1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 */ 31 32 /* 33 * SPA: Storage Pool Allocator 34 * 35 * This file contains all the routines used when modifying on-disk SPA state. 36 * This includes opening, importing, destroying, exporting a pool, and syncing a 37 * pool. 38 */ 39 40 #include <sys/zfs_context.h> 41 #include <sys/fm/fs/zfs.h> 42 #include <sys/spa_impl.h> 43 #include <sys/zio.h> 44 #include <sys/zio_checksum.h> 45 #include <sys/dmu.h> 46 #include <sys/dmu_tx.h> 47 #include <sys/zap.h> 48 #include <sys/zil.h> 49 #include <sys/ddt.h> 50 #include <sys/vdev_impl.h> 51 #include <sys/metaslab.h> 52 #include <sys/metaslab_impl.h> 53 #include <sys/uberblock_impl.h> 54 #include <sys/txg.h> 55 #include <sys/avl.h> 56 #include <sys/dmu_traverse.h> 57 #include <sys/dmu_objset.h> 58 #include <sys/unique.h> 59 #include <sys/dsl_pool.h> 60 #include <sys/dsl_dataset.h> 61 #include <sys/dsl_dir.h> 62 #include <sys/dsl_prop.h> 63 #include <sys/dsl_synctask.h> 64 #include <sys/fs/zfs.h> 65 #include <sys/arc.h> 66 #include <sys/callb.h> 67 #include <sys/systeminfo.h> 68 #include <sys/spa_boot.h> 69 #include <sys/zfs_ioctl.h> 70 #include <sys/dsl_scan.h> 71 #include <sys/zfeature.h> 72 #include <sys/dsl_destroy.h> 73 74 #ifdef _KERNEL 75 #include <sys/bootprops.h> 76 #include <sys/callb.h> 77 #include <sys/cpupart.h> 78 #include <sys/pool.h> 79 #include <sys/sysdc.h> 80 #include <sys/zone.h> 81 #endif /* _KERNEL */ 82 83 #include "zfs_prop.h" 84 #include "zfs_comutil.h" 85 86 /* 87 * The interval, in seconds, at which failed configuration cache file writes 88 * should be retried. 89 */ 90 static int zfs_ccw_retry_interval = 300; 91 92 typedef enum zti_modes { 93 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 94 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 95 ZTI_MODE_NULL, /* don't create a taskq */ 96 ZTI_NMODES 97 } zti_modes_t; 98 99 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 100 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 101 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 102 103 #define ZTI_N(n) ZTI_P(n, 1) 104 #define ZTI_ONE ZTI_N(1) 105 106 typedef struct zio_taskq_info { 107 zti_modes_t zti_mode; 108 uint_t zti_value; 109 uint_t zti_count; 110 } zio_taskq_info_t; 111 112 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 113 "issue", "issue_high", "intr", "intr_high" 114 }; 115 116 /* 117 * This table defines the taskq settings for each ZFS I/O type. When 118 * initializing a pool, we use this table to create an appropriately sized 119 * taskq. Some operations are low volume and therefore have a small, static 120 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 121 * macros. Other operations process a large amount of data; the ZTI_BATCH 122 * macro causes us to create a taskq oriented for throughput. Some operations 123 * are so high frequency and short-lived that the taskq itself can become a a 124 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 125 * additional degree of parallelism specified by the number of threads per- 126 * taskq and the number of taskqs; when dispatching an event in this case, the 127 * particular taskq is chosen at random. 128 * 129 * The different taskq priorities are to handle the different contexts (issue 130 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 131 * need to be handled with minimum delay. 132 */ 133 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 134 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 136 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 137 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 138 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 139 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 140 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 141 }; 142 143 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, const char *name); 144 static void spa_event_post(sysevent_t *ev); 145 static void spa_sync_version(void *arg, dmu_tx_t *tx); 146 static void spa_sync_props(void *arg, dmu_tx_t *tx); 147 static boolean_t spa_has_active_shared_spare(spa_t *spa); 148 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 149 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 150 char **ereport); 151 static void spa_vdev_resilver_done(spa_t *spa); 152 153 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 154 id_t zio_taskq_psrset_bind = PS_NONE; 155 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 156 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 157 158 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 159 extern int zfs_sync_pass_deferred_free; 160 161 /* 162 * This (illegal) pool name is used when temporarily importing a spa_t in order 163 * to get the vdev stats associated with the imported devices. 164 */ 165 #define TRYIMPORT_NAME "$import" 166 167 /* 168 * ========================================================================== 169 * SPA properties routines 170 * ========================================================================== 171 */ 172 173 /* 174 * Add a (source=src, propname=propval) list to an nvlist. 175 */ 176 static void 177 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 178 uint64_t intval, zprop_source_t src) 179 { 180 const char *propname = zpool_prop_to_name(prop); 181 nvlist_t *propval; 182 183 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 184 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 185 186 if (strval != NULL) 187 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 188 else 189 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 190 191 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 192 nvlist_free(propval); 193 } 194 195 /* 196 * Get property values from the spa configuration. 197 */ 198 static void 199 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 200 { 201 vdev_t *rvd = spa->spa_root_vdev; 202 dsl_pool_t *pool = spa->spa_dsl_pool; 203 uint64_t size, alloc, cap, version; 204 zprop_source_t src = ZPROP_SRC_NONE; 205 spa_config_dirent_t *dp; 206 metaslab_class_t *mc = spa_normal_class(spa); 207 208 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 209 210 if (rvd != NULL) { 211 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 212 size = metaslab_class_get_space(spa_normal_class(spa)); 213 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 214 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 215 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 216 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 217 size - alloc, src); 218 219 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 220 metaslab_class_fragmentation(mc), src); 221 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 222 metaslab_class_expandable_space(mc), src); 223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 224 (spa_mode(spa) == FREAD), src); 225 226 cap = (size == 0) ? 0 : (alloc * 100 / size); 227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 228 229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 230 ddt_get_pool_dedup_ratio(spa), src); 231 232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 233 rvd->vdev_state, src); 234 235 version = spa_version(spa); 236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 237 src = ZPROP_SRC_DEFAULT; 238 else 239 src = ZPROP_SRC_LOCAL; 240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 241 } 242 243 if (pool != NULL) { 244 /* 245 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 246 * when opening pools before this version freedir will be NULL. 247 */ 248 if (pool->dp_free_dir != NULL) { 249 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 250 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 251 src); 252 } else { 253 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 254 NULL, 0, src); 255 } 256 257 if (pool->dp_leak_dir != NULL) { 258 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 259 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 260 src); 261 } else { 262 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 263 NULL, 0, src); 264 } 265 } 266 267 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 268 269 if (spa->spa_comment != NULL) { 270 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 271 0, ZPROP_SRC_LOCAL); 272 } 273 274 if (spa->spa_root != NULL) 275 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 276 0, ZPROP_SRC_LOCAL); 277 278 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 279 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 280 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 281 } else { 282 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 283 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 284 } 285 286 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 287 if (dp->scd_path == NULL) { 288 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 289 "none", 0, ZPROP_SRC_LOCAL); 290 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 291 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 292 dp->scd_path, 0, ZPROP_SRC_LOCAL); 293 } 294 } 295 } 296 297 /* 298 * Get zpool property values. 299 */ 300 int 301 spa_prop_get(spa_t *spa, nvlist_t **nvp) 302 { 303 objset_t *mos = spa->spa_meta_objset; 304 zap_cursor_t zc; 305 zap_attribute_t za; 306 int err; 307 308 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 309 310 mutex_enter(&spa->spa_props_lock); 311 312 /* 313 * Get properties from the spa config. 314 */ 315 spa_prop_get_config(spa, nvp); 316 317 /* If no pool property object, no more prop to get. */ 318 if (mos == NULL || spa->spa_pool_props_object == 0) { 319 mutex_exit(&spa->spa_props_lock); 320 return (0); 321 } 322 323 /* 324 * Get properties from the MOS pool property object. 325 */ 326 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 327 (err = zap_cursor_retrieve(&zc, &za)) == 0; 328 zap_cursor_advance(&zc)) { 329 uint64_t intval = 0; 330 char *strval = NULL; 331 zprop_source_t src = ZPROP_SRC_DEFAULT; 332 zpool_prop_t prop; 333 334 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 335 continue; 336 337 switch (za.za_integer_length) { 338 case 8: 339 /* integer property */ 340 if (za.za_first_integer != 341 zpool_prop_default_numeric(prop)) 342 src = ZPROP_SRC_LOCAL; 343 344 if (prop == ZPOOL_PROP_BOOTFS) { 345 dsl_pool_t *dp; 346 dsl_dataset_t *ds = NULL; 347 348 dp = spa_get_dsl(spa); 349 dsl_pool_config_enter(dp, FTAG); 350 if (err = dsl_dataset_hold_obj(dp, 351 za.za_first_integer, FTAG, &ds)) { 352 dsl_pool_config_exit(dp, FTAG); 353 break; 354 } 355 356 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 357 KM_SLEEP); 358 dsl_dataset_name(ds, strval); 359 dsl_dataset_rele(ds, FTAG); 360 dsl_pool_config_exit(dp, FTAG); 361 } else { 362 strval = NULL; 363 intval = za.za_first_integer; 364 } 365 366 spa_prop_add_list(*nvp, prop, strval, intval, src); 367 368 if (strval != NULL) 369 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 370 371 break; 372 373 case 1: 374 /* string property */ 375 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 376 err = zap_lookup(mos, spa->spa_pool_props_object, 377 za.za_name, 1, za.za_num_integers, strval); 378 if (err) { 379 kmem_free(strval, za.za_num_integers); 380 break; 381 } 382 spa_prop_add_list(*nvp, prop, strval, 0, src); 383 kmem_free(strval, za.za_num_integers); 384 break; 385 386 default: 387 break; 388 } 389 } 390 zap_cursor_fini(&zc); 391 mutex_exit(&spa->spa_props_lock); 392 out: 393 if (err && err != ENOENT) { 394 nvlist_free(*nvp); 395 *nvp = NULL; 396 return (err); 397 } 398 399 return (0); 400 } 401 402 /* 403 * Validate the given pool properties nvlist and modify the list 404 * for the property values to be set. 405 */ 406 static int 407 spa_prop_validate(spa_t *spa, nvlist_t *props) 408 { 409 nvpair_t *elem; 410 int error = 0, reset_bootfs = 0; 411 uint64_t objnum = 0; 412 boolean_t has_feature = B_FALSE; 413 414 elem = NULL; 415 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 416 uint64_t intval; 417 char *strval, *slash, *check, *fname; 418 const char *propname = nvpair_name(elem); 419 zpool_prop_t prop = zpool_name_to_prop(propname); 420 421 switch (prop) { 422 case ZPROP_INVAL: 423 if (!zpool_prop_feature(propname)) { 424 error = SET_ERROR(EINVAL); 425 break; 426 } 427 428 /* 429 * Sanitize the input. 430 */ 431 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 432 error = SET_ERROR(EINVAL); 433 break; 434 } 435 436 if (nvpair_value_uint64(elem, &intval) != 0) { 437 error = SET_ERROR(EINVAL); 438 break; 439 } 440 441 if (intval != 0) { 442 error = SET_ERROR(EINVAL); 443 break; 444 } 445 446 fname = strchr(propname, '@') + 1; 447 if (zfeature_lookup_name(fname, NULL) != 0) { 448 error = SET_ERROR(EINVAL); 449 break; 450 } 451 452 has_feature = B_TRUE; 453 break; 454 455 case ZPOOL_PROP_VERSION: 456 error = nvpair_value_uint64(elem, &intval); 457 if (!error && 458 (intval < spa_version(spa) || 459 intval > SPA_VERSION_BEFORE_FEATURES || 460 has_feature)) 461 error = SET_ERROR(EINVAL); 462 break; 463 464 case ZPOOL_PROP_DELEGATION: 465 case ZPOOL_PROP_AUTOREPLACE: 466 case ZPOOL_PROP_LISTSNAPS: 467 case ZPOOL_PROP_AUTOEXPAND: 468 error = nvpair_value_uint64(elem, &intval); 469 if (!error && intval > 1) 470 error = SET_ERROR(EINVAL); 471 break; 472 473 case ZPOOL_PROP_BOOTFS: 474 /* 475 * If the pool version is less than SPA_VERSION_BOOTFS, 476 * or the pool is still being created (version == 0), 477 * the bootfs property cannot be set. 478 */ 479 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 480 error = SET_ERROR(ENOTSUP); 481 break; 482 } 483 484 /* 485 * Make sure the vdev config is bootable 486 */ 487 if (!vdev_is_bootable(spa->spa_root_vdev)) { 488 error = SET_ERROR(ENOTSUP); 489 break; 490 } 491 492 reset_bootfs = 1; 493 494 error = nvpair_value_string(elem, &strval); 495 496 if (!error) { 497 objset_t *os; 498 uint64_t propval; 499 500 if (strval == NULL || strval[0] == '\0') { 501 objnum = zpool_prop_default_numeric( 502 ZPOOL_PROP_BOOTFS); 503 break; 504 } 505 506 if (error = dmu_objset_hold(strval, FTAG, &os)) 507 break; 508 509 /* 510 * Must be ZPL, and its property settings 511 * must be supported by GRUB (compression 512 * is not gzip, and large blocks are not used). 513 */ 514 515 if (dmu_objset_type(os) != DMU_OST_ZFS) { 516 error = SET_ERROR(ENOTSUP); 517 } else if ((error = 518 dsl_prop_get_int_ds(dmu_objset_ds(os), 519 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 520 &propval)) == 0 && 521 !BOOTFS_COMPRESS_VALID(propval)) { 522 error = SET_ERROR(ENOTSUP); 523 } else { 524 objnum = dmu_objset_id(os); 525 } 526 dmu_objset_rele(os, FTAG); 527 } 528 break; 529 530 case ZPOOL_PROP_FAILUREMODE: 531 error = nvpair_value_uint64(elem, &intval); 532 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 533 intval > ZIO_FAILURE_MODE_PANIC)) 534 error = SET_ERROR(EINVAL); 535 536 /* 537 * This is a special case which only occurs when 538 * the pool has completely failed. This allows 539 * the user to change the in-core failmode property 540 * without syncing it out to disk (I/Os might 541 * currently be blocked). We do this by returning 542 * EIO to the caller (spa_prop_set) to trick it 543 * into thinking we encountered a property validation 544 * error. 545 */ 546 if (!error && spa_suspended(spa)) { 547 spa->spa_failmode = intval; 548 error = SET_ERROR(EIO); 549 } 550 break; 551 552 case ZPOOL_PROP_CACHEFILE: 553 if ((error = nvpair_value_string(elem, &strval)) != 0) 554 break; 555 556 if (strval[0] == '\0') 557 break; 558 559 if (strcmp(strval, "none") == 0) 560 break; 561 562 if (strval[0] != '/') { 563 error = SET_ERROR(EINVAL); 564 break; 565 } 566 567 slash = strrchr(strval, '/'); 568 ASSERT(slash != NULL); 569 570 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 571 strcmp(slash, "/..") == 0) 572 error = SET_ERROR(EINVAL); 573 break; 574 575 case ZPOOL_PROP_COMMENT: 576 if ((error = nvpair_value_string(elem, &strval)) != 0) 577 break; 578 for (check = strval; *check != '\0'; check++) { 579 /* 580 * The kernel doesn't have an easy isprint() 581 * check. For this kernel check, we merely 582 * check ASCII apart from DEL. Fix this if 583 * there is an easy-to-use kernel isprint(). 584 */ 585 if (*check >= 0x7f) { 586 error = SET_ERROR(EINVAL); 587 break; 588 } 589 } 590 if (strlen(strval) > ZPROP_MAX_COMMENT) 591 error = E2BIG; 592 break; 593 594 case ZPOOL_PROP_DEDUPDITTO: 595 if (spa_version(spa) < SPA_VERSION_DEDUP) 596 error = SET_ERROR(ENOTSUP); 597 else 598 error = nvpair_value_uint64(elem, &intval); 599 if (error == 0 && 600 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 601 error = SET_ERROR(EINVAL); 602 break; 603 } 604 605 if (error) 606 break; 607 } 608 609 if (!error && reset_bootfs) { 610 error = nvlist_remove(props, 611 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 612 613 if (!error) { 614 error = nvlist_add_uint64(props, 615 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 616 } 617 } 618 619 return (error); 620 } 621 622 void 623 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 624 { 625 char *cachefile; 626 spa_config_dirent_t *dp; 627 628 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 629 &cachefile) != 0) 630 return; 631 632 dp = kmem_alloc(sizeof (spa_config_dirent_t), 633 KM_SLEEP); 634 635 if (cachefile[0] == '\0') 636 dp->scd_path = spa_strdup(spa_config_path); 637 else if (strcmp(cachefile, "none") == 0) 638 dp->scd_path = NULL; 639 else 640 dp->scd_path = spa_strdup(cachefile); 641 642 list_insert_head(&spa->spa_config_list, dp); 643 if (need_sync) 644 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 645 } 646 647 int 648 spa_prop_set(spa_t *spa, nvlist_t *nvp) 649 { 650 int error; 651 nvpair_t *elem = NULL; 652 boolean_t need_sync = B_FALSE; 653 654 if ((error = spa_prop_validate(spa, nvp)) != 0) 655 return (error); 656 657 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 658 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 659 660 if (prop == ZPOOL_PROP_CACHEFILE || 661 prop == ZPOOL_PROP_ALTROOT || 662 prop == ZPOOL_PROP_READONLY) 663 continue; 664 665 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 666 uint64_t ver; 667 668 if (prop == ZPOOL_PROP_VERSION) { 669 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 670 } else { 671 ASSERT(zpool_prop_feature(nvpair_name(elem))); 672 ver = SPA_VERSION_FEATURES; 673 need_sync = B_TRUE; 674 } 675 676 /* Save time if the version is already set. */ 677 if (ver == spa_version(spa)) 678 continue; 679 680 /* 681 * In addition to the pool directory object, we might 682 * create the pool properties object, the features for 683 * read object, the features for write object, or the 684 * feature descriptions object. 