xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 5df5713f81d69c1a0797f99b13e95e220da00ef9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/sunddi.h>
61 #include <sys/spa_boot.h>
62 
63 #ifdef	_KERNEL
64 #include <sys/zone.h>
65 #endif	/* _KERNEL */
66 
67 #include "zfs_prop.h"
68 #include "zfs_comutil.h"
69 
70 int zio_taskq_threads[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
71 	/*	ISSUE	INTR					*/
72 	{	1,	1	},	/* ZIO_TYPE_NULL	*/
73 	{	8,	8	},	/* ZIO_TYPE_READ	*/
74 	{	8,	8	},	/* ZIO_TYPE_WRITE	*/
75 	{	1,	1	},	/* ZIO_TYPE_FREE	*/
76 	{	1,	1	},	/* ZIO_TYPE_CLAIM	*/
77 	{	1,	1	},	/* ZIO_TYPE_IOCTL	*/
78 };
79 
80 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
81 static boolean_t spa_has_active_shared_spare(spa_t *spa);
82 
83 /*
84  * ==========================================================================
85  * SPA properties routines
86  * ==========================================================================
87  */
88 
89 /*
90  * Add a (source=src, propname=propval) list to an nvlist.
91  */
92 static void
93 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
94     uint64_t intval, zprop_source_t src)
95 {
96 	const char *propname = zpool_prop_to_name(prop);
97 	nvlist_t *propval;
98 
99 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
100 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
101 
102 	if (strval != NULL)
103 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
104 	else
105 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
106 
107 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
108 	nvlist_free(propval);
109 }
110 
111 /*
112  * Get property values from the spa configuration.
113  */
114 static void
115 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
116 {
117 	uint64_t size;
118 	uint64_t used;
119 	uint64_t cap, version;
120 	zprop_source_t src = ZPROP_SRC_NONE;
121 	spa_config_dirent_t *dp;
122 
123 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
124 
125 	if (spa->spa_root_vdev != NULL) {
126 		size = spa_get_space(spa);
127 		used = spa_get_alloc(spa);
128 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
129 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
130 		spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
131 		spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
132 		    size - used, src);
133 
134 		cap = (size == 0) ? 0 : (used * 100 / size);
135 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
136 
137 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
138 		    spa->spa_root_vdev->vdev_state, src);
139 
140 		version = spa_version(spa);
141 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
142 			src = ZPROP_SRC_DEFAULT;
143 		else
144 			src = ZPROP_SRC_LOCAL;
145 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
146 	}
147 
148 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
149 
150 	if (spa->spa_root != NULL)
151 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
152 		    0, ZPROP_SRC_LOCAL);
153 
154 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
155 		if (dp->scd_path == NULL) {
156 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
157 			    "none", 0, ZPROP_SRC_LOCAL);
158 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
159 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
160 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
161 		}
162 	}
163 }
164 
165 /*
166  * Get zpool property values.
167  */
168 int
169 spa_prop_get(spa_t *spa, nvlist_t **nvp)
170 {
171 	zap_cursor_t zc;
172 	zap_attribute_t za;
173 	objset_t *mos = spa->spa_meta_objset;
174 	int err;
175 
176 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
177 
178 	mutex_enter(&spa->spa_props_lock);
179 
180 	/*
181 	 * Get properties from the spa config.
182 	 */
183 	spa_prop_get_config(spa, nvp);
184 
185 	/* If no pool property object, no more prop to get. */
186 	if (spa->spa_pool_props_object == 0) {
187 		mutex_exit(&spa->spa_props_lock);
188 		return (0);
189 	}
190 
191 	/*
192 	 * Get properties from the MOS pool property object.
193 	 */
194 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
195 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
196 	    zap_cursor_advance(&zc)) {
197 		uint64_t intval = 0;
198 		char *strval = NULL;
199 		zprop_source_t src = ZPROP_SRC_DEFAULT;
200 		zpool_prop_t prop;
201 
202 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
203 			continue;
204 
205 		switch (za.za_integer_length) {
206 		case 8:
207 			/* integer property */
208 			if (za.za_first_integer !=
209 			    zpool_prop_default_numeric(prop))
210 				src = ZPROP_SRC_LOCAL;
211 
212 			if (prop == ZPOOL_PROP_BOOTFS) {
213 				dsl_pool_t *dp;
214 				dsl_dataset_t *ds = NULL;
215 
216 				dp = spa_get_dsl(spa);
217 				rw_enter(&dp->dp_config_rwlock, RW_READER);
218 				if (err = dsl_dataset_hold_obj(dp,
219 				    za.za_first_integer, FTAG, &ds)) {
220 					rw_exit(&dp->dp_config_rwlock);
221 					break;
222 				}
223 
224 				strval = kmem_alloc(
225 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
226 				    KM_SLEEP);
227 				dsl_dataset_name(ds, strval);
228 				dsl_dataset_rele(ds, FTAG);
229 				rw_exit(&dp->dp_config_rwlock);
230 			} else {
231 				strval = NULL;
232 				intval = za.za_first_integer;
233 			}
234 
235 			spa_prop_add_list(*nvp, prop, strval, intval, src);
236 
237 			if (strval != NULL)
238 				kmem_free(strval,
239 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
240 
241 			break;
242 
243 		case 1:
244 			/* string property */
245 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
246 			err = zap_lookup(mos, spa->spa_pool_props_object,
247 			    za.za_name, 1, za.za_num_integers, strval);
248 			if (err) {
249 				kmem_free(strval, za.za_num_integers);
250 				break;
251 			}
252 			spa_prop_add_list(*nvp, prop, strval, 0, src);
253 			kmem_free(strval, za.za_num_integers);
254 			break;
255 
256 		default:
257 			break;
258 		}
259 	}
260 	zap_cursor_fini(&zc);
261 	mutex_exit(&spa->spa_props_lock);
262 out:
263 	if (err && err != ENOENT) {
264 		nvlist_free(*nvp);
265 		*nvp = NULL;
266 		return (err);
267 	}
268 
269 	return (0);
270 }
271 
272 /*
273  * Validate the given pool properties nvlist and modify the list
274  * for the property values to be set.
275  */
276 static int
277 spa_prop_validate(spa_t *spa, nvlist_t *props)
278 {
279 	nvpair_t *elem;
280 	int error = 0, reset_bootfs = 0;
281 	uint64_t objnum;
282 
283 	elem = NULL;
284 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
285 		zpool_prop_t prop;
286 		char *propname, *strval;
287 		uint64_t intval;
288 		objset_t *os;
289 		char *slash;
290 
291 		propname = nvpair_name(elem);
292 
293 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
294 			return (EINVAL);
295 
296 		switch (prop) {
297 		case ZPOOL_PROP_VERSION:
298 			error = nvpair_value_uint64(elem, &intval);
299 			if (!error &&
300 			    (intval < spa_version(spa) || intval > SPA_VERSION))
301 				error = EINVAL;
302 			break;
303 
304 		case ZPOOL_PROP_DELEGATION:
305 		case ZPOOL_PROP_AUTOREPLACE:
306 		case ZPOOL_PROP_LISTSNAPS:
307 			error = nvpair_value_uint64(elem, &intval);
308 			if (!error && intval > 1)
309 				error = EINVAL;
310 			break;
311 
312 		case ZPOOL_PROP_BOOTFS:
313 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
314 				error = ENOTSUP;
315 				break;
316 			}
317 
318 			/*
319 			 * Make sure the vdev config is bootable
320 			 */
321 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
322 				error = ENOTSUP;
323 				break;
324 			}
325 
326 			reset_bootfs = 1;
327 
328 			error = nvpair_value_string(elem, &strval);
329 
330 			if (!error) {
331 				uint64_t compress;
332 
333 				if (strval == NULL || strval[0] == '\0') {
334 					objnum = zpool_prop_default_numeric(
335 					    ZPOOL_PROP_BOOTFS);
336 					break;
337 				}
338 
339 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
340 				    DS_MODE_USER | DS_MODE_READONLY, &os))
341 					break;
342 
343 				/* We don't support gzip bootable datasets */
344 				if ((error = dsl_prop_get_integer(strval,
345 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
346 				    &compress, NULL)) == 0 &&
347 				    !BOOTFS_COMPRESS_VALID(compress)) {
348 					error = ENOTSUP;
349 				} else {
350 					objnum = dmu_objset_id(os);
351 				}
352 				dmu_objset_close(os);
353 			}
354 			break;
355 
356 		case ZPOOL_PROP_FAILUREMODE:
357 			error = nvpair_value_uint64(elem, &intval);
358 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
359 			    intval > ZIO_FAILURE_MODE_PANIC))
360 				error = EINVAL;
361 
362 			/*
363 			 * This is a special case which only occurs when
364 			 * the pool has completely failed. This allows
365 			 * the user to change the in-core failmode property
366 			 * without syncing it out to disk (I/Os might
367 			 * currently be blocked). We do this by returning
368 			 * EIO to the caller (spa_prop_set) to trick it
369 			 * into thinking we encountered a property validation
370 			 * error.
371 			 */
372 			if (!error && spa_suspended(spa)) {
373 				spa->spa_failmode = intval;
374 				error = EIO;
375 			}
376 			break;
377 
378 		case ZPOOL_PROP_CACHEFILE:
379 			if ((error = nvpair_value_string(elem, &strval)) != 0)
380 				break;
381 
382 			if (strval[0] == '\0')
383 				break;
384 
385 			if (strcmp(strval, "none") == 0)
386 				break;
387 
388 			if (strval[0] != '/') {
389 				error = EINVAL;
390 				break;
391 			}
392 
393 			slash = strrchr(strval, '/');
394 			ASSERT(slash != NULL);
395 
396 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
397 			    strcmp(slash, "/..") == 0)
398 				error = EINVAL;
399 			break;
400 		}
401 
402 		if (error)
403 			break;
404 	}
405 
406 	if (!error && reset_bootfs) {
407 		error = nvlist_remove(props,
408 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
409 
410 		if (!error) {
411 			error = nvlist_add_uint64(props,
412 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
413 		}
414 	}
415 
416 	return (error);
417 }
418 
419 void
420 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
421 {
422 	char *cachefile;
423 	spa_config_dirent_t *dp;
424 
425 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
426 	    &cachefile) != 0)
427 		return;
428 
429 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
430 	    KM_SLEEP);
431 
432 	if (cachefile[0] == '\0')
433 		dp->scd_path = spa_strdup(spa_config_path);
434 	else if (strcmp(cachefile, "none") == 0)
435 		dp->scd_path = NULL;
436 	else
437 		dp->scd_path = spa_strdup(cachefile);
438 
439 	list_insert_head(&spa->spa_config_list, dp);
440 	if (need_sync)
441 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
442 }
443 
444 int
445 spa_prop_set(spa_t *spa, nvlist_t *nvp)
446 {
447 	int error;
448 	nvpair_t *elem;
449 	boolean_t need_sync = B_FALSE;
450 	zpool_prop_t prop;
451 
452 	if ((error = spa_prop_validate(spa, nvp)) != 0)
453 		return (error);
454 
455 	elem = NULL;
456 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
457 		if ((prop = zpool_name_to_prop(
458 		    nvpair_name(elem))) == ZPROP_INVAL)
459 			return (EINVAL);
460 
461 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
462 			continue;
463 
464 		need_sync = B_TRUE;
465 		break;
466 	}
467 
468 	if (need_sync)
469 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
470 		    spa, nvp, 3));
471 	else
472 		return (0);
473 }
474 
475 /*
476  * If the bootfs property value is dsobj, clear it.
477  */
478 void
479 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
480 {
481 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
482 		VERIFY(zap_remove(spa->spa_meta_objset,
483 		    spa->spa_pool_props_object,
484 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
485 		spa->spa_bootfs = 0;
486 	}
487 }
488 
489 /*
490  * ==========================================================================
491  * SPA state manipulation (open/create/destroy/import/export)
492  * ==========================================================================
493  */
494 
495 static int
496 spa_error_entry_compare(const void *a, const void *b)
497 {
498 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
499 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
500 	int ret;
501 
502 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
503 	    sizeof (zbookmark_t));
504 
505 	if (ret < 0)
506 		return (-1);
507 	else if (ret > 0)
508 		return (1);
509 	else
510 		return (0);
511 }
512 
513 /*
514  * Utility function which retrieves copies of the current logs and
515  * re-initializes them in the process.
516  */
517 void
518 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
519 {
520 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
521 
522 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
523 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
524 
525 	avl_create(&spa->spa_errlist_scrub,
526 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
527 	    offsetof(spa_error_entry_t, se_avl));
528 	avl_create(&spa->spa_errlist_last,
529 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
530 	    offsetof(spa_error_entry_t, se_avl));
531 }
532 
533 /*
534  * Activate an uninitialized pool.
535  */
536 static void
537 spa_activate(spa_t *spa, int mode)
538 {
539 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
540 
541 	spa->spa_state = POOL_STATE_ACTIVE;
542 	spa->spa_mode = mode;
543 
544 	spa->spa_normal_class = metaslab_class_create();
545 	spa->spa_log_class = metaslab_class_create();
546 
547 	for (int t = 0; t < ZIO_TYPES; t++) {
548 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
549 			spa->spa_zio_taskq[t][q] = taskq_create("spa_zio",
550 			    zio_taskq_threads[t][q], maxclsyspri, 50,
551 			    INT_MAX, TASKQ_PREPOPULATE);
552 		}
553 	}
554 
555 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
556 	    offsetof(vdev_t, vdev_config_dirty_node));
557 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
558 	    offsetof(vdev_t, vdev_state_dirty_node));
559 
560 	txg_list_create(&spa->spa_vdev_txg_list,
561 	    offsetof(struct vdev, vdev_txg_node));
562 
563 	avl_create(&spa->spa_errlist_scrub,
564 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
565 	    offsetof(spa_error_entry_t, se_avl));
566 	avl_create(&spa->spa_errlist_last,
567 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
568 	    offsetof(spa_error_entry_t, se_avl));
569 }
570 
571 /*
572  * Opposite of spa_activate().
573  */
574 static void
575 spa_deactivate(spa_t *spa)
576 {
577 	ASSERT(spa->spa_sync_on == B_FALSE);
578 	ASSERT(spa->spa_dsl_pool == NULL);
579 	ASSERT(spa->spa_root_vdev == NULL);
580 
581 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
582 
583 	txg_list_destroy(&spa->spa_vdev_txg_list);
584 
585 	list_destroy(&spa->spa_config_dirty_list);
586 	list_destroy(&spa->spa_state_dirty_list);
587 
588 	for (int t = 0; t < ZIO_TYPES; t++) {
589 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
590 			taskq_destroy(spa->spa_zio_taskq[t][q]);
591 			spa->spa_zio_taskq[t][q] = NULL;
592 		}
593 	}
594 
595 	metaslab_class_destroy(spa->spa_normal_class);
596 	spa->spa_normal_class = NULL;
597 
598 	metaslab_class_destroy(spa->spa_log_class);
599 	spa->spa_log_class = NULL;
600 
601 	/*
602 	 * If this was part of an import or the open otherwise failed, we may
603 	 * still have errors left in the queues.  Empty them just in case.
604 	 */
605 	spa_errlog_drain(spa);
606 
607 	avl_destroy(&spa->spa_errlist_scrub);
608 	avl_destroy(&spa->spa_errlist_last);
609 
610 	spa->spa_state = POOL_STATE_UNINITIALIZED;
611 }
612 
613 /*
614  * Verify a pool configuration, and construct the vdev tree appropriately.  This
615  * will create all the necessary vdevs in the appropriate layout, with each vdev
616  * in the CLOSED state.  This will prep the pool before open/creation/import.
617  * All vdev validation is done by the vdev_alloc() routine.
618  */
619 static int
620 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
621     uint_t id, int atype)
622 {
623 	nvlist_t **child;
624 	uint_t c, children;
625 	int error;
626 
627 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
628 		return (error);
629 
630 	if ((*vdp)->vdev_ops->vdev_op_leaf)
631 		return (0);
632 
633 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
634 	    &child, &children);
635 
636 	if (error == ENOENT)
637 		return (0);
638 
639 	if (error) {
640 		vdev_free(*vdp);
641 		*vdp = NULL;
642 		return (EINVAL);
643 	}
644 
645 	for (c = 0; c < children; c++) {
646 		vdev_t *vd;
647 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
648 		    atype)) != 0) {
649 			vdev_free(*vdp);
650 			*vdp = NULL;
651 			return (error);
652 		}
653 	}
654 
655 	ASSERT(*vdp != NULL);
656 
657 	return (0);
658 }
659 
660 /*
661  * Opposite of spa_load().
