2597 	/*
2598 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2599 	 * during the earlier tryimport.  If the txg recorded there is 0 then
2600 	 * the pool is known to be active on another host.
2601 	 *
2602 	 * Otherwise, the pool might be in use on another host.  Check for
2603 	 * changes in the uberblocks on disk if necessary.
2604 	 */
2605 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2606 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2607 		    ZPOOL_CONFIG_LOAD_INFO);
2608 
2609 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2610 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2611 			vdev_uberblock_load(rvd, ub, &mmp_label);
2612 			error = SET_ERROR(EREMOTEIO);
2613 			goto out;
2614 		}
2615 	}
2616 
2617 	import_delay = spa_activity_check_duration(spa, ub);
2618 
2619 	/* Add a small random factor in case of simultaneous imports (0-25%) */
2620 	import_delay += import_delay * spa_get_random(250) / 1000;
2621 
2622 	import_expire = gethrtime() + import_delay;
2623 
2624 	while (gethrtime() < import_expire) {
2625 		(void) spa_import_progress_set_mmp_check(spa,
2626 		    NSEC2SEC(import_expire - gethrtime()));
2627 
2628 		vdev_uberblock_load(rvd, ub, &mmp_label);
2629 
2630 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
2631 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
2632 			zfs_dbgmsg("multihost activity detected "
2633 			    "txg %llu ub_txg  %llu "
2634 			    "timestamp %llu ub_timestamp  %llu "
2635 			    "mmp_config %#llx ub_mmp_config %#llx",
2636 			    txg, ub->ub_txg, timestamp, ub->ub_timestamp,
2637 			    mmp_config, ub->ub_mmp_config);
2638 
2639 			error = SET_ERROR(EREMOTEIO);
2640 			break;
2641 		}
2642 
2643 		if (mmp_label) {
2644 			nvlist_free(mmp_label);
2645 			mmp_label = NULL;
2646 		}
2647 
2648 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2649 		if (error != -1) {
2650 			error = SET_ERROR(EINTR);
2651 			break;
2652 		}
2653 		error = 0;
2654 	}
2655 
2656 out:
2657 	mutex_exit(&mtx);
2658 	mutex_destroy(&mtx);
2659 	cv_destroy(&cv);
2660 
2661 	/*
2662 	 * If the pool is determined to be active store the status in the
2663 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
2664 	 * available from configuration read from disk store them as well.
2665 	 * This allows 'zpool import' to generate a more useful message.
2666 	 *
2667 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
2668 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2669 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
2670 	 */
2671 	if (error == EREMOTEIO) {
2672 		char *hostname = "<unknown>";
2673 		uint64_t hostid = 0;
2674 
2675 		if (mmp_label) {
2676 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2677 				hostname = fnvlist_lookup_string(mmp_label,
2678 				    ZPOOL_CONFIG_HOSTNAME);
2679 				fnvlist_add_string(spa->spa_load_info,
2680 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2681 			}
2682 
2683 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2684 				hostid = fnvlist_lookup_uint64(mmp_label,
2685 				    ZPOOL_CONFIG_HOSTID);
2686 				fnvlist_add_uint64(spa->spa_load_info,
2687 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
2688 			}
2689 		}
2690 
2691 		fnvlist_add_uint64(spa->spa_load_info,
2692 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2693 		fnvlist_add_uint64(spa->spa_load_info,
2694 		    ZPOOL_CONFIG_MMP_TXG, 0);
2695 
2696 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2697 	}
2698 
2699 	if (mmp_label)
2700 		nvlist_free(mmp_label);
2701 
2702 	return (error);
2703 }
2704 
2705 static int
2706 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2707 {
2708 	uint64_t hostid;
2709 	char *hostname;
2710 	uint64_t myhostid = 0;
2711 
2712 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2713 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2714 		hostname = fnvlist_lookup_string(mos_config,
2715 		    ZPOOL_CONFIG_HOSTNAME);
2716 
2717 		myhostid = zone_get_hostid(NULL);
2718 
2719 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2720 			cmn_err(CE_WARN, "pool '%s' could not be "
2721 			    "loaded as it was last accessed by "
2722 			    "another system (host: %s hostid: 0x%llx). "
2723 			    "See: http://illumos.org/msg/ZFS-8000-EY",
2724 			    spa_name(spa), hostname, (u_longlong_t)hostid);
2725 			spa_load_failed(spa, "hostid verification failed: pool "
2726 			    "last accessed by host: %s (hostid: 0x%llx)",
2727 			    hostname, (u_longlong_t)hostid);
2728 			return (SET_ERROR(EBADF));
2729 		}
2730 	}
2731 
2732 	return (0);
2733 }
2734 
2735 static int
2736 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2737 {
2738 	int error = 0;
2739 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2740 	int parse;
2741 	vdev_t *rvd;
2742 	uint64_t pool_guid;
2743 	char *comment;
2744 
2745 	/*
2746 	 * Versioning wasn't explicitly added to the label until later, so if
2747 	 * it's not present treat it as the initial version.
2748 	 */
2749 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2750 	    &spa->spa_ubsync.ub_version) != 0)
2751 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2752 
2753 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2754 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2755 		    ZPOOL_CONFIG_POOL_GUID);
2756 		return (SET_ERROR(EINVAL));
2757 	}
2758 
2759 	/*
2760 	 * If we are doing an import, ensure that the pool is not already
2761 	 * imported by checking if its pool guid already exists in the
2762 	 * spa namespace.
2763 	 *
2764 	 * The only case that we allow an already imported pool to be
2765 	 * imported again, is when the pool is checkpointed and we want to
2766 	 * look at its checkpointed state from userland tools like zdb.
2767 	 */
2768 #ifdef _KERNEL
2769 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2770 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2771 	    spa_guid_exists(pool_guid, 0)) {
2772 #else
2773 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2774 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2775 	    spa_guid_exists(pool_guid, 0) &&
2776 	    !spa_importing_readonly_checkpoint(spa)) {
2777 #endif
2778 		spa_load_failed(spa, "a pool with guid %llu is already open",
2779 		    (u_longlong_t)pool_guid);
2780 		return (SET_ERROR(EEXIST));
2781 	}
2782 
2783 	spa->spa_config_guid = pool_guid;
2784 
2785 	nvlist_free(spa->spa_load_info);
2786 	spa->spa_load_info = fnvlist_alloc();
2787 
2788 	ASSERT(spa->spa_comment == NULL);
2789 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2790 		spa->spa_comment = spa_strdup(comment);
2791 
2792 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2793 	    &spa->spa_config_txg);
2794 
2795 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2796 		spa->spa_config_splitting = fnvlist_dup(nvl);
2797 
2798 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2799 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2800 		    ZPOOL_CONFIG_VDEV_TREE);
2801 		return (SET_ERROR(EINVAL));
2802 	}
2803 
2804 	/*
2805 	 * Create "The Godfather" zio to hold all async IOs
2806 	 */
2807 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2808 	    KM_SLEEP);
2809 	for (int i = 0; i < max_ncpus; i++) {
2810 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2811 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2812 		    ZIO_FLAG_GODFATHER);
2813 	}
2814 
2815 	/*
2816 	 * Parse the configuration into a vdev tree.  We explicitly set the
2817 	 * value that will be returned by spa_version() since parsing the
2818 	 * configuration requires knowing the version number.
2819 	 */
2820 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2821 	parse = (type == SPA_IMPORT_EXISTING ?
2822 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2823 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2824 	spa_config_exit(spa, SCL_ALL, FTAG);
2825 
2826 	if (error != 0) {
2827 		spa_load_failed(spa, "unable to parse config [error=%d]",
2828 		    error);
2829 		return (error);
2830 	}
2831 
2832 	ASSERT(spa->spa_root_vdev == rvd);
2833 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2834 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2835 
2836 	if (type != SPA_IMPORT_ASSEMBLE) {
2837 		ASSERT(spa_guid(spa) == pool_guid);
2838 	}
2839 
2840 	return (0);
2841 }
2842 
2843 /*
2844  * Recursively open all vdevs in the vdev tree. This function is called twice:
2845  * first with the untrusted config, then with the trusted config.
2846  */
2847 static int
2848 spa_ld_open_vdevs(spa_t *spa)
2849 {
2850 	int error = 0;
2851 
2852 	/*
2853 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2854 	 * missing/unopenable for the root vdev to be still considered openable.
2855 	 */
2856 	if (spa->spa_trust_config) {
2857 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2858 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2859 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2860 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2861 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2862 	} else {
2863 		spa->spa_missing_tvds_allowed = 0;
2864 	}
2865 
2866 	spa->spa_missing_tvds_allowed =
2867 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2868 
2869 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2870 	error = vdev_open(spa->spa_root_vdev);
2871 	spa_config_exit(spa, SCL_ALL, FTAG);
2872 
2873 	if (spa->spa_missing_tvds != 0) {
2874 		spa_load_note(spa, "vdev tree has %lld missing top-level "
2875 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2876 		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2877 			/*
2878 			 * Although theoretically we could allow users to open
2879 			 * incomplete pools in RW mode, we'd need to add a lot
2880 			 * of extra logic (e.g. adjust pool space to account
2881 			 * for missing vdevs).
2882 			 * This limitation also prevents users from accidentally
2883 			 * opening the pool in RW mode during data recovery and
2884 			 * damaging it further.
2885 			 */
2886 			spa_load_note(spa, "pools with missing top-level "
2887 			    "vdevs can only be opened in read-only mode.");
2888 			error = SET_ERROR(ENXIO);
2889 		} else {
2890 			spa_load_note(spa, "current settings allow for maximum "
2891 			    "%lld missing top-level vdevs at this stage.",
2892 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2893 		}
2894 	}
2895 	if (error != 0) {
2896 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2897 		    error);
2898 	}
2899 	if (spa->spa_missing_tvds != 0 || error != 0)
2900 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2901 
2902 	return (error);
2903 }
2904 
2905 /*
2906  * We need to validate the vdev labels against the configuration that
2907  * we have in hand. This function is called twice: first with an untrusted
2908  * config, then with a trusted config. The validation is more strict when the
2909  * config is trusted.
2910  */
2911 static int
2912 spa_ld_validate_vdevs(spa_t *spa)
2913 {
2914 	int error = 0;
2915 	vdev_t *rvd = spa->spa_root_vdev;
2916 
2917 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2918 	error = vdev_validate(rvd);
2919 	spa_config_exit(spa, SCL_ALL, FTAG);
2920 
2921 	if (error != 0) {
2922 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2923 		return (error);
2924 	}
2925 
2926 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2927 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2928 		    "some vdevs");
2929 		vdev_dbgmsg_print_tree(rvd, 2);
2930 		return (SET_ERROR(ENXIO));
2931 	}
2932 
2933 	return (0);
2934 }
2935 
2936 static void
2937 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2938 {
2939 	spa->spa_state = POOL_STATE_ACTIVE;
2940 	spa->spa_ubsync = spa->spa_uberblock;
2941 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2942 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2943 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2944 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2945 	spa->spa_claim_max_txg = spa->spa_first_txg;
2946 	spa->spa_prev_software_version = ub->ub_software_version;
2947 }
2948 
2949 static int
2950 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2951 {
2952 	vdev_t *rvd = spa->spa_root_vdev;
2953 	nvlist_t *label;
2954 	uberblock_t *ub = &spa->spa_uberblock;
2955 	boolean_t activity_check = B_FALSE;
2956 
2957 	/*
2958 	 * If we are opening the checkpointed state of the pool by
2959 	 * rewinding to it, at this point we will have written the
2960 	 * checkpointed uberblock to the vdev labels, so searching
2961 	 * the labels will find the right uberblock.  However, if
2962 	 * we are opening the checkpointed state read-only, we have
2963 	 * not modified the labels. Therefore, we must ignore the
2964 	 * labels and continue using the spa_uberblock that was set
2965 	 * by spa_ld_checkpoint_rewind.
2966 	 *
2967 	 * Note that it would be fine to ignore the labels when
2968 	 * rewinding (opening writeable) as well. However, if we
2969 	 * crash just after writing the labels, we will end up
2970 	 * searching the labels. Doing so in the common case means
2971 	 * that this code path gets exercised normally, rather than
2972 	 * just in the edge case.
2973 	 */
2974 	if (ub->ub_checkpoint_txg != 0 &&
2975 	    spa_importing_readonly_checkpoint(spa)) {
2976 		spa_ld_select_uberblock_done(spa, ub);
2977 		return (0);
2978 	}
2979 
2980 	/*
2981 	 * Find the best uberblock.
2982 	 */
2983 	vdev_uberblock_load(rvd, ub, &label);
2984 
2985 	/*
2986 	 * If we weren't able to find a single valid uberblock, return failure.
2987 	 */
2988 	if (ub->ub_txg == 0) {
2989 		nvlist_free(label);
2990 		spa_load_failed(spa, "no valid uberblock found");
2991 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2992 	}
2993 
2994 	if (spa->spa_load_max_txg != UINT64_MAX) {
2995 		(void) spa_import_progress_set_max_txg(spa,
2996 		    (u_longlong_t)spa->spa_load_max_txg);
2997 	}
2998 	spa_load_note(spa, "using uberblock with txg=%llu",
2999 	    (u_longlong_t)ub->ub_txg);
3000 
3001 	/*
3002 	 * For pools which have the multihost property on determine if the
3003 	 * pool is truly inactive and can be safely imported.  Prevent
3004 	 * hosts which don't have a hostid set from importing the pool.
3005 	 */
3006 	activity_check = spa_activity_check_required(spa, ub, label,
3007 	    spa->spa_config);
3008 	if (activity_check) {
3009 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3010 		    spa_get_hostid() == 0) {
3011 			nvlist_free(label);
3012 			fnvlist_add_uint64(spa->spa_load_info,
3013 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3014 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3015 		}
3016 
3017 		int error = spa_activity_check(spa, ub, spa->spa_config);
3018 		if (error) {
3019 			nvlist_free(label);
3020 			return (error);
3021 		}
3022 
3023 		fnvlist_add_uint64(spa->spa_load_info,
3024 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3025 		fnvlist_add_uint64(spa->spa_load_info,
3026 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3027 		fnvlist_add_uint16(spa->spa_load_info,
3028 		    ZPOOL_CONFIG_MMP_SEQ,
3029 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3030 	}
3031 
3032 	/*
3033 	 * If the pool has an unsupported version we can't open it.
3034 	 */
3035 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3036 		nvlist_free(label);
3037 		spa_load_failed(spa, "version %llu is not supported",
3038 		    (u_longlong_t)ub->ub_version);
3039 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3040 	}
3041 
3042 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3043 		nvlist_t *features;
3044 
3045 		/*
3046 		 * If we weren't able to find what's necessary for reading the
3047 		 * MOS in the label, return failure.
3048 		 */
3049 		if (label == NULL) {
3050 			spa_load_failed(spa, "label config unavailable");
3051 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3052 			    ENXIO));
3053 		}
3054 
3055 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3056 		    &features) != 0) {
3057 			nvlist_free(label);
3058 			spa_load_failed(spa, "invalid label: '%s' missing",
3059 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3060 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3061 			    ENXIO));
3062 		}
3063 
3064 		/*
3065 		 * Update our in-core representation with the definitive values
3066 		 * from the label.
3067 		 */
3068 		nvlist_free(spa->spa_label_features);
3069 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3070 	}
3071 
3072 	nvlist_free(label);
3073 
3074 	/*
3075 	 * Look through entries in the label nvlist's features_for_read. If
3076 	 * there is a feature listed there which we don't understand then we
3077 	 * cannot open a pool.
3078 	 */
3079 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3080 		nvlist_t *unsup_feat;
3081 
3082 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3083 		    0);
3084 
3085 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3086 		    NULL); nvp != NULL;
3087 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3088 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3089 				VERIFY(nvlist_add_string(unsup_feat,
3090 				    nvpair_name(nvp), "") == 0);
3091 			}
3092 		}
3093 
3094 		if (!nvlist_empty(unsup_feat)) {
3095 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3096 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3097 			nvlist_free(unsup_feat);
3098 			spa_load_failed(spa, "some features are unsupported");
3099 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3100 			    ENOTSUP));
3101 		}
3102 
3103 		nvlist_free(unsup_feat);
3104 	}
3105 
3106 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3107 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3108 		spa_try_repair(spa, spa->spa_config);
3109 		spa_config_exit(spa, SCL_ALL, FTAG);
3110 		nvlist_free(spa->spa_config_splitting);
3111 		spa->spa_config_splitting = NULL;
3112 	}
3113 
3114 	/*
3115 	 * Initialize internal SPA structures.
3116 	 */
3117 	spa_ld_select_uberblock_done(spa, ub);
3118 
3119 	return (0);
3120 }
3121 
3122 static int
3123 spa_ld_open_rootbp(spa_t *spa)
3124 {
3125 	int error = 0;
3126 	vdev_t *rvd = spa->spa_root_vdev;
3127 
3128 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3129 	if (error != 0) {
3130 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3131 		    "[error=%d]", error);
3132 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3133 	}
3134 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3135 
3136 	return (0);
3137 }
3138 
3139 static int
3140 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3141     boolean_t reloading)
3142 {
3143 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3144 	nvlist_t *nv, *mos_config, *policy;
3145 	int error = 0, copy_error;
3146 	uint64_t healthy_tvds, healthy_tvds_mos;
3147 	uint64_t mos_config_txg;
3148 
3149 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3150 	    != 0)
3151 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3152 
3153 	/*
3154 	 * If we're assembling a pool from a split, the config provided is
3155 	 * already trusted so there is nothing to do.
3156 	 */
3157 	if (type == SPA_IMPORT_ASSEMBLE)
3158 		return (0);
3159 
3160 	healthy_tvds = spa_healthy_core_tvds(spa);
3161 
3162 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3163 	    != 0) {
3164 		spa_load_failed(spa, "unable to retrieve MOS config");
3165 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3166 	}
3167 
3168 	/*
3169 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3170 	 * the verification here.
3171 	 */
3172 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3173 		error = spa_verify_host(spa, mos_config);
3174 		if (error != 0) {
3175 			nvlist_free(mos_config);
3176 			return (error);
3177 		}
3178 	}
3179 
3180 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3181 
3182 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3183 
3184 	/*
3185 	 * Build a new vdev tree from the trusted config
3186 	 */
3187 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3188 
3189 	/*
3190 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3191 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3192 	 * paths. We update the trusted MOS config with this information.
3193 	 * We first try to copy the paths with vdev_copy_path_strict, which
3194 	 * succeeds only when both configs have exactly the same vdev tree.
3195 	 * If that fails, we fall back to a more flexible method that has a
3196 	 * best effort policy.
3197 	 */
3198 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3199 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3200 		spa_load_note(spa, "provided vdev tree:");
3201 		vdev_dbgmsg_print_tree(rvd, 2);
3202 		spa_load_note(spa, "MOS vdev tree:");
3203 		vdev_dbgmsg_print_tree(mrvd, 2);
3204 	}
3205 	if (copy_error != 0) {
3206 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3207 		    "back to vdev_copy_path_relaxed");
3208 		vdev_copy_path_relaxed(rvd, mrvd);
3209 	}
3210 
3211 	vdev_close(rvd);
3212 	vdev_free(rvd);
3213 	spa->spa_root_vdev = mrvd;
3214 	rvd = mrvd;
3215 	spa_config_exit(spa, SCL_ALL, FTAG);
3216 
3217 	/*
3218 	 * We will use spa_config if we decide to reload the spa or if spa_load
3219 	 * fails and we rewind. We must thus regenerate the config using the
3220 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3221 	 * pass settings on how to load the pool and is not stored in the MOS.
3222 	 * We copy it over to our new, trusted config.
3223 	 */
3224 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3225 	    ZPOOL_CONFIG_POOL_TXG);
3226 	nvlist_free(mos_config);
3227 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3228 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3229 	    &policy) == 0)
3230 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3231 	spa_config_set(spa, mos_config);
3232 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3233 
3234 	/*
3235 	 * Now that we got the config from the MOS, we should be more strict
3236 	 * in checking blkptrs and can make assumptions about the consistency
3237 	 * of the vdev tree. spa_trust_config must be set to true before opening
3238 	 * vdevs in order for them to be writeable.
3239 	 */
3240 	spa->spa_trust_config = B_TRUE;
3241 
3242 	/*
3243 	 * Open and validate the new vdev tree
3244 	 */
3245 	error = spa_ld_open_vdevs(spa);
3246 	if (error != 0)
3247 		return (error);
3248 
3249 	error = spa_ld_validate_vdevs(spa);
3250 	if (error != 0)
3251 		return (error);
3252 
3253 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3254 		spa_load_note(spa, "final vdev tree:");
3255 		vdev_dbgmsg_print_tree(rvd, 2);
3256 	}
3257 
3258 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3259 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3260 		/*
3261 		 * Sanity check to make sure that we are indeed loading the
3262 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3263 		 * in the config provided and they happened to be the only ones
3264 		 * to have the latest uberblock, we could involuntarily perform
3265 		 * an extreme rewind.
3266 		 */
3267 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3268 		if (healthy_tvds_mos - healthy_tvds >=
3269 		    SPA_SYNC_MIN_VDEVS) {
3270 			spa_load_note(spa, "config provided misses too many "
3271 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3272 			    (u_longlong_t)healthy_tvds,
3273 			    (u_longlong_t)healthy_tvds_mos);
3274 			spa_load_note(spa, "vdev tree:");
3275 			vdev_dbgmsg_print_tree(rvd, 2);
3276 			if (reloading) {
3277 				spa_load_failed(spa, "config was already "
3278 				    "provided from MOS. Aborting.");
3279 				return (spa_vdev_err(rvd,
3280 				    VDEV_AUX_CORRUPT_DATA, EIO));
3281 			}
3282 			spa_load_note(spa, "spa must be reloaded using MOS "
3283 			    "config");
3284 			return (SET_ERROR(EAGAIN));
3285 		}
3286 	}
3287 
3288 	error = spa_check_for_missing_logs(spa);
3289 	if (error != 0)
3290 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3291 
3292 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3293 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3294 		    "guid sum (%llu != %llu)",
3295 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3296 		    (u_longlong_t)rvd->vdev_guid_sum);
3297 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3298 		    ENXIO));
3299 	}
3300 
3301 	return (0);
3302 }
3303 
3304 static int
3305 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3306 {
3307 	int error = 0;
3308 	vdev_t *rvd = spa->spa_root_vdev;
3309 
3310 	/*
3311 	 * Everything that we read before spa_remove_init() must be stored
3312 	 * on concreted vdevs.  Therefore we do this as early as possible.
3313 	 */
3314 	error = spa_remove_init(spa);
3315 	if (error != 0) {
3316 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3317 		    error);
3318 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3319 	}
3320 
3321 	/*
3322 	 * Retrieve information needed to condense indirect vdev mappings.
3323 	 */
3324 	error = spa_condense_init(spa);
3325 	if (error != 0) {
3326 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3327 		    error);
3328 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3329 	}
3330 
3331 	return (0);
3332 }
3333 
3334 static int
3335 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3336 {
3337 	int error = 0;
3338 	vdev_t *rvd = spa->spa_root_vdev;
3339 
3340 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3341 		boolean_t missing_feat_read = B_FALSE;
3342 		nvlist_t *unsup_feat, *enabled_feat;
3343 
3344 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3345 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3346 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3347 		}
3348 
3349 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3350 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3351 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3352 		}
3353 
3354 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3355 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3356 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3357 		}
3358 
3359 		enabled_feat = fnvlist_alloc();
3360 		unsup_feat = fnvlist_alloc();
3361 
3362 		if (!spa_features_check(spa, B_FALSE,
3363 		    unsup_feat, enabled_feat))
3364 			missing_feat_read = B_TRUE;
3365 
3366 		if (spa_writeable(spa) ||
3367 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3368 			if (!spa_features_check(spa, B_TRUE,
3369 			    unsup_feat, enabled_feat)) {
3370 				*missing_feat_writep = B_TRUE;
3371 			}
3372 		}
3373 
3374 		fnvlist_add_nvlist(spa->spa_load_info,
3375 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3376 
3377 		if (!nvlist_empty(unsup_feat)) {
3378 			fnvlist_add_nvlist(spa->spa_load_info,
3379 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3380 		}
3381 
3382 		fnvlist_free(enabled_feat);
3383 		fnvlist_free(unsup_feat);
3384 
3385 		if (!missing_feat_read) {
3386 			fnvlist_add_boolean(spa->spa_load_info,
3387 			    ZPOOL_CONFIG_CAN_RDONLY);
3388 		}
3389 
3390 		/*
3391 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3392 		 * twofold: to determine whether the pool is available for
3393 		 * import in read-write mode and (if it is not) whether the
3394 		 * pool is available for import in read-only mode. If the pool
3395 		 * is available for import in read-write mode, it is displayed
3396 		 * as available in userland; if it is not available for import
3397 		 * in read-only mode, it is displayed as unavailable in
3398 		 * userland. If the pool is available for import in read-only
3399 		 * mode but not read-write mode, it is displayed as unavailable
3400 		 * in userland with a special note that the pool is actually
3401 		 * available for open in read-only mode.