685 */ 686 error = dsl_sync_task(spa->spa_name, NULL, 687 spa_sync_version, &ver, 688 6, ZFS_SPACE_CHECK_RESERVED); 689 if (error) 690 return (error); 691 continue; 692 } 693 694 need_sync = B_TRUE; 695 break; 696 } 697 698 if (need_sync) { 699 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 700 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 701 } 702 703 return (0); 704 } 705 706 /* 707 * If the bootfs property value is dsobj, clear it. 708 */ 709 void 710 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 711 { 712 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 713 VERIFY(zap_remove(spa->spa_meta_objset, 714 spa->spa_pool_props_object, 715 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 716 spa->spa_bootfs = 0; 717 } 718 } 719 720 /*ARGSUSED*/ 721 static int 722 spa_change_guid_check(void *arg, dmu_tx_t *tx) 723 { 724 uint64_t *newguid = arg; 725 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 726 vdev_t *rvd = spa->spa_root_vdev; 727 uint64_t vdev_state; 728 729 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 730 vdev_state = rvd->vdev_state; 731 spa_config_exit(spa, SCL_STATE, FTAG); 732 733 if (vdev_state != VDEV_STATE_HEALTHY) 734 return (SET_ERROR(ENXIO)); 735 736 ASSERT3U(spa_guid(spa), !=, *newguid); 737 738 return (0); 739 } 740 741 static void 742 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 743 { 744 uint64_t *newguid = arg; 745 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 746 uint64_t oldguid; 747 vdev_t *rvd = spa->spa_root_vdev; 748 749 oldguid = spa_guid(spa); 750 751 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 752 rvd->vdev_guid = *newguid; 753 rvd->vdev_guid_sum += (*newguid - oldguid); 754 vdev_config_dirty(rvd); 755 spa_config_exit(spa, SCL_STATE, FTAG); 756 757 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 758 oldguid, *newguid); 759 } 760 761 /* 762 * Change the GUID for the pool. This is done so that we can later 763 * re-import a pool built from a clone of our own vdevs. We will modify 764 * the root vdev's guid, our own pool guid, and then mark all of our 765 * vdevs dirty. Note that we must make sure that all our vdevs are 766 * online when we do this, or else any vdevs that weren't present 767 * would be orphaned from our pool. We are also going to issue a 768 * sysevent to update any watchers. 769 */ 770 int 771 spa_change_guid(spa_t *spa) 772 { 773 int error; 774 uint64_t guid; 775 776 mutex_enter(&spa->spa_vdev_top_lock); 777 mutex_enter(&spa_namespace_lock); 778 guid = spa_generate_guid(NULL); 779 780 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 781 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 782 783 if (error == 0) { 784 spa_config_sync(spa, B_FALSE, B_TRUE); 785 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 786 } 787 788 mutex_exit(&spa_namespace_lock); 789 mutex_exit(&spa->spa_vdev_top_lock); 790 791 return (error); 792 } 793 794 /* 795 * ========================================================================== 796 * SPA state manipulation (open/create/destroy/import/export) 797 * ========================================================================== 798 */ 799 800 static int 801 spa_error_entry_compare(const void *a, const void *b) 802 { 803 spa_error_entry_t *sa = (spa_error_entry_t *)a; 804 spa_error_entry_t *sb = (spa_error_entry_t *)b; 805 int ret; 806 807 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 808 sizeof (zbookmark_phys_t)); 809 810 if (ret < 0) 811 return (-1); 812 else if (ret > 0) 813 return (1); 814 else 815 return (0); 816 } 817 818 /* 819 * Utility function which retrieves copies of the current logs and 820 * re-initializes them in the process. 821 */ 822 void 823 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 824 { 825 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 826 827 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 828 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 829 830 avl_create(&spa->spa_errlist_scrub, 831 spa_error_entry_compare, sizeof (spa_error_entry_t), 832 offsetof(spa_error_entry_t, se_avl)); 833 avl_create(&spa->spa_errlist_last, 834 spa_error_entry_compare, sizeof (spa_error_entry_t), 835 offsetof(spa_error_entry_t, se_avl)); 836 } 837 838 static void 839 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 840 { 841 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 842 enum zti_modes mode = ztip->zti_mode; 843 uint_t value = ztip->zti_value; 844 uint_t count = ztip->zti_count; 845 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 846 char name[32]; 847 uint_t flags = 0; 848 boolean_t batch = B_FALSE; 849 850 if (mode == ZTI_MODE_NULL) { 851 tqs->stqs_count = 0; 852 tqs->stqs_taskq = NULL; 853 return; 854 } 855 856 ASSERT3U(count, >, 0); 857 858 tqs->stqs_count = count; 859 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 860 861 switch (mode) { 862 case ZTI_MODE_FIXED: 863 ASSERT3U(value, >=, 1); 864 value = MAX(value, 1); 865 break; 866 867 case ZTI_MODE_BATCH: 868 batch = B_TRUE; 869 flags |= TASKQ_THREADS_CPU_PCT; 870 value = zio_taskq_batch_pct; 871 break; 872 873 default: 874 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 875 "spa_activate()", 876 zio_type_name[t], zio_taskq_types[q], mode, value); 877 break; 878 } 879 880 for (uint_t i = 0; i < count; i++) { 881 taskq_t *tq; 882 883 if (count > 1) { 884 (void) snprintf(name, sizeof (name), "%s_%s_%u", 885 zio_type_name[t], zio_taskq_types[q], i); 886 } else { 887 (void) snprintf(name, sizeof (name), "%s_%s", 888 zio_type_name[t], zio_taskq_types[q]); 889 } 890 891 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 892 if (batch) 893 flags |= TASKQ_DC_BATCH; 894 895 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 896 spa->spa_proc, zio_taskq_basedc, flags); 897 } else { 898 pri_t pri = maxclsyspri; 899 /* 900 * The write issue taskq can be extremely CPU 901 * intensive. Run it at slightly lower priority 902 * than the other taskqs. 903 */ 904 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 905 pri--; 906 907 tq = taskq_create_proc(name, value, pri, 50, 908 INT_MAX, spa->spa_proc, flags); 909 } 910 911 tqs->stqs_taskq[i] = tq; 912 } 913 } 914 915 static void 916 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 917 { 918 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 919 920 if (tqs->stqs_taskq == NULL) { 921 ASSERT0(tqs->stqs_count); 922 return; 923 } 924 925 for (uint_t i = 0; i < tqs->stqs_count; i++) { 926 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 927 taskq_destroy(tqs->stqs_taskq[i]); 928 } 929 930 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 931 tqs->stqs_taskq = NULL; 932 } 933 934 /* 935 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 936 * Note that a type may have multiple discrete taskqs to avoid lock contention 937 * on the taskq itself. In that case we choose which taskq at random by using 938 * the low bits of gethrtime(). 939 */ 940 void 941 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 942 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 943 { 944 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 945 taskq_t *tq; 946 947 ASSERT3P(tqs->stqs_taskq, !=, NULL); 948 ASSERT3U(tqs->stqs_count, !=, 0); 949 950 if (tqs->stqs_count == 1) { 951 tq = tqs->stqs_taskq[0]; 952 } else { 953 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 954 } 955 956 taskq_dispatch_ent(tq, func, arg, flags, ent); 957 } 958 959 static void 960 spa_create_zio_taskqs(spa_t *spa) 961 { 962 for (int t = 0; t < ZIO_TYPES; t++) { 963 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 964 spa_taskqs_init(spa, t, q); 965 } 966 } 967 } 968 969 #ifdef _KERNEL 970 static void 971 spa_thread(void *arg) 972 { 973 callb_cpr_t cprinfo; 974 975 spa_t *spa = arg; 976 user_t *pu = PTOU(curproc); 977 978 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 979 spa->spa_name); 980 981 ASSERT(curproc != &p0); 982 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 983 "zpool-%s", spa->spa_name); 984 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 985 986 /* bind this thread to the requested psrset */ 987 if (zio_taskq_psrset_bind != PS_NONE) { 988 pool_lock(); 989 mutex_enter(&cpu_lock); 990 mutex_enter(&pidlock); 991 mutex_enter(&curproc->p_lock); 992 993 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 994 0, NULL, NULL) == 0) { 995 curthread->t_bind_pset = zio_taskq_psrset_bind; 996 } else { 997 cmn_err(CE_WARN, 998 "Couldn't bind process for zfs pool \"%s\" to " 999 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1000 } 1001 1002 mutex_exit(&curproc->p_lock); 1003 mutex_exit(&pidlock); 1004 mutex_exit(&cpu_lock); 1005 pool_unlock(); 1006 } 1007 1008 if (zio_taskq_sysdc) { 1009 sysdc_thread_enter(curthread, 100, 0); 1010 } 1011 1012 spa->spa_proc = curproc; 1013 spa->spa_did = curthread->t_did; 1014 1015 spa_create_zio_taskqs(spa); 1016 1017 mutex_enter(&spa->spa_proc_lock); 1018 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1019 1020 spa->spa_proc_state = SPA_PROC_ACTIVE; 1021 cv_broadcast(&spa->spa_proc_cv); 1022 1023 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1024 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1025 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1026 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1027 1028 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1029 spa->spa_proc_state = SPA_PROC_GONE; 1030 spa->spa_proc = &p0; 1031 cv_broadcast(&spa->spa_proc_cv); 1032 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1033 1034 mutex_enter(&curproc->p_lock); 1035 lwp_exit(); 1036 } 1037 #endif 1038 1039 /* 1040 * Activate an uninitialized pool. 1041 */ 1042 static void 1043 spa_activate(spa_t *spa, int mode) 1044 { 1045 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1046 1047 spa->spa_state = POOL_STATE_ACTIVE; 1048 spa->spa_mode = mode; 1049 1050 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1051 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1052 1053 /* Try to create a covering process */ 1054 mutex_enter(&spa->spa_proc_lock); 1055 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1056 ASSERT(spa->spa_proc == &p0); 1057 spa->spa_did = 0; 1058 1059 /* Only create a process if we're going to be around a while. */ 1060 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1061 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1062 NULL, 0) == 0) { 1063 spa->spa_proc_state = SPA_PROC_CREATED; 1064 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1065 cv_wait(&spa->spa_proc_cv, 1066 &spa->spa_proc_lock); 1067 } 1068 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1069 ASSERT(spa->spa_proc != &p0); 1070 ASSERT(spa->spa_did != 0); 1071 } else { 1072 #ifdef _KERNEL 1073 cmn_err(CE_WARN, 1074 "Couldn't create process for zfs pool \"%s\"\n", 1075 spa->spa_name); 1076 #endif 1077 } 1078 } 1079 mutex_exit(&spa->spa_proc_lock); 1080 1081 /* If we didn't create a process, we need to create our taskqs. */ 1082 if (spa->spa_proc == &p0) { 1083 spa_create_zio_taskqs(spa); 1084 } 1085 1086 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1087 offsetof(vdev_t, vdev_config_dirty_node)); 1088 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1089 offsetof(objset_t, os_evicting_node)); 1090 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1091 offsetof(vdev_t, vdev_state_dirty_node)); 1092 1093 txg_list_create(&spa->spa_vdev_txg_list, 1094 offsetof(struct vdev, vdev_txg_node)); 1095 1096 avl_create(&spa->spa_errlist_scrub, 1097 spa_error_entry_compare, sizeof (spa_error_entry_t), 1098 offsetof(spa_error_entry_t, se_avl)); 1099 avl_create(&spa->spa_errlist_last, 1100 spa_error_entry_compare, sizeof (spa_error_entry_t), 1101 offsetof(spa_error_entry_t, se_avl)); 1102 } 1103 1104 /* 1105 * Opposite of spa_activate(). 1106 */ 1107 static void 1108 spa_deactivate(spa_t *spa) 1109 { 1110 ASSERT(spa->spa_sync_on == B_FALSE); 1111 ASSERT(spa->spa_dsl_pool == NULL); 1112 ASSERT(spa->spa_root_vdev == NULL); 1113 ASSERT(spa->spa_async_zio_root == NULL); 1114 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1115 1116 spa_evicting_os_wait(spa); 1117 1118 txg_list_destroy(&spa->spa_vdev_txg_list); 1119 1120 list_destroy(&spa->spa_config_dirty_list); 1121 list_destroy(&spa->spa_evicting_os_list); 1122 list_destroy(&spa->spa_state_dirty_list); 1123 1124 for (int t = 0; t < ZIO_TYPES; t++) { 1125 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1126 spa_taskqs_fini(spa, t, q); 1127 } 1128 } 1129 1130 metaslab_class_destroy(spa->spa_normal_class); 1131 spa->spa_normal_class = NULL; 1132 1133 metaslab_class_destroy(spa->spa_log_class); 1134 spa->spa_log_class = NULL; 1135 1136 /* 1137 * If this was part of an import or the open otherwise failed, we may 1138 * still have errors left in the queues. Empty them just in case. 1139 */ 1140 spa_errlog_drain(spa); 1141 1142 avl_destroy(&spa->spa_errlist_scrub); 1143 avl_destroy(&spa->spa_errlist_last); 1144 1145 spa->spa_state = POOL_STATE_UNINITIALIZED; 1146 1147 mutex_enter(&spa->spa_proc_lock); 1148 if (spa->spa_proc_state != SPA_PROC_NONE) { 1149 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1150 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1151 cv_broadcast(&spa->spa_proc_cv); 1152 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1153 ASSERT(spa->spa_proc != &p0); 1154 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1155 } 1156 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1157 spa->spa_proc_state = SPA_PROC_NONE; 1158 } 1159 ASSERT(spa->spa_proc == &p0); 1160 mutex_exit(&spa->spa_proc_lock); 1161 1162 /* 1163 * We want to make sure spa_thread() has actually exited the ZFS 1164 * module, so that the module can't be unloaded out from underneath 1165 * it. 1166 */ 1167 if (spa->spa_did != 0) { 1168 thread_join(spa->spa_did); 1169 spa->spa_did = 0; 1170 } 1171 } 1172 1173 /* 1174 * Verify a pool configuration, and construct the vdev tree appropriately. This 1175 * will create all the necessary vdevs in the appropriate layout, with each vdev 1176 * in the CLOSED state. This will prep the pool before open/creation/import. 1177 * All vdev validation is done by the vdev_alloc() routine. 1178 */ 1179 static int 1180 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1181 uint_t id, int atype) 1182 { 1183 nvlist_t **child; 1184 uint_t children; 1185 int error; 1186 1187 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1188 return (error); 1189 1190 if ((*vdp)->vdev_ops->vdev_op_leaf) 1191 return (0); 1192 1193 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1194 &child, &children); 1195 1196 if (error == ENOENT) 1197 return (0); 1198 1199 if (error) { 1200 vdev_free(*vdp); 1201 *vdp = NULL; 1202 return (SET_ERROR(EINVAL)); 1203 } 1204 1205 for (int c = 0; c < children; c++) { 1206 vdev_t *vd; 1207 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1208 atype)) != 0) { 1209 vdev_free(*vdp); 1210 *vdp = NULL; 1211 return (error); 1212 } 1213 } 1214 1215 ASSERT(*vdp != NULL); 1216 1217 return (0); 1218 } 1219 1220 /* 1221 * Opposite of spa_load(). 1222 */ 1223 static void 1224 spa_unload(spa_t *spa) 1225 { 1226 int i; 1227 1228 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1229 1230 /* 1231 * Stop async tasks. 1232 */ 1233 spa_async_suspend(spa); 1234 1235 /* 1236 * Stop syncing. 1237 */ 1238 if (spa->spa_sync_on) { 1239 txg_sync_stop(spa->spa_dsl_pool); 1240 spa->spa_sync_on = B_FALSE; 1241 } 1242 1243 /* 1244 * Wait for any outstanding async I/O to complete. 1245 */ 1246 if (spa->spa_async_zio_root != NULL) { 1247 for (int i = 0; i < max_ncpus; i++) 1248 (void) zio_wait(spa->spa_async_zio_root[i]); 1249 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1250 spa->spa_async_zio_root = NULL; 1251 } 1252 1253 bpobj_close(&spa->spa_deferred_bpobj); 1254 1255 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1256 1257 /* 1258 * Close all vdevs. 1259 */ 1260 if (spa->spa_root_vdev) 1261 vdev_free(spa->spa_root_vdev); 1262 ASSERT(spa->spa_root_vdev == NULL); 1263 1264 /* 1265 * Close the dsl pool. 1266 */ 1267 if (spa->spa_dsl_pool) { 1268 dsl_pool_close(spa->spa_dsl_pool); 1269 spa->spa_dsl_pool = NULL; 1270 spa->spa_meta_objset = NULL; 1271 } 1272 1273 ddt_unload(spa); 1274 1275 /* 1276 * Drop and purge level 2 cache 1277 */ 1278 spa_l2cache_drop(spa); 1279 1280 for (i = 0; i < spa->spa_spares.sav_count; i++) 1281 vdev_free(spa->spa_spares.sav_vdevs[i]); 1282 if (spa->spa_spares.sav_vdevs) { 1283 kmem_free(spa->spa_spares.sav_vdevs, 1284 spa->spa_spares.sav_count * sizeof (void *)); 1285 spa->spa_spares.sav_vdevs = NULL; 1286 } 1287 if (spa->spa_spares.sav_config) { 1288 nvlist_free(spa->spa_spares.sav_config); 1289 spa->spa_spares.sav_config = NULL; 1290 } 1291 spa->spa_spares.sav_count = 0; 1292 1293 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1294 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1295 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1296 } 1297 if (spa->spa_l2cache.sav_vdevs) { 1298 kmem_free(spa->spa_l2cache.sav_vdevs, 1299 spa->spa_l2cache.sav_count * sizeof (void *)); 1300 spa->spa_l2cache.sav_vdevs = NULL; 1301 } 1302 if (spa->spa_l2cache.sav_config) { 1303 nvlist_free(spa->spa_l2cache.sav_config); 1304 spa->spa_l2cache.sav_config = NULL; 1305 } 1306 spa->spa_l2cache.sav_count = 0; 1307 1308 spa->spa_async_suspended = 0; 1309 1310 if (spa->spa_comment != NULL) { 1311 spa_strfree(spa->spa_comment); 1312 spa->spa_comment = NULL; 1313 } 1314 1315 spa_config_exit(spa, SCL_ALL, FTAG); 1316 } 1317 1318 /* 1319 * Load (or re-load) the current list of vdevs describing the active spares for 1320 * this pool. When this is called, we have some form of basic information in 1321 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1322 * then re-generate a more complete list including status information. 1323 */ 1324 static void 1325 spa_load_spares(spa_t *spa) 1326 { 1327 nvlist_t **spares; 1328 uint_t nspares; 1329 int i; 1330 vdev_t *vd, *tvd; 1331 1332 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1333 1334 /* 1335 * First, close and free any existing spare vdevs. 