662  */
663 static void
664 spa_unload(spa_t *spa)
665 {
666 	int i;
667 
668 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
669 
670 	/*
671 	 * Stop async tasks.
672 	 */
673 	spa_async_suspend(spa);
674 
675 	/*
676 	 * Stop syncing.
677 	 */
678 	if (spa->spa_sync_on) {
679 		txg_sync_stop(spa->spa_dsl_pool);
680 		spa->spa_sync_on = B_FALSE;
681 	}
682 
683 	/*
684 	 * Wait for any outstanding async I/O to complete.
685 	 */
686 	if (spa->spa_async_zio_root != NULL) {
687 		(void) zio_wait(spa->spa_async_zio_root);
688 		spa->spa_async_zio_root = NULL;
689 	}
690 
691 	/*
692 	 * Close the dsl pool.
693 	 */
694 	if (spa->spa_dsl_pool) {
695 		dsl_pool_close(spa->spa_dsl_pool);
696 		spa->spa_dsl_pool = NULL;
697 	}
698 
699 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
700 
701 	/*
702 	 * Drop and purge level 2 cache
703 	 */
704 	spa_l2cache_drop(spa);
705 
706 	/*
707 	 * Close all vdevs.
708 	 */
709 	if (spa->spa_root_vdev)
710 		vdev_free(spa->spa_root_vdev);
711 	ASSERT(spa->spa_root_vdev == NULL);
712 
713 	for (i = 0; i < spa->spa_spares.sav_count; i++)
714 		vdev_free(spa->spa_spares.sav_vdevs[i]);
715 	if (spa->spa_spares.sav_vdevs) {
716 		kmem_free(spa->spa_spares.sav_vdevs,
717 		    spa->spa_spares.sav_count * sizeof (void *));
718 		spa->spa_spares.sav_vdevs = NULL;
719 	}
720 	if (spa->spa_spares.sav_config) {
721 		nvlist_free(spa->spa_spares.sav_config);
722 		spa->spa_spares.sav_config = NULL;
723 	}
724 	spa->spa_spares.sav_count = 0;
725 
726 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
727 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
728 	if (spa->spa_l2cache.sav_vdevs) {
729 		kmem_free(spa->spa_l2cache.sav_vdevs,
730 		    spa->spa_l2cache.sav_count * sizeof (void *));
731 		spa->spa_l2cache.sav_vdevs = NULL;
732 	}
733 	if (spa->spa_l2cache.sav_config) {
734 		nvlist_free(spa->spa_l2cache.sav_config);
735 		spa->spa_l2cache.sav_config = NULL;
736 	}
737 	spa->spa_l2cache.sav_count = 0;
738 
739 	spa->spa_async_suspended = 0;
740 
741 	spa_config_exit(spa, SCL_ALL, FTAG);
742 }
743 
744 /*
745  * Load (or re-load) the current list of vdevs describing the active spares for
746  * this pool.  When this is called, we have some form of basic information in
747  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
748  * then re-generate a more complete list including status information.
749  */
750 static void
751 spa_load_spares(spa_t *spa)
752 {
753 	nvlist_t **spares;
754 	uint_t nspares;
755 	int i;
756 	vdev_t *vd, *tvd;
757 
758 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
759 
760 	/*
761 	 * First, close and free any existing spare vdevs.
762 	 */
763 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
764 		vd = spa->spa_spares.sav_vdevs[i];
765 
766 		/* Undo the call to spa_activate() below */
767 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
768 		    B_FALSE)) != NULL && tvd->vdev_isspare)
769 			spa_spare_remove(tvd);
770 		vdev_close(vd);
771 		vdev_free(vd);
772 	}
773 
774 	if (spa->spa_spares.sav_vdevs)
775 		kmem_free(spa->spa_spares.sav_vdevs,
776 		    spa->spa_spares.sav_count * sizeof (void *));
777 
778 	if (spa->spa_spares.sav_config == NULL)
779 		nspares = 0;
780 	else
781 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
782 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
783 
784 	spa->spa_spares.sav_count = (int)nspares;
785 	spa->spa_spares.sav_vdevs = NULL;
786 
787 	if (nspares == 0)
788 		return;
789 
790 	/*
791 	 * Construct the array of vdevs, opening them to get status in the
792 	 * process.   For each spare, there is potentially two different vdev_t
793 	 * structures associated with it: one in the list of spares (used only
794 	 * for basic validation purposes) and one in the active vdev
795 	 * configuration (if it's spared in).  During this phase we open and
796 	 * validate each vdev on the spare list.  If the vdev also exists in the
797 	 * active configuration, then we also mark this vdev as an active spare.
798 	 */
799 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
800 	    KM_SLEEP);
801 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
802 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
803 		    VDEV_ALLOC_SPARE) == 0);
804 		ASSERT(vd != NULL);
805 
806 		spa->spa_spares.sav_vdevs[i] = vd;
807 
808 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
809 		    B_FALSE)) != NULL) {
810 			if (!tvd->vdev_isspare)
811 				spa_spare_add(tvd);
812 
813 			/*
814 			 * We only mark the spare active if we were successfully
815 			 * able to load the vdev.  Otherwise, importing a pool
816 			 * with a bad active spare would result in strange
817 			 * behavior, because multiple pool would think the spare
818 			 * is actively in use.
819 			 *
820 			 * There is a vulnerability here to an equally bizarre
821 			 * circumstance, where a dead active spare is later
822 			 * brought back to life (onlined or otherwise).  Given
823 			 * the rarity of this scenario, and the extra complexity
824 			 * it adds, we ignore the possibility.
825 			 */
826 			if (!vdev_is_dead(tvd))
827 				spa_spare_activate(tvd);
828 		}
829 
830 		vd->vdev_top = vd;
831 
832 		if (vdev_open(vd) != 0)
833 			continue;
834 
835 		if (vdev_validate_aux(vd) == 0)
836 			spa_spare_add(vd);
837 	}
838 
839 	/*
840 	 * Recompute the stashed list of spares, with status information
841 	 * this time.
842 	 */
843 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
844 	    DATA_TYPE_NVLIST_ARRAY) == 0);
845 
846 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
847 	    KM_SLEEP);
848 	for (i = 0; i < spa->spa_spares.sav_count; i++)
849 		spares[i] = vdev_config_generate(spa,
850 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
851 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
852 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
853 	for (i = 0; i < spa->spa_spares.sav_count; i++)
854 		nvlist_free(spares[i]);
855 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
856 }
857 
858 /*
859  * Load (or re-load) the current list of vdevs describing the active l2cache for
860  * this pool.  When this is called, we have some form of basic information in
861  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
862  * then re-generate a more complete list including status information.
863  * Devices which are already active have their details maintained, and are
864  * not re-opened.
865  */
866 static void
867 spa_load_l2cache(spa_t *spa)
868 {
869 	nvlist_t **l2cache;
870 	uint_t nl2cache;
871 	int i, j, oldnvdevs;
872 	uint64_t guid, size;
873 	vdev_t *vd, **oldvdevs, **newvdevs;
874 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
875 
876 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
877 
878 	if (sav->sav_config != NULL) {
879 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
880 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
881 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
882 	} else {
883 		nl2cache = 0;
884 	}
885 
886 	oldvdevs = sav->sav_vdevs;
887 	oldnvdevs = sav->sav_count;
888 	sav->sav_vdevs = NULL;
889 	sav->sav_count = 0;
890 
891 	/*
892 	 * Process new nvlist of vdevs.
893 	 */
894 	for (i = 0; i < nl2cache; i++) {
895 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
896 		    &guid) == 0);
897 
898 		newvdevs[i] = NULL;
899 		for (j = 0; j < oldnvdevs; j++) {
900 			vd = oldvdevs[j];
901 			if (vd != NULL && guid == vd->vdev_guid) {
902 				/*
903 				 * Retain previous vdev for add/remove ops.
904 				 */
905 				newvdevs[i] = vd;
906 				oldvdevs[j] = NULL;
907 				break;
908 			}
909 		}
910 
911 		if (newvdevs[i] == NULL) {
912 			/*
913 			 * Create new vdev
914 			 */
915 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
916 			    VDEV_ALLOC_L2CACHE) == 0);
917 			ASSERT(vd != NULL);
918 			newvdevs[i] = vd;
919 
920 			/*
921 			 * Commit this vdev as an l2cache device,
922 			 * even if it fails to open.
923 			 */
924 			spa_l2cache_add(vd);
925 
926 			vd->vdev_top = vd;
927 			vd->vdev_aux = sav;
928 
929 			spa_l2cache_activate(vd);
930 
931 			if (vdev_open(vd) != 0)
932 				continue;
933 
934 			(void) vdev_validate_aux(vd);
935 
936 			if (!vdev_is_dead(vd)) {
937 				size = vdev_get_rsize(vd);
938 				l2arc_add_vdev(spa, vd,
939 				    VDEV_LABEL_START_SIZE,
940 				    size - VDEV_LABEL_START_SIZE);
941 			}
942 		}
943 	}
944 
945 	/*
946 	 * Purge vdevs that were dropped
947 	 */
948 	for (i = 0; i < oldnvdevs; i++) {
949 		uint64_t pool;
950 
951 		vd = oldvdevs[i];
952 		if (vd != NULL) {
953 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
954 			    pool != 0ULL && l2arc_vdev_present(vd))
955 				l2arc_remove_vdev(vd);
956 			(void) vdev_close(vd);
957 			spa_l2cache_remove(vd);
958 		}
959 	}
960 
961 	if (oldvdevs)
962 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
963 
964 	if (sav->sav_config == NULL)
965 		goto out;
966 
967 	sav->sav_vdevs = newvdevs;
968 	sav->sav_count = (int)nl2cache;
969 
970 	/*
971 	 * Recompute the stashed list of l2cache devices, with status
972 	 * information this time.
973 	 */
974 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
975 	    DATA_TYPE_NVLIST_ARRAY) == 0);
976 
977 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
978 	for (i = 0; i < sav->sav_count; i++)
979 		l2cache[i] = vdev_config_generate(spa,
980 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
981 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
982 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
983 out:
984 	for (i = 0; i < sav->sav_count; i++)
985 		nvlist_free(l2cache[i]);
986 	if (sav->sav_count)
987 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
988 }
989 
990 static int
991 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
992 {
993 	dmu_buf_t *db;
994 	char *packed = NULL;
995 	size_t nvsize = 0;
996 	int error;
997 	*value = NULL;
998 
999 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1000 	nvsize = *(uint64_t *)db->db_data;
1001 	dmu_buf_rele(db, FTAG);
1002 
1003 	packed = kmem_alloc(nvsize, KM_SLEEP);
1004 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
1005 	if (error == 0)
1006 		error = nvlist_unpack(packed, nvsize, value, 0);
1007 	kmem_free(packed, nvsize);
1008 
1009 	return (error);
1010 }
1011 
1012 /*
1013  * Checks to see if the given vdev could not be opened, in which case we post a
1014  * sysevent to notify the autoreplace code that the device has been removed.
1015  */
1016 static void
1017 spa_check_removed(vdev_t *vd)
1018 {
1019 	int c;
1020 
1021 	for (c = 0; c < vd->vdev_children; c++)
1022 		spa_check_removed(vd->vdev_child[c]);
1023 
1024 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1025 		zfs_post_autoreplace(vd->vdev_spa, vd);
1026 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1027 	}
1028 }
1029 
1030 /*
1031  * Check for missing log devices
1032  */
1033 int
1034 spa_check_logs(spa_t *spa)
1035 {
1036 	switch (spa->spa_log_state) {
1037 	case SPA_LOG_MISSING:
1038 		/* need to recheck in case slog has been restored */
1039 	case SPA_LOG_UNKNOWN:
1040 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1041 		    DS_FIND_CHILDREN)) {
1042 			spa->spa_log_state = SPA_LOG_MISSING;
1043 			return (1);
1044 		}
1045 		break;
1046 
1047 	case SPA_LOG_CLEAR:
1048 		(void) dmu_objset_find(spa->spa_name, zil_clear_log_chain, NULL,
1049 		    DS_FIND_CHILDREN);
1050 		break;
1051 	}
1052 	spa->spa_log_state = SPA_LOG_GOOD;
1053 	return (0);
1054 }
1055 
1056 /*
1057  * Load an existing storage pool, using the pool's builtin spa_config as a
1058  * source of configuration information.
1059  */
1060 static int
1061 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1062 {
1063 	int error = 0;
1064 	nvlist_t *nvroot = NULL;
1065 	vdev_t *rvd;
1066 	uberblock_t *ub = &spa->spa_uberblock;
1067 	uint64_t config_cache_txg = spa->spa_config_txg;
1068 	uint64_t pool_guid;
1069 	uint64_t version;
1070 	uint64_t autoreplace = 0;
1071 	int orig_mode = spa->spa_mode;
1072 	char *ereport = FM_EREPORT_ZFS_POOL;
1073 
1074 	/*
1075 	 * If this is an untrusted config, access the pool in read-only mode.
1076 	 * This prevents things like resilvering recently removed devices.
1077 	 */
1078 	if (!mosconfig)
1079 		spa->spa_mode = FREAD;
1080 
1081 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1082 
1083 	spa->spa_load_state = state;
1084 
1085 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1086 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1087 		error = EINVAL;
1088 		goto out;
1089 	}
1090 
1091 	/*
1092 	 * Versioning wasn't explicitly added to the label until later, so if
1093 	 * it's not present treat it as the initial version.
1094 	 */
1095 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1096 		version = SPA_VERSION_INITIAL;
1097 
1098 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1099 	    &spa->spa_config_txg);
1100 
1101 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1102 	    spa_guid_exists(pool_guid, 0)) {
1103 		error = EEXIST;
1104 		goto out;
1105 	}
1106 
1107 	spa->spa_load_guid = pool_guid;
1108 
1109 	/*
1110 	 * Create "The Godfather" zio to hold all async IOs
1111 	 */
1112 	if (spa->spa_async_zio_root == NULL)
1113 		spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1114 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1115 		    ZIO_FLAG_GODFATHER);
1116 
1117 	/*
1118 	 * Parse the configuration into a vdev tree.  We explicitly set the
1119 	 * value that will be returned by spa_version() since parsing the
1120 	 * configuration requires knowing the version number.
1121 	 */
1122 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1123 	spa->spa_ubsync.ub_version = version;
1124 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1125 	spa_config_exit(spa, SCL_ALL, FTAG);
1126 
1127 	if (error != 0)
1128 		goto out;
1129 
1130 	ASSERT(spa->spa_root_vdev == rvd);
1131 	ASSERT(spa_guid(spa) == pool_guid);
1132 
1133 	/*
1134 	 * Try to open all vdevs, loading each label in the process.
1135 	 */
1136 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1137 	error = vdev_open(rvd);
1138 	spa_config_exit(spa, SCL_ALL, FTAG);
1139 	if (error != 0)
1140 		goto out;
1141 
1142 	/*
1143 	 * We need to validate the vdev labels against the configuration that
1144 	 * we have in hand, which is dependent on the setting of mosconfig. If
1145 	 * mosconfig is true then we're validating the vdev labels based on
1146 	 * that config. Otherwise, we're validating against the cached config
1147 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1148 	 * later we will recursively call spa_load() and validate against
1149 	 * the vdev config.
1150 	 */
1151 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1152 	error = vdev_validate(rvd);
1153 	spa_config_exit(spa, SCL_ALL, FTAG);
1154 	if (error != 0)
1155 		goto out;
1156 
1157 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1158 		error = ENXIO;
1159 		goto out;
1160 	}
1161 
1162 	/*
1163 	 * Find the best uberblock.
1164 	 */
1165 	vdev_uberblock_load(NULL, rvd, ub);
1166 
1167 	/*
1168 	 * If we weren't able to find a single valid uberblock, return failure.
1169 	 */
1170 	if (ub->ub_txg == 0) {
1171 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1172 		    VDEV_AUX_CORRUPT_DATA);
1173 		error = ENXIO;
1174 		goto out;
1175 	}
1176 
1177 	/*
1178 	 * If the pool is newer than the code, we can't open it.
1179 	 */
1180 	if (ub->ub_version > SPA_VERSION) {
1181 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1182 		    VDEV_AUX_VERSION_NEWER);
1183 		error = ENOTSUP;
1184 		goto out;
1185 	}
1186 
1187 	/*
1188 	 * If the vdev guid sum doesn't match the uberblock, we have an
1189 	 * incomplete configuration.
