xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 634e26ec75c89095090605284938356a3145f2b8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/zap.h>
41 #include <sys/zil.h>
42 #include <sys/ddt.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/dmu_objset.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dataset.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/dsl_synctask.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/arc.h>
59 #include <sys/callb.h>
60 #include <sys/systeminfo.h>
61 #include <sys/spa_boot.h>
62 #include <sys/zfs_ioctl.h>
63 
64 #ifdef	_KERNEL
65 #include <sys/bootprops.h>
66 #include <sys/callb.h>
67 #include <sys/cpupart.h>
68 #include <sys/pool.h>
69 #include <sys/sysdc.h>
70 #include <sys/zone.h>
71 #endif	/* _KERNEL */
72 
73 #include "zfs_prop.h"
74 #include "zfs_comutil.h"
75 
76 typedef enum zti_modes {
77 	zti_mode_fixed,			/* value is # of threads (min 1) */
78 	zti_mode_online_percent,	/* value is % of online CPUs */
79 	zti_mode_batch,			/* cpu-intensive; value is ignored */
80 	zti_mode_null,			/* don't create a taskq */
81 	zti_nmodes
82 } zti_modes_t;
83 
84 #define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
85 #define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
86 #define	ZTI_BATCH	{ zti_mode_batch, 0 }
87 #define	ZTI_NULL	{ zti_mode_null, 0 }
88 
89 #define	ZTI_ONE		ZTI_FIX(1)
90 
91 typedef struct zio_taskq_info {
92 	enum zti_modes zti_mode;
93 	uint_t zti_value;
94 } zio_taskq_info_t;
95 
96 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
97 	"issue", "issue_high", "intr", "intr_high"
98 };
99 
100 /*
101  * Define the taskq threads for the following I/O types:
102  * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
103  */
104 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
105 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
106 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
107 	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
108 	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
109 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
110 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
111 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
112 };
113 
114 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
115 static boolean_t spa_has_active_shared_spare(spa_t *spa);
116 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
117     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
118     char **ereport);
119 
120 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
121 id_t		zio_taskq_psrset_bind = PS_NONE;
122 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
123 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
124 
125 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
126 
127 /*
128  * This (illegal) pool name is used when temporarily importing a spa_t in order
129  * to get the vdev stats associated with the imported devices.
130  */
131 #define	TRYIMPORT_NAME	"$import"
132 
133 /*
134  * ==========================================================================
135  * SPA properties routines
136  * ==========================================================================
137  */
138 
139 /*
140  * Add a (source=src, propname=propval) list to an nvlist.
141  */
142 static void
143 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
144     uint64_t intval, zprop_source_t src)
145 {
146 	const char *propname = zpool_prop_to_name(prop);
147 	nvlist_t *propval;
148 
149 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
150 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
151 
152 	if (strval != NULL)
153 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
154 	else
155 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
156 
157 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
158 	nvlist_free(propval);
159 }
160 
161 /*
162  * Get property values from the spa configuration.
163  */
164 static void
165 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
166 {
167 	uint64_t size;
168 	uint64_t alloc;
169 	uint64_t cap, version;
170 	zprop_source_t src = ZPROP_SRC_NONE;
171 	spa_config_dirent_t *dp;
172 
173 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
174 
175 	if (spa->spa_root_vdev != NULL) {
176 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
177 		size = metaslab_class_get_space(spa_normal_class(spa));
178 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
179 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
180 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
181 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
182 		    size - alloc, src);
183 
184 		cap = (size == 0) ? 0 : (alloc * 100 / size);
185 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
186 
187 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
188 		    ddt_get_pool_dedup_ratio(spa), src);
189 
190 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
191 		    spa->spa_root_vdev->vdev_state, src);
192 
193 		version = spa_version(spa);
194 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
195 			src = ZPROP_SRC_DEFAULT;
196 		else
197 			src = ZPROP_SRC_LOCAL;
198 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
199 	}
200 
201 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
202 
203 	if (spa->spa_root != NULL)
204 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
205 		    0, ZPROP_SRC_LOCAL);
206 
207 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
208 		if (dp->scd_path == NULL) {
209 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
210 			    "none", 0, ZPROP_SRC_LOCAL);
211 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
212 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
213 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
214 		}
215 	}
216 }
217 
218 /*
219  * Get zpool property values.
220  */
221 int
222 spa_prop_get(spa_t *spa, nvlist_t **nvp)
223 {
224 	objset_t *mos = spa->spa_meta_objset;
225 	zap_cursor_t zc;
226 	zap_attribute_t za;
227 	int err;
228 
229 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
230 
231 	mutex_enter(&spa->spa_props_lock);
232 
233 	/*
234 	 * Get properties from the spa config.
235 	 */
236 	spa_prop_get_config(spa, nvp);
237 
238 	/* If no pool property object, no more prop to get. */
239 	if (spa->spa_pool_props_object == 0) {
240 		mutex_exit(&spa->spa_props_lock);
241 		return (0);
242 	}
243 
244 	/*
245 	 * Get properties from the MOS pool property object.
246 	 */
247 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
248 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
249 	    zap_cursor_advance(&zc)) {
250 		uint64_t intval = 0;
251 		char *strval = NULL;
252 		zprop_source_t src = ZPROP_SRC_DEFAULT;
253 		zpool_prop_t prop;
254 
255 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
256 			continue;
257 
258 		switch (za.za_integer_length) {
259 		case 8:
260 			/* integer property */
261 			if (za.za_first_integer !=
262 			    zpool_prop_default_numeric(prop))
263 				src = ZPROP_SRC_LOCAL;
264 
265 			if (prop == ZPOOL_PROP_BOOTFS) {
266 				dsl_pool_t *dp;
267 				dsl_dataset_t *ds = NULL;
268 
269 				dp = spa_get_dsl(spa);
270 				rw_enter(&dp->dp_config_rwlock, RW_READER);
271 				if (err = dsl_dataset_hold_obj(dp,
272 				    za.za_first_integer, FTAG, &ds)) {
273 					rw_exit(&dp->dp_config_rwlock);
274 					break;
275 				}
276 
277 				strval = kmem_alloc(
278 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
279 				    KM_SLEEP);
280 				dsl_dataset_name(ds, strval);
281 				dsl_dataset_rele(ds, FTAG);
282 				rw_exit(&dp->dp_config_rwlock);
283 			} else {
284 				strval = NULL;
285 				intval = za.za_first_integer;
286 			}
287 
288 			spa_prop_add_list(*nvp, prop, strval, intval, src);
289 
290 			if (strval != NULL)
291 				kmem_free(strval,
292 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
293 
294 			break;
295 
296 		case 1:
297 			/* string property */
298 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
299 			err = zap_lookup(mos, spa->spa_pool_props_object,
300 			    za.za_name, 1, za.za_num_integers, strval);
301 			if (err) {
302 				kmem_free(strval, za.za_num_integers);
303 				break;
304 			}
305 			spa_prop_add_list(*nvp, prop, strval, 0, src);
306 			kmem_free(strval, za.za_num_integers);
307 			break;
308 
309 		default:
310 			break;
311 		}
312 	}
313 	zap_cursor_fini(&zc);
314 	mutex_exit(&spa->spa_props_lock);
315 out:
316 	if (err && err != ENOENT) {
317 		nvlist_free(*nvp);
318 		*nvp = NULL;
319 		return (err);
320 	}
321 
322 	return (0);
323 }
324 
325 /*
326  * Validate the given pool properties nvlist and modify the list
327  * for the property values to be set.
328  */
329 static int
330 spa_prop_validate(spa_t *spa, nvlist_t *props)
331 {
332 	nvpair_t *elem;
333 	int error = 0, reset_bootfs = 0;
334 	uint64_t objnum;
335 
336 	elem = NULL;
337 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
338 		zpool_prop_t prop;
339 		char *propname, *strval;
340 		uint64_t intval;
341 		objset_t *os;
342 		char *slash;
343 
344 		propname = nvpair_name(elem);
345 
346 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
347 			return (EINVAL);
348 
349 		switch (prop) {
350 		case ZPOOL_PROP_VERSION:
351 			error = nvpair_value_uint64(elem, &intval);
352 			if (!error &&
353 			    (intval < spa_version(spa) || intval > SPA_VERSION))
354 				error = EINVAL;
355 			break;
356 
357 		case ZPOOL_PROP_DELEGATION:
358 		case ZPOOL_PROP_AUTOREPLACE:
359 		case ZPOOL_PROP_LISTSNAPS:
360 		case ZPOOL_PROP_AUTOEXPAND:
361 			error = nvpair_value_uint64(elem, &intval);
362 			if (!error && intval > 1)
363 				error = EINVAL;
364 			break;
365 
366 		case ZPOOL_PROP_BOOTFS:
367 			/*
368 			 * If the pool version is less than SPA_VERSION_BOOTFS,
369 			 * or the pool is still being created (version == 0),
370 			 * the bootfs property cannot be set.
371 			 */
372 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
373 				error = ENOTSUP;
374 				break;
375 			}
376 
377 			/*
378 			 * Make sure the vdev config is bootable
379 			 */
380 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
381 				error = ENOTSUP;
382 				break;
383 			}
384 
385 			reset_bootfs = 1;
386 
387 			error = nvpair_value_string(elem, &strval);
388 
389 			if (!error) {
390 				uint64_t compress;
391 
392 				if (strval == NULL || strval[0] == '\0') {
393 					objnum = zpool_prop_default_numeric(
394 					    ZPOOL_PROP_BOOTFS);
395 					break;
396 				}
397 
398 				if (error = dmu_objset_hold(strval, FTAG, &os))
399 					break;
400 
401 				/* Must be ZPL and not gzip compressed. */
402 
403 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
404 					error = ENOTSUP;
405 				} else if ((error = dsl_prop_get_integer(strval,
406 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
407 				    &compress, NULL)) == 0 &&
408 				    !BOOTFS_COMPRESS_VALID(compress)) {
409 					error = ENOTSUP;
410 				} else {
411 					objnum = dmu_objset_id(os);
412 				}
413 				dmu_objset_rele(os, FTAG);
414 			}
415 			break;
416 
417 		case ZPOOL_PROP_FAILUREMODE:
418 			error = nvpair_value_uint64(elem, &intval);
419 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
420 			    intval > ZIO_FAILURE_MODE_PANIC))
421 				error = EINVAL;
422 
423 			/*
424 			 * This is a special case which only occurs when
425 			 * the pool has completely failed. This allows
426 			 * the user to change the in-core failmode property
427 			 * without syncing it out to disk (I/Os might
428 			 * currently be blocked). We do this by returning
429 			 * EIO to the caller (spa_prop_set) to trick it
430 			 * into thinking we encountered a property validation
431 			 * error.
432 			 */
433 			if (!error && spa_suspended(spa)) {
434 				spa->spa_failmode = intval;
435 				error = EIO;
436 			}
437 			break;
438 
439 		case ZPOOL_PROP_CACHEFILE:
440 			if ((error = nvpair_value_string(elem, &strval)) != 0)
441 				break;
442 
443 			if (strval[0] == '\0')
444 				break;
445 
446 			if (strcmp(strval, "none") == 0)
447 				break;
448 
449 			if (strval[0] != '/') {
450 				error = EINVAL;
451 				break;
452 			}
453 
454 			slash = strrchr(strval, '/');
455 			ASSERT(slash != NULL);
456 
457 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
458 			    strcmp(slash, "/..") == 0)
459 				error = EINVAL;
460 			break;
461 
462 		case ZPOOL_PROP_DEDUPDITTO:
463 			if (spa_version(spa) < SPA_VERSION_DEDUP)
464 				error = ENOTSUP;
465 			else
466 				error = nvpair_value_uint64(elem, &intval);
467 			if (error == 0 &&
468 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
469 				error = EINVAL;
470 			break;
471 		}
472 
473 		if (error)
474 			break;
475 	}
476 
477 	if (!error && reset_bootfs) {
478 		error = nvlist_remove(props,
479 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
480 
481 		if (!error) {
482 			error = nvlist_add_uint64(props,
483 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
484 		}
485 	}
486 
487 	return (error);
488 }
489 
490 void
491 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
492 {
493 	char *cachefile;
494 	spa_config_dirent_t *dp;
495 
496 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
497 	    &cachefile) != 0)
498 		return;
499 
500 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
501 	    KM_SLEEP);
502 
503 	if (cachefile[0] == '\0')
504 		dp->scd_path = spa_strdup(spa_config_path);
505 	else if (strcmp(cachefile, "none") == 0)
506 		dp->scd_path = NULL;
507 	else
508 		dp->scd_path = spa_strdup(cachefile);
509 
510 	list_insert_head(&spa->spa_config_list, dp);
511 	if (need_sync)
512 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
513 }
514 
515 int
516 spa_prop_set(spa_t *spa, nvlist_t *nvp)
517 {
518 	int error;
519 	nvpair_t *elem;
520 	boolean_t need_sync = B_FALSE;
521 	zpool_prop_t prop;
522 
523 	if ((error = spa_prop_validate(spa, nvp)) != 0)
524 		return (error);
525 
526 	elem = NULL;
527 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
528 		if ((prop = zpool_name_to_prop(
529 		    nvpair_name(elem))) == ZPROP_INVAL)
530 			return (EINVAL);
531 
532 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
533 			continue;
534 
535 		need_sync = B_TRUE;
536 		break;
537 	}
538 
539 	if (need_sync)
540 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
541 		    spa, nvp, 3));
542 	else
543 		return (0);
544 }
545 
546 /*
547  * If the bootfs property value is dsobj, clear it.
548  */
549 void
550 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
551 {
552 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
553 		VERIFY(zap_remove(spa->spa_meta_objset,
554 		    spa->spa_pool_props_object,
555 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
556 		spa->spa_bootfs = 0;
557 	}
558 }
559 
560 /*
561  * ==========================================================================
562  * SPA state manipulation (open/create/destroy/import/export)
563  * ==========================================================================
564  */
565 
566 static int
567 spa_error_entry_compare(const void *a, const void *b)
568 {
569 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
570 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
571 	int ret;
572 
573 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
574 	    sizeof (zbookmark_t));
575 
576 	if (ret < 0)
577 		return (-1);
578 	else if (ret > 0)
579 		return (1);
580 	else
581 		return (0);
582 }
583 
584 /*
585  * Utility function which retrieves copies of the current logs and
586  * re-initializes them in the process.
587  */
588 void
589 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
590 {
591 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
592 
593 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
594 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
595 
596 	avl_create(&spa->spa_errlist_scrub,
597 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
598 	    offsetof(spa_error_entry_t, se_avl));
599 	avl_create(&spa->spa_errlist_last,
600 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
601 	    offsetof(spa_error_entry_t, se_avl));
602 }
603 
604 static taskq_t *
605 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
606     uint_t value)
607 {
608 	uint_t flags = TASKQ_PREPOPULATE;
609 	boolean_t batch = B_FALSE;
610 
611 	switch (mode) {
612 	case zti_mode_null:
613 		return (NULL);		/* no taskq needed */
614 
615 	case zti_mode_fixed:
616 		ASSERT3U(value, >=, 1);
617 		value = MAX(value, 1);
618 		break;
619 
620 	case zti_mode_batch:
621 		batch = B_TRUE;
622 		flags |= TASKQ_THREADS_CPU_PCT;
623 		value = zio_taskq_batch_pct;
624 		break;
625 
626 	case zti_mode_online_percent:
627 		flags |= TASKQ_THREADS_CPU_PCT;
628 		break;
629 
630 	default:
631 		panic("unrecognized mode for %s taskq (%u:%u) in "
632 		    "spa_activate()",
633 		    name, mode, value);
634 		break;
635 	}
636 
637 	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
638 		if (batch)
639 			flags |= TASKQ_DC_BATCH;
640 
641 		return (taskq_create_sysdc(name, value, 50, INT_MAX,
642 		    spa->spa_proc, zio_taskq_basedc, flags));
643 	}
644 	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
645 	    spa->spa_proc, flags));
646 }
647 
648 static void
649 spa_create_zio_taskqs(spa_t *spa)
650 {
651 	for (int t = 0; t < ZIO_TYPES; t++) {
652 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
653 			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
654 			enum zti_modes mode = ztip->zti_mode;
655 			uint_t value = ztip->zti_value;
656 			char name[32];
657 
658 			(void) snprintf(name, sizeof (name),
659 			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
660 
661 			spa->spa_zio_taskq[t][q] =
662 			    spa_taskq_create(spa, name, mode, value);
663 		}
664 	}
665 }
666 
667 #ifdef _KERNEL
668 static void
669 spa_thread(void *arg)
670 {
671 	callb_cpr_t cprinfo;
672 
673 	spa_t *spa = arg;
674 	user_t *pu = PTOU(curproc);
675 
676 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
677 	    spa->spa_name);
678 
679 	ASSERT(curproc != &p0);
680 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
681 	    "zpool-%s", spa->spa_name);
682 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
683 
684 	/* bind this thread to the requested psrset */
685 	if (zio_taskq_psrset_bind != PS_NONE) {
686 		pool_lock();
687 		mutex_enter(&cpu_lock);
688 		mutex_enter(&pidlock);
689 		mutex_enter(&curproc->p_lock);
690 
691 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
692 		    0, NULL, NULL) == 0)  {
693 			curthread->t_bind_pset = zio_taskq_psrset_bind;
694 		} else {
695 			cmn_err(CE_WARN,
696 			    "Couldn't bind process for zfs pool \"%s\" to "
697 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
698 		}
699 
700 		mutex_exit(&curproc->p_lock);
701 		mutex_exit(&pidlock);
702 		mutex_exit(&cpu_lock);
703 		pool_unlock();
704 	}
705 
706 	if (zio_taskq_sysdc) {
707 		sysdc_thread_enter(curthread, 100, 0);
708 	}
709 
710 	spa->spa_proc = curproc;
711 	spa->spa_did = curthread->t_did;
712 
713 	spa_create_zio_taskqs(spa);
714 
715 	mutex_enter(&spa->spa_proc_lock);
716 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
717 
718 	spa->spa_proc_state = SPA_PROC_ACTIVE;
719 	cv_broadcast(&spa->spa_proc_cv);
720 
721 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
722 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
723 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
724 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
725 
726 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
727 	spa->spa_proc_state = SPA_PROC_GONE;
728 	spa->spa_proc = &p0;
729 	cv_broadcast(&spa->spa_proc_cv);
730 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
731 
732 	mutex_enter(&curproc->p_lock);
733 	lwp_exit();
734 }
735 #endif
736 
737 /*
738  * Activate an uninitialized pool.
739  */
740 static void
741 spa_activate(spa_t *spa, int mode)
742 {
743 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
744 
745 	spa->spa_state = POOL_STATE_ACTIVE;
746 	spa->spa_mode = mode;
747 
748 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
749 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
750 
751 	/* Try to create a covering process */
752 	mutex_enter(&spa->spa_proc_lock);
753 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
754 	ASSERT(spa->spa_proc == &p0);
755 	spa->spa_did = 0;
756 
757 	/* Only create a process if we're going to be around a while. */
758 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
759 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
760 		    NULL, 0) == 0) {
761 			spa->spa_proc_state = SPA_PROC_CREATED;
762 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
763 				cv_wait(&spa->spa_proc_cv,
764 				    &spa->spa_proc_lock);
765 			}
766 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
767 			ASSERT(spa->spa_proc != &p0);
768 			ASSERT(spa->spa_did != 0);
769 		} else {
770 #ifdef _KERNEL
771 			cmn_err(CE_WARN,
772 			    "Couldn't create process for zfs pool \"%s\"\n",
773 			    spa->spa_name);
774 #endif
775 		}
776 	}
777 	mutex_exit(&spa->spa_proc_lock);
778 
779 	/* If we didn't create a process, we need to create our taskqs. */
780 	if (spa->spa_proc == &p0) {
781 		spa_create_zio_taskqs(spa);
782 	}
783 
784 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
785 	    offsetof(vdev_t, vdev_config_dirty_node));
786 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
787 	    offsetof(vdev_t, vdev_state_dirty_node));
788 
789 	txg_list_create(&spa->spa_vdev_txg_list,
790 	    offsetof(struct vdev, vdev_txg_node));
791 
792 	avl_create(&spa->spa_errlist_scrub,
793 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
794 	    offsetof(spa_error_entry_t, se_avl));
795 	avl_create(&spa->spa_errlist_last,
796 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
797 	    offsetof(spa_error_entry_t, se_avl));
798 }
799 
800 /*
801  * Opposite of spa_activate().