1336 */ 1337 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1338 vd = spa->spa_spares.sav_vdevs[i]; 1339 1340 /* Undo the call to spa_activate() below */ 1341 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1342 B_FALSE)) != NULL && tvd->vdev_isspare) 1343 spa_spare_remove(tvd); 1344 vdev_close(vd); 1345 vdev_free(vd); 1346 } 1347 1348 if (spa->spa_spares.sav_vdevs) 1349 kmem_free(spa->spa_spares.sav_vdevs, 1350 spa->spa_spares.sav_count * sizeof (void *)); 1351 1352 if (spa->spa_spares.sav_config == NULL) 1353 nspares = 0; 1354 else 1355 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1356 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1357 1358 spa->spa_spares.sav_count = (int)nspares; 1359 spa->spa_spares.sav_vdevs = NULL; 1360 1361 if (nspares == 0) 1362 return; 1363 1364 /* 1365 * Construct the array of vdevs, opening them to get status in the 1366 * process. For each spare, there is potentially two different vdev_t 1367 * structures associated with it: one in the list of spares (used only 1368 * for basic validation purposes) and one in the active vdev 1369 * configuration (if it's spared in). During this phase we open and 1370 * validate each vdev on the spare list. If the vdev also exists in the 1371 * active configuration, then we also mark this vdev as an active spare. 1372 */ 1373 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1374 KM_SLEEP); 1375 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1376 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1377 VDEV_ALLOC_SPARE) == 0); 1378 ASSERT(vd != NULL); 1379 1380 spa->spa_spares.sav_vdevs[i] = vd; 1381 1382 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1383 B_FALSE)) != NULL) { 1384 if (!tvd->vdev_isspare) 1385 spa_spare_add(tvd); 1386 1387 /* 1388 * We only mark the spare active if we were successfully 1389 * able to load the vdev. Otherwise, importing a pool 1390 * with a bad active spare would result in strange 1391 * behavior, because multiple pool would think the spare 1392 * is actively in use. 1393 * 1394 * There is a vulnerability here to an equally bizarre 1395 * circumstance, where a dead active spare is later 1396 * brought back to life (onlined or otherwise). Given 1397 * the rarity of this scenario, and the extra complexity 1398 * it adds, we ignore the possibility. 1399 */ 1400 if (!vdev_is_dead(tvd)) 1401 spa_spare_activate(tvd); 1402 } 1403 1404 vd->vdev_top = vd; 1405 vd->vdev_aux = &spa->spa_spares; 1406 1407 if (vdev_open(vd) != 0) 1408 continue; 1409 1410 if (vdev_validate_aux(vd) == 0) 1411 spa_spare_add(vd); 1412 } 1413 1414 /* 1415 * Recompute the stashed list of spares, with status information 1416 * this time. 1417 */ 1418 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1419 DATA_TYPE_NVLIST_ARRAY) == 0); 1420 1421 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1422 KM_SLEEP); 1423 for (i = 0; i < spa->spa_spares.sav_count; i++) 1424 spares[i] = vdev_config_generate(spa, 1425 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1426 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1427 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1428 for (i = 0; i < spa->spa_spares.sav_count; i++) 1429 nvlist_free(spares[i]); 1430 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1431 } 1432 1433 /* 1434 * Load (or re-load) the current list of vdevs describing the active l2cache for 1435 * this pool. When this is called, we have some form of basic information in 1436 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1437 * then re-generate a more complete list including status information. 1438 * Devices which are already active have their details maintained, and are 1439 * not re-opened. 1440 */ 1441 static void 1442 spa_load_l2cache(spa_t *spa) 1443 { 1444 nvlist_t **l2cache; 1445 uint_t nl2cache; 1446 int i, j, oldnvdevs; 1447 uint64_t guid; 1448 vdev_t *vd, **oldvdevs, **newvdevs; 1449 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1450 1451 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1452 1453 if (sav->sav_config != NULL) { 1454 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1455 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1456 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1457 } else { 1458 nl2cache = 0; 1459 newvdevs = NULL; 1460 } 1461 1462 oldvdevs = sav->sav_vdevs; 1463 oldnvdevs = sav->sav_count; 1464 sav->sav_vdevs = NULL; 1465 sav->sav_count = 0; 1466 1467 /* 1468 * Process new nvlist of vdevs. 1469 */ 1470 for (i = 0; i < nl2cache; i++) { 1471 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1472 &guid) == 0); 1473 1474 newvdevs[i] = NULL; 1475 for (j = 0; j < oldnvdevs; j++) { 1476 vd = oldvdevs[j]; 1477 if (vd != NULL && guid == vd->vdev_guid) { 1478 /* 1479 * Retain previous vdev for add/remove ops. 1480 */ 1481 newvdevs[i] = vd; 1482 oldvdevs[j] = NULL; 1483 break; 1484 } 1485 } 1486 1487 if (newvdevs[i] == NULL) { 1488 /* 1489 * Create new vdev 1490 */ 1491 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1492 VDEV_ALLOC_L2CACHE) == 0); 1493 ASSERT(vd != NULL); 1494 newvdevs[i] = vd; 1495 1496 /* 1497 * Commit this vdev as an l2cache device, 1498 * even if it fails to open. 1499 */ 1500 spa_l2cache_add(vd); 1501 1502 vd->vdev_top = vd; 1503 vd->vdev_aux = sav; 1504 1505 spa_l2cache_activate(vd); 1506 1507 if (vdev_open(vd) != 0) 1508 continue; 1509 1510 (void) vdev_validate_aux(vd); 1511 1512 if (!vdev_is_dead(vd)) 1513 l2arc_add_vdev(spa, vd); 1514 } 1515 } 1516 1517 /* 1518 * Purge vdevs that were dropped 1519 */ 1520 for (i = 0; i < oldnvdevs; i++) { 1521 uint64_t pool; 1522 1523 vd = oldvdevs[i]; 1524 if (vd != NULL) { 1525 ASSERT(vd->vdev_isl2cache); 1526 1527 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1528 pool != 0ULL && l2arc_vdev_present(vd)) 1529 l2arc_remove_vdev(vd); 1530 vdev_clear_stats(vd); 1531 vdev_free(vd); 1532 } 1533 } 1534 1535 if (oldvdevs) 1536 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1537 1538 if (sav->sav_config == NULL) 1539 goto out; 1540 1541 sav->sav_vdevs = newvdevs; 1542 sav->sav_count = (int)nl2cache; 1543 1544 /* 1545 * Recompute the stashed list of l2cache devices, with status 1546 * information this time. 1547 */ 1548 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1549 DATA_TYPE_NVLIST_ARRAY) == 0); 1550 1551 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1552 for (i = 0; i < sav->sav_count; i++) 1553 l2cache[i] = vdev_config_generate(spa, 1554 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1555 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1556 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1557 out: 1558 for (i = 0; i < sav->sav_count; i++) 1559 nvlist_free(l2cache[i]); 1560 if (sav->sav_count) 1561 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1562 } 1563 1564 static int 1565 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1566 { 1567 dmu_buf_t *db; 1568 char *packed = NULL; 1569 size_t nvsize = 0; 1570 int error; 1571 *value = NULL; 1572 1573 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1574 if (error != 0) 1575 return (error); 1576 1577 nvsize = *(uint64_t *)db->db_data; 1578 dmu_buf_rele(db, FTAG); 1579 1580 packed = kmem_alloc(nvsize, KM_SLEEP); 1581 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1582 DMU_READ_PREFETCH); 1583 if (error == 0) 1584 error = nvlist_unpack(packed, nvsize, value, 0); 1585 kmem_free(packed, nvsize); 1586 1587 return (error); 1588 } 1589 1590 /* 1591 * Checks to see if the given vdev could not be opened, in which case we post a 1592 * sysevent to notify the autoreplace code that the device has been removed. 1593 */ 1594 static void 1595 spa_check_removed(vdev_t *vd) 1596 { 1597 for (int c = 0; c < vd->vdev_children; c++) 1598 spa_check_removed(vd->vdev_child[c]); 1599 1600 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1601 !vd->vdev_ishole) { 1602 zfs_post_autoreplace(vd->vdev_spa, vd); 1603 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1604 } 1605 } 1606 1607 static void 1608 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd) 1609 { 1610 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children); 1611 1612 vd->vdev_top_zap = mvd->vdev_top_zap; 1613 vd->vdev_leaf_zap = mvd->vdev_leaf_zap; 1614 1615 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1616 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]); 1617 } 1618 } 1619 1620 /* 1621 * Validate the current config against the MOS config 1622 */ 1623 static boolean_t 1624 spa_config_valid(spa_t *spa, nvlist_t *config) 1625 { 1626 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1627 nvlist_t *nv; 1628 1629 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1630 1631 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1632 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1633 1634 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1635 1636 /* 1637 * If we're doing a normal import, then build up any additional 1638 * diagnostic information about missing devices in this config. 1639 * We'll pass this up to the user for further processing. 1640 */ 1641 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1642 nvlist_t **child, *nv; 1643 uint64_t idx = 0; 1644 1645 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1646 KM_SLEEP); 1647 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1648 1649 for (int c = 0; c < rvd->vdev_children; c++) { 1650 vdev_t *tvd = rvd->vdev_child[c]; 1651 vdev_t *mtvd = mrvd->vdev_child[c]; 1652 1653 if (tvd->vdev_ops == &vdev_missing_ops && 1654 mtvd->vdev_ops != &vdev_missing_ops && 1655 mtvd->vdev_islog) 1656 child[idx++] = vdev_config_generate(spa, mtvd, 1657 B_FALSE, 0); 1658 } 1659 1660 if (idx) { 1661 VERIFY(nvlist_add_nvlist_array(nv, 1662 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1663 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1664 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1665 1666 for (int i = 0; i < idx; i++) 1667 nvlist_free(child[i]); 1668 } 1669 nvlist_free(nv); 1670 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1671 } 1672 1673 /* 1674 * Compare the root vdev tree with the information we have 1675 * from the MOS config (mrvd). Check each top-level vdev 1676 * with the corresponding MOS config top-level (mtvd). 1677 */ 1678 for (int c = 0; c < rvd->vdev_children; c++) { 1679 vdev_t *tvd = rvd->vdev_child[c]; 1680 vdev_t *mtvd = mrvd->vdev_child[c]; 1681 1682 /* 1683 * Resolve any "missing" vdevs in the current configuration. 1684 * If we find that the MOS config has more accurate information 1685 * about the top-level vdev then use that vdev instead. 1686 */ 1687 if (tvd->vdev_ops == &vdev_missing_ops && 1688 mtvd->vdev_ops != &vdev_missing_ops) { 1689 1690 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1691 continue; 1692 1693 /* 1694 * Device specific actions. 1695 */ 1696 if (mtvd->vdev_islog) { 1697 spa_set_log_state(spa, SPA_LOG_CLEAR); 1698 } else { 1699 /* 1700 * XXX - once we have 'readonly' pool 1701 * support we should be able to handle 1702 * missing data devices by transitioning 1703 * the pool to readonly. 1704 */ 1705 continue; 1706 } 1707 1708 /* 1709 * Swap the missing vdev with the data we were 1710 * able to obtain from the MOS config. 1711 */ 1712 vdev_remove_child(rvd, tvd); 1713 vdev_remove_child(mrvd, mtvd); 1714 1715 vdev_add_child(rvd, mtvd); 1716 vdev_add_child(mrvd, tvd); 1717 1718 spa_config_exit(spa, SCL_ALL, FTAG); 1719 vdev_load(mtvd); 1720 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1721 1722 vdev_reopen(rvd); 1723 } else { 1724 if (mtvd->vdev_islog) { 1725 /* 1726 * Load the slog device's state from the MOS 1727 * config since it's possible that the label 1728 * does not contain the most up-to-date 1729 * information. 1730 */ 1731 vdev_load_log_state(tvd, mtvd); 1732 vdev_reopen(tvd); 1733 } 1734 1735 /* 1736 * Per-vdev ZAP info is stored exclusively in the MOS. 1737 */ 1738 spa_config_valid_zaps(tvd, mtvd); 1739 } 1740 } 1741 1742 vdev_free(mrvd); 1743 spa_config_exit(spa, SCL_ALL, FTAG); 1744 1745 /* 1746 * Ensure we were able to validate the config. 1747 */ 1748 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1749 } 1750 1751 /* 1752 * Check for missing log devices 1753 */ 1754 static boolean_t 1755 spa_check_logs(spa_t *spa) 1756 { 1757 boolean_t rv = B_FALSE; 1758 dsl_pool_t *dp = spa_get_dsl(spa); 1759 1760 switch (spa->spa_log_state) { 1761 case SPA_LOG_MISSING: 1762 /* need to recheck in case slog has been restored */ 1763 case SPA_LOG_UNKNOWN: 1764 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1765 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1766 if (rv) 1767 spa_set_log_state(spa, SPA_LOG_MISSING); 1768 break; 1769 } 1770 return (rv); 1771 } 1772 1773 static boolean_t 1774 spa_passivate_log(spa_t *spa) 1775 { 1776 vdev_t *rvd = spa->spa_root_vdev; 1777 boolean_t slog_found = B_FALSE; 1778 1779 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1780 1781 if (!spa_has_slogs(spa)) 1782 return (B_FALSE); 1783 1784 for (int c = 0; c < rvd->vdev_children; c++) { 1785 vdev_t *tvd = rvd->vdev_child[c]; 1786 metaslab_group_t *mg = tvd->vdev_mg; 1787 1788 if (tvd->vdev_islog) { 1789 metaslab_group_passivate(mg); 1790 slog_found = B_TRUE; 1791 } 1792 } 1793 1794 return (slog_found); 1795 } 1796 1797 static void 1798 spa_activate_log(spa_t *spa) 1799 { 1800 vdev_t *rvd = spa->spa_root_vdev; 1801 1802 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1803 1804 for (int c = 0; c < rvd->vdev_children; c++) { 1805 vdev_t *tvd = rvd->vdev_child[c]; 1806 metaslab_group_t *mg = tvd->vdev_mg; 1807 1808 if (tvd->vdev_islog) 1809 metaslab_group_activate(mg); 1810 } 1811 } 1812 1813 int 1814 spa_offline_log(spa_t *spa) 1815 { 1816 int error; 1817 1818 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1819 NULL, DS_FIND_CHILDREN); 1820 if (error == 0) { 1821 /* 1822 * We successfully offlined the log device, sync out the 1823 * current txg so that the "stubby" block can be removed 1824 * by zil_sync(). 1825 */ 1826 txg_wait_synced(spa->spa_dsl_pool, 0); 1827 } 1828 return (error); 1829 } 1830 1831 static void 1832 spa_aux_check_removed(spa_aux_vdev_t *sav) 1833 { 1834 for (int i = 0; i < sav->sav_count; i++) 1835 spa_check_removed(sav->sav_vdevs[i]); 1836 } 1837 1838 void 1839 spa_claim_notify(zio_t *zio) 1840 { 1841 spa_t *spa = zio->io_spa; 1842 1843 if (zio->io_error) 1844 return; 1845 1846 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1847 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1848 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1849 mutex_exit(&spa->spa_props_lock); 1850 } 1851 1852 typedef struct spa_load_error { 1853 uint64_t sle_meta_count; 1854 uint64_t sle_data_count; 1855 } spa_load_error_t; 1856 1857 static void 1858 spa_load_verify_done(zio_t *zio) 1859 { 1860 blkptr_t *bp = zio->io_bp; 1861 spa_load_error_t *sle = zio->io_private; 1862 dmu_object_type_t type = BP_GET_TYPE(bp); 1863 int error = zio->io_error; 1864 spa_t *spa = zio->io_spa; 1865 1866 if (error) { 1867 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1868 type != DMU_OT_INTENT_LOG) 1869 atomic_inc_64(&sle->sle_meta_count); 1870 else 1871 atomic_inc_64(&sle->sle_data_count); 1872 } 1873 zio_data_buf_free(zio->io_data, zio->io_size); 1874 1875 mutex_enter(&spa->spa_scrub_lock); 1876 spa->spa_scrub_inflight--; 1877 cv_broadcast(&spa->spa_scrub_io_cv); 1878 mutex_exit(&spa->spa_scrub_lock); 1879 } 1880 1881 /* 1882 * Maximum number of concurrent scrub i/os to create while verifying 1883 * a pool while importing it. 1884 */ 1885 int spa_load_verify_maxinflight = 10000; 1886 boolean_t spa_load_verify_metadata = B_TRUE; 1887 boolean_t spa_load_verify_data = B_TRUE; 1888 1889 /*ARGSUSED*/ 1890 static int 1891 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1892 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1893 { 1894 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1895 return (0); 1896 /* 1897 * Note: normally this routine will not be called if 1898 * spa_load_verify_metadata is not set. However, it may be useful 1899 * to manually set the flag after the traversal has begun. 1900 */ 1901 if (!spa_load_verify_metadata) 1902 return (0); 1903 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1904 return (0); 1905 1906 zio_t *rio = arg; 1907 size_t size = BP_GET_PSIZE(bp); 1908 void *data = zio_data_buf_alloc(size); 1909 1910 mutex_enter(&spa->spa_scrub_lock); 1911 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1912 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1913 spa->spa_scrub_inflight++; 1914 mutex_exit(&spa->spa_scrub_lock); 1915 1916 zio_nowait(zio_read(rio, spa, bp, data, size, 1917 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1918 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1919 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1920 return (0); 1921 } 1922 1923 /* ARGSUSED */ 1924 int 1925 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1926 { 1927 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 1928 return (SET_ERROR(ENAMETOOLONG)); 1929 1930 return (0); 1931 } 1932 1933 static int 1934 spa_load_verify(spa_t *spa) 1935 { 1936 zio_t *rio; 1937 spa_load_error_t sle = { 0 }; 1938 zpool_rewind_policy_t policy; 1939 boolean_t verify_ok = B_FALSE; 1940 int error = 0; 1941 1942 zpool_get_rewind_policy(spa->spa_config, &policy); 1943 1944 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1945 return (0); 1946 1947 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 1948 error = dmu_objset_find_dp(spa->spa_dsl_pool, 1949 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 1950 DS_FIND_CHILDREN); 1951 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 1952 if (error != 0) 1953 return (error); 1954 1955 rio = zio_root(spa, NULL, &sle, 1956 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1957 1958 if (spa_load_verify_metadata) { 1959 error = traverse_pool(spa, spa->spa_verify_min_txg, 1960 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1961 spa_load_verify_cb, rio); 1962 } 1963 1964 (void) zio_wait(rio); 1965 1966 spa->spa_load_meta_errors = sle.sle_meta_count; 1967 spa->spa_load_data_errors = sle.sle_data_count; 1968 1969 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1970 sle.sle_data_count <= policy.zrp_maxdata) { 1971 int64_t loss = 0; 1972 1973 verify_ok = B_TRUE; 1974 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1975 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1976 1977 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1978 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1979 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1980 VERIFY(nvlist_add_int64(spa->spa_load_info, 1981 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1982 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1983 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1984 } else { 1985 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1986 } 1987 1988 if (error) { 1989 if (error != ENXIO && error != EIO) 1990 error = SET_ERROR(EIO); 1991 return (error); 1992 } 1993 1994 return (verify_ok ? 