1190 	 */
1191 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1192 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1193 		    VDEV_AUX_BAD_GUID_SUM);
1194 		error = ENXIO;
1195 		goto out;
1196 	}
1197 
1198 	/*
1199 	 * Initialize internal SPA structures.
1200 	 */
1201 	spa->spa_state = POOL_STATE_ACTIVE;
1202 	spa->spa_ubsync = spa->spa_uberblock;
1203 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1204 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1205 	if (error) {
1206 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1207 		    VDEV_AUX_CORRUPT_DATA);
1208 		goto out;
1209 	}
1210 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1211 
1212 	if (zap_lookup(spa->spa_meta_objset,
1213 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1214 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1215 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1216 		    VDEV_AUX_CORRUPT_DATA);
1217 		error = EIO;
1218 		goto out;
1219 	}
1220 
1221 	if (!mosconfig) {
1222 		nvlist_t *newconfig;
1223 		uint64_t hostid;
1224 
1225 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1226 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1227 			    VDEV_AUX_CORRUPT_DATA);
1228 			error = EIO;
1229 			goto out;
1230 		}
1231 
1232 		if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1233 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1234 			char *hostname;
1235 			unsigned long myhostid = 0;
1236 
1237 			VERIFY(nvlist_lookup_string(newconfig,
1238 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1239 
1240 #ifdef	_KERNEL
1241 			myhostid = zone_get_hostid(NULL);
1242 #else	/* _KERNEL */
1243 			/*
1244 			 * We're emulating the system's hostid in userland, so
1245 			 * we can't use zone_get_hostid().
1246 			 */
1247 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1248 #endif	/* _KERNEL */
1249 			if (hostid != 0 && myhostid != 0 &&
1250 			    hostid != myhostid) {
1251 				cmn_err(CE_WARN, "pool '%s' could not be "
1252 				    "loaded as it was last accessed by "
1253 				    "another system (host: %s hostid: 0x%lx). "
1254 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1255 				    spa_name(spa), hostname,
1256 				    (unsigned long)hostid);
1257 				error = EBADF;
1258 				goto out;
1259 			}
1260 		}
1261 
1262 		spa_config_set(spa, newconfig);
1263 		spa_unload(spa);
1264 		spa_deactivate(spa);
1265 		spa_activate(spa, orig_mode);
1266 
1267 		return (spa_load(spa, newconfig, state, B_TRUE));
1268 	}
1269 
1270 	if (zap_lookup(spa->spa_meta_objset,
1271 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1272 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1273 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1274 		    VDEV_AUX_CORRUPT_DATA);
1275 		error = EIO;
1276 		goto out;
1277 	}
1278 
1279 	/*
1280 	 * Load the bit that tells us to use the new accounting function
1281 	 * (raid-z deflation).  If we have an older pool, this will not
1282 	 * be present.
1283 	 */
1284 	error = zap_lookup(spa->spa_meta_objset,
1285 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1286 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1287 	if (error != 0 && error != ENOENT) {
1288 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1289 		    VDEV_AUX_CORRUPT_DATA);
1290 		error = EIO;
1291 		goto out;
1292 	}
1293 
1294 	/*
1295 	 * Load the persistent error log.  If we have an older pool, this will
1296 	 * not be present.
1297 	 */
1298 	error = zap_lookup(spa->spa_meta_objset,
1299 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1300 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1301 	if (error != 0 && error != ENOENT) {
1302 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1303 		    VDEV_AUX_CORRUPT_DATA);
1304 		error = EIO;
1305 		goto out;
1306 	}
1307 
1308 	error = zap_lookup(spa->spa_meta_objset,
1309 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1310 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1311 	if (error != 0 && error != ENOENT) {
1312 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1313 		    VDEV_AUX_CORRUPT_DATA);
1314 		error = EIO;
1315 		goto out;
1316 	}
1317 
1318 	/*
1319 	 * Load the history object.  If we have an older pool, this
1320 	 * will not be present.
1321 	 */
1322 	error = zap_lookup(spa->spa_meta_objset,
1323 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1324 	    sizeof (uint64_t), 1, &spa->spa_history);
1325 	if (error != 0 && error != ENOENT) {
1326 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1327 		    VDEV_AUX_CORRUPT_DATA);
1328 		error = EIO;
1329 		goto out;
1330 	}
1331 
1332 	/*
1333 	 * Load any hot spares for this pool.
1334 	 */
1335 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1336 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1337 	if (error != 0 && error != ENOENT) {
1338 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1339 		    VDEV_AUX_CORRUPT_DATA);
1340 		error = EIO;
1341 		goto out;
1342 	}
1343 	if (error == 0) {
1344 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1345 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1346 		    &spa->spa_spares.sav_config) != 0) {
1347 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1348 			    VDEV_AUX_CORRUPT_DATA);
1349 			error = EIO;
1350 			goto out;
1351 		}
1352 
1353 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1354 		spa_load_spares(spa);
1355 		spa_config_exit(spa, SCL_ALL, FTAG);
1356 	}
1357 
1358 	/*
1359 	 * Load any level 2 ARC devices for this pool.
1360 	 */
1361 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1362 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1363 	    &spa->spa_l2cache.sav_object);
1364 	if (error != 0 && error != ENOENT) {
1365 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1366 		    VDEV_AUX_CORRUPT_DATA);
1367 		error = EIO;
1368 		goto out;
1369 	}
1370 	if (error == 0) {
1371 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1372 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1373 		    &spa->spa_l2cache.sav_config) != 0) {
1374 			vdev_set_state(rvd, B_TRUE,
1375 			    VDEV_STATE_CANT_OPEN,
1376 			    VDEV_AUX_CORRUPT_DATA);
1377 			error = EIO;
1378 			goto out;
1379 		}
1380 
1381 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1382 		spa_load_l2cache(spa);
1383 		spa_config_exit(spa, SCL_ALL, FTAG);
1384 	}
1385 
1386 	if (spa_check_logs(spa)) {
1387 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1388 		    VDEV_AUX_BAD_LOG);
1389 		error = ENXIO;
1390 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1391 		goto out;
1392 	}
1393 
1394 
1395 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1396 
1397 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1398 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1399 
1400 	if (error && error != ENOENT) {
1401 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1402 		    VDEV_AUX_CORRUPT_DATA);
1403 		error = EIO;
1404 		goto out;
1405 	}
1406 
1407 	if (error == 0) {
1408 		(void) zap_lookup(spa->spa_meta_objset,
1409 		    spa->spa_pool_props_object,
1410 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1411 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1412 		(void) zap_lookup(spa->spa_meta_objset,
1413 		    spa->spa_pool_props_object,
1414 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1415 		    sizeof (uint64_t), 1, &autoreplace);
1416 		(void) zap_lookup(spa->spa_meta_objset,
1417 		    spa->spa_pool_props_object,
1418 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1419 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1420 		(void) zap_lookup(spa->spa_meta_objset,
1421 		    spa->spa_pool_props_object,
1422 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1423 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1424 	}
1425 
1426 	/*
1427 	 * If the 'autoreplace' property is set, then post a resource notifying
1428 	 * the ZFS DE that it should not issue any faults for unopenable
1429 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1430 	 * unopenable vdevs so that the normal autoreplace handler can take
1431 	 * over.
1432 	 */
1433 	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1434 		spa_check_removed(spa->spa_root_vdev);
1435 
1436 	/*
1437 	 * Load the vdev state for all toplevel vdevs.
1438 	 */
1439 	vdev_load(rvd);
1440 
1441 	/*
1442 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1443 	 */
1444 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1445 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1446 	spa_config_exit(spa, SCL_ALL, FTAG);
1447 
1448 	/*
1449 	 * Check the state of the root vdev.  If it can't be opened, it
1450 	 * indicates one or more toplevel vdevs are faulted.
1451 	 */
1452 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1453 		error = ENXIO;
1454 		goto out;
1455 	}
1456 
1457 	if (spa_writeable(spa)) {
1458 		dmu_tx_t *tx;
1459 		int need_update = B_FALSE;
1460 
1461 		ASSERT(state != SPA_LOAD_TRYIMPORT);
1462 
1463 		/*
1464 		 * Claim log blocks that haven't been committed yet.
1465 		 * This must all happen in a single txg.
1466 		 */
1467 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1468 		    spa_first_txg(spa));
1469 		(void) dmu_objset_find(spa_name(spa),
1470 		    zil_claim, tx, DS_FIND_CHILDREN);
1471 		dmu_tx_commit(tx);
1472 
1473 		spa->spa_sync_on = B_TRUE;
1474 		txg_sync_start(spa->spa_dsl_pool);
1475 
1476 		/*
1477 		 * Wait for all claims to sync.
1478 		 */
1479 		txg_wait_synced(spa->spa_dsl_pool, 0);
1480 
1481 		/*
1482 		 * If the config cache is stale, or we have uninitialized
1483 		 * metaslabs (see spa_vdev_add()), then update the config.
1484 		 */
1485 		if (config_cache_txg != spa->spa_config_txg ||
1486 		    state == SPA_LOAD_IMPORT)
1487 			need_update = B_TRUE;
1488 
1489 		for (int c = 0; c < rvd->vdev_children; c++)
1490 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1491 				need_update = B_TRUE;
1492 
1493 		/*
1494 		 * Update the config cache asychronously in case we're the
1495 		 * root pool, in which case the config cache isn't writable yet.
1496 		 */
1497 		if (need_update)
1498 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1499 
1500 		/*
1501 		 * Check all DTLs to see if anything needs resilvering.
1502 		 */
1503 		if (vdev_resilver_needed(rvd, NULL, NULL))
1504 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1505 	}
1506 
1507 	error = 0;
1508 out:
1509 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1510 	if (error && error != EBADF)
1511 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1512 	spa->spa_load_state = SPA_LOAD_NONE;
1513 	spa->spa_ena = 0;
1514 
1515 	return (error);
1516 }
1517 
1518 /*
1519  * Pool Open/Import
1520  *
1521  * The import case is identical to an open except that the configuration is sent
1522  * down from userland, instead of grabbed from the configuration cache.  For the
1523  * case of an open, the pool configuration will exist in the
1524  * POOL_STATE_UNINITIALIZED state.
1525  *
1526  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1527  * the same time open the pool, without having to keep around the spa_t in some
1528  * ambiguous state.
1529  */
1530 static int
1531 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1532 {
1533 	spa_t *spa;
1534 	int error;
1535 	int locked = B_FALSE;
1536 
1537 	*spapp = NULL;
1538 
1539 	/*
1540 	 * As disgusting as this is, we need to support recursive calls to this
1541 	 * function because dsl_dir_open() is called during spa_load(), and ends
1542 	 * up calling spa_open() again.  The real fix is to figure out how to
1543 	 * avoid dsl_dir_open() calling this in the first place.
1544 	 */
1545 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1546 		mutex_enter(&spa_namespace_lock);
1547 		locked = B_TRUE;
1548 	}
1549 
1550 	if ((spa = spa_lookup(pool)) == NULL) {
1551 		if (locked)
1552 			mutex_exit(&spa_namespace_lock);
1553 		return (ENOENT);
1554 	}
1555 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1556 
1557 		spa_activate(spa, spa_mode_global);
1558 
1559 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1560 
1561 		if (error == EBADF) {
1562 			/*
1563 			 * If vdev_validate() returns failure (indicated by
1564 			 * EBADF), it indicates that one of the vdevs indicates
1565 			 * that the pool has been exported or destroyed.  If
1566 			 * this is the case, the config cache is out of sync and
1567 			 * we should remove the pool from the namespace.
1568 			 */
1569 			spa_unload(spa);
1570 			spa_deactivate(spa);
1571 			spa_config_sync(spa, B_TRUE, B_TRUE);
1572 			spa_remove(spa);
1573 			if (locked)
1574 				mutex_exit(&spa_namespace_lock);
1575 			return (ENOENT);
1576 		}
1577 
1578 		if (error) {
1579 			/*
1580 			 * We can't open the pool, but we still have useful
1581 			 * information: the state of each vdev after the
1582 			 * attempted vdev_open().  Return this to the user.
1583 			 */
1584 			if (config != NULL && spa->spa_root_vdev != NULL)
1585 				*config = spa_config_generate(spa, NULL, -1ULL,
1586 				    B_TRUE);
1587 			spa_unload(spa);
1588 			spa_deactivate(spa);
1589 			spa->spa_last_open_failed = B_TRUE;
1590 			if (locked)
1591 				mutex_exit(&spa_namespace_lock);
1592 			*spapp = NULL;
1593 			return (error);
1594 		} else {
1595 			spa->spa_last_open_failed = B_FALSE;
1596 		}
1597 	}
1598 
1599 	spa_open_ref(spa, tag);
1600 
1601 	if (locked)
1602 		mutex_exit(&spa_namespace_lock);
1603 
1604 	*spapp = spa;
1605 
1606 	if (config != NULL)
1607 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1608 
1609 	return (0);
1610 }
1611 
1612 int
1613 spa_open(const char *name, spa_t **spapp, void *tag)
1614 {
1615 	return (spa_open_common(name, spapp, tag, NULL));
1616 }
1617 
1618 /*
1619  * Lookup the given spa_t, incrementing the inject count in the process,
1620  * preventing it from being exported or destroyed.
1621  */
1622 spa_t *
1623 spa_inject_addref(char *name)
1624 {
1625 	spa_t *spa;
1626 
1627 	mutex_enter(&spa_namespace_lock);
1628 	if ((spa = spa_lookup(name)) == NULL) {
1629 		mutex_exit(&spa_namespace_lock);
1630 		return (NULL);
1631 	}
1632 	spa->spa_inject_ref++;
1633 	mutex_exit(&spa_namespace_lock);
1634 
1635 	return (spa);
1636 }
1637 
1638 void
1639 spa_inject_delref(spa_t *spa)
1640 {
1641 	mutex_enter(&spa_namespace_lock);
1642 	spa->spa_inject_ref--;
1643 	mutex_exit(&spa_namespace_lock);
1644 }
1645 
1646 /*
1647  * Add spares device information to the nvlist.
1648  */
1649 static void
1650 spa_add_spares(spa_t *spa, nvlist_t *config)
1651 {
1652 	nvlist_t **spares;
1653 	uint_t i, nspares;
1654 	nvlist_t *nvroot;
1655 	uint64_t guid;
1656 	vdev_stat_t *vs;
1657 	uint_t vsc;
1658 	uint64_t pool;
1659 
1660 	if (spa->spa_spares.sav_count == 0)
1661 		return;
1662 
1663 	VERIFY(nvlist_lookup_nvlist(config,
1664 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1665 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1666 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1667 	if (nspares != 0) {
1668 		VERIFY(nvlist_add_nvlist_array(nvroot,
1669 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1670 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1671 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1672 
1673 		/*
1674 		 * Go through and find any spares which have since been
1675 		 * repurposed as an active spare.  If this is the case, update
1676 		 * their status appropriately.
1677 		 */
1678 		for (i = 0; i < nspares; i++) {
1679 			VERIFY(nvlist_lookup_uint64(spares[i],
1680 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1681 			if (spa_spare_exists(guid, &pool, NULL) &&
1682 			    pool != 0ULL) {
1683 				VERIFY(nvlist_lookup_uint64_array(
1684 				    spares[i], ZPOOL_CONFIG_STATS,
1685 				    (uint64_t **)&vs, &vsc) == 0);
1686 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1687 				vs->vs_aux = VDEV_AUX_SPARED;
1688 			}
1689 		}
1690 	}
1691 }
1692 
1693 /*
1694  * Add l2cache device information to the nvlist, including vdev stats.
1695  */
1696 static void
1697 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1698 {
1699 	nvlist_t **l2cache;
1700 	uint_t i, j, nl2cache;
1701 	nvlist_t *nvroot;
1702 	uint64_t guid;
1703 	vdev_t *vd;
1704 	vdev_stat_t *vs;
1705 	uint_t vsc;
1706 
1707 	if (spa->spa_l2cache.sav_count == 0)
1708 		return;
1709 
1710 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1711 
1712 	VERIFY(nvlist_lookup_nvlist(config,
1713 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1714 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1715 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1716 	if (nl2cache != 0) {
1717 		VERIFY(nvlist_add_nvlist_array(nvroot,
1718 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1719 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1720 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1721 
1722 		/*
1723 		 * Update level 2 cache device stats.