802  */
803 static void
804 spa_deactivate(spa_t *spa)
805 {
806 	ASSERT(spa->spa_sync_on == B_FALSE);
807 	ASSERT(spa->spa_dsl_pool == NULL);
808 	ASSERT(spa->spa_root_vdev == NULL);
809 	ASSERT(spa->spa_async_zio_root == NULL);
810 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
811 
812 	txg_list_destroy(&spa->spa_vdev_txg_list);
813 
814 	list_destroy(&spa->spa_config_dirty_list);
815 	list_destroy(&spa->spa_state_dirty_list);
816 
817 	for (int t = 0; t < ZIO_TYPES; t++) {
818 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
819 			if (spa->spa_zio_taskq[t][q] != NULL)
820 				taskq_destroy(spa->spa_zio_taskq[t][q]);
821 			spa->spa_zio_taskq[t][q] = NULL;
822 		}
823 	}
824 
825 	metaslab_class_destroy(spa->spa_normal_class);
826 	spa->spa_normal_class = NULL;
827 
828 	metaslab_class_destroy(spa->spa_log_class);
829 	spa->spa_log_class = NULL;
830 
831 	/*
832 	 * If this was part of an import or the open otherwise failed, we may
833 	 * still have errors left in the queues.  Empty them just in case.
834 	 */
835 	spa_errlog_drain(spa);
836 
837 	avl_destroy(&spa->spa_errlist_scrub);
838 	avl_destroy(&spa->spa_errlist_last);
839 
840 	spa->spa_state = POOL_STATE_UNINITIALIZED;
841 
842 	mutex_enter(&spa->spa_proc_lock);
843 	if (spa->spa_proc_state != SPA_PROC_NONE) {
844 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
845 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
846 		cv_broadcast(&spa->spa_proc_cv);
847 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
848 			ASSERT(spa->spa_proc != &p0);
849 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
850 		}
851 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
852 		spa->spa_proc_state = SPA_PROC_NONE;
853 	}
854 	ASSERT(spa->spa_proc == &p0);
855 	mutex_exit(&spa->spa_proc_lock);
856 
857 	/*
858 	 * We want to make sure spa_thread() has actually exited the ZFS
859 	 * module, so that the module can't be unloaded out from underneath
860 	 * it.
861 	 */
862 	if (spa->spa_did != 0) {
863 		thread_join(spa->spa_did);
864 		spa->spa_did = 0;
865 	}
866 }
867 
868 /*
869  * Verify a pool configuration, and construct the vdev tree appropriately.  This
870  * will create all the necessary vdevs in the appropriate layout, with each vdev
871  * in the CLOSED state.  This will prep the pool before open/creation/import.
872  * All vdev validation is done by the vdev_alloc() routine.
873  */
874 static int
875 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
876     uint_t id, int atype)
877 {
878 	nvlist_t **child;
879 	uint_t children;
880 	int error;
881 
882 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
883 		return (error);
884 
885 	if ((*vdp)->vdev_ops->vdev_op_leaf)
886 		return (0);
887 
888 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
889 	    &child, &children);
890 
891 	if (error == ENOENT)
892 		return (0);
893 
894 	if (error) {
895 		vdev_free(*vdp);
896 		*vdp = NULL;
897 		return (EINVAL);
898 	}
899 
900 	for (int c = 0; c < children; c++) {
901 		vdev_t *vd;
902 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
903 		    atype)) != 0) {
904 			vdev_free(*vdp);
905 			*vdp = NULL;
906 			return (error);
907 		}
908 	}
909 
910 	ASSERT(*vdp != NULL);
911 
912 	return (0);
913 }
914 
915 /*
916  * Opposite of spa_load().
917  */
918 static void
919 spa_unload(spa_t *spa)
920 {
921 	int i;
922 
923 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
924 
925 	/*
926 	 * Stop async tasks.
927 	 */
928 	spa_async_suspend(spa);
929 
930 	/*
931 	 * Stop syncing.
932 	 */
933 	if (spa->spa_sync_on) {
934 		txg_sync_stop(spa->spa_dsl_pool);
935 		spa->spa_sync_on = B_FALSE;
936 	}
937 
938 	/*
939 	 * Wait for any outstanding async I/O to complete.
940 	 */
941 	if (spa->spa_async_zio_root != NULL) {
942 		(void) zio_wait(spa->spa_async_zio_root);
943 		spa->spa_async_zio_root = NULL;
944 	}
945 
946 	/*
947 	 * Close the dsl pool.
948 	 */
949 	if (spa->spa_dsl_pool) {
950 		dsl_pool_close(spa->spa_dsl_pool);
951 		spa->spa_dsl_pool = NULL;
952 	}
953 
954 	ddt_unload(spa);
955 
956 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
957 
958 	/*
959 	 * Drop and purge level 2 cache
960 	 */
961 	spa_l2cache_drop(spa);
962 
963 	/*
964 	 * Close all vdevs.
965 	 */
966 	if (spa->spa_root_vdev)
967 		vdev_free(spa->spa_root_vdev);
968 	ASSERT(spa->spa_root_vdev == NULL);
969 
970 	for (i = 0; i < spa->spa_spares.sav_count; i++)
971 		vdev_free(spa->spa_spares.sav_vdevs[i]);
972 	if (spa->spa_spares.sav_vdevs) {
973 		kmem_free(spa->spa_spares.sav_vdevs,
974 		    spa->spa_spares.sav_count * sizeof (void *));
975 		spa->spa_spares.sav_vdevs = NULL;
976 	}
977 	if (spa->spa_spares.sav_config) {
978 		nvlist_free(spa->spa_spares.sav_config);
979 		spa->spa_spares.sav_config = NULL;
980 	}
981 	spa->spa_spares.sav_count = 0;
982 
983 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
984 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
985 	if (spa->spa_l2cache.sav_vdevs) {
986 		kmem_free(spa->spa_l2cache.sav_vdevs,
987 		    spa->spa_l2cache.sav_count * sizeof (void *));
988 		spa->spa_l2cache.sav_vdevs = NULL;
989 	}
990 	if (spa->spa_l2cache.sav_config) {
991 		nvlist_free(spa->spa_l2cache.sav_config);
992 		spa->spa_l2cache.sav_config = NULL;
993 	}
994 	spa->spa_l2cache.sav_count = 0;
995 
996 	spa->spa_async_suspended = 0;
997 
998 	spa_config_exit(spa, SCL_ALL, FTAG);
999 }
1000 
1001 /*
1002  * Load (or re-load) the current list of vdevs describing the active spares for
1003  * this pool.  When this is called, we have some form of basic information in
1004  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1005  * then re-generate a more complete list including status information.
1006  */
1007 static void
1008 spa_load_spares(spa_t *spa)
1009 {
1010 	nvlist_t **spares;
1011 	uint_t nspares;
1012 	int i;
1013 	vdev_t *vd, *tvd;
1014 
1015 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1016 
1017 	/*
1018 	 * First, close and free any existing spare vdevs.
1019 	 */
1020 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1021 		vd = spa->spa_spares.sav_vdevs[i];
1022 
1023 		/* Undo the call to spa_activate() below */
1024 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1025 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1026 			spa_spare_remove(tvd);
1027 		vdev_close(vd);
1028 		vdev_free(vd);
1029 	}
1030 
1031 	if (spa->spa_spares.sav_vdevs)
1032 		kmem_free(spa->spa_spares.sav_vdevs,
1033 		    spa->spa_spares.sav_count * sizeof (void *));
1034 
1035 	if (spa->spa_spares.sav_config == NULL)
1036 		nspares = 0;
1037 	else
1038 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1039 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1040 
1041 	spa->spa_spares.sav_count = (int)nspares;
1042 	spa->spa_spares.sav_vdevs = NULL;
1043 
1044 	if (nspares == 0)
1045 		return;
1046 
1047 	/*
1048 	 * Construct the array of vdevs, opening them to get status in the
1049 	 * process.   For each spare, there is potentially two different vdev_t
1050 	 * structures associated with it: one in the list of spares (used only
1051 	 * for basic validation purposes) and one in the active vdev
1052 	 * configuration (if it's spared in).  During this phase we open and
1053 	 * validate each vdev on the spare list.  If the vdev also exists in the
1054 	 * active configuration, then we also mark this vdev as an active spare.
1055 	 */
1056 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1057 	    KM_SLEEP);
1058 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1059 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1060 		    VDEV_ALLOC_SPARE) == 0);
1061 		ASSERT(vd != NULL);
1062 
1063 		spa->spa_spares.sav_vdevs[i] = vd;
1064 
1065 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1066 		    B_FALSE)) != NULL) {
1067 			if (!tvd->vdev_isspare)
1068 				spa_spare_add(tvd);
1069 
1070 			/*
1071 			 * We only mark the spare active if we were successfully
1072 			 * able to load the vdev.  Otherwise, importing a pool
1073 			 * with a bad active spare would result in strange
1074 			 * behavior, because multiple pool would think the spare
1075 			 * is actively in use.
1076 			 *
1077 			 * There is a vulnerability here to an equally bizarre
1078 			 * circumstance, where a dead active spare is later
1079 			 * brought back to life (onlined or otherwise).  Given
1080 			 * the rarity of this scenario, and the extra complexity
1081 			 * it adds, we ignore the possibility.
1082 			 */
1083 			if (!vdev_is_dead(tvd))
1084 				spa_spare_activate(tvd);
1085 		}
1086 
1087 		vd->vdev_top = vd;
1088 		vd->vdev_aux = &spa->spa_spares;
1089 
1090 		if (vdev_open(vd) != 0)
1091 			continue;
1092 
1093 		if (vdev_validate_aux(vd) == 0)
1094 			spa_spare_add(vd);
1095 	}
1096 
1097 	/*
1098 	 * Recompute the stashed list of spares, with status information
1099 	 * this time.
1100 	 */
1101 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1102 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1103 
1104 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1105 	    KM_SLEEP);
1106 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1107 		spares[i] = vdev_config_generate(spa,
1108 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
1109 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1110 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1111 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1112 		nvlist_free(spares[i]);
1113 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1114 }
1115 
1116 /*
1117  * Load (or re-load) the current list of vdevs describing the active l2cache for
1118  * this pool.  When this is called, we have some form of basic information in
1119  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1120  * then re-generate a more complete list including status information.
1121  * Devices which are already active have their details maintained, and are
1122  * not re-opened.
1123  */
1124 static void
1125 spa_load_l2cache(spa_t *spa)
1126 {
1127 	nvlist_t **l2cache;
1128 	uint_t nl2cache;
1129 	int i, j, oldnvdevs;
1130 	uint64_t guid;
1131 	vdev_t *vd, **oldvdevs, **newvdevs;
1132 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1133 
1134 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1135 
1136 	if (sav->sav_config != NULL) {
1137 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1138 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1139 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1140 	} else {
1141 		nl2cache = 0;
1142 	}
1143 
1144 	oldvdevs = sav->sav_vdevs;
1145 	oldnvdevs = sav->sav_count;
1146 	sav->sav_vdevs = NULL;
1147 	sav->sav_count = 0;
1148 
1149 	/*
1150 	 * Process new nvlist of vdevs.
1151 	 */
1152 	for (i = 0; i < nl2cache; i++) {
1153 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1154 		    &guid) == 0);
1155 
1156 		newvdevs[i] = NULL;
1157 		for (j = 0; j < oldnvdevs; j++) {
1158 			vd = oldvdevs[j];
1159 			if (vd != NULL && guid == vd->vdev_guid) {
1160 				/*
1161 				 * Retain previous vdev for add/remove ops.
1162 				 */
1163 				newvdevs[i] = vd;
1164 				oldvdevs[j] = NULL;
1165 				break;
1166 			}
1167 		}
1168 
1169 		if (newvdevs[i] == NULL) {
1170 			/*
1171 			 * Create new vdev
1172 			 */
1173 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1174 			    VDEV_ALLOC_L2CACHE) == 0);
1175 			ASSERT(vd != NULL);
1176 			newvdevs[i] = vd;
1177 
1178 			/*
1179 			 * Commit this vdev as an l2cache device,
1180 			 * even if it fails to open.
1181 			 */
1182 			spa_l2cache_add(vd);
1183 
1184 			vd->vdev_top = vd;
1185 			vd->vdev_aux = sav;
1186 
1187 			spa_l2cache_activate(vd);
1188 
1189 			if (vdev_open(vd) != 0)
1190 				continue;
1191 
1192 			(void) vdev_validate_aux(vd);
1193 
1194 			if (!vdev_is_dead(vd))
1195 				l2arc_add_vdev(spa, vd);
1196 		}
1197 	}
1198 
1199 	/*
1200 	 * Purge vdevs that were dropped
1201 	 */
1202 	for (i = 0; i < oldnvdevs; i++) {
1203 		uint64_t pool;
1204 
1205 		vd = oldvdevs[i];
1206 		if (vd != NULL) {
1207 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1208 			    pool != 0ULL && l2arc_vdev_present(vd))
1209 				l2arc_remove_vdev(vd);
1210 			(void) vdev_close(vd);
1211 			spa_l2cache_remove(vd);
1212 		}
1213 	}
1214 
1215 	if (oldvdevs)
1216 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1217 
1218 	if (sav->sav_config == NULL)
1219 		goto out;
1220 
1221 	sav->sav_vdevs = newvdevs;
1222 	sav->sav_count = (int)nl2cache;
1223 
1224 	/*
1225 	 * Recompute the stashed list of l2cache devices, with status
1226 	 * information this time.
1227 	 */
1228 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1229 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1230 
1231 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1232 	for (i = 0; i < sav->sav_count; i++)
1233 		l2cache[i] = vdev_config_generate(spa,
1234 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1235 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1236 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1237 out:
1238 	for (i = 0; i < sav->sav_count; i++)
1239 		nvlist_free(l2cache[i]);
1240 	if (sav->sav_count)
1241 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1242 }
1243 
1244 static int
1245 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1246 {
1247 	dmu_buf_t *db;
1248 	char *packed = NULL;
1249 	size_t nvsize = 0;
1250 	int error;
1251 	*value = NULL;
1252 
1253 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1254 	nvsize = *(uint64_t *)db->db_data;
1255 	dmu_buf_rele(db, FTAG);
1256 
1257 	packed = kmem_alloc(nvsize, KM_SLEEP);
1258 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1259 	    DMU_READ_PREFETCH);
1260 	if (error == 0)
1261 		error = nvlist_unpack(packed, nvsize, value, 0);
1262 	kmem_free(packed, nvsize);
1263 
1264 	return (error);
1265 }
1266 
1267 /*
1268  * Checks to see if the given vdev could not be opened, in which case we post a
1269  * sysevent to notify the autoreplace code that the device has been removed.
1270  */
1271 static void
1272 spa_check_removed(vdev_t *vd)
1273 {
1274 	for (int c = 0; c < vd->vdev_children; c++)
1275 		spa_check_removed(vd->vdev_child[c]);
1276 
1277 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1278 		zfs_post_autoreplace(vd->vdev_spa, vd);
1279 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1280 	}
1281 }
1282 
1283 /*
1284  * Load the slog device state from the config object since it's possible
1285  * that the label does not contain the most up-to-date information.
1286  */
1287 void
1288 spa_load_log_state(spa_t *spa, nvlist_t *nv)
1289 {
1290 	vdev_t *ovd, *rvd = spa->spa_root_vdev;
1291 
1292 	/*
1293 	 * Load the original root vdev tree from the passed config.
1294 	 */
1295 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1296 	VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1297 
1298 	for (int c = 0; c < rvd->vdev_children; c++) {
1299 		vdev_t *cvd = rvd->vdev_child[c];
1300 		if (cvd->vdev_islog)
1301 			vdev_load_log_state(cvd, ovd->vdev_child[c]);
1302 	}
1303 	vdev_free(ovd);
1304 	spa_config_exit(spa, SCL_ALL, FTAG);
1305 }
1306 
1307 /*
1308  * Check for missing log devices
1309  */
1310 int
1311 spa_check_logs(spa_t *spa)
1312 {
1313 	switch (spa->spa_log_state) {
1314 	case SPA_LOG_MISSING:
1315 		/* need to recheck in case slog has been restored */
1316 	case SPA_LOG_UNKNOWN:
1317 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1318 		    DS_FIND_CHILDREN)) {
1319 			spa_set_log_state(spa, SPA_LOG_MISSING);
1320 			return (1);
1321 		}
1322 		break;
1323 	}
1324 	return (0);
1325 }
1326 
1327 static boolean_t
1328 spa_passivate_log(spa_t *spa)
1329 {
1330 	vdev_t *rvd = spa->spa_root_vdev;
1331 	boolean_t slog_found = B_FALSE;
1332 
1333 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1334 
1335 	if (!spa_has_slogs(spa))
1336 		return (B_FALSE);
1337 
1338 	for (int c = 0; c < rvd->vdev_children; c++) {
1339 		vdev_t *tvd = rvd->vdev_child[c];
1340 		metaslab_group_t *mg = tvd->vdev_mg;
1341 
1342 		if (tvd->vdev_islog) {
1343 			metaslab_group_passivate(mg);
1344 			slog_found = B_TRUE;
1345 		}
1346 	}
1347 
1348 	return (slog_found);
1349 }
1350 
1351 static void
1352 spa_activate_log(spa_t *spa)
1353 {
1354 	vdev_t *rvd = spa->spa_root_vdev;
1355 
1356 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1357 
1358 	for (int c = 0; c < rvd->vdev_children; c++) {
1359 		vdev_t *tvd = rvd->vdev_child[c];
1360 		metaslab_group_t *mg = tvd->vdev_mg;
1361 
1362 		if (tvd->vdev_islog)
1363 			metaslab_group_activate(mg);
1364 	}
1365 }
1366 
1367 int
1368 spa_offline_log(spa_t *spa)
1369 {
1370 	int error = 0;
1371 
1372 	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1373 	    NULL, DS_FIND_CHILDREN)) == 0) {
1374 
1375 		/*
1376 		 * We successfully offlined the log device, sync out the
1377 		 * current txg so that the "stubby" block can be removed
1378 		 * by zil_sync().
1379 		 */
1380 		txg_wait_synced(spa->spa_dsl_pool, 0);
1381 	}
1382 	return (error);
1383 }
1384 
1385 static void
1386 spa_aux_check_removed(spa_aux_vdev_t *sav)
1387 {
1388 	for (int i = 0; i < sav->sav_count; i++)
1389 		spa_check_removed(sav->sav_vdevs[i]);
1390 }
1391 
1392 void
1393 spa_claim_notify(zio_t *zio)
1394 {
1395 	spa_t *spa = zio->io_spa;
1396 
1397 	if (zio->io_error)
1398 		return;
1399 
1400 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1401 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1402 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1403 	mutex_exit(&spa->spa_props_lock);
1404 }
1405 
1406 typedef struct spa_load_error {
1407 	uint64_t	sle_metadata_count;
1408 	uint64_t	sle_data_count;
1409 } spa_load_error_t;
1410 
1411 static void
1412 spa_load_verify_done(zio_t *zio)
1413 {
1414 	blkptr_t *bp = zio->io_bp;
1415 	spa_load_error_t *sle = zio->io_private;
1416 	dmu_object_type_t type = BP_GET_TYPE(bp);
1417 	int error = zio->io_error;
1418 
1419 	if (error) {
1420 		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1421 		    type != DMU_OT_INTENT_LOG)
1422 			atomic_add_64(&sle->sle_metadata_count, 1);
1423 		else
1424 			atomic_add_64(&sle->sle_data_count, 1);
1425 	}
1426 	zio_data_buf_free(zio->io_data, zio->io_size);
1427 }
1428 
1429 /*ARGSUSED*/
1430 static int
1431 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1432     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1433 {
1434 	if (bp != NULL) {
1435 		zio_t *rio = arg;
1436 		size_t size = BP_GET_PSIZE(bp);
1437 		void *data = zio_data_buf_alloc(size);
1438 
1439 		zio_nowait(zio_read(rio, spa, bp, data, size,
1440 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1441 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1442 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1443 	}
1444 	return (0);
1445 }
1446 
1447 static int
1448 spa_load_verify(spa_t *spa)
1449 {
1450 	zio_t *rio;
1451 	spa_load_error_t sle = { 0 };
1452 	zpool_rewind_policy_t policy;
1453 	boolean_t verify_ok = B_FALSE;
1454 	int error;
1455 
1456 	rio = zio_root(spa, NULL, &sle,
1457 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1458 
1459 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1460 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1461 
1462 	(void) zio_wait(rio);
1463 
1464 	zpool_get_rewind_policy(spa->spa_config, &policy);
1465 
1466 	spa->spa_load_meta_errors = sle.sle_metadata_count;
1467 	spa->spa_load_data_errors = sle.sle_data_count;
1468 
1469 	if (!error && sle.sle_metadata_count <= policy.zrp_maxmeta &&
1470 	    sle.sle_data_count <= policy.zrp_maxdata) {
1471 		verify_ok = B_TRUE;
1472 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1473 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1474 	} else {
1475 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1476 	}
1477 
1478 	if (error) {
1479 		if (error != ENXIO && error != EIO)
1480 			error = EIO;
1481 		return (error);
1482 	}
1483 
1484 	return (verify_ok ? 0 : EIO);
1485 }
1486 
1487 /*
1488  * Find a value in the pool props object.