0 : EIO); 1995 } 1996 1997 /* 1998 * Find a value in the pool props object. 1999 */ 2000 static void 2001 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2002 { 2003 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2004 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2005 } 2006 2007 /* 2008 * Find a value in the pool directory object. 2009 */ 2010 static int 2011 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 2012 { 2013 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2014 name, sizeof (uint64_t), 1, val)); 2015 } 2016 2017 static int 2018 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2019 { 2020 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2021 return (err); 2022 } 2023 2024 /* 2025 * Fix up config after a partly-completed split. This is done with the 2026 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2027 * pool have that entry in their config, but only the splitting one contains 2028 * a list of all the guids of the vdevs that are being split off. 2029 * 2030 * This function determines what to do with that list: either rejoin 2031 * all the disks to the pool, or complete the splitting process. To attempt 2032 * the rejoin, each disk that is offlined is marked online again, and 2033 * we do a reopen() call. If the vdev label for every disk that was 2034 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2035 * then we call vdev_split() on each disk, and complete the split. 2036 * 2037 * Otherwise we leave the config alone, with all the vdevs in place in 2038 * the original pool. 2039 */ 2040 static void 2041 spa_try_repair(spa_t *spa, nvlist_t *config) 2042 { 2043 uint_t extracted; 2044 uint64_t *glist; 2045 uint_t i, gcount; 2046 nvlist_t *nvl; 2047 vdev_t **vd; 2048 boolean_t attempt_reopen; 2049 2050 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2051 return; 2052 2053 /* check that the config is complete */ 2054 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2055 &glist, &gcount) != 0) 2056 return; 2057 2058 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2059 2060 /* attempt to online all the vdevs & validate */ 2061 attempt_reopen = B_TRUE; 2062 for (i = 0; i < gcount; i++) { 2063 if (glist[i] == 0) /* vdev is hole */ 2064 continue; 2065 2066 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2067 if (vd[i] == NULL) { 2068 /* 2069 * Don't bother attempting to reopen the disks; 2070 * just do the split. 2071 */ 2072 attempt_reopen = B_FALSE; 2073 } else { 2074 /* attempt to re-online it */ 2075 vd[i]->vdev_offline = B_FALSE; 2076 } 2077 } 2078 2079 if (attempt_reopen) { 2080 vdev_reopen(spa->spa_root_vdev); 2081 2082 /* check each device to see what state it's in */ 2083 for (extracted = 0, i = 0; i < gcount; i++) { 2084 if (vd[i] != NULL && 2085 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2086 break; 2087 ++extracted; 2088 } 2089 } 2090 2091 /* 2092 * If every disk has been moved to the new pool, or if we never 2093 * even attempted to look at them, then we split them off for 2094 * good. 2095 */ 2096 if (!attempt_reopen || gcount == extracted) { 2097 for (i = 0; i < gcount; i++) 2098 if (vd[i] != NULL) 2099 vdev_split(vd[i]); 2100 vdev_reopen(spa->spa_root_vdev); 2101 } 2102 2103 kmem_free(vd, gcount * sizeof (vdev_t *)); 2104 } 2105 2106 static int 2107 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2108 boolean_t mosconfig) 2109 { 2110 nvlist_t *config = spa->spa_config; 2111 char *ereport = FM_EREPORT_ZFS_POOL; 2112 char *comment; 2113 int error; 2114 uint64_t pool_guid; 2115 nvlist_t *nvl; 2116 2117 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2118 return (SET_ERROR(EINVAL)); 2119 2120 ASSERT(spa->spa_comment == NULL); 2121 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2122 spa->spa_comment = spa_strdup(comment); 2123 2124 /* 2125 * Versioning wasn't explicitly added to the label until later, so if 2126 * it's not present treat it as the initial version. 2127 */ 2128 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2129 &spa->spa_ubsync.ub_version) != 0) 2130 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2131 2132 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2133 &spa->spa_config_txg); 2134 2135 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2136 spa_guid_exists(pool_guid, 0)) { 2137 error = SET_ERROR(EEXIST); 2138 } else { 2139 spa->spa_config_guid = pool_guid; 2140 2141 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2142 &nvl) == 0) { 2143 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2144 KM_SLEEP) == 0); 2145 } 2146 2147 nvlist_free(spa->spa_load_info); 2148 spa->spa_load_info = fnvlist_alloc(); 2149 2150 gethrestime(&spa->spa_loaded_ts); 2151 error = spa_load_impl(spa, pool_guid, config, state, type, 2152 mosconfig, &ereport); 2153 } 2154 2155 /* 2156 * Don't count references from objsets that are already closed 2157 * and are making their way through the eviction process. 2158 */ 2159 spa_evicting_os_wait(spa); 2160 spa->spa_minref = refcount_count(&spa->spa_refcount); 2161 if (error) { 2162 if (error != EEXIST) { 2163 spa->spa_loaded_ts.tv_sec = 0; 2164 spa->spa_loaded_ts.tv_nsec = 0; 2165 } 2166 if (error != EBADF) { 2167 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2168 } 2169 } 2170 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2171 spa->spa_ena = 0; 2172 2173 return (error); 2174 } 2175 2176 /* 2177 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2178 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2179 * spa's per-vdev ZAP list. 2180 */ 2181 static uint64_t 2182 vdev_count_verify_zaps(vdev_t *vd) 2183 { 2184 spa_t *spa = vd->vdev_spa; 2185 uint64_t total = 0; 2186 if (vd->vdev_top_zap != 0) { 2187 total++; 2188 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2189 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2190 } 2191 if (vd->vdev_leaf_zap != 0) { 2192 total++; 2193 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2194 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2195 } 2196 2197 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2198 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2199 } 2200 2201 return (total); 2202 } 2203 2204 /* 2205 * Load an existing storage pool, using the pool's builtin spa_config as a 2206 * source of configuration information. 2207 */ 2208 static int 2209 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2210 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2211 char **ereport) 2212 { 2213 int error = 0; 2214 nvlist_t *nvroot = NULL; 2215 nvlist_t *label; 2216 vdev_t *rvd; 2217 uberblock_t *ub = &spa->spa_uberblock; 2218 uint64_t children, config_cache_txg = spa->spa_config_txg; 2219 int orig_mode = spa->spa_mode; 2220 int parse; 2221 uint64_t obj; 2222 boolean_t missing_feat_write = B_FALSE; 2223 2224 /* 2225 * If this is an untrusted config, access the pool in read-only mode. 2226 * This prevents things like resilvering recently removed devices. 2227 */ 2228 if (!mosconfig) 2229 spa->spa_mode = FREAD; 2230 2231 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2232 2233 spa->spa_load_state = state; 2234 2235 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2236 return (SET_ERROR(EINVAL)); 2237 2238 parse = (type == SPA_IMPORT_EXISTING ? 2239 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2240 2241 /* 2242 * Create "The Godfather" zio to hold all async IOs 2243 */ 2244 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2245 KM_SLEEP); 2246 for (int i = 0; i < max_ncpus; i++) { 2247 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2248 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2249 ZIO_FLAG_GODFATHER); 2250 } 2251 2252 /* 2253 * Parse the configuration into a vdev tree. We explicitly set the 2254 * value that will be returned by spa_version() since parsing the 2255 * configuration requires knowing the version number. 2256 */ 2257 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2258 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2259 spa_config_exit(spa, SCL_ALL, FTAG); 2260 2261 if (error != 0) 2262 return (error); 2263 2264 ASSERT(spa->spa_root_vdev == rvd); 2265 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2266 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2267 2268 if (type != SPA_IMPORT_ASSEMBLE) { 2269 ASSERT(spa_guid(spa) == pool_guid); 2270 } 2271 2272 /* 2273 * Try to open all vdevs, loading each label in the process. 2274 */ 2275 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2276 error = vdev_open(rvd); 2277 spa_config_exit(spa, SCL_ALL, FTAG); 2278 if (error != 0) 2279 return (error); 2280 2281 /* 2282 * We need to validate the vdev labels against the configuration that 2283 * we have in hand, which is dependent on the setting of mosconfig. If 2284 * mosconfig is true then we're validating the vdev labels based on 2285 * that config. Otherwise, we're validating against the cached config 2286 * (zpool.cache) that was read when we loaded the zfs module, and then 2287 * later we will recursively call spa_load() and validate against 2288 * the vdev config. 2289 * 2290 * If we're assembling a new pool that's been split off from an 2291 * existing pool, the labels haven't yet been updated so we skip 2292 * validation for now. 2293 */ 2294 if (type != SPA_IMPORT_ASSEMBLE) { 2295 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2296 error = vdev_validate(rvd, mosconfig); 2297 spa_config_exit(spa, SCL_ALL, FTAG); 2298 2299 if (error != 0) 2300 return (error); 2301 2302 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2303 return (SET_ERROR(ENXIO)); 2304 } 2305 2306 /* 2307 * Find the best uberblock. 2308 */ 2309 vdev_uberblock_load(rvd, ub, &label); 2310 2311 /* 2312 * If we weren't able to find a single valid uberblock, return failure. 2313 */ 2314 if (ub->ub_txg == 0) { 2315 nvlist_free(label); 2316 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2317 } 2318 2319 /* 2320 * If the pool has an unsupported version we can't open it. 2321 */ 2322 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2323 nvlist_free(label); 2324 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2325 } 2326 2327 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2328 nvlist_t *features; 2329 2330 /* 2331 * If we weren't able to find what's necessary for reading the 2332 * MOS in the label, return failure. 2333 */ 2334 if (label == NULL || nvlist_lookup_nvlist(label, 2335 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2336 nvlist_free(label); 2337 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2338 ENXIO)); 2339 } 2340 2341 /* 2342 * Update our in-core representation with the definitive values 2343 * from the label. 2344 */ 2345 nvlist_free(spa->spa_label_features); 2346 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2347 } 2348 2349 nvlist_free(label); 2350 2351 /* 2352 * Look through entries in the label nvlist's features_for_read. If 2353 * there is a feature listed there which we don't understand then we 2354 * cannot open a pool. 2355 */ 2356 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2357 nvlist_t *unsup_feat; 2358 2359 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2360 0); 2361 2362 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2363 NULL); nvp != NULL; 2364 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2365 if (!zfeature_is_supported(nvpair_name(nvp))) { 2366 VERIFY(nvlist_add_string(unsup_feat, 2367 nvpair_name(nvp), "") == 0); 2368 } 2369 } 2370 2371 if (!nvlist_empty(unsup_feat)) { 2372 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2373 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2374 nvlist_free(unsup_feat); 2375 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2376 ENOTSUP)); 2377 } 2378 2379 nvlist_free(unsup_feat); 2380 } 2381 2382 /* 2383 * If the vdev guid sum doesn't match the uberblock, we have an 2384 * incomplete configuration. We first check to see if the pool 2385 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2386 * If it is, defer the vdev_guid_sum check till later so we 2387 * can handle missing vdevs. 2388 */ 2389 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2390 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2391 rvd->vdev_guid_sum != ub->ub_guid_sum) 2392 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2393 2394 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2395 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2396 spa_try_repair(spa, config); 2397 spa_config_exit(spa, SCL_ALL, FTAG); 2398 nvlist_free(spa->spa_config_splitting); 2399 spa->spa_config_splitting = NULL; 2400 } 2401 2402 /* 2403 * Initialize internal SPA structures. 2404 */ 2405 spa->spa_state = POOL_STATE_ACTIVE; 2406 spa->spa_ubsync = spa->spa_uberblock; 2407 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2408 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2409 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2410 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2411 spa->spa_claim_max_txg = spa->spa_first_txg; 2412 spa->spa_prev_software_version = ub->ub_software_version; 2413 2414 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2415 if (error) 2416 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2417 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2418 2419 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2420 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2421 2422 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2423 boolean_t missing_feat_read = B_FALSE; 2424 nvlist_t *unsup_feat, *enabled_feat; 2425 2426 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2427 &spa->spa_feat_for_read_obj) != 0) { 2428 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2429 } 2430 2431 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2432 &spa->spa_feat_for_write_obj) != 0) { 2433 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2434 } 2435 2436 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2437 &spa->spa_feat_desc_obj) != 0) { 2438 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2439 } 2440 2441 enabled_feat = fnvlist_alloc(); 2442 unsup_feat = fnvlist_alloc(); 2443 2444 if (!spa_features_check(spa, B_FALSE, 2445 unsup_feat, enabled_feat)) 2446 missing_feat_read = B_TRUE; 2447 2448 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2449 if (!spa_features_check(spa, B_TRUE, 2450 unsup_feat, enabled_feat)) { 2451 missing_feat_write = B_TRUE; 2452 } 2453 } 2454 2455 fnvlist_add_nvlist(spa->spa_load_info, 2456 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2457 2458 if (!nvlist_empty(unsup_feat)) { 2459 fnvlist_add_nvlist(spa->spa_load_info, 2460 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2461 } 2462 2463 fnvlist_free(enabled_feat); 2464 fnvlist_free(unsup_feat); 2465 2466 if (!missing_feat_read) { 2467 fnvlist_add_boolean(spa->spa_load_info, 2468 ZPOOL_CONFIG_CAN_RDONLY); 2469 } 2470 2471 /* 2472 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2473 * twofold: to determine whether the pool is available for 2474 * import in read-write mode and (if it is not) whether the 2475 * pool is available for import in read-only mode. If the pool 2476 * is available for import in read-write mode, it is displayed 2477 * as available in userland; if it is not available for import 2478 * in read-only mode, it is displayed as unavailable in 2479 * userland. If the pool is available for import in read-only 2480 * mode but not read-write mode, it is displayed as unavailable 2481 * in userland with a special note that the pool is actually 2482 * available for open in read-only mode. 2483 * 2484 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2485 * missing a feature for write, we must first determine whether 2486 * the pool can be opened read-only before returning to 2487 * userland in order to know whether to display the 2488 * abovementioned note. 2489 */ 2490 if (missing_feat_read || (missing_feat_write && 2491 spa_writeable(spa))) { 2492 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2493 ENOTSUP)); 2494 } 2495 2496 /* 2497 * Load refcounts for ZFS features from disk into an in-memory 2498 * cache during SPA initialization. 2499 */ 2500 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2501 uint64_t refcount; 2502 2503 error = feature_get_refcount_from_disk(spa, 2504 &spa_feature_table[i], &refcount); 2505 if (error == 0) { 2506 spa->spa_feat_refcount_cache[i] = refcount; 2507 } else if (error == ENOTSUP) { 2508 spa->spa_feat_refcount_cache[i] = 2509 SPA_FEATURE_DISABLED; 2510 } else { 2511 return (spa_vdev_err(rvd, 2512 VDEV_AUX_CORRUPT_DATA, EIO)); 2513 } 2514 } 2515 } 2516 2517 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2518 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2519 &spa->spa_feat_enabled_txg_obj) != 0) 2520 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2521 } 2522 2523 spa->spa_is_initializing = B_TRUE; 2524 error = dsl_pool_open(spa->spa_dsl_pool); 2525 spa->spa_is_initializing = B_FALSE; 2526 if (error != 0) 2527 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2528 2529 if (!mosconfig) { 2530 uint64_t hostid; 2531 nvlist_t *policy = NULL, *nvconfig; 2532 2533 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2534 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2535 2536 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2537 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2538 char *hostname; 2539 unsigned long myhostid = 0; 2540 2541 VERIFY(nvlist_lookup_string(nvconfig, 2542 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2543 2544 #ifdef _KERNEL 2545 myhostid = zone_get_hostid(NULL); 2546 #else /* _KERNEL */ 2547 /* 2548 * We're emulating the system's hostid in userland, so 2549 * we can't use zone_get_hostid(). 