1724 		 */
1725 
1726 		for (i = 0; i < nl2cache; i++) {
1727 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1728 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1729 
1730 			vd = NULL;
1731 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1732 				if (guid ==
1733 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1734 					vd = spa->spa_l2cache.sav_vdevs[j];
1735 					break;
1736 				}
1737 			}
1738 			ASSERT(vd != NULL);
1739 
1740 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1741 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1742 			vdev_get_stats(vd, vs);
1743 		}
1744 	}
1745 
1746 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1747 }
1748 
1749 int
1750 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1751 {
1752 	int error;
1753 	spa_t *spa;
1754 
1755 	*config = NULL;
1756 	error = spa_open_common(name, &spa, FTAG, config);
1757 
1758 	if (spa && *config != NULL) {
1759 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1760 		    spa_get_errlog_size(spa)) == 0);
1761 
1762 		if (spa_suspended(spa))
1763 			VERIFY(nvlist_add_uint64(*config,
1764 			    ZPOOL_CONFIG_SUSPENDED, spa->spa_failmode) == 0);
1765 
1766 		spa_add_spares(spa, *config);
1767 		spa_add_l2cache(spa, *config);
1768 	}
1769 
1770 	/*
1771 	 * We want to get the alternate root even for faulted pools, so we cheat
1772 	 * and call spa_lookup() directly.
1773 	 */
1774 	if (altroot) {
1775 		if (spa == NULL) {
1776 			mutex_enter(&spa_namespace_lock);
1777 			spa = spa_lookup(name);
1778 			if (spa)
1779 				spa_altroot(spa, altroot, buflen);
1780 			else
1781 				altroot[0] = '\0';
1782 			spa = NULL;
1783 			mutex_exit(&spa_namespace_lock);
1784 		} else {
1785 			spa_altroot(spa, altroot, buflen);
1786 		}
1787 	}
1788 
1789 	if (spa != NULL)
1790 		spa_close(spa, FTAG);
1791 
1792 	return (error);
1793 }
1794 
1795 /*
1796  * Validate that the auxiliary device array is well formed.  We must have an
1797  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1798  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1799  * specified, as long as they are well-formed.
1800  */
1801 static int
1802 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1803     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1804     vdev_labeltype_t label)
1805 {
1806 	nvlist_t **dev;
1807 	uint_t i, ndev;
1808 	vdev_t *vd;
1809 	int error;
1810 
1811 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1812 
1813 	/*
1814 	 * It's acceptable to have no devs specified.
1815 	 */
1816 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1817 		return (0);
1818 
1819 	if (ndev == 0)
1820 		return (EINVAL);
1821 
1822 	/*
1823 	 * Make sure the pool is formatted with a version that supports this
1824 	 * device type.
1825 	 */
1826 	if (spa_version(spa) < version)
1827 		return (ENOTSUP);
1828 
1829 	/*
1830 	 * Set the pending device list so we correctly handle device in-use
1831 	 * checking.
1832 	 */
1833 	sav->sav_pending = dev;
1834 	sav->sav_npending = ndev;
1835 
1836 	for (i = 0; i < ndev; i++) {
1837 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1838 		    mode)) != 0)
1839 			goto out;
1840 
1841 		if (!vd->vdev_ops->vdev_op_leaf) {
1842 			vdev_free(vd);
1843 			error = EINVAL;
1844 			goto out;
1845 		}
1846 
1847 		/*
1848 		 * The L2ARC currently only supports disk devices in
1849 		 * kernel context.  For user-level testing, we allow it.
1850 		 */
1851 #ifdef _KERNEL
1852 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1853 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1854 			error = ENOTBLK;
1855 			goto out;
1856 		}
1857 #endif
1858 		vd->vdev_top = vd;
1859 
1860 		if ((error = vdev_open(vd)) == 0 &&
1861 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1862 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1863 			    vd->vdev_guid) == 0);
1864 		}
1865 
1866 		vdev_free(vd);
1867 
1868 		if (error &&
1869 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1870 			goto out;
1871 		else
1872 			error = 0;
1873 	}
1874 
1875 out:
1876 	sav->sav_pending = NULL;
1877 	sav->sav_npending = 0;
1878 	return (error);
1879 }
1880 
1881 static int
1882 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1883 {
1884 	int error;
1885 
1886 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1887 
1888 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1889 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1890 	    VDEV_LABEL_SPARE)) != 0) {
1891 		return (error);
1892 	}
1893 
1894 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1895 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
1896 	    VDEV_LABEL_L2CACHE));
1897 }
1898 
1899 static void
1900 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
1901     const char *config)
1902 {
1903 	int i;
1904 
1905 	if (sav->sav_config != NULL) {
1906 		nvlist_t **olddevs;
1907 		uint_t oldndevs;
1908 		nvlist_t **newdevs;
1909 
1910 		/*
1911 		 * Generate new dev list by concatentating with the
1912 		 * current dev list.
1913 		 */
1914 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
1915 		    &olddevs, &oldndevs) == 0);
1916 
1917 		newdevs = kmem_alloc(sizeof (void *) *
1918 		    (ndevs + oldndevs), KM_SLEEP);
1919 		for (i = 0; i < oldndevs; i++)
1920 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
1921 			    KM_SLEEP) == 0);
1922 		for (i = 0; i < ndevs; i++)
1923 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
1924 			    KM_SLEEP) == 0);
1925 
1926 		VERIFY(nvlist_remove(sav->sav_config, config,
1927 		    DATA_TYPE_NVLIST_ARRAY) == 0);
1928 
1929 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1930 		    config, newdevs, ndevs + oldndevs) == 0);
1931 		for (i = 0; i < oldndevs + ndevs; i++)
1932 			nvlist_free(newdevs[i]);
1933 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
1934 	} else {
1935 		/*
1936 		 * Generate a new dev list.
1937 		 */
1938 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
1939 		    KM_SLEEP) == 0);
1940 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
1941 		    devs, ndevs) == 0);
1942 	}
1943 }
1944 
1945 /*
1946  * Stop and drop level 2 ARC devices
1947  */
1948 void
1949 spa_l2cache_drop(spa_t *spa)
1950 {
1951 	vdev_t *vd;
1952 	int i;
1953 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1954 
1955 	for (i = 0; i < sav->sav_count; i++) {
1956 		uint64_t pool;
1957 
1958 		vd = sav->sav_vdevs[i];
1959 		ASSERT(vd != NULL);
1960 
1961 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1962 		    pool != 0ULL && l2arc_vdev_present(vd))
1963 			l2arc_remove_vdev(vd);
1964 		if (vd->vdev_isl2cache)
1965 			spa_l2cache_remove(vd);
1966 		vdev_clear_stats(vd);
1967 		(void) vdev_close(vd);
1968 	}
1969 }
1970 
1971 /*
1972  * Pool Creation
1973  */
1974 int
1975 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1976     const char *history_str, nvlist_t *zplprops)
1977 {
1978 	spa_t *spa;
1979 	char *altroot = NULL;
1980 	vdev_t *rvd;
1981 	dsl_pool_t *dp;
1982 	dmu_tx_t *tx;
1983 	int c, error = 0;
1984 	uint64_t txg = TXG_INITIAL;
1985 	nvlist_t **spares, **l2cache;
1986 	uint_t nspares, nl2cache;
1987 	uint64_t version;
1988 
1989 	/*
1990 	 * If this pool already exists, return failure.
1991 	 */
1992 	mutex_enter(&spa_namespace_lock);
1993 	if (spa_lookup(pool) != NULL) {
1994 		mutex_exit(&spa_namespace_lock);
1995 		return (EEXIST);
1996 	}
1997 
1998 	/*
1999 	 * Allocate a new spa_t structure.
2000 	 */
2001 	(void) nvlist_lookup_string(props,
2002 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2003 	spa = spa_add(pool, altroot);
2004 	spa_activate(spa, spa_mode_global);
2005 
2006 	spa->spa_uberblock.ub_txg = txg - 1;
2007 
2008 	if (props && (error = spa_prop_validate(spa, props))) {
2009 		spa_unload(spa);
2010 		spa_deactivate(spa);
2011 		spa_remove(spa);
2012 		mutex_exit(&spa_namespace_lock);
2013 		return (error);
2014 	}
2015 
2016 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2017 	    &version) != 0)
2018 		version = SPA_VERSION;
2019 	ASSERT(version <= SPA_VERSION);
2020 	spa->spa_uberblock.ub_version = version;
2021 	spa->spa_ubsync = spa->spa_uberblock;
2022 
2023 	/*
2024 	 * Create "The Godfather" zio to hold all async IOs
2025 	 */
2026 	if (spa->spa_async_zio_root == NULL)
2027 		spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2028 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2029 		    ZIO_FLAG_GODFATHER);
2030 
2031 	/*
2032 	 * Create the root vdev.
2033 	 */
2034 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2035 
2036 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2037 
2038 	ASSERT(error != 0 || rvd != NULL);
2039 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2040 
2041 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2042 		error = EINVAL;
2043 
2044 	if (error == 0 &&
2045 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2046 	    (error = spa_validate_aux(spa, nvroot, txg,
2047 	    VDEV_ALLOC_ADD)) == 0) {
2048 		for (c = 0; c < rvd->vdev_children; c++)
2049 			vdev_init(rvd->vdev_child[c], txg);
2050 		vdev_config_dirty(rvd);
2051 	}
2052 
2053 	spa_config_exit(spa, SCL_ALL, FTAG);
2054 
2055 	if (error != 0) {
2056 		spa_unload(spa);
2057 		spa_deactivate(spa);
2058 		spa_remove(spa);
2059 		mutex_exit(&spa_namespace_lock);
2060 		return (error);
2061 	}
2062 
2063 	/*
2064 	 * Get the list of spares, if specified.
2065 	 */
2066 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2067 	    &spares, &nspares) == 0) {
2068 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2069 		    KM_SLEEP) == 0);
2070 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2071 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2072 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2073 		spa_load_spares(spa);
2074 		spa_config_exit(spa, SCL_ALL, FTAG);
2075 		spa->spa_spares.sav_sync = B_TRUE;
2076 	}
2077 
2078 	/*
2079 	 * Get the list of level 2 cache devices, if specified.
2080 	 */
2081 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2082 	    &l2cache, &nl2cache) == 0) {
2083 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2084 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2085 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2086 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2087 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2088 		spa_load_l2cache(spa);
2089 		spa_config_exit(spa, SCL_ALL, FTAG);
2090 		spa->spa_l2cache.sav_sync = B_TRUE;
2091 	}
2092 
2093 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2094 	spa->spa_meta_objset = dp->dp_meta_objset;
2095 
2096 	tx = dmu_tx_create_assigned(dp, txg);
2097 
2098 	/*
2099 	 * Create the pool config object.
2100 	 */
2101 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2102 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2103 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2104 
2105 	if (zap_add(spa->spa_meta_objset,
2106 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2107 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2108 		cmn_err(CE_PANIC, "failed to add pool config");
2109 	}
2110 
2111 	/* Newly created pools with the right version are always deflated. */
2112 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2113 		spa->spa_deflate = TRUE;
2114 		if (zap_add(spa->spa_meta_objset,
2115 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2116 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2117 			cmn_err(CE_PANIC, "failed to add deflate");
2118 		}
2119 	}
2120 
2121 	/*
2122 	 * Create the deferred-free bplist object.  Turn off compression
2123 	 * because sync-to-convergence takes longer if the blocksize
2124 	 * keeps changing.
2125 	 */
2126 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2127 	    1 << 14, tx);
2128 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2129 	    ZIO_COMPRESS_OFF, tx);
2130 
2131 	if (zap_add(spa->spa_meta_objset,
2132 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2133 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2134 		cmn_err(CE_PANIC, "failed to add bplist");
2135 	}
2136 
2137 	/*
2138 	 * Create the pool's history object.
2139 	 */
2140 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2141 		spa_history_create_obj(spa, tx);
2142 
2143 	/*
2144 	 * Set pool properties.
2145 	 */
2146 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2147 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2148 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2149 	if (props != NULL) {
2150 		spa_configfile_set(spa, props, B_FALSE);
2151 		spa_sync_props(spa, props, CRED(), tx);
2152 	}
2153 
2154 	dmu_tx_commit(tx);
2155 
2156 	spa->spa_sync_on = B_TRUE;
2157 	txg_sync_start(spa->spa_dsl_pool);
2158 
2159 	/*
2160 	 * We explicitly wait for the first transaction to complete so that our
2161 	 * bean counters are appropriately updated.
2162 	 */
2163 	txg_wait_synced(spa->spa_dsl_pool, txg);
2164 
2165 	spa_config_sync(spa, B_FALSE, B_TRUE);
2166 
2167 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2168 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2169 
2170 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2171 
2172 	mutex_exit(&spa_namespace_lock);
2173 
2174 	return (0);
2175 }
2176 
2177 /*
2178  * Import the given pool into the system.  We set up the necessary spa_t and
2179  * then call spa_load() to do the dirty work.
2180  */
2181 static int
2182 spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props,
2183     boolean_t isroot, boolean_t allowfaulted)
2184 {
2185 	spa_t *spa;
2186 	char *altroot = NULL;
2187 	int error, loaderr;
2188 	nvlist_t *nvroot;
2189 	nvlist_t **spares, **l2cache;
2190 	uint_t nspares, nl2cache;
2191 
2192 	/*
2193 	 * If a pool with this name exists, return failure.
2194 	 */
2195 	mutex_enter(&spa_namespace_lock);
2196 	if ((spa = spa_lookup(pool)) != NULL) {
2197 		if (isroot) {
2198 			/*
2199 			 * Remove the existing root pool from the
2200 			 * namespace so that we can replace it with
2201 			 * the correct config we just read in.
2202 			 */
2203 			ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
2204 			spa_remove(spa);
2205 		} else {
2206 			mutex_exit(&spa_namespace_lock);
2207 			return (EEXIST);
2208 		}
2209 	}
2210 
2211 	/*
2212 	 * Create and initialize the spa structure.
2213 	 */
2214 	(void) nvlist_lookup_string(props,
2215 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2216 	spa = spa_add(pool, altroot);
2217 	spa_activate(spa, spa_mode_global);
2218 
2219 	if (allowfaulted)
2220 		spa->spa_import_faulted = B_TRUE;
2221 	spa->spa_is_root = isroot;
2222 
2223 	/*
2224 	 * Pass off the heavy lifting to spa_load().
2225 	 * Pass TRUE for mosconfig (unless this is a root pool) because
2226 	 * the user-supplied config is actually the one to trust when
2227 	 * doing an import.
2228 	 */
2229 	loaderr = error = spa_load(spa, config, SPA_LOAD_IMPORT, !isroot);
2230 
2231 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2232 	/*
2233 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
2234 	 * and conflicts with spa_has_spare().
2235 	 */
2236 	if (!isroot && spa->spa_spares.sav_config) {
2237 		nvlist_free(spa->spa_spares.sav_config);
2238 		spa->spa_spares.sav_config = NULL;
2239 		spa_load_spares(spa);
2240 	}
2241 	if (!isroot && spa->spa_l2cache.sav_config) {
2242 		nvlist_free(spa->spa_l2cache.sav_config);
2243 		spa->spa_l2cache.sav_config = NULL;
2244 		spa_load_l2cache(spa);
2245 	}
2246 
2247 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2248 	    &nvroot) == 0);
2249 	if (error == 0)
2250 		error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE);
2251 	if (error == 0)
2252 		error = spa_validate_aux(spa, nvroot, -1ULL,
2253 		    VDEV_ALLOC_L2CACHE);
2254 	spa_config_exit(spa, SCL_ALL, FTAG);
2255 
2256 	if (props != NULL)
2257 		spa_configfile_set(spa, props, B_FALSE);
2258 
2259 	if (error != 0 || (props && spa_writeable(spa) &&
2260 	    (error = spa_prop_set(spa, props)))) {
2261 		if (loaderr != 0 && loaderr != EINVAL && allowfaulted) {
2262 			/*
2263 			 * If we failed to load the pool, but 'allowfaulted' is
2264 			 * set, then manually set the config as if the config
2265 			 * passed in was specified in the cache file.
2266 			 */
2267 			error = 0;
2268 			spa->spa_import_faulted = B_FALSE;
2269 			if (spa->spa_config == NULL)
2270 				spa->spa_config = spa_config_generate(spa,
2271 				    NULL, -1ULL, B_TRUE);
2272 			spa_unload(spa);
2273 			spa_deactivate(spa);
2274 			spa_config_sync(spa, B_FALSE, B_TRUE);
2275 		} else {
2276 			spa_unload(spa);
2277 			spa_deactivate(spa);
2278 			spa_remove(spa);
2279 		}
2280 		mutex_exit(&spa_namespace_lock);
2281 		return (error);
2282 	}
2283 
2284 	/*
2285 	 * Override any spares and level 2 cache devices as specified by
2286 	 * the user, as these may have correct device names/devids, etc.