1489  */
1490 static void
1491 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1492 {
1493 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1494 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1495 }
1496 
1497 /*
1498  * Find a value in the pool directory object.
1499  */
1500 static int
1501 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1502 {
1503 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1504 	    name, sizeof (uint64_t), 1, val));
1505 }
1506 
1507 static int
1508 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1509 {
1510 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1511 	return (err);
1512 }
1513 
1514 /*
1515  * Fix up config after a partly-completed split.  This is done with the
1516  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1517  * pool have that entry in their config, but only the splitting one contains
1518  * a list of all the guids of the vdevs that are being split off.
1519  *
1520  * This function determines what to do with that list: either rejoin
1521  * all the disks to the pool, or complete the splitting process.  To attempt
1522  * the rejoin, each disk that is offlined is marked online again, and
1523  * we do a reopen() call.  If the vdev label for every disk that was
1524  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1525  * then we call vdev_split() on each disk, and complete the split.
1526  *
1527  * Otherwise we leave the config alone, with all the vdevs in place in
1528  * the original pool.
1529  */
1530 static void
1531 spa_try_repair(spa_t *spa, nvlist_t *config)
1532 {
1533 	uint_t extracted;
1534 	uint64_t *glist;
1535 	uint_t i, gcount;
1536 	nvlist_t *nvl;
1537 	vdev_t **vd;
1538 	boolean_t attempt_reopen;
1539 
1540 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1541 		return;
1542 
1543 	/* check that the config is complete */
1544 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1545 	    &glist, &gcount) != 0)
1546 		return;
1547 
1548 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1549 
1550 	/* attempt to online all the vdevs & validate */
1551 	attempt_reopen = B_TRUE;
1552 	for (i = 0; i < gcount; i++) {
1553 		if (glist[i] == 0)	/* vdev is hole */
1554 			continue;
1555 
1556 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1557 		if (vd[i] == NULL) {
1558 			/*
1559 			 * Don't bother attempting to reopen the disks;
1560 			 * just do the split.
1561 			 */
1562 			attempt_reopen = B_FALSE;
1563 		} else {
1564 			/* attempt to re-online it */
1565 			vd[i]->vdev_offline = B_FALSE;
1566 		}
1567 	}
1568 
1569 	if (attempt_reopen) {
1570 		vdev_reopen(spa->spa_root_vdev);
1571 
1572 		/* check each device to see what state it's in */
1573 		for (extracted = 0, i = 0; i < gcount; i++) {
1574 			if (vd[i] != NULL &&
1575 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1576 				break;
1577 			++extracted;
1578 		}
1579 	}
1580 
1581 	/*
1582 	 * If every disk has been moved to the new pool, or if we never
1583 	 * even attempted to look at them, then we split them off for
1584 	 * good.
1585 	 */
1586 	if (!attempt_reopen || gcount == extracted) {
1587 		for (i = 0; i < gcount; i++)
1588 			if (vd[i] != NULL)
1589 				vdev_split(vd[i]);
1590 		vdev_reopen(spa->spa_root_vdev);
1591 	}
1592 
1593 	kmem_free(vd, gcount * sizeof (vdev_t *));
1594 }
1595 
1596 static int
1597 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1598     boolean_t mosconfig)
1599 {
1600 	nvlist_t *config = spa->spa_config;
1601 	char *ereport = FM_EREPORT_ZFS_POOL;
1602 	int error;
1603 	uint64_t pool_guid;
1604 	nvlist_t *nvl;
1605 
1606 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1607 		return (EINVAL);
1608 
1609 	/*
1610 	 * Versioning wasn't explicitly added to the label until later, so if
1611 	 * it's not present treat it as the initial version.
1612 	 */
1613 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1614 	    &spa->spa_ubsync.ub_version) != 0)
1615 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1616 
1617 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1618 	    &spa->spa_config_txg);
1619 
1620 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1621 	    spa_guid_exists(pool_guid, 0)) {
1622 		error = EEXIST;
1623 	} else {
1624 		spa->spa_load_guid = pool_guid;
1625 
1626 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1627 		    &nvl) == 0) {
1628 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1629 			    KM_SLEEP) == 0);
1630 		}
1631 
1632 		error = spa_load_impl(spa, pool_guid, config, state, type,
1633 		    mosconfig, &ereport);
1634 	}
1635 
1636 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1637 	if (error && error != EBADF)
1638 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1639 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1640 	spa->spa_ena = 0;
1641 
1642 	return (error);
1643 }
1644 
1645 /*
1646  * Load an existing storage pool, using the pool's builtin spa_config as a
1647  * source of configuration information.
1648  */
1649 static int
1650 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1651     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1652     char **ereport)
1653 {
1654 	int error = 0;
1655 	nvlist_t *nvconfig, *nvroot = NULL;
1656 	vdev_t *rvd;
1657 	uberblock_t *ub = &spa->spa_uberblock;
1658 	uint64_t config_cache_txg = spa->spa_config_txg;
1659 	int orig_mode = spa->spa_mode;
1660 	int parse;
1661 
1662 	/*
1663 	 * If this is an untrusted config, access the pool in read-only mode.
1664 	 * This prevents things like resilvering recently removed devices.
1665 	 */
1666 	if (!mosconfig)
1667 		spa->spa_mode = FREAD;
1668 
1669 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1670 
1671 	spa->spa_load_state = state;
1672 
1673 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1674 		return (EINVAL);
1675 
1676 	parse = (type == SPA_IMPORT_EXISTING ?
1677 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1678 
1679 	/*
1680 	 * Create "The Godfather" zio to hold all async IOs
1681 	 */
1682 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1683 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1684 
1685 	/*
1686 	 * Parse the configuration into a vdev tree.  We explicitly set the
1687 	 * value that will be returned by spa_version() since parsing the
1688 	 * configuration requires knowing the version number.
1689 	 */
1690 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1691 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1692 	spa_config_exit(spa, SCL_ALL, FTAG);
1693 
1694 	if (error != 0)
1695 		return (error);
1696 
1697 	ASSERT(spa->spa_root_vdev == rvd);
1698 
1699 	if (type != SPA_IMPORT_ASSEMBLE) {
1700 		ASSERT(spa_guid(spa) == pool_guid);
1701 	}
1702 
1703 	/*
1704 	 * Try to open all vdevs, loading each label in the process.
1705 	 */
1706 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1707 	error = vdev_open(rvd);
1708 	spa_config_exit(spa, SCL_ALL, FTAG);
1709 	if (error != 0)
1710 		return (error);
1711 
1712 	/*
1713 	 * We need to validate the vdev labels against the configuration that
1714 	 * we have in hand, which is dependent on the setting of mosconfig. If
1715 	 * mosconfig is true then we're validating the vdev labels based on
1716 	 * that config.  Otherwise, we're validating against the cached config
1717 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1718 	 * later we will recursively call spa_load() and validate against
1719 	 * the vdev config.
1720 	 *
1721 	 * If we're assembling a new pool that's been split off from an
1722 	 * existing pool, the labels haven't yet been updated so we skip
1723 	 * validation for now.
1724 	 */
1725 	if (type != SPA_IMPORT_ASSEMBLE) {
1726 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1727 		error = vdev_validate(rvd);
1728 		spa_config_exit(spa, SCL_ALL, FTAG);
1729 
1730 		if (error != 0)
1731 			return (error);
1732 
1733 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1734 			return (ENXIO);
1735 	}
1736 
1737 	/*
1738 	 * Find the best uberblock.
1739 	 */
1740 	vdev_uberblock_load(NULL, rvd, ub);
1741 
1742 	/*
1743 	 * If we weren't able to find a single valid uberblock, return failure.
1744 	 */
1745 	if (ub->ub_txg == 0)
1746 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1747 
1748 	/*
1749 	 * If the pool is newer than the code, we can't open it.
1750 	 */
1751 	if (ub->ub_version > SPA_VERSION)
1752 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1753 
1754 	/*
1755 	 * If the vdev guid sum doesn't match the uberblock, we have an
1756 	 * incomplete configuration.
1757 	 */
1758 	if (mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1759 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
1760 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1761 
1762 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1763 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1764 		spa_try_repair(spa, config);
1765 		spa_config_exit(spa, SCL_ALL, FTAG);
1766 		nvlist_free(spa->spa_config_splitting);
1767 		spa->spa_config_splitting = NULL;
1768 	}
1769 
1770 	/*
1771 	 * Initialize internal SPA structures.
1772 	 */
1773 	spa->spa_state = POOL_STATE_ACTIVE;
1774 	spa->spa_ubsync = spa->spa_uberblock;
1775 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1776 	    TXG_INITIAL : spa_last_synced_txg(spa) - TXG_DEFER_SIZE;
1777 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1778 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1779 	spa->spa_claim_max_txg = spa->spa_first_txg;
1780 
1781 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1782 	if (error)
1783 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1784 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1785 
1786 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
1787 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1788 
1789 	if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
1790 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1791 
1792 	if (!mosconfig) {
1793 		uint64_t hostid;
1794 
1795 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1796 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1797 			char *hostname;
1798 			unsigned long myhostid = 0;
1799 
1800 			VERIFY(nvlist_lookup_string(nvconfig,
1801 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1802 
1803 #ifdef	_KERNEL
1804 			myhostid = zone_get_hostid(NULL);
1805 #else	/* _KERNEL */
1806 			/*
1807 			 * We're emulating the system's hostid in userland, so
1808 			 * we can't use zone_get_hostid().
1809 			 */
1810 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1811 #endif	/* _KERNEL */
1812 			if (hostid != 0 && myhostid != 0 &&
1813 			    hostid != myhostid) {
1814 				cmn_err(CE_WARN, "pool '%s' could not be "
1815 				    "loaded as it was last accessed by "
1816 				    "another system (host: %s hostid: 0x%lx). "
1817 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1818 				    spa_name(spa), hostname,
1819 				    (unsigned long)hostid);
1820 				return (EBADF);
1821 			}
1822 		}
1823 
1824 		spa_config_set(spa, nvconfig);
1825 		spa_unload(spa);
1826 		spa_deactivate(spa);
1827 		spa_activate(spa, orig_mode);
1828 
1829 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
1830 	}
1831 
1832 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPLIST,
1833 	    &spa->spa_deferred_bplist_obj) != 0)
1834 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1835 
1836 	/*
1837 	 * Load the bit that tells us to use the new accounting function
1838 	 * (raid-z deflation).  If we have an older pool, this will not
1839 	 * be present.
1840 	 */
1841 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
1842 	if (error != 0 && error != ENOENT)
1843 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1844 
1845 	/*
1846 	 * Load the persistent error log.  If we have an older pool, this will
1847 	 * not be present.
1848 	 */
1849 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
1850 	if (error != 0 && error != ENOENT)
1851 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1852 
1853 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
1854 	    &spa->spa_errlog_scrub);
1855 	if (error != 0 && error != ENOENT)
1856 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1857 
1858 	/*
1859 	 * Load the history object.  If we have an older pool, this
1860 	 * will not be present.
1861 	 */
1862 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
1863 	if (error != 0 && error != ENOENT)
1864 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1865 
1866 	/*
1867 	 * If we're assembling the pool from the split-off vdevs of
1868 	 * an existing pool, we don't want to attach the spares & cache
1869 	 * devices.
1870 	 */
1871 
1872 	/*
1873 	 * Load any hot spares for this pool.
1874 	 */
1875 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
1876 	if (error != 0 && error != ENOENT)
1877 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1878 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
1879 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1880 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1881 		    &spa->spa_spares.sav_config) != 0)
1882 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1883 
1884 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1885 		spa_load_spares(spa);
1886 		spa_config_exit(spa, SCL_ALL, FTAG);
1887 	} else if (error == 0) {
1888 		spa->spa_spares.sav_sync = B_TRUE;
1889 	}
1890 
1891 	/*
1892 	 * Load any level 2 ARC devices for this pool.
1893 	 */
1894 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
1895 	    &spa->spa_l2cache.sav_object);
1896 	if (error != 0 && error != ENOENT)
1897 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1898 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
1899 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1900 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1901 		    &spa->spa_l2cache.sav_config) != 0)
1902 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1903 
1904 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1905 		spa_load_l2cache(spa);
1906 		spa_config_exit(spa, SCL_ALL, FTAG);
1907 	} else if (error == 0) {
1908 		spa->spa_l2cache.sav_sync = B_TRUE;
1909 	}
1910 
1911 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1912 
1913 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
1914 	if (error && error != ENOENT)
1915 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1916 
1917 	if (error == 0) {
1918 		uint64_t autoreplace;
1919 
1920 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
1921 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
1922 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
1923 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
1924 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
1925 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
1926 		    &spa->spa_dedup_ditto);
1927 
1928 		spa->spa_autoreplace = (autoreplace != 0);
1929 	}
1930 
1931 	/*
1932 	 * If the 'autoreplace' property is set, then post a resource notifying
1933 	 * the ZFS DE that it should not issue any faults for unopenable
1934 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1935 	 * unopenable vdevs so that the normal autoreplace handler can take
1936 	 * over.
1937 	 */
1938 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
1939 		spa_check_removed(spa->spa_root_vdev);
1940 		/*
1941 		 * For the import case, this is done in spa_import(), because
1942 		 * at this point we're using the spare definitions from
1943 		 * the MOS config, not necessarily from the userland config.
1944 		 */
1945 		if (state != SPA_LOAD_IMPORT) {
1946 			spa_aux_check_removed(&spa->spa_spares);
1947 			spa_aux_check_removed(&spa->spa_l2cache);
1948 		}
1949 	}
1950 
1951 	/*
1952 	 * Load the vdev state for all toplevel vdevs.
1953 	 */
1954 	vdev_load(rvd);
1955 
1956 	/*
1957 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1958 	 */
1959 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1960 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1961 	spa_config_exit(spa, SCL_ALL, FTAG);
1962 
1963 	/*
1964 	 * Check the state of the root vdev.  If it can't be opened, it
1965 	 * indicates one or more toplevel vdevs are faulted.
1966 	 */
1967 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1968 		return (ENXIO);
1969 
1970 	/*
1971 	 * Load the DDTs (dedup tables).
1972 	 */
1973 	error = ddt_load(spa);
1974 	if (error != 0)
1975 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1976 
1977 	spa_update_dspace(spa);
1978 
1979 	if (state != SPA_LOAD_TRYIMPORT) {
1980 		error = spa_load_verify(spa);
1981 		if (error)
1982 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
1983 			    error));
1984 	}
1985 
1986 	/*
1987 	 * Load the intent log state and check log integrity.  If we're
1988 	 * assembling a pool from a split, the log is not transferred over.
1989 	 */
1990 	if (type != SPA_IMPORT_ASSEMBLE) {
1991 		VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE,
1992 		    &nvroot) == 0);
1993 		spa_load_log_state(spa, nvroot);
1994 		nvlist_free(nvconfig);
1995 
1996 		if (spa_check_logs(spa)) {
1997 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1998 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
1999 		}
2000 	}
2001 
2002 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2003 	    spa->spa_load_max_txg == UINT64_MAX)) {
2004 		dmu_tx_t *tx;
2005 		int need_update = B_FALSE;
2006 
2007 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2008 
2009 		/*
2010 		 * Claim log blocks that haven't been committed yet.
2011 		 * This must all happen in a single txg.
2012 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2013 		 * invoked from zil_claim_log_block()'s i/o done callback.
2014 		 * Price of rollback is that we abandon the log.
2015 		 */
2016 		spa->spa_claiming = B_TRUE;
2017 
2018 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2019 		    spa_first_txg(spa));
2020 		(void) dmu_objset_find(spa_name(spa),
2021 		    zil_claim, tx, DS_FIND_CHILDREN);
2022 		dmu_tx_commit(tx);
2023 
2024 		spa->spa_claiming = B_FALSE;
2025 
2026 		spa_set_log_state(spa, SPA_LOG_GOOD);
2027 		spa->spa_sync_on = B_TRUE;
2028 		txg_sync_start(spa->spa_dsl_pool);
2029 
2030 		/*
2031 		 * Wait for all claims to sync.  We sync up to the highest
2032 		 * claimed log block birth time so that claimed log blocks
2033 		 * don't appear to be from the future.  spa_claim_max_txg
2034 		 * will have been set for us by either zil_check_log_chain()
2035 		 * (invoked from spa_check_logs()) or zil_claim() above.
2036 		 */
2037 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2038 
2039 		/*
2040 		 * If the config cache is stale, or we have uninitialized
2041 		 * metaslabs (see spa_vdev_add()), then update the config.
2042 		 *
2043 		 * If spa_load_verbatim is true, trust the current
2044 		 * in-core spa_config and update the disk labels.
2045 		 */
2046 		if (config_cache_txg != spa->spa_config_txg ||
2047 		    state == SPA_LOAD_IMPORT || spa->spa_load_verbatim ||
2048 		    state == SPA_LOAD_RECOVER)
2049 			need_update = B_TRUE;
2050 
2051 		for (int c = 0; c < rvd->vdev_children; c++)
2052 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2053 				need_update = B_TRUE;
2054 
2055 		/*
2056 		 * Update the config cache asychronously in case we're the
2057 		 * root pool, in which case the config cache isn't writable yet.
2058 		 */
2059 		if (need_update)
2060 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2061 
2062 		/*
2063 		 * Check all DTLs to see if anything needs resilvering.
2064 		 */
2065 		if (vdev_resilver_needed(rvd, NULL, NULL))
2066 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2067 
2068 		/*
2069 		 * Delete any inconsistent datasets.
2070 		 */
2071 		(void) dmu_objset_find(spa_name(spa),
2072 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2073 
2074 		/*
2075 		 * Clean up any stale temporary dataset userrefs.
2076 		 */
2077 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2078 	}
2079 
2080 	return (0);
2081 }
2082 
2083 static int
2084 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2085 {
2086 	spa_unload(spa);
2087 	spa_deactivate(spa);
2088 
2089 	spa->spa_load_max_txg--;
2090 
2091 	spa_activate(spa, spa_mode_global);
2092 	spa_async_suspend(spa);
2093 
2094 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2095 }
2096 
2097 static int
2098 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2099     uint64_t max_request, boolean_t extreme)
2100 {
2101 	nvlist_t *config = NULL;
2102 	int load_error, rewind_error;
2103 	uint64_t safe_rollback_txg;
2104 	uint64_t min_txg;
2105 
2106 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2107 		spa->spa_load_max_txg = spa->spa_load_txg;
2108 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2109 	} else {
2110 		spa->spa_load_max_txg = max_request;
2111 	}
2112 
2113 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2114 	    mosconfig);
2115 	if (load_error == 0)
2116 		return (0);
2117 
2118 	if (spa->spa_root_vdev != NULL)
2119 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2120 
2121 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2122 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2123 
2124 	/* specific txg requested */
2125 	if (spa->spa_load_max_txg != UINT64_MAX && !extreme) {
2126 		nvlist_free(config);
2127 		return (load_error);
2128 	}
2129 
2130 	/* Price of rolling back is discarding txgs, including log */
2131 	if (state == SPA_LOAD_RECOVER)
2132 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2133 
2134 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2135 	safe_rollback_txg = spa->spa_uberblock.ub_txg - TXG_DEFER_SIZE;
2136 
2137 	min_txg = extreme ? TXG_INITIAL : safe_rollback_txg;
2138 	while (rewind_error && (spa->spa_uberblock.ub_txg >= min_txg)) {
2139 		if (spa->spa_load_max_txg < safe_rollback_txg)
2140 			spa->spa_extreme_rewind = B_TRUE;
2141 		rewind_error = spa_load_retry(spa, state, mosconfig);
2142 	}
2143 
2144 	if (config)
2145 		spa_rewind_data_to_nvlist(spa, config);
2146 
2147 	spa->spa_extreme_rewind = B_FALSE;
2148 	spa->spa_load_max_txg = UINT64_MAX;
2149 
2150 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2151 		spa_config_set(spa, config);
2152 
2153 	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2154 }
2155 
2156 /*
2157  * Pool Open/Import
2158  *
2159  * The import case is identical to an open except that the configuration is sent
2160  * down from userland, instead of grabbed from the configuration cache.  For the
2161  * case of an open, the pool configuration will exist in the
2162  * POOL_STATE_UNINITIALIZED state.
2163  *
2164  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2165  * the same time open the pool, without having to keep around the spa_t in some
2166  * ambiguous state.
2167  */
2168 static int
2169 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2170     nvlist_t **config)
2171 {
2172 	spa_t *spa;
2173 	boolean_t norewind;
2174 	boolean_t extreme;
2175 	zpool_rewind_policy_t policy;
2176 	spa_load_state_t state = SPA_LOAD_OPEN;
2177 	int error;
2178 	int locked = B_FALSE;
2179 
2180 	*spapp = NULL;
2181 
2182 	zpool_get_rewind_policy(nvpolicy, &policy);
2183 	if (policy.zrp_request & ZPOOL_DO_REWIND)
2184 		state = SPA_LOAD_RECOVER;
2185 	norewind = (policy.zrp_request == ZPOOL_NO_REWIND);
2186 	extreme = ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0);
2187 
2188 	/*
2189 	 * As disgusting as this is, we need to support recursive calls to this
2190 	 * function because dsl_dir_open() is called during spa_load(), and ends
2191 	 * up calling spa_open() again.  The real fix is to figure out how to
2192 	 * avoid dsl_dir_open() calling this in the first place.