2550 */ 2551 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2552 #endif /* _KERNEL */ 2553 if (hostid != 0 && myhostid != 0 && 2554 hostid != myhostid) { 2555 nvlist_free(nvconfig); 2556 cmn_err(CE_WARN, "pool '%s' could not be " 2557 "loaded as it was last accessed by " 2558 "another system (host: %s hostid: 0x%lx). " 2559 "See: http://illumos.org/msg/ZFS-8000-EY", 2560 spa_name(spa), hostname, 2561 (unsigned long)hostid); 2562 return (SET_ERROR(EBADF)); 2563 } 2564 } 2565 if (nvlist_lookup_nvlist(spa->spa_config, 2566 ZPOOL_REWIND_POLICY, &policy) == 0) 2567 VERIFY(nvlist_add_nvlist(nvconfig, 2568 ZPOOL_REWIND_POLICY, policy) == 0); 2569 2570 spa_config_set(spa, nvconfig); 2571 spa_unload(spa); 2572 spa_deactivate(spa); 2573 spa_activate(spa, orig_mode); 2574 2575 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2576 } 2577 2578 /* Grab the secret checksum salt from the MOS. */ 2579 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2580 DMU_POOL_CHECKSUM_SALT, 1, 2581 sizeof (spa->spa_cksum_salt.zcs_bytes), 2582 spa->spa_cksum_salt.zcs_bytes); 2583 if (error == ENOENT) { 2584 /* Generate a new salt for subsequent use */ 2585 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 2586 sizeof (spa->spa_cksum_salt.zcs_bytes)); 2587 } else if (error != 0) { 2588 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2589 } 2590 2591 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2592 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2593 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2594 if (error != 0) 2595 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2596 2597 /* 2598 * Load the bit that tells us to use the new accounting function 2599 * (raid-z deflation). If we have an older pool, this will not 2600 * be present. 2601 */ 2602 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2603 if (error != 0 && error != ENOENT) 2604 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2605 2606 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2607 &spa->spa_creation_version); 2608 if (error != 0 && error != ENOENT) 2609 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2610 2611 /* 2612 * Load the persistent error log. If we have an older pool, this will 2613 * not be present. 2614 */ 2615 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2616 if (error != 0 && error != ENOENT) 2617 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2618 2619 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2620 &spa->spa_errlog_scrub); 2621 if (error != 0 && error != ENOENT) 2622 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2623 2624 /* 2625 * Load the history object. If we have an older pool, this 2626 * will not be present. 2627 */ 2628 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2629 if (error != 0 && error != ENOENT) 2630 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2631 2632 /* 2633 * Load the per-vdev ZAP map. If we have an older pool, this will not 2634 * be present; in this case, defer its creation to a later time to 2635 * avoid dirtying the MOS this early / out of sync context. See 2636 * spa_sync_config_object. 2637 */ 2638 2639 /* The sentinel is only available in the MOS config. */ 2640 nvlist_t *mos_config; 2641 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) 2642 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2643 2644 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 2645 &spa->spa_all_vdev_zaps); 2646 2647 if (error != ENOENT && error != 0) { 2648 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2649 } else if (error == 0 && !nvlist_exists(mos_config, 2650 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 2651 /* 2652 * An older version of ZFS overwrote the sentinel value, so 2653 * we have orphaned per-vdev ZAPs in the MOS. Defer their 2654 * destruction to later; see spa_sync_config_object. 2655 */ 2656 spa->spa_avz_action = AVZ_ACTION_DESTROY; 2657 /* 2658 * We're assuming that no vdevs have had their ZAPs created 2659 * before this. Better be sure of it. 2660 */ 2661 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 2662 } 2663 nvlist_free(mos_config); 2664 2665 /* 2666 * If we're assembling the pool from the split-off vdevs of 2667 * an existing pool, we don't want to attach the spares & cache 2668 * devices. 2669 */ 2670 2671 /* 2672 * Load any hot spares for this pool. 2673 */ 2674 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2675 if (error != 0 && error != ENOENT) 2676 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2677 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2678 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2679 if (load_nvlist(spa, spa->spa_spares.sav_object, 2680 &spa->spa_spares.sav_config) != 0) 2681 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2682 2683 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2684 spa_load_spares(spa); 2685 spa_config_exit(spa, SCL_ALL, FTAG); 2686 } else if (error == 0) { 2687 spa->spa_spares.sav_sync = B_TRUE; 2688 } 2689 2690 /* 2691 * Load any level 2 ARC devices for this pool. 2692 */ 2693 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2694 &spa->spa_l2cache.sav_object); 2695 if (error != 0 && error != ENOENT) 2696 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2697 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2698 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2699 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2700 &spa->spa_l2cache.sav_config) != 0) 2701 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2702 2703 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2704 spa_load_l2cache(spa); 2705 spa_config_exit(spa, SCL_ALL, FTAG); 2706 } else if (error == 0) { 2707 spa->spa_l2cache.sav_sync = B_TRUE; 2708 } 2709 2710 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2711 2712 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2713 if (error && error != ENOENT) 2714 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2715 2716 if (error == 0) { 2717 uint64_t autoreplace; 2718 2719 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2720 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2721 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2722 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2723 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2724 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2725 &spa->spa_dedup_ditto); 2726 2727 spa->spa_autoreplace = (autoreplace != 0); 2728 } 2729 2730 /* 2731 * If the 'autoreplace' property is set, then post a resource notifying 2732 * the ZFS DE that it should not issue any faults for unopenable 2733 * devices. We also iterate over the vdevs, and post a sysevent for any 2734 * unopenable vdevs so that the normal autoreplace handler can take 2735 * over. 2736 */ 2737 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2738 spa_check_removed(spa->spa_root_vdev); 2739 /* 2740 * For the import case, this is done in spa_import(), because 2741 * at this point we're using the spare definitions from 2742 * the MOS config, not necessarily from the userland config. 2743 */ 2744 if (state != SPA_LOAD_IMPORT) { 2745 spa_aux_check_removed(&spa->spa_spares); 2746 spa_aux_check_removed(&spa->spa_l2cache); 2747 } 2748 } 2749 2750 /* 2751 * Load the vdev state for all toplevel vdevs. 2752 */ 2753 vdev_load(rvd); 2754 2755 /* 2756 * Propagate the leaf DTLs we just loaded all the way up the tree. 2757 */ 2758 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2759 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2760 spa_config_exit(spa, SCL_ALL, FTAG); 2761 2762 /* 2763 * Load the DDTs (dedup tables). 2764 */ 2765 error = ddt_load(spa); 2766 if (error != 0) 2767 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2768 2769 spa_update_dspace(spa); 2770 2771 /* 2772 * Validate the config, using the MOS config to fill in any 2773 * information which might be missing. If we fail to validate 2774 * the config then declare the pool unfit for use. If we're 2775 * assembling a pool from a split, the log is not transferred 2776 * over. 2777 */ 2778 if (type != SPA_IMPORT_ASSEMBLE) { 2779 nvlist_t *nvconfig; 2780 2781 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2782 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2783 2784 if (!spa_config_valid(spa, nvconfig)) { 2785 nvlist_free(nvconfig); 2786 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2787 ENXIO)); 2788 } 2789 nvlist_free(nvconfig); 2790 2791 /* 2792 * Now that we've validated the config, check the state of the 2793 * root vdev. If it can't be opened, it indicates one or 2794 * more toplevel vdevs are faulted. 2795 */ 2796 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2797 return (SET_ERROR(ENXIO)); 2798 2799 if (spa_writeable(spa) && spa_check_logs(spa)) { 2800 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2801 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2802 } 2803 } 2804 2805 if (missing_feat_write) { 2806 ASSERT(state == SPA_LOAD_TRYIMPORT); 2807 2808 /* 2809 * At this point, we know that we can open the pool in 2810 * read-only mode but not read-write mode. We now have enough 2811 * information and can return to userland. 2812 */ 2813 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2814 } 2815 2816 /* 2817 * We've successfully opened the pool, verify that we're ready 2818 * to start pushing transactions. 2819 */ 2820 if (state != SPA_LOAD_TRYIMPORT) { 2821 if (error = spa_load_verify(spa)) 2822 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2823 error)); 2824 } 2825 2826 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2827 spa->spa_load_max_txg == UINT64_MAX)) { 2828 dmu_tx_t *tx; 2829 int need_update = B_FALSE; 2830 dsl_pool_t *dp = spa_get_dsl(spa); 2831 2832 ASSERT(state != SPA_LOAD_TRYIMPORT); 2833 2834 /* 2835 * Claim log blocks that haven't been committed yet. 2836 * This must all happen in a single txg. 2837 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2838 * invoked from zil_claim_log_block()'s i/o done callback. 2839 * Price of rollback is that we abandon the log. 2840 */ 2841 spa->spa_claiming = B_TRUE; 2842 2843 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 2844 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2845 zil_claim, tx, DS_FIND_CHILDREN); 2846 dmu_tx_commit(tx); 2847 2848 spa->spa_claiming = B_FALSE; 2849 2850 spa_set_log_state(spa, SPA_LOG_GOOD); 2851 spa->spa_sync_on = B_TRUE; 2852 txg_sync_start(spa->spa_dsl_pool); 2853 2854 /* 2855 * Wait for all claims to sync. We sync up to the highest 2856 * claimed log block birth time so that claimed log blocks 2857 * don't appear to be from the future. spa_claim_max_txg 2858 * will have been set for us by either zil_check_log_chain() 2859 * (invoked from spa_check_logs()) or zil_claim() above. 2860 */ 2861 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2862 2863 /* 2864 * If the config cache is stale, or we have uninitialized 2865 * metaslabs (see spa_vdev_add()), then update the config. 2866 * 2867 * If this is a verbatim import, trust the current 2868 * in-core spa_config and update the disk labels. 2869 */ 2870 if (config_cache_txg != spa->spa_config_txg || 2871 state == SPA_LOAD_IMPORT || 2872 state == SPA_LOAD_RECOVER || 2873 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2874 need_update = B_TRUE; 2875 2876 for (int c = 0; c < rvd->vdev_children; c++) 2877 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2878 need_update = B_TRUE; 2879 2880 /* 2881 * Update the config cache asychronously in case we're the 2882 * root pool, in which case the config cache isn't writable yet. 2883 */ 2884 if (need_update) 2885 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2886 2887 /* 2888 * Check all DTLs to see if anything needs resilvering. 2889 */ 2890 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2891 vdev_resilver_needed(rvd, NULL, NULL)) 2892 spa_async_request(spa, SPA_ASYNC_RESILVER); 2893 2894 /* 2895 * Log the fact that we booted up (so that we can detect if 2896 * we rebooted in the middle of an operation). 2897 */ 2898 spa_history_log_version(spa, "open"); 2899 2900 /* 2901 * Delete any inconsistent datasets. 2902 */ 2903 (void) dmu_objset_find(spa_name(spa), 2904 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2905 2906 /* 2907 * Clean up any stale temporary dataset userrefs. 2908 */ 2909 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2910 } 2911 2912 return (0); 2913 } 2914 2915 static int 2916 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2917 { 2918 int mode = spa->spa_mode; 2919 2920 spa_unload(spa); 2921 spa_deactivate(spa); 2922 2923 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2924 2925 spa_activate(spa, mode); 2926 spa_async_suspend(spa); 2927 2928 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2929 } 2930 2931 /* 2932 * If spa_load() fails this function will try loading prior txg's. If 2933 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2934 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2935 * function will not rewind the pool and will return the same error as 2936 * spa_load(). 2937 */ 2938 static int 2939 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2940 uint64_t max_request, int rewind_flags) 2941 { 2942 nvlist_t *loadinfo = NULL; 2943 nvlist_t *config = NULL; 2944 int load_error, rewind_error; 2945 uint64_t safe_rewind_txg; 2946 uint64_t min_txg; 2947 2948 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2949 spa->spa_load_max_txg = spa->spa_load_txg; 2950 spa_set_log_state(spa, SPA_LOG_CLEAR); 2951 } else { 2952 spa->spa_load_max_txg = max_request; 2953 if (max_request != UINT64_MAX) 2954 spa->spa_extreme_rewind = B_TRUE; 2955 } 2956 2957 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2958 mosconfig); 2959 if (load_error == 0) 2960 return (0); 2961 2962 if (spa->spa_root_vdev != NULL) 2963 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2964 2965 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2966 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2967 2968 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2969 nvlist_free(config); 2970 return (load_error); 2971 } 2972 2973 if (state == SPA_LOAD_RECOVER) { 2974 /* Price of rolling back is discarding txgs, including log */ 2975 spa_set_log_state(spa, SPA_LOG_CLEAR); 2976 } else { 2977 /* 2978 * If we aren't rolling back save the load info from our first 2979 * import attempt so that we can restore it after attempting 2980 * to rewind. 2981 */ 2982 loadinfo = spa->spa_load_info; 2983 spa->spa_load_info = fnvlist_alloc(); 2984 } 2985 2986 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2987 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2988 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2989 TXG_INITIAL : safe_rewind_txg; 2990 2991 /* 2992 * Continue as long as we're finding errors, we're still within 2993 * the acceptable rewind range, and we're still finding uberblocks 2994 */ 2995 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2996 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2997 if (spa->spa_load_max_txg < safe_rewind_txg) 2998 spa->spa_extreme_rewind = B_TRUE; 2999 rewind_error = spa_load_retry(spa, state, mosconfig); 3000 } 3001 3002 spa->spa_extreme_rewind = B_FALSE; 3003 spa->spa_load_max_txg = UINT64_MAX; 3004 3005 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 3006 spa_config_set(spa, config); 3007 3008 if (state == SPA_LOAD_RECOVER) { 3009 ASSERT3P(loadinfo, ==, NULL); 3010 return (rewind_error); 3011 } else { 3012 /* Store the rewind info as part of the initial load info */ 3013 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 3014 spa->spa_load_info); 3015 3016 /* Restore the initial load info */ 3017 fnvlist_free(spa->spa_load_info); 3018 spa->spa_load_info = loadinfo; 3019 3020 return (load_error); 3021 } 3022 } 3023 3024 /* 3025 * Pool Open/Import 3026 * 3027 * The import case is identical to an open except that the configuration is sent 3028 * down from userland, instead of grabbed from the configuration cache. For the 3029 * case of an open, the pool configuration will exist in the 3030 * POOL_STATE_UNINITIALIZED state. 3031 * 3032 * The stats information (gen/count/ustats) is used to gather vdev statistics at 3033 * the same time open the pool, without having to keep around the spa_t in some 3034 * ambiguous state. 3035 */ 3036 static int 3037 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 3038 nvlist_t **config) 3039 { 3040 spa_t *spa; 3041 spa_load_state_t state = SPA_LOAD_OPEN; 3042 int error; 3043 int locked = B_FALSE; 3044 3045 *spapp = NULL; 3046 3047 /* 3048 * As disgusting as this is, we need to support recursive calls to this 3049 * function because dsl_dir_open() is called during spa_load(), and ends 3050 * up calling spa_open() again. The real fix is to figure out how to 3051 * avoid dsl_dir_open() calling this in the first place. 3052 */ 3053 if (mutex_owner(&spa_namespace_lock) != curthread) { 3054 mutex_enter(&spa_namespace_lock); 3055 locked = B_TRUE; 3056 } 3057 3058 if ((spa = spa_lookup(pool)) == NULL) { 3059 if (locked) 3060 mutex_exit(&spa_namespace_lock); 3061 return (SET_ERROR(ENOENT)); 3062 } 3063 3064 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 3065 zpool_rewind_policy_t policy; 3066 3067 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 3068 &policy); 3069 if (policy.zrp_request & ZPOOL_DO_REWIND) 3070 state = SPA_LOAD_RECOVER; 3071 3072 spa_activate(spa, spa_mode_global); 3073 3074 if (state != SPA_LOAD_RECOVER) 3075 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3076 3077 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 3078 policy.zrp_request); 3079 3080 if (error == EBADF) { 3081 /* 3082 * If vdev_validate() returns failure (indicated by 3083 * EBADF), it indicates that one of the vdevs indicates 3084 * that the pool has been exported or destroyed. If 3085 * this is the case, the config cache is out of sync and 3086 * we should remove the pool from the namespace. 3087 */ 3088 spa_unload(spa); 3089 spa_deactivate(spa); 3090 spa_config_sync(spa, B_TRUE, B_TRUE); 3091 spa_remove(spa); 3092 if (locked) 3093 mutex_exit(&spa_namespace_lock); 3094 return (SET_ERROR(ENOENT)); 3095 } 3096 3097 if (error) { 3098 /* 3099 * We can't open the pool, but we still have useful 3100 * information: the state of each vdev after the 3101 * attempted vdev_open(). Return this to the user. 3102 */ 3103 if (config != NULL && spa->spa_config) { 3104 VERIFY(nvlist_dup(spa->spa_config, config, 3105 KM_SLEEP) == 0); 3106 VERIFY(nvlist_add_nvlist(*config, 3107 ZPOOL_CONFIG_LOAD_INFO, 3108 spa->spa_load_info) == 0); 3109 } 3110 spa_unload(spa); 3111 spa_deactivate(spa); 3112 spa->spa_last_open_failed = error; 3113 if (locked) 3114 mutex_exit(&spa_namespace_lock); 3115 *spapp = NULL; 3116 return (error); 3117 } 3118 } 3119 3120 spa_open_ref(spa, tag); 3121 3122 if (config != NULL) 3123 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3124 3125 /* 3126 * If we've recovered the pool, pass back any information we 3127 * gathered while doing the load. 3128 */ 3129 if (state == SPA_LOAD_RECOVER) { 3130 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3131 spa->spa_load_info) == 0); 3132 } 3133 3134 if (locked) { 3135 spa->spa_last_open_failed = 0; 3136 spa->spa_last_ubsync_txg = 0; 3137 spa->spa_load_txg = 0; 3138 mutex_exit(&spa_namespace_lock); 3139 } 3140 3141 *spapp = spa; 3142 3143 return (0); 3144 } 3145 3146 int 3147 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3148 nvlist_t **config) 3149 { 3150 return (spa_open_common(name, spapp, tag, policy, config)); 3151 } 3152 3153 int 3154 spa_open(const char *name, spa_t **spapp, void *tag) 3155 { 3156 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3157 } 3158 3159 /* 3160 * Lookup the given spa_t, incrementing the inject count in the process, 3161 * preventing it from being exported or destroyed. 