2287 	 */
2288 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2289 	    &spares, &nspares) == 0) {
2290 		if (spa->spa_spares.sav_config)
2291 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2292 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2293 		else
2294 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2295 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2296 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2297 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2298 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2299 		spa_load_spares(spa);
2300 		spa_config_exit(spa, SCL_ALL, FTAG);
2301 		spa->spa_spares.sav_sync = B_TRUE;
2302 	}
2303 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2304 	    &l2cache, &nl2cache) == 0) {
2305 		if (spa->spa_l2cache.sav_config)
2306 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2307 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2308 		else
2309 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2310 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2311 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2312 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2313 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2314 		spa_load_l2cache(spa);
2315 		spa_config_exit(spa, SCL_ALL, FTAG);
2316 		spa->spa_l2cache.sav_sync = B_TRUE;
2317 	}
2318 
2319 	if (spa_writeable(spa)) {
2320 		/*
2321 		 * Update the config cache to include the newly-imported pool.
2322 		 */
2323 		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot);
2324 	}
2325 
2326 	spa->spa_import_faulted = B_FALSE;
2327 	mutex_exit(&spa_namespace_lock);
2328 
2329 	return (0);
2330 }
2331 
2332 #ifdef _KERNEL
2333 /*
2334  * Build a "root" vdev for a top level vdev read in from a rootpool
2335  * device label.
2336  */
2337 static void
2338 spa_build_rootpool_config(nvlist_t *config)
2339 {
2340 	nvlist_t *nvtop, *nvroot;
2341 	uint64_t pgid;
2342 
2343 	/*
2344 	 * Add this top-level vdev to the child array.
2345 	 */
2346 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop)
2347 	    == 0);
2348 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid)
2349 	    == 0);
2350 
2351 	/*
2352 	 * Put this pool's top-level vdevs into a root vdev.
2353 	 */
2354 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2355 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT)
2356 	    == 0);
2357 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2358 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2359 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2360 	    &nvtop, 1) == 0);
2361 
2362 	/*
2363 	 * Replace the existing vdev_tree with the new root vdev in
2364 	 * this pool's configuration (remove the old, add the new).
2365 	 */
2366 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2367 	nvlist_free(nvroot);
2368 }
2369 
2370 /*
2371  * Get the root pool information from the root disk, then import the root pool
2372  * during the system boot up time.
2373  */
2374 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2375 
2376 int
2377 spa_check_rootconf(char *devpath, char *devid, nvlist_t **bestconf,
2378     uint64_t *besttxg)
2379 {
2380 	nvlist_t *config;
2381 	uint64_t txg;
2382 	int error;
2383 
2384 	if (error = vdev_disk_read_rootlabel(devpath, devid, &config))
2385 		return (error);
2386 
2387 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2388 
2389 	if (bestconf != NULL)
2390 		*bestconf = config;
2391 	else
2392 		nvlist_free(config);
2393 	*besttxg = txg;
2394 	return (0);
2395 }
2396 
2397 boolean_t
2398 spa_rootdev_validate(nvlist_t *nv)
2399 {
2400 	uint64_t ival;
2401 
2402 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 ||
2403 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 ||
2404 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0)
2405 		return (B_FALSE);
2406 
2407 	return (B_TRUE);
2408 }
2409 
2410 
2411 /*
2412  * Given the boot device's physical path or devid, check if the device
2413  * is in a valid state.  If so, return the configuration from the vdev
2414  * label.
2415  */
2416 int
2417 spa_get_rootconf(char *devpath, char *devid, nvlist_t **bestconf)
2418 {
2419 	nvlist_t *conf = NULL;
2420 	uint64_t txg = 0;
2421 	nvlist_t *nvtop, **child;
2422 	char *type;
2423 	char *bootpath = NULL;
2424 	uint_t children, c;
2425 	char *tmp;
2426 	int error;
2427 
2428 	if (devpath && ((tmp = strchr(devpath, ' ')) != NULL))
2429 		*tmp = '\0';
2430 	if (error = spa_check_rootconf(devpath, devid, &conf, &txg)) {
2431 		cmn_err(CE_NOTE, "error reading device label");
2432 		return (error);
2433 	}
2434 	if (txg == 0) {
2435 		cmn_err(CE_NOTE, "this device is detached");
2436 		nvlist_free(conf);
2437 		return (EINVAL);
2438 	}
2439 
2440 	VERIFY(nvlist_lookup_nvlist(conf, ZPOOL_CONFIG_VDEV_TREE,
2441 	    &nvtop) == 0);
2442 	VERIFY(nvlist_lookup_string(nvtop, ZPOOL_CONFIG_TYPE, &type) == 0);
2443 
2444 	if (strcmp(type, VDEV_TYPE_DISK) == 0) {
2445 		if (spa_rootdev_validate(nvtop)) {
2446 			goto out;
2447 		} else {
2448 			nvlist_free(conf);
2449 			return (EINVAL);
2450 		}
2451 	}
2452 
2453 	ASSERT(strcmp(type, VDEV_TYPE_MIRROR) == 0);
2454 
2455 	VERIFY(nvlist_lookup_nvlist_array(nvtop, ZPOOL_CONFIG_CHILDREN,
2456 	    &child, &children) == 0);
2457 
2458 	/*
2459 	 * Go thru vdevs in the mirror to see if the given device
2460 	 * has the most recent txg. Only the device with the most
2461 	 * recent txg has valid information and should be booted.
2462 	 */
2463 	for (c = 0; c < children; c++) {
2464 		char *cdevid, *cpath;
2465 		uint64_t tmptxg;
2466 
2467 		cpath = NULL;
2468 		cdevid = NULL;
2469 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_PHYS_PATH,
2470 		    &cpath) != 0 && nvlist_lookup_string(child[c],
2471 		    ZPOOL_CONFIG_DEVID, &cdevid) != 0)
2472 			return (EINVAL);
2473 		if ((spa_check_rootconf(cpath, cdevid, NULL,
2474 		    &tmptxg) == 0) && (tmptxg > txg)) {
2475 			txg = tmptxg;
2476 			VERIFY(nvlist_lookup_string(child[c],
2477 			    ZPOOL_CONFIG_PATH, &bootpath) == 0);
2478 		}
2479 	}
2480 
2481 	/* Does the best device match the one we've booted from? */
2482 	if (bootpath) {
2483 		cmn_err(CE_NOTE, "try booting from '%s'", bootpath);
2484 		return (EINVAL);
2485 	}
2486 out:
2487 	*bestconf = conf;
2488 	return (0);
2489 }
2490 
2491 /*
2492  * Import a root pool.
2493  *
2494  * For x86. devpath_list will consist of devid and/or physpath name of
2495  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2496  * The GRUB "findroot" command will return the vdev we should boot.
2497  *
2498  * For Sparc, devpath_list consists the physpath name of the booting device
2499  * no matter the rootpool is a single device pool or a mirrored pool.
2500  * e.g.
2501  *	"/pci@1f,0/ide@d/disk@0,0:a"
2502  */
2503 int
2504 spa_import_rootpool(char *devpath, char *devid)
2505 {
2506 	nvlist_t *conf = NULL;
2507 	char *pname;
2508 	int error;
2509 
2510 	/*
2511 	 * Get the vdev pathname and configuation from the most
2512 	 * recently updated vdev (highest txg).
2513 	 */
2514 	if (error = spa_get_rootconf(devpath, devid, &conf))
2515 		goto msg_out;
2516 
2517 	/*
2518 	 * Add type "root" vdev to the config.
2519 	 */
2520 	spa_build_rootpool_config(conf);
2521 
2522 	VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0);
2523 
2524 	/*
2525 	 * We specify 'allowfaulted' for this to be treated like spa_open()
2526 	 * instead of spa_import().  This prevents us from marking vdevs as
2527 	 * persistently unavailable, and generates FMA ereports as if it were a
2528 	 * pool open, not import.
2529 	 */
2530 	error = spa_import_common(pname, conf, NULL, B_TRUE, B_TRUE);
2531 	ASSERT(error != EEXIST);
2532 
2533 	nvlist_free(conf);
2534 	return (error);
2535 
2536 msg_out:
2537 	cmn_err(CE_NOTE, "\n"
2538 	    "  ***************************************************  \n"
2539 	    "  *  This device is not bootable!                   *  \n"
2540 	    "  *  It is either offlined or detached or faulted.  *  \n"
2541 	    "  *  Please try to boot from a different device.    *  \n"
2542 	    "  ***************************************************  ");
2543 
2544 	return (error);
2545 }
2546 #endif
2547 
2548 /*
2549  * Import a non-root pool into the system.
2550  */
2551 int
2552 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2553 {
2554 	return (spa_import_common(pool, config, props, B_FALSE, B_FALSE));
2555 }
2556 
2557 int
2558 spa_import_faulted(const char *pool, nvlist_t *config, nvlist_t *props)
2559 {
2560 	return (spa_import_common(pool, config, props, B_FALSE, B_TRUE));
2561 }
2562 
2563 
2564 /*
2565  * This (illegal) pool name is used when temporarily importing a spa_t in order
2566  * to get the vdev stats associated with the imported devices.
2567  */
2568 #define	TRYIMPORT_NAME	"$import"
2569 
2570 nvlist_t *
2571 spa_tryimport(nvlist_t *tryconfig)
2572 {
2573 	nvlist_t *config = NULL;
2574 	char *poolname;
2575 	spa_t *spa;
2576 	uint64_t state;
2577 	int error;
2578 
2579 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2580 		return (NULL);
2581 
2582 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2583 		return (NULL);
2584 
2585 	/*
2586 	 * Create and initialize the spa structure.
2587 	 */
2588 	mutex_enter(&spa_namespace_lock);
2589 	spa = spa_add(TRYIMPORT_NAME, NULL);
2590 	spa_activate(spa, FREAD);
2591 
2592 	/*
2593 	 * Pass off the heavy lifting to spa_load().
2594 	 * Pass TRUE for mosconfig because the user-supplied config
2595 	 * is actually the one to trust when doing an import.
2596 	 */
2597 	error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2598 
2599 	/*
2600 	 * If 'tryconfig' was at least parsable, return the current config.
2601 	 */
2602 	if (spa->spa_root_vdev != NULL) {
2603 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2604 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2605 		    poolname) == 0);
2606 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2607 		    state) == 0);
2608 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2609 		    spa->spa_uberblock.ub_timestamp) == 0);
2610 
2611 		/*
2612 		 * If the bootfs property exists on this pool then we
2613 		 * copy it out so that external consumers can tell which
2614 		 * pools are bootable.
2615 		 */
2616 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
2617 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2618 
2619 			/*
2620 			 * We have to play games with the name since the
2621 			 * pool was opened as TRYIMPORT_NAME.
2622 			 */
2623 			if (dsl_dsobj_to_dsname(spa_name(spa),
2624 			    spa->spa_bootfs, tmpname) == 0) {
2625 				char *cp;
2626 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2627 
2628 				cp = strchr(tmpname, '/');
2629 				if (cp == NULL) {
2630 					(void) strlcpy(dsname, tmpname,
2631 					    MAXPATHLEN);
2632 				} else {
2633 					(void) snprintf(dsname, MAXPATHLEN,
2634 					    "%s/%s", poolname, ++cp);
2635 				}
2636 				VERIFY(nvlist_add_string(config,
2637 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2638 				kmem_free(dsname, MAXPATHLEN);
2639 			}
2640 			kmem_free(tmpname, MAXPATHLEN);
2641 		}
2642 
2643 		/*
2644 		 * Add the list of hot spares and level 2 cache devices.
2645 		 */
2646 		spa_add_spares(spa, config);
2647 		spa_add_l2cache(spa, config);
2648 	}
2649 
2650 	spa_unload(spa);
2651 	spa_deactivate(spa);
2652 	spa_remove(spa);
2653 	mutex_exit(&spa_namespace_lock);
2654 
2655 	return (config);
2656 }
2657 
2658 /*
2659  * Pool export/destroy
2660  *
2661  * The act of destroying or exporting a pool is very simple.  We make sure there
2662  * is no more pending I/O and any references to the pool are gone.  Then, we
2663  * update the pool state and sync all the labels to disk, removing the
2664  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
2665  * we don't sync the labels or remove the configuration cache.
2666  */
2667 static int
2668 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2669     boolean_t force, boolean_t hardforce)
2670 {
2671 	spa_t *spa;
2672 
2673 	if (oldconfig)
2674 		*oldconfig = NULL;
2675 
2676 	if (!(spa_mode_global & FWRITE))
2677 		return (EROFS);
2678 
2679 	mutex_enter(&spa_namespace_lock);
2680 	if ((spa = spa_lookup(pool)) == NULL) {
2681 		mutex_exit(&spa_namespace_lock);
2682 		return (ENOENT);
2683 	}
2684 
2685 	/*
2686 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2687 	 * reacquire the namespace lock, and see if we can export.
2688 	 */
2689 	spa_open_ref(spa, FTAG);
2690 	mutex_exit(&spa_namespace_lock);
2691 	spa_async_suspend(spa);
2692 	mutex_enter(&spa_namespace_lock);
2693 	spa_close(spa, FTAG);
2694 
2695 	/*
2696 	 * The pool will be in core if it's openable,
2697 	 * in which case we can modify its state.
2698 	 */
2699 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2700 		/*
2701 		 * Objsets may be open only because they're dirty, so we
2702 		 * have to force it to sync before checking spa_refcnt.
2703 		 */
2704 		txg_wait_synced(spa->spa_dsl_pool, 0);
2705 
2706 		/*
2707 		 * A pool cannot be exported or destroyed if there are active
2708 		 * references.  If we are resetting a pool, allow references by
2709 		 * fault injection handlers.
2710 		 */
2711 		if (!spa_refcount_zero(spa) ||
2712 		    (spa->spa_inject_ref != 0 &&
2713 		    new_state != POOL_STATE_UNINITIALIZED)) {
2714 			spa_async_resume(spa);
2715 			mutex_exit(&spa_namespace_lock);
2716 			return (EBUSY);
2717 		}
2718 
2719 		/*
2720 		 * A pool cannot be exported if it has an active shared spare.
2721 		 * This is to prevent other pools stealing the active spare
2722 		 * from an exported pool. At user's own will, such pool can
2723 		 * be forcedly exported.
2724 		 */
2725 		if (!force && new_state == POOL_STATE_EXPORTED &&
2726 		    spa_has_active_shared_spare(spa)) {
2727 			spa_async_resume(spa);
2728 			mutex_exit(&spa_namespace_lock);
2729 			return (EXDEV);
2730 		}
2731 
2732 		/*
2733 		 * We want this to be reflected on every label,
2734 		 * so mark them all dirty.  spa_unload() will do the
2735 		 * final sync that pushes these changes out.
2736 		 */
2737 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
2738 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2739 			spa->spa_state = new_state;
2740 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2741 			vdev_config_dirty(spa->spa_root_vdev);
2742 			spa_config_exit(spa, SCL_ALL, FTAG);
2743 		}
2744 	}
2745 
2746 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2747 
2748 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2749 		spa_unload(spa);
2750 		spa_deactivate(spa);
2751 	}
2752 
2753 	if (oldconfig && spa->spa_config)
2754 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2755 
2756 	if (new_state != POOL_STATE_UNINITIALIZED) {
2757 		if (!hardforce)
2758 			spa_config_sync(spa, B_TRUE, B_TRUE);
2759 		spa_remove(spa);
2760 	}
2761 	mutex_exit(&spa_namespace_lock);
2762 
2763 	return (0);
2764 }
2765 
2766 /*
2767  * Destroy a storage pool.
2768  */
2769 int
2770 spa_destroy(char *pool)
2771 {
2772 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
2773 	    B_FALSE, B_FALSE));
2774 }
2775 
2776 /*
2777  * Export a storage pool.
2778  */
2779 int
2780 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
2781     boolean_t hardforce)
2782 {
2783 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
2784 	    force, hardforce));
2785 }
2786 
2787 /*
2788  * Similar to spa_export(), this unloads the spa_t without actually removing it
2789  * from the namespace in any way.
2790  */
2791 int
2792 spa_reset(char *pool)
2793 {
2794 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2795 	    B_FALSE, B_FALSE));
2796 }
2797 
2798 /*
2799  * ==========================================================================
2800  * Device manipulation
2801  * ==========================================================================
2802  */
2803 
2804 /*
2805  * Add a device to a storage pool.