3402 		 *
3403 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3404 		 * missing a feature for write, we must first determine whether
3405 		 * the pool can be opened read-only before returning to
3406 		 * userland in order to know whether to display the
3407 		 * abovementioned note.
3408 		 */
3409 		if (missing_feat_read || (*missing_feat_writep &&
3410 		    spa_writeable(spa))) {
3411 			spa_load_failed(spa, "pool uses unsupported features");
3412 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3413 			    ENOTSUP));
3414 		}
3415 
3416 		/*
3417 		 * Load refcounts for ZFS features from disk into an in-memory
3418 		 * cache during SPA initialization.
3419 		 */
3420 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3421 			uint64_t refcount;
3422 
3423 			error = feature_get_refcount_from_disk(spa,
3424 			    &spa_feature_table[i], &refcount);
3425 			if (error == 0) {
3426 				spa->spa_feat_refcount_cache[i] = refcount;
3427 			} else if (error == ENOTSUP) {
3428 				spa->spa_feat_refcount_cache[i] =
3429 				    SPA_FEATURE_DISABLED;
3430 			} else {
3431 				spa_load_failed(spa, "error getting refcount "
3432 				    "for feature %s [error=%d]",
3433 				    spa_feature_table[i].fi_guid, error);
3434 				return (spa_vdev_err(rvd,
3435 				    VDEV_AUX_CORRUPT_DATA, EIO));
3436 			}
3437 		}
3438 	}
3439 
3440 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3441 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3442 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3443 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3444 	}
3445 
3446 	/*
3447 	 * Encryption was added before bookmark_v2, even though bookmark_v2
3448 	 * is now a dependency. If this pool has encryption enabled without
3449 	 * bookmark_v2, trigger an errata message.
3450 	 */
3451 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3452 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3453 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3454 	}
3455 
3456 	return (0);
3457 }
3458 
3459 static int
3460 spa_ld_load_special_directories(spa_t *spa)
3461 {
3462 	int error = 0;
3463 	vdev_t *rvd = spa->spa_root_vdev;
3464 
3465 	spa->spa_is_initializing = B_TRUE;
3466 	error = dsl_pool_open(spa->spa_dsl_pool);
3467 	spa->spa_is_initializing = B_FALSE;
3468 	if (error != 0) {
3469 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3470 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3471 	}
3472 
3473 	return (0);
3474 }
3475 
3476 static int
3477 spa_ld_get_props(spa_t *spa)
3478 {
3479 	int error = 0;
3480 	uint64_t obj;
3481 	vdev_t *rvd = spa->spa_root_vdev;
3482 
3483 	/* Grab the secret checksum salt from the MOS. */
3484 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3485 	    DMU_POOL_CHECKSUM_SALT, 1,
3486 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3487 	    spa->spa_cksum_salt.zcs_bytes);
3488 	if (error == ENOENT) {
3489 		/* Generate a new salt for subsequent use */
3490 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3491 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3492 	} else if (error != 0) {
3493 		spa_load_failed(spa, "unable to retrieve checksum salt from "
3494 		    "MOS [error=%d]", error);
3495 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3496 	}
3497 
3498 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3499 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3500 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3501 	if (error != 0) {
3502 		spa_load_failed(spa, "error opening deferred-frees bpobj "
3503 		    "[error=%d]", error);
3504 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3505 	}
3506 
3507 	/*
3508 	 * Load the bit that tells us to use the new accounting function
3509 	 * (raid-z deflation).  If we have an older pool, this will not
3510 	 * be present.
3511 	 */
3512 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3513 	if (error != 0 && error != ENOENT)
3514 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3515 
3516 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3517 	    &spa->spa_creation_version, B_FALSE);
3518 	if (error != 0 && error != ENOENT)
3519 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3520 
3521 	/*
3522 	 * Load the persistent error log.  If we have an older pool, this will
3523 	 * not be present.
3524 	 */
3525 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3526 	    B_FALSE);
3527 	if (error != 0 && error != ENOENT)
3528 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3529 
3530 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3531 	    &spa->spa_errlog_scrub, B_FALSE);
3532 	if (error != 0 && error != ENOENT)
3533 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3534 
3535 	/*
3536 	 * Load the history object.  If we have an older pool, this
3537 	 * will not be present.
3538 	 */
3539 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3540 	if (error != 0 && error != ENOENT)
3541 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3542 
3543 	/*
3544 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3545 	 * be present; in this case, defer its creation to a later time to
3546 	 * avoid dirtying the MOS this early / out of sync context. See
3547 	 * spa_sync_config_object.
3548 	 */
3549 
3550 	/* The sentinel is only available in the MOS config. */
3551 	nvlist_t *mos_config;
3552 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3553 		spa_load_failed(spa, "unable to retrieve MOS config");
3554 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3555 	}
3556 
3557 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3558 	    &spa->spa_all_vdev_zaps, B_FALSE);
3559 
3560 	if (error == ENOENT) {
3561 		VERIFY(!nvlist_exists(mos_config,
3562 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3563 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3564 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3565 	} else if (error != 0) {
3566 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3567 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3568 		/*
3569 		 * An older version of ZFS overwrote the sentinel value, so
3570 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3571 		 * destruction to later; see spa_sync_config_object.
3572 		 */
3573 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3574 		/*
3575 		 * We're assuming that no vdevs have had their ZAPs created
3576 		 * before this. Better be sure of it.
3577 		 */
3578 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3579 	}
3580 	nvlist_free(mos_config);
3581 
3582 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3583 
3584 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3585 	    B_FALSE);
3586 	if (error && error != ENOENT)
3587 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3588 
3589 	if (error == 0) {
3590 		uint64_t autoreplace;
3591 
3592 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3593 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3594 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3595 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3596 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3597 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3598 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3599 		    &spa->spa_dedup_ditto);
3600 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
3601 		spa->spa_autoreplace = (autoreplace != 0);
3602 	}
3603 
3604 	/*
3605 	 * If we are importing a pool with missing top-level vdevs,
3606 	 * we enforce that the pool doesn't panic or get suspended on
3607 	 * error since the likelihood of missing data is extremely high.
3608 	 */
3609 	if (spa->spa_missing_tvds > 0 &&
3610 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3611 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3612 		spa_load_note(spa, "forcing failmode to 'continue' "
3613 		    "as some top level vdevs are missing");
3614 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3615 	}
3616 
3617 	return (0);
3618 }
3619 
3620 static int
3621 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3622 {
3623 	int error = 0;
3624 	vdev_t *rvd = spa->spa_root_vdev;
3625 
3626 	/*
3627 	 * If we're assembling the pool from the split-off vdevs of
3628 	 * an existing pool, we don't want to attach the spares & cache
3629 	 * devices.
3630 	 */
3631 
3632 	/*
3633 	 * Load any hot spares for this pool.
3634 	 */
3635 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3636 	    B_FALSE);
3637 	if (error != 0 && error != ENOENT)
3638 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3639 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3640 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3641 		if (load_nvlist(spa, spa->spa_spares.sav_object,
3642 		    &spa->spa_spares.sav_config) != 0) {
3643 			spa_load_failed(spa, "error loading spares nvlist");
3644 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3645 		}
3646 
3647 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3648 		spa_load_spares(spa);
3649 		spa_config_exit(spa, SCL_ALL, FTAG);
3650 	} else if (error == 0) {
3651 		spa->spa_spares.sav_sync = B_TRUE;
3652 	}
3653 
3654 	/*
3655 	 * Load any level 2 ARC devices for this pool.
3656 	 */
3657 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3658 	    &spa->spa_l2cache.sav_object, B_FALSE);
3659 	if (error != 0 && error != ENOENT)
3660 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3661 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3662 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3663 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3664 		    &spa->spa_l2cache.sav_config) != 0) {
3665 			spa_load_failed(spa, "error loading l2cache nvlist");
3666 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3667 		}
3668 
3669 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3670 		spa_load_l2cache(spa);
3671 		spa_config_exit(spa, SCL_ALL, FTAG);
3672 	} else if (error == 0) {
3673 		spa->spa_l2cache.sav_sync = B_TRUE;
3674 	}
3675 
3676 	return (0);
3677 }
3678 
3679 static int
3680 spa_ld_load_vdev_metadata(spa_t *spa)
3681 {
3682 	int error = 0;
3683 	vdev_t *rvd = spa->spa_root_vdev;
3684 
3685 	/*
3686 	 * If the 'multihost' property is set, then never allow a pool to
3687 	 * be imported when the system hostid is zero.  The exception to
3688 	 * this rule is zdb which is always allowed to access pools.
3689 	 */
3690 	if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3691 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3692 		fnvlist_add_uint64(spa->spa_load_info,
3693 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3694 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3695 	}
3696 
3697 	/*
3698 	 * If the 'autoreplace' property is set, then post a resource notifying
3699 	 * the ZFS DE that it should not issue any faults for unopenable
3700 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3701 	 * unopenable vdevs so that the normal autoreplace handler can take
3702 	 * over.
3703 	 */
3704 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3705 		spa_check_removed(spa->spa_root_vdev);
3706 		/*
3707 		 * For the import case, this is done in spa_import(), because
3708 		 * at this point we're using the spare definitions from
3709 		 * the MOS config, not necessarily from the userland config.
3710 		 */
3711 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3712 			spa_aux_check_removed(&spa->spa_spares);
3713 			spa_aux_check_removed(&spa->spa_l2cache);
3714 		}
3715 	}
3716 
3717 	/*
3718 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3719 	 */
3720 	error = vdev_load(rvd);
3721 	if (error != 0) {
3722 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3723 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3724 	}
3725 
3726 	error = spa_ld_log_spacemaps(spa);
3727 	if (error != 0) {
3728 		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
3729 		    error);
3730 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3731 	}
3732 
3733 	/*
3734 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3735 	 */
3736 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3737 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3738 	spa_config_exit(spa, SCL_ALL, FTAG);
3739 
3740 	return (0);
3741 }
3742 
3743 static int
3744 spa_ld_load_dedup_tables(spa_t *spa)
3745 {
3746 	int error = 0;
3747 	vdev_t *rvd = spa->spa_root_vdev;
3748 
3749 	error = ddt_load(spa);
3750 	if (error != 0) {
3751 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3752 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3753 	}
3754 
3755 	return (0);
3756 }
3757 
3758 static int
3759 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3760 {
3761 	vdev_t *rvd = spa->spa_root_vdev;
3762 
3763 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3764 		boolean_t missing = spa_check_logs(spa);
3765 		if (missing) {
3766 			if (spa->spa_missing_tvds != 0) {
3767 				spa_load_note(spa, "spa_check_logs failed "
3768 				    "so dropping the logs");
3769 			} else {
3770 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3771 				spa_load_failed(spa, "spa_check_logs failed");
3772 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3773 				    ENXIO));
3774 			}
3775 		}
3776 	}
3777 
3778 	return (0);
3779 }
3780 
3781 static int
3782 spa_ld_verify_pool_data(spa_t *spa)
3783 {
3784 	int error = 0;
3785 	vdev_t *rvd = spa->spa_root_vdev;
3786 
3787 	/*
3788 	 * We've successfully opened the pool, verify that we're ready
3789 	 * to start pushing transactions.
3790 	 */
3791 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3792 		error = spa_load_verify(spa);
3793 		if (error != 0) {
3794 			spa_load_failed(spa, "spa_load_verify failed "
3795 			    "[error=%d]", error);
3796 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3797 			    error));
3798 		}
3799 	}
3800 
3801 	return (0);
3802 }
3803 
3804 static void
3805 spa_ld_claim_log_blocks(spa_t *spa)
3806 {
3807 	dmu_tx_t *tx;
3808 	dsl_pool_t *dp = spa_get_dsl(spa);
3809 
3810 	/*
3811 	 * Claim log blocks that haven't been committed yet.
3812 	 * This must all happen in a single txg.
3813 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3814 	 * invoked from zil_claim_log_block()'s i/o done callback.
3815 	 * Price of rollback is that we abandon the log.
3816 	 */
3817 	spa->spa_claiming = B_TRUE;
3818 
3819 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3820 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3821 	    zil_claim, tx, DS_FIND_CHILDREN);
3822 	dmu_tx_commit(tx);
3823 
3824 	spa->spa_claiming = B_FALSE;
3825 
3826 	spa_set_log_state(spa, SPA_LOG_GOOD);
3827 }
3828 
3829 static void
3830 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3831     boolean_t update_config_cache)
3832 {
3833 	vdev_t *rvd = spa->spa_root_vdev;
3834 	int need_update = B_FALSE;
3835 
3836 	/*
3837 	 * If the config cache is stale, or we have uninitialized
3838 	 * metaslabs (see spa_vdev_add()), then update the config.
3839 	 *
3840 	 * If this is a verbatim import, trust the current
3841 	 * in-core spa_config and update the disk labels.
3842 	 */
3843 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3844 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3845 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3846 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3847 		need_update = B_TRUE;
3848 
3849 	for (int c = 0; c < rvd->vdev_children; c++)
3850 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3851 			need_update = B_TRUE;
3852 
3853 	/*
3854 	 * Update the config cache asychronously in case we're the
3855 	 * root pool, in which case the config cache isn't writable yet.
3856 	 */
3857 	if (need_update)
3858 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3859 }
3860 
3861 static void
3862 spa_ld_prepare_for_reload(spa_t *spa)
3863 {
3864 	int mode = spa->spa_mode;
3865 	int async_suspended = spa->spa_async_suspended;
3866 
3867 	spa_unload(spa);
3868 	spa_deactivate(spa);
3869 	spa_activate(spa, mode);
3870 
3871 	/*
3872 	 * We save the value of spa_async_suspended as it gets reset to 0 by
3873 	 * spa_unload(). We want to restore it back to the original value before
3874 	 * returning as we might be calling spa_async_resume() later.
3875 	 */
3876 	spa->spa_async_suspended = async_suspended;
3877 }
3878 
3879 static int
3880 spa_ld_read_checkpoint_txg(spa_t *spa)
3881 {
3882 	uberblock_t checkpoint;
3883 	int error = 0;
3884 
3885 	ASSERT0(spa->spa_checkpoint_txg);
3886 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3887 
3888 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3889 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3890 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3891 
3892 	if (error == ENOENT)
3893 		return (0);
3894 
3895 	if (error != 0)
3896 		return (error);
3897 
3898 	ASSERT3U(checkpoint.ub_txg, !=, 0);
3899 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3900 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3901 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3902 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3903 
3904 	return (0);
3905 }
3906 
3907 static int
3908 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3909 {
3910 	int error = 0;
3911 
3912 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3913 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3914 
3915 	/*
3916 	 * Never trust the config that is provided unless we are assembling
3917 	 * a pool following a split.
3918 	 * This means don't trust blkptrs and the vdev tree in general. This
3919 	 * also effectively puts the spa in read-only mode since
3920 	 * spa_writeable() checks for spa_trust_config to be true.
3921 	 * We will later load a trusted config from the MOS.
3922 	 */
3923 	if (type != SPA_IMPORT_ASSEMBLE)
3924 		spa->spa_trust_config = B_FALSE;
3925 
3926 	/*
3927 	 * Parse the config provided to create a vdev tree.
3928 	 */
3929 	error = spa_ld_parse_config(spa, type);
3930 	if (error != 0)
3931 		return (error);
3932 
3933 	spa_import_progress_add(spa);
3934 
3935 	/*
3936 	 * Now that we have the vdev tree, try to open each vdev. This involves
3937 	 * opening the underlying physical device, retrieving its geometry and
3938 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3939 	 * based on the success of those operations. After this we'll be ready
3940 	 * to read from the vdevs.
3941 	 */
3942 	error = spa_ld_open_vdevs(spa);
3943 	if (error != 0)
3944 		return (error);
3945 
3946 	/*
3947 	 * Read the label of each vdev and make sure that the GUIDs stored
3948 	 * there match the GUIDs in the config provided.
3949 	 * If we're assembling a new pool that's been split off from an
3950 	 * existing pool, the labels haven't yet been updated so we skip
3951 	 * validation for now.
3952 	 */
3953 	if (type != SPA_IMPORT_ASSEMBLE) {
3954 		error = spa_ld_validate_vdevs(spa);
3955 		if (error != 0)
3956 			return (error);
3957 	}
3958 
3959 	/*
3960 	 * Read all vdev labels to find the best uberblock (i.e. latest,
3961 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3962 	 * get the list of features required to read blkptrs in the MOS from
3963 	 * the vdev label with the best uberblock and verify that our version
3964 	 * of zfs supports them all.
3965 	 */
3966 	error = spa_ld_select_uberblock(spa, type);
3967 	if (error != 0)
3968 		return (error);
3969 
3970 	/*
3971 	 * Pass that uberblock to the dsl_pool layer which will open the root
3972 	 * blkptr. This blkptr points to the latest version of the MOS and will
3973 	 * allow us to read its contents.
3974 	 */
3975 	error = spa_ld_open_rootbp(spa);
3976 	if (error != 0)
3977 		return (error);
3978 
3979 	return (0);
3980 }
3981 
3982 static int
3983 spa_ld_checkpoint_rewind(spa_t *spa)
3984 {
3985 	uberblock_t checkpoint;
3986 	int error = 0;
3987 
3988 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3989 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3990 
3991 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3992 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3993 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3994 
3995 	if (error != 0) {
3996 		spa_load_failed(spa, "unable to retrieve checkpointed "
3997 		    "uberblock from the MOS config [error=%d]", error);
3998 
3999 		if (error == ENOENT)
4000 			error = ZFS_ERR_NO_CHECKPOINT;
4001 
4002 		return (error);
4003 	}
4004 
4005 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4006 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4007 
4008 	/*
4009 	 * We need to update the txg and timestamp of the checkpointed
4010 	 * uberblock to be higher than the latest one. This ensures that
4011 	 * the checkpointed uberblock is selected if we were to close and
4012 	 * reopen the pool right after we've written it in the vdev labels.
4013 	 * (also see block comment in vdev_uberblock_compare)
4014 	 */
4015 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4016 	checkpoint.ub_timestamp = gethrestime_sec();
4017 
4018 	/*
4019 	 * Set current uberblock to be the checkpointed uberblock.
4020 	 */
4021 	spa->spa_uberblock = checkpoint;
4022 
4023 	/*
4024 	 * If we are doing a normal rewind, then the pool is open for
4025 	 * writing and we sync the "updated" checkpointed uberblock to
4026 	 * disk. Once this is done, we've basically rewound the whole
4027 	 * pool and there is no way back.
4028 	 *
4029 	 * There are cases when we don't want to attempt and sync the
4030 	 * checkpointed uberblock to disk because we are opening a
4031 	 * pool as read-only. Specifically, verifying the checkpointed
4032 	 * state with zdb, and importing the checkpointed state to get
4033 	 * a "preview" of its content.
4034 	 */
4035 	if (spa_writeable(spa)) {
4036 		vdev_t *rvd = spa->spa_root_vdev;
4037 
4038 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4039 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4040 		int svdcount = 0;
4041 		int children = rvd->vdev_children;
4042 		int c0 = spa_get_random(children);
4043 
4044 		for (int c = 0; c < children; c++) {
4045 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4046 
4047 			/* Stop when revisiting the first vdev */
4048 			if (c > 0 && svd[0] == vd)
4049 				break;
4050 
4051 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4052 			    !vdev_is_concrete(vd))
4053 				continue;
4054 
4055 			svd[svdcount++] = vd;
4056 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4057 				break;
4058 		}
4059 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4060 		if (error == 0)
4061 			spa->spa_last_synced_guid = rvd->vdev_guid;
4062 		spa_config_exit(spa, SCL_ALL, FTAG);
4063 
4064 		if (error != 0) {
4065 			spa_load_failed(spa, "failed to write checkpointed "
4066 			    "uberblock to the vdev labels [error=%d]", error);
4067 			return (error);
4068 		}
4069 	}
4070 
4071 	return (0);
4072 }
4073 
4074 static int
4075 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4076     boolean_t *update_config_cache)
4077 {
4078 	int error;
4079 
4080 	/*
4081 	 * Parse the config for pool, open and validate vdevs,
4082 	 * select an uberblock, and use that uberblock to open
4083 	 * the MOS.
4084 	 */
4085 	error = spa_ld_mos_init(spa, type);
4086 	if (error != 0)
4087 		return (error);
4088 
4089 	/*
4090 	 * Retrieve the trusted config stored in the MOS and use it to create
4091 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4092 	 */
4093 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4094 	if (error == EAGAIN) {
4095 		if (update_config_cache != NULL)
4096 			*update_config_cache = B_TRUE;
4097 
4098 		/*
4099 		 * Redo the loading process with the trusted config if it is
4100 		 * too different from the untrusted config.
4101 		 */
4102 		spa_ld_prepare_for_reload(spa);
4103 		spa_load_note(spa, "RELOADING");
4104 		error = spa_ld_mos_init(spa, type);
4105 		if (error != 0)
4106 			return (error);
4107 
4108 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4109 		if (error != 0)
4110 			return (error);
4111 
4112 	} else if (error != 0) {
4113 		return (error);
4114 	}
4115 
4116 	return (0);
4117 }
4118 
4119 /*
4120  * Load an existing storage pool, using the config provided. This config
4121  * describes which vdevs are part of the pool and is later validated against
4122  * partial configs present in each vdev's label and an entire copy of the
4123  * config stored in the MOS.
4124  */
4125 static int
4126 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4127 {
4128 	int error = 0;
4129 	boolean_t missing_feat_write = B_FALSE;
4130 	boolean_t checkpoint_rewind =
4131 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4132 	boolean_t update_config_cache = B_FALSE;
4133 
4134 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4135 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4136 
4137 	spa_load_note(spa, "LOADING");
4138 
4139 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4140 	if (error != 0)
4141 		return (error);
4142 
4143 	/*
4144 	 * If we are rewinding to the checkpoint then we need to repeat
4145 	 * everything we've done so far in this function but this time
4146 	 * selecting the checkpointed uberblock and using that to open
4147 	 * the MOS.
4148 	 */
4149 	if (checkpoint_rewind) {
4150 		/*
4151 		 * If we are rewinding to the checkpoint update config cache
4152 		 * anyway.
4153 		 */
4154 		update_config_cache = B_TRUE;
4155 
4156 		/*
4157 		 * Extract the checkpointed uberblock from the current MOS
4158 		 * and use this as the pool's uberblock from now on. If the
4159 		 * pool is imported as writeable we also write the checkpoint
4160 		 * uberblock to the labels, making the rewind permanent.
4161 		 */
4162 		error = spa_ld_checkpoint_rewind(spa);
4163 		if (error != 0)
4164 			return (error);
4165 
4166 		/*
4167 		 * Redo the loading process process again with the
4168 		 * checkpointed uberblock.
4169 		 */
4170 		spa_ld_prepare_for_reload(spa);
4171 		spa_load_note(spa, "LOADING checkpointed uberblock");
4172 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4173 		if (error != 0)
4174 			return (error);
4175 	}
4176 
4177 	/*
4178 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4179 	 */
4180 	error = spa_ld_read_checkpoint_txg(spa);
4181 	if (error != 0)
4182 		return (error);
4183 
4184 	/*
4185 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4186 	 * from the pool and their contents were re-mapped to other vdevs. Note
4187 	 * that everything that we read before this step must have been
4188 	 * rewritten on concrete vdevs after the last device removal was
4189 	 * initiated. Otherwise we could be reading from indirect vdevs before
4190 	 * we have loaded their mappings.
4191 	 */
4192 	error = spa_ld_open_indirect_vdev_metadata(spa);
4193 	if (error != 0)
4194 		return (error);
4195 
4196 	/*
4197 	 * Retrieve the full list of active features from the MOS and check if
4198 	 * they are all supported.
4199 	 */
4200 	error = spa_ld_check_features(spa, &missing_feat_write);
4201 	if (error != 0)
4202 		return (error);
4203 
4204 	/*
4205 	 * Load several special directories from the MOS needed by the dsl_pool
4206 	 * layer.
4207 	 */
4208 	error = spa_ld_load_special_directories(spa);
4209 	if (error != 0)
4210 		return (error);
4211 
4212 	/*
4213 	 * Retrieve pool properties from the MOS.
4214 	 */
4215 	error = spa_ld_get_props(spa);
4216 	if (error != 0)
4217 		return (error);
4218 
4219 	/*
4220 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4221 	 * and open them.