2193 	 */
2194 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2195 		mutex_enter(&spa_namespace_lock);
2196 		locked = B_TRUE;
2197 	}
2198 
2199 	if ((spa = spa_lookup(pool)) == NULL) {
2200 		if (locked)
2201 			mutex_exit(&spa_namespace_lock);
2202 		return (ENOENT);
2203 	}
2204 
2205 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2206 
2207 		spa_activate(spa, spa_mode_global);
2208 
2209 		if (spa->spa_last_open_failed && norewind) {
2210 			if (config != NULL && spa->spa_config)
2211 				VERIFY(nvlist_dup(spa->spa_config,
2212 				    config, KM_SLEEP) == 0);
2213 			spa_deactivate(spa);
2214 			if (locked)
2215 				mutex_exit(&spa_namespace_lock);
2216 			return (spa->spa_last_open_failed);
2217 		}
2218 
2219 		if (state != SPA_LOAD_RECOVER)
2220 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2221 
2222 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2223 		    extreme);
2224 
2225 		if (error == EBADF) {
2226 			/*
2227 			 * If vdev_validate() returns failure (indicated by
2228 			 * EBADF), it indicates that one of the vdevs indicates
2229 			 * that the pool has been exported or destroyed.  If
2230 			 * this is the case, the config cache is out of sync and
2231 			 * we should remove the pool from the namespace.
2232 			 */
2233 			spa_unload(spa);
2234 			spa_deactivate(spa);
2235 			spa_config_sync(spa, B_TRUE, B_TRUE);
2236 			spa_remove(spa);
2237 			if (locked)
2238 				mutex_exit(&spa_namespace_lock);
2239 			return (ENOENT);
2240 		}
2241 
2242 		if (error) {
2243 			/*
2244 			 * We can't open the pool, but we still have useful
2245 			 * information: the state of each vdev after the
2246 			 * attempted vdev_open().  Return this to the user.
2247 			 */
2248 			if (config != NULL && spa->spa_config)
2249 				VERIFY(nvlist_dup(spa->spa_config, config,
2250 				    KM_SLEEP) == 0);
2251 			spa_unload(spa);
2252 			spa_deactivate(spa);
2253 			spa->spa_last_open_failed = error;
2254 			if (locked)
2255 				mutex_exit(&spa_namespace_lock);
2256 			*spapp = NULL;
2257 			return (error);
2258 		}
2259 
2260 	}
2261 
2262 	spa_open_ref(spa, tag);
2263 
2264 
2265 	if (config != NULL)
2266 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2267 
2268 	if (locked) {
2269 		spa->spa_last_open_failed = 0;
2270 		spa->spa_last_ubsync_txg = 0;
2271 		spa->spa_load_txg = 0;
2272 		mutex_exit(&spa_namespace_lock);
2273 	}
2274 
2275 	*spapp = spa;
2276 
2277 	return (0);
2278 }
2279 
2280 int
2281 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2282     nvlist_t **config)
2283 {
2284 	return (spa_open_common(name, spapp, tag, policy, config));
2285 }
2286 
2287 int
2288 spa_open(const char *name, spa_t **spapp, void *tag)
2289 {
2290 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2291 }
2292 
2293 /*
2294  * Lookup the given spa_t, incrementing the inject count in the process,
2295  * preventing it from being exported or destroyed.
2296  */
2297 spa_t *
2298 spa_inject_addref(char *name)
2299 {
2300 	spa_t *spa;
2301 
2302 	mutex_enter(&spa_namespace_lock);
2303 	if ((spa = spa_lookup(name)) == NULL) {
2304 		mutex_exit(&spa_namespace_lock);
2305 		return (NULL);
2306 	}
2307 	spa->spa_inject_ref++;
2308 	mutex_exit(&spa_namespace_lock);
2309 
2310 	return (spa);
2311 }
2312 
2313 void
2314 spa_inject_delref(spa_t *spa)
2315 {
2316 	mutex_enter(&spa_namespace_lock);
2317 	spa->spa_inject_ref--;
2318 	mutex_exit(&spa_namespace_lock);
2319 }
2320 
2321 /*
2322  * Add spares device information to the nvlist.
2323  */
2324 static void
2325 spa_add_spares(spa_t *spa, nvlist_t *config)
2326 {
2327 	nvlist_t **spares;
2328 	uint_t i, nspares;
2329 	nvlist_t *nvroot;
2330 	uint64_t guid;
2331 	vdev_stat_t *vs;
2332 	uint_t vsc;
2333 	uint64_t pool;
2334 
2335 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2336 
2337 	if (spa->spa_spares.sav_count == 0)
2338 		return;
2339 
2340 	VERIFY(nvlist_lookup_nvlist(config,
2341 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2342 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2343 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2344 	if (nspares != 0) {
2345 		VERIFY(nvlist_add_nvlist_array(nvroot,
2346 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2347 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2348 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2349 
2350 		/*
2351 		 * Go through and find any spares which have since been
2352 		 * repurposed as an active spare.  If this is the case, update
2353 		 * their status appropriately.
2354 		 */
2355 		for (i = 0; i < nspares; i++) {
2356 			VERIFY(nvlist_lookup_uint64(spares[i],
2357 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2358 			if (spa_spare_exists(guid, &pool, NULL) &&
2359 			    pool != 0ULL) {
2360 				VERIFY(nvlist_lookup_uint64_array(
2361 				    spares[i], ZPOOL_CONFIG_STATS,
2362 				    (uint64_t **)&vs, &vsc) == 0);
2363 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2364 				vs->vs_aux = VDEV_AUX_SPARED;
2365 			}
2366 		}
2367 	}
2368 }
2369 
2370 /*
2371  * Add l2cache device information to the nvlist, including vdev stats.
2372  */
2373 static void
2374 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2375 {
2376 	nvlist_t **l2cache;
2377 	uint_t i, j, nl2cache;
2378 	nvlist_t *nvroot;
2379 	uint64_t guid;
2380 	vdev_t *vd;
2381 	vdev_stat_t *vs;
2382 	uint_t vsc;
2383 
2384 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2385 
2386 	if (spa->spa_l2cache.sav_count == 0)
2387 		return;
2388 
2389 	VERIFY(nvlist_lookup_nvlist(config,
2390 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2391 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2392 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2393 	if (nl2cache != 0) {
2394 		VERIFY(nvlist_add_nvlist_array(nvroot,
2395 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2396 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2397 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2398 
2399 		/*
2400 		 * Update level 2 cache device stats.
2401 		 */
2402 
2403 		for (i = 0; i < nl2cache; i++) {
2404 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2405 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2406 
2407 			vd = NULL;
2408 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2409 				if (guid ==
2410 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2411 					vd = spa->spa_l2cache.sav_vdevs[j];
2412 					break;
2413 				}
2414 			}
2415 			ASSERT(vd != NULL);
2416 
2417 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2418 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
2419 			vdev_get_stats(vd, vs);
2420 		}
2421 	}
2422 }
2423 
2424 int
2425 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2426 {
2427 	int error;
2428 	spa_t *spa;
2429 
2430 	*config = NULL;
2431 	error = spa_open_common(name, &spa, FTAG, NULL, config);
2432 
2433 	if (spa != NULL) {
2434 		/*
2435 		 * This still leaves a window of inconsistency where the spares
2436 		 * or l2cache devices could change and the config would be
2437 		 * self-inconsistent.
2438 		 */
2439 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2440 
2441 		if (*config != NULL) {
2442 			VERIFY(nvlist_add_uint64(*config,
2443 			    ZPOOL_CONFIG_ERRCOUNT,
2444 			    spa_get_errlog_size(spa)) == 0);
2445 
2446 			if (spa_suspended(spa))
2447 				VERIFY(nvlist_add_uint64(*config,
2448 				    ZPOOL_CONFIG_SUSPENDED,
2449 				    spa->spa_failmode) == 0);
2450 
2451 			spa_add_spares(spa, *config);
2452 			spa_add_l2cache(spa, *config);
2453 		}
2454 	}
2455 
2456 	/*
2457 	 * We want to get the alternate root even for faulted pools, so we cheat
2458 	 * and call spa_lookup() directly.
2459 	 */
2460 	if (altroot) {
2461 		if (spa == NULL) {
2462 			mutex_enter(&spa_namespace_lock);
2463 			spa = spa_lookup(name);
2464 			if (spa)
2465 				spa_altroot(spa, altroot, buflen);
2466 			else
2467 				altroot[0] = '\0';
2468 			spa = NULL;
2469 			mutex_exit(&spa_namespace_lock);
2470 		} else {
2471 			spa_altroot(spa, altroot, buflen);
2472 		}
2473 	}
2474 
2475 	if (spa != NULL) {
2476 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2477 		spa_close(spa, FTAG);
2478 	}
2479 
2480 	return (error);
2481 }
2482 
2483 /*
2484  * Validate that the auxiliary device array is well formed.  We must have an
2485  * array of nvlists, each which describes a valid leaf vdev.  If this is an
2486  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2487  * specified, as long as they are well-formed.
2488  */
2489 static int
2490 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2491     spa_aux_vdev_t *sav, const char *config, uint64_t version,
2492     vdev_labeltype_t label)
2493 {
2494 	nvlist_t **dev;
2495 	uint_t i, ndev;
2496 	vdev_t *vd;
2497 	int error;
2498 
2499 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2500 
2501 	/*
2502 	 * It's acceptable to have no devs specified.
2503 	 */
2504 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2505 		return (0);
2506 
2507 	if (ndev == 0)
2508 		return (EINVAL);
2509 
2510 	/*
2511 	 * Make sure the pool is formatted with a version that supports this
2512 	 * device type.
2513 	 */
2514 	if (spa_version(spa) < version)
2515 		return (ENOTSUP);
2516 
2517 	/*
2518 	 * Set the pending device list so we correctly handle device in-use
2519 	 * checking.
2520 	 */
2521 	sav->sav_pending = dev;
2522 	sav->sav_npending = ndev;
2523 
2524 	for (i = 0; i < ndev; i++) {
2525 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2526 		    mode)) != 0)
2527 			goto out;
2528 
2529 		if (!vd->vdev_ops->vdev_op_leaf) {
2530 			vdev_free(vd);
2531 			error = EINVAL;
2532 			goto out;
2533 		}
2534 
2535 		/*
2536 		 * The L2ARC currently only supports disk devices in
2537 		 * kernel context.  For user-level testing, we allow it.
2538 		 */
2539 #ifdef _KERNEL
2540 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2541 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2542 			error = ENOTBLK;
2543 			goto out;
2544 		}
2545 #endif
2546 		vd->vdev_top = vd;
2547 
2548 		if ((error = vdev_open(vd)) == 0 &&
2549 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2550 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2551 			    vd->vdev_guid) == 0);
2552 		}
2553 
2554 		vdev_free(vd);
2555 
2556 		if (error &&
2557 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2558 			goto out;
2559 		else
2560 			error = 0;
2561 	}
2562 
2563 out:
2564 	sav->sav_pending = NULL;
2565 	sav->sav_npending = 0;
2566 	return (error);
2567 }
2568 
2569 static int
2570 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2571 {
2572 	int error;
2573 
2574 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2575 
2576 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2577 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2578 	    VDEV_LABEL_SPARE)) != 0) {
2579 		return (error);
2580 	}
2581 
2582 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2583 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2584 	    VDEV_LABEL_L2CACHE));
2585 }
2586 
2587 static void
2588 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2589     const char *config)
2590 {
2591 	int i;
2592 
2593 	if (sav->sav_config != NULL) {
2594 		nvlist_t **olddevs;
2595 		uint_t oldndevs;
2596 		nvlist_t **newdevs;
2597 
2598 		/*
2599 		 * Generate new dev list by concatentating with the
2600 		 * current dev list.
2601 		 */
2602 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2603 		    &olddevs, &oldndevs) == 0);
2604 
2605 		newdevs = kmem_alloc(sizeof (void *) *
2606 		    (ndevs + oldndevs), KM_SLEEP);
2607 		for (i = 0; i < oldndevs; i++)
2608 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2609 			    KM_SLEEP) == 0);
2610 		for (i = 0; i < ndevs; i++)
2611 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2612 			    KM_SLEEP) == 0);
2613 
2614 		VERIFY(nvlist_remove(sav->sav_config, config,
2615 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2616 
2617 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2618 		    config, newdevs, ndevs + oldndevs) == 0);
2619 		for (i = 0; i < oldndevs + ndevs; i++)
2620 			nvlist_free(newdevs[i]);
2621 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2622 	} else {
2623 		/*
2624 		 * Generate a new dev list.
2625 		 */
2626 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2627 		    KM_SLEEP) == 0);
2628 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2629 		    devs, ndevs) == 0);
2630 	}
2631 }
2632 
2633 /*
2634  * Stop and drop level 2 ARC devices
2635  */
2636 void
2637 spa_l2cache_drop(spa_t *spa)
2638 {
2639 	vdev_t *vd;
2640 	int i;
2641 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2642 
2643 	for (i = 0; i < sav->sav_count; i++) {
2644 		uint64_t pool;
2645 
2646 		vd = sav->sav_vdevs[i];
2647 		ASSERT(vd != NULL);
2648 
2649 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2650 		    pool != 0ULL && l2arc_vdev_present(vd))
2651 			l2arc_remove_vdev(vd);
2652 		if (vd->vdev_isl2cache)
2653 			spa_l2cache_remove(vd);
2654 		vdev_clear_stats(vd);
2655 		(void) vdev_close(vd);
2656 	}
2657 }
2658 
2659 /*
2660  * Pool Creation
2661  */
2662 int
2663 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2664     const char *history_str, nvlist_t *zplprops)
2665 {
2666 	spa_t *spa;
2667 	char *altroot = NULL;
2668 	vdev_t *rvd;
2669 	dsl_pool_t *dp;
2670 	dmu_tx_t *tx;
2671 	int error = 0;
2672 	uint64_t txg = TXG_INITIAL;
2673 	nvlist_t **spares, **l2cache;
2674 	uint_t nspares, nl2cache;
2675 	uint64_t version;
2676 
2677 	/*
2678 	 * If this pool already exists, return failure.
2679 	 */
2680 	mutex_enter(&spa_namespace_lock);
2681 	if (spa_lookup(pool) != NULL) {
2682 		mutex_exit(&spa_namespace_lock);
2683 		return (EEXIST);
2684 	}
2685 
2686 	/*
2687 	 * Allocate a new spa_t structure.
2688 	 */
2689 	(void) nvlist_lookup_string(props,
2690 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2691 	spa = spa_add(pool, NULL, altroot);
2692 	spa_activate(spa, spa_mode_global);
2693 
2694 	if (props && (error = spa_prop_validate(spa, props))) {
2695 		spa_deactivate(spa);
2696 		spa_remove(spa);
2697 		mutex_exit(&spa_namespace_lock);
2698 		return (error);
2699 	}
2700 
2701 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2702 	    &version) != 0)
2703 		version = SPA_VERSION;
2704 	ASSERT(version <= SPA_VERSION);
2705 
2706 	spa->spa_first_txg = txg;
2707 	spa->spa_uberblock.ub_txg = txg - 1;
2708 	spa->spa_uberblock.ub_version = version;
2709 	spa->spa_ubsync = spa->spa_uberblock;
2710 
2711 	/*
2712 	 * Create "The Godfather" zio to hold all async IOs
2713 	 */
2714 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2715 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2716 
2717 	/*
2718 	 * Create the root vdev.
2719 	 */
2720 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2721 
2722 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2723 
2724 	ASSERT(error != 0 || rvd != NULL);
2725 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2726 
2727 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2728 		error = EINVAL;
2729 
2730 	if (error == 0 &&
2731 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2732 	    (error = spa_validate_aux(spa, nvroot, txg,
2733 	    VDEV_ALLOC_ADD)) == 0) {
2734 		for (int c = 0; c < rvd->vdev_children; c++) {
2735 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2736 			vdev_expand(rvd->vdev_child[c], txg);
2737 		}
2738 	}
2739 
2740 	spa_config_exit(spa, SCL_ALL, FTAG);
2741 
2742 	if (error != 0) {
2743 		spa_unload(spa);
2744 		spa_deactivate(spa);
2745 		spa_remove(spa);
2746 		mutex_exit(&spa_namespace_lock);
2747 		return (error);
2748 	}
2749 
2750 	/*
2751 	 * Get the list of spares, if specified.
2752 	 */
2753 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2754 	    &spares, &nspares) == 0) {
2755 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2756 		    KM_SLEEP) == 0);
2757 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2758 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2759 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2760 		spa_load_spares(spa);
2761 		spa_config_exit(spa, SCL_ALL, FTAG);
2762 		spa->spa_spares.sav_sync = B_TRUE;
2763 	}
2764 
2765 	/*
2766 	 * Get the list of level 2 cache devices, if specified.
2767 	 */
2768 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2769 	    &l2cache, &nl2cache) == 0) {
2770 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2771 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2772 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2773 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2774 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2775 		spa_load_l2cache(spa);
2776 		spa_config_exit(spa, SCL_ALL, FTAG);
2777 		spa->spa_l2cache.sav_sync = B_TRUE;
2778 	}
2779 
2780 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2781 	spa->spa_meta_objset = dp->dp_meta_objset;
2782 
2783 	/*
2784 	 * Create DDTs (dedup tables).
2785 	 */
2786 	ddt_create(spa);
2787 
2788 	spa_update_dspace(spa);
2789 
2790 	tx = dmu_tx_create_assigned(dp, txg);
2791 
2792 	/*
2793 	 * Create the pool config object.
2794 	 */
2795 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2796 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2797 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2798 
2799 	if (zap_add(spa->spa_meta_objset,
2800 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2801 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2802 		cmn_err(CE_PANIC, "failed to add pool config");
2803 	}
2804 
2805 	/* Newly created pools with the right version are always deflated. */
2806 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2807 		spa->spa_deflate = TRUE;
2808 		if (zap_add(spa->spa_meta_objset,
2809 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2810 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2811 			cmn_err(CE_PANIC, "failed to add deflate");
2812 		}
2813 	}
2814 
2815 	/*
2816 	 * Create the deferred-free bplist object.  Turn off compression
2817 	 * because sync-to-convergence takes longer if the blocksize
2818 	 * keeps changing.
2819 	 */
2820 	spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset,
2821 	    1 << 14, tx);
2822 	dmu_object_set_compress(spa->spa_meta_objset,
2823 	    spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx);
2824 
2825 	if (zap_add(spa->spa_meta_objset,
2826 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2827 	    sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) {
2828 		cmn_err(CE_PANIC, "failed to add bplist");
2829 	}
2830 
2831 	/*
2832 	 * Create the pool's history object.
2833 	 */
2834 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2835 		spa_history_create_obj(spa, tx);
2836 
2837 	/*
2838 	 * Set pool properties.
2839 	 */
2840 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2841 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2842 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2843 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2844 
2845 	if (props != NULL) {
2846 		spa_configfile_set(spa, props, B_FALSE);
2847 		spa_sync_props(spa, props, CRED(), tx);
2848 	}
2849 
2850 	dmu_tx_commit(tx);
2851 
2852 	spa->spa_sync_on = B_TRUE;
2853 	txg_sync_start(spa->spa_dsl_pool);
2854 
2855 	/*
2856 	 * We explicitly wait for the first transaction to complete so that our
2857 	 * bean counters are appropriately updated.
2858 	 */
2859 	txg_wait_synced(spa->spa_dsl_pool, txg);
2860 
2861 	spa_config_sync(spa, B_FALSE, B_TRUE);
2862 
2863 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2864 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2865 	spa_history_log_version(spa, LOG_POOL_CREATE);
2866 
2867 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2868 
2869 	mutex_exit(&spa_namespace_lock);
2870 
2871 	return (0);
2872 }
2873 
2874 #ifdef _KERNEL
2875 /*
2876  * Get the root pool information from the root disk, then import the root pool
2877  * during the system boot up time.
2878  */
2879 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2880 
2881 static nvlist_t *
2882 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2883 {
2884 	nvlist_t *config;
2885 	nvlist_t *nvtop, *nvroot;
2886 	uint64_t pgid;
2887 
2888 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2889 		return (NULL);
2890 
2891 	/*
2892 	 * Add this top-level vdev to the child array.
2893 	 */
2894 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2895 	    &nvtop) == 0);
2896 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2897 	    &pgid) == 0);
2898 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2899 
2900 	/*
2901 	 * Put this pool's top-level vdevs into a root vdev.