3162 */ 3163 spa_t * 3164 spa_inject_addref(char *name) 3165 { 3166 spa_t *spa; 3167 3168 mutex_enter(&spa_namespace_lock); 3169 if ((spa = spa_lookup(name)) == NULL) { 3170 mutex_exit(&spa_namespace_lock); 3171 return (NULL); 3172 } 3173 spa->spa_inject_ref++; 3174 mutex_exit(&spa_namespace_lock); 3175 3176 return (spa); 3177 } 3178 3179 void 3180 spa_inject_delref(spa_t *spa) 3181 { 3182 mutex_enter(&spa_namespace_lock); 3183 spa->spa_inject_ref--; 3184 mutex_exit(&spa_namespace_lock); 3185 } 3186 3187 /* 3188 * Add spares device information to the nvlist. 3189 */ 3190 static void 3191 spa_add_spares(spa_t *spa, nvlist_t *config) 3192 { 3193 nvlist_t **spares; 3194 uint_t i, nspares; 3195 nvlist_t *nvroot; 3196 uint64_t guid; 3197 vdev_stat_t *vs; 3198 uint_t vsc; 3199 uint64_t pool; 3200 3201 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3202 3203 if (spa->spa_spares.sav_count == 0) 3204 return; 3205 3206 VERIFY(nvlist_lookup_nvlist(config, 3207 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3208 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3209 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3210 if (nspares != 0) { 3211 VERIFY(nvlist_add_nvlist_array(nvroot, 3212 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3213 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3214 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3215 3216 /* 3217 * Go through and find any spares which have since been 3218 * repurposed as an active spare. If this is the case, update 3219 * their status appropriately. 3220 */ 3221 for (i = 0; i < nspares; i++) { 3222 VERIFY(nvlist_lookup_uint64(spares[i], 3223 ZPOOL_CONFIG_GUID, &guid) == 0); 3224 if (spa_spare_exists(guid, &pool, NULL) && 3225 pool != 0ULL) { 3226 VERIFY(nvlist_lookup_uint64_array( 3227 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3228 (uint64_t **)&vs, &vsc) == 0); 3229 vs->vs_state = VDEV_STATE_CANT_OPEN; 3230 vs->vs_aux = VDEV_AUX_SPARED; 3231 } 3232 } 3233 } 3234 } 3235 3236 /* 3237 * Add l2cache device information to the nvlist, including vdev stats. 3238 */ 3239 static void 3240 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3241 { 3242 nvlist_t **l2cache; 3243 uint_t i, j, nl2cache; 3244 nvlist_t *nvroot; 3245 uint64_t guid; 3246 vdev_t *vd; 3247 vdev_stat_t *vs; 3248 uint_t vsc; 3249 3250 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3251 3252 if (spa->spa_l2cache.sav_count == 0) 3253 return; 3254 3255 VERIFY(nvlist_lookup_nvlist(config, 3256 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3257 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3258 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3259 if (nl2cache != 0) { 3260 VERIFY(nvlist_add_nvlist_array(nvroot, 3261 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3262 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3263 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3264 3265 /* 3266 * Update level 2 cache device stats. 3267 */ 3268 3269 for (i = 0; i < nl2cache; i++) { 3270 VERIFY(nvlist_lookup_uint64(l2cache[i], 3271 ZPOOL_CONFIG_GUID, &guid) == 0); 3272 3273 vd = NULL; 3274 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3275 if (guid == 3276 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3277 vd = spa->spa_l2cache.sav_vdevs[j]; 3278 break; 3279 } 3280 } 3281 ASSERT(vd != NULL); 3282 3283 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3284 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3285 == 0); 3286 vdev_get_stats(vd, vs); 3287 } 3288 } 3289 } 3290 3291 static void 3292 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3293 { 3294 nvlist_t *features; 3295 zap_cursor_t zc; 3296 zap_attribute_t za; 3297 3298 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3299 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3300 3301 if (spa->spa_feat_for_read_obj != 0) { 3302 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3303 spa->spa_feat_for_read_obj); 3304 zap_cursor_retrieve(&zc, &za) == 0; 3305 zap_cursor_advance(&zc)) { 3306 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3307 za.za_num_integers == 1); 3308 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3309 za.za_first_integer)); 3310 } 3311 zap_cursor_fini(&zc); 3312 } 3313 3314 if (spa->spa_feat_for_write_obj != 0) { 3315 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3316 spa->spa_feat_for_write_obj); 3317 zap_cursor_retrieve(&zc, &za) == 0; 3318 zap_cursor_advance(&zc)) { 3319 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3320 za.za_num_integers == 1); 3321 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3322 za.za_first_integer)); 3323 } 3324 zap_cursor_fini(&zc); 3325 } 3326 3327 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3328 features) == 0); 3329 nvlist_free(features); 3330 } 3331 3332 int 3333 spa_get_stats(const char *name, nvlist_t **config, 3334 char *altroot, size_t buflen) 3335 { 3336 int error; 3337 spa_t *spa; 3338 3339 *config = NULL; 3340 error = spa_open_common(name, &spa, FTAG, NULL, config); 3341 3342 if (spa != NULL) { 3343 /* 3344 * This still leaves a window of inconsistency where the spares 3345 * or l2cache devices could change and the config would be 3346 * self-inconsistent. 3347 */ 3348 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3349 3350 if (*config != NULL) { 3351 uint64_t loadtimes[2]; 3352 3353 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3354 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3355 VERIFY(nvlist_add_uint64_array(*config, 3356 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3357 3358 VERIFY(nvlist_add_uint64(*config, 3359 ZPOOL_CONFIG_ERRCOUNT, 3360 spa_get_errlog_size(spa)) == 0); 3361 3362 if (spa_suspended(spa)) 3363 VERIFY(nvlist_add_uint64(*config, 3364 ZPOOL_CONFIG_SUSPENDED, 3365 spa->spa_failmode) == 0); 3366 3367 spa_add_spares(spa, *config); 3368 spa_add_l2cache(spa, *config); 3369 spa_add_feature_stats(spa, *config); 3370 } 3371 } 3372 3373 /* 3374 * We want to get the alternate root even for faulted pools, so we cheat 3375 * and call spa_lookup() directly. 3376 */ 3377 if (altroot) { 3378 if (spa == NULL) { 3379 mutex_enter(&spa_namespace_lock); 3380 spa = spa_lookup(name); 3381 if (spa) 3382 spa_altroot(spa, altroot, buflen); 3383 else 3384 altroot[0] = '\0'; 3385 spa = NULL; 3386 mutex_exit(&spa_namespace_lock); 3387 } else { 3388 spa_altroot(spa, altroot, buflen); 3389 } 3390 } 3391 3392 if (spa != NULL) { 3393 spa_config_exit(spa, SCL_CONFIG, FTAG); 3394 spa_close(spa, FTAG); 3395 } 3396 3397 return (error); 3398 } 3399 3400 /* 3401 * Validate that the auxiliary device array is well formed. We must have an 3402 * array of nvlists, each which describes a valid leaf vdev. If this is an 3403 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3404 * specified, as long as they are well-formed. 3405 */ 3406 static int 3407 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3408 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3409 vdev_labeltype_t label) 3410 { 3411 nvlist_t **dev; 3412 uint_t i, ndev; 3413 vdev_t *vd; 3414 int error; 3415 3416 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3417 3418 /* 3419 * It's acceptable to have no devs specified. 3420 */ 3421 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3422 return (0); 3423 3424 if (ndev == 0) 3425 return (SET_ERROR(EINVAL)); 3426 3427 /* 3428 * Make sure the pool is formatted with a version that supports this 3429 * device type. 3430 */ 3431 if (spa_version(spa) < version) 3432 return (SET_ERROR(ENOTSUP)); 3433 3434 /* 3435 * Set the pending device list so we correctly handle device in-use 3436 * checking. 3437 */ 3438 sav->sav_pending = dev; 3439 sav->sav_npending = ndev; 3440 3441 for (i = 0; i < ndev; i++) { 3442 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3443 mode)) != 0) 3444 goto out; 3445 3446 if (!vd->vdev_ops->vdev_op_leaf) { 3447 vdev_free(vd); 3448 error = SET_ERROR(EINVAL); 3449 goto out; 3450 } 3451 3452 /* 3453 * The L2ARC currently only supports disk devices in 3454 * kernel context. For user-level testing, we allow it. 3455 */ 3456 #ifdef _KERNEL 3457 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3458 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3459 error = SET_ERROR(ENOTBLK); 3460 vdev_free(vd); 3461 goto out; 3462 } 3463 #endif 3464 vd->vdev_top = vd; 3465 3466 if ((error = vdev_open(vd)) == 0 && 3467 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3468 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3469 vd->vdev_guid) == 0); 3470 } 3471 3472 vdev_free(vd); 3473 3474 if (error && 3475 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3476 goto out; 3477 else 3478 error = 0; 3479 } 3480 3481 out: 3482 sav->sav_pending = NULL; 3483 sav->sav_npending = 0; 3484 return (error); 3485 } 3486 3487 static int 3488 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3489 { 3490 int error; 3491 3492 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3493 3494 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3495 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3496 VDEV_LABEL_SPARE)) != 0) { 3497 return (error); 3498 } 3499 3500 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3501 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3502 VDEV_LABEL_L2CACHE)); 3503 } 3504 3505 static void 3506 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3507 const char *config) 3508 { 3509 int i; 3510 3511 if (sav->sav_config != NULL) { 3512 nvlist_t **olddevs; 3513 uint_t oldndevs; 3514 nvlist_t **newdevs; 3515 3516 /* 3517 * Generate new dev list by concatentating with the 3518 * current dev list. 3519 */ 3520 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3521 &olddevs, &oldndevs) == 0); 3522 3523 newdevs = kmem_alloc(sizeof (void *) * 3524 (ndevs + oldndevs), KM_SLEEP); 3525 for (i = 0; i < oldndevs; i++) 3526 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3527 KM_SLEEP) == 0); 3528 for (i = 0; i < ndevs; i++) 3529 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3530 KM_SLEEP) == 0); 3531 3532 VERIFY(nvlist_remove(sav->sav_config, config, 3533 DATA_TYPE_NVLIST_ARRAY) == 0); 3534 3535 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3536 config, newdevs, ndevs + oldndevs) == 0); 3537 for (i = 0; i < oldndevs + ndevs; i++) 3538 nvlist_free(newdevs[i]); 3539 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3540 } else { 3541 /* 3542 * Generate a new dev list. 3543 */ 3544 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3545 KM_SLEEP) == 0); 3546 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3547 devs, ndevs) == 0); 3548 } 3549 } 3550 3551 /* 3552 * Stop and drop level 2 ARC devices 3553 */ 3554 void 3555 spa_l2cache_drop(spa_t *spa) 3556 { 3557 vdev_t *vd; 3558 int i; 3559 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3560 3561 for (i = 0; i < sav->sav_count; i++) { 3562 uint64_t pool; 3563 3564 vd = sav->sav_vdevs[i]; 3565 ASSERT(vd != NULL); 3566 3567 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3568 pool != 0ULL && l2arc_vdev_present(vd)) 3569 l2arc_remove_vdev(vd); 3570 } 3571 } 3572 3573 /* 3574 * Pool Creation 3575 */ 3576 int 3577 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3578 nvlist_t *zplprops) 3579 { 3580 spa_t *spa; 3581 char *altroot = NULL; 3582 vdev_t *rvd; 3583 dsl_pool_t *dp; 3584 dmu_tx_t *tx; 3585 int error = 0; 3586 uint64_t txg = TXG_INITIAL; 3587 nvlist_t **spares, **l2cache; 3588 uint_t nspares, nl2cache; 3589 uint64_t version, obj; 3590 boolean_t has_features; 3591 3592 /* 3593 * If this pool already exists, return failure. 3594 */ 3595 mutex_enter(&spa_namespace_lock); 3596 if (spa_lookup(pool) != NULL) { 3597 mutex_exit(&spa_namespace_lock); 3598 return (SET_ERROR(EEXIST)); 3599 } 3600 3601 /* 3602 * Allocate a new spa_t structure. 3603 */ 3604 (void) nvlist_lookup_string(props, 3605 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3606 spa = spa_add(pool, NULL, altroot); 3607 spa_activate(spa, spa_mode_global); 3608 3609 if (props && (error = spa_prop_validate(spa, props))) { 3610 spa_deactivate(spa); 3611 spa_remove(spa); 3612 mutex_exit(&spa_namespace_lock); 3613 return (error); 3614 } 3615 3616 has_features = B_FALSE; 3617 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3618 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3619 if (zpool_prop_feature(nvpair_name(elem))) 3620 has_features = B_TRUE; 3621 } 3622 3623 if (has_features || nvlist_lookup_uint64(props, 3624 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3625 version = SPA_VERSION; 3626 } 3627 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3628 3629 spa->spa_first_txg = txg; 3630 spa->spa_uberblock.ub_txg = txg - 1; 3631 spa->spa_uberblock.ub_version = version; 3632 spa->spa_ubsync = spa->spa_uberblock; 3633 spa->spa_load_state = SPA_LOAD_CREATE; 3634 3635 /* 3636 * Create "The Godfather" zio to hold all async IOs 3637 */ 3638 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3639 KM_SLEEP); 3640 for (int i = 0; i < max_ncpus; i++) { 3641 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3642 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3643 ZIO_FLAG_GODFATHER); 3644 } 3645 3646 /* 3647 * Create the root vdev. 3648 */ 3649 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3650 3651 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3652 3653 ASSERT(error != 0 || rvd != NULL); 3654 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3655 3656 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3657 error = SET_ERROR(EINVAL); 3658 3659 if (error == 0 && 3660 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3661 (error = spa_validate_aux(spa, nvroot, txg, 3662 VDEV_ALLOC_ADD)) == 0) { 3663 for (int c = 0; c < rvd->vdev_children; c++) { 3664 vdev_metaslab_set_size(rvd->vdev_child[c]); 3665 vdev_expand(rvd->vdev_child[c], txg); 3666 } 3667 } 3668 3669 spa_config_exit(spa, SCL_ALL, FTAG); 3670 3671 if (error != 0) { 3672 spa_unload(spa); 3673 spa_deactivate(spa); 3674 spa_remove(spa); 3675 mutex_exit(&spa_namespace_lock); 3676 return (error); 3677 } 3678 3679 /* 3680 * Get the list of spares, if specified. 3681 */ 3682 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3683 &spares, &nspares) == 0) { 3684 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3685 KM_SLEEP) == 0); 3686 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3687 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3688 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3689 spa_load_spares(spa); 3690 spa_config_exit(spa, SCL_ALL, FTAG); 3691 spa->spa_spares.sav_sync = B_TRUE; 3692 } 3693 3694 /* 3695 * Get the list of level 2 cache devices, if specified. 3696 */ 3697 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3698 &l2cache, &nl2cache) == 0) { 3699 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3700 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3701 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3702 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3703 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3704 spa_load_l2cache(spa); 3705 spa_config_exit(spa, SCL_ALL, FTAG); 3706 spa->spa_l2cache.sav_sync = B_TRUE; 3707 } 3708 3709 spa->spa_is_initializing = B_TRUE; 3710 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3711 spa->spa_meta_objset = dp->dp_meta_objset; 3712 spa->spa_is_initializing = B_FALSE; 3713 3714 /* 3715 * Create DDTs (dedup tables). 3716 */ 3717 ddt_create(spa); 3718 3719 spa_update_dspace(spa); 3720 3721 tx = dmu_tx_create_assigned(dp, txg); 3722 3723 /* 3724 * Create the pool config object. 3725 */ 3726 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3727 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3728 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3729 3730 if (zap_add(spa->spa_meta_objset, 3731 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3732 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3733 cmn_err(CE_PANIC, "failed to add pool config"); 3734 } 3735 3736 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3737 spa_feature_create_zap_objects(spa, tx); 3738 3739 if (zap_add(spa->spa_meta_objset, 3740 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3741 sizeof (uint64_t), 1, &version, tx) != 0) { 3742 cmn_err(CE_PANIC, "failed to add pool version"); 3743 } 3744 3745 /* Newly created pools with the right version are always deflated. */ 3746 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3747 spa->spa_deflate = TRUE; 3748 if (zap_add(spa->spa_meta_objset, 3749 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3750 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3751 cmn_err(CE_PANIC, "failed to add deflate"); 3752 } 3753 } 3754 3755 /* 3756 * Create the deferred-free bpobj. Turn off compression 3757 * because sync-to-convergence takes longer if the blocksize 3758 * keeps changing. 3759 */ 3760 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3761 dmu_object_set_compress(spa->spa_meta_objset, obj, 3762 ZIO_COMPRESS_OFF, tx); 3763 if (zap_add(spa->spa_meta_objset, 3764 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3765 sizeof (uint64_t), 1, &obj, tx) != 0) { 3766 cmn_err(CE_PANIC, "failed to add bpobj"); 3767 } 3768 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3769 spa->spa_meta_objset, obj)); 3770 3771 /* 3772 * Create the pool's history object. 3773 */ 3774 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3775 spa_history_create_obj(spa, tx); 3776 3777 /* 3778 * Generate some random noise for salted checksums to operate on. 3779 */ 3780 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3781 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3782 3783 /* 3784 * Set pool properties. 