4222 	 */
4223 	error = spa_ld_open_aux_vdevs(spa, type);
4224 	if (error != 0)
4225 		return (error);
4226 
4227 	/*
4228 	 * Load the metadata for all vdevs. Also check if unopenable devices
4229 	 * should be autoreplaced.
4230 	 */
4231 	error = spa_ld_load_vdev_metadata(spa);
4232 	if (error != 0)
4233 		return (error);
4234 
4235 	error = spa_ld_load_dedup_tables(spa);
4236 	if (error != 0)
4237 		return (error);
4238 
4239 	/*
4240 	 * Verify the logs now to make sure we don't have any unexpected errors
4241 	 * when we claim log blocks later.
4242 	 */
4243 	error = spa_ld_verify_logs(spa, type, ereport);
4244 	if (error != 0)
4245 		return (error);
4246 
4247 	if (missing_feat_write) {
4248 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4249 
4250 		/*
4251 		 * At this point, we know that we can open the pool in
4252 		 * read-only mode but not read-write mode. We now have enough
4253 		 * information and can return to userland.
4254 		 */
4255 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4256 		    ENOTSUP));
4257 	}
4258 
4259 	/*
4260 	 * Traverse the last txgs to make sure the pool was left off in a safe
4261 	 * state. When performing an extreme rewind, we verify the whole pool,
4262 	 * which can take a very long time.
4263 	 */
4264 	error = spa_ld_verify_pool_data(spa);
4265 	if (error != 0)
4266 		return (error);
4267 
4268 	/*
4269 	 * Calculate the deflated space for the pool. This must be done before
4270 	 * we write anything to the pool because we'd need to update the space
4271 	 * accounting using the deflated sizes.
4272 	 */
4273 	spa_update_dspace(spa);
4274 
4275 	/*
4276 	 * We have now retrieved all the information we needed to open the
4277 	 * pool. If we are importing the pool in read-write mode, a few
4278 	 * additional steps must be performed to finish the import.
4279 	 */
4280 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4281 	    spa->spa_load_max_txg == UINT64_MAX)) {
4282 		uint64_t config_cache_txg = spa->spa_config_txg;
4283 
4284 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4285 
4286 		/*
4287 		 * In case of a checkpoint rewind, log the original txg
4288 		 * of the checkpointed uberblock.
4289 		 */
4290 		if (checkpoint_rewind) {
4291 			spa_history_log_internal(spa, "checkpoint rewind",
4292 			    NULL, "rewound state to txg=%llu",
4293 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4294 		}
4295 
4296 		/*
4297 		 * Traverse the ZIL and claim all blocks.
4298 		 */
4299 		spa_ld_claim_log_blocks(spa);
4300 
4301 		/*
4302 		 * Kick-off the syncing thread.
4303 		 */
4304 		spa->spa_sync_on = B_TRUE;
4305 		txg_sync_start(spa->spa_dsl_pool);
4306 		mmp_thread_start(spa);
4307 
4308 		/*
4309 		 * Wait for all claims to sync.  We sync up to the highest
4310 		 * claimed log block birth time so that claimed log blocks
4311 		 * don't appear to be from the future.  spa_claim_max_txg
4312 		 * will have been set for us by ZIL traversal operations
4313 		 * performed above.
4314 		 */
4315 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4316 
4317 		/*
4318 		 * Check if we need to request an update of the config. On the
4319 		 * next sync, we would update the config stored in vdev labels
4320 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4321 		 */
4322 		spa_ld_check_for_config_update(spa, config_cache_txg,
4323 		    update_config_cache);
4324 
4325 		/*
4326 		 * Check all DTLs to see if anything needs resilvering.
4327 		 */
4328 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4329 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4330 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4331 
4332 		/*
4333 		 * Log the fact that we booted up (so that we can detect if
4334 		 * we rebooted in the middle of an operation).
4335 		 */
4336 		spa_history_log_version(spa, "open");
4337 
4338 		spa_restart_removal(spa);
4339 		spa_spawn_aux_threads(spa);
4340 
4341 		/*
4342 		 * Delete any inconsistent datasets.
4343 		 *
4344 		 * Note:
4345 		 * Since we may be issuing deletes for clones here,
4346 		 * we make sure to do so after we've spawned all the
4347 		 * auxiliary threads above (from which the livelist
4348 		 * deletion zthr is part of).
4349 		 */
4350 		(void) dmu_objset_find(spa_name(spa),
4351 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4352 
4353 		/*
4354 		 * Clean up any stale temporary dataset userrefs.
4355 		 */
4356 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4357 
4358 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4359 		vdev_initialize_restart(spa->spa_root_vdev);
4360 		vdev_trim_restart(spa->spa_root_vdev);
4361 		vdev_autotrim_restart(spa);
4362 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4363 	}
4364 
4365 	spa_import_progress_remove(spa);
4366 	spa_load_note(spa, "LOADED");
4367 
4368 	return (0);
4369 }
4370 
4371 static int
4372 spa_load_retry(spa_t *spa, spa_load_state_t state)
4373 {
4374 	int mode = spa->spa_mode;
4375 
4376 	spa_unload(spa);
4377 	spa_deactivate(spa);
4378 
4379 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4380 
4381 	spa_activate(spa, mode);
4382 	spa_async_suspend(spa);
4383 
4384 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4385 	    (u_longlong_t)spa->spa_load_max_txg);
4386 
4387 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4388 }
4389 
4390 /*
4391  * If spa_load() fails this function will try loading prior txg's. If
4392  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4393  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4394  * function will not rewind the pool and will return the same error as
4395  * spa_load().
4396  */
4397 static int
4398 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4399     int rewind_flags)
4400 {
4401 	nvlist_t *loadinfo = NULL;
4402 	nvlist_t *config = NULL;
4403 	int load_error, rewind_error;
4404 	uint64_t safe_rewind_txg;
4405 	uint64_t min_txg;
4406 
4407 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4408 		spa->spa_load_max_txg = spa->spa_load_txg;
4409 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4410 	} else {
4411 		spa->spa_load_max_txg = max_request;
4412 		if (max_request != UINT64_MAX)
4413 			spa->spa_extreme_rewind = B_TRUE;
4414 	}
4415 
4416 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4417 	if (load_error == 0)
4418 		return (0);
4419 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4420 		/*
4421 		 * When attempting checkpoint-rewind on a pool with no
4422 		 * checkpoint, we should not attempt to load uberblocks
4423 		 * from previous txgs when spa_load fails.
4424 		 */
4425 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4426 		spa_import_progress_remove(spa);
4427 		return (load_error);
4428 	}
4429 
4430 	if (spa->spa_root_vdev != NULL)
4431 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4432 
4433 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4434 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4435 
4436 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4437 		nvlist_free(config);
4438 		spa_import_progress_remove(spa);
4439 		return (load_error);
4440 	}
4441 
4442 	if (state == SPA_LOAD_RECOVER) {
4443 		/* Price of rolling back is discarding txgs, including log */
4444 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4445 	} else {
4446 		/*
4447 		 * If we aren't rolling back save the load info from our first
4448 		 * import attempt so that we can restore it after attempting
4449 		 * to rewind.
4450 		 */
4451 		loadinfo = spa->spa_load_info;
4452 		spa->spa_load_info = fnvlist_alloc();
4453 	}
4454 
4455 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4456 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4457 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4458 	    TXG_INITIAL : safe_rewind_txg;
4459 
4460 	/*
4461 	 * Continue as long as we're finding errors, we're still within
4462 	 * the acceptable rewind range, and we're still finding uberblocks
4463 	 */
4464 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4465 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4466 		if (spa->spa_load_max_txg < safe_rewind_txg)
4467 			spa->spa_extreme_rewind = B_TRUE;
4468 		rewind_error = spa_load_retry(spa, state);
4469 	}
4470 
4471 	spa->spa_extreme_rewind = B_FALSE;
4472 	spa->spa_load_max_txg = UINT64_MAX;
4473 
4474 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4475 		spa_config_set(spa, config);
4476 	else
4477 		nvlist_free(config);
4478 
4479 	if (state == SPA_LOAD_RECOVER) {
4480 		ASSERT3P(loadinfo, ==, NULL);
4481 		spa_import_progress_remove(spa);
4482 		return (rewind_error);
4483 	} else {
4484 		/* Store the rewind info as part of the initial load info */
4485 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4486 		    spa->spa_load_info);
4487 
4488 		/* Restore the initial load info */
4489 		fnvlist_free(spa->spa_load_info);
4490 		spa->spa_load_info = loadinfo;
4491 
4492 		spa_import_progress_remove(spa);
4493 		return (load_error);
4494 	}
4495 }
4496 
4497 /*
4498  * Pool Open/Import
4499  *
4500  * The import case is identical to an open except that the configuration is sent
4501  * down from userland, instead of grabbed from the configuration cache.  For the
4502  * case of an open, the pool configuration will exist in the
4503  * POOL_STATE_UNINITIALIZED state.
4504  *
4505  * The stats information (gen/count/ustats) is used to gather vdev statistics at
4506  * the same time open the pool, without having to keep around the spa_t in some
4507  * ambiguous state.
4508  */
4509 static int
4510 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4511     nvlist_t **config)
4512 {
4513 	spa_t *spa;
4514 	spa_load_state_t state = SPA_LOAD_OPEN;
4515 	int error;
4516 	int locked = B_FALSE;
4517 
4518 	*spapp = NULL;
4519 
4520 	/*
4521 	 * As disgusting as this is, we need to support recursive calls to this
4522 	 * function because dsl_dir_open() is called during spa_load(), and ends
4523 	 * up calling spa_open() again.  The real fix is to figure out how to
4524 	 * avoid dsl_dir_open() calling this in the first place.
4525 	 */
4526 	if (mutex_owner(&spa_namespace_lock) != curthread) {
4527 		mutex_enter(&spa_namespace_lock);
4528 		locked = B_TRUE;
4529 	}
4530 
4531 	if ((spa = spa_lookup(pool)) == NULL) {
4532 		if (locked)
4533 			mutex_exit(&spa_namespace_lock);
4534 		return (SET_ERROR(ENOENT));
4535 	}
4536 
4537 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4538 		zpool_load_policy_t policy;
4539 
4540 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4541 		    &policy);
4542 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4543 			state = SPA_LOAD_RECOVER;
4544 
4545 		spa_activate(spa, spa_mode_global);
4546 
4547 		if (state != SPA_LOAD_RECOVER)
4548 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4549 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4550 
4551 		zfs_dbgmsg("spa_open_common: opening %s", pool);
4552 		error = spa_load_best(spa, state, policy.zlp_txg,
4553 		    policy.zlp_rewind);
4554 
4555 		if (error == EBADF) {
4556 			/*
4557 			 * If vdev_validate() returns failure (indicated by
4558 			 * EBADF), it indicates that one of the vdevs indicates
4559 			 * that the pool has been exported or destroyed.  If
4560 			 * this is the case, the config cache is out of sync and
4561 			 * we should remove the pool from the namespace.
4562 			 */
4563 			spa_unload(spa);
4564 			spa_deactivate(spa);
4565 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4566 			spa_remove(spa);
4567 			if (locked)
4568 				mutex_exit(&spa_namespace_lock);
4569 			return (SET_ERROR(ENOENT));
4570 		}
4571 
4572 		if (error) {
4573 			/*
4574 			 * We can't open the pool, but we still have useful
4575 			 * information: the state of each vdev after the
4576 			 * attempted vdev_open().  Return this to the user.
4577 			 */
4578 			if (config != NULL && spa->spa_config) {
4579 				VERIFY(nvlist_dup(spa->spa_config, config,
4580 				    KM_SLEEP) == 0);
4581 				VERIFY(nvlist_add_nvlist(*config,
4582 				    ZPOOL_CONFIG_LOAD_INFO,
4583 				    spa->spa_load_info) == 0);
4584 			}
4585 			spa_unload(spa);
4586 			spa_deactivate(spa);
4587 			spa->spa_last_open_failed = error;
4588 			if (locked)
4589 				mutex_exit(&spa_namespace_lock);
4590 			*spapp = NULL;
4591 			return (error);
4592 		}
4593 	}
4594 
4595 	spa_open_ref(spa, tag);
4596 
4597 	if (config != NULL)
4598 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4599 
4600 	/*
4601 	 * If we've recovered the pool, pass back any information we
4602 	 * gathered while doing the load.
4603 	 */
4604 	if (state == SPA_LOAD_RECOVER) {
4605 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4606 		    spa->spa_load_info) == 0);
4607 	}
4608 
4609 	if (locked) {
4610 		spa->spa_last_open_failed = 0;
4611 		spa->spa_last_ubsync_txg = 0;
4612 		spa->spa_load_txg = 0;
4613 		mutex_exit(&spa_namespace_lock);
4614 	}
4615 
4616 	*spapp = spa;
4617 
4618 	return (0);
4619 }
4620 
4621 int
4622 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4623     nvlist_t **config)
4624 {
4625 	return (spa_open_common(name, spapp, tag, policy, config));
4626 }
4627 
4628 int
4629 spa_open(const char *name, spa_t **spapp, void *tag)
4630 {
4631 	return (spa_open_common(name, spapp, tag, NULL, NULL));
4632 }
4633 
4634 /*
4635  * Lookup the given spa_t, incrementing the inject count in the process,
4636  * preventing it from being exported or destroyed.
4637  */
4638 spa_t *
4639 spa_inject_addref(char *name)
4640 {
4641 	spa_t *spa;
4642 
4643 	mutex_enter(&spa_namespace_lock);
4644 	if ((spa = spa_lookup(name)) == NULL) {
4645 		mutex_exit(&spa_namespace_lock);
4646 		return (NULL);
4647 	}
4648 	spa->spa_inject_ref++;
4649 	mutex_exit(&spa_namespace_lock);
4650 
4651 	return (spa);
4652 }
4653 
4654 void
4655 spa_inject_delref(spa_t *spa)
4656 {
4657 	mutex_enter(&spa_namespace_lock);
4658 	spa->spa_inject_ref--;
4659 	mutex_exit(&spa_namespace_lock);
4660 }
4661 
4662 /*
4663  * Add spares device information to the nvlist.
4664  */
4665 static void
4666 spa_add_spares(spa_t *spa, nvlist_t *config)
4667 {
4668 	nvlist_t **spares;
4669 	uint_t i, nspares;
4670 	nvlist_t *nvroot;
4671 	uint64_t guid;
4672 	vdev_stat_t *vs;
4673 	uint_t vsc;
4674 	uint64_t pool;
4675 
4676 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4677 
4678 	if (spa->spa_spares.sav_count == 0)
4679 		return;
4680 
4681 	VERIFY(nvlist_lookup_nvlist(config,
4682 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4683 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4684 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4685 	if (nspares != 0) {
4686 		VERIFY(nvlist_add_nvlist_array(nvroot,
4687 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4688 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4689 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4690 
4691 		/*
4692 		 * Go through and find any spares which have since been
4693 		 * repurposed as an active spare.  If this is the case, update
4694 		 * their status appropriately.
4695 		 */
4696 		for (i = 0; i < nspares; i++) {
4697 			VERIFY(nvlist_lookup_uint64(spares[i],
4698 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4699 			if (spa_spare_exists(guid, &pool, NULL) &&
4700 			    pool != 0ULL) {
4701 				VERIFY(nvlist_lookup_uint64_array(
4702 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4703 				    (uint64_t **)&vs, &vsc) == 0);
4704 				vs->vs_state = VDEV_STATE_CANT_OPEN;
4705 				vs->vs_aux = VDEV_AUX_SPARED;
4706 			}
4707 		}
4708 	}
4709 }
4710 
4711 /*
4712  * Add l2cache device information to the nvlist, including vdev stats.
4713  */
4714 static void
4715 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4716 {
4717 	nvlist_t **l2cache;
4718 	uint_t i, j, nl2cache;
4719 	nvlist_t *nvroot;
4720 	uint64_t guid;
4721 	vdev_t *vd;
4722 	vdev_stat_t *vs;
4723 	uint_t vsc;
4724 
4725 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4726 
4727 	if (spa->spa_l2cache.sav_count == 0)
4728 		return;
4729 
4730 	VERIFY(nvlist_lookup_nvlist(config,
4731 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4732 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4733 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4734 	if (nl2cache != 0) {
4735 		VERIFY(nvlist_add_nvlist_array(nvroot,
4736 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4737 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4738 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4739 
4740 		/*
4741 		 * Update level 2 cache device stats.
4742 		 */
4743 
4744 		for (i = 0; i < nl2cache; i++) {
4745 			VERIFY(nvlist_lookup_uint64(l2cache[i],
4746 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4747 
4748 			vd = NULL;
4749 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4750 				if (guid ==
4751 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4752 					vd = spa->spa_l2cache.sav_vdevs[j];
4753 					break;
4754 				}
4755 			}
4756 			ASSERT(vd != NULL);
4757 
4758 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4759 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4760 			    == 0);
4761 			vdev_get_stats(vd, vs);
4762 			vdev_config_generate_stats(vd, l2cache[i]);
4763 
4764 		}
4765 	}
4766 }
4767 
4768 static void
4769 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4770 {
4771 	nvlist_t *features;
4772 	zap_cursor_t zc;
4773 	zap_attribute_t za;
4774 
4775 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4776 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4777 
4778 	if (spa->spa_feat_for_read_obj != 0) {
4779 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4780 		    spa->spa_feat_for_read_obj);
4781 		    zap_cursor_retrieve(&zc, &za) == 0;
4782 		    zap_cursor_advance(&zc)) {
4783 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4784 			    za.za_num_integers == 1);
4785 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4786 			    za.za_first_integer));
4787 		}
4788 		zap_cursor_fini(&zc);
4789 	}
4790 
4791 	if (spa->spa_feat_for_write_obj != 0) {
4792 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4793 		    spa->spa_feat_for_write_obj);
4794 		    zap_cursor_retrieve(&zc, &za) == 0;
4795 		    zap_cursor_advance(&zc)) {
4796 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4797 			    za.za_num_integers == 1);
4798 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4799 			    za.za_first_integer));
4800 		}
4801 		zap_cursor_fini(&zc);
4802 	}
4803 
4804 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4805 	    features) == 0);
4806 	nvlist_free(features);
4807 }
4808 
4809 int
4810 spa_get_stats(const char *name, nvlist_t **config,
4811     char *altroot, size_t buflen)
4812 {
4813 	int error;
4814 	spa_t *spa;
4815 
4816 	*config = NULL;
4817 	error = spa_open_common(name, &spa, FTAG, NULL, config);
4818 
4819 	if (spa != NULL) {
4820 		/*
4821 		 * This still leaves a window of inconsistency where the spares
4822 		 * or l2cache devices could change and the config would be
4823 		 * self-inconsistent.
4824 		 */
4825 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4826 
4827 		if (*config != NULL) {
4828 			uint64_t loadtimes[2];
4829 
4830 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4831 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4832 			VERIFY(nvlist_add_uint64_array(*config,
4833 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4834 
4835 			VERIFY(nvlist_add_uint64(*config,
4836 			    ZPOOL_CONFIG_ERRCOUNT,
4837 			    spa_get_errlog_size(spa)) == 0);
4838 
4839 			if (spa_suspended(spa)) {
4840 				VERIFY(nvlist_add_uint64(*config,
4841 				    ZPOOL_CONFIG_SUSPENDED,
4842 				    spa->spa_failmode) == 0);
4843 				VERIFY(nvlist_add_uint64(*config,
4844 				    ZPOOL_CONFIG_SUSPENDED_REASON,
4845 				    spa->spa_suspended) == 0);
4846 			}
4847 
4848 			spa_add_spares(spa, *config);
4849 			spa_add_l2cache(spa, *config);
4850 			spa_add_feature_stats(spa, *config);
4851 		}
4852 	}
4853 
4854 	/*
4855 	 * We want to get the alternate root even for faulted pools, so we cheat
4856 	 * and call spa_lookup() directly.
4857 	 */
4858 	if (altroot) {
4859 		if (spa == NULL) {
4860 			mutex_enter(&spa_namespace_lock);
4861 			spa = spa_lookup(name);
4862 			if (spa)
4863 				spa_altroot(spa, altroot, buflen);
4864 			else
4865 				altroot[0] = '\0';
4866 			spa = NULL;
4867 			mutex_exit(&spa_namespace_lock);
4868 		} else {
4869 			spa_altroot(spa, altroot, buflen);
4870 		}
4871 	}
4872 
4873 	if (spa != NULL) {
4874 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4875 		spa_close(spa, FTAG);
4876 	}
4877 
4878 	return (error);
4879 }
4880 
4881 /*
4882  * Validate that the auxiliary device array is well formed.  We must have an
4883  * array of nvlists, each which describes a valid leaf vdev.  If this is an
4884  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4885  * specified, as long as they are well-formed.
4886  */
4887 static int
4888 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4889     spa_aux_vdev_t *sav, const char *config, uint64_t version,
4890     vdev_labeltype_t label)
4891 {
4892 	nvlist_t **dev;
4893 	uint_t i, ndev;
4894 	vdev_t *vd;
4895 	int error;
4896 
4897 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4898 
4899 	/*
4900 	 * It's acceptable to have no devs specified.
4901 	 */
4902 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4903 		return (0);
4904 
4905 	if (ndev == 0)
4906 		return (SET_ERROR(EINVAL));
4907 
4908 	/*
4909 	 * Make sure the pool is formatted with a version that supports this
4910 	 * device type.
4911 	 */
4912 	if (spa_version(spa) < version)
4913 		return (SET_ERROR(ENOTSUP));
4914 
4915 	/*
4916 	 * Set the pending device list so we correctly handle device in-use
4917 	 * checking.
4918 	 */
4919 	sav->sav_pending = dev;
4920 	sav->sav_npending = ndev;
4921 
4922 	for (i = 0; i < ndev; i++) {
4923 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4924 		    mode)) != 0)
4925 			goto out;
4926 
4927 		if (!vd->vdev_ops->vdev_op_leaf) {
4928 			vdev_free(vd);
4929 			error = SET_ERROR(EINVAL);
4930 			goto out;
4931 		}
4932 
4933 		vd->vdev_top = vd;
4934 
4935 		if ((error = vdev_open(vd)) == 0 &&
4936 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4937 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4938 			    vd->vdev_guid) == 0);
4939 		}
4940 
4941 		vdev_free(vd);
4942 
4943 		if (error &&
4944 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4945 			goto out;
4946 		else
4947 			error = 0;
4948 	}
4949 
4950 out:
4951 	sav->sav_pending = NULL;
4952 	sav->sav_npending = 0;
4953 	return (error);
4954 }
4955 
4956 static int
4957 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4958 {
4959 	int error;
4960 
4961 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4962 
4963 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4964 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4965 	    VDEV_LABEL_SPARE)) != 0) {
4966 		return (error);
4967 	}
4968 
4969 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4970 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4971 	    VDEV_LABEL_L2CACHE));
4972 }
4973 
4974 static void
4975 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4976     const char *config)
4977 {
4978 	int i;
4979 
4980 	if (sav->sav_config != NULL) {
4981 		nvlist_t **olddevs;
4982 		uint_t oldndevs;
4983 		nvlist_t **newdevs;
4984 
4985 		/*
4986 		 * Generate new dev list by concatentating with the
4987 		 * current dev list.
4988 		 */
4989 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4990 		    &olddevs, &oldndevs) == 0);
4991 
4992 		newdevs = kmem_alloc(sizeof (void *) *
4993 		    (ndevs + oldndevs), KM_SLEEP);
4994 		for (i = 0; i < oldndevs; i++)
4995 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4996 			    KM_SLEEP) == 0);
4997 		for (i = 0; i < ndevs; i++)
4998 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4999 			    KM_SLEEP) == 0);
5000 
5001 		VERIFY(nvlist_remove(sav->sav_config, config,
5002 		    DATA_TYPE_NVLIST_ARRAY) == 0);
5003 
5004 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5005 		    config, newdevs, ndevs + oldndevs) == 0);
5006 		for (i = 0; i < oldndevs + ndevs; i++)
5007 			nvlist_free(newdevs[i]);
5008 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5009 	} else {
5010 		/*
5011 		 * Generate a new dev list.
5012 		 */
5013 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5014 		    KM_SLEEP) == 0);
5015 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5016 		    devs, ndevs) == 0);
5017 	}
5018 }
5019 
5020 /*
5021  * Stop and drop level 2 ARC devices
5022  */
5023 void
5024 spa_l2cache_drop(spa_t *spa)
5025 {
5026 	vdev_t *vd;
5027 	int i;
5028 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5029 
5030 	for (i = 0; i < sav->sav_count; i++) {
5031 		uint64_t pool;
5032 
5033 		vd = sav->sav_vdevs[i];
5034 		ASSERT(vd != NULL);
5035 
5036 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5037 		    pool != 0ULL && l2arc_vdev_present(vd))
5038 			l2arc_remove_vdev(vd);
5039 	}
5040 }
5041 
5042 /*
5043  * Verify encryption parameters for spa creation. If we are encrypting, we must
5044  * have the encryption feature flag enabled.