2806  */
2807 int
2808 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2809 {
2810 	uint64_t txg;
2811 	int error;
2812 	vdev_t *rvd = spa->spa_root_vdev;
2813 	vdev_t *vd, *tvd;
2814 	nvlist_t **spares, **l2cache;
2815 	uint_t nspares, nl2cache;
2816 
2817 	txg = spa_vdev_enter(spa);
2818 
2819 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2820 	    VDEV_ALLOC_ADD)) != 0)
2821 		return (spa_vdev_exit(spa, NULL, txg, error));
2822 
2823 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
2824 
2825 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2826 	    &nspares) != 0)
2827 		nspares = 0;
2828 
2829 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2830 	    &nl2cache) != 0)
2831 		nl2cache = 0;
2832 
2833 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2834 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2835 
2836 	if (vd->vdev_children != 0 &&
2837 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
2838 		return (spa_vdev_exit(spa, vd, txg, error));
2839 
2840 	/*
2841 	 * We must validate the spares and l2cache devices after checking the
2842 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2843 	 */
2844 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2845 		return (spa_vdev_exit(spa, vd, txg, error));
2846 
2847 	/*
2848 	 * Transfer each new top-level vdev from vd to rvd.
2849 	 */
2850 	for (int c = 0; c < vd->vdev_children; c++) {
2851 		tvd = vd->vdev_child[c];
2852 		vdev_remove_child(vd, tvd);
2853 		tvd->vdev_id = rvd->vdev_children;
2854 		vdev_add_child(rvd, tvd);
2855 		vdev_config_dirty(tvd);
2856 	}
2857 
2858 	if (nspares != 0) {
2859 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2860 		    ZPOOL_CONFIG_SPARES);
2861 		spa_load_spares(spa);
2862 		spa->spa_spares.sav_sync = B_TRUE;
2863 	}
2864 
2865 	if (nl2cache != 0) {
2866 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2867 		    ZPOOL_CONFIG_L2CACHE);
2868 		spa_load_l2cache(spa);
2869 		spa->spa_l2cache.sav_sync = B_TRUE;
2870 	}
2871 
2872 	/*
2873 	 * We have to be careful when adding new vdevs to an existing pool.
2874 	 * If other threads start allocating from these vdevs before we
2875 	 * sync the config cache, and we lose power, then upon reboot we may
2876 	 * fail to open the pool because there are DVAs that the config cache
2877 	 * can't translate.  Therefore, we first add the vdevs without
2878 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2879 	 * and then let spa_config_update() initialize the new metaslabs.
2880 	 *
2881 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2882 	 * if we lose power at any point in this sequence, the remaining
2883 	 * steps will be completed the next time we load the pool.
2884 	 */
2885 	(void) spa_vdev_exit(spa, vd, txg, 0);
2886 
2887 	mutex_enter(&spa_namespace_lock);
2888 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2889 	mutex_exit(&spa_namespace_lock);
2890 
2891 	return (0);
2892 }
2893 
2894 /*
2895  * Attach a device to a mirror.  The arguments are the path to any device
2896  * in the mirror, and the nvroot for the new device.  If the path specifies
2897  * a device that is not mirrored, we automatically insert the mirror vdev.
2898  *
2899  * If 'replacing' is specified, the new device is intended to replace the
2900  * existing device; in this case the two devices are made into their own
2901  * mirror using the 'replacing' vdev, which is functionally identical to
2902  * the mirror vdev (it actually reuses all the same ops) but has a few
2903  * extra rules: you can't attach to it after it's been created, and upon
2904  * completion of resilvering, the first disk (the one being replaced)
2905  * is automatically detached.
2906  */
2907 int
2908 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2909 {
2910 	uint64_t txg, open_txg;
2911 	vdev_t *rvd = spa->spa_root_vdev;
2912 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2913 	vdev_ops_t *pvops;
2914 	dmu_tx_t *tx;
2915 	char *oldvdpath, *newvdpath;
2916 	int newvd_isspare;
2917 	int error;
2918 
2919 	txg = spa_vdev_enter(spa);
2920 
2921 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
2922 
2923 	if (oldvd == NULL)
2924 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2925 
2926 	if (!oldvd->vdev_ops->vdev_op_leaf)
2927 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2928 
2929 	pvd = oldvd->vdev_parent;
2930 
2931 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2932 	    VDEV_ALLOC_ADD)) != 0)
2933 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2934 
2935 	if (newrootvd->vdev_children != 1)
2936 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2937 
2938 	newvd = newrootvd->vdev_child[0];
2939 
2940 	if (!newvd->vdev_ops->vdev_op_leaf)
2941 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2942 
2943 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2944 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2945 
2946 	/*
2947 	 * Spares can't replace logs
2948 	 */
2949 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
2950 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2951 
2952 	if (!replacing) {
2953 		/*
2954 		 * For attach, the only allowable parent is a mirror or the root
2955 		 * vdev.
2956 		 */
2957 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2958 		    pvd->vdev_ops != &vdev_root_ops)
2959 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2960 
2961 		pvops = &vdev_mirror_ops;
2962 	} else {
2963 		/*
2964 		 * Active hot spares can only be replaced by inactive hot
2965 		 * spares.
2966 		 */
2967 		if (pvd->vdev_ops == &vdev_spare_ops &&
2968 		    pvd->vdev_child[1] == oldvd &&
2969 		    !spa_has_spare(spa, newvd->vdev_guid))
2970 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2971 
2972 		/*
2973 		 * If the source is a hot spare, and the parent isn't already a
2974 		 * spare, then we want to create a new hot spare.  Otherwise, we
2975 		 * want to create a replacing vdev.  The user is not allowed to
2976 		 * attach to a spared vdev child unless the 'isspare' state is
2977 		 * the same (spare replaces spare, non-spare replaces
2978 		 * non-spare).
2979 		 */
2980 		if (pvd->vdev_ops == &vdev_replacing_ops)
2981 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2982 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2983 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2984 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2985 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2986 		    newvd->vdev_isspare)
2987 			pvops = &vdev_spare_ops;
2988 		else
2989 			pvops = &vdev_replacing_ops;
2990 	}
2991 
2992 	/*
2993 	 * Compare the new device size with the replaceable/attachable
2994 	 * device size.
2995 	 */
2996 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2997 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2998 
2999 	/*
3000 	 * The new device cannot have a higher alignment requirement
3001 	 * than the top-level vdev.
3002 	 */
3003 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3004 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3005 
3006 	/*
3007 	 * If this is an in-place replacement, update oldvd's path and devid
3008 	 * to make it distinguishable from newvd, and unopenable from now on.
3009 	 */
3010 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3011 		spa_strfree(oldvd->vdev_path);
3012 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3013 		    KM_SLEEP);
3014 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3015 		    newvd->vdev_path, "old");
3016 		if (oldvd->vdev_devid != NULL) {
3017 			spa_strfree(oldvd->vdev_devid);
3018 			oldvd->vdev_devid = NULL;
3019 		}
3020 	}
3021 
3022 	/*
3023 	 * If the parent is not a mirror, or if we're replacing, insert the new
3024 	 * mirror/replacing/spare vdev above oldvd.
3025 	 */
3026 	if (pvd->vdev_ops != pvops)
3027 		pvd = vdev_add_parent(oldvd, pvops);
3028 
3029 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3030 	ASSERT(pvd->vdev_ops == pvops);
3031 	ASSERT(oldvd->vdev_parent == pvd);
3032 
3033 	/*
3034 	 * Extract the new device from its root and add it to pvd.
3035 	 */
3036 	vdev_remove_child(newrootvd, newvd);
3037 	newvd->vdev_id = pvd->vdev_children;
3038 	vdev_add_child(pvd, newvd);
3039 
3040 	/*
3041 	 * If newvd is smaller than oldvd, but larger than its rsize,
3042 	 * the addition of newvd may have decreased our parent's asize.
3043 	 */
3044 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
3045 
3046 	tvd = newvd->vdev_top;
3047 	ASSERT(pvd->vdev_top == tvd);
3048 	ASSERT(tvd->vdev_parent == rvd);
3049 
3050 	vdev_config_dirty(tvd);
3051 
3052 	/*
3053 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3054 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3055 	 */
3056 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3057 
3058 	vdev_dtl_dirty(newvd, DTL_MISSING,
3059 	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3060 
3061 	if (newvd->vdev_isspare)
3062 		spa_spare_activate(newvd);
3063 	oldvdpath = spa_strdup(oldvd->vdev_path);
3064 	newvdpath = spa_strdup(newvd->vdev_path);
3065 	newvd_isspare = newvd->vdev_isspare;
3066 
3067 	/*
3068 	 * Mark newvd's DTL dirty in this txg.
3069 	 */
3070 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3071 
3072 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3073 
3074 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3075 	if (dmu_tx_assign(tx, TXG_WAIT) == 0) {
3076 		spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, tx,
3077 		    CRED(),  "%s vdev=%s %s vdev=%s",
3078 		    replacing && newvd_isspare ? "spare in" :
3079 		    replacing ? "replace" : "attach", newvdpath,
3080 		    replacing ? "for" : "to", oldvdpath);
3081 		dmu_tx_commit(tx);
3082 	} else {
3083 		dmu_tx_abort(tx);
3084 	}
3085 
3086 	spa_strfree(oldvdpath);
3087 	spa_strfree(newvdpath);
3088 
3089 	/*
3090 	 * Kick off a resilver to update newvd.
3091 	 */
3092 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3093 
3094 	return (0);
3095 }
3096 
3097 /*
3098  * Detach a device from a mirror or replacing vdev.
3099  * If 'replace_done' is specified, only detach if the parent
3100  * is a replacing vdev.
3101  */
3102 int
3103 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3104 {
3105 	uint64_t txg;
3106 	int error;
3107 	vdev_t *rvd = spa->spa_root_vdev;
3108 	vdev_t *vd, *pvd, *cvd, *tvd;
3109 	boolean_t unspare = B_FALSE;
3110 	uint64_t unspare_guid;
3111 	size_t len;
3112 
3113 	txg = spa_vdev_enter(spa);
3114 
3115 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3116 
3117 	if (vd == NULL)
3118 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3119 
3120 	if (!vd->vdev_ops->vdev_op_leaf)
3121 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3122 
3123 	pvd = vd->vdev_parent;
3124 
3125 	/*
3126 	 * If the parent/child relationship is not as expected, don't do it.
3127 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3128 	 * vdev that's replacing B with C.  The user's intent in replacing
3129 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3130 	 * the replace by detaching C, the expected behavior is to end up
3131 	 * M(A,B).  But suppose that right after deciding to detach C,
3132 	 * the replacement of B completes.  We would have M(A,C), and then
3133 	 * ask to detach C, which would leave us with just A -- not what
3134 	 * the user wanted.  To prevent this, we make sure that the
3135 	 * parent/child relationship hasn't changed -- in this example,
3136 	 * that C's parent is still the replacing vdev R.
3137 	 */
3138 	if (pvd->vdev_guid != pguid && pguid != 0)
3139 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3140 
3141 	/*
3142 	 * If replace_done is specified, only remove this device if it's
3143 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3144 	 * disk can be removed.
3145 	 */
3146 	if (replace_done) {
3147 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3148 			if (vd->vdev_id != 0)
3149 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3150 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3151 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3152 		}
3153 	}
3154 
3155 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3156 	    spa_version(spa) >= SPA_VERSION_SPARES);
3157 
3158 	/*
3159 	 * Only mirror, replacing, and spare vdevs support detach.
3160 	 */
3161 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3162 	    pvd->vdev_ops != &vdev_mirror_ops &&
3163 	    pvd->vdev_ops != &vdev_spare_ops)
3164 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3165 
3166 	/*
3167 	 * If this device has the only valid copy of some data,
3168 	 * we cannot safely detach it.
3169 	 */
3170 	if (vdev_dtl_required(vd))
3171 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3172 
3173 	ASSERT(pvd->vdev_children >= 2);
3174 
3175 	/*
3176 	 * If we are detaching the second disk from a replacing vdev, then
3177 	 * check to see if we changed the original vdev's path to have "/old"
3178 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3179 	 */
3180 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3181 	    pvd->vdev_child[0]->vdev_path != NULL &&
3182 	    pvd->vdev_child[1]->vdev_path != NULL) {
3183 		ASSERT(pvd->vdev_child[1] == vd);
3184 		cvd = pvd->vdev_child[0];
3185 		len = strlen(vd->vdev_path);
3186 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3187 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3188 			spa_strfree(cvd->vdev_path);
3189 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3190 		}
3191 	}
3192 
3193 	/*
3194 	 * If we are detaching the original disk from a spare, then it implies
3195 	 * that the spare should become a real disk, and be removed from the
3196 	 * active spare list for the pool.
3197 	 */
3198 	if (pvd->vdev_ops == &vdev_spare_ops &&
3199 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3200 		unspare = B_TRUE;
3201 
3202 	/*
3203 	 * Erase the disk labels so the disk can be used for other things.
3204 	 * This must be done after all other error cases are handled,
3205 	 * but before we disembowel vd (so we can still do I/O to it).
3206 	 * But if we can't do it, don't treat the error as fatal --
3207 	 * it may be that the unwritability of the disk is the reason
3208 	 * it's being detached!
3209 	 */
3210 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3211 
3212 	/*
3213 	 * Remove vd from its parent and compact the parent's children.
3214 	 */
3215 	vdev_remove_child(pvd, vd);
3216 	vdev_compact_children(pvd);
3217 
3218 	/*
3219 	 * Remember one of the remaining children so we can get tvd below.
3220 	 */
3221 	cvd = pvd->vdev_child[0];
3222 
3223 	/*
3224 	 * If we need to remove the remaining child from the list of hot spares,
3225 	 * do it now, marking the vdev as no longer a spare in the process.
3226 	 * We must do this before vdev_remove_parent(), because that can
3227 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3228 	 * reason, we must remove the spare now, in the same txg as the detach;
3229 	 * otherwise someone could attach a new sibling, change the GUID, and
3230 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3231 	 */
3232 	if (unspare) {
3233 		ASSERT(cvd->vdev_isspare);
3234 		spa_spare_remove(cvd);
3235 		unspare_guid = cvd->vdev_guid;
3236 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3237 	}
3238 
3239 	/*
3240 	 * If the parent mirror/replacing vdev only has one child,
3241 	 * the parent is no longer needed.  Remove it from the tree.
3242 	 */
3243 	if (pvd->vdev_children == 1)
3244 		vdev_remove_parent(cvd);
3245 
3246 	/*
3247 	 * We don't set tvd until now because the parent we just removed
3248 	 * may have been the previous top-level vdev.
3249 	 */
3250 	tvd = cvd->vdev_top;
3251 	ASSERT(tvd->vdev_parent == rvd);
3252 
3253 	/*
3254 	 * Reevaluate the parent vdev state.
3255 	 */
3256 	vdev_propagate_state(cvd);
3257 
3258 	/*
3259 	 * If the device we just detached was smaller than the others, it may be
3260 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
3261 	 * can't fail because the existing metaslabs are already in core, so
3262 	 * there's nothing to read from disk.
3263 	 */
3264 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
3265 
3266 	vdev_config_dirty(tvd);
3267 
3268 	/*
3269 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3270 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3271 	 * But first make sure we're not on any *other* txg's DTL list, to
3272 	 * prevent vd from being accessed after it's freed.
3273 	 */
3274 	for (int t = 0; t < TXG_SIZE; t++)
3275 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3276 	vd->vdev_detached = B_TRUE;
3277 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3278 
3279 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3280 
3281 	error = spa_vdev_exit(spa, vd, txg, 0);
3282 
3283 	/*
3284 	 * If this was the removal of the original device in a hot spare vdev,
3285 	 * then we want to go through and remove the device from the hot spare
3286 	 * list of every other pool.