2902 	 */
2903 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2904 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2905 	    VDEV_TYPE_ROOT) == 0);
2906 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2907 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2908 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2909 	    &nvtop, 1) == 0);
2910 
2911 	/*
2912 	 * Replace the existing vdev_tree with the new root vdev in
2913 	 * this pool's configuration (remove the old, add the new).
2914 	 */
2915 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2916 	nvlist_free(nvroot);
2917 	return (config);
2918 }
2919 
2920 /*
2921  * Walk the vdev tree and see if we can find a device with "better"
2922  * configuration. A configuration is "better" if the label on that
2923  * device has a more recent txg.
2924  */
2925 static void
2926 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2927 {
2928 	for (int c = 0; c < vd->vdev_children; c++)
2929 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2930 
2931 	if (vd->vdev_ops->vdev_op_leaf) {
2932 		nvlist_t *label;
2933 		uint64_t label_txg;
2934 
2935 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2936 		    &label) != 0)
2937 			return;
2938 
2939 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2940 		    &label_txg) == 0);
2941 
2942 		/*
2943 		 * Do we have a better boot device?
2944 		 */
2945 		if (label_txg > *txg) {
2946 			*txg = label_txg;
2947 			*avd = vd;
2948 		}
2949 		nvlist_free(label);
2950 	}
2951 }
2952 
2953 /*
2954  * Import a root pool.
2955  *
2956  * For x86. devpath_list will consist of devid and/or physpath name of
2957  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2958  * The GRUB "findroot" command will return the vdev we should boot.
2959  *
2960  * For Sparc, devpath_list consists the physpath name of the booting device
2961  * no matter the rootpool is a single device pool or a mirrored pool.
2962  * e.g.
2963  *	"/pci@1f,0/ide@d/disk@0,0:a"
2964  */
2965 int
2966 spa_import_rootpool(char *devpath, char *devid)
2967 {
2968 	spa_t *spa;
2969 	vdev_t *rvd, *bvd, *avd = NULL;
2970 	nvlist_t *config, *nvtop;
2971 	uint64_t guid, txg;
2972 	char *pname;
2973 	int error;
2974 
2975 	/*
2976 	 * Read the label from the boot device and generate a configuration.
2977 	 */
2978 	config = spa_generate_rootconf(devpath, devid, &guid);
2979 #if defined(_OBP) && defined(_KERNEL)
2980 	if (config == NULL) {
2981 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
2982 			/* iscsi boot */
2983 			get_iscsi_bootpath_phy(devpath);
2984 			config = spa_generate_rootconf(devpath, devid, &guid);
2985 		}
2986 	}
2987 #endif
2988 	if (config == NULL) {
2989 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
2990 		    devpath);
2991 		return (EIO);
2992 	}
2993 
2994 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2995 	    &pname) == 0);
2996 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2997 
2998 	mutex_enter(&spa_namespace_lock);
2999 	if ((spa = spa_lookup(pname)) != NULL) {
3000 		/*
3001 		 * Remove the existing root pool from the namespace so that we
3002 		 * can replace it with the correct config we just read in.
3003 		 */
3004 		spa_remove(spa);
3005 	}
3006 
3007 	spa = spa_add(pname, config, NULL);
3008 	spa->spa_is_root = B_TRUE;
3009 	spa->spa_load_verbatim = B_TRUE;
3010 
3011 	/*
3012 	 * Build up a vdev tree based on the boot device's label config.
3013 	 */
3014 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3015 	    &nvtop) == 0);
3016 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3017 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3018 	    VDEV_ALLOC_ROOTPOOL);
3019 	spa_config_exit(spa, SCL_ALL, FTAG);
3020 	if (error) {
3021 		mutex_exit(&spa_namespace_lock);
3022 		nvlist_free(config);
3023 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3024 		    pname);
3025 		return (error);
3026 	}
3027 
3028 	/*
3029 	 * Get the boot vdev.
3030 	 */
3031 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3032 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3033 		    (u_longlong_t)guid);
3034 		error = ENOENT;
3035 		goto out;
3036 	}
3037 
3038 	/*
3039 	 * Determine if there is a better boot device.
3040 	 */
3041 	avd = bvd;
3042 	spa_alt_rootvdev(rvd, &avd, &txg);
3043 	if (avd != bvd) {
3044 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3045 		    "try booting from '%s'", avd->vdev_path);
3046 		error = EINVAL;
3047 		goto out;
3048 	}
3049 
3050 	/*
3051 	 * If the boot device is part of a spare vdev then ensure that
3052 	 * we're booting off the active spare.
3053 	 */
3054 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3055 	    !bvd->vdev_isspare) {
3056 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3057 		    "try booting from '%s'",
3058 		    bvd->vdev_parent->vdev_child[1]->vdev_path);
3059 		error = EINVAL;
3060 		goto out;
3061 	}
3062 
3063 	error = 0;
3064 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3065 out:
3066 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3067 	vdev_free(rvd);
3068 	spa_config_exit(spa, SCL_ALL, FTAG);
3069 	mutex_exit(&spa_namespace_lock);
3070 
3071 	nvlist_free(config);
3072 	return (error);
3073 }
3074 
3075 #endif
3076 
3077 /*
3078  * Take a pool and insert it into the namespace as if it had been loaded at
3079  * boot.
3080  */
3081 int
3082 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
3083 {
3084 	spa_t *spa;
3085 	zpool_rewind_policy_t policy;
3086 	char *altroot = NULL;
3087 
3088 	mutex_enter(&spa_namespace_lock);
3089 	if (spa_lookup(pool) != NULL) {
3090 		mutex_exit(&spa_namespace_lock);
3091 		return (EEXIST);
3092 	}
3093 
3094 	(void) nvlist_lookup_string(props,
3095 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3096 	spa = spa_add(pool, config, altroot);
3097 
3098 	zpool_get_rewind_policy(config, &policy);
3099 	spa->spa_load_max_txg = policy.zrp_txg;
3100 
3101 	spa->spa_load_verbatim = B_TRUE;
3102 
3103 	if (props != NULL)
3104 		spa_configfile_set(spa, props, B_FALSE);
3105 
3106 	spa_config_sync(spa, B_FALSE, B_TRUE);
3107 
3108 	mutex_exit(&spa_namespace_lock);
3109 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3110 
3111 	return (0);
3112 }
3113 
3114 /*
3115  * Import a non-root pool into the system.
3116  */
3117 int
3118 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
3119 {
3120 	spa_t *spa;
3121 	char *altroot = NULL;
3122 	spa_load_state_t state = SPA_LOAD_IMPORT;
3123 	zpool_rewind_policy_t policy;
3124 	int error;
3125 	nvlist_t *nvroot;
3126 	nvlist_t **spares, **l2cache;
3127 	uint_t nspares, nl2cache;
3128 
3129 	/*
3130 	 * If a pool with this name exists, return failure.
3131 	 */
3132 	mutex_enter(&spa_namespace_lock);
3133 	if (spa_lookup(pool) != NULL) {
3134 		mutex_exit(&spa_namespace_lock);
3135 		return (EEXIST);
3136 	}
3137 
3138 	zpool_get_rewind_policy(config, &policy);
3139 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3140 		state = SPA_LOAD_RECOVER;
3141 
3142 	/*
3143 	 * Create and initialize the spa structure.
3144 	 */
3145 	(void) nvlist_lookup_string(props,
3146 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3147 	spa = spa_add(pool, config, altroot);
3148 	spa_activate(spa, spa_mode_global);
3149 
3150 	/*
3151 	 * Don't start async tasks until we know everything is healthy.
3152 	 */
3153 	spa_async_suspend(spa);
3154 
3155 	/*
3156 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3157 	 * because the user-supplied config is actually the one to trust when
3158 	 * doing an import.
3159 	 */
3160 	if (state != SPA_LOAD_RECOVER)
3161 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3162 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3163 	    ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0));
3164 
3165 	/*
3166 	 * Propagate anything learned about failing or best txgs
3167 	 * back to caller
3168 	 */
3169 	spa_rewind_data_to_nvlist(spa, config);
3170 
3171 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3172 	/*
3173 	 * Toss any existing sparelist, as it doesn't have any validity
3174 	 * anymore, and conflicts with spa_has_spare().
3175 	 */
3176 	if (spa->spa_spares.sav_config) {
3177 		nvlist_free(spa->spa_spares.sav_config);
3178 		spa->spa_spares.sav_config = NULL;
3179 		spa_load_spares(spa);
3180 	}
3181 	if (spa->spa_l2cache.sav_config) {
3182 		nvlist_free(spa->spa_l2cache.sav_config);
3183 		spa->spa_l2cache.sav_config = NULL;
3184 		spa_load_l2cache(spa);
3185 	}
3186 
3187 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3188 	    &nvroot) == 0);
3189 	if (error == 0)
3190 		error = spa_validate_aux(spa, nvroot, -1ULL,
3191 		    VDEV_ALLOC_SPARE);
3192 	if (error == 0)
3193 		error = spa_validate_aux(spa, nvroot, -1ULL,
3194 		    VDEV_ALLOC_L2CACHE);
3195 	spa_config_exit(spa, SCL_ALL, FTAG);
3196 
3197 	if (props != NULL)
3198 		spa_configfile_set(spa, props, B_FALSE);
3199 
3200 	if (error != 0 || (props && spa_writeable(spa) &&
3201 	    (error = spa_prop_set(spa, props)))) {
3202 		spa_unload(spa);
3203 		spa_deactivate(spa);
3204 		spa_remove(spa);
3205 		mutex_exit(&spa_namespace_lock);
3206 		return (error);
3207 	}
3208 
3209 	spa_async_resume(spa);
3210 
3211 	/*
3212 	 * Override any spares and level 2 cache devices as specified by
3213 	 * the user, as these may have correct device names/devids, etc.
3214 	 */
3215 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3216 	    &spares, &nspares) == 0) {
3217 		if (spa->spa_spares.sav_config)
3218 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3219 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3220 		else
3221 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3222 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3223 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3224 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3225 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3226 		spa_load_spares(spa);
3227 		spa_config_exit(spa, SCL_ALL, FTAG);
3228 		spa->spa_spares.sav_sync = B_TRUE;
3229 	}
3230 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3231 	    &l2cache, &nl2cache) == 0) {
3232 		if (spa->spa_l2cache.sav_config)
3233 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3234 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3235 		else
3236 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3237 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3238 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3239 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3240 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3241 		spa_load_l2cache(spa);
3242 		spa_config_exit(spa, SCL_ALL, FTAG);
3243 		spa->spa_l2cache.sav_sync = B_TRUE;
3244 	}
3245 
3246 	/*
3247 	 * Check for any removed devices.
3248 	 */
3249 	if (spa->spa_autoreplace) {
3250 		spa_aux_check_removed(&spa->spa_spares);
3251 		spa_aux_check_removed(&spa->spa_l2cache);
3252 	}
3253 
3254 	if (spa_writeable(spa)) {
3255 		/*
3256 		 * Update the config cache to include the newly-imported pool.
3257 		 */
3258 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3259 	}
3260 
3261 	/*
3262 	 * It's possible that the pool was expanded while it was exported.
3263 	 * We kick off an async task to handle this for us.
3264 	 */
3265 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3266 
3267 	mutex_exit(&spa_namespace_lock);
3268 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3269 
3270 	return (0);
3271 }
3272 
3273 nvlist_t *
3274 spa_tryimport(nvlist_t *tryconfig)
3275 {
3276 	nvlist_t *config = NULL;
3277 	char *poolname;
3278 	spa_t *spa;
3279 	uint64_t state;
3280 	int error;
3281 
3282 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3283 		return (NULL);
3284 
3285 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3286 		return (NULL);
3287 
3288 	/*
3289 	 * Create and initialize the spa structure.
3290 	 */
3291 	mutex_enter(&spa_namespace_lock);
3292 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3293 	spa_activate(spa, FREAD);
3294 
3295 	/*
3296 	 * Pass off the heavy lifting to spa_load().
3297 	 * Pass TRUE for mosconfig because the user-supplied config
3298 	 * is actually the one to trust when doing an import.
3299 	 */
3300 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3301 
3302 	/*
3303 	 * If 'tryconfig' was at least parsable, return the current config.
3304 	 */
3305 	if (spa->spa_root_vdev != NULL) {
3306 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3307 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3308 		    poolname) == 0);
3309 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3310 		    state) == 0);
3311 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3312 		    spa->spa_uberblock.ub_timestamp) == 0);
3313 
3314 		/*
3315 		 * If the bootfs property exists on this pool then we
3316 		 * copy it out so that external consumers can tell which
3317 		 * pools are bootable.
3318 		 */
3319 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3320 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3321 
3322 			/*
3323 			 * We have to play games with the name since the
3324 			 * pool was opened as TRYIMPORT_NAME.
3325 			 */
3326 			if (dsl_dsobj_to_dsname(spa_name(spa),
3327 			    spa->spa_bootfs, tmpname) == 0) {
3328 				char *cp;
3329 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3330 
3331 				cp = strchr(tmpname, '/');
3332 				if (cp == NULL) {
3333 					(void) strlcpy(dsname, tmpname,
3334 					    MAXPATHLEN);
3335 				} else {
3336 					(void) snprintf(dsname, MAXPATHLEN,
3337 					    "%s/%s", poolname, ++cp);
3338 				}
3339 				VERIFY(nvlist_add_string(config,
3340 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3341 				kmem_free(dsname, MAXPATHLEN);
3342 			}
3343 			kmem_free(tmpname, MAXPATHLEN);
3344 		}
3345 
3346 		/*
3347 		 * Add the list of hot spares and level 2 cache devices.
3348 		 */
3349 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3350 		spa_add_spares(spa, config);
3351 		spa_add_l2cache(spa, config);
3352 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3353 	}
3354 
3355 	spa_unload(spa);
3356 	spa_deactivate(spa);
3357 	spa_remove(spa);
3358 	mutex_exit(&spa_namespace_lock);
3359 
3360 	return (config);
3361 }
3362 
3363 /*
3364  * Pool export/destroy
3365  *
3366  * The act of destroying or exporting a pool is very simple.  We make sure there
3367  * is no more pending I/O and any references to the pool are gone.  Then, we
3368  * update the pool state and sync all the labels to disk, removing the
3369  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3370  * we don't sync the labels or remove the configuration cache.
3371  */
3372 static int
3373 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3374     boolean_t force, boolean_t hardforce)
3375 {
3376 	spa_t *spa;
3377 
3378 	if (oldconfig)
3379 		*oldconfig = NULL;
3380 
3381 	if (!(spa_mode_global & FWRITE))
3382 		return (EROFS);
3383 
3384 	mutex_enter(&spa_namespace_lock);
3385 	if ((spa = spa_lookup(pool)) == NULL) {
3386 		mutex_exit(&spa_namespace_lock);
3387 		return (ENOENT);
3388 	}
3389 
3390 	/*
3391 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3392 	 * reacquire the namespace lock, and see if we can export.
3393 	 */
3394 	spa_open_ref(spa, FTAG);
3395 	mutex_exit(&spa_namespace_lock);
3396 	spa_async_suspend(spa);
3397 	mutex_enter(&spa_namespace_lock);
3398 	spa_close(spa, FTAG);
3399 
3400 	/*
3401 	 * The pool will be in core if it's openable,
3402 	 * in which case we can modify its state.
3403 	 */
3404 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3405 		/*
3406 		 * Objsets may be open only because they're dirty, so we
3407 		 * have to force it to sync before checking spa_refcnt.
3408 		 */
3409 		txg_wait_synced(spa->spa_dsl_pool, 0);
3410 
3411 		/*
3412 		 * A pool cannot be exported or destroyed if there are active
3413 		 * references.  If we are resetting a pool, allow references by
3414 		 * fault injection handlers.
3415 		 */
3416 		if (!spa_refcount_zero(spa) ||
3417 		    (spa->spa_inject_ref != 0 &&
3418 		    new_state != POOL_STATE_UNINITIALIZED)) {
3419 			spa_async_resume(spa);
3420 			mutex_exit(&spa_namespace_lock);
3421 			return (EBUSY);
3422 		}
3423 
3424 		/*
3425 		 * A pool cannot be exported if it has an active shared spare.
3426 		 * This is to prevent other pools stealing the active spare
3427 		 * from an exported pool. At user's own will, such pool can
3428 		 * be forcedly exported.
3429 		 */
3430 		if (!force && new_state == POOL_STATE_EXPORTED &&
3431 		    spa_has_active_shared_spare(spa)) {
3432 			spa_async_resume(spa);
3433 			mutex_exit(&spa_namespace_lock);
3434 			return (EXDEV);
3435 		}
3436 
3437 		/*
3438 		 * We want this to be reflected on every label,
3439 		 * so mark them all dirty.  spa_unload() will do the
3440 		 * final sync that pushes these changes out.
3441 		 */
3442 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3443 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3444 			spa->spa_state = new_state;
3445 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
3446 			vdev_config_dirty(spa->spa_root_vdev);
3447 			spa_config_exit(spa, SCL_ALL, FTAG);
3448 		}
3449 	}
3450 
3451 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3452 
3453 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3454 		spa_unload(spa);
3455 		spa_deactivate(spa);
3456 	}
3457 
3458 	if (oldconfig && spa->spa_config)
3459 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3460 
3461 	if (new_state != POOL_STATE_UNINITIALIZED) {
3462 		if (!hardforce)
3463 			spa_config_sync(spa, B_TRUE, B_TRUE);
3464 		spa_remove(spa);
3465 	}
3466 	mutex_exit(&spa_namespace_lock);
3467 
3468 	return (0);
3469 }
3470 
3471 /*
3472  * Destroy a storage pool.
3473  */
3474 int
3475 spa_destroy(char *pool)
3476 {
3477 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3478 	    B_FALSE, B_FALSE));
3479 }
3480 
3481 /*
3482  * Export a storage pool.
3483  */
3484 int
3485 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3486     boolean_t hardforce)
3487 {
3488 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3489 	    force, hardforce));
3490 }
3491 
3492 /*
3493  * Similar to spa_export(), this unloads the spa_t without actually removing it
3494  * from the namespace in any way.
3495  */
3496 int
3497 spa_reset(char *pool)
3498 {
3499 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3500 	    B_FALSE, B_FALSE));
3501 }
3502 
3503 /*
3504  * ==========================================================================
3505  * Device manipulation
3506  * ==========================================================================
3507  */
3508 
3509 /*
3510  * Add a device to a storage pool.
3511  */
3512 int
3513 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3514 {
3515 	uint64_t txg, id;
3516 	int error;
3517 	vdev_t *rvd = spa->spa_root_vdev;
3518 	vdev_t *vd, *tvd;
3519 	nvlist_t **spares, **l2cache;
3520 	uint_t nspares, nl2cache;
3521 
3522 	txg = spa_vdev_enter(spa);
3523 
3524 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3525 	    VDEV_ALLOC_ADD)) != 0)
3526 		return (spa_vdev_exit(spa, NULL, txg, error));
3527 
3528 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3529 
3530 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3531 	    &nspares) != 0)
3532 		nspares = 0;
3533 
3534 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3535 	    &nl2cache) != 0)
3536 		nl2cache = 0;
3537 
3538 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3539 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3540 
3541 	if (vd->vdev_children != 0 &&
3542 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3543 		return (spa_vdev_exit(spa, vd, txg, error));
3544 
3545 	/*
3546 	 * We must validate the spares and l2cache devices after checking the
3547 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3548 	 */
3549 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3550 		return (spa_vdev_exit(spa, vd, txg, error));
3551 
3552 	/*
3553 	 * Transfer each new top-level vdev from vd to rvd.
3554 	 */
3555 	for (int c = 0; c < vd->vdev_children; c++) {
3556 
3557 		/*
3558 		 * Set the vdev id to the first hole, if one exists.
3559 		 */
3560 		for (id = 0; id < rvd->vdev_children; id++) {
3561 			if (rvd->vdev_child[id]->vdev_ishole) {
3562 				vdev_free(rvd->vdev_child[id]);
3563 				break;
3564 			}
3565 		}
3566 		tvd = vd->vdev_child[c];
3567 		vdev_remove_child(vd, tvd);
3568 		tvd->vdev_id = id;
3569 		vdev_add_child(rvd, tvd);
3570 		vdev_config_dirty(tvd);
3571 	}
3572 
3573 	if (nspares != 0) {
3574 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3575 		    ZPOOL_CONFIG_SPARES);
3576 		spa_load_spares(spa);
3577 		spa->spa_spares.sav_sync = B_TRUE;
3578 	}
3579 
3580 	if (nl2cache != 0) {
3581 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3582 		    ZPOOL_CONFIG_L2CACHE);
3583 		spa_load_l2cache(spa);
3584 		spa->spa_l2cache.sav_sync = B_TRUE;
3585 	}
3586 
3587 	/*
3588 	 * We have to be careful when adding new vdevs to an existing pool.