5045  */
5046 static int
5047 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5048     boolean_t has_encryption)
5049 {
5050 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5051 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5052 	    !has_encryption)
5053 		return (SET_ERROR(ENOTSUP));
5054 
5055 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5056 }
5057 
5058 /*
5059  * Pool Creation
5060  */
5061 int
5062 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5063     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5064 {
5065 	spa_t *spa;
5066 	char *altroot = NULL;
5067 	vdev_t *rvd;
5068 	dsl_pool_t *dp;
5069 	dmu_tx_t *tx;
5070 	int error = 0;
5071 	uint64_t txg = TXG_INITIAL;
5072 	nvlist_t **spares, **l2cache;
5073 	uint_t nspares, nl2cache;
5074 	uint64_t version, obj;
5075 	boolean_t has_features;
5076 	char *poolname;
5077 	nvlist_t *nvl;
5078 	boolean_t has_encryption;
5079 	spa_feature_t feat;
5080 	char *feat_name;
5081 
5082 	if (props == NULL ||
5083 	    nvlist_lookup_string(props,
5084 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
5085 		poolname = (char *)pool;
5086 
5087 	/*
5088 	 * If this pool already exists, return failure.
5089 	 */
5090 	mutex_enter(&spa_namespace_lock);
5091 	if (spa_lookup(poolname) != NULL) {
5092 		mutex_exit(&spa_namespace_lock);
5093 		return (SET_ERROR(EEXIST));
5094 	}
5095 
5096 	/*
5097 	 * Allocate a new spa_t structure.
5098 	 */
5099 	nvl = fnvlist_alloc();
5100 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5101 	(void) nvlist_lookup_string(props,
5102 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5103 	spa = spa_add(poolname, nvl, altroot);
5104 	fnvlist_free(nvl);
5105 	spa_activate(spa, spa_mode_global);
5106 
5107 	if (props && (error = spa_prop_validate(spa, props))) {
5108 		spa_deactivate(spa);
5109 		spa_remove(spa);
5110 		mutex_exit(&spa_namespace_lock);
5111 		return (error);
5112 	}
5113 
5114 	/*
5115 	 * Temporary pool names should never be written to disk.
5116 	 */
5117 	if (poolname != pool)
5118 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5119 
5120 	has_features = B_FALSE;
5121 	has_encryption = B_FALSE;
5122 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5123 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5124 		if (zpool_prop_feature(nvpair_name(elem))) {
5125 			has_features = B_TRUE;
5126 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5127 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5128 			if (feat == SPA_FEATURE_ENCRYPTION)
5129 				has_encryption = B_TRUE;
5130 		}
5131 	}
5132 
5133 	/* verify encryption params, if they were provided */
5134 	if (dcp != NULL) {
5135 		error = spa_create_check_encryption_params(dcp, has_encryption);
5136 		if (error != 0) {
5137 			spa_deactivate(spa);
5138 			spa_remove(spa);
5139 			mutex_exit(&spa_namespace_lock);
5140 			return (error);
5141 		}
5142 	}
5143 
5144 	if (has_features || nvlist_lookup_uint64(props,
5145 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5146 		version = SPA_VERSION;
5147 	}
5148 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5149 
5150 	spa->spa_first_txg = txg;
5151 	spa->spa_uberblock.ub_txg = txg - 1;
5152 	spa->spa_uberblock.ub_version = version;
5153 	spa->spa_ubsync = spa->spa_uberblock;
5154 	spa->spa_load_state = SPA_LOAD_CREATE;
5155 	spa->spa_removing_phys.sr_state = DSS_NONE;
5156 	spa->spa_removing_phys.sr_removing_vdev = -1;
5157 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5158 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5159 
5160 	/*
5161 	 * Create "The Godfather" zio to hold all async IOs
5162 	 */
5163 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5164 	    KM_SLEEP);
5165 	for (int i = 0; i < max_ncpus; i++) {
5166 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5167 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5168 		    ZIO_FLAG_GODFATHER);
5169 	}
5170 
5171 	/*
5172 	 * Create the root vdev.
5173 	 */
5174 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5175 
5176 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5177 
5178 	ASSERT(error != 0 || rvd != NULL);
5179 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5180 
5181 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5182 		error = SET_ERROR(EINVAL);
5183 
5184 	if (error == 0 &&
5185 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5186 	    (error = spa_validate_aux(spa, nvroot, txg,
5187 	    VDEV_ALLOC_ADD)) == 0) {
5188 		/*
5189 		 * instantiate the metaslab groups (this will dirty the vdevs)
5190 		 * we can no longer error exit past this point
5191 		 */
5192 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5193 			vdev_t *vd = rvd->vdev_child[c];
5194 
5195 			vdev_metaslab_set_size(vd);
5196 			vdev_expand(vd, txg);
5197 		}
5198 	}
5199 
5200 	spa_config_exit(spa, SCL_ALL, FTAG);
5201 
5202 	if (error != 0) {
5203 		spa_unload(spa);
5204 		spa_deactivate(spa);
5205 		spa_remove(spa);
5206 		mutex_exit(&spa_namespace_lock);
5207 		return (error);
5208 	}
5209 
5210 	/*
5211 	 * Get the list of spares, if specified.
5212 	 */
5213 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5214 	    &spares, &nspares) == 0) {
5215 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5216 		    KM_SLEEP) == 0);
5217 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5218 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5219 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5220 		spa_load_spares(spa);
5221 		spa_config_exit(spa, SCL_ALL, FTAG);
5222 		spa->spa_spares.sav_sync = B_TRUE;
5223 	}
5224 
5225 	/*
5226 	 * Get the list of level 2 cache devices, if specified.
5227 	 */
5228 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5229 	    &l2cache, &nl2cache) == 0) {
5230 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5231 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5232 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5233 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5234 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5235 		spa_load_l2cache(spa);
5236 		spa_config_exit(spa, SCL_ALL, FTAG);
5237 		spa->spa_l2cache.sav_sync = B_TRUE;
5238 	}
5239 
5240 	spa->spa_is_initializing = B_TRUE;
5241 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5242 	spa->spa_is_initializing = B_FALSE;
5243 
5244 	/*
5245 	 * Create DDTs (dedup tables).
5246 	 */
5247 	ddt_create(spa);
5248 
5249 	spa_update_dspace(spa);
5250 
5251 	tx = dmu_tx_create_assigned(dp, txg);
5252 
5253 	/*
5254 	 * Create the pool config object.
5255 	 */
5256 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5257 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5258 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5259 
5260 	if (zap_add(spa->spa_meta_objset,
5261 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5262 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5263 		cmn_err(CE_PANIC, "failed to add pool config");
5264 	}
5265 
5266 	if (zap_add(spa->spa_meta_objset,
5267 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5268 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5269 		cmn_err(CE_PANIC, "failed to add pool version");
5270 	}
5271 
5272 	/* Newly created pools with the right version are always deflated. */
5273 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5274 		spa->spa_deflate = TRUE;
5275 		if (zap_add(spa->spa_meta_objset,
5276 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5277 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5278 			cmn_err(CE_PANIC, "failed to add deflate");
5279 		}
5280 	}
5281 
5282 	/*
5283 	 * Create the deferred-free bpobj.  Turn off compression
5284 	 * because sync-to-convergence takes longer if the blocksize
5285 	 * keeps changing.
5286 	 */
5287 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5288 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5289 	    ZIO_COMPRESS_OFF, tx);
5290 	if (zap_add(spa->spa_meta_objset,
5291 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5292 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5293 		cmn_err(CE_PANIC, "failed to add bpobj");
5294 	}
5295 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5296 	    spa->spa_meta_objset, obj));
5297 
5298 	/*
5299 	 * Create the pool's history object.
5300 	 */
5301 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
5302 		spa_history_create_obj(spa, tx);
5303 
5304 	/*
5305 	 * Generate some random noise for salted checksums to operate on.
5306 	 */
5307 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5308 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5309 
5310 	/*
5311 	 * Set pool properties.
5312 	 */
5313 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5314 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5315 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5316 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5317 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5318 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5319 
5320 	if (props != NULL) {
5321 		spa_configfile_set(spa, props, B_FALSE);
5322 		spa_sync_props(props, tx);
5323 	}
5324 
5325 	dmu_tx_commit(tx);
5326 
5327 	spa->spa_sync_on = B_TRUE;
5328 	txg_sync_start(spa->spa_dsl_pool);
5329 	mmp_thread_start(spa);
5330 
5331 	/*
5332 	 * We explicitly wait for the first transaction to complete so that our
5333 	 * bean counters are appropriately updated.
5334 	 */
5335 	txg_wait_synced(spa->spa_dsl_pool, txg);
5336 
5337 	spa_spawn_aux_threads(spa);
5338 
5339 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5340 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5341 
5342 	spa_history_log_version(spa, "create");
5343 
5344 	/*
5345 	 * Don't count references from objsets that are already closed
5346 	 * and are making their way through the eviction process.
5347 	 */
5348 	spa_evicting_os_wait(spa);
5349 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5350 	spa->spa_load_state = SPA_LOAD_NONE;
5351 
5352 	mutex_exit(&spa_namespace_lock);
5353 
5354 	return (0);
5355 }
5356 
5357 #ifdef _KERNEL
5358 /*
5359  * Get the root pool information from the root disk, then import the root pool
5360  * during the system boot up time.
5361  */
5362 static nvlist_t *
5363 spa_generate_rootconf(const char *devpath, const char *devid, uint64_t *guid,
5364     uint64_t pool_guid)
5365 {
5366 	nvlist_t *config;
5367 	nvlist_t *nvtop, *nvroot;
5368 	uint64_t pgid;
5369 
5370 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
5371 		return (NULL);
5372 
5373 	/*
5374 	 * Add this top-level vdev to the child array.
5375 	 */
5376 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5377 	    &nvtop) == 0);
5378 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5379 	    &pgid) == 0);
5380 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
5381 
5382 	if (pool_guid != 0 && pool_guid != pgid) {
5383 		/*
5384 		 * The boot loader provided a pool GUID, but it does not match
5385 		 * the one we found in the label.  Return failure so that we
5386 		 * can fall back to the full device scan.
5387 		 */
5388 		zfs_dbgmsg("spa_generate_rootconf: loader pool guid %llu != "
5389 		    "label pool guid %llu", (u_longlong_t)pool_guid,
5390 		    (u_longlong_t)pgid);
5391 		nvlist_free(config);
5392 		return (NULL);
5393 	}
5394 
5395 	/*
5396 	 * Put this pool's top-level vdevs into a root vdev.
5397 	 */
5398 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5399 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5400 	    VDEV_TYPE_ROOT) == 0);
5401 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5402 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5403 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5404 	    &nvtop, 1) == 0);
5405 
5406 	/*
5407 	 * Replace the existing vdev_tree with the new root vdev in
5408 	 * this pool's configuration (remove the old, add the new).
5409 	 */
5410 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5411 	nvlist_free(nvroot);
5412 	return (config);
5413 }
5414 
5415 /*
5416  * Walk the vdev tree and see if we can find a device with "better"
5417  * configuration. A configuration is "better" if the label on that
5418  * device has a more recent txg.
5419  */
5420 static void
5421 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
5422 {
5423 	for (int c = 0; c < vd->vdev_children; c++)
5424 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
5425 
5426 	if (vd->vdev_ops->vdev_op_leaf) {
5427 		nvlist_t *label;
5428 		uint64_t label_txg;
5429 
5430 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
5431 		    &label) != 0)
5432 			return;
5433 
5434 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
5435 		    &label_txg) == 0);
5436 
5437 		/*
5438 		 * Do we have a better boot device?
5439 		 */
5440 		if (label_txg > *txg) {
5441 			*txg = label_txg;
5442 			*avd = vd;
5443 		}
5444 		nvlist_free(label);
5445 	}
5446 }
5447 
5448 /*
5449  * Import a root pool.
5450  *
5451  * For x86. devpath_list will consist of devid and/or physpath name of
5452  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
5453  * The GRUB "findroot" command will return the vdev we should boot.
5454  *
5455  * For Sparc, devpath_list consists the physpath name of the booting device
5456  * no matter the rootpool is a single device pool or a mirrored pool.
5457  * e.g.
5458  *	"/pci@1f,0/ide@d/disk@0,0:a"
5459  */
5460 int
5461 spa_import_rootpool(char *devpath, char *devid, uint64_t pool_guid,
5462     uint64_t vdev_guid)
5463 {
5464 	spa_t *spa;
5465 	vdev_t *rvd, *bvd, *avd = NULL;
5466 	nvlist_t *config, *nvtop;
5467 	uint64_t guid, txg;
5468 	char *pname;
5469 	int error;
5470 	const char *altdevpath = NULL;
5471 
5472 	/*
5473 	 * Read the label from the boot device and generate a configuration.
5474 	 */
5475 	config = spa_generate_rootconf(devpath, devid, &guid, pool_guid);
5476 #if defined(_OBP) && defined(_KERNEL)
5477 	if (config == NULL) {
5478 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
5479 			/* iscsi boot */
5480 			get_iscsi_bootpath_phy(devpath);
5481 			config = spa_generate_rootconf(devpath, devid, &guid,
5482 			    pool_guid);
5483 		}
5484 	}
5485 #endif
5486 
5487 	/*
5488 	 * We were unable to import the pool using the /devices path or devid
5489 	 * provided by the boot loader.  This may be the case if the boot
5490 	 * device has been connected to a different location in the system, or
5491 	 * if a new boot environment has changed the driver used to access the
5492 	 * boot device.
5493 	 *
5494 	 * Attempt an exhaustive scan of all visible block devices to see if we
5495 	 * can locate an alternative /devices path with a label that matches
5496 	 * the expected pool and vdev GUID.
5497 	 */
5498 	if (config == NULL && (altdevpath =
5499 	    vdev_disk_preroot_lookup(pool_guid, vdev_guid)) != NULL) {
5500 		cmn_err(CE_NOTE, "Original /devices path (%s) not available; "
5501 		    "ZFS is trying an alternate path (%s)", devpath,
5502 		    altdevpath);
5503 		config = spa_generate_rootconf(altdevpath, NULL, &guid,
5504 		    pool_guid);
5505 	}
5506 
5507 	if (config == NULL) {
5508 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5509 		    devpath);
5510 		return (SET_ERROR(EIO));
5511 	}
5512 
5513 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5514 	    &pname) == 0);
5515 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5516 
5517 	mutex_enter(&spa_namespace_lock);
5518 	if ((spa = spa_lookup(pname)) != NULL) {
5519 		/*
5520 		 * Remove the existing root pool from the namespace so that we
5521 		 * can replace it with the correct config we just read in.
5522 		 */
5523 		spa_remove(spa);
5524 	}
5525 
5526 	spa = spa_add(pname, config, NULL);
5527 	spa->spa_is_root = B_TRUE;
5528 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5529 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5530 	    &spa->spa_ubsync.ub_version) != 0)
5531 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5532 
5533 	/*
5534 	 * Build up a vdev tree based on the boot device's label config.
5535 	 */
5536 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5537 	    &nvtop) == 0);
5538 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5539 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5540 	    VDEV_ALLOC_ROOTPOOL);
5541 	spa_config_exit(spa, SCL_ALL, FTAG);
5542 	if (error) {
5543 		mutex_exit(&spa_namespace_lock);
5544 		nvlist_free(config);
5545 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5546 		    pname);
5547 		return (error);
5548 	}
5549 
5550 	/*
5551 	 * Get the boot vdev.
5552 	 */
5553 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5554 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5555 		    (u_longlong_t)guid);
5556 		error = SET_ERROR(ENOENT);
5557 		goto out;
5558 	}
5559 
5560 	/*
5561 	 * Determine if there is a better boot device.
5562 	 */
5563 	avd = bvd;
5564 	spa_alt_rootvdev(rvd, &avd, &txg);
5565 	if (avd != bvd) {
5566 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5567 		    "try booting from '%s'", avd->vdev_path);
5568 		error = SET_ERROR(EINVAL);
5569 		goto out;
5570 	}
5571 
5572 	/*
5573 	 * If the boot device is part of a spare vdev then ensure that
5574 	 * we're booting off the active spare.
5575 	 */
5576 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5577 	    !bvd->vdev_isspare) {
5578 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5579 		    "try booting from '%s'",
5580 		    bvd->vdev_parent->
5581 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5582 		error = SET_ERROR(EINVAL);
5583 		goto out;
5584 	}
5585 
5586 	error = 0;
5587 out:
5588 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5589 	vdev_free(rvd);
5590 	spa_config_exit(spa, SCL_ALL, FTAG);
5591 	mutex_exit(&spa_namespace_lock);
5592 
5593 	nvlist_free(config);
5594 	return (error);
5595 }
5596 
5597 #endif
5598 
5599 /*
5600  * Import a non-root pool into the system.
5601  */
5602 int
5603 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5604 {
5605 	spa_t *spa;
5606 	char *altroot = NULL;
5607 	spa_load_state_t state = SPA_LOAD_IMPORT;
5608 	zpool_load_policy_t policy;
5609 	uint64_t mode = spa_mode_global;
5610 	uint64_t readonly = B_FALSE;
5611 	int error;
5612 	nvlist_t *nvroot;
5613 	nvlist_t **spares, **l2cache;
5614 	uint_t nspares, nl2cache;
5615 
5616 	/*
5617 	 * If a pool with this name exists, return failure.
5618 	 */
5619 	mutex_enter(&spa_namespace_lock);
5620 	if (spa_lookup(pool) != NULL) {
5621 		mutex_exit(&spa_namespace_lock);
5622 		return (SET_ERROR(EEXIST));
5623 	}
5624 
5625 	/*
5626 	 * Create and initialize the spa structure.
5627 	 */
5628 	(void) nvlist_lookup_string(props,
5629 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5630 	(void) nvlist_lookup_uint64(props,
5631 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5632 	if (readonly)
5633 		mode = FREAD;
5634 	spa = spa_add(pool, config, altroot);
5635 	spa->spa_import_flags = flags;
5636 
5637 	/*
5638 	 * Verbatim import - Take a pool and insert it into the namespace
5639 	 * as if it had been loaded at boot.
5640 	 */
5641 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5642 		if (props != NULL)
5643 			spa_configfile_set(spa, props, B_FALSE);
5644 
5645 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5646 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5647 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5648 		mutex_exit(&spa_namespace_lock);
5649 		return (0);
5650 	}
5651 
5652 	spa_activate(spa, mode);
5653 
5654 	/*
5655 	 * Don't start async tasks until we know everything is healthy.
5656 	 */
5657 	spa_async_suspend(spa);
5658 
5659 	zpool_get_load_policy(config, &policy);
5660 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5661 		state = SPA_LOAD_RECOVER;
5662 
5663 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5664 
5665 	if (state != SPA_LOAD_RECOVER) {
5666 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5667 		zfs_dbgmsg("spa_import: importing %s", pool);
5668 	} else {
5669 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5670 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5671 	}
5672 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5673 
5674 	/*
5675 	 * Propagate anything learned while loading the pool and pass it
5676 	 * back to caller (i.e. rewind info, missing devices, etc).
5677 	 */
5678 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5679 	    spa->spa_load_info) == 0);
5680 
5681 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5682 	/*
5683 	 * Toss any existing sparelist, as it doesn't have any validity
5684 	 * anymore, and conflicts with spa_has_spare().
5685 	 */
5686 	if (spa->spa_spares.sav_config) {
5687 		nvlist_free(spa->spa_spares.sav_config);
5688 		spa->spa_spares.sav_config = NULL;
5689 		spa_load_spares(spa);
5690 	}
5691 	if (spa->spa_l2cache.sav_config) {
5692 		nvlist_free(spa->spa_l2cache.sav_config);
5693 		spa->spa_l2cache.sav_config = NULL;
5694 		spa_load_l2cache(spa);
5695 	}
5696 
5697 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5698 	    &nvroot) == 0);
5699 	if (error == 0)
5700 		error = spa_validate_aux(spa, nvroot, -1ULL,
5701 		    VDEV_ALLOC_SPARE);
5702 	if (error == 0)
5703 		error = spa_validate_aux(spa, nvroot, -1ULL,
5704 		    VDEV_ALLOC_L2CACHE);
5705 	spa_config_exit(spa, SCL_ALL, FTAG);
5706 
5707 	if (props != NULL)
5708 		spa_configfile_set(spa, props, B_FALSE);
5709 
5710 	if (error != 0 || (props && spa_writeable(spa) &&
5711 	    (error = spa_prop_set(spa, props)))) {
5712 		spa_unload(spa);
5713 		spa_deactivate(spa);
5714 		spa_remove(spa);
5715 		mutex_exit(&spa_namespace_lock);
5716 		return (error);
5717 	}
5718 
5719 	spa_async_resume(spa);
5720 
5721 	/*
5722 	 * Override any spares and level 2 cache devices as specified by
5723 	 * the user, as these may have correct device names/devids, etc.
5724 	 */
5725 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5726 	    &spares, &nspares) == 0) {
5727 		if (spa->spa_spares.sav_config)
5728 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5729 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5730 		else
5731 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5732 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5733 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5734 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5735 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5736 		spa_load_spares(spa);
5737 		spa_config_exit(spa, SCL_ALL, FTAG);
5738 		spa->spa_spares.sav_sync = B_TRUE;
5739 	}
5740 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5741 	    &l2cache, &nl2cache) == 0) {
5742 		if (spa->spa_l2cache.sav_config)
5743 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5744 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5745 		else
5746 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5747 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5748 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5749 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5750 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5751 		spa_load_l2cache(spa);
5752 		spa_config_exit(spa, SCL_ALL, FTAG);
5753 		spa->spa_l2cache.sav_sync = B_TRUE;
5754 	}
5755 
5756 	/*
5757 	 * Check for any removed devices.
5758 	 */
5759 	if (spa->spa_autoreplace) {
5760 		spa_aux_check_removed(&spa->spa_spares);
5761 		spa_aux_check_removed(&spa->spa_l2cache);
5762 	}
5763 
5764 	if (spa_writeable(spa)) {
5765 		/*
5766 		 * Update the config cache to include the newly-imported pool.
5767 		 */
5768 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5769 	}
5770 
5771 	/*
5772 	 * It's possible that the pool was expanded while it was exported.
5773 	 * We kick off an async task to handle this for us.
5774 	 */
5775 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5776 
5777 	spa_history_log_version(spa, "import");
5778 
5779 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5780 
5781 	mutex_exit(&spa_namespace_lock);
5782 
5783 	return (0);
5784 }
5785 
5786 nvlist_t *
5787 spa_tryimport(nvlist_t *tryconfig)
5788 {
5789 	nvlist_t *config = NULL;
5790 	char *poolname, *cachefile;
5791 	spa_t *spa;
5792 	uint64_t state;
5793 	int error;
5794 	zpool_load_policy_t policy;
5795 
5796 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5797 		return (NULL);
5798 
5799 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5800 		return (NULL);
5801 
5802 	/*
5803 	 * Create and initialize the spa structure.
5804 	 */
5805 	mutex_enter(&spa_namespace_lock);
5806 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5807 	spa_activate(spa, FREAD);
5808 
5809 	/*
5810 	 * Rewind pool if a max txg was provided.
5811 	 */
5812 	zpool_get_load_policy(spa->spa_config, &policy);
5813 	if (policy.zlp_txg != UINT64_MAX) {
5814 		spa->spa_load_max_txg = policy.zlp_txg;
5815 		spa->spa_extreme_rewind = B_TRUE;
5816 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5817 		    poolname, (longlong_t)policy.zlp_txg);
5818 	} else {
5819 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5820 	}
5821 
5822 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5823 	    == 0) {
5824 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5825 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5826 	} else {
5827 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5828 	}
5829 
5830 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5831 
5832 	/*
5833 	 * If 'tryconfig' was at least parsable, return the current config.
5834 	 */
5835 	if (spa->spa_root_vdev != NULL) {
5836 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5837 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5838 		    poolname) == 0);
5839 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5840 		    state) == 0);
5841 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5842 		    spa->spa_uberblock.ub_timestamp) == 0);
5843 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5844 		    spa->spa_load_info) == 0);
5845 
5846 		/*
5847 		 * If the bootfs property exists on this pool then we
5848 		 * copy it out so that external consumers can tell which
5849 		 * pools are bootable.
5850 		 */
5851 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5852 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5853 
5854 			/*
5855 			 * We have to play games with the name since the
5856 			 * pool was opened as TRYIMPORT_NAME.