3287 	 */
3288 	if (unspare) {
3289 		spa_t *myspa = spa;
3290 		spa = NULL;
3291 		mutex_enter(&spa_namespace_lock);
3292 		while ((spa = spa_next(spa)) != NULL) {
3293 			if (spa->spa_state != POOL_STATE_ACTIVE)
3294 				continue;
3295 			if (spa == myspa)
3296 				continue;
3297 			spa_open_ref(spa, FTAG);
3298 			mutex_exit(&spa_namespace_lock);
3299 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3300 			mutex_enter(&spa_namespace_lock);
3301 			spa_close(spa, FTAG);
3302 		}
3303 		mutex_exit(&spa_namespace_lock);
3304 	}
3305 
3306 	return (error);
3307 }
3308 
3309 static nvlist_t *
3310 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3311 {
3312 	for (int i = 0; i < count; i++) {
3313 		uint64_t guid;
3314 
3315 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3316 		    &guid) == 0);
3317 
3318 		if (guid == target_guid)
3319 			return (nvpp[i]);
3320 	}
3321 
3322 	return (NULL);
3323 }
3324 
3325 static void
3326 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3327 	nvlist_t *dev_to_remove)
3328 {
3329 	nvlist_t **newdev = NULL;
3330 
3331 	if (count > 1)
3332 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3333 
3334 	for (int i = 0, j = 0; i < count; i++) {
3335 		if (dev[i] == dev_to_remove)
3336 			continue;
3337 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3338 	}
3339 
3340 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3341 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3342 
3343 	for (int i = 0; i < count - 1; i++)
3344 		nvlist_free(newdev[i]);
3345 
3346 	if (count > 1)
3347 		kmem_free(newdev, (count - 1) * sizeof (void *));
3348 }
3349 
3350 /*
3351  * Remove a device from the pool.  Currently, this supports removing only hot
3352  * spares and level 2 ARC devices.
3353  */
3354 int
3355 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3356 {
3357 	vdev_t *vd;
3358 	nvlist_t **spares, **l2cache, *nv;
3359 	uint_t nspares, nl2cache;
3360 	uint64_t txg = 0;
3361 	int error = 0;
3362 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3363 
3364 	if (!locked)
3365 		txg = spa_vdev_enter(spa);
3366 
3367 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3368 
3369 	if (spa->spa_spares.sav_vdevs != NULL &&
3370 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3371 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3372 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3373 		/*
3374 		 * Only remove the hot spare if it's not currently in use
3375 		 * in this pool.
3376 		 */
3377 		if (vd == NULL || unspare) {
3378 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3379 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3380 			spa_load_spares(spa);
3381 			spa->spa_spares.sav_sync = B_TRUE;
3382 		} else {
3383 			error = EBUSY;
3384 		}
3385 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3386 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3387 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3388 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3389 		/*
3390 		 * Cache devices can always be removed.
3391 		 */
3392 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3393 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3394 		spa_load_l2cache(spa);
3395 		spa->spa_l2cache.sav_sync = B_TRUE;
3396 	} else if (vd != NULL) {
3397 		/*
3398 		 * Normal vdevs cannot be removed (yet).
3399 		 */
3400 		error = ENOTSUP;
3401 	} else {
3402 		/*
3403 		 * There is no vdev of any kind with the specified guid.
3404 		 */
3405 		error = ENOENT;
3406 	}
3407 
3408 	if (!locked)
3409 		return (spa_vdev_exit(spa, NULL, txg, error));
3410 
3411 	return (error);
3412 }
3413 
3414 /*
3415  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3416  * current spared, so we can detach it.
3417  */
3418 static vdev_t *
3419 spa_vdev_resilver_done_hunt(vdev_t *vd)
3420 {
3421 	vdev_t *newvd, *oldvd;
3422 	int c;
3423 
3424 	for (c = 0; c < vd->vdev_children; c++) {
3425 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3426 		if (oldvd != NULL)
3427 			return (oldvd);
3428 	}
3429 
3430 	/*
3431 	 * Check for a completed replacement.
3432 	 */
3433 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3434 		oldvd = vd->vdev_child[0];
3435 		newvd = vd->vdev_child[1];
3436 
3437 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
3438 		    !vdev_dtl_required(oldvd))
3439 			return (oldvd);
3440 	}
3441 
3442 	/*
3443 	 * Check for a completed resilver with the 'unspare' flag set.
3444 	 */
3445 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3446 		newvd = vd->vdev_child[0];
3447 		oldvd = vd->vdev_child[1];
3448 
3449 		if (newvd->vdev_unspare &&
3450 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
3451 		    !vdev_dtl_required(oldvd)) {
3452 			newvd->vdev_unspare = 0;
3453 			return (oldvd);
3454 		}
3455 	}
3456 
3457 	return (NULL);
3458 }
3459 
3460 static void
3461 spa_vdev_resilver_done(spa_t *spa)
3462 {
3463 	vdev_t *vd, *pvd, *ppvd;
3464 	uint64_t guid, sguid, pguid, ppguid;
3465 
3466 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3467 
3468 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3469 		pvd = vd->vdev_parent;
3470 		ppvd = pvd->vdev_parent;
3471 		guid = vd->vdev_guid;
3472 		pguid = pvd->vdev_guid;
3473 		ppguid = ppvd->vdev_guid;
3474 		sguid = 0;
3475 		/*
3476 		 * If we have just finished replacing a hot spared device, then
3477 		 * we need to detach the parent's first child (the original hot
3478 		 * spare) as well.
3479 		 */
3480 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
3481 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3482 			ASSERT(ppvd->vdev_children == 2);
3483 			sguid = ppvd->vdev_child[1]->vdev_guid;
3484 		}
3485 		spa_config_exit(spa, SCL_ALL, FTAG);
3486 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
3487 			return;
3488 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
3489 			return;
3490 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3491 	}
3492 
3493 	spa_config_exit(spa, SCL_ALL, FTAG);
3494 }
3495 
3496 /*
3497  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
3498  * on spa_vdev_enter/exit() to synchronize the labels and cache.
3499  */
3500 int
3501 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3502 {
3503 	vdev_t *vd;
3504 	uint64_t txg;
3505 
3506 	txg = spa_vdev_enter(spa);
3507 
3508 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) {
3509 		/*
3510 		 * Determine if this is a reference to a hot spare device.  If
3511 		 * it is, update the path manually as there is no associated
3512 		 * vdev_t that can be synced to disk.
3513 		 */
3514 		nvlist_t **spares;
3515 		uint_t i, nspares;
3516 
3517 		if (spa->spa_spares.sav_config != NULL) {
3518 			VERIFY(nvlist_lookup_nvlist_array(
3519 			    spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
3520 			    &spares, &nspares) == 0);
3521 			for (i = 0; i < nspares; i++) {
3522 				uint64_t theguid;
3523 				VERIFY(nvlist_lookup_uint64(spares[i],
3524 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
3525 				if (theguid == guid) {
3526 					VERIFY(nvlist_add_string(spares[i],
3527 					    ZPOOL_CONFIG_PATH, newpath) == 0);
3528 					spa_load_spares(spa);
3529 					spa->spa_spares.sav_sync = B_TRUE;
3530 					return (spa_vdev_exit(spa, NULL, txg,
3531 					    0));
3532 				}
3533 			}
3534 		}
3535 
3536 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3537 	}
3538 
3539 	if (!vd->vdev_ops->vdev_op_leaf)
3540 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3541 
3542 	spa_strfree(vd->vdev_path);
3543 	vd->vdev_path = spa_strdup(newpath);
3544 
3545 	vdev_config_dirty(vd->vdev_top);
3546 
3547 	return (spa_vdev_exit(spa, NULL, txg, 0));
3548 }
3549 
3550 /*
3551  * ==========================================================================
3552  * SPA Scrubbing
3553  * ==========================================================================
3554  */
3555 
3556 int
3557 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3558 {
3559 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3560 
3561 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3562 		return (ENOTSUP);
3563 
3564 	/*
3565 	 * If a resilver was requested, but there is no DTL on a
3566 	 * writeable leaf device, we have nothing to do.
3567 	 */
3568 	if (type == POOL_SCRUB_RESILVER &&
3569 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3570 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3571 		return (0);
3572 	}
3573 
3574 	if (type == POOL_SCRUB_EVERYTHING &&
3575 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3576 	    spa->spa_dsl_pool->dp_scrub_isresilver)
3577 		return (EBUSY);
3578 
3579 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3580 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3581 	} else if (type == POOL_SCRUB_NONE) {
3582 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3583 	} else {
3584 		return (EINVAL);
3585 	}
3586 }
3587 
3588 /*
3589  * ==========================================================================
3590  * SPA async task processing
3591  * ==========================================================================
3592  */
3593 
3594 static void
3595 spa_async_remove(spa_t *spa, vdev_t *vd)
3596 {
3597 	if (vd->vdev_remove_wanted) {
3598 		vd->vdev_remove_wanted = 0;
3599 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3600 		vdev_clear(spa, vd);
3601 		vdev_state_dirty(vd->vdev_top);
3602 	}
3603 
3604 	for (int c = 0; c < vd->vdev_children; c++)
3605 		spa_async_remove(spa, vd->vdev_child[c]);
3606 }
3607 
3608 static void
3609 spa_async_probe(spa_t *spa, vdev_t *vd)
3610 {
3611 	if (vd->vdev_probe_wanted) {
3612 		vd->vdev_probe_wanted = 0;
3613 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
3614 	}
3615 
3616 	for (int c = 0; c < vd->vdev_children; c++)
3617 		spa_async_probe(spa, vd->vdev_child[c]);
3618 }
3619 
3620 static void
3621 spa_async_thread(spa_t *spa)
3622 {
3623 	int tasks;
3624 
3625 	ASSERT(spa->spa_sync_on);
3626 
3627 	mutex_enter(&spa->spa_async_lock);
3628 	tasks = spa->spa_async_tasks;
3629 	spa->spa_async_tasks = 0;
3630 	mutex_exit(&spa->spa_async_lock);
3631 
3632 	/*
3633 	 * See if the config needs to be updated.
3634 	 */
3635 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3636 		mutex_enter(&spa_namespace_lock);
3637 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3638 		mutex_exit(&spa_namespace_lock);
3639 	}
3640 
3641 	/*
3642 	 * See if any devices need to be marked REMOVED.
3643 	 */
3644 	if (tasks & SPA_ASYNC_REMOVE) {
3645 		spa_vdev_state_enter(spa);
3646 		spa_async_remove(spa, spa->spa_root_vdev);
3647 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3648 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3649 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
3650 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3651 		(void) spa_vdev_state_exit(spa, NULL, 0);
3652 	}
3653 
3654 	/*
3655 	 * See if any devices need to be probed.
3656 	 */
3657 	if (tasks & SPA_ASYNC_PROBE) {
3658 		spa_vdev_state_enter(spa);
3659 		spa_async_probe(spa, spa->spa_root_vdev);
3660 		(void) spa_vdev_state_exit(spa, NULL, 0);
3661 	}
3662 
3663 	/*
3664 	 * If any devices are done replacing, detach them.
3665 	 */
3666 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3667 		spa_vdev_resilver_done(spa);
3668 
3669 	/*
3670 	 * Kick off a resilver.
3671 	 */
3672 	if (tasks & SPA_ASYNC_RESILVER)
3673 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3674 
3675 	/*
3676 	 * Let the world know that we're done.
3677 	 */
3678 	mutex_enter(&spa->spa_async_lock);
3679 	spa->spa_async_thread = NULL;
3680 	cv_broadcast(&spa->spa_async_cv);
3681 	mutex_exit(&spa->spa_async_lock);
3682 	thread_exit();
3683 }
3684 
3685 void
3686 spa_async_suspend(spa_t *spa)
3687 {
3688 	mutex_enter(&spa->spa_async_lock);
3689 	spa->spa_async_suspended++;
3690 	while (spa->spa_async_thread != NULL)
3691 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3692 	mutex_exit(&spa->spa_async_lock);
3693 }
3694 
3695 void
3696 spa_async_resume(spa_t *spa)
3697 {
3698 	mutex_enter(&spa->spa_async_lock);
3699 	ASSERT(spa->spa_async_suspended != 0);
3700 	spa->spa_async_suspended--;
3701 	mutex_exit(&spa->spa_async_lock);
3702 }
3703 
3704 static void
3705 spa_async_dispatch(spa_t *spa)
3706 {
3707 	mutex_enter(&spa->spa_async_lock);
3708 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3709 	    spa->spa_async_thread == NULL &&
3710 	    rootdir != NULL && !vn_is_readonly(rootdir))
3711 		spa->spa_async_thread = thread_create(NULL, 0,
3712 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3713 	mutex_exit(&spa->spa_async_lock);
3714 }
3715 
3716 void
3717 spa_async_request(spa_t *spa, int task)
3718 {
3719 	mutex_enter(&spa->spa_async_lock);
3720 	spa->spa_async_tasks |= task;
3721 	mutex_exit(&spa->spa_async_lock);
3722 }
3723 
3724 /*
3725  * ==========================================================================
3726  * SPA syncing routines
3727  * ==========================================================================
3728  */
3729 
3730 static void
3731 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3732 {
3733 	bplist_t *bpl = &spa->spa_sync_bplist;
3734 	dmu_tx_t *tx;
3735 	blkptr_t blk;
3736 	uint64_t itor = 0;
3737 	zio_t *zio;
3738 	int error;
3739 	uint8_t c = 1;
3740 
3741 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
3742 
3743 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
3744 		ASSERT(blk.blk_birth < txg);
3745 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
3746 		    ZIO_FLAG_MUSTSUCCEED));
3747 	}
3748 
3749 	error = zio_wait(zio);
3750 	ASSERT3U(error, ==, 0);
3751 
3752 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3753 	bplist_vacate(bpl, tx);
3754 
3755 	/*
3756 	 * Pre-dirty the first block so we sync to convergence faster.
3757 	 * (Usually only the first block is needed.)
3758 	 */
3759 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3760 	dmu_tx_commit(tx);
3761 }
3762 
3763 static void
3764 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3765 {
3766 	char *packed = NULL;
3767 	size_t bufsize;
3768 	size_t nvsize = 0;
3769 	dmu_buf_t *db;
3770 
3771 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3772 
3773 	/*
3774 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3775 	 * information.  This avoids the dbuf_will_dirty() path and
3776 	 * saves us a pre-read to get data we don't actually care about.
3777 	 */
3778 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3779 	packed = kmem_alloc(bufsize, KM_SLEEP);
3780 
3781 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3782 	    KM_SLEEP) == 0);
3783 	bzero(packed + nvsize, bufsize - nvsize);
3784 
3785 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3786 
3787 	kmem_free(packed, bufsize);
3788 
3789 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3790 	dmu_buf_will_dirty(db, tx);
3791 	*(uint64_t *)db->db_data = nvsize;
3792 	dmu_buf_rele(db, FTAG);
3793 }
3794 
3795 static void
3796 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3797     const char *config, const char *entry)
3798 {
3799 	nvlist_t *nvroot;
3800 	nvlist_t **list;
3801 	int i;
3802 
3803 	if (!sav->sav_sync)
3804 		return;
3805 
3806 	/*
3807 	 * Update the MOS nvlist describing the list of available devices.
3808 	 * spa_validate_aux() will have already made sure this nvlist is
3809 	 * valid and the vdevs are labeled appropriately.
3810 	 */
3811 	if (sav->sav_object == 0) {
3812 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3813 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3814 		    sizeof (uint64_t), tx);
3815 		VERIFY(zap_update(spa->spa_meta_objset,
3816 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3817 		    &sav->sav_object, tx) == 0);
3818 	}
3819 
3820 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3821 	if (sav->sav_count == 0) {
3822 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3823 	} else {
3824 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3825 		for (i = 0; i < sav->sav_count; i++)
3826 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3827 			    B_FALSE, B_FALSE, B_TRUE);
3828 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3829 		    sav->sav_count) == 0);
3830 		for (i = 0; i < sav->sav_count; i++)
3831 			nvlist_free(list[i]);
3832 		kmem_free(list, sav->sav_count * sizeof (void *));
3833 	}
3834 
3835 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3836 	nvlist_free(nvroot);
3837 
3838 	sav->sav_sync = B_FALSE;
3839 }
3840 
3841 static void
3842 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3843 {
3844 	nvlist_t *config;
3845 
3846 	if (list_is_empty(&spa->spa_config_dirty_list))
3847 		return;
3848 
3849 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3850 
3851 	config = spa_config_generate(spa, spa->spa_root_vdev,
3852 	    dmu_tx_get_txg(tx), B_FALSE);
3853 
3854 	spa_config_exit(spa, SCL_STATE, FTAG);
3855 
3856 	if (spa->spa_config_syncing)
3857 		nvlist_free(spa->spa_config_syncing);
3858 	spa->spa_config_syncing = config;
3859 
3860 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3861 }
3862 
3863 /*
3864  * Set zpool properties.