3785 */ 3786 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3787 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3788 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3789 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3790 3791 if (props != NULL) { 3792 spa_configfile_set(spa, props, B_FALSE); 3793 spa_sync_props(props, tx); 3794 } 3795 3796 dmu_tx_commit(tx); 3797 3798 spa->spa_sync_on = B_TRUE; 3799 txg_sync_start(spa->spa_dsl_pool); 3800 3801 /* 3802 * We explicitly wait for the first transaction to complete so that our 3803 * bean counters are appropriately updated. 3804 */ 3805 txg_wait_synced(spa->spa_dsl_pool, txg); 3806 3807 spa_config_sync(spa, B_FALSE, B_TRUE); 3808 spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE); 3809 3810 spa_history_log_version(spa, "create"); 3811 3812 /* 3813 * Don't count references from objsets that are already closed 3814 * and are making their way through the eviction process. 3815 */ 3816 spa_evicting_os_wait(spa); 3817 spa->spa_minref = refcount_count(&spa->spa_refcount); 3818 spa->spa_load_state = SPA_LOAD_NONE; 3819 3820 mutex_exit(&spa_namespace_lock); 3821 3822 return (0); 3823 } 3824 3825 #ifdef _KERNEL 3826 /* 3827 * Get the root pool information from the root disk, then import the root pool 3828 * during the system boot up time. 3829 */ 3830 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3831 3832 static nvlist_t * 3833 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3834 { 3835 nvlist_t *config; 3836 nvlist_t *nvtop, *nvroot; 3837 uint64_t pgid; 3838 3839 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3840 return (NULL); 3841 3842 /* 3843 * Add this top-level vdev to the child array. 3844 */ 3845 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3846 &nvtop) == 0); 3847 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3848 &pgid) == 0); 3849 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3850 3851 /* 3852 * Put this pool's top-level vdevs into a root vdev. 3853 */ 3854 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3855 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3856 VDEV_TYPE_ROOT) == 0); 3857 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3858 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3859 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3860 &nvtop, 1) == 0); 3861 3862 /* 3863 * Replace the existing vdev_tree with the new root vdev in 3864 * this pool's configuration (remove the old, add the new). 3865 */ 3866 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3867 nvlist_free(nvroot); 3868 return (config); 3869 } 3870 3871 /* 3872 * Walk the vdev tree and see if we can find a device with "better" 3873 * configuration. A configuration is "better" if the label on that 3874 * device has a more recent txg. 3875 */ 3876 static void 3877 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3878 { 3879 for (int c = 0; c < vd->vdev_children; c++) 3880 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3881 3882 if (vd->vdev_ops->vdev_op_leaf) { 3883 nvlist_t *label; 3884 uint64_t label_txg; 3885 3886 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3887 &label) != 0) 3888 return; 3889 3890 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3891 &label_txg) == 0); 3892 3893 /* 3894 * Do we have a better boot device? 3895 */ 3896 if (label_txg > *txg) { 3897 *txg = label_txg; 3898 *avd = vd; 3899 } 3900 nvlist_free(label); 3901 } 3902 } 3903 3904 /* 3905 * Import a root pool. 3906 * 3907 * For x86. devpath_list will consist of devid and/or physpath name of 3908 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3909 * The GRUB "findroot" command will return the vdev we should boot. 3910 * 3911 * For Sparc, devpath_list consists the physpath name of the booting device 3912 * no matter the rootpool is a single device pool or a mirrored pool. 3913 * e.g. 3914 * "/pci@1f,0/ide@d/disk@0,0:a" 3915 */ 3916 int 3917 spa_import_rootpool(char *devpath, char *devid) 3918 { 3919 spa_t *spa; 3920 vdev_t *rvd, *bvd, *avd = NULL; 3921 nvlist_t *config, *nvtop; 3922 uint64_t guid, txg; 3923 char *pname; 3924 int error; 3925 3926 /* 3927 * Read the label from the boot device and generate a configuration. 3928 */ 3929 config = spa_generate_rootconf(devpath, devid, &guid); 3930 #if defined(_OBP) && defined(_KERNEL) 3931 if (config == NULL) { 3932 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3933 /* iscsi boot */ 3934 get_iscsi_bootpath_phy(devpath); 3935 config = spa_generate_rootconf(devpath, devid, &guid); 3936 } 3937 } 3938 #endif 3939 if (config == NULL) { 3940 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3941 devpath); 3942 return (SET_ERROR(EIO)); 3943 } 3944 3945 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3946 &pname) == 0); 3947 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3948 3949 mutex_enter(&spa_namespace_lock); 3950 if ((spa = spa_lookup(pname)) != NULL) { 3951 /* 3952 * Remove the existing root pool from the namespace so that we 3953 * can replace it with the correct config we just read in. 3954 */ 3955 spa_remove(spa); 3956 } 3957 3958 spa = spa_add(pname, config, NULL); 3959 spa->spa_is_root = B_TRUE; 3960 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3961 3962 /* 3963 * Build up a vdev tree based on the boot device's label config. 3964 */ 3965 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3966 &nvtop) == 0); 3967 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3968 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3969 VDEV_ALLOC_ROOTPOOL); 3970 spa_config_exit(spa, SCL_ALL, FTAG); 3971 if (error) { 3972 mutex_exit(&spa_namespace_lock); 3973 nvlist_free(config); 3974 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3975 pname); 3976 return (error); 3977 } 3978 3979 /* 3980 * Get the boot vdev. 3981 */ 3982 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3983 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3984 (u_longlong_t)guid); 3985 error = SET_ERROR(ENOENT); 3986 goto out; 3987 } 3988 3989 /* 3990 * Determine if there is a better boot device. 3991 */ 3992 avd = bvd; 3993 spa_alt_rootvdev(rvd, &avd, &txg); 3994 if (avd != bvd) { 3995 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3996 "try booting from '%s'", avd->vdev_path); 3997 error = SET_ERROR(EINVAL); 3998 goto out; 3999 } 4000 4001 /* 4002 * If the boot device is part of a spare vdev then ensure that 4003 * we're booting off the active spare. 4004 */ 4005 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 4006 !bvd->vdev_isspare) { 4007 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 4008 "try booting from '%s'", 4009 bvd->vdev_parent-> 4010 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 4011 error = SET_ERROR(EINVAL); 4012 goto out; 4013 } 4014 4015 error = 0; 4016 out: 4017 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4018 vdev_free(rvd); 4019 spa_config_exit(spa, SCL_ALL, FTAG); 4020 mutex_exit(&spa_namespace_lock); 4021 4022 nvlist_free(config); 4023 return (error); 4024 } 4025 4026 #endif 4027 4028 /* 4029 * Import a non-root pool into the system. 4030 */ 4031 int 4032 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 4033 { 4034 spa_t *spa; 4035 char *altroot = NULL; 4036 spa_load_state_t state = SPA_LOAD_IMPORT; 4037 zpool_rewind_policy_t policy; 4038 uint64_t mode = spa_mode_global; 4039 uint64_t readonly = B_FALSE; 4040 int error; 4041 nvlist_t *nvroot; 4042 nvlist_t **spares, **l2cache; 4043 uint_t nspares, nl2cache; 4044 4045 /* 4046 * If a pool with this name exists, return failure. 4047 */ 4048 mutex_enter(&spa_namespace_lock); 4049 if (spa_lookup(pool) != NULL) { 4050 mutex_exit(&spa_namespace_lock); 4051 return (SET_ERROR(EEXIST)); 4052 } 4053 4054 /* 4055 * Create and initialize the spa structure. 4056 */ 4057 (void) nvlist_lookup_string(props, 4058 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4059 (void) nvlist_lookup_uint64(props, 4060 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 4061 if (readonly) 4062 mode = FREAD; 4063 spa = spa_add(pool, config, altroot); 4064 spa->spa_import_flags = flags; 4065 4066 /* 4067 * Verbatim import - Take a pool and insert it into the namespace 4068 * as if it had been loaded at boot. 4069 */ 4070 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 4071 if (props != NULL) 4072 spa_configfile_set(spa, props, B_FALSE); 4073 4074 spa_config_sync(spa, B_FALSE, B_TRUE); 4075 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 4076 4077 mutex_exit(&spa_namespace_lock); 4078 return (0); 4079 } 4080 4081 spa_activate(spa, mode); 4082 4083 /* 4084 * Don't start async tasks until we know everything is healthy. 4085 */ 4086 spa_async_suspend(spa); 4087 4088 zpool_get_rewind_policy(config, &policy); 4089 if (policy.zrp_request & ZPOOL_DO_REWIND) 4090 state = SPA_LOAD_RECOVER; 4091 4092 /* 4093 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 4094 * because the user-supplied config is actually the one to trust when 4095 * doing an import. 4096 */ 4097 if (state != SPA_LOAD_RECOVER) 4098 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4099 4100 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 4101 policy.zrp_request); 4102 4103 /* 4104 * Propagate anything learned while loading the pool and pass it 4105 * back to caller (i.e. rewind info, missing devices, etc). 4106 */ 4107 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4108 spa->spa_load_info) == 0); 4109 4110 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4111 /* 4112 * Toss any existing sparelist, as it doesn't have any validity 4113 * anymore, and conflicts with spa_has_spare(). 4114 */ 4115 if (spa->spa_spares.sav_config) { 4116 nvlist_free(spa->spa_spares.sav_config); 4117 spa->spa_spares.sav_config = NULL; 4118 spa_load_spares(spa); 4119 } 4120 if (spa->spa_l2cache.sav_config) { 4121 nvlist_free(spa->spa_l2cache.sav_config); 4122 spa->spa_l2cache.sav_config = NULL; 4123 spa_load_l2cache(spa); 4124 } 4125 4126 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4127 &nvroot) == 0); 4128 if (error == 0) 4129 error = spa_validate_aux(spa, nvroot, -1ULL, 4130 VDEV_ALLOC_SPARE); 4131 if (error == 0) 4132 error = spa_validate_aux(spa, nvroot, -1ULL, 4133 VDEV_ALLOC_L2CACHE); 4134 spa_config_exit(spa, SCL_ALL, FTAG); 4135 4136 if (props != NULL) 4137 spa_configfile_set(spa, props, B_FALSE); 4138 4139 if (error != 0 || (props && spa_writeable(spa) && 4140 (error = spa_prop_set(spa, props)))) { 4141 spa_unload(spa); 4142 spa_deactivate(spa); 4143 spa_remove(spa); 4144 mutex_exit(&spa_namespace_lock); 4145 return (error); 4146 } 4147 4148 spa_async_resume(spa); 4149 4150 /* 4151 * Override any spares and level 2 cache devices as specified by 4152 * the user, as these may have correct device names/devids, etc. 4153 */ 4154 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4155 &spares, &nspares) == 0) { 4156 if (spa->spa_spares.sav_config) 4157 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4158 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4159 else 4160 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4161 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4162 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4163 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4164 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4165 spa_load_spares(spa); 4166 spa_config_exit(spa, SCL_ALL, FTAG); 4167 spa->spa_spares.sav_sync = B_TRUE; 4168 } 4169 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4170 &l2cache, &nl2cache) == 0) { 4171 if (spa->spa_l2cache.sav_config) 4172 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4173 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4174 else 4175 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4176 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4177 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4178 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4179 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4180 spa_load_l2cache(spa); 4181 spa_config_exit(spa, SCL_ALL, FTAG); 4182 spa->spa_l2cache.sav_sync = B_TRUE; 4183 } 4184 4185 /* 4186 * Check for any removed devices. 4187 */ 4188 if (spa->spa_autoreplace) { 4189 spa_aux_check_removed(&spa->spa_spares); 4190 spa_aux_check_removed(&spa->spa_l2cache); 4191 } 4192 4193 if (spa_writeable(spa)) { 4194 /* 4195 * Update the config cache to include the newly-imported pool. 4196 */ 4197 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4198 } 4199 4200 /* 4201 * It's possible that the pool was expanded while it was exported. 4202 * We kick off an async task to handle this for us. 4203 */ 4204 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4205 4206 spa_history_log_version(spa, "import"); 4207 4208 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 4209 4210 mutex_exit(&spa_namespace_lock); 4211 4212 return (0); 4213 } 4214 4215 nvlist_t * 4216 spa_tryimport(nvlist_t *tryconfig) 4217 { 4218 nvlist_t *config = NULL; 4219 char *poolname; 4220 spa_t *spa; 4221 uint64_t state; 4222 int error; 4223 4224 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4225 return (NULL); 4226 4227 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4228 return (NULL); 4229 4230 /* 4231 * Create and initialize the spa structure. 4232 */ 4233 mutex_enter(&spa_namespace_lock); 4234 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4235 spa_activate(spa, FREAD); 4236 4237 /* 4238 * Pass off the heavy lifting to spa_load(). 4239 * Pass TRUE for mosconfig because the user-supplied config 4240 * is actually the one to trust when doing an import. 4241 */ 4242 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4243 4244 /* 4245 * If 'tryconfig' was at least parsable, return the current config. 4246 */ 4247 if (spa->spa_root_vdev != NULL) { 4248 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4249 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4250 poolname) == 0); 4251 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4252 state) == 0); 4253 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4254 spa->spa_uberblock.ub_timestamp) == 0); 4255 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4256 spa->spa_load_info) == 0); 4257 4258 /* 4259 * If the bootfs property exists on this pool then we 4260 * copy it out so that external consumers can tell which 4261 * pools are bootable. 4262 */ 4263 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4264 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4265 4266 /* 4267 * We have to play games with the name since the 4268 * pool was opened as TRYIMPORT_NAME. 4269 */ 4270 if (dsl_dsobj_to_dsname(spa_name(spa), 4271 spa->spa_bootfs, tmpname) == 0) { 4272 char *cp; 4273 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4274 4275 cp = strchr(tmpname, '/'); 4276 if (cp == NULL) { 4277 (void) strlcpy(dsname, tmpname, 4278 MAXPATHLEN); 4279 } else { 4280 (void) snprintf(dsname, MAXPATHLEN, 4281 "%s/%s", poolname, ++cp); 4282 } 4283 VERIFY(nvlist_add_string(config, 4284 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4285 kmem_free(dsname, MAXPATHLEN); 4286 } 4287 kmem_free(tmpname, MAXPATHLEN); 4288 } 4289 4290 /* 4291 * Add the list of hot spares and level 2 cache devices. 4292 */ 4293 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4294 spa_add_spares(spa, config); 4295 spa_add_l2cache(spa, config); 4296 spa_config_exit(spa, SCL_CONFIG, FTAG); 4297 } 4298 4299 spa_unload(spa); 4300 spa_deactivate(spa); 4301 spa_remove(spa); 4302 mutex_exit(&spa_namespace_lock); 4303 4304 return (config); 4305 } 4306 4307 /* 4308 * Pool export/destroy 4309 * 4310 * The act of destroying or exporting a pool is very simple. We make sure there 4311 * is no more pending I/O and any references to the pool are gone. Then, we 4312 * update the pool state and sync all the labels to disk, removing the 4313 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4314 * we don't sync the labels or remove the configuration cache. 4315 */ 4316 static int 4317 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4318 boolean_t force, boolean_t hardforce) 4319 { 4320 spa_t *spa; 4321 4322 if (oldconfig) 4323 *oldconfig = NULL; 4324 4325 if (!(spa_mode_global & FWRITE)) 4326 return (SET_ERROR(EROFS)); 4327 4328 mutex_enter(&spa_namespace_lock); 4329 if ((spa = spa_lookup(pool)) == NULL) { 4330 mutex_exit(&spa_namespace_lock); 4331 return (SET_ERROR(ENOENT)); 4332 } 4333 4334 /* 4335 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4336 * reacquire the namespace lock, and see if we can export. 4337 */ 4338 spa_open_ref(spa, FTAG); 4339 mutex_exit(&spa_namespace_lock); 4340 spa_async_suspend(spa); 4341 mutex_enter(&spa_namespace_lock); 4342 spa_close(spa, FTAG); 4343 4344 /* 4345 * The pool will be in core if it's openable, 4346 * in which case we can modify its state. 4347 */ 4348 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4349 /* 4350 * Objsets may be open only because they're dirty, so we 4351 * have to force it to sync before checking spa_refcnt. 4352 */ 4353 txg_wait_synced(spa->spa_dsl_pool, 0); 4354 spa_evicting_os_wait(spa); 4355 4356 /* 4357 * A pool cannot be exported or destroyed if there are active 4358 * references. If we are resetting a pool, allow references by 4359 * fault injection handlers. 4360 */ 4361 if (!spa_refcount_zero(spa) || 4362 (spa->spa_inject_ref != 0 && 4363 new_state != POOL_STATE_UNINITIALIZED)) { 4364 spa_async_resume(spa); 4365 mutex_exit(&spa_namespace_lock); 4366 return (SET_ERROR(EBUSY)); 4367 } 4368 4369 /* 4370 * A pool cannot be exported if it has an active shared spare. 4371 * This is to prevent other pools stealing the active spare 4372 * from an exported pool. At user's own will, such pool can 4373 * be forcedly exported. 