5857 			 */
5858 			if (dsl_dsobj_to_dsname(spa_name(spa),
5859 			    spa->spa_bootfs, tmpname) == 0) {
5860 				char *cp;
5861 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5862 
5863 				cp = strchr(tmpname, '/');
5864 				if (cp == NULL) {
5865 					(void) strlcpy(dsname, tmpname,
5866 					    MAXPATHLEN);
5867 				} else {
5868 					(void) snprintf(dsname, MAXPATHLEN,
5869 					    "%s/%s", poolname, ++cp);
5870 				}
5871 				VERIFY(nvlist_add_string(config,
5872 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5873 				kmem_free(dsname, MAXPATHLEN);
5874 			}
5875 			kmem_free(tmpname, MAXPATHLEN);
5876 		}
5877 
5878 		/*
5879 		 * Add the list of hot spares and level 2 cache devices.
5880 		 */
5881 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5882 		spa_add_spares(spa, config);
5883 		spa_add_l2cache(spa, config);
5884 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5885 	}
5886 
5887 	spa_unload(spa);
5888 	spa_deactivate(spa);
5889 	spa_remove(spa);
5890 	mutex_exit(&spa_namespace_lock);
5891 
5892 	return (config);
5893 }
5894 
5895 /*
5896  * Pool export/destroy
5897  *
5898  * The act of destroying or exporting a pool is very simple.  We make sure there
5899  * is no more pending I/O and any references to the pool are gone.  Then, we
5900  * update the pool state and sync all the labels to disk, removing the
5901  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5902  * we don't sync the labels or remove the configuration cache.
5903  */
5904 static int
5905 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5906     boolean_t force, boolean_t hardforce)
5907 {
5908 	spa_t *spa;
5909 
5910 	if (oldconfig)
5911 		*oldconfig = NULL;
5912 
5913 	if (!(spa_mode_global & FWRITE))
5914 		return (SET_ERROR(EROFS));
5915 
5916 	mutex_enter(&spa_namespace_lock);
5917 	if ((spa = spa_lookup(pool)) == NULL) {
5918 		mutex_exit(&spa_namespace_lock);
5919 		return (SET_ERROR(ENOENT));
5920 	}
5921 
5922 	/*
5923 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5924 	 * reacquire the namespace lock, and see if we can export.
5925 	 */
5926 	spa_open_ref(spa, FTAG);
5927 	mutex_exit(&spa_namespace_lock);
5928 	spa_async_suspend(spa);
5929 	mutex_enter(&spa_namespace_lock);
5930 	spa_close(spa, FTAG);
5931 
5932 	/*
5933 	 * The pool will be in core if it's openable,
5934 	 * in which case we can modify its state.
5935 	 */
5936 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5937 
5938 		/*
5939 		 * Objsets may be open only because they're dirty, so we
5940 		 * have to force it to sync before checking spa_refcnt.
5941 		 */
5942 		txg_wait_synced(spa->spa_dsl_pool, 0);
5943 		spa_evicting_os_wait(spa);
5944 
5945 		/*
5946 		 * A pool cannot be exported or destroyed if there are active
5947 		 * references.  If we are resetting a pool, allow references by
5948 		 * fault injection handlers.
5949 		 */
5950 		if (!spa_refcount_zero(spa) ||
5951 		    (spa->spa_inject_ref != 0 &&
5952 		    new_state != POOL_STATE_UNINITIALIZED)) {
5953 			spa_async_resume(spa);
5954 			mutex_exit(&spa_namespace_lock);
5955 			return (SET_ERROR(EBUSY));
5956 		}
5957 
5958 		/*
5959 		 * A pool cannot be exported if it has an active shared spare.
5960 		 * This is to prevent other pools stealing the active spare
5961 		 * from an exported pool. At user's own will, such pool can
5962 		 * be forcedly exported.
5963 		 */
5964 		if (!force && new_state == POOL_STATE_EXPORTED &&
5965 		    spa_has_active_shared_spare(spa)) {
5966 			spa_async_resume(spa);
5967 			mutex_exit(&spa_namespace_lock);
5968 			return (SET_ERROR(EXDEV));
5969 		}
5970 
5971 		/*
5972 		 * We're about to export or destroy this pool. Make sure
5973 		 * we stop all initialization and trim activity here before
5974 		 * we set the spa_final_txg. This will ensure that all
5975 		 * dirty data resulting from the initialization is
5976 		 * committed to disk before we unload the pool.
5977 		 */
5978 		if (spa->spa_root_vdev != NULL) {
5979 			vdev_t *rvd = spa->spa_root_vdev;
5980 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
5981 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
5982 			vdev_autotrim_stop_all(spa);
5983 		}
5984 
5985 		/*
5986 		 * We want this to be reflected on every label,
5987 		 * so mark them all dirty.  spa_unload() will do the
5988 		 * final sync that pushes these changes out.
5989 		 */
5990 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5991 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5992 			spa->spa_state = new_state;
5993 			spa->spa_final_txg = spa_last_synced_txg(spa) +
5994 			    TXG_DEFER_SIZE + 1;
5995 			vdev_config_dirty(spa->spa_root_vdev);
5996 			spa_config_exit(spa, SCL_ALL, FTAG);
5997 		}
5998 	}
5999 
6000 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6001 
6002 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6003 		spa_unload(spa);
6004 		spa_deactivate(spa);
6005 	}
6006 
6007 	if (oldconfig && spa->spa_config)
6008 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6009 
6010 	if (new_state != POOL_STATE_UNINITIALIZED) {
6011 		if (!hardforce)
6012 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
6013 		spa_remove(spa);
6014 	}
6015 	mutex_exit(&spa_namespace_lock);
6016 
6017 	return (0);
6018 }
6019 
6020 /*
6021  * Destroy a storage pool.
6022  */
6023 int
6024 spa_destroy(char *pool)
6025 {
6026 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6027 	    B_FALSE, B_FALSE));
6028 }
6029 
6030 /*
6031  * Export a storage pool.
6032  */
6033 int
6034 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
6035     boolean_t hardforce)
6036 {
6037 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6038 	    force, hardforce));
6039 }
6040 
6041 /*
6042  * Similar to spa_export(), this unloads the spa_t without actually removing it
6043  * from the namespace in any way.
6044  */
6045 int
6046 spa_reset(char *pool)
6047 {
6048 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6049 	    B_FALSE, B_FALSE));
6050 }
6051 
6052 /*
6053  * ==========================================================================
6054  * Device manipulation
6055  * ==========================================================================
6056  */
6057 
6058 /*
6059  * Add a device to a storage pool.
6060  */
6061 int
6062 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6063 {
6064 	uint64_t txg;
6065 	int error;
6066 	vdev_t *rvd = spa->spa_root_vdev;
6067 	vdev_t *vd, *tvd;
6068 	nvlist_t **spares, **l2cache;
6069 	uint_t nspares, nl2cache;
6070 
6071 	ASSERT(spa_writeable(spa));
6072 
6073 	txg = spa_vdev_enter(spa);
6074 
6075 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6076 	    VDEV_ALLOC_ADD)) != 0)
6077 		return (spa_vdev_exit(spa, NULL, txg, error));
6078 
6079 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6080 
6081 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6082 	    &nspares) != 0)
6083 		nspares = 0;
6084 
6085 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6086 	    &nl2cache) != 0)
6087 		nl2cache = 0;
6088 
6089 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6090 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6091 
6092 	if (vd->vdev_children != 0 &&
6093 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
6094 		return (spa_vdev_exit(spa, vd, txg, error));
6095 
6096 	/*
6097 	 * We must validate the spares and l2cache devices after checking the
6098 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6099 	 */
6100 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6101 		return (spa_vdev_exit(spa, vd, txg, error));
6102 
6103 	/*
6104 	 * If we are in the middle of a device removal, we can only add
6105 	 * devices which match the existing devices in the pool.
6106 	 * If we are in the middle of a removal, or have some indirect
6107 	 * vdevs, we can not add raidz toplevels.
6108 	 */
6109 	if (spa->spa_vdev_removal != NULL ||
6110 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6111 		for (int c = 0; c < vd->vdev_children; c++) {
6112 			tvd = vd->vdev_child[c];
6113 			if (spa->spa_vdev_removal != NULL &&
6114 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6115 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6116 			}
6117 			/* Fail if top level vdev is raidz */
6118 			if (tvd->vdev_ops == &vdev_raidz_ops) {
6119 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6120 			}
6121 			/*
6122 			 * Need the top level mirror to be
6123 			 * a mirror of leaf vdevs only
6124 			 */
6125 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6126 				for (uint64_t cid = 0;
6127 				    cid < tvd->vdev_children; cid++) {
6128 					vdev_t *cvd = tvd->vdev_child[cid];
6129 					if (!cvd->vdev_ops->vdev_op_leaf) {
6130 						return (spa_vdev_exit(spa, vd,
6131 						    txg, EINVAL));
6132 					}
6133 				}
6134 			}
6135 		}
6136 	}
6137 
6138 	for (int c = 0; c < vd->vdev_children; c++) {
6139 		tvd = vd->vdev_child[c];
6140 		vdev_remove_child(vd, tvd);
6141 		tvd->vdev_id = rvd->vdev_children;
6142 		vdev_add_child(rvd, tvd);
6143 		vdev_config_dirty(tvd);
6144 	}
6145 
6146 	if (nspares != 0) {
6147 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6148 		    ZPOOL_CONFIG_SPARES);
6149 		spa_load_spares(spa);
6150 		spa->spa_spares.sav_sync = B_TRUE;
6151 	}
6152 
6153 	if (nl2cache != 0) {
6154 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6155 		    ZPOOL_CONFIG_L2CACHE);
6156 		spa_load_l2cache(spa);
6157 		spa->spa_l2cache.sav_sync = B_TRUE;
6158 	}
6159 
6160 	/*
6161 	 * We have to be careful when adding new vdevs to an existing pool.
6162 	 * If other threads start allocating from these vdevs before we
6163 	 * sync the config cache, and we lose power, then upon reboot we may
6164 	 * fail to open the pool because there are DVAs that the config cache
6165 	 * can't translate.  Therefore, we first add the vdevs without
6166 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6167 	 * and then let spa_config_update() initialize the new metaslabs.
6168 	 *
6169 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6170 	 * if we lose power at any point in this sequence, the remaining
6171 	 * steps will be completed the next time we load the pool.
6172 	 */
6173 	(void) spa_vdev_exit(spa, vd, txg, 0);
6174 
6175 	mutex_enter(&spa_namespace_lock);
6176 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6177 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6178 	mutex_exit(&spa_namespace_lock);
6179 
6180 	return (0);
6181 }
6182 
6183 /*
6184  * Attach a device to a mirror.  The arguments are the path to any device
6185  * in the mirror, and the nvroot for the new device.  If the path specifies
6186  * a device that is not mirrored, we automatically insert the mirror vdev.
6187  *
6188  * If 'replacing' is specified, the new device is intended to replace the
6189  * existing device; in this case the two devices are made into their own
6190  * mirror using the 'replacing' vdev, which is functionally identical to
6191  * the mirror vdev (it actually reuses all the same ops) but has a few
6192  * extra rules: you can't attach to it after it's been created, and upon
6193  * completion of resilvering, the first disk (the one being replaced)
6194  * is automatically detached.
6195  */
6196 int
6197 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
6198 {
6199 	uint64_t txg, dtl_max_txg;
6200 	vdev_t *rvd = spa->spa_root_vdev;
6201 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6202 	vdev_ops_t *pvops;
6203 	char *oldvdpath, *newvdpath;
6204 	int newvd_isspare;
6205 	int error;
6206 
6207 	ASSERT(spa_writeable(spa));
6208 
6209 	txg = spa_vdev_enter(spa);
6210 
6211 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6212 
6213 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6214 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6215 		error = (spa_has_checkpoint(spa)) ?
6216 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6217 		return (spa_vdev_exit(spa, NULL, txg, error));
6218 	}
6219 
6220 	if (spa->spa_vdev_removal != NULL)
6221 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6222 
6223 	if (oldvd == NULL)
6224 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6225 
6226 	if (!oldvd->vdev_ops->vdev_op_leaf)
6227 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6228 
6229 	pvd = oldvd->vdev_parent;
6230 
6231 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6232 	    VDEV_ALLOC_ATTACH)) != 0)
6233 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6234 
6235 	if (newrootvd->vdev_children != 1)
6236 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6237 
6238 	newvd = newrootvd->vdev_child[0];
6239 
6240 	if (!newvd->vdev_ops->vdev_op_leaf)
6241 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6242 
6243 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6244 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6245 
6246 	/*
6247 	 * Spares can't replace logs
6248 	 */
6249 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6250 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6251 
6252 	if (!replacing) {
6253 		/*
6254 		 * For attach, the only allowable parent is a mirror or the root
6255 		 * vdev.
6256 		 */
6257 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6258 		    pvd->vdev_ops != &vdev_root_ops)
6259 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6260 
6261 		pvops = &vdev_mirror_ops;
6262 	} else {
6263 		/*
6264 		 * Active hot spares can only be replaced by inactive hot
6265 		 * spares.
6266 		 */
6267 		if (pvd->vdev_ops == &vdev_spare_ops &&
6268 		    oldvd->vdev_isspare &&
6269 		    !spa_has_spare(spa, newvd->vdev_guid))
6270 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6271 
6272 		/*
6273 		 * If the source is a hot spare, and the parent isn't already a
6274 		 * spare, then we want to create a new hot spare.  Otherwise, we
6275 		 * want to create a replacing vdev.  The user is not allowed to
6276 		 * attach to a spared vdev child unless the 'isspare' state is
6277 		 * the same (spare replaces spare, non-spare replaces
6278 		 * non-spare).
6279 		 */
6280 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6281 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6282 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6283 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6284 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6285 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6286 		}
6287 
6288 		if (newvd->vdev_isspare)
6289 			pvops = &vdev_spare_ops;
6290 		else
6291 			pvops = &vdev_replacing_ops;
6292 	}
6293 
6294 	/*
6295 	 * Make sure the new device is big enough.
6296 	 */
6297 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6298 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6299 
6300 	/*
6301 	 * The new device cannot have a higher alignment requirement
6302 	 * than the top-level vdev.
6303 	 */
6304 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6305 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6306 
6307 	/*
6308 	 * If this is an in-place replacement, update oldvd's path and devid
6309 	 * to make it distinguishable from newvd, and unopenable from now on.
6310 	 */
6311 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6312 		spa_strfree(oldvd->vdev_path);
6313 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6314 		    KM_SLEEP);
6315 		(void) sprintf(oldvd->vdev_path, "%s/%s",
6316 		    newvd->vdev_path, "old");
6317 		if (oldvd->vdev_devid != NULL) {
6318 			spa_strfree(oldvd->vdev_devid);
6319 			oldvd->vdev_devid = NULL;
6320 		}
6321 	}
6322 
6323 	/* mark the device being resilvered */
6324 	newvd->vdev_resilver_txg = txg;
6325 
6326 	/*
6327 	 * If the parent is not a mirror, or if we're replacing, insert the new
6328 	 * mirror/replacing/spare vdev above oldvd.
6329 	 */
6330 	if (pvd->vdev_ops != pvops)
6331 		pvd = vdev_add_parent(oldvd, pvops);
6332 
6333 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6334 	ASSERT(pvd->vdev_ops == pvops);
6335 	ASSERT(oldvd->vdev_parent == pvd);
6336 
6337 	/*
6338 	 * Extract the new device from its root and add it to pvd.
6339 	 */
6340 	vdev_remove_child(newrootvd, newvd);
6341 	newvd->vdev_id = pvd->vdev_children;
6342 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6343 	vdev_add_child(pvd, newvd);
6344 
6345 	tvd = newvd->vdev_top;
6346 	ASSERT(pvd->vdev_top == tvd);
6347 	ASSERT(tvd->vdev_parent == rvd);
6348 
6349 	vdev_config_dirty(tvd);
6350 
6351 	/*
6352 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6353 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6354 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6355 	 */
6356 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6357 
6358 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6359 	    dtl_max_txg - TXG_INITIAL);
6360 
6361 	if (newvd->vdev_isspare) {
6362 		spa_spare_activate(newvd);
6363 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6364 	}
6365 
6366 	oldvdpath = spa_strdup(oldvd->vdev_path);
6367 	newvdpath = spa_strdup(newvd->vdev_path);
6368 	newvd_isspare = newvd->vdev_isspare;
6369 
6370 	/*
6371 	 * Mark newvd's DTL dirty in this txg.
6372 	 */
6373 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6374 
6375 	/*
6376 	 * Schedule the resilver to restart in the future. We do this to
6377 	 * ensure that dmu_sync-ed blocks have been stitched into the
6378 	 * respective datasets. We do not do this if resilvers have been
6379 	 * deferred.
6380 	 */
6381 	if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6382 	    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
6383 		vdev_defer_resilver(newvd);
6384 	else
6385 		dsl_scan_restart_resilver(spa->spa_dsl_pool, dtl_max_txg);
6386 
6387 	if (spa->spa_bootfs)
6388 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6389 
6390 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6391 
6392 	/*
6393 	 * Commit the config
6394 	 */
6395 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6396 
6397 	spa_history_log_internal(spa, "vdev attach", NULL,
6398 	    "%s vdev=%s %s vdev=%s",
6399 	    replacing && newvd_isspare ? "spare in" :
6400 	    replacing ? "replace" : "attach", newvdpath,
6401 	    replacing ? "for" : "to", oldvdpath);
6402 
6403 	spa_strfree(oldvdpath);
6404 	spa_strfree(newvdpath);
6405 
6406 	return (0);
6407 }
6408 
6409 /*
6410  * Detach a device from a mirror or replacing vdev.
6411  *
6412  * If 'replace_done' is specified, only detach if the parent
6413  * is a replacing vdev.
6414  */
6415 int
6416 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6417 {
6418 	uint64_t txg;
6419 	int error;
6420 	vdev_t *rvd = spa->spa_root_vdev;
6421 	vdev_t *vd, *pvd, *cvd, *tvd;
6422 	boolean_t unspare = B_FALSE;
6423 	uint64_t unspare_guid = 0;
6424 	char *vdpath;
6425 
6426 	ASSERT(spa_writeable(spa));
6427 
6428 	txg = spa_vdev_enter(spa);
6429 
6430 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6431 
6432 	/*
6433 	 * Besides being called directly from the userland through the
6434 	 * ioctl interface, spa_vdev_detach() can be potentially called
6435 	 * at the end of spa_vdev_resilver_done().
6436 	 *
6437 	 * In the regular case, when we have a checkpoint this shouldn't
6438 	 * happen as we never empty the DTLs of a vdev during the scrub
6439 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6440 	 * should never get here when we have a checkpoint.
6441 	 *
6442 	 * That said, even in a case when we checkpoint the pool exactly
6443 	 * as spa_vdev_resilver_done() calls this function everything
6444 	 * should be fine as the resilver will return right away.
6445 	 */
6446 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6447 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6448 		error = (spa_has_checkpoint(spa)) ?
6449 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6450 		return (spa_vdev_exit(spa, NULL, txg, error));
6451 	}
6452 
6453 	if (vd == NULL)
6454 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6455 
6456 	if (!vd->vdev_ops->vdev_op_leaf)
6457 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6458 
6459 	pvd = vd->vdev_parent;
6460 
6461 	/*
6462 	 * If the parent/child relationship is not as expected, don't do it.
6463 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6464 	 * vdev that's replacing B with C.  The user's intent in replacing
6465 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6466 	 * the replace by detaching C, the expected behavior is to end up
6467 	 * M(A,B).  But suppose that right after deciding to detach C,
6468 	 * the replacement of B completes.  We would have M(A,C), and then
6469 	 * ask to detach C, which would leave us with just A -- not what
6470 	 * the user wanted.  To prevent this, we make sure that the
6471 	 * parent/child relationship hasn't changed -- in this example,
6472 	 * that C's parent is still the replacing vdev R.
6473 	 */
6474 	if (pvd->vdev_guid != pguid && pguid != 0)
6475 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6476 
6477 	/*
6478 	 * Only 'replacing' or 'spare' vdevs can be replaced.
6479 	 */
6480 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6481 	    pvd->vdev_ops != &vdev_spare_ops)
6482 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6483 
6484 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6485 	    spa_version(spa) >= SPA_VERSION_SPARES);
6486 
6487 	/*
6488 	 * Only mirror, replacing, and spare vdevs support detach.
6489 	 */
6490 	if (pvd->vdev_ops != &vdev_replacing_ops &&
6491 	    pvd->vdev_ops != &vdev_mirror_ops &&
6492 	    pvd->vdev_ops != &vdev_spare_ops)
6493 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6494 
6495 	/*
6496 	 * If this device has the only valid copy of some data,
6497 	 * we cannot safely detach it.
6498 	 */
6499 	if (vdev_dtl_required(vd))
6500 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6501 
6502 	ASSERT(pvd->vdev_children >= 2);
6503 
6504 	/*
6505 	 * If we are detaching the second disk from a replacing vdev, then
6506 	 * check to see if we changed the original vdev's path to have "/old"
6507 	 * at the end in spa_vdev_attach().  If so, undo that change now.
6508 	 */
6509 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6510 	    vd->vdev_path != NULL) {
6511 		size_t len = strlen(vd->vdev_path);
6512 
6513 		for (int c = 0; c < pvd->vdev_children; c++) {
6514 			cvd = pvd->vdev_child[c];
6515 
6516 			if (cvd == vd || cvd->vdev_path == NULL)
6517 				continue;
6518 
6519 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6520 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
6521 				spa_strfree(cvd->vdev_path);
6522 				cvd->vdev_path = spa_strdup(vd->vdev_path);
6523 				break;
6524 			}
6525 		}
6526 	}
6527 
6528 	/*
6529 	 * If we are detaching the original disk from a spare, then it implies
6530 	 * that the spare should become a real disk, and be removed from the
6531 	 * active spare list for the pool.
6532 	 */
6533 	if (pvd->vdev_ops == &vdev_spare_ops &&
6534 	    vd->vdev_id == 0 &&
6535 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6536 		unspare = B_TRUE;
6537 
6538 	/*
6539 	 * Erase the disk labels so the disk can be used for other things.
6540 	 * This must be done after all other error cases are handled,
6541 	 * but before we disembowel vd (so we can still do I/O to it).
6542 	 * But if we can't do it, don't treat the error as fatal --
6543 	 * it may be that the unwritability of the disk is the reason
6544 	 * it's being detached!
6545 	 */
6546 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6547 
6548 	/*
6549 	 * Remove vd from its parent and compact the parent's children.
6550 	 */
6551 	vdev_remove_child(pvd, vd);
6552 	vdev_compact_children(pvd);
6553 
6554 	/*
6555 	 * Remember one of the remaining children so we can get tvd below.
6556 	 */
6557 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6558 
6559 	/*
6560 	 * If we need to remove the remaining child from the list of hot spares,
6561 	 * do it now, marking the vdev as no longer a spare in the process.
6562 	 * We must do this before vdev_remove_parent(), because that can
6563 	 * change the GUID if it creates a new toplevel GUID.  For a similar
6564 	 * reason, we must remove the spare now, in the same txg as the detach;
6565 	 * otherwise someone could attach a new sibling, change the GUID, and
6566 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6567 	 */
6568 	if (unspare) {
6569 		ASSERT(cvd->vdev_isspare);
6570 		spa_spare_remove(cvd);
6571 		unspare_guid = cvd->vdev_guid;
6572 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6573 		cvd->vdev_unspare = B_TRUE;
6574 	}
6575 
6576 	/*
6577 	 * If the parent mirror/replacing vdev only has one child,
6578 	 * the parent is no longer needed.  Remove it from the tree.
6579 	 */
6580 	if (pvd->vdev_children == 1) {
6581 		if (pvd->vdev_ops == &vdev_spare_ops)
6582 			cvd->vdev_unspare = B_FALSE;
6583 		vdev_remove_parent(cvd);
6584 	}
6585 
6586 	/*
6587 	 * We don't set tvd until now because the parent we just removed
6588 	 * may have been the previous top-level vdev.
6589 	 */
6590 	tvd = cvd->vdev_top;
6591 	ASSERT(tvd->vdev_parent == rvd);
6592 
6593 	/*
6594 	 * Reevaluate the parent vdev state.
6595 	 */
6596 	vdev_propagate_state(cvd);
6597 
6598 	/*
6599 	 * If the 'autoexpand' property is set on the pool then automatically
6600 	 * try to expand the size of the pool. For example if the device we
6601 	 * just detached was smaller than the others, it may be possible to
6602 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6603 	 * first so that we can obtain the updated sizes of the leaf vdevs.
6604 	 */
6605 	if (spa->spa_autoexpand) {
6606 		vdev_reopen(tvd);
6607 		vdev_expand(tvd, txg);
6608 	}
6609 
6610 	vdev_config_dirty(tvd);
6611 
6612 	/*
6613 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6614 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6615 	 * But first make sure we're not on any *other* txg's DTL list, to
6616 	 * prevent vd from being accessed after it's freed.