3865  */
3866 static void
3867 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3868 {
3869 	spa_t *spa = arg1;
3870 	objset_t *mos = spa->spa_meta_objset;
3871 	nvlist_t *nvp = arg2;
3872 	nvpair_t *elem;
3873 	uint64_t intval;
3874 	char *strval;
3875 	zpool_prop_t prop;
3876 	const char *propname;
3877 	zprop_type_t proptype;
3878 
3879 	mutex_enter(&spa->spa_props_lock);
3880 
3881 	elem = NULL;
3882 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
3883 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3884 		case ZPOOL_PROP_VERSION:
3885 			/*
3886 			 * Only set version for non-zpool-creation cases
3887 			 * (set/import). spa_create() needs special care
3888 			 * for version setting.
3889 			 */
3890 			if (tx->tx_txg != TXG_INITIAL) {
3891 				VERIFY(nvpair_value_uint64(elem,
3892 				    &intval) == 0);
3893 				ASSERT(intval <= SPA_VERSION);
3894 				ASSERT(intval >= spa_version(spa));
3895 				spa->spa_uberblock.ub_version = intval;
3896 				vdev_config_dirty(spa->spa_root_vdev);
3897 			}
3898 			break;
3899 
3900 		case ZPOOL_PROP_ALTROOT:
3901 			/*
3902 			 * 'altroot' is a non-persistent property. It should
3903 			 * have been set temporarily at creation or import time.
3904 			 */
3905 			ASSERT(spa->spa_root != NULL);
3906 			break;
3907 
3908 		case ZPOOL_PROP_CACHEFILE:
3909 			/*
3910 			 * 'cachefile' is also a non-persisitent property.
3911 			 */
3912 			break;
3913 		default:
3914 			/*
3915 			 * Set pool property values in the poolprops mos object.
3916 			 */
3917 			if (spa->spa_pool_props_object == 0) {
3918 				objset_t *mos = spa->spa_meta_objset;
3919 
3920 				VERIFY((spa->spa_pool_props_object =
3921 				    zap_create(mos, DMU_OT_POOL_PROPS,
3922 				    DMU_OT_NONE, 0, tx)) > 0);
3923 
3924 				VERIFY(zap_update(mos,
3925 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3926 				    8, 1, &spa->spa_pool_props_object, tx)
3927 				    == 0);
3928 			}
3929 
3930 			/* normalize the property name */
3931 			propname = zpool_prop_to_name(prop);
3932 			proptype = zpool_prop_get_type(prop);
3933 
3934 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
3935 				ASSERT(proptype == PROP_TYPE_STRING);
3936 				VERIFY(nvpair_value_string(elem, &strval) == 0);
3937 				VERIFY(zap_update(mos,
3938 				    spa->spa_pool_props_object, propname,
3939 				    1, strlen(strval) + 1, strval, tx) == 0);
3940 
3941 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
3942 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3943 
3944 				if (proptype == PROP_TYPE_INDEX) {
3945 					const char *unused;
3946 					VERIFY(zpool_prop_index_to_string(
3947 					    prop, intval, &unused) == 0);
3948 				}
3949 				VERIFY(zap_update(mos,
3950 				    spa->spa_pool_props_object, propname,
3951 				    8, 1, &intval, tx) == 0);
3952 			} else {
3953 				ASSERT(0); /* not allowed */
3954 			}
3955 
3956 			switch (prop) {
3957 			case ZPOOL_PROP_DELEGATION:
3958 				spa->spa_delegation = intval;
3959 				break;
3960 			case ZPOOL_PROP_BOOTFS:
3961 				spa->spa_bootfs = intval;
3962 				break;
3963 			case ZPOOL_PROP_FAILUREMODE:
3964 				spa->spa_failmode = intval;
3965 				break;
3966 			default:
3967 				break;
3968 			}
3969 		}
3970 
3971 		/* log internal history if this is not a zpool create */
3972 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
3973 		    tx->tx_txg != TXG_INITIAL) {
3974 			spa_history_internal_log(LOG_POOL_PROPSET,
3975 			    spa, tx, cr, "%s %lld %s",
3976 			    nvpair_name(elem), intval, spa_name(spa));
3977 		}
3978 	}
3979 
3980 	mutex_exit(&spa->spa_props_lock);
3981 }
3982 
3983 /*
3984  * Sync the specified transaction group.  New blocks may be dirtied as
3985  * part of the process, so we iterate until it converges.
3986  */
3987 void
3988 spa_sync(spa_t *spa, uint64_t txg)
3989 {
3990 	dsl_pool_t *dp = spa->spa_dsl_pool;
3991 	objset_t *mos = spa->spa_meta_objset;
3992 	bplist_t *bpl = &spa->spa_sync_bplist;
3993 	vdev_t *rvd = spa->spa_root_vdev;
3994 	vdev_t *vd;
3995 	dmu_tx_t *tx;
3996 	int dirty_vdevs;
3997 	int error;
3998 
3999 	/*
4000 	 * Lock out configuration changes.
4001 	 */
4002 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4003 
4004 	spa->spa_syncing_txg = txg;
4005 	spa->spa_sync_pass = 0;
4006 
4007 	/*
4008 	 * If there are any pending vdev state changes, convert them
4009 	 * into config changes that go out with this transaction group.
4010 	 */
4011 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4012 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
4013 		/*
4014 		 * We need the write lock here because, for aux vdevs,
4015 		 * calling vdev_config_dirty() modifies sav_config.
4016 		 * This is ugly and will become unnecessary when we
4017 		 * eliminate the aux vdev wart by integrating all vdevs
4018 		 * into the root vdev tree.
4019 		 */
4020 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4021 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4022 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4023 			vdev_state_clean(vd);
4024 			vdev_config_dirty(vd);
4025 		}
4026 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4027 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4028 	}
4029 	spa_config_exit(spa, SCL_STATE, FTAG);
4030 
4031 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4032 
4033 	tx = dmu_tx_create_assigned(dp, txg);
4034 
4035 	/*
4036 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4037 	 * set spa_deflate if we have no raid-z vdevs.
4038 	 */
4039 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4040 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4041 		int i;
4042 
4043 		for (i = 0; i < rvd->vdev_children; i++) {
4044 			vd = rvd->vdev_child[i];
4045 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4046 				break;
4047 		}
4048 		if (i == rvd->vdev_children) {
4049 			spa->spa_deflate = TRUE;
4050 			VERIFY(0 == zap_add(spa->spa_meta_objset,
4051 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4052 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4053 		}
4054 	}
4055 
4056 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4057 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4058 		dsl_pool_create_origin(dp, tx);
4059 
4060 		/* Keeping the origin open increases spa_minref */
4061 		spa->spa_minref += 3;
4062 	}
4063 
4064 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4065 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4066 		dsl_pool_upgrade_clones(dp, tx);
4067 	}
4068 
4069 	/*
4070 	 * If anything has changed in this txg, push the deferred frees
4071 	 * from the previous txg.  If not, leave them alone so that we
4072 	 * don't generate work on an otherwise idle system.
4073 	 */
4074 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4075 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4076 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4077 		spa_sync_deferred_frees(spa, txg);
4078 
4079 	/*
4080 	 * Iterate to convergence.
4081 	 */
4082 	do {
4083 		spa->spa_sync_pass++;
4084 
4085 		spa_sync_config_object(spa, tx);
4086 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4087 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4088 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4089 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4090 		spa_errlog_sync(spa, txg);
4091 		dsl_pool_sync(dp, txg);
4092 
4093 		dirty_vdevs = 0;
4094 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4095 			vdev_sync(vd, txg);
4096 			dirty_vdevs++;
4097 		}
4098 
4099 		bplist_sync(bpl, tx);
4100 	} while (dirty_vdevs);
4101 
4102 	bplist_close(bpl);
4103 
4104 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4105 
4106 	/*
4107 	 * Rewrite the vdev configuration (which includes the uberblock)
4108 	 * to commit the transaction group.
4109 	 *
4110 	 * If there are no dirty vdevs, we sync the uberblock to a few
4111 	 * random top-level vdevs that are known to be visible in the
4112 	 * config cache (see spa_vdev_add() for a complete description).
4113 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4114 	 */
4115 	for (;;) {
4116 		/*
4117 		 * We hold SCL_STATE to prevent vdev open/close/etc.
4118 		 * while we're attempting to write the vdev labels.
4119 		 */
4120 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4121 
4122 		if (list_is_empty(&spa->spa_config_dirty_list)) {
4123 			vdev_t *svd[SPA_DVAS_PER_BP];
4124 			int svdcount = 0;
4125 			int children = rvd->vdev_children;
4126 			int c0 = spa_get_random(children);
4127 			int c;
4128 
4129 			for (c = 0; c < children; c++) {
4130 				vd = rvd->vdev_child[(c0 + c) % children];
4131 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4132 					continue;
4133 				svd[svdcount++] = vd;
4134 				if (svdcount == SPA_DVAS_PER_BP)
4135 					break;
4136 			}
4137 			error = vdev_config_sync(svd, svdcount, txg);
4138 		} else {
4139 			error = vdev_config_sync(rvd->vdev_child,
4140 			    rvd->vdev_children, txg);
4141 		}
4142 
4143 		spa_config_exit(spa, SCL_STATE, FTAG);
4144 
4145 		if (error == 0)
4146 			break;
4147 		zio_suspend(spa, NULL);
4148 		zio_resume_wait(spa);
4149 	}
4150 	dmu_tx_commit(tx);
4151 
4152 	/*
4153 	 * Clear the dirty config list.
4154 	 */
4155 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4156 		vdev_config_clean(vd);
4157 
4158 	/*
4159 	 * Now that the new config has synced transactionally,
4160 	 * let it become visible to the config cache.
4161 	 */
4162 	if (spa->spa_config_syncing != NULL) {
4163 		spa_config_set(spa, spa->spa_config_syncing);
4164 		spa->spa_config_txg = txg;
4165 		spa->spa_config_syncing = NULL;
4166 	}
4167 
4168 	spa->spa_ubsync = spa->spa_uberblock;
4169 
4170 	/*
4171 	 * Clean up the ZIL records for the synced txg.
4172 	 */
4173 	dsl_pool_zil_clean(dp);
4174 
4175 	/*
4176 	 * Update usable space statistics.
4177 	 */
4178 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4179 		vdev_sync_done(vd, txg);
4180 
4181 	/*
4182 	 * It had better be the case that we didn't dirty anything
4183 	 * since vdev_config_sync().
4184 	 */
4185 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4186 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4187 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4188 	ASSERT(bpl->bpl_queue == NULL);
4189 
4190 	spa_config_exit(spa, SCL_CONFIG, FTAG);
4191 
4192 	/*
4193 	 * If any async tasks have been requested, kick them off.
4194 	 */
4195 	spa_async_dispatch(spa);
4196 }
4197 
4198 /*
4199  * Sync all pools.  We don't want to hold the namespace lock across these
4200  * operations, so we take a reference on the spa_t and drop the lock during the
4201  * sync.
4202  */
4203 void
4204 spa_sync_allpools(void)
4205 {
4206 	spa_t *spa = NULL;
4207 	mutex_enter(&spa_namespace_lock);
4208 	while ((spa = spa_next(spa)) != NULL) {
4209 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4210 			continue;
4211 		spa_open_ref(spa, FTAG);
4212 		mutex_exit(&spa_namespace_lock);
4213 		txg_wait_synced(spa_get_dsl(spa), 0);
4214 		mutex_enter(&spa_namespace_lock);
4215 		spa_close(spa, FTAG);
4216 	}
4217 	mutex_exit(&spa_namespace_lock);
4218 }
4219 
4220 /*
4221  * ==========================================================================
4222  * Miscellaneous routines
4223  * ==========================================================================
4224  */
4225 
4226 /*
4227  * Remove all pools in the system.
4228  */
4229 void
4230 spa_evict_all(void)
4231 {
4232 	spa_t *spa;
4233 
4234 	/*
4235 	 * Remove all cached state.  All pools should be closed now,
4236 	 * so every spa in the AVL tree should be unreferenced.
4237 	 */
4238 	mutex_enter(&spa_namespace_lock);
4239 	while ((spa = spa_next(NULL)) != NULL) {
4240 		/*
4241 		 * Stop async tasks.  The async thread may need to detach
4242 		 * a device that's been replaced, which requires grabbing
4243 		 * spa_namespace_lock, so we must drop it here.
4244 		 */
4245 		spa_open_ref(spa, FTAG);
4246 		mutex_exit(&spa_namespace_lock);
4247 		spa_async_suspend(spa);
4248 		mutex_enter(&spa_namespace_lock);
4249 		spa_close(spa, FTAG);
4250 
4251 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4252 			spa_unload(spa);
4253 			spa_deactivate(spa);
4254 		}
4255 		spa_remove(spa);
4256 	}
4257 	mutex_exit(&spa_namespace_lock);
4258 }
4259 
4260 vdev_t *
4261 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache)
4262 {
4263 	vdev_t *vd;
4264 	int i;
4265 
4266 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4267 		return (vd);
4268 
4269 	if (l2cache) {
4270 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4271 			vd = spa->spa_l2cache.sav_vdevs[i];
4272 			if (vd->vdev_guid == guid)
4273 				return (vd);
4274 		}
4275 	}
4276 
4277 	return (NULL);
4278 }
4279 
4280 void
4281 spa_upgrade(spa_t *spa, uint64_t version)
4282 {
4283 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4284 
4285 	/*
4286 	 * This should only be called for a non-faulted pool, and since a
4287 	 * future version would result in an unopenable pool, this shouldn't be
4288 	 * possible.
4289 	 */
4290 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4291 	ASSERT(version >= spa->spa_uberblock.ub_version);
4292 
4293 	spa->spa_uberblock.ub_version = version;
4294 	vdev_config_dirty(spa->spa_root_vdev);
4295 
4296 	spa_config_exit(spa, SCL_ALL, FTAG);
4297 
4298 	txg_wait_synced(spa_get_dsl(spa), 0);
4299 }
4300 
4301 boolean_t
4302 spa_has_spare(spa_t *spa, uint64_t guid)
4303 {
4304 	int i;
4305 	uint64_t spareguid;
4306 	spa_aux_vdev_t *sav = &spa->spa_spares;
4307 
4308 	for (i = 0; i < sav->sav_count; i++)
4309 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4310 			return (B_TRUE);
4311 
4312 	for (i = 0; i < sav->sav_npending; i++) {
4313 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4314 		    &spareguid) == 0 && spareguid == guid)
4315 			return (B_TRUE);
4316 	}
4317 
4318 	return (B_FALSE);
4319 }
4320 
4321 /*
4322  * Check if a pool has an active shared spare device.
4323  * Note: reference count of an active spare is 2, as a spare and as a replace
4324  */
4325 static boolean_t
4326 spa_has_active_shared_spare(spa_t *spa)
4327 {
4328 	int i, refcnt;
4329 	uint64_t pool;
4330 	spa_aux_vdev_t *sav = &spa->spa_spares;
4331 
4332 	for (i = 0; i < sav->sav_count; i++) {
4333 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4334 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4335 		    refcnt > 2)
4336 			return (B_TRUE);
4337 	}
4338 
4339 	return (B_FALSE);
4340 }
4341 
4342 /*
4343  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4344  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4345  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4346  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4347  * or zdb as real changes.
4348  */
4349 void
4350 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4351 {
4352 #ifdef _KERNEL
4353 	sysevent_t		*ev;
4354 	sysevent_attr_list_t	*attr = NULL;
4355 	sysevent_value_t	value;
4356 	sysevent_id_t		eid;
4357 
4358 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4359 	    SE_SLEEP);
4360 
4361 	value.value_type = SE_DATA_TYPE_STRING;
4362 	value.value.sv_string = spa_name(spa);
4363 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4364 		goto done;
4365 
4366 	value.value_type = SE_DATA_TYPE_UINT64;
4367 	value.value.sv_uint64 = spa_guid(spa);
4368 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4369 		goto done;
4370 
4371 	if (vd) {
4372 		value.value_type = SE_DATA_TYPE_UINT64;
4373 		value.value.sv_uint64 = vd->vdev_guid;
4374 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4375 		    SE_SLEEP) != 0)
4376 			goto done;
4377 
4378 		if (vd->vdev_path) {
4379 			value.value_type = SE_DATA_TYPE_STRING;
4380 			value.value.sv_string = vd->vdev_path;
4381 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4382 			    &value, SE_SLEEP) != 0)
4383 				goto done;
4384 		}
4385 	}
4386 
4387 	if (sysevent_attach_attributes(ev, attr) != 0)
4388 		goto done;
4389 	attr = NULL;
4390 
4391 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4392 
4393 done:
4394 	if (attr)
4395 		sysevent_free_attr(attr);
4396 	sysevent_free(ev);
4397 #endif
4398 }
4399