3589 	 * If other threads start allocating from these vdevs before we
3590 	 * sync the config cache, and we lose power, then upon reboot we may
3591 	 * fail to open the pool because there are DVAs that the config cache
3592 	 * can't translate.  Therefore, we first add the vdevs without
3593 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3594 	 * and then let spa_config_update() initialize the new metaslabs.
3595 	 *
3596 	 * spa_load() checks for added-but-not-initialized vdevs, so that
3597 	 * if we lose power at any point in this sequence, the remaining
3598 	 * steps will be completed the next time we load the pool.
3599 	 */
3600 	(void) spa_vdev_exit(spa, vd, txg, 0);
3601 
3602 	mutex_enter(&spa_namespace_lock);
3603 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3604 	mutex_exit(&spa_namespace_lock);
3605 
3606 	return (0);
3607 }
3608 
3609 /*
3610  * Attach a device to a mirror.  The arguments are the path to any device
3611  * in the mirror, and the nvroot for the new device.  If the path specifies
3612  * a device that is not mirrored, we automatically insert the mirror vdev.
3613  *
3614  * If 'replacing' is specified, the new device is intended to replace the
3615  * existing device; in this case the two devices are made into their own
3616  * mirror using the 'replacing' vdev, which is functionally identical to
3617  * the mirror vdev (it actually reuses all the same ops) but has a few
3618  * extra rules: you can't attach to it after it's been created, and upon
3619  * completion of resilvering, the first disk (the one being replaced)
3620  * is automatically detached.
3621  */
3622 int
3623 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3624 {
3625 	uint64_t txg, open_txg;
3626 	vdev_t *rvd = spa->spa_root_vdev;
3627 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3628 	vdev_ops_t *pvops;
3629 	char *oldvdpath, *newvdpath;
3630 	int newvd_isspare;
3631 	int error;
3632 
3633 	txg = spa_vdev_enter(spa);
3634 
3635 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3636 
3637 	if (oldvd == NULL)
3638 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3639 
3640 	if (!oldvd->vdev_ops->vdev_op_leaf)
3641 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3642 
3643 	pvd = oldvd->vdev_parent;
3644 
3645 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3646 	    VDEV_ALLOC_ADD)) != 0)
3647 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3648 
3649 	if (newrootvd->vdev_children != 1)
3650 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3651 
3652 	newvd = newrootvd->vdev_child[0];
3653 
3654 	if (!newvd->vdev_ops->vdev_op_leaf)
3655 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3656 
3657 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3658 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3659 
3660 	/*
3661 	 * Spares can't replace logs
3662 	 */
3663 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3664 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3665 
3666 	if (!replacing) {
3667 		/*
3668 		 * For attach, the only allowable parent is a mirror or the root
3669 		 * vdev.
3670 		 */
3671 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3672 		    pvd->vdev_ops != &vdev_root_ops)
3673 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3674 
3675 		pvops = &vdev_mirror_ops;
3676 	} else {
3677 		/*
3678 		 * Active hot spares can only be replaced by inactive hot
3679 		 * spares.
3680 		 */
3681 		if (pvd->vdev_ops == &vdev_spare_ops &&
3682 		    pvd->vdev_child[1] == oldvd &&
3683 		    !spa_has_spare(spa, newvd->vdev_guid))
3684 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3685 
3686 		/*
3687 		 * If the source is a hot spare, and the parent isn't already a
3688 		 * spare, then we want to create a new hot spare.  Otherwise, we
3689 		 * want to create a replacing vdev.  The user is not allowed to
3690 		 * attach to a spared vdev child unless the 'isspare' state is
3691 		 * the same (spare replaces spare, non-spare replaces
3692 		 * non-spare).
3693 		 */
3694 		if (pvd->vdev_ops == &vdev_replacing_ops)
3695 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3696 		else if (pvd->vdev_ops == &vdev_spare_ops &&
3697 		    newvd->vdev_isspare != oldvd->vdev_isspare)
3698 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3699 		else if (pvd->vdev_ops != &vdev_spare_ops &&
3700 		    newvd->vdev_isspare)
3701 			pvops = &vdev_spare_ops;
3702 		else
3703 			pvops = &vdev_replacing_ops;
3704 	}
3705 
3706 	/*
3707 	 * Make sure the new device is big enough.
3708 	 */
3709 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3710 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3711 
3712 	/*
3713 	 * The new device cannot have a higher alignment requirement
3714 	 * than the top-level vdev.
3715 	 */
3716 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3717 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3718 
3719 	/*
3720 	 * If this is an in-place replacement, update oldvd's path and devid
3721 	 * to make it distinguishable from newvd, and unopenable from now on.
3722 	 */
3723 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3724 		spa_strfree(oldvd->vdev_path);
3725 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3726 		    KM_SLEEP);
3727 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3728 		    newvd->vdev_path, "old");
3729 		if (oldvd->vdev_devid != NULL) {
3730 			spa_strfree(oldvd->vdev_devid);
3731 			oldvd->vdev_devid = NULL;
3732 		}
3733 	}
3734 
3735 	/*
3736 	 * If the parent is not a mirror, or if we're replacing, insert the new
3737 	 * mirror/replacing/spare vdev above oldvd.
3738 	 */
3739 	if (pvd->vdev_ops != pvops)
3740 		pvd = vdev_add_parent(oldvd, pvops);
3741 
3742 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3743 	ASSERT(pvd->vdev_ops == pvops);
3744 	ASSERT(oldvd->vdev_parent == pvd);
3745 
3746 	/*
3747 	 * Extract the new device from its root and add it to pvd.
3748 	 */
3749 	vdev_remove_child(newrootvd, newvd);
3750 	newvd->vdev_id = pvd->vdev_children;
3751 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
3752 	vdev_add_child(pvd, newvd);
3753 
3754 	tvd = newvd->vdev_top;
3755 	ASSERT(pvd->vdev_top == tvd);
3756 	ASSERT(tvd->vdev_parent == rvd);
3757 
3758 	vdev_config_dirty(tvd);
3759 
3760 	/*
3761 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3762 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3763 	 */
3764 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3765 
3766 	vdev_dtl_dirty(newvd, DTL_MISSING,
3767 	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3768 
3769 	if (newvd->vdev_isspare) {
3770 		spa_spare_activate(newvd);
3771 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3772 	}
3773 
3774 	oldvdpath = spa_strdup(oldvd->vdev_path);
3775 	newvdpath = spa_strdup(newvd->vdev_path);
3776 	newvd_isspare = newvd->vdev_isspare;
3777 
3778 	/*
3779 	 * Mark newvd's DTL dirty in this txg.
3780 	 */
3781 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3782 
3783 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3784 
3785 	spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3786 	    CRED(),  "%s vdev=%s %s vdev=%s",
3787 	    replacing && newvd_isspare ? "spare in" :
3788 	    replacing ? "replace" : "attach", newvdpath,
3789 	    replacing ? "for" : "to", oldvdpath);
3790 
3791 	spa_strfree(oldvdpath);
3792 	spa_strfree(newvdpath);
3793 
3794 	/*
3795 	 * Kick off a resilver to update newvd.
3796 	 */
3797 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3798 
3799 	return (0);
3800 }
3801 
3802 /*
3803  * Detach a device from a mirror or replacing vdev.
3804  * If 'replace_done' is specified, only detach if the parent
3805  * is a replacing vdev.
3806  */
3807 int
3808 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3809 {
3810 	uint64_t txg;
3811 	int error;
3812 	vdev_t *rvd = spa->spa_root_vdev;
3813 	vdev_t *vd, *pvd, *cvd, *tvd;
3814 	boolean_t unspare = B_FALSE;
3815 	uint64_t unspare_guid;
3816 	size_t len;
3817 	char *vdpath;
3818 
3819 	txg = spa_vdev_enter(spa);
3820 
3821 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3822 
3823 	if (vd == NULL)
3824 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3825 
3826 	if (!vd->vdev_ops->vdev_op_leaf)
3827 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3828 
3829 	pvd = vd->vdev_parent;
3830 
3831 	/*
3832 	 * If the parent/child relationship is not as expected, don't do it.
3833 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3834 	 * vdev that's replacing B with C.  The user's intent in replacing
3835 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3836 	 * the replace by detaching C, the expected behavior is to end up
3837 	 * M(A,B).  But suppose that right after deciding to detach C,
3838 	 * the replacement of B completes.  We would have M(A,C), and then
3839 	 * ask to detach C, which would leave us with just A -- not what
3840 	 * the user wanted.  To prevent this, we make sure that the
3841 	 * parent/child relationship hasn't changed -- in this example,
3842 	 * that C's parent is still the replacing vdev R.
3843 	 */
3844 	if (pvd->vdev_guid != pguid && pguid != 0)
3845 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3846 
3847 	/*
3848 	 * If replace_done is specified, only remove this device if it's
3849 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3850 	 * disk can be removed.
3851 	 */
3852 	if (replace_done) {
3853 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3854 			if (vd->vdev_id != 0)
3855 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3856 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3857 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3858 		}
3859 	}
3860 
3861 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3862 	    spa_version(spa) >= SPA_VERSION_SPARES);
3863 
3864 	/*
3865 	 * Only mirror, replacing, and spare vdevs support detach.
3866 	 */
3867 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3868 	    pvd->vdev_ops != &vdev_mirror_ops &&
3869 	    pvd->vdev_ops != &vdev_spare_ops)
3870 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3871 
3872 	/*
3873 	 * If this device has the only valid copy of some data,
3874 	 * we cannot safely detach it.
3875 	 */
3876 	if (vdev_dtl_required(vd))
3877 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3878 
3879 	ASSERT(pvd->vdev_children >= 2);
3880 
3881 	/*
3882 	 * If we are detaching the second disk from a replacing vdev, then
3883 	 * check to see if we changed the original vdev's path to have "/old"
3884 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3885 	 */
3886 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3887 	    pvd->vdev_child[0]->vdev_path != NULL &&
3888 	    pvd->vdev_child[1]->vdev_path != NULL) {
3889 		ASSERT(pvd->vdev_child[1] == vd);
3890 		cvd = pvd->vdev_child[0];
3891 		len = strlen(vd->vdev_path);
3892 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3893 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3894 			spa_strfree(cvd->vdev_path);
3895 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3896 		}
3897 	}
3898 
3899 	/*
3900 	 * If we are detaching the original disk from a spare, then it implies
3901 	 * that the spare should become a real disk, and be removed from the
3902 	 * active spare list for the pool.
3903 	 */
3904 	if (pvd->vdev_ops == &vdev_spare_ops &&
3905 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3906 		unspare = B_TRUE;
3907 
3908 	/*
3909 	 * Erase the disk labels so the disk can be used for other things.
3910 	 * This must be done after all other error cases are handled,
3911 	 * but before we disembowel vd (so we can still do I/O to it).
3912 	 * But if we can't do it, don't treat the error as fatal --
3913 	 * it may be that the unwritability of the disk is the reason
3914 	 * it's being detached!
3915 	 */
3916 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3917 
3918 	/*
3919 	 * Remove vd from its parent and compact the parent's children.
3920 	 */
3921 	vdev_remove_child(pvd, vd);
3922 	vdev_compact_children(pvd);
3923 
3924 	/*
3925 	 * Remember one of the remaining children so we can get tvd below.
3926 	 */
3927 	cvd = pvd->vdev_child[0];
3928 
3929 	/*
3930 	 * If we need to remove the remaining child from the list of hot spares,
3931 	 * do it now, marking the vdev as no longer a spare in the process.
3932 	 * We must do this before vdev_remove_parent(), because that can
3933 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3934 	 * reason, we must remove the spare now, in the same txg as the detach;
3935 	 * otherwise someone could attach a new sibling, change the GUID, and
3936 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3937 	 */
3938 	if (unspare) {
3939 		ASSERT(cvd->vdev_isspare);
3940 		spa_spare_remove(cvd);
3941 		unspare_guid = cvd->vdev_guid;
3942 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3943 	}
3944 
3945 	/*
3946 	 * If the parent mirror/replacing vdev only has one child,
3947 	 * the parent is no longer needed.  Remove it from the tree.
3948 	 */
3949 	if (pvd->vdev_children == 1)
3950 		vdev_remove_parent(cvd);
3951 
3952 	/*
3953 	 * We don't set tvd until now because the parent we just removed
3954 	 * may have been the previous top-level vdev.
3955 	 */
3956 	tvd = cvd->vdev_top;
3957 	ASSERT(tvd->vdev_parent == rvd);
3958 
3959 	/*
3960 	 * Reevaluate the parent vdev state.
3961 	 */
3962 	vdev_propagate_state(cvd);
3963 
3964 	/*
3965 	 * If the 'autoexpand' property is set on the pool then automatically
3966 	 * try to expand the size of the pool. For example if the device we
3967 	 * just detached was smaller than the others, it may be possible to
3968 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3969 	 * first so that we can obtain the updated sizes of the leaf vdevs.
3970 	 */
3971 	if (spa->spa_autoexpand) {
3972 		vdev_reopen(tvd);
3973 		vdev_expand(tvd, txg);
3974 	}
3975 
3976 	vdev_config_dirty(tvd);
3977 
3978 	/*
3979 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3980 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3981 	 * But first make sure we're not on any *other* txg's DTL list, to
3982 	 * prevent vd from being accessed after it's freed.
3983 	 */
3984 	vdpath = spa_strdup(vd->vdev_path);
3985 	for (int t = 0; t < TXG_SIZE; t++)
3986 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3987 	vd->vdev_detached = B_TRUE;
3988 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3989 
3990 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3991 
3992 	error = spa_vdev_exit(spa, vd, txg, 0);
3993 
3994 	spa_history_internal_log(LOG_POOL_VDEV_DETACH, spa, NULL, CRED(),
3995 	    "vdev=%s", vdpath);
3996 	spa_strfree(vdpath);
3997 
3998 	/*
3999 	 * If this was the removal of the original device in a hot spare vdev,
4000 	 * then we want to go through and remove the device from the hot spare
4001 	 * list of every other pool.
4002 	 */
4003 	if (unspare) {
4004 		spa_t *myspa = spa;
4005 		spa = NULL;
4006 		mutex_enter(&spa_namespace_lock);
4007 		while ((spa = spa_next(spa)) != NULL) {
4008 			if (spa->spa_state != POOL_STATE_ACTIVE)
4009 				continue;
4010 			if (spa == myspa)
4011 				continue;
4012 			spa_open_ref(spa, FTAG);
4013 			mutex_exit(&spa_namespace_lock);
4014 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4015 			mutex_enter(&spa_namespace_lock);
4016 			spa_close(spa, FTAG);
4017 		}
4018 		mutex_exit(&spa_namespace_lock);
4019 	}
4020 
4021 	return (error);
4022 }
4023 
4024 /*
4025  * Split a set of devices from their mirrors, and create a new pool from them.
4026  */
4027 int
4028 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4029     nvlist_t *props, boolean_t exp)
4030 {
4031 	int error = 0;
4032 	uint64_t txg, *glist;
4033 	spa_t *newspa;
4034 	uint_t c, children, lastlog;
4035 	nvlist_t **child, *nvl, *tmp;
4036 	dmu_tx_t *tx;
4037 	char *altroot = NULL;
4038 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4039 	boolean_t activate_slog;
4040 
4041 	if (!spa_writeable(spa))
4042 		return (EROFS);
4043 
4044 	txg = spa_vdev_enter(spa);
4045 
4046 	/* clear the log and flush everything up to now */
4047 	activate_slog = spa_passivate_log(spa);
4048 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4049 	error = spa_offline_log(spa);
4050 	txg = spa_vdev_config_enter(spa);
4051 
4052 	if (activate_slog)
4053 		spa_activate_log(spa);
4054 
4055 	if (error != 0)
4056 		return (spa_vdev_exit(spa, NULL, txg, error));
4057 
4058 	/* check new spa name before going any further */
4059 	if (spa_lookup(newname) != NULL)
4060 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4061 
4062 	/*
4063 	 * scan through all the children to ensure they're all mirrors
4064 	 */
4065 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4066 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4067 	    &children) != 0)
4068 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4069 
4070 	/* first, check to ensure we've got the right child count */
4071 	rvd = spa->spa_root_vdev;
4072 	lastlog = 0;
4073 	for (c = 0; c < rvd->vdev_children; c++) {
4074 		vdev_t *vd = rvd->vdev_child[c];
4075 
4076 		/* don't count the holes & logs as children */
4077 		if (vd->vdev_islog || vd->vdev_ishole) {
4078 			if (lastlog == 0)
4079 				lastlog = c;
4080 			continue;
4081 		}
4082 
4083 		lastlog = 0;
4084 	}
4085 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4086 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4087 
4088 	/* next, ensure no spare or cache devices are part of the split */
4089 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4090 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4091 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4092 
4093 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4094 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4095 
4096 	/* then, loop over each vdev and validate it */
4097 	for (c = 0; c < children; c++) {
4098 		uint64_t is_hole = 0;
4099 
4100 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4101 		    &is_hole);
4102 
4103 		if (is_hole != 0) {
4104 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4105 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4106 				continue;
4107 			} else {
4108 				error = EINVAL;
4109 				break;
4110 			}
4111 		}
4112 
4113 		/* which disk is going to be split? */
4114 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4115 		    &glist[c]) != 0) {
4116 			error = EINVAL;
4117 			break;
4118 		}
4119 
4120 		/* look it up in the spa */
4121 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4122 		if (vml[c] == NULL) {
4123 			error = ENODEV;
4124 			break;
4125 		}
4126 
4127 		/* make sure there's nothing stopping the split */
4128 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4129 		    vml[c]->vdev_islog ||
4130 		    vml[c]->vdev_ishole ||
4131 		    vml[c]->vdev_isspare ||
4132 		    vml[c]->vdev_isl2cache ||
4133 		    !vdev_writeable(vml[c]) ||
4134 		    vml[c]->vdev_children != 0 ||
4135 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4136 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4137 			error = EINVAL;
4138 			break;
4139 		}
4140 
4141 		if (vdev_dtl_required(vml[c])) {
4142 			error = EBUSY;
4143 			break;
4144 		}
4145 
4146 		/* we need certain info from the top level */
4147 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4148 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4149 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4150 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4151 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4152 		    vml[c]->vdev_top->vdev_asize) == 0);
4153 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4154 		    vml[c]->vdev_top->vdev_ashift) == 0);
4155 	}
4156 
4157 	if (error != 0) {
4158 		kmem_free(vml, children * sizeof (vdev_t *));
4159 		kmem_free(glist, children * sizeof (uint64_t));
4160 		return (spa_vdev_exit(spa, NULL, txg, error));
4161 	}
4162 
4163 	/* stop writers from using the disks */
4164 	for (c = 0; c < children; c++) {
4165 		if (vml[c] != NULL)
4166 			vml[c]->vdev_offline = B_TRUE;
4167 	}
4168 	vdev_reopen(spa->spa_root_vdev);
4169 
4170 	/*
4171 	 * Temporarily record the splitting vdevs in the spa config.  This
4172 	 * will disappear once the config is regenerated.