6617 	 */
6618 	vdpath = spa_strdup(vd->vdev_path);
6619 	for (int t = 0; t < TXG_SIZE; t++)
6620 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6621 	vd->vdev_detached = B_TRUE;
6622 	vdev_dirty(tvd, VDD_DTL, vd, txg);
6623 
6624 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6625 
6626 	/* hang on to the spa before we release the lock */
6627 	spa_open_ref(spa, FTAG);
6628 
6629 	error = spa_vdev_exit(spa, vd, txg, 0);
6630 
6631 	spa_history_log_internal(spa, "detach", NULL,
6632 	    "vdev=%s", vdpath);
6633 	spa_strfree(vdpath);
6634 
6635 	/*
6636 	 * If this was the removal of the original device in a hot spare vdev,
6637 	 * then we want to go through and remove the device from the hot spare
6638 	 * list of every other pool.
6639 	 */
6640 	if (unspare) {
6641 		spa_t *altspa = NULL;
6642 
6643 		mutex_enter(&spa_namespace_lock);
6644 		while ((altspa = spa_next(altspa)) != NULL) {
6645 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6646 			    altspa == spa)
6647 				continue;
6648 
6649 			spa_open_ref(altspa, FTAG);
6650 			mutex_exit(&spa_namespace_lock);
6651 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6652 			mutex_enter(&spa_namespace_lock);
6653 			spa_close(altspa, FTAG);
6654 		}
6655 		mutex_exit(&spa_namespace_lock);
6656 
6657 		/* search the rest of the vdevs for spares to remove */
6658 		spa_vdev_resilver_done(spa);
6659 	}
6660 
6661 	/* all done with the spa; OK to release */
6662 	mutex_enter(&spa_namespace_lock);
6663 	spa_close(spa, FTAG);
6664 	mutex_exit(&spa_namespace_lock);
6665 
6666 	return (error);
6667 }
6668 
6669 static int
6670 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6671     list_t *vd_list)
6672 {
6673 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6674 
6675 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6676 
6677 	/* Look up vdev and ensure it's a leaf. */
6678 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6679 	if (vd == NULL || vd->vdev_detached) {
6680 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6681 		return (SET_ERROR(ENODEV));
6682 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6683 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6684 		return (SET_ERROR(EINVAL));
6685 	} else if (!vdev_writeable(vd)) {
6686 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6687 		return (SET_ERROR(EROFS));
6688 	}
6689 	mutex_enter(&vd->vdev_initialize_lock);
6690 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6691 
6692 	/*
6693 	 * When we activate an initialize action we check to see
6694 	 * if the vdev_initialize_thread is NULL. We do this instead
6695 	 * of using the vdev_initialize_state since there might be
6696 	 * a previous initialization process which has completed but
6697 	 * the thread is not exited.
6698 	 */
6699 	if (cmd_type == POOL_INITIALIZE_START &&
6700 	    (vd->vdev_initialize_thread != NULL ||
6701 	    vd->vdev_top->vdev_removing)) {
6702 		mutex_exit(&vd->vdev_initialize_lock);
6703 		return (SET_ERROR(EBUSY));
6704 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6705 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6706 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6707 		mutex_exit(&vd->vdev_initialize_lock);
6708 		return (SET_ERROR(ESRCH));
6709 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6710 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6711 		mutex_exit(&vd->vdev_initialize_lock);
6712 		return (SET_ERROR(ESRCH));
6713 	}
6714 
6715 	switch (cmd_type) {
6716 	case POOL_INITIALIZE_START:
6717 		vdev_initialize(vd);
6718 		break;
6719 	case POOL_INITIALIZE_CANCEL:
6720 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
6721 		break;
6722 	case POOL_INITIALIZE_SUSPEND:
6723 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
6724 		break;
6725 	default:
6726 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6727 	}
6728 	mutex_exit(&vd->vdev_initialize_lock);
6729 
6730 	return (0);
6731 }
6732 
6733 int
6734 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
6735     nvlist_t *vdev_errlist)
6736 {
6737 	int total_errors = 0;
6738 	list_t vd_list;
6739 
6740 	list_create(&vd_list, sizeof (vdev_t),
6741 	    offsetof(vdev_t, vdev_initialize_node));
6742 
6743 	/*
6744 	 * We hold the namespace lock through the whole function
6745 	 * to prevent any changes to the pool while we're starting or
6746 	 * stopping initialization. The config and state locks are held so that
6747 	 * we can properly assess the vdev state before we commit to
6748 	 * the initializing operation.
6749 	 */
6750 	mutex_enter(&spa_namespace_lock);
6751 
6752 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6753 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6754 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6755 
6756 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
6757 		    &vd_list);
6758 		if (error != 0) {
6759 			char guid_as_str[MAXNAMELEN];
6760 
6761 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6762 			    "%llu", (unsigned long long)vdev_guid);
6763 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6764 			total_errors++;
6765 		}
6766 	}
6767 
6768 	/* Wait for all initialize threads to stop. */
6769 	vdev_initialize_stop_wait(spa, &vd_list);
6770 
6771 	/* Sync out the initializing state */
6772 	txg_wait_synced(spa->spa_dsl_pool, 0);
6773 	mutex_exit(&spa_namespace_lock);
6774 
6775 	list_destroy(&vd_list);
6776 
6777 	return (total_errors);
6778 }
6779 
6780 static int
6781 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6782     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
6783 {
6784 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6785 
6786 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6787 
6788 	/* Look up vdev and ensure it's a leaf. */
6789 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6790 	if (vd == NULL || vd->vdev_detached) {
6791 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6792 		return (SET_ERROR(ENODEV));
6793 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6794 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6795 		return (SET_ERROR(EINVAL));
6796 	} else if (!vdev_writeable(vd)) {
6797 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6798 		return (SET_ERROR(EROFS));
6799 	} else if (!vd->vdev_has_trim) {
6800 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6801 		return (SET_ERROR(EOPNOTSUPP));
6802 	} else if (secure && !vd->vdev_has_securetrim) {
6803 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6804 		return (SET_ERROR(EOPNOTSUPP));
6805 	}
6806 	mutex_enter(&vd->vdev_trim_lock);
6807 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6808 
6809 	/*
6810 	 * When we activate a TRIM action we check to see if the
6811 	 * vdev_trim_thread is NULL. We do this instead of using the
6812 	 * vdev_trim_state since there might be a previous TRIM process
6813 	 * which has completed but the thread is not exited.
6814 	 */
6815 	if (cmd_type == POOL_TRIM_START &&
6816 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
6817 		mutex_exit(&vd->vdev_trim_lock);
6818 		return (SET_ERROR(EBUSY));
6819 	} else if (cmd_type == POOL_TRIM_CANCEL &&
6820 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
6821 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
6822 		mutex_exit(&vd->vdev_trim_lock);
6823 		return (SET_ERROR(ESRCH));
6824 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
6825 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
6826 		mutex_exit(&vd->vdev_trim_lock);
6827 		return (SET_ERROR(ESRCH));
6828 	}
6829 
6830 	switch (cmd_type) {
6831 	case POOL_TRIM_START:
6832 		vdev_trim(vd, rate, partial, secure);
6833 		break;
6834 	case POOL_TRIM_CANCEL:
6835 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
6836 		break;
6837 	case POOL_TRIM_SUSPEND:
6838 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
6839 		break;
6840 	default:
6841 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6842 	}
6843 	mutex_exit(&vd->vdev_trim_lock);
6844 
6845 	return (0);
6846 }
6847 
6848 /*
6849  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
6850  * TRIM threads for each child vdev.  These threads pass over all of the free
6851  * space in the vdev's metaslabs and issues TRIM commands for that space.
6852  */
6853 int
6854 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
6855     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
6856 {
6857 	int total_errors = 0;
6858 	list_t vd_list;
6859 
6860 	list_create(&vd_list, sizeof (vdev_t),
6861 	    offsetof(vdev_t, vdev_trim_node));
6862 
6863 	/*
6864 	 * We hold the namespace lock through the whole function
6865 	 * to prevent any changes to the pool while we're starting or
6866 	 * stopping TRIM. The config and state locks are held so that
6867 	 * we can properly assess the vdev state before we commit to
6868 	 * the TRIM operation.
6869 	 */
6870 	mutex_enter(&spa_namespace_lock);
6871 
6872 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6873 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6874 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6875 
6876 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
6877 		    rate, partial, secure, &vd_list);
6878 		if (error != 0) {
6879 			char guid_as_str[MAXNAMELEN];
6880 
6881 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6882 			    "%llu", (unsigned long long)vdev_guid);
6883 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6884 			total_errors++;
6885 		}
6886 	}
6887 
6888 	/* Wait for all TRIM threads to stop. */
6889 	vdev_trim_stop_wait(spa, &vd_list);
6890 
6891 	/* Sync out the TRIM state */
6892 	txg_wait_synced(spa->spa_dsl_pool, 0);
6893 	mutex_exit(&spa_namespace_lock);
6894 
6895 	list_destroy(&vd_list);
6896 
6897 	return (total_errors);
6898 }
6899 
6900 /*
6901  * Split a set of devices from their mirrors, and create a new pool from them.
6902  */
6903 int
6904 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6905     nvlist_t *props, boolean_t exp)
6906 {
6907 	int error = 0;
6908 	uint64_t txg, *glist;
6909 	spa_t *newspa;
6910 	uint_t c, children, lastlog;
6911 	nvlist_t **child, *nvl, *tmp;
6912 	dmu_tx_t *tx;
6913 	char *altroot = NULL;
6914 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6915 	boolean_t activate_slog;
6916 
6917 	ASSERT(spa_writeable(spa));
6918 
6919 	txg = spa_vdev_enter(spa);
6920 
6921 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6922 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6923 		error = (spa_has_checkpoint(spa)) ?
6924 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6925 		return (spa_vdev_exit(spa, NULL, txg, error));
6926 	}
6927 
6928 	/* clear the log and flush everything up to now */
6929 	activate_slog = spa_passivate_log(spa);
6930 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6931 	error = spa_reset_logs(spa);
6932 	txg = spa_vdev_config_enter(spa);
6933 
6934 	if (activate_slog)
6935 		spa_activate_log(spa);
6936 
6937 	if (error != 0)
6938 		return (spa_vdev_exit(spa, NULL, txg, error));
6939 
6940 	/* check new spa name before going any further */
6941 	if (spa_lookup(newname) != NULL)
6942 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6943 
6944 	/*
6945 	 * scan through all the children to ensure they're all mirrors
6946 	 */
6947 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6948 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6949 	    &children) != 0)
6950 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6951 
6952 	/* first, check to ensure we've got the right child count */
6953 	rvd = spa->spa_root_vdev;
6954 	lastlog = 0;
6955 	for (c = 0; c < rvd->vdev_children; c++) {
6956 		vdev_t *vd = rvd->vdev_child[c];
6957 
6958 		/* don't count the holes & logs as children */
6959 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6960 			if (lastlog == 0)
6961 				lastlog = c;
6962 			continue;
6963 		}
6964 
6965 		lastlog = 0;
6966 	}
6967 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6968 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6969 
6970 	/* next, ensure no spare or cache devices are part of the split */
6971 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6972 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6973 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6974 
6975 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6976 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6977 
6978 	/* then, loop over each vdev and validate it */
6979 	for (c = 0; c < children; c++) {
6980 		uint64_t is_hole = 0;
6981 
6982 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6983 		    &is_hole);
6984 
6985 		if (is_hole != 0) {
6986 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6987 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6988 				continue;
6989 			} else {
6990 				error = SET_ERROR(EINVAL);
6991 				break;
6992 			}
6993 		}
6994 
6995 		/* which disk is going to be split? */
6996 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6997 		    &glist[c]) != 0) {
6998 			error = SET_ERROR(EINVAL);
6999 			break;
7000 		}
7001 
7002 		/* look it up in the spa */
7003 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7004 		if (vml[c] == NULL) {
7005 			error = SET_ERROR(ENODEV);
7006 			break;
7007 		}
7008 
7009 		/* make sure there's nothing stopping the split */
7010 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7011 		    vml[c]->vdev_islog ||
7012 		    !vdev_is_concrete(vml[c]) ||
7013 		    vml[c]->vdev_isspare ||
7014 		    vml[c]->vdev_isl2cache ||
7015 		    !vdev_writeable(vml[c]) ||
7016 		    vml[c]->vdev_children != 0 ||
7017 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7018 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7019 			error = SET_ERROR(EINVAL);
7020 			break;
7021 		}
7022 
7023 		if (vdev_dtl_required(vml[c])) {
7024 			error = SET_ERROR(EBUSY);
7025 			break;
7026 		}
7027 
7028 		/* we need certain info from the top level */
7029 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7030 		    vml[c]->vdev_top->vdev_ms_array) == 0);
7031 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7032 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
7033 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7034 		    vml[c]->vdev_top->vdev_asize) == 0);
7035 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7036 		    vml[c]->vdev_top->vdev_ashift) == 0);
7037 
7038 		/* transfer per-vdev ZAPs */
7039 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7040 		VERIFY0(nvlist_add_uint64(child[c],
7041 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7042 
7043 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7044 		VERIFY0(nvlist_add_uint64(child[c],
7045 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7046 		    vml[c]->vdev_parent->vdev_top_zap));
7047 	}
7048 
7049 	if (error != 0) {
7050 		kmem_free(vml, children * sizeof (vdev_t *));
7051 		kmem_free(glist, children * sizeof (uint64_t));
7052 		return (spa_vdev_exit(spa, NULL, txg, error));
7053 	}
7054 
7055 	/* stop writers from using the disks */
7056 	for (c = 0; c < children; c++) {
7057 		if (vml[c] != NULL)
7058 			vml[c]->vdev_offline = B_TRUE;
7059 	}
7060 	vdev_reopen(spa->spa_root_vdev);
7061 
7062 	/*
7063 	 * Temporarily record the splitting vdevs in the spa config.  This
7064 	 * will disappear once the config is regenerated.
7065 	 */
7066 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7067 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7068 	    glist, children) == 0);
7069 	kmem_free(glist, children * sizeof (uint64_t));
7070 
7071 	mutex_enter(&spa->spa_props_lock);
7072 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7073 	    nvl) == 0);
7074 	mutex_exit(&spa->spa_props_lock);
7075 	spa->spa_config_splitting = nvl;
7076 	vdev_config_dirty(spa->spa_root_vdev);
7077 
7078 	/* configure and create the new pool */
7079 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7080 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7081 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7082 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7083 	    spa_version(spa)) == 0);
7084 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7085 	    spa->spa_config_txg) == 0);
7086 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7087 	    spa_generate_guid(NULL)) == 0);
7088 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7089 	(void) nvlist_lookup_string(props,
7090 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7091 
7092 	/* add the new pool to the namespace */
7093 	newspa = spa_add(newname, config, altroot);
7094 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7095 	newspa->spa_config_txg = spa->spa_config_txg;
7096 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7097 
7098 	/* release the spa config lock, retaining the namespace lock */
7099 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7100 
7101 	if (zio_injection_enabled)
7102 		zio_handle_panic_injection(spa, FTAG, 1);
7103 
7104 	spa_activate(newspa, spa_mode_global);
7105 	spa_async_suspend(newspa);
7106 
7107 	/*
7108 	 * Temporarily stop the initializing and TRIM activity.  We set the
7109 	 * state to ACTIVE so that we know to resume initializing or TRIM
7110 	 * once the split has completed.
7111 	 */
7112 	list_t vd_initialize_list;
7113 	list_create(&vd_initialize_list, sizeof (vdev_t),
7114 	    offsetof(vdev_t, vdev_initialize_node));
7115 
7116 	list_t vd_trim_list;
7117 	list_create(&vd_trim_list, sizeof (vdev_t),
7118 	    offsetof(vdev_t, vdev_trim_node));
7119 
7120 	for (c = 0; c < children; c++) {
7121 		if (vml[c] != NULL) {
7122 			mutex_enter(&vml[c]->vdev_initialize_lock);
7123 			vdev_initialize_stop(vml[c],
7124 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7125 			mutex_exit(&vml[c]->vdev_initialize_lock);
7126 
7127 			mutex_enter(&vml[c]->vdev_trim_lock);
7128 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7129 			mutex_exit(&vml[c]->vdev_trim_lock);
7130 		}
7131 	}
7132 
7133 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7134 	vdev_trim_stop_wait(spa, &vd_trim_list);
7135 
7136 	list_destroy(&vd_initialize_list);
7137 	list_destroy(&vd_trim_list);
7138 
7139 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7140 
7141 	/* create the new pool from the disks of the original pool */
7142 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7143 	if (error)
7144 		goto out;
7145 
7146 	/* if that worked, generate a real config for the new pool */
7147 	if (newspa->spa_root_vdev != NULL) {
7148 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7149 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
7150 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7151 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7152 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7153 		    B_TRUE));
7154 	}
7155 
7156 	/* set the props */
7157 	if (props != NULL) {
7158 		spa_configfile_set(newspa, props, B_FALSE);
7159 		error = spa_prop_set(newspa, props);
7160 		if (error)
7161 			goto out;
7162 	}
7163 
7164 	/* flush everything */
7165 	txg = spa_vdev_config_enter(newspa);
7166 	vdev_config_dirty(newspa->spa_root_vdev);
7167 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7168 
7169 	if (zio_injection_enabled)
7170 		zio_handle_panic_injection(spa, FTAG, 2);
7171 
7172 	spa_async_resume(newspa);
7173 
7174 	/* finally, update the original pool's config */
7175 	txg = spa_vdev_config_enter(spa);
7176 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7177 	error = dmu_tx_assign(tx, TXG_WAIT);
7178 	if (error != 0)
7179 		dmu_tx_abort(tx);
7180 	for (c = 0; c < children; c++) {
7181 		if (vml[c] != NULL) {
7182 			vdev_split(vml[c]);
7183 			if (error == 0)
7184 				spa_history_log_internal(spa, "detach", tx,
7185 				    "vdev=%s", vml[c]->vdev_path);
7186 
7187 			vdev_free(vml[c]);
7188 		}
7189 	}
7190 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7191 	vdev_config_dirty(spa->spa_root_vdev);
7192 	spa->spa_config_splitting = NULL;
7193 	nvlist_free(nvl);
7194 	if (error == 0)
7195 		dmu_tx_commit(tx);
7196 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7197 
7198 	if (zio_injection_enabled)
7199 		zio_handle_panic_injection(spa, FTAG, 3);
7200 
7201 	/* split is complete; log a history record */
7202 	spa_history_log_internal(newspa, "split", NULL,
7203 	    "from pool %s", spa_name(spa));
7204 
7205 	kmem_free(vml, children * sizeof (vdev_t *));
7206 
7207 	/* if we're not going to mount the filesystems in userland, export */
7208 	if (exp)
7209 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7210 		    B_FALSE, B_FALSE);
7211 
7212 	return (error);
7213 
7214 out:
7215 	spa_unload(newspa);
7216 	spa_deactivate(newspa);
7217 	spa_remove(newspa);
7218 
7219 	txg = spa_vdev_config_enter(spa);
7220 
7221 	/* re-online all offlined disks */
7222 	for (c = 0; c < children; c++) {
7223 		if (vml[c] != NULL)
7224 			vml[c]->vdev_offline = B_FALSE;
7225 	}
7226 
7227 	/* restart initializing or trimming disks as necessary */
7228 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7229 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7230 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7231 
7232 	vdev_reopen(spa->spa_root_vdev);
7233 
7234 	nvlist_free(spa->spa_config_splitting);
7235 	spa->spa_config_splitting = NULL;
7236 	(void) spa_vdev_exit(spa, NULL, txg, error);
7237 
7238 	kmem_free(vml, children * sizeof (vdev_t *));
7239 	return (error);
7240 }
7241 
7242 /*
7243  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7244  * currently spared, so we can detach it.
7245  */
7246 static vdev_t *
7247 spa_vdev_resilver_done_hunt(vdev_t *vd)
7248 {
7249 	vdev_t *newvd, *oldvd;
7250 
7251 	for (int c = 0; c < vd->vdev_children; c++) {
7252 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7253 		if (oldvd != NULL)
7254 			return (oldvd);
7255 	}
7256 
7257 	/*
7258 	 * Check for a completed replacement.  We always consider the first
7259 	 * vdev in the list to be the oldest vdev, and the last one to be
7260 	 * the newest (see spa_vdev_attach() for how that works).  In
7261 	 * the case where the newest vdev is faulted, we will not automatically
7262 	 * remove it after a resilver completes.  This is OK as it will require
7263 	 * user intervention to determine which disk the admin wishes to keep.
7264 	 */
7265 	if (vd->vdev_ops == &vdev_replacing_ops) {
7266 		ASSERT(vd->vdev_children > 1);
7267 
7268 		newvd = vd->vdev_child[vd->vdev_children - 1];
7269 		oldvd = vd->vdev_child[0];
7270 
7271 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7272 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7273 		    !vdev_dtl_required(oldvd))
7274 			return (oldvd);
7275 	}
7276 
7277 	/*
7278 	 * Check for a completed resilver with the 'unspare' flag set.
7279 	 * Also potentially update faulted state.
7280 	 */
7281 	if (vd->vdev_ops == &vdev_spare_ops) {
7282 		vdev_t *first = vd->vdev_child[0];
7283 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7284 
7285 		if (last->vdev_unspare) {
7286 			oldvd = first;
7287 			newvd = last;
7288 		} else if (first->vdev_unspare) {
7289 			oldvd = last;
7290 			newvd = first;
7291 		} else {
7292 			oldvd = NULL;
7293 		}
7294 
7295 		if (oldvd != NULL &&
7296 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7297 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7298 		    !vdev_dtl_required(oldvd))
7299 			return (oldvd);
7300 
7301 		vdev_propagate_state(vd);
7302 
7303 		/*
7304 		 * If there are more than two spares attached to a disk,
7305 		 * and those spares are not required, then we want to
7306 		 * attempt to free them up now so that they can be used
7307 		 * by other pools.  Once we're back down to a single
7308 		 * disk+spare, we stop removing them.
7309 		 */
7310 		if (vd->vdev_children > 2) {
7311 			newvd = vd->vdev_child[1];
7312 
7313 			if (newvd->vdev_isspare && last->vdev_isspare &&
7314 			    vdev_dtl_empty(last, DTL_MISSING) &&
7315 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7316 			    !vdev_dtl_required(newvd))
7317 				return (newvd);
7318 		}
7319 	}
7320 
7321 	return (NULL);
7322 }
7323 
7324 static void
7325 spa_vdev_resilver_done(spa_t *spa)
7326 {
7327 	vdev_t *vd, *pvd, *ppvd;
7328 	uint64_t guid, sguid, pguid, ppguid;
7329 
7330 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7331 
7332 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7333 		pvd = vd->vdev_parent;
7334 		ppvd = pvd->vdev_parent;
7335 		guid = vd->vdev_guid;
7336 		pguid = pvd->vdev_guid;
7337 		ppguid = ppvd->vdev_guid;
7338 		sguid = 0;
7339 		/*
7340 		 * If we have just finished replacing a hot spared device, then
7341 		 * we need to detach the parent's first child (the original hot
7342 		 * spare) as well.
7343 		 */
7344 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7345 		    ppvd->vdev_children == 2) {
7346 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7347 			sguid = ppvd->vdev_child[1]->vdev_guid;
7348 		}
7349 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7350 
7351 		spa_config_exit(spa, SCL_ALL, FTAG);
7352 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7353 			return;
7354 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7355 			return;
7356 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7357 	}
7358 
7359 	spa_config_exit(spa, SCL_ALL, FTAG);
7360 }
7361 
7362 /*
7363  * Update the stored path or FRU for this vdev.
7364  */
7365 int
7366 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7367     boolean_t ispath)
7368 {
7369 	vdev_t *vd;
7370 	boolean_t sync = B_FALSE;
7371 
7372 	ASSERT(spa_writeable(spa));
7373 
7374 	spa_vdev_state_enter(spa, SCL_ALL);
7375 
7376 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7377 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7378 
7379 	if (!vd->vdev_ops->vdev_op_leaf)
7380 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7381 
7382 	if (ispath) {
7383 		if (strcmp(value, vd->vdev_path) != 0) {
7384 			spa_strfree(vd->vdev_path);
7385 			vd->vdev_path = spa_strdup(value);
7386 			sync = B_TRUE;
7387 		}
7388 	} else {
7389 		if (vd->vdev_fru == NULL) {
7390 			vd->vdev_fru = spa_strdup(value);
7391 			sync = B_TRUE;
7392 		} else if (strcmp(value, vd->vdev_fru) != 0) {
7393 			spa_strfree(vd->vdev_fru);
7394 			vd->vdev_fru = spa_strdup(value);
7395 			sync = B_TRUE;
7396 		}
7397 	}
7398 
7399 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7400 }
7401 
7402 int
7403 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7404 {
7405 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7406 }
7407 
7408 int
7409 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7410 {
7411 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7412 }
7413 
7414 /*
7415  * ==========================================================================
7416  * SPA Scanning
7417  * ==========================================================================
7418  */
7419 int
7420 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7421 {
7422 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7423 
7424 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7425 		return (SET_ERROR(EBUSY));
7426 
7427 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7428 }
7429 
7430 int
7431 spa_scan_stop(spa_t *spa)
7432 {
7433 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7434 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7435 		return (SET_ERROR(EBUSY));
7436 	return (dsl_scan_cancel(spa->spa_dsl_pool));
7437 }
7438 
7439 int
7440 spa_scan(spa_t *spa, pool_scan_func_t func)
7441 {
7442 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7443 
7444 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7445 		return (SET_ERROR(ENOTSUP));
7446 
7447 	if (func == POOL_SCAN_RESILVER &&
7448 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7449 		return (SET_ERROR(ENOTSUP));
7450 
7451 	/*
7452 	 * If a resilver was requested, but there is no DTL on a
7453 	 * writeable leaf device, we have nothing to do.
7454 	 */
7455 	if (func == POOL_SCAN_RESILVER &&
7456 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7457 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7458 		return (0);
7459 	}
7460 
7461 	return (dsl_scan(spa->spa_dsl_pool, func));
7462 }
7463 
7464 /*
7465  * ==========================================================================
7466  * SPA async task processing
7467  * ==========================================================================
7468  */
7469 
7470 static void
7471 spa_async_remove(spa_t *spa, vdev_t *vd)
7472 {
7473 	if (vd->vdev_remove_wanted) {
7474 		vd->vdev_remove_wanted = B_FALSE;
7475 		vd->vdev_delayed_close = B_FALSE;
7476 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7477 
7478 		/*
7479 		 * We want to clear the stats, but we don't want to do a full
7480 		 * vdev_clear() as that will cause us to throw away
7481 		 * degraded/faulted state as well as attempt to reopen the
7482 		 * device, all of which is a waste.
7483 		 */
7484 		vd->vdev_stat.vs_read_errors = 0;
7485 		vd->vdev_stat.vs_write_errors = 0;
7486 		vd->vdev_stat.vs_checksum_errors = 0;
7487 
7488 		vdev_state_dirty(vd->vdev_top);
7489 	}
7490 
7491 	for (int c = 0; c < vd->vdev_children; c++)
7492 		spa_async_remove(spa, vd->vdev_child[c]);
7493 }
7494 
7495 static void
7496 spa_async_probe(spa_t *spa, vdev_t *vd)
7497 {
7498 	if (vd->vdev_probe_wanted) {
7499 		vd->vdev_probe_wanted = B_FALSE;
7500 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
7501 	}
7502 
7503 	for (int c = 0; c < vd->vdev_children; c++)
7504 		spa_async_probe(spa, vd->vdev_child[c]);
7505 }
7506 
7507 static void
7508 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7509 {
7510 	sysevent_id_t eid;
7511 	nvlist_t *attr;
7512 	char *physpath;
7513 
7514 	if (!spa->spa_autoexpand)
7515 		return;
7516 
7517 	for (int c = 0; c < vd->vdev_children; c++) {
7518 		vdev_t *cvd = vd->vdev_child[c];
7519 		spa_async_autoexpand(spa, cvd);
7520 	}
7521 
7522 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7523 		return;
7524 
7525 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
7526 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
7527 
7528 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7529 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
7530 
7531 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
7532 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
7533 
7534 	nvlist_free(attr);
7535 	kmem_free(physpath, MAXPATHLEN);
7536 }
7537 
7538 static void
7539 spa_async_thread(void *arg)
7540 {
7541 	spa_t *spa = (spa_t *)arg;
7542 	dsl_pool_t *dp = spa->spa_dsl_pool;
7543 	int tasks;
7544 
7545 	ASSERT(spa->spa_sync_on);
7546 
7547 	mutex_enter(&spa->spa_async_lock);
7548 	tasks = spa->spa_async_tasks;
7549 	spa->spa_async_tasks = 0;
7550 	mutex_exit(&spa->spa_async_lock);
7551 
7552 	/*
7553 	 * See if the config needs to be updated.
7554 	 */
7555 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7556 		uint64_t old_space, new_space;
7557 
7558 		mutex_enter(&spa_namespace_lock);
7559 		old_space = metaslab_class_get_space(spa_normal_class(spa));
7560 		old_space += metaslab_class_get_space(spa_special_class(spa));
7561 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
7562 
7563 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7564 
7565 		new_space = metaslab_class_get_space(spa_normal_class(spa));
7566 		new_space += metaslab_class_get_space(spa_special_class(spa));
7567 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
7568 		mutex_exit(&spa_namespace_lock);
7569 
7570 		/*
7571 		 * If the pool grew as a result of the config update,
7572 		 * then log an internal history event.
7573 		 */
7574 		if (new_space != old_space) {
7575 			spa_history_log_internal(spa, "vdev online", NULL,
7576 			    "pool '%s' size: %llu(+%llu)",
7577 			    spa_name(spa), new_space, new_space - old_space);
7578 		}
7579 	}
7580 
7581 	/*
7582 	 * See if any devices need to be marked REMOVED.
7583 	 */
7584 	if (tasks & SPA_ASYNC_REMOVE) {
7585 		spa_vdev_state_enter(spa, SCL_NONE);
7586 		spa_async_remove(spa, spa->spa_root_vdev);
7587 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7588 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7589 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7590 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7591 		(void) spa_vdev_state_exit(spa, NULL, 0);
7592 	}
7593 
7594 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7595 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7596 		spa_async_autoexpand(spa, spa->spa_root_vdev);
7597 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7598 	}
7599 
7600 	/*
7601 	 * See if any devices need to be probed.
7602 	 */
7603 	if (tasks & SPA_ASYNC_PROBE) {
7604 		spa_vdev_state_enter(spa, SCL_NONE);
7605 		spa_async_probe(spa, spa->spa_root_vdev);
7606 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7607 			spa_async_probe(spa, spa->spa_spares.sav_vdevs[i]);
7608 		(void) spa_vdev_state_exit(spa, NULL, 0);
7609 	}
7610 
7611 	/*
7612 	 * If any devices are done replacing, detach them.
7613 	 */
7614 	if (tasks & SPA_ASYNC_RESILVER_DONE)
7615 		spa_vdev_resilver_done(spa);
7616 
7617 	/*
7618 	 * Kick off a resilver.
7619 	 */
7620 	if (tasks & SPA_ASYNC_RESILVER &&
7621 	    (!dsl_scan_resilvering(dp) ||
7622 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
7623 		dsl_scan_restart_resilver(dp, 0);
7624 
7625 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7626 		mutex_enter(&spa_namespace_lock);
7627 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7628 		vdev_initialize_restart(spa->spa_root_vdev);
7629 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7630 		mutex_exit(&spa_namespace_lock);
7631 	}
7632 
7633 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
7634 		mutex_enter(&spa_namespace_lock);
7635 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7636 		vdev_trim_restart(spa->spa_root_vdev);
7637 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7638 		mutex_exit(&spa_namespace_lock);
7639 	}
7640 
7641 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
7642 		mutex_enter(&spa_namespace_lock);
7643 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7644 		vdev_autotrim_restart(spa);
7645 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7646 		mutex_exit(&spa_namespace_lock);
7647 	}
7648 
7649 	/*
7650 	 * Let the world know that we're done.
7651 	 */
7652 	mutex_enter(&spa->spa_async_lock);
7653 	spa->spa_async_thread = NULL;
7654 	cv_broadcast(&spa->spa_async_cv);
7655 	mutex_exit(&spa->spa_async_lock);
7656 	thread_exit();
7657 }
7658 
7659 void
7660 spa_async_suspend(spa_t *spa)
7661 {
7662 	mutex_enter(&spa->spa_async_lock);
7663 	spa->spa_async_suspended++;
7664 	while (spa->spa_async_thread != NULL)
7665 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7666 	mutex_exit(&spa->spa_async_lock);
7667 
7668 	spa_vdev_remove_suspend(spa);
7669 
7670 	zthr_t *condense_thread = spa->spa_condense_zthr;
7671 	if (condense_thread != NULL)
7672 		zthr_cancel(condense_thread);
7673 
7674 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7675 	if (discard_thread != NULL)
7676 		zthr_cancel(discard_thread);
7677 }
7678 
7679 void
7680 spa_async_resume(spa_t *spa)
7681 {
7682 	mutex_enter(&spa->spa_async_lock);
7683 	ASSERT(spa->spa_async_suspended != 0);
7684 	spa->spa_async_suspended--;
7685 	mutex_exit(&spa->spa_async_lock);
7686 	spa_restart_removal(spa);
7687 
7688 	zthr_t *condense_thread = spa->spa_condense_zthr;
7689 	if (condense_thread != NULL)
7690 		zthr_resume(condense_thread);
7691 
7692 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7693 	if (discard_thread != NULL)
7694 		zthr_resume(discard_thread);
7695 }
7696 
7697 static boolean_t
7698 spa_async_tasks_pending(spa_t *spa)
7699 {
7700 	uint_t non_config_tasks;
7701 	uint_t config_task;
7702 	boolean_t config_task_suspended;
7703 
7704 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
7705 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7706 	if (spa->spa_ccw_fail_time == 0) {
7707 		config_task_suspended = B_FALSE;
7708 	} else {
7709 		config_task_suspended =
7710 		    (gethrtime() - spa->spa_ccw_fail_time) <
7711 		    (zfs_ccw_retry_interval * NANOSEC);
7712 	}
7713 
7714 	return (non_config_tasks || (config_task && !config_task_suspended));
7715 }
7716 
7717 static void
7718 spa_async_dispatch(spa_t *spa)
7719 {
7720 	mutex_enter(&spa->spa_async_lock);
7721 	if (spa_async_tasks_pending(spa) &&
7722 	    !spa->spa_async_suspended &&
7723 	    spa->spa_async_thread == NULL &&
7724 	    rootdir != NULL)
7725 		spa->spa_async_thread = thread_create(NULL, 0,
7726 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7727 	mutex_exit(&spa->spa_async_lock);
7728 }
7729 
7730 void
7731 spa_async_request(spa_t *spa, int task)
7732 {
7733 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7734 	mutex_enter(&spa->spa_async_lock);
7735 	spa->spa_async_tasks |= task;
7736 	mutex_exit(&spa->spa_async_lock);
7737 }
7738 
7739 int
7740 spa_async_tasks(spa_t *spa)
7741 {
7742 	return (spa->spa_async_tasks);
7743 }
7744 
7745 /*
7746  * ==========================================================================
7747  * SPA syncing routines
7748  * ==========================================================================
7749  */
7750 
7751 static int
7752 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7753 {
7754 	bpobj_t *bpo = arg;
7755 	bpobj_enqueue(bpo, bp, tx);
7756 	return (0);
7757 }
7758 
7759 static int
7760 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7761 {
7762 	zio_t *zio = arg;
7763 
7764 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7765 	    zio->io_flags));
7766 	return (0);
7767 }
7768 
7769 /*
7770  * Note: this simple function is not inlined to make it easier to dtrace the
7771  * amount of time spent syncing frees.
7772  */
7773 static void
7774 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7775 {
7776 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7777 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7778 	VERIFY(zio_wait(zio) == 0);
7779 }
7780 
7781 /*
7782  * Note: this simple function is not inlined to make it easier to dtrace the
7783  * amount of time spent syncing deferred frees.
7784  */
7785 static void
7786 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7787 {
7788 	if (spa_sync_pass(spa) != 1)
7789 		return;
7790 
7791 	/*
7792 	 * Note:
7793 	 * If the log space map feature is active, we stop deferring
7794 	 * frees to the next TXG and therefore running this function
7795 	 * would be considered a no-op as spa_deferred_bpobj should
7796 	 * not have any entries.
7797 	 *
7798 	 * That said we run this function anyway (instead of returning
7799 	 * immediately) for the edge-case scenario where we just
7800 	 * activated the log space map feature in this TXG but we have
7801 	 * deferred frees from the previous TXG.
7802 	 */
7803 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7804 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7805 	    spa_free_sync_cb, zio, tx), ==, 0);
7806 	VERIFY0(zio_wait(zio));
7807 }
7808 
7809 
7810 static void
7811 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7812 {
7813 	char *packed = NULL;
7814 	size_t bufsize;
7815 	size_t nvsize = 0;
7816 	dmu_buf_t *db;
7817 
7818 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7819 
7820 	/*
7821 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7822 	 * information.  This avoids the dmu_buf_will_dirty() path and
7823 	 * saves us a pre-read to get data we don't actually care about.
7824 	 */
7825 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7826 	packed = kmem_alloc(bufsize, KM_SLEEP);
7827 
7828 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7829 	    KM_SLEEP) == 0);
7830 	bzero(packed + nvsize, bufsize - nvsize);
7831 
7832 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7833 
7834 	kmem_free(packed, bufsize);
7835 
7836 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7837 	dmu_buf_will_dirty(db, tx);
7838 	*(uint64_t *)db->db_data = nvsize;
7839 	dmu_buf_rele(db, FTAG);
7840 }
7841 
7842 static void
7843 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7844     const char *config, const char *entry)
7845 {
7846 	nvlist_t *nvroot;
7847 	nvlist_t **list;
7848 	int i;
7849 
7850 	if (!sav->sav_sync)
7851 		return;
7852 
7853 	/*
7854 	 * Update the MOS nvlist describing the list of available devices.
7855 	 * spa_validate_aux() will have already made sure this nvlist is
7856 	 * valid and the vdevs are labeled appropriately.
7857 	 */
7858 	if (sav->sav_object == 0) {
7859 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7860 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7861 		    sizeof (uint64_t), tx);
7862 		VERIFY(zap_update(spa->spa_meta_objset,
7863 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7864 		    &sav->sav_object, tx) == 0);
7865 	}
7866 
7867 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7868 	if (sav->sav_count == 0) {
7869 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7870 	} else {
7871 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7872 		for (i = 0; i < sav->sav_count; i++)
7873 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7874 			    B_FALSE, VDEV_CONFIG_L2CACHE);
7875 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7876 		    sav->sav_count) == 0);
7877 		for (i = 0; i < sav->sav_count; i++)
7878 			nvlist_free(list[i]);
7879 		kmem_free(list, sav->sav_count * sizeof (void *));
7880 	}
7881 
7882 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7883 	nvlist_free(nvroot);
7884 
7885 	sav->sav_sync = B_FALSE;
7886 }
7887 
7888 /*
7889  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7890  * The all-vdev ZAP must be empty.
7891  */
7892 static void
7893 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7894 {
7895 	spa_t *spa = vd->vdev_spa;
7896 	if (vd->vdev_top_zap != 0) {
7897 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7898 		    vd->vdev_top_zap, tx));
7899 	}
7900 	if (vd->vdev_leaf_zap != 0) {
7901 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7902 		    vd->vdev_leaf_zap, tx));
7903 	}
7904 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7905 		spa_avz_build(vd->vdev_child[i], avz, tx);
7906 	}
7907 }
7908 
7909 static void
7910 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7911 {
7912 	nvlist_t *config;
7913 
7914 	/*
7915 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7916 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7917 	 * Similarly, if the pool is being assembled (e.g. after a split), we
7918 	 * need to rebuild the AVZ although the config may not be dirty.
7919 	 */
7920 	if (list_is_empty(&spa->spa_config_dirty_list) &&
7921 	    spa->spa_avz_action == AVZ_ACTION_NONE)
7922 		return;
7923 
7924 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7925 
7926 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7927 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7928 	    spa->spa_all_vdev_zaps != 0);
7929 
7930 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7931 		/* Make and build the new AVZ */
7932 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7933 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7934 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7935 
7936 		/* Diff old AVZ with new one */
7937 		zap_cursor_t zc;
7938 		zap_attribute_t za;
7939 
7940 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7941 		    spa->spa_all_vdev_zaps);
7942 		    zap_cursor_retrieve(&zc, &za) == 0;
7943 		    zap_cursor_advance(&zc)) {
7944 			uint64_t vdzap = za.za_first_integer;
7945 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7946 			    vdzap) == ENOENT) {
7947 				/*
7948 				 * ZAP is listed in old AVZ but not in new one;
7949 				 * destroy it
7950 				 */
7951 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7952 				    tx));
7953 			}
7954 		}
7955 
7956 		zap_cursor_fini(&zc);
7957 
7958 		/* Destroy the old AVZ */
7959 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7960 		    spa->spa_all_vdev_zaps, tx));
7961 
7962 		/* Replace the old AVZ in the dir obj with the new one */
7963 		VERIFY0(zap_update(spa->spa_meta_objset,
7964 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7965 		    sizeof (new_avz), 1, &new_avz, tx));
7966 
7967 		spa->spa_all_vdev_zaps = new_avz;
7968 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7969 		zap_cursor_t zc;
7970 		zap_attribute_t za;
7971 
7972 		/* Walk through the AVZ and destroy all listed ZAPs */
7973 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7974 		    spa->spa_all_vdev_zaps);
7975 		    zap_cursor_retrieve(&zc, &za) == 0;
7976 		    zap_cursor_advance(&zc)) {
7977 			uint64_t zap = za.za_first_integer;
7978 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7979 		}
7980 
7981 		zap_cursor_fini(&zc);
7982 
7983 		/* Destroy and unlink the AVZ itself */
7984 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7985 		    spa->spa_all_vdev_zaps, tx));
7986 		VERIFY0(zap_remove(spa->spa_meta_objset,
7987 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7988 		spa->spa_all_vdev_zaps = 0;
7989 	}
7990 
7991 	if (spa->spa_all_vdev_zaps == 0) {
7992 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7993 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7994 		    DMU_POOL_VDEV_ZAP_MAP, tx);
7995 	}
7996 	spa->spa_avz_action = AVZ_ACTION_NONE;
7997 
7998 	/* Create ZAPs for vdevs that don't have them. */
7999 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8000 
8001 	config = spa_config_generate(spa, spa->spa_root_vdev,
8002 	    dmu_tx_get_txg(tx), B_FALSE);
8003 
8004 	/*
8005 	 * If we're upgrading the spa version then make sure that
8006 	 * the config object gets updated with the correct version.
8007 	 */
8008 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8009 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8010 		    spa->spa_uberblock.ub_version);
8011 
8012 	spa_config_exit(spa, SCL_STATE, FTAG);
8013 
8014 	nvlist_free(spa->spa_config_syncing);
8015 	spa->spa_config_syncing = config;
8016 
8017 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8018 }
8019 
8020 static void
8021 spa_sync_version(void *arg, dmu_tx_t *tx)
8022 {
8023 	uint64_t *versionp = arg;
8024 	uint64_t version = *versionp;
8025 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8026 
8027 	/*
8028 	 * Setting the version is special cased when first creating the pool.
8029 	 */
8030 	ASSERT(tx->tx_txg != TXG_INITIAL);
8031 
8032 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8033 	ASSERT(version >= spa_version(spa));
8034 
8035 	spa->spa_uberblock.ub_version = version;
8036 	vdev_config_dirty(spa->spa_root_vdev);
8037 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
8038 }
8039 
8040 /*
8041  * Set zpool properties.
8042  */
8043 static void
8044 spa_sync_props(void *arg, dmu_tx_t *tx)
8045 {
8046 	nvlist_t *nvp = arg;
8047 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8048 	objset_t *mos = spa->spa_meta_objset;
8049 	nvpair_t *elem = NULL;
8050 
8051 	mutex_enter(&spa->spa_props_lock);
8052 
8053 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8054 		uint64_t intval;
8055 		char *strval, *fname;
8056 		zpool_prop_t prop;
8057 		const char *propname;
8058 		zprop_type_t proptype;
8059 		spa_feature_t fid;
8060 
8061 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8062 		case ZPOOL_PROP_INVAL:
8063 			/*
8064 			 * We checked this earlier in spa_prop_validate().
8065 			 */
8066 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8067 
8068 			fname = strchr(nvpair_name(elem), '@') + 1;
8069 			VERIFY0(zfeature_lookup_name(fname, &fid));
8070 
8071 			spa_feature_enable(spa, fid, tx);
8072 			spa_history_log_internal(spa, "set", tx,
8073 			    "%s=enabled", nvpair_name(elem));
8074 			break;
8075 
8076 		case ZPOOL_PROP_VERSION:
8077 			intval = fnvpair_value_uint64(elem);
8078 			/*
8079 			 * The version is synced seperatly before other
8080 			 * properties and should be correct by now.
8081 			 */
8082 			ASSERT3U(spa_version(spa), >=, intval);
8083 			break;
8084 
8085 		case ZPOOL_PROP_ALTROOT:
8086 			/*
8087 			 * 'altroot' is a non-persistent property. It should
8088 			 * have been set temporarily at creation or import time.
8089 			 */
8090 			ASSERT(spa->spa_root != NULL);
8091 			break;
8092 
8093 		case ZPOOL_PROP_READONLY:
8094 		case ZPOOL_PROP_CACHEFILE:
8095 			/*
8096 			 * 'readonly' and 'cachefile' are also non-persisitent
8097 			 * properties.
8098 			 */
8099 			break;
8100 		case ZPOOL_PROP_COMMENT:
8101 			strval = fnvpair_value_string(elem);
8102 			if (spa->spa_comment != NULL)
8103 				spa_strfree(spa->spa_comment);
8104 			spa->spa_comment = spa_strdup(strval);
8105 			/*
8106 			 * We need to dirty the configuration on all the vdevs
8107 			 * so that their labels get updated.  It's unnecessary
8108 			 * to do this for pool creation since the vdev's
8109 			 * configuratoin has already been dirtied.
8110 			 */
8111 			if (tx->tx_txg != TXG_INITIAL)
8112 				vdev_config_dirty(spa->spa_root_vdev);
8113 			spa_history_log_internal(spa, "set", tx,
8114 			    "%s=%s", nvpair_name(elem), strval);
8115 			break;
8116 		default:
8117 			/*
8118 			 * Set pool property values in the poolprops mos object.
8119 			 */
8120 			if (spa->spa_pool_props_object == 0) {
8121 				spa->spa_pool_props_object =
8122 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8123 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8124 				    tx);
8125 			}
8126 
8127 			/* normalize the property name */
8128 			propname = zpool_prop_to_name(prop);
8129 			proptype = zpool_prop_get_type(prop);
8130 
8131 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8132 				ASSERT(proptype == PROP_TYPE_STRING);
8133 				strval = fnvpair_value_string(elem);
8134 				VERIFY0(zap_update(mos,
8135 				    spa->spa_pool_props_object, propname,
8136 				    1, strlen(strval) + 1, strval, tx));
8137 				spa_history_log_internal(spa, "set", tx,
8138 				    "%s=%s", nvpair_name(elem), strval);
8139 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8140 				intval = fnvpair_value_uint64(elem);
8141 
8142 				if (proptype == PROP_TYPE_INDEX) {
8143 					const char *unused;
8144 					VERIFY0(zpool_prop_index_to_string(
8145 					    prop, intval, &unused));
8146 				}
8147 				VERIFY0(zap_update(mos,
8148 				    spa->spa_pool_props_object, propname,
8149 				    8, 1, &intval, tx));
8150 				spa_history_log_internal(spa, "set", tx,
8151 				    "%s=%lld", nvpair_name(elem), intval);
8152 			} else {
8153 				ASSERT(0); /* not allowed */
8154 			}
8155 
8156 			switch (prop) {
8157 			case ZPOOL_PROP_DELEGATION:
8158 				spa->spa_delegation = intval;
8159 				break;
8160 			case ZPOOL_PROP_BOOTFS:
8161 				spa->spa_bootfs = intval;
8162 				break;
8163 			case ZPOOL_PROP_FAILUREMODE:
8164 				spa->spa_failmode = intval;
8165 				break;
8166 			case ZPOOL_PROP_AUTOTRIM:
8167 				spa->spa_autotrim = intval;
8168 				spa_async_request(spa,
8169 				    SPA_ASYNC_AUTOTRIM_RESTART);
8170 				break;
8171 			case ZPOOL_PROP_AUTOEXPAND:
8172 				spa->spa_autoexpand = intval;
8173 				if (tx->tx_txg != TXG_INITIAL)
8174 					spa_async_request(spa,
8175 					    SPA_ASYNC_AUTOEXPAND);
8176 				break;
8177 			case ZPOOL_PROP_MULTIHOST:
8178 				spa->spa_multihost = intval;
8179 				break;
8180 			case ZPOOL_PROP_DEDUPDITTO:
8181 				spa->spa_dedup_ditto = intval;
8182 				break;
8183 			default:
8184 				break;
8185 			}
8186 		}
8187 
8188 	}
8189 
8190 	mutex_exit(&spa->spa_props_lock);
8191 }
8192 
8193 /*
8194  * Perform one-time upgrade on-disk changes.  spa_version() does not
8195  * reflect the new version this txg, so there must be no changes this
8196  * txg to anything that the upgrade code depends on after it executes.