4173 	 */
4174 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4175 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4176 	    glist, children) == 0);
4177 	kmem_free(glist, children * sizeof (uint64_t));
4178 
4179 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4180 	    nvl) == 0);
4181 	spa->spa_config_splitting = nvl;
4182 	vdev_config_dirty(spa->spa_root_vdev);
4183 
4184 	/* configure and create the new pool */
4185 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4186 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4187 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4188 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4189 	    spa_version(spa)) == 0);
4190 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4191 	    spa->spa_config_txg) == 0);
4192 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4193 	    spa_generate_guid(NULL)) == 0);
4194 	(void) nvlist_lookup_string(props,
4195 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4196 
4197 	/* add the new pool to the namespace */
4198 	newspa = spa_add(newname, config, altroot);
4199 	newspa->spa_config_txg = spa->spa_config_txg;
4200 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4201 
4202 	/* release the spa config lock, retaining the namespace lock */
4203 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4204 
4205 	if (zio_injection_enabled)
4206 		zio_handle_panic_injection(spa, FTAG, 1);
4207 
4208 	spa_activate(newspa, spa_mode_global);
4209 	spa_async_suspend(newspa);
4210 
4211 	/* create the new pool from the disks of the original pool */
4212 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4213 	if (error)
4214 		goto out;
4215 
4216 	/* if that worked, generate a real config for the new pool */
4217 	if (newspa->spa_root_vdev != NULL) {
4218 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4219 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4220 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4221 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4222 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4223 		    B_TRUE));
4224 	}
4225 
4226 	/* set the props */
4227 	if (props != NULL) {
4228 		spa_configfile_set(newspa, props, B_FALSE);
4229 		error = spa_prop_set(newspa, props);
4230 		if (error)
4231 			goto out;
4232 	}
4233 
4234 	/* flush everything */
4235 	txg = spa_vdev_config_enter(newspa);
4236 	vdev_config_dirty(newspa->spa_root_vdev);
4237 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4238 
4239 	if (zio_injection_enabled)
4240 		zio_handle_panic_injection(spa, FTAG, 2);
4241 
4242 	spa_async_resume(newspa);
4243 
4244 	/* finally, update the original pool's config */
4245 	txg = spa_vdev_config_enter(spa);
4246 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4247 	error = dmu_tx_assign(tx, TXG_WAIT);
4248 	if (error != 0)
4249 		dmu_tx_abort(tx);
4250 	for (c = 0; c < children; c++) {
4251 		if (vml[c] != NULL) {
4252 			vdev_split(vml[c]);
4253 			if (error == 0)
4254 				spa_history_internal_log(LOG_POOL_VDEV_DETACH,
4255 				    spa, tx, CRED(), "vdev=%s",
4256 				    vml[c]->vdev_path);
4257 			vdev_free(vml[c]);
4258 		}
4259 	}
4260 	vdev_config_dirty(spa->spa_root_vdev);
4261 	spa->spa_config_splitting = NULL;
4262 	nvlist_free(nvl);
4263 	if (error == 0)
4264 		dmu_tx_commit(tx);
4265 	(void) spa_vdev_exit(spa, NULL, txg, 0);
4266 
4267 	if (zio_injection_enabled)
4268 		zio_handle_panic_injection(spa, FTAG, 3);
4269 
4270 	/* split is complete; log a history record */
4271 	spa_history_internal_log(LOG_POOL_SPLIT, newspa, NULL, CRED(),
4272 	    "split new pool %s from pool %s", newname, spa_name(spa));
4273 
4274 	kmem_free(vml, children * sizeof (vdev_t *));
4275 
4276 	/* if we're not going to mount the filesystems in userland, export */
4277 	if (exp)
4278 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4279 		    B_FALSE, B_FALSE);
4280 
4281 	return (error);
4282 
4283 out:
4284 	spa_unload(newspa);
4285 	spa_deactivate(newspa);
4286 	spa_remove(newspa);
4287 
4288 	txg = spa_vdev_config_enter(spa);
4289 	nvlist_free(spa->spa_config_splitting);
4290 	spa->spa_config_splitting = NULL;
4291 	(void) spa_vdev_exit(spa, NULL, txg, error);
4292 
4293 	kmem_free(vml, children * sizeof (vdev_t *));
4294 	return (error);
4295 }
4296 
4297 static nvlist_t *
4298 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4299 {
4300 	for (int i = 0; i < count; i++) {
4301 		uint64_t guid;
4302 
4303 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4304 		    &guid) == 0);
4305 
4306 		if (guid == target_guid)
4307 			return (nvpp[i]);
4308 	}
4309 
4310 	return (NULL);
4311 }
4312 
4313 static void
4314 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4315 	nvlist_t *dev_to_remove)
4316 {
4317 	nvlist_t **newdev = NULL;
4318 
4319 	if (count > 1)
4320 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4321 
4322 	for (int i = 0, j = 0; i < count; i++) {
4323 		if (dev[i] == dev_to_remove)
4324 			continue;
4325 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4326 	}
4327 
4328 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4329 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4330 
4331 	for (int i = 0; i < count - 1; i++)
4332 		nvlist_free(newdev[i]);
4333 
4334 	if (count > 1)
4335 		kmem_free(newdev, (count - 1) * sizeof (void *));
4336 }
4337 
4338 /*
4339  * Removing a device from the vdev namespace requires several steps
4340  * and can take a significant amount of time.  As a result we use
4341  * the spa_vdev_config_[enter/exit] functions which allow us to
4342  * grab and release the spa_config_lock while still holding the namespace
4343  * lock.  During each step the configuration is synced out.
4344  */
4345 
4346 /*
4347  * Evacuate the device.
4348  */
4349 int
4350 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4351 {
4352 	int error = 0;
4353 	uint64_t txg;
4354 
4355 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4356 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4357 	ASSERT(vd == vd->vdev_top);
4358 
4359 	/*
4360 	 * Evacuate the device.  We don't hold the config lock as writer
4361 	 * since we need to do I/O but we do keep the
4362 	 * spa_namespace_lock held.  Once this completes the device
4363 	 * should no longer have any blocks allocated on it.
4364 	 */
4365 	if (vd->vdev_islog) {
4366 		error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
4367 		    NULL, DS_FIND_CHILDREN);
4368 	} else {
4369 		error = ENOTSUP;	/* until we have bp rewrite */
4370 	}
4371 
4372 	txg_wait_synced(spa_get_dsl(spa), 0);
4373 
4374 	if (error)
4375 		return (error);
4376 
4377 	/*
4378 	 * The evacuation succeeded.  Remove any remaining MOS metadata
4379 	 * associated with this vdev, and wait for these changes to sync.
4380 	 */
4381 	txg = spa_vdev_config_enter(spa);
4382 	vd->vdev_removing = B_TRUE;
4383 	vdev_dirty(vd, 0, NULL, txg);
4384 	vdev_config_dirty(vd);
4385 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4386 
4387 	return (0);
4388 }
4389 
4390 /*
4391  * Complete the removal by cleaning up the namespace.
4392  */
4393 void
4394 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4395 {
4396 	vdev_t *rvd = spa->spa_root_vdev;
4397 	uint64_t id = vd->vdev_id;
4398 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4399 
4400 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4401 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4402 	ASSERT(vd == vd->vdev_top);
4403 
4404 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4405 
4406 	if (list_link_active(&vd->vdev_state_dirty_node))
4407 		vdev_state_clean(vd);
4408 	if (list_link_active(&vd->vdev_config_dirty_node))
4409 		vdev_config_clean(vd);
4410 
4411 	vdev_free(vd);
4412 
4413 	if (last_vdev) {
4414 		vdev_compact_children(rvd);
4415 	} else {
4416 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4417 		vdev_add_child(rvd, vd);
4418 	}
4419 	vdev_config_dirty(rvd);
4420 
4421 	/*
4422 	 * Reassess the health of our root vdev.
4423 	 */
4424 	vdev_reopen(rvd);
4425 }
4426 
4427 /*
4428  * Remove a device from the pool.  Currently, this supports removing only hot
4429  * spares, slogs, and level 2 ARC devices.
4430  */
4431 int
4432 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4433 {
4434 	vdev_t *vd;
4435 	metaslab_group_t *mg;
4436 	nvlist_t **spares, **l2cache, *nv;
4437 	uint64_t txg = 0;
4438 	uint_t nspares, nl2cache;
4439 	int error = 0;
4440 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4441 
4442 	if (!locked)
4443 		txg = spa_vdev_enter(spa);
4444 
4445 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4446 
4447 	if (spa->spa_spares.sav_vdevs != NULL &&
4448 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4449 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4450 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4451 		/*
4452 		 * Only remove the hot spare if it's not currently in use
4453 		 * in this pool.
4454 		 */
4455 		if (vd == NULL || unspare) {
4456 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
4457 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4458 			spa_load_spares(spa);
4459 			spa->spa_spares.sav_sync = B_TRUE;
4460 		} else {
4461 			error = EBUSY;
4462 		}
4463 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
4464 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4465 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4466 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4467 		/*
4468 		 * Cache devices can always be removed.
4469 		 */
4470 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4471 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4472 		spa_load_l2cache(spa);
4473 		spa->spa_l2cache.sav_sync = B_TRUE;
4474 	} else if (vd != NULL && vd->vdev_islog) {
4475 		ASSERT(!locked);
4476 		ASSERT(vd == vd->vdev_top);
4477 
4478 		/*
4479 		 * XXX - Once we have bp-rewrite this should
4480 		 * become the common case.
4481 		 */
4482 
4483 		mg = vd->vdev_mg;
4484 
4485 		/*
4486 		 * Stop allocating from this vdev.
4487 		 */
4488 		metaslab_group_passivate(mg);
4489 
4490 		/*
4491 		 * Wait for the youngest allocations and frees to sync,
4492 		 * and then wait for the deferral of those frees to finish.
4493 		 */
4494 		spa_vdev_config_exit(spa, NULL,
4495 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4496 
4497 		/*
4498 		 * Attempt to evacuate the vdev.
4499 		 */
4500 		error = spa_vdev_remove_evacuate(spa, vd);
4501 
4502 		txg = spa_vdev_config_enter(spa);
4503 
4504 		/*
4505 		 * If we couldn't evacuate the vdev, unwind.
4506 		 */
4507 		if (error) {
4508 			metaslab_group_activate(mg);
4509 			return (spa_vdev_exit(spa, NULL, txg, error));
4510 		}
4511 
4512 		/*
4513 		 * Clean up the vdev namespace.
4514 		 */
4515 		spa_vdev_remove_from_namespace(spa, vd);
4516 
4517 	} else if (vd != NULL) {
4518 		/*
4519 		 * Normal vdevs cannot be removed (yet).
4520 		 */
4521 		error = ENOTSUP;
4522 	} else {
4523 		/*
4524 		 * There is no vdev of any kind with the specified guid.
4525 		 */
4526 		error = ENOENT;
4527 	}
4528 
4529 	if (!locked)
4530 		return (spa_vdev_exit(spa, NULL, txg, error));
4531 
4532 	return (error);
4533 }
4534 
4535 /*
4536  * Find any device that's done replacing, or a vdev marked 'unspare' that's
4537  * current spared, so we can detach it.
4538  */
4539 static vdev_t *
4540 spa_vdev_resilver_done_hunt(vdev_t *vd)
4541 {
4542 	vdev_t *newvd, *oldvd;
4543 
4544 	for (int c = 0; c < vd->vdev_children; c++) {
4545 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4546 		if (oldvd != NULL)
4547 			return (oldvd);
4548 	}
4549 
4550 	/*
4551 	 * Check for a completed replacement.
4552 	 */
4553 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
4554 		oldvd = vd->vdev_child[0];
4555 		newvd = vd->vdev_child[1];
4556 
4557 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4558 		    !vdev_dtl_required(oldvd))
4559 			return (oldvd);
4560 	}
4561 
4562 	/*
4563 	 * Check for a completed resilver with the 'unspare' flag set.
4564 	 */
4565 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
4566 		newvd = vd->vdev_child[0];
4567 		oldvd = vd->vdev_child[1];
4568 
4569 		if (newvd->vdev_unspare &&
4570 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4571 		    !vdev_dtl_required(oldvd)) {
4572 			newvd->vdev_unspare = 0;
4573 			return (oldvd);
4574 		}
4575 	}
4576 
4577 	return (NULL);
4578 }
4579 
4580 static void
4581 spa_vdev_resilver_done(spa_t *spa)
4582 {
4583 	vdev_t *vd, *pvd, *ppvd;
4584 	uint64_t guid, sguid, pguid, ppguid;
4585 
4586 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4587 
4588 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4589 		pvd = vd->vdev_parent;
4590 		ppvd = pvd->vdev_parent;
4591 		guid = vd->vdev_guid;
4592 		pguid = pvd->vdev_guid;
4593 		ppguid = ppvd->vdev_guid;
4594 		sguid = 0;
4595 		/*
4596 		 * If we have just finished replacing a hot spared device, then
4597 		 * we need to detach the parent's first child (the original hot
4598 		 * spare) as well.
4599 		 */
4600 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
4601 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4602 			ASSERT(ppvd->vdev_children == 2);
4603 			sguid = ppvd->vdev_child[1]->vdev_guid;
4604 		}
4605 		spa_config_exit(spa, SCL_ALL, FTAG);
4606 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4607 			return;
4608 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4609 			return;
4610 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4611 	}
4612 
4613 	spa_config_exit(spa, SCL_ALL, FTAG);
4614 }
4615 
4616 /*
4617  * Update the stored path or FRU for this vdev.
4618  */
4619 int
4620 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4621     boolean_t ispath)
4622 {
4623 	vdev_t *vd;
4624 
4625 	spa_vdev_state_enter(spa, SCL_ALL);
4626 
4627 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4628 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
4629 
4630 	if (!vd->vdev_ops->vdev_op_leaf)
4631 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4632 
4633 	if (ispath) {
4634 		spa_strfree(vd->vdev_path);
4635 		vd->vdev_path = spa_strdup(value);
4636 	} else {
4637 		if (vd->vdev_fru != NULL)
4638 			spa_strfree(vd->vdev_fru);
4639 		vd->vdev_fru = spa_strdup(value);
4640 	}
4641 
4642 	return (spa_vdev_state_exit(spa, vd, 0));
4643 }
4644 
4645 int
4646 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4647 {
4648 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4649 }
4650 
4651 int
4652 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4653 {
4654 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4655 }
4656 
4657 /*
4658  * ==========================================================================
4659  * SPA Scrubbing
4660  * ==========================================================================
4661  */
4662 
4663 int
4664 spa_scrub(spa_t *spa, pool_scrub_type_t type)
4665 {
4666 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4667 
4668 	if ((uint_t)type >= POOL_SCRUB_TYPES)
4669 		return (ENOTSUP);
4670 
4671 	/*
4672 	 * If a resilver was requested, but there is no DTL on a
4673 	 * writeable leaf device, we have nothing to do.
4674 	 */
4675 	if (type == POOL_SCRUB_RESILVER &&
4676 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4677 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4678 		return (0);
4679 	}
4680 
4681 	if (type == POOL_SCRUB_EVERYTHING &&
4682 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
4683 	    spa->spa_dsl_pool->dp_scrub_isresilver)
4684 		return (EBUSY);
4685 
4686 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
4687 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
4688 	} else if (type == POOL_SCRUB_NONE) {
4689 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
4690 	} else {
4691 		return (EINVAL);
4692 	}
4693 }
4694 
4695 /*
4696  * ==========================================================================
4697  * SPA async task processing
4698  * ==========================================================================
4699  */
4700 
4701 static void
4702 spa_async_remove(spa_t *spa, vdev_t *vd)
4703 {
4704 	if (vd->vdev_remove_wanted) {
4705 		vd->vdev_remove_wanted = 0;
4706 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
4707 
4708 		/*
4709 		 * We want to clear the stats, but we don't want to do a full
4710 		 * vdev_clear() as that will cause us to throw away
4711 		 * degraded/faulted state as well as attempt to reopen the
4712 		 * device, all of which is a waste.
4713 		 */
4714 		vd->vdev_stat.vs_read_errors = 0;
4715 		vd->vdev_stat.vs_write_errors = 0;
4716 		vd->vdev_stat.vs_checksum_errors = 0;
4717 
4718 		vdev_state_dirty(vd->vdev_top);
4719 	}
4720 
4721 	for (int c = 0; c < vd->vdev_children; c++)
4722 		spa_async_remove(spa, vd->vdev_child[c]);
4723 }
4724 
4725 static void
4726 spa_async_probe(spa_t *spa, vdev_t *vd)
4727 {
4728 	if (vd->vdev_probe_wanted) {
4729 		vd->vdev_probe_wanted = 0;
4730 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
4731 	}
4732 
4733 	for (int c = 0; c < vd->vdev_children; c++)
4734 		spa_async_probe(spa, vd->vdev_child[c]);
4735 }
4736 
4737 static void
4738 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
4739 {
4740 	sysevent_id_t eid;
4741 	nvlist_t *attr;
4742 	char *physpath;
4743 
4744 	if (!spa->spa_autoexpand)
4745 		return;
4746 
4747 	for (int c = 0; c < vd->vdev_children; c++) {
4748 		vdev_t *cvd = vd->vdev_child[c];
4749 		spa_async_autoexpand(spa, cvd);
4750 	}
4751 
4752 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
4753 		return;
4754 
4755 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
4756 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
4757 
4758 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4759 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
4760 
4761 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
4762 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
4763 
4764 	nvlist_free(attr);
4765 	kmem_free(physpath, MAXPATHLEN);
4766 }
4767 
4768 static void
4769 spa_async_thread(spa_t *spa)
4770 {
4771 	int tasks;
4772 
4773 	ASSERT(spa->spa_sync_on);
4774 
4775 	mutex_enter(&spa->spa_async_lock);
4776 	tasks = spa->spa_async_tasks;
4777 	spa->spa_async_tasks = 0;
4778 	mutex_exit(&spa->spa_async_lock);
4779 
4780 	/*
4781 	 * See if the config needs to be updated.
4782 	 */
4783 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
4784 		uint64_t old_space, new_space;
4785 
4786 		mutex_enter(&spa_namespace_lock);
4787 		old_space = metaslab_class_get_space(spa_normal_class(spa));
4788 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4789 		new_space = metaslab_class_get_space(spa_normal_class(spa));
4790 		mutex_exit(&spa_namespace_lock);
4791 
4792 		/*
4793 		 * If the pool grew as a result of the config update,
4794 		 * then log an internal history event.
4795 		 */
4796 		if (new_space != old_space) {
4797 			spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
4798 			    spa, NULL, CRED(),
4799 			    "pool '%s' size: %llu(+%llu)",
4800 			    spa_name(spa), new_space, new_space - old_space);
4801 		}
4802 	}
4803 
4804 	/*
4805 	 * See if any devices need to be marked REMOVED.
4806 	 */
4807 	if (tasks & SPA_ASYNC_REMOVE) {
4808 		spa_vdev_state_enter(spa, SCL_NONE);
4809 		spa_async_remove(spa, spa->spa_root_vdev);
4810 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
4811 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
4812 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
4813 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
4814 		(void) spa_vdev_state_exit(spa, NULL, 0);
4815 	}
4816 
4817 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
4818 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4819 		spa_async_autoexpand(spa, spa->spa_root_vdev);
4820 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4821 	}
4822 
4823 	/*
4824 	 * See if any devices need to be probed.
4825 	 */
4826 	if (tasks & SPA_ASYNC_PROBE) {
4827 		spa_vdev_state_enter(spa, SCL_NONE);
4828 		spa_async_probe(spa, spa->spa_root_vdev);
4829 		(void) spa_vdev_state_exit(spa, NULL, 0);
4830 	}
4831 
4832 	/*
4833 	 * If any devices are done replacing, detach them.
4834 	 */
4835 	if (tasks & SPA_ASYNC_RESILVER_DONE)
4836 		spa_vdev_resilver_done(spa);
4837 
4838 	/*
4839 	 * Kick off a resilver.
4840 	 */
4841 	if (tasks & SPA_ASYNC_RESILVER)
4842 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
4843 
4844 	/*
4845 	 * Let the world know that we're done.
4846 	 */
4847 	mutex_enter(&spa->spa_async_lock);
4848 	spa->spa_async_thread = NULL;
4849 	cv_broadcast(&spa->spa_async_cv);
4850 	mutex_exit(&spa->spa_async_lock);
4851 	thread_exit();
4852 }
4853 
4854 void
4855 spa_async_suspend(spa_t *spa)
4856 {
4857 	mutex_enter(&spa->spa_async_lock);
4858 	spa->spa_async_suspended++;
4859 	while (spa->spa_async_thread != NULL)
4860 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
4861 	mutex_exit(&spa->spa_async_lock);
4862 }
4863 
4864 void
4865 spa_async_resume(spa_t *spa)
4866 {
4867 	mutex_enter(&spa->spa_async_lock);
4868 	ASSERT(spa->spa_async_suspended != 0);
4869 	spa->spa_async_suspended--;
4870 	mutex_exit(&spa->spa_async_lock);
4871 }
4872 
4873 static void
4874 spa_async_dispatch(spa_t *spa)
4875 {
4876 	mutex_enter(&spa->spa_async_lock);
4877 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
4878 	    spa->spa_async_thread == NULL &&
4879 	    rootdir != NULL && !vn_is_readonly(rootdir))
4880 		spa->spa_async_thread = thread_create(NULL, 0,
4881 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
4882 	mutex_exit(&spa->spa_async_lock);
4883 }
4884 
4885 void
4886 spa_async_request(spa_t *spa, int task)
4887 {
4888 	mutex_enter(&spa->spa_async_lock);
4889 	spa->spa_async_tasks |= task;
4890 	mutex_exit(&spa->spa_async_lock);
4891 }
4892 
4893 /*
4894  * ==========================================================================
4895  * SPA syncing routines
4896  * ==========================================================================
4897  */
4898 static void
4899 spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg)
4900 {
4901 	blkptr_t blk;
4902 	uint64_t itor = 0;
4903 	uint8_t c = 1;
4904 
4905 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
4906 		ASSERT(blk.blk_birth < txg);
4907 		zio_free(spa, txg, &blk);
4908 	}
4909 
4910 	bplist_vacate(bpl, tx);
4911 
4912 	/*
4913 	 * Pre-dirty the first block so we sync to convergence faster.
4914 	 * (Usually only the first block is needed.)
4915 	 */
4916 	dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx);
4917 }
4918 
4919 static void
4920 spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
4921 {
4922 	zio_t *zio = arg;
4923 
4924 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
4925 	    zio->io_flags));
4926 }
4927 
4928 static void
4929 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
4930 {
4931 	char *packed = NULL;
4932 	size_t bufsize;
4933 	size_t nvsize = 0;
4934 	dmu_buf_t *db;
4935 
4936 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
4937 
4938 	/*
4939 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
4940 	 * information.  This avoids the dbuf_will_dirty() path and
4941 	 * saves us a pre-read to get data we don't actually care about.
4942 	 */
4943 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
4944 	packed = kmem_alloc(bufsize, KM_SLEEP);
4945 
4946 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
4947 	    KM_SLEEP) == 0);
4948 	bzero(packed + nvsize, bufsize - nvsize);
4949 
4950 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
4951 
4952 	kmem_free(packed, bufsize);
4953 
4954 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
4955 	dmu_buf_will_dirty(db, tx);
4956 	*(uint64_t *)db->db_data = nvsize;
4957 	dmu_buf_rele(db, FTAG);
4958 }
4959 
4960 static void
4961 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
4962     const char *config, const char *entry)
4963 {
4964 	nvlist_t *nvroot;
4965 	nvlist_t **list;
4966 	int i;
4967 
4968 	if (!sav->sav_sync)
4969 		return;
4970 
4971 	/*
4972 	 * Update the MOS nvlist describing the list of available devices.
4973 	 * spa_validate_aux() will have already made sure this nvlist is
4974 	 * valid and the vdevs are labeled appropriately.
4975 	 */
4976 	if (sav->sav_object == 0) {
4977 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
4978 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
4979 		    sizeof (uint64_t), tx);
4980 		VERIFY(zap_update(spa->spa_meta_objset,
4981 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
4982 		    &sav->sav_object, tx) == 0);
4983 	}
4984 
4985 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4986 	if (sav->sav_count == 0) {
4987 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
4988 	} else {
4989 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
4990 		for (i = 0; i < sav->sav_count; i++)
4991 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
4992 			    B_FALSE, B_FALSE, B_TRUE);
4993 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
4994 		    sav->sav_count) == 0);
4995 		for (i = 0; i < sav->sav_count; i++)
4996 			nvlist_free(list[i]);
4997 		kmem_free(list, sav->sav_count * sizeof (void *));
4998 	}
4999 
5000 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5001 	nvlist_free(nvroot);
5002 
5003 	sav->sav_sync = B_FALSE;
5004 }
5005 
5006 static void
5007 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5008 {
5009 	nvlist_t *config;
5010 
5011 	if (list_is_empty(&spa->spa_config_dirty_list))
5012 		return;
5013 
5014 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5015 
5016 	config = spa_config_generate(spa, spa->spa_root_vdev,
5017 	    dmu_tx_get_txg(tx), B_FALSE);
5018 
5019 	spa_config_exit(spa, SCL_STATE, FTAG);
5020 
5021 	if (spa->spa_config_syncing)
5022 		nvlist_free(spa->spa_config_syncing);
5023 	spa->spa_config_syncing = config;
5024 
5025 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5026 }
5027 
5028 /*
5029  * Set zpool properties.
5030  */
5031 static void
5032 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
5033 {
5034 	spa_t *spa = arg1;
5035 	objset_t *mos = spa->spa_meta_objset;
5036 	nvlist_t *nvp = arg2;
5037 	nvpair_t *elem;
5038 	uint64_t intval;
5039 	char *strval;
5040 	zpool_prop_t prop;
5041 	const char *propname;
5042 	zprop_type_t proptype;
5043 
5044 	mutex_enter(&spa->spa_props_lock);
5045 
5046 	elem = NULL;
5047 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5048 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5049 		case ZPOOL_PROP_VERSION:
5050 			/*
5051 			 * Only set version for non-zpool-creation cases
5052 			 * (set/import). spa_create() needs special care
5053 			 * for version setting.
5054 			 */
5055 			if (tx->tx_txg != TXG_INITIAL) {
5056 				VERIFY(nvpair_value_uint64(elem,
5057 				    &intval) == 0);
5058 				ASSERT(intval <= SPA_VERSION);
5059 				ASSERT(intval >= spa_version(spa));
5060 				spa->spa_uberblock.ub_version = intval;
5061 				vdev_config_dirty(spa->spa_root_vdev);
5062 			}
5063 			break;
5064 
5065 		case ZPOOL_PROP_ALTROOT:
5066 			/*
5067 			 * 'altroot' is a non-persistent property. It should
5068 			 * have been set temporarily at creation or import time.
5069 			 */
5070 			ASSERT(spa->spa_root != NULL);
5071 			break;
5072 
5073 		case ZPOOL_PROP_CACHEFILE:
5074 			/*
5075 			 * 'cachefile' is also a non-persisitent property.
5076 			 */
5077 			break;
5078 		default:
5079 			/*
5080 			 * Set pool property values in the poolprops mos object.
5081 			 */
5082 			if (spa->spa_pool_props_object == 0) {
5083 				VERIFY((spa->spa_pool_props_object =
5084 				    zap_create(mos, DMU_OT_POOL_PROPS,
5085 				    DMU_OT_NONE, 0, tx)) > 0);
5086 
5087 				VERIFY(zap_update(mos,
5088 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5089 				    8, 1, &spa->spa_pool_props_object, tx)
5090 				    == 0);
5091 			}
5092 
5093 			/* normalize the property name */
5094 			propname = zpool_prop_to_name(prop);
5095 			proptype = zpool_prop_get_type(prop);
5096 
5097 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5098 				ASSERT(proptype == PROP_TYPE_STRING);
5099 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5100 				VERIFY(zap_update(mos,
5101 				    spa->spa_pool_props_object, propname,
5102 				    1, strlen(strval) + 1, strval, tx) == 0);
5103 
5104 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5105 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5106 
5107 				if (proptype == PROP_TYPE_INDEX) {
5108 					const char *unused;
5109 					VERIFY(zpool_prop_index_to_string(
5110 					    prop, intval, &unused) == 0);
5111 				}
5112 				VERIFY(zap_update(mos,
5113 				    spa->spa_pool_props_object, propname,
5114 				    8, 1, &intval, tx) == 0);
5115 			} else {
5116 				ASSERT(0); /* not allowed */
5117 			}
5118 
5119 			switch (prop) {
5120 			case ZPOOL_PROP_DELEGATION:
5121 				spa->spa_delegation = intval;
5122 				break;
5123 			case ZPOOL_PROP_BOOTFS:
5124 				spa->spa_bootfs = intval;
5125 				break;
5126 			case ZPOOL_PROP_FAILUREMODE:
5127 				spa->spa_failmode = intval;
5128 				break;
5129 			case ZPOOL_PROP_AUTOEXPAND:
5130 				spa->spa_autoexpand = intval;
5131 				spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5132 				break;
5133 			case ZPOOL_PROP_DEDUPDITTO:
5134 				spa->spa_dedup_ditto = intval;
5135 				break;
5136 			default:
5137 				break;
5138 			}
5139 		}
5140 
5141 		/* log internal history if this is not a zpool create */
5142 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5143 		    tx->tx_txg != TXG_INITIAL) {
5144 			spa_history_internal_log(LOG_POOL_PROPSET,
5145 			    spa, tx, cr, "%s %lld %s",
5146 			    nvpair_name(elem), intval, spa_name(spa));
5147 		}
5148 	}
5149 
5150 	mutex_exit(&spa->spa_props_lock);
5151 }
5152 
5153 /*
5154  * Sync the specified transaction group.  New blocks may be dirtied as
5155  * part of the process, so we iterate until it converges.
5156  */
5157 void
5158 spa_sync(spa_t *spa, uint64_t txg)
5159 {
5160 	dsl_pool_t *dp = spa->spa_dsl_pool;
5161 	objset_t *mos = spa->spa_meta_objset;
5162 	bplist_t *defer_bpl = &spa->spa_deferred_bplist;
5163 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5164 	vdev_t *rvd = spa->spa_root_vdev;
5165 	vdev_t *vd;
5166 	dmu_tx_t *tx;
5167 	int error;
5168 
5169 	/*
5170 	 * Lock out configuration changes.
5171 	 */
5172 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5173 
5174 	spa->spa_syncing_txg = txg;
5175 	spa->spa_sync_pass = 0;
5176 
5177 	/*
5178 	 * If there are any pending vdev state changes, convert them
5179 	 * into config changes that go out with this transaction group.
5180 	 */
5181 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5182 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5183 		/*
5184 		 * We need the write lock here because, for aux vdevs,
5185 		 * calling vdev_config_dirty() modifies sav_config.
5186 		 * This is ugly and will become unnecessary when we
5187 		 * eliminate the aux vdev wart by integrating all vdevs
5188 		 * into the root vdev tree.
5189 		 */
5190 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5191 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5192 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5193 			vdev_state_clean(vd);
5194 			vdev_config_dirty(vd);
5195 		}
5196 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5197 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5198 	}
5199 	spa_config_exit(spa, SCL_STATE, FTAG);
5200 
5201 	VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj));
5202 
5203 	tx = dmu_tx_create_assigned(dp, txg);
5204 
5205 	/*
5206 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5207 	 * set spa_deflate if we have no raid-z vdevs.
5208 	 */
5209 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5210 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5211 		int i;
5212 
5213 		for (i = 0; i < rvd->vdev_children; i++) {
5214 			vd = rvd->vdev_child[i];
5215 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5216 				break;
5217 		}
5218 		if (i == rvd->vdev_children) {
5219 			spa->spa_deflate = TRUE;
5220 			VERIFY(0 == zap_add(spa->spa_meta_objset,
5221 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5222 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5223 		}
5224 	}
5225 
5226 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5227 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5228 		dsl_pool_create_origin(dp, tx);
5229 
5230 		/* Keeping the origin open increases spa_minref */
5231 		spa->spa_minref += 3;
5232 	}
5233 
5234 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5235 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5236 		dsl_pool_upgrade_clones(dp, tx);
5237 	}
5238 
5239 	/*
5240 	 * If anything has changed in this txg, push the deferred frees
5241 	 * from the previous txg.  If not, leave them alone so that we
5242 	 * don't generate work on an otherwise idle system.
5243 	 */
5244 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5245 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5246 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
5247 		spa_sync_deferred_bplist(spa, defer_bpl, tx, txg);
5248 
5249 	/*
5250 	 * Iterate to convergence.
5251 	 */
5252 	do {
5253 		int pass = ++spa->spa_sync_pass;
5254 
5255 		spa_sync_config_object(spa, tx);
5256 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5257 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5258 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5259 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5260 		spa_errlog_sync(spa, txg);
5261 		dsl_pool_sync(dp, txg);
5262 
5263 		if (pass <= SYNC_PASS_DEFERRED_FREE) {
5264 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
5265 			bplist_sync(free_bpl, spa_sync_free, zio, tx);
5266 			VERIFY(zio_wait(zio) == 0);
5267 		} else {
5268 			bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx);
5269 		}
5270 
5271 		ddt_sync(spa, txg);
5272 
5273 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5274 			vdev_sync(vd, txg);
5275 
5276 	} while (dmu_objset_is_dirty(mos, txg));
5277 
5278 	ASSERT(free_bpl->bpl_queue == NULL);
5279 
5280 	bplist_close(defer_bpl);
5281 
5282 	/*
5283 	 * Rewrite the vdev configuration (which includes the uberblock)
5284 	 * to commit the transaction group.
5285 	 *
5286 	 * If there are no dirty vdevs, we sync the uberblock to a few
5287 	 * random top-level vdevs that are known to be visible in the
5288 	 * config cache (see spa_vdev_add() for a complete description).
5289 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5290 	 */
5291 	for (;;) {
5292 		/*
5293 		 * We hold SCL_STATE to prevent vdev open/close/etc.
5294 		 * while we're attempting to write the vdev labels.
5295 		 */
5296 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5297 
5298 		if (list_is_empty(&spa->spa_config_dirty_list)) {
5299 			vdev_t *svd[SPA_DVAS_PER_BP];
5300 			int svdcount = 0;
5301 			int children = rvd->vdev_children;
5302 			int c0 = spa_get_random(children);
5303 
5304 			for (int c = 0; c < children; c++) {
5305 				vd = rvd->vdev_child[(c0 + c) % children];
5306 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5307 					continue;
5308 				svd[svdcount++] = vd;
5309 				if (svdcount == SPA_DVAS_PER_BP)
5310 					break;
5311 			}
5312 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5313 			if (error != 0)
5314 				error = vdev_config_sync(svd, svdcount, txg,
5315 				    B_TRUE);
5316 		} else {
5317 			error = vdev_config_sync(rvd->vdev_child,
5318 			    rvd->vdev_children, txg, B_FALSE);
5319 			if (error != 0)
5320 				error = vdev_config_sync(rvd->vdev_child,
5321 				    rvd->vdev_children, txg, B_TRUE);
5322 		}
5323 
5324 		spa_config_exit(spa, SCL_STATE, FTAG);
5325 
5326 		if (error == 0)
5327 			break;
5328 		zio_suspend(spa, NULL);
5329 		zio_resume_wait(spa);
5330 	}
5331 	dmu_tx_commit(tx);
5332 
5333 	/*
5334 	 * Clear the dirty config list.
5335 	 */
5336 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5337 		vdev_config_clean(vd);
5338 
5339 	/*
5340 	 * Now that the new config has synced transactionally,
5341 	 * let it become visible to the config cache.
5342 	 */
5343 	if (spa->spa_config_syncing != NULL) {
5344 		spa_config_set(spa, spa->spa_config_syncing);
5345 		spa->spa_config_txg = txg;
5346 		spa->spa_config_syncing = NULL;
5347 	}
5348 
5349 	spa->spa_ubsync = spa->spa_uberblock;
5350 
5351 	dsl_pool_sync_done(dp, txg);
5352 
5353 	/*
5354 	 * Update usable space statistics.
5355 	 */
5356 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5357 		vdev_sync_done(vd, txg);
5358 
5359 	spa_update_dspace(spa);
5360 
5361 	/*
5362 	 * It had better be the case that we didn't dirty anything
5363 	 * since vdev_config_sync().
5364 	 */
5365 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5366 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5367 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5368 	ASSERT(defer_bpl->bpl_queue == NULL);
5369 	ASSERT(free_bpl->bpl_queue == NULL);
5370 
5371 	spa->spa_sync_pass = 0;
5372 
5373 	spa_config_exit(spa, SCL_CONFIG, FTAG);
5374 
5375 	spa_handle_ignored_writes(spa);
5376 
5377 	/*
5378 	 * If any async tasks have been requested, kick them off.
5379 	 */
5380 	spa_async_dispatch(spa);
5381 }
5382 
5383 /*
5384  * Sync all pools.  We don't want to hold the namespace lock across these
5385  * operations, so we take a reference on the spa_t and drop the lock during the
5386  * sync.
5387  */
5388 void
5389 spa_sync_allpools(void)
5390 {
5391 	spa_t *spa = NULL;
5392 	mutex_enter(&spa_namespace_lock);
5393 	while ((spa = spa_next(spa)) != NULL) {
5394 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
5395 			continue;
5396 		spa_open_ref(spa, FTAG);
5397 		mutex_exit(&spa_namespace_lock);
5398 		txg_wait_synced(spa_get_dsl(spa), 0);
5399 		mutex_enter(&spa_namespace_lock);
5400 		spa_close(spa, FTAG);
5401 	}
5402 	mutex_exit(&spa_namespace_lock);
5403 }
5404 
5405 /*
5406  * ==========================================================================
5407  * Miscellaneous routines
5408  * ==========================================================================
5409  */
5410 
5411 /*
5412  * Remove all pools in the system.
5413  */
5414 void
5415 spa_evict_all(void)
5416 {
5417 	spa_t *spa;
5418 
5419 	/*
5420 	 * Remove all cached state.  All pools should be closed now,
5421 	 * so every spa in the AVL tree should be unreferenced.
5422 	 */
5423 	mutex_enter(&spa_namespace_lock);
5424 	while ((spa = spa_next(NULL)) != NULL) {
5425 		/*
5426 		 * Stop async tasks.  The async thread may need to detach
5427 		 * a device that's been replaced, which requires grabbing
5428 		 * spa_namespace_lock, so we must drop it here.
5429 		 */
5430 		spa_open_ref(spa, FTAG);
5431 		mutex_exit(&spa_namespace_lock);
5432 		spa_async_suspend(spa);
5433 		mutex_enter(&spa_namespace_lock);
5434 		spa_close(spa, FTAG);
5435 
5436 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5437 			spa_unload(spa);
5438 			spa_deactivate(spa);
5439 		}
5440 		spa_remove(spa);
5441 	}
5442 	mutex_exit(&spa_namespace_lock);
5443 }
5444 
5445 vdev_t *
5446 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5447 {
5448 	vdev_t *vd;
5449 	int i;
5450 
5451 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5452 		return (vd);
5453 
5454 	if (aux) {
5455 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5456 			vd = spa->spa_l2cache.sav_vdevs[i];
5457 			if (vd->vdev_guid == guid)
5458 				return (vd);
5459 		}
5460 
5461 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
5462 			vd = spa->spa_spares.sav_vdevs[i];
5463 			if (vd->vdev_guid == guid)
5464 				return (vd);
5465 		}
5466 	}
5467 
5468 	return (NULL);
5469 }
5470 
5471 void
5472 spa_upgrade(spa_t *spa, uint64_t version)
5473 {
5474 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5475 
5476 	/*
5477 	 * This should only be called for a non-faulted pool, and since a
5478 	 * future version would result in an unopenable pool, this shouldn't be
5479 	 * possible.
5480 	 */
5481 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5482 	ASSERT(version >= spa->spa_uberblock.ub_version);
5483 
5484 	spa->spa_uberblock.ub_version = version;
5485 	vdev_config_dirty(spa->spa_root_vdev);
5486 
5487 	spa_config_exit(spa, SCL_ALL, FTAG);
5488 
5489 	txg_wait_synced(spa_get_dsl(spa), 0);
5490 }
5491 
5492 boolean_t
5493 spa_has_spare(spa_t *spa, uint64_t guid)
5494 {
5495 	int i;
5496 	uint64_t spareguid;
5497 	spa_aux_vdev_t *sav = &spa->spa_spares;
5498 
5499 	for (i = 0; i < sav->sav_count; i++)
5500 		if (sav->sav_vdevs[i]->vdev_guid == guid)
5501 			return (B_TRUE);
5502 
5503 	for (i = 0; i < sav->sav_npending; i++) {
5504 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5505 		    &spareguid) == 0 && spareguid == guid)
5506 			return (B_TRUE);
5507 	}
5508 
5509 	return (B_FALSE);
5510 }
5511 
5512 /*
5513  * Check if a pool has an active shared spare device.
5514  * Note: reference count of an active spare is 2, as a spare and as a replace
5515  */
5516 static boolean_t
5517 spa_has_active_shared_spare(spa_t *spa)
5518 {
5519 	int i, refcnt;
5520 	uint64_t pool;
5521 	spa_aux_vdev_t *sav = &spa->spa_spares;
5522 
5523 	for (i = 0; i < sav->sav_count; i++) {
5524 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5525 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5526 		    refcnt > 2)
5527 			return (B_TRUE);
5528 	}
5529 
5530 	return (B_FALSE);
5531 }
5532 
5533 /*
5534  * Post a sysevent corresponding to the given event.  The 'name' must be one of
5535  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5536  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5537  * in the userland libzpool, as we don't want consumers to misinterpret ztest
5538  * or zdb as real changes.
5539  */
5540 void
5541 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5542 {
5543 #ifdef _KERNEL
5544 	sysevent_t		*ev;
5545 	sysevent_attr_list_t	*attr = NULL;
5546 	sysevent_value_t	value;
5547 	sysevent_id_t		eid;
5548 
5549 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5550 	    SE_SLEEP);
5551 
5552 	value.value_type = SE_DATA_TYPE_STRING;
5553 	value.value.sv_string = spa_name(spa);
5554 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5555 		goto done;
5556 
5557 	value.value_type = SE_DATA_TYPE_UINT64;
5558 	value.value.sv_uint64 = spa_guid(spa);
5559 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5560 		goto done;
5561 
5562 	if (vd) {
5563 		value.value_type = SE_DATA_TYPE_UINT64;
5564 		value.value.sv_uint64 = vd->vdev_guid;
5565 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5566 		    SE_SLEEP) != 0)
5567 			goto done;
5568 
5569 		if (vd->vdev_path) {
5570 			value.value_type = SE_DATA_TYPE_STRING;
5571 			value.value.sv_string = vd->vdev_path;
5572 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5573 			    &value, SE_SLEEP) != 0)
5574 				goto done;
5575 		}
5576 	}
5577 
5578 	if (sysevent_attach_attributes(ev, attr) != 0)
5579 		goto done;
5580 	attr = NULL;
5581 
5582 	(void) log_sysevent(ev, SE_SLEEP, &eid);
5583 
5584 done:
5585 	if (attr)
5586 		sysevent_free_attr(attr);
5587 	sysevent_free(ev);
5588 #endif
5589 }
5590