8197  * Therefore this must be called after dsl_pool_sync() does the sync
8198  * tasks.
8199  */
8200 static void
8201 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8202 {
8203 	if (spa_sync_pass(spa) != 1)
8204 		return;
8205 
8206 	dsl_pool_t *dp = spa->spa_dsl_pool;
8207 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8208 
8209 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8210 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8211 		dsl_pool_create_origin(dp, tx);
8212 
8213 		/* Keeping the origin open increases spa_minref */
8214 		spa->spa_minref += 3;
8215 	}
8216 
8217 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8218 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8219 		dsl_pool_upgrade_clones(dp, tx);
8220 	}
8221 
8222 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8223 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8224 		dsl_pool_upgrade_dir_clones(dp, tx);
8225 
8226 		/* Keeping the freedir open increases spa_minref */
8227 		spa->spa_minref += 3;
8228 	}
8229 
8230 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8231 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8232 		spa_feature_create_zap_objects(spa, tx);
8233 	}
8234 
8235 	/*
8236 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8237 	 * when possibility to use lz4 compression for metadata was added
8238 	 * Old pools that have this feature enabled must be upgraded to have
8239 	 * this feature active
8240 	 */
8241 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8242 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8243 		    SPA_FEATURE_LZ4_COMPRESS);
8244 		boolean_t lz4_ac = spa_feature_is_active(spa,
8245 		    SPA_FEATURE_LZ4_COMPRESS);
8246 
8247 		if (lz4_en && !lz4_ac)
8248 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8249 	}
8250 
8251 	/*
8252 	 * If we haven't written the salt, do so now.  Note that the
8253 	 * feature may not be activated yet, but that's fine since
8254 	 * the presence of this ZAP entry is backwards compatible.
8255 	 */
8256 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8257 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8258 		VERIFY0(zap_add(spa->spa_meta_objset,
8259 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8260 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8261 		    spa->spa_cksum_salt.zcs_bytes, tx));
8262 	}
8263 
8264 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8265 }
8266 
8267 static void
8268 vdev_indirect_state_sync_verify(vdev_t *vd)
8269 {
8270 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
8271 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
8272 
8273 	if (vd->vdev_ops == &vdev_indirect_ops) {
8274 		ASSERT(vim != NULL);
8275 		ASSERT(vib != NULL);
8276 	}
8277 
8278 	if (vdev_obsolete_sm_object(vd) != 0) {
8279 		ASSERT(vd->vdev_obsolete_sm != NULL);
8280 		ASSERT(vd->vdev_removing ||
8281 		    vd->vdev_ops == &vdev_indirect_ops);
8282 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8283 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8284 
8285 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
8286 		    space_map_object(vd->vdev_obsolete_sm));
8287 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8288 		    space_map_allocated(vd->vdev_obsolete_sm));
8289 	}
8290 	ASSERT(vd->vdev_obsolete_segments != NULL);
8291 
8292 	/*
8293 	 * Since frees / remaps to an indirect vdev can only
8294 	 * happen in syncing context, the obsolete segments
8295 	 * tree must be empty when we start syncing.
8296 	 */
8297 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8298 }
8299 
8300 /*
8301  * Set the top-level vdev's max queue depth. Evaluate each top-level's
8302  * async write queue depth in case it changed. The max queue depth will
8303  * not change in the middle of syncing out this txg.
8304  */
8305 static void
8306 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8307 {
8308 	ASSERT(spa_writeable(spa));
8309 
8310 	vdev_t *rvd = spa->spa_root_vdev;
8311 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8312 	    zfs_vdev_queue_depth_pct / 100;
8313 	metaslab_class_t *normal = spa_normal_class(spa);
8314 	metaslab_class_t *special = spa_special_class(spa);
8315 	metaslab_class_t *dedup = spa_dedup_class(spa);
8316 
8317 	uint64_t slots_per_allocator = 0;
8318 	for (int c = 0; c < rvd->vdev_children; c++) {
8319 		vdev_t *tvd = rvd->vdev_child[c];
8320 
8321 		metaslab_group_t *mg = tvd->vdev_mg;
8322 		if (mg == NULL || !metaslab_group_initialized(mg))
8323 			continue;
8324 
8325 		metaslab_class_t *mc = mg->mg_class;
8326 		if (mc != normal && mc != special && mc != dedup)
8327 			continue;
8328 
8329 		/*
8330 		 * It is safe to do a lock-free check here because only async
8331 		 * allocations look at mg_max_alloc_queue_depth, and async
8332 		 * allocations all happen from spa_sync().
8333 		 */
8334 		for (int i = 0; i < spa->spa_alloc_count; i++)
8335 			ASSERT0(zfs_refcount_count(
8336 			    &(mg->mg_alloc_queue_depth[i])));
8337 		mg->mg_max_alloc_queue_depth = max_queue_depth;
8338 
8339 		for (int i = 0; i < spa->spa_alloc_count; i++) {
8340 			mg->mg_cur_max_alloc_queue_depth[i] =
8341 			    zfs_vdev_def_queue_depth;
8342 		}
8343 		slots_per_allocator += zfs_vdev_def_queue_depth;
8344 	}
8345 
8346 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8347 		ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
8348 		ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
8349 		ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
8350 		normal->mc_alloc_max_slots[i] = slots_per_allocator;
8351 		special->mc_alloc_max_slots[i] = slots_per_allocator;
8352 		dedup->mc_alloc_max_slots[i] = slots_per_allocator;
8353 	}
8354 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8355 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8356 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8357 }
8358 
8359 static void
8360 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8361 {
8362 	ASSERT(spa_writeable(spa));
8363 
8364 	vdev_t *rvd = spa->spa_root_vdev;
8365 	for (int c = 0; c < rvd->vdev_children; c++) {
8366 		vdev_t *vd = rvd->vdev_child[c];
8367 		vdev_indirect_state_sync_verify(vd);
8368 
8369 		if (vdev_indirect_should_condense(vd)) {
8370 			spa_condense_indirect_start_sync(vd, tx);
8371 			break;
8372 		}
8373 	}
8374 }
8375 
8376 static void
8377 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8378 {
8379 	objset_t *mos = spa->spa_meta_objset;
8380 	dsl_pool_t *dp = spa->spa_dsl_pool;
8381 	uint64_t txg = tx->tx_txg;
8382 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8383 
8384 	do {
8385 		int pass = ++spa->spa_sync_pass;
8386 
8387 		spa_sync_config_object(spa, tx);
8388 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8389 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8390 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8391 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8392 		spa_errlog_sync(spa, txg);
8393 		dsl_pool_sync(dp, txg);
8394 
8395 		if (pass < zfs_sync_pass_deferred_free ||
8396 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8397 			/*
8398 			 * If the log space map feature is active we don't
8399 			 * care about deferred frees and the deferred bpobj
8400 			 * as the log space map should effectively have the
8401 			 * same results (i.e. appending only to one object).
8402 			 */
8403 			spa_sync_frees(spa, free_bpl, tx);
8404 		} else {
8405 			/*
8406 			 * We can not defer frees in pass 1, because
8407 			 * we sync the deferred frees later in pass 1.
8408 			 */
8409 			ASSERT3U(pass, >, 1);
8410 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
8411 			    &spa->spa_deferred_bpobj, tx);
8412 		}
8413 
8414 		ddt_sync(spa, txg);
8415 		dsl_scan_sync(dp, tx);
8416 		svr_sync(spa, tx);
8417 		spa_sync_upgrades(spa, tx);
8418 
8419 		spa_flush_metaslabs(spa, tx);
8420 
8421 		vdev_t *vd = NULL;
8422 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8423 		    != NULL)
8424 			vdev_sync(vd, txg);
8425 
8426 		/*
8427 		 * Note: We need to check if the MOS is dirty because we could
8428 		 * have marked the MOS dirty without updating the uberblock
8429 		 * (e.g. if we have sync tasks but no dirty user data). We need
8430 		 * to check the uberblock's rootbp because it is updated if we
8431 		 * have synced out dirty data (though in this case the MOS will
8432 		 * most likely also be dirty due to second order effects, we
8433 		 * don't want to rely on that here).
8434 		 */
8435 		if (pass == 1 &&
8436 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8437 		    !dmu_objset_is_dirty(mos, txg)) {
8438 			/*
8439 			 * Nothing changed on the first pass, therefore this
8440 			 * TXG is a no-op. Avoid syncing deferred frees, so
8441 			 * that we can keep this TXG as a no-op.
8442 			 */
8443 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8444 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8445 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8446 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
8447 			break;
8448 		}
8449 
8450 		spa_sync_deferred_frees(spa, tx);
8451 	} while (dmu_objset_is_dirty(mos, txg));
8452 }
8453 
8454 /*
8455  * Rewrite the vdev configuration (which includes the uberblock) to
8456  * commit the transaction group.
8457  *
8458  * If there are no dirty vdevs, we sync the uberblock to a few random
8459  * top-level vdevs that are known to be visible in the config cache
8460  * (see spa_vdev_add() for a complete description). If there *are* dirty
8461  * vdevs, sync the uberblock to all vdevs.
8462  */
8463 static void
8464 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
8465 {
8466 	vdev_t *rvd = spa->spa_root_vdev;
8467 	uint64_t txg = tx->tx_txg;
8468 
8469 	for (;;) {
8470 		int error = 0;
8471 
8472 		/*
8473 		 * We hold SCL_STATE to prevent vdev open/close/etc.
8474 		 * while we're attempting to write the vdev labels.
8475 		 */
8476 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8477 
8478 		if (list_is_empty(&spa->spa_config_dirty_list)) {
8479 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8480 			int svdcount = 0;
8481 			int children = rvd->vdev_children;
8482 			int c0 = spa_get_random(children);
8483 
8484 			for (int c = 0; c < children; c++) {
8485 				vdev_t *vd =
8486 				    rvd->vdev_child[(c0 + c) % children];
8487 
8488 				/* Stop when revisiting the first vdev */
8489 				if (c > 0 && svd[0] == vd)
8490 					break;
8491 
8492 				if (vd->vdev_ms_array == 0 ||
8493 				    vd->vdev_islog ||
8494 				    !vdev_is_concrete(vd))
8495 					continue;
8496 
8497 				svd[svdcount++] = vd;
8498 				if (svdcount == SPA_SYNC_MIN_VDEVS)
8499 					break;
8500 			}
8501 			error = vdev_config_sync(svd, svdcount, txg);
8502 		} else {
8503 			error = vdev_config_sync(rvd->vdev_child,
8504 			    rvd->vdev_children, txg);
8505 		}
8506 
8507 		if (error == 0)
8508 			spa->spa_last_synced_guid = rvd->vdev_guid;
8509 
8510 		spa_config_exit(spa, SCL_STATE, FTAG);
8511 
8512 		if (error == 0)
8513 			break;
8514 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8515 		zio_resume_wait(spa);
8516 	}
8517 }
8518 
8519 /*
8520  * Sync the specified transaction group.  New blocks may be dirtied as
8521  * part of the process, so we iterate until it converges.
8522  */
8523 void
8524 spa_sync(spa_t *spa, uint64_t txg)
8525 {
8526 	vdev_t *vd = NULL;
8527 
8528 	VERIFY(spa_writeable(spa));
8529 
8530 	/*
8531 	 * Wait for i/os issued in open context that need to complete
8532 	 * before this txg syncs.
8533 	 */
8534 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
8535 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
8536 	    ZIO_FLAG_CANFAIL);
8537 
8538 	/*
8539 	 * Lock out configuration changes.
8540 	 */
8541 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8542 
8543 	spa->spa_syncing_txg = txg;
8544 	spa->spa_sync_pass = 0;
8545 
8546 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8547 		mutex_enter(&spa->spa_alloc_locks[i]);
8548 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8549 		mutex_exit(&spa->spa_alloc_locks[i]);
8550 	}
8551 
8552 	/*
8553 	 * If there are any pending vdev state changes, convert them
8554 	 * into config changes that go out with this transaction group.
8555 	 */
8556 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8557 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
8558 		/*
8559 		 * We need the write lock here because, for aux vdevs,
8560 		 * calling vdev_config_dirty() modifies sav_config.
8561 		 * This is ugly and will become unnecessary when we
8562 		 * eliminate the aux vdev wart by integrating all vdevs
8563 		 * into the root vdev tree.
8564 		 */
8565 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8566 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
8567 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
8568 			vdev_state_clean(vd);
8569 			vdev_config_dirty(vd);
8570 		}
8571 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8572 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8573 	}
8574 	spa_config_exit(spa, SCL_STATE, FTAG);
8575 
8576 	dsl_pool_t *dp = spa->spa_dsl_pool;
8577 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
8578 
8579 	spa->spa_sync_starttime = gethrtime();
8580 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
8581 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
8582 
8583 	/*
8584 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
8585 	 * set spa_deflate if we have no raid-z vdevs.
8586 	 */
8587 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
8588 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
8589 		vdev_t *rvd = spa->spa_root_vdev;
8590 
8591 		int i;
8592 		for (i = 0; i < rvd->vdev_children; i++) {
8593 			vd = rvd->vdev_child[i];
8594 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
8595 				break;
8596 		}
8597 		if (i == rvd->vdev_children) {
8598 			spa->spa_deflate = TRUE;
8599 			VERIFY0(zap_add(spa->spa_meta_objset,
8600 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
8601 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
8602 		}
8603 	}
8604 
8605 	spa_sync_adjust_vdev_max_queue_depth(spa);
8606 
8607 	spa_sync_condense_indirect(spa, tx);
8608 
8609 	spa_sync_iterate_to_convergence(spa, tx);
8610 
8611 #ifdef ZFS_DEBUG
8612 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
8613 		/*
8614 		 * Make sure that the number of ZAPs for all the vdevs matches
8615 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
8616 		 * called if the config is dirty; otherwise there may be
8617 		 * outstanding AVZ operations that weren't completed in
8618 		 * spa_sync_config_object.
8619 		 */
8620 		uint64_t all_vdev_zap_entry_count;
8621 		ASSERT0(zap_count(spa->spa_meta_objset,
8622 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8623 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
8624 		    all_vdev_zap_entry_count);
8625 	}
8626 #endif
8627 
8628 	if (spa->spa_vdev_removal != NULL) {
8629 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
8630 	}
8631 
8632 	spa_sync_rewrite_vdev_config(spa, tx);
8633 	dmu_tx_commit(tx);
8634 
8635 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8636 
8637 	/*
8638 	 * Clear the dirty config list.
8639 	 */
8640 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8641 		vdev_config_clean(vd);
8642 
8643 	/*
8644 	 * Now that the new config has synced transactionally,
8645 	 * let it become visible to the config cache.
8646 	 */
8647 	if (spa->spa_config_syncing != NULL) {
8648 		spa_config_set(spa, spa->spa_config_syncing);
8649 		spa->spa_config_txg = txg;
8650 		spa->spa_config_syncing = NULL;
8651 	}
8652 
8653 	dsl_pool_sync_done(dp, txg);
8654 
8655 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8656 		mutex_enter(&spa->spa_alloc_locks[i]);
8657 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8658 		mutex_exit(&spa->spa_alloc_locks[i]);
8659 	}
8660 
8661 	/*
8662 	 * Update usable space statistics.
8663 	 */
8664 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8665 	    != NULL)
8666 		vdev_sync_done(vd, txg);
8667 
8668 	metaslab_class_evict_old(spa->spa_normal_class, txg);
8669 	metaslab_class_evict_old(spa->spa_log_class, txg);
8670 
8671 	spa_sync_close_syncing_log_sm(spa);
8672 
8673 	spa_update_dspace(spa);
8674 
8675 	/*
8676 	 * It had better be the case that we didn't dirty anything
8677 	 * since vdev_config_sync().
8678 	 */
8679 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8680 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8681 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8682 
8683 	while (zfs_pause_spa_sync)
8684 		delay(1);
8685 
8686 	spa->spa_sync_pass = 0;
8687 
8688 	/*
8689 	 * Update the last synced uberblock here. We want to do this at
8690 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8691 	 * will be guaranteed that all the processing associated with
8692 	 * that txg has been completed.
8693 	 */
8694 	spa->spa_ubsync = spa->spa_uberblock;
8695 	spa_config_exit(spa, SCL_CONFIG, FTAG);
8696 
8697 	spa_handle_ignored_writes(spa);
8698 
8699 	/* Mark unused spares as needing a health check. */
8700 	if (spa_spare_poll_interval_seconds != 0 &&
8701 	    NSEC2SEC(gethrtime() - spa->spa_spares_last_polled) >
8702 	    spa_spare_poll_interval_seconds) {
8703 		spa_spare_poll(spa);
8704 		spa->spa_spares_last_polled = gethrtime();
8705 	}
8706 
8707 	/*
8708 	 * If any async tasks have been requested, kick them off.
8709 	 */
8710 	spa_async_dispatch(spa);
8711 }
8712 
8713 /*
8714  * Sync all pools.  We don't want to hold the namespace lock across these
8715  * operations, so we take a reference on the spa_t and drop the lock during the
8716  * sync.
8717  */
8718 void
8719 spa_sync_allpools(void)
8720 {
8721 	spa_t *spa = NULL;
8722 	mutex_enter(&spa_namespace_lock);
8723 	while ((spa = spa_next(spa)) != NULL) {
8724 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
8725 		    !spa_writeable(spa) || spa_suspended(spa))
8726 			continue;
8727 		spa_open_ref(spa, FTAG);
8728 		mutex_exit(&spa_namespace_lock);
8729 		txg_wait_synced(spa_get_dsl(spa), 0);
8730 		mutex_enter(&spa_namespace_lock);
8731 		spa_close(spa, FTAG);
8732 	}
8733 	mutex_exit(&spa_namespace_lock);
8734 }
8735 
8736 /*
8737  * ==========================================================================
8738  * Miscellaneous routines
8739  * ==========================================================================
8740  */
8741 
8742 /*
8743  * Remove all pools in the system.
8744  */
8745 void
8746 spa_evict_all(void)
8747 {
8748 	spa_t *spa;
8749 
8750 	/*
8751 	 * Remove all cached state.  All pools should be closed now,
8752 	 * so every spa in the AVL tree should be unreferenced.
8753 	 */
8754 	mutex_enter(&spa_namespace_lock);
8755 	while ((spa = spa_next(NULL)) != NULL) {
8756 		/*
8757 		 * Stop async tasks.  The async thread may need to detach
8758 		 * a device that's been replaced, which requires grabbing
8759 		 * spa_namespace_lock, so we must drop it here.
8760 		 */
8761 		spa_open_ref(spa, FTAG);
8762 		mutex_exit(&spa_namespace_lock);
8763 		spa_async_suspend(spa);
8764 		mutex_enter(&spa_namespace_lock);
8765 		spa_close(spa, FTAG);
8766 
8767 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8768 			spa_unload(spa);
8769 			spa_deactivate(spa);
8770 		}
8771 		spa_remove(spa);
8772 	}
8773 	mutex_exit(&spa_namespace_lock);
8774 }
8775 
8776 vdev_t *
8777 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8778 {
8779 	vdev_t *vd;
8780 	int i;
8781 
8782 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8783 		return (vd);
8784 
8785 	if (aux) {
8786 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8787 			vd = spa->spa_l2cache.sav_vdevs[i];
8788 			if (vd->vdev_guid == guid)
8789 				return (vd);
8790 		}
8791 
8792 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
8793 			vd = spa->spa_spares.sav_vdevs[i];
8794 			if (vd->vdev_guid == guid)
8795 				return (vd);
8796 		}
8797 	}
8798 
8799 	return (NULL);
8800 }
8801 
8802 void
8803 spa_upgrade(spa_t *spa, uint64_t version)
8804 {
8805 	ASSERT(spa_writeable(spa));
8806 
8807 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8808 
8809 	/*
8810 	 * This should only be called for a non-faulted pool, and since a
8811 	 * future version would result in an unopenable pool, this shouldn't be
8812 	 * possible.
8813 	 */
8814 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8815 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8816 
8817 	spa->spa_uberblock.ub_version = version;
8818 	vdev_config_dirty(spa->spa_root_vdev);
8819 
8820 	spa_config_exit(spa, SCL_ALL, FTAG);
8821 
8822 	txg_wait_synced(spa_get_dsl(spa), 0);
8823 }
8824 
8825 boolean_t
8826 spa_has_spare(spa_t *spa, uint64_t guid)
8827 {
8828 	int i;
8829 	uint64_t spareguid;
8830 	spa_aux_vdev_t *sav = &spa->spa_spares;
8831 
8832 	for (i = 0; i < sav->sav_count; i++)
8833 		if (sav->sav_vdevs[i]->vdev_guid == guid)
8834 			return (B_TRUE);
8835 
8836 	for (i = 0; i < sav->sav_npending; i++) {
8837 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8838 		    &spareguid) == 0 && spareguid == guid)
8839 			return (B_TRUE);
8840 	}
8841 
8842 	return (B_FALSE);
8843 }
8844 
8845 /*
8846  * Check if a pool has an active shared spare device.
8847  * Note: reference count of an active spare is 2, as a spare and as a replace
8848  */
8849 static boolean_t
8850 spa_has_active_shared_spare(spa_t *spa)
8851 {
8852 	int i, refcnt;
8853 	uint64_t pool;
8854 	spa_aux_vdev_t *sav = &spa->spa_spares;
8855 
8856 	for (i = 0; i < sav->sav_count; i++) {
8857 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8858 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8859 		    refcnt > 2)
8860 			return (B_TRUE);
8861 	}
8862 
8863 	return (B_FALSE);
8864 }
8865 
8866 uint64_t
8867 spa_total_metaslabs(spa_t *spa)
8868 {
8869 	vdev_t *rvd = spa->spa_root_vdev;
8870 	uint64_t m = 0;
8871 
8872 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
8873 		vdev_t *vd = rvd->vdev_child[c];
8874 		if (!vdev_is_concrete(vd))
8875 			continue;
8876 		m += vd->vdev_ms_count;
8877 	}
8878 	return (m);
8879 }
8880 
8881 sysevent_t *
8882 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8883 {
8884 	sysevent_t		*ev = NULL;
8885 #ifdef _KERNEL
8886 	sysevent_attr_list_t	*attr = NULL;
8887 	sysevent_value_t	value;
8888 
8889 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8890 	    SE_SLEEP);
8891 	ASSERT(ev != NULL);
8892 
8893 	value.value_type = SE_DATA_TYPE_STRING;
8894 	value.value.sv_string = spa_name(spa);
8895 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8896 		goto done;
8897 
8898 	value.value_type = SE_DATA_TYPE_UINT64;
8899 	value.value.sv_uint64 = spa_guid(spa);
8900 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8901 		goto done;
8902 
8903 	if (vd) {
8904 		value.value_type = SE_DATA_TYPE_UINT64;
8905 		value.value.sv_uint64 = vd->vdev_guid;
8906 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8907 		    SE_SLEEP) != 0)
8908 			goto done;
8909 
8910 		if (vd->vdev_path) {
8911 			value.value_type = SE_DATA_TYPE_STRING;
8912 			value.value.sv_string = vd->vdev_path;
8913 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8914 			    &value, SE_SLEEP) != 0)
8915 				goto done;
8916 		}
8917 	}
8918 
8919 	if (hist_nvl != NULL) {
8920 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8921 	}
8922 
8923 	if (sysevent_attach_attributes(ev, attr) != 0)
8924 		goto done;
8925 	attr = NULL;
8926 
8927 done:
8928 	if (attr)
8929 		sysevent_free_attr(attr);
8930 
8931 #endif
8932 	return (ev);
8933 }
8934 
8935 void
8936 spa_event_post(sysevent_t *ev)
8937 {
8938 #ifdef _KERNEL
8939 	sysevent_id_t		eid;
8940 
8941 	(void) log_sysevent(ev, SE_SLEEP, &eid);
8942 	sysevent_free(ev);
8943 #endif
8944 }
8945 
8946 void
8947 spa_event_discard(sysevent_t *ev)
8948 {
8949 #ifdef _KERNEL
8950 	sysevent_free(ev);
8951 #endif
8952 }
8953 
8954 /*
8955  * Post a sysevent corresponding to the given event.  The 'name' must be one of
8956  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8957  * filled in from the spa and (optionally) the vdev and history nvl.  This
8958  * doesn't do anything in the userland libzpool, as we don't want consumers to
8959  * misinterpret ztest or zdb as real changes.
8960  */
8961 void
8962 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8963 {
8964 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8965 }
8966