4374 */ 4375 if (!force && new_state == POOL_STATE_EXPORTED && 4376 spa_has_active_shared_spare(spa)) { 4377 spa_async_resume(spa); 4378 mutex_exit(&spa_namespace_lock); 4379 return (SET_ERROR(EXDEV)); 4380 } 4381 4382 /* 4383 * We want this to be reflected on every label, 4384 * so mark them all dirty. spa_unload() will do the 4385 * final sync that pushes these changes out. 4386 */ 4387 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4388 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4389 spa->spa_state = new_state; 4390 spa->spa_final_txg = spa_last_synced_txg(spa) + 4391 TXG_DEFER_SIZE + 1; 4392 vdev_config_dirty(spa->spa_root_vdev); 4393 spa_config_exit(spa, SCL_ALL, FTAG); 4394 } 4395 } 4396 4397 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4398 4399 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4400 spa_unload(spa); 4401 spa_deactivate(spa); 4402 } 4403 4404 if (oldconfig && spa->spa_config) 4405 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4406 4407 if (new_state != POOL_STATE_UNINITIALIZED) { 4408 if (!hardforce) 4409 spa_config_sync(spa, B_TRUE, B_TRUE); 4410 spa_remove(spa); 4411 } 4412 mutex_exit(&spa_namespace_lock); 4413 4414 return (0); 4415 } 4416 4417 /* 4418 * Destroy a storage pool. 4419 */ 4420 int 4421 spa_destroy(char *pool) 4422 { 4423 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4424 B_FALSE, B_FALSE)); 4425 } 4426 4427 /* 4428 * Export a storage pool. 4429 */ 4430 int 4431 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4432 boolean_t hardforce) 4433 { 4434 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4435 force, hardforce)); 4436 } 4437 4438 /* 4439 * Similar to spa_export(), this unloads the spa_t without actually removing it 4440 * from the namespace in any way. 4441 */ 4442 int 4443 spa_reset(char *pool) 4444 { 4445 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4446 B_FALSE, B_FALSE)); 4447 } 4448 4449 /* 4450 * ========================================================================== 4451 * Device manipulation 4452 * ========================================================================== 4453 */ 4454 4455 /* 4456 * Add a device to a storage pool. 4457 */ 4458 int 4459 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4460 { 4461 uint64_t txg, id; 4462 int error; 4463 vdev_t *rvd = spa->spa_root_vdev; 4464 vdev_t *vd, *tvd; 4465 nvlist_t **spares, **l2cache; 4466 uint_t nspares, nl2cache; 4467 4468 ASSERT(spa_writeable(spa)); 4469 4470 txg = spa_vdev_enter(spa); 4471 4472 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4473 VDEV_ALLOC_ADD)) != 0) 4474 return (spa_vdev_exit(spa, NULL, txg, error)); 4475 4476 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4477 4478 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4479 &nspares) != 0) 4480 nspares = 0; 4481 4482 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4483 &nl2cache) != 0) 4484 nl2cache = 0; 4485 4486 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4487 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4488 4489 if (vd->vdev_children != 0 && 4490 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4491 return (spa_vdev_exit(spa, vd, txg, error)); 4492 4493 /* 4494 * We must validate the spares and l2cache devices after checking the 4495 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4496 */ 4497 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4498 return (spa_vdev_exit(spa, vd, txg, error)); 4499 4500 /* 4501 * Transfer each new top-level vdev from vd to rvd. 4502 */ 4503 for (int c = 0; c < vd->vdev_children; c++) { 4504 4505 /* 4506 * Set the vdev id to the first hole, if one exists. 4507 */ 4508 for (id = 0; id < rvd->vdev_children; id++) { 4509 if (rvd->vdev_child[id]->vdev_ishole) { 4510 vdev_free(rvd->vdev_child[id]); 4511 break; 4512 } 4513 } 4514 tvd = vd->vdev_child[c]; 4515 vdev_remove_child(vd, tvd); 4516 tvd->vdev_id = id; 4517 vdev_add_child(rvd, tvd); 4518 vdev_config_dirty(tvd); 4519 } 4520 4521 if (nspares != 0) { 4522 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4523 ZPOOL_CONFIG_SPARES); 4524 spa_load_spares(spa); 4525 spa->spa_spares.sav_sync = B_TRUE; 4526 } 4527 4528 if (nl2cache != 0) { 4529 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4530 ZPOOL_CONFIG_L2CACHE); 4531 spa_load_l2cache(spa); 4532 spa->spa_l2cache.sav_sync = B_TRUE; 4533 } 4534 4535 /* 4536 * We have to be careful when adding new vdevs to an existing pool. 4537 * If other threads start allocating from these vdevs before we 4538 * sync the config cache, and we lose power, then upon reboot we may 4539 * fail to open the pool because there are DVAs that the config cache 4540 * can't translate. Therefore, we first add the vdevs without 4541 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4542 * and then let spa_config_update() initialize the new metaslabs. 4543 * 4544 * spa_load() checks for added-but-not-initialized vdevs, so that 4545 * if we lose power at any point in this sequence, the remaining 4546 * steps will be completed the next time we load the pool. 4547 */ 4548 (void) spa_vdev_exit(spa, vd, txg, 0); 4549 4550 mutex_enter(&spa_namespace_lock); 4551 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4552 spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD); 4553 mutex_exit(&spa_namespace_lock); 4554 4555 return (0); 4556 } 4557 4558 /* 4559 * Attach a device to a mirror. The arguments are the path to any device 4560 * in the mirror, and the nvroot for the new device. If the path specifies 4561 * a device that is not mirrored, we automatically insert the mirror vdev. 4562 * 4563 * If 'replacing' is specified, the new device is intended to replace the 4564 * existing device; in this case the two devices are made into their own 4565 * mirror using the 'replacing' vdev, which is functionally identical to 4566 * the mirror vdev (it actually reuses all the same ops) but has a few 4567 * extra rules: you can't attach to it after it's been created, and upon 4568 * completion of resilvering, the first disk (the one being replaced) 4569 * is automatically detached. 4570 */ 4571 int 4572 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4573 { 4574 uint64_t txg, dtl_max_txg; 4575 vdev_t *rvd = spa->spa_root_vdev; 4576 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4577 vdev_ops_t *pvops; 4578 char *oldvdpath, *newvdpath; 4579 int newvd_isspare; 4580 int error; 4581 4582 ASSERT(spa_writeable(spa)); 4583 4584 txg = spa_vdev_enter(spa); 4585 4586 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4587 4588 if (oldvd == NULL) 4589 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4590 4591 if (!oldvd->vdev_ops->vdev_op_leaf) 4592 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4593 4594 pvd = oldvd->vdev_parent; 4595 4596 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4597 VDEV_ALLOC_ATTACH)) != 0) 4598 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4599 4600 if (newrootvd->vdev_children != 1) 4601 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4602 4603 newvd = newrootvd->vdev_child[0]; 4604 4605 if (!newvd->vdev_ops->vdev_op_leaf) 4606 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4607 4608 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4609 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4610 4611 /* 4612 * Spares can't replace logs 4613 */ 4614 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4615 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4616 4617 if (!replacing) { 4618 /* 4619 * For attach, the only allowable parent is a mirror or the root 4620 * vdev. 4621 */ 4622 if (pvd->vdev_ops != &vdev_mirror_ops && 4623 pvd->vdev_ops != &vdev_root_ops) 4624 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4625 4626 pvops = &vdev_mirror_ops; 4627 } else { 4628 /* 4629 * Active hot spares can only be replaced by inactive hot 4630 * spares. 4631 */ 4632 if (pvd->vdev_ops == &vdev_spare_ops && 4633 oldvd->vdev_isspare && 4634 !spa_has_spare(spa, newvd->vdev_guid)) 4635 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4636 4637 /* 4638 * If the source is a hot spare, and the parent isn't already a 4639 * spare, then we want to create a new hot spare. Otherwise, we 4640 * want to create a replacing vdev. The user is not allowed to 4641 * attach to a spared vdev child unless the 'isspare' state is 4642 * the same (spare replaces spare, non-spare replaces 4643 * non-spare). 4644 */ 4645 if (pvd->vdev_ops == &vdev_replacing_ops && 4646 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4647 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4648 } else if (pvd->vdev_ops == &vdev_spare_ops && 4649 newvd->vdev_isspare != oldvd->vdev_isspare) { 4650 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4651 } 4652 4653 if (newvd->vdev_isspare) 4654 pvops = &vdev_spare_ops; 4655 else 4656 pvops = &vdev_replacing_ops; 4657 } 4658 4659 /* 4660 * Make sure the new device is big enough. 4661 */ 4662 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4663 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4664 4665 /* 4666 * The new device cannot have a higher alignment requirement 4667 * than the top-level vdev. 4668 */ 4669 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4670 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4671 4672 /* 4673 * If this is an in-place replacement, update oldvd's path and devid 4674 * to make it distinguishable from newvd, and unopenable from now on. 4675 */ 4676 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4677 spa_strfree(oldvd->vdev_path); 4678 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4679 KM_SLEEP); 4680 (void) sprintf(oldvd->vdev_path, "%s/%s", 4681 newvd->vdev_path, "old"); 4682 if (oldvd->vdev_devid != NULL) { 4683 spa_strfree(oldvd->vdev_devid); 4684 oldvd->vdev_devid = NULL; 4685 } 4686 } 4687 4688 /* mark the device being resilvered */ 4689 newvd->vdev_resilver_txg = txg; 4690 4691 /* 4692 * If the parent is not a mirror, or if we're replacing, insert the new 4693 * mirror/replacing/spare vdev above oldvd. 4694 */ 4695 if (pvd->vdev_ops != pvops) 4696 pvd = vdev_add_parent(oldvd, pvops); 4697 4698 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4699 ASSERT(pvd->vdev_ops == pvops); 4700 ASSERT(oldvd->vdev_parent == pvd); 4701 4702 /* 4703 * Extract the new device from its root and add it to pvd. 4704 */ 4705 vdev_remove_child(newrootvd, newvd); 4706 newvd->vdev_id = pvd->vdev_children; 4707 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4708 vdev_add_child(pvd, newvd); 4709 4710 tvd = newvd->vdev_top; 4711 ASSERT(pvd->vdev_top == tvd); 4712 ASSERT(tvd->vdev_parent == rvd); 4713 4714 vdev_config_dirty(tvd); 4715 4716 /* 4717 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4718 * for any dmu_sync-ed blocks. It will propagate upward when 4719 * spa_vdev_exit() calls vdev_dtl_reassess(). 4720 */ 4721 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4722 4723 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4724 dtl_max_txg - TXG_INITIAL); 4725 4726 if (newvd->vdev_isspare) { 4727 spa_spare_activate(newvd); 4728 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4729 } 4730 4731 oldvdpath = spa_strdup(oldvd->vdev_path); 4732 newvdpath = spa_strdup(newvd->vdev_path); 4733 newvd_isspare = newvd->vdev_isspare; 4734 4735 /* 4736 * Mark newvd's DTL dirty in this txg. 4737 */ 4738 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4739 4740 /* 4741 * Schedule the resilver to restart in the future. We do this to 4742 * ensure that dmu_sync-ed blocks have been stitched into the 4743 * respective datasets. 4744 */ 4745 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4746 4747 if (spa->spa_bootfs) 4748 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4749 4750 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH); 4751 4752 /* 4753 * Commit the config 4754 */ 4755 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4756 4757 spa_history_log_internal(spa, "vdev attach", NULL, 4758 "%s vdev=%s %s vdev=%s", 4759 replacing && newvd_isspare ? "spare in" : 4760 replacing ? "replace" : "attach", newvdpath, 4761 replacing ? "for" : "to", oldvdpath); 4762 4763 spa_strfree(oldvdpath); 4764 spa_strfree(newvdpath); 4765 4766 return (0); 4767 } 4768 4769 /* 4770 * Detach a device from a mirror or replacing vdev. 4771 * 4772 * If 'replace_done' is specified, only detach if the parent 4773 * is a replacing vdev. 4774 */ 4775 int 4776 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4777 { 4778 uint64_t txg; 4779 int error; 4780 vdev_t *rvd = spa->spa_root_vdev; 4781 vdev_t *vd, *pvd, *cvd, *tvd; 4782 boolean_t unspare = B_FALSE; 4783 uint64_t unspare_guid = 0; 4784 char *vdpath; 4785 4786 ASSERT(spa_writeable(spa)); 4787 4788 txg = spa_vdev_enter(spa); 4789 4790 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4791 4792 if (vd == NULL) 4793 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4794 4795 if (!vd->vdev_ops->vdev_op_leaf) 4796 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4797 4798 pvd = vd->vdev_parent; 4799 4800 /* 4801 * If the parent/child relationship is not as expected, don't do it. 4802 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4803 * vdev that's replacing B with C. The user's intent in replacing 4804 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4805 * the replace by detaching C, the expected behavior is to end up 4806 * M(A,B). But suppose that right after deciding to detach C, 4807 * the replacement of B completes. We would have M(A,C), and then 4808 * ask to detach C, which would leave us with just A -- not what 4809 * the user wanted. To prevent this, we make sure that the 4810 * parent/child relationship hasn't changed -- in this example, 4811 * that C's parent is still the replacing vdev R. 4812 */ 4813 if (pvd->vdev_guid != pguid && pguid != 0) 4814 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4815 4816 /* 4817 * Only 'replacing' or 'spare' vdevs can be replaced. 4818 */ 4819 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4820 pvd->vdev_ops != &vdev_spare_ops) 4821 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4822 4823 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4824 spa_version(spa) >= SPA_VERSION_SPARES); 4825 4826 /* 4827 * Only mirror, replacing, and spare vdevs support detach. 4828 */ 4829 if (pvd->vdev_ops != &vdev_replacing_ops && 4830 pvd->vdev_ops != &vdev_mirror_ops && 4831 pvd->vdev_ops != &vdev_spare_ops) 4832 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4833 4834 /* 4835 * If this device has the only valid copy of some data, 4836 * we cannot safely detach it. 4837 */ 4838 if (vdev_dtl_required(vd)) 4839 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4840 4841 ASSERT(pvd->vdev_children >= 2); 4842 4843 /* 4844 * If we are detaching the second disk from a replacing vdev, then 4845 * check to see if we changed the original vdev's path to have "/old" 4846 * at the end in spa_vdev_attach(). If so, undo that change now. 4847 */ 4848 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4849 vd->vdev_path != NULL) { 4850 size_t len = strlen(vd->vdev_path); 4851 4852 for (int c = 0; c < pvd->vdev_children; c++) { 4853 cvd = pvd->vdev_child[c]; 4854 4855 if (cvd == vd || cvd->vdev_path == NULL) 4856 continue; 4857 4858 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4859 strcmp(cvd->vdev_path + len, "/old") == 0) { 4860 spa_strfree(cvd->vdev_path); 4861 cvd->vdev_path = spa_strdup(vd->vdev_path); 4862 break; 4863 } 4864 } 4865 } 4866 4867 /* 4868 * If we are detaching the original disk from a spare, then it implies 4869 * that the spare should become a real disk, and be removed from the 4870 * active spare list for the pool. 4871 */ 4872 if (pvd->vdev_ops == &vdev_spare_ops && 4873 vd->vdev_id == 0 && 4874 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4875 unspare = B_TRUE; 4876 4877 /* 4878 * Erase the disk labels so the disk can be used for other things. 4879 * This must be done after all other error cases are handled, 4880 * but before we disembowel vd (so we can still do I/O to it). 4881 * But if we can't do it, don't treat the error as fatal -- 4882 * it may be that the unwritability of the disk is the reason 4883 * it's being detached! 4884 */ 4885 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4886 4887 /* 4888 * Remove vd from its parent and compact the parent's children. 4889 */ 4890 vdev_remove_child(pvd, vd); 4891 vdev_compact_children(pvd); 4892 4893 /* 4894 * Remember one of the remaining children so we can get tvd below. 4895 */ 4896 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4897 4898 /* 4899 * If we need to remove the remaining child from the list of hot spares, 4900 * do it now, marking the vdev as no longer a spare in the process. 4901 * We must do this before vdev_remove_parent(), because that can 4902 * change the GUID if it creates a new toplevel GUID. For a similar 4903 * reason, we must remove the spare now, in the same txg as the detach; 4904 * otherwise someone could attach a new sibling, change the GUID, and 4905 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4906 */ 4907 if (unspare) { 4908 ASSERT(cvd->vdev_isspare); 4909 spa_spare_remove(cvd); 4910 unspare_guid = cvd->vdev_guid; 4911 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4912 cvd->vdev_unspare = B_TRUE; 4913 } 4914 4915 /* 4916 * If the parent mirror/replacing vdev only has one child, 4917 * the parent is no longer needed. Remove it from the tree. 4918 */ 4919 if (pvd->vdev_children == 1) { 4920 if (pvd->vdev_ops == &vdev_spare_ops) 4921 cvd->vdev_unspare = B_FALSE; 4922 vdev_remove_parent(cvd); 4923 } 4924 4925 4926 /* 4927 * We don't set tvd until now because the parent we just removed 4928 * may have been the previous top-level vdev. 4929 */ 4930 tvd = cvd->vdev_top; 4931 ASSERT(tvd->vdev_parent == rvd); 4932 4933 /* 4934 * Reevaluate the parent vdev state. 4935 */ 4936 vdev_propagate_state(cvd); 4937 4938 /* 4939 * If the 'autoexpand' property is set on the pool then automatically 4940 * try to expand the size of the pool. For example if the device we 4941 * just detached was smaller than the others, it may be possible to 4942 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4943 * first so that we can obtain the updated sizes of the leaf vdevs. 4944 */ 4945 if (spa->spa_autoexpand) { 4946 vdev_reopen(tvd); 4947 vdev_expand(tvd, txg); 4948 } 4949 4950 vdev_config_dirty(tvd); 4951 4952 /* 4953 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4954 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4955 * But first make sure we're not on any *other* txg's DTL list, to 4956 * prevent vd from being accessed after it's freed. 4957 */ 4958 vdpath = spa_strdup(vd->vdev_path); 4959 for (int t = 0; t < TXG_SIZE; t++) 4960 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4961 vd->vdev_detached = B_TRUE; 4962 vdev_dirty(tvd, VDD_DTL, vd, txg); 4963 4964 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4965 4966 /* hang on to the spa before we release the lock */ 4967 spa_open_ref(spa, FTAG); 4968 4969 error = spa_vdev_exit(spa, vd, txg, 0); 4970 4971 spa_history_log_internal(spa, "detach", NULL, 4972 "vdev=%s", vdpath); 4973 spa_strfree(vdpath); 4974 4975 /* 4976 * If this was the removal of the original device in a hot spare vdev, 4977 * then we want to go through and remove the device from the hot spare 4978 * list of every other pool. 4979 */ 4980 if (unspare) { 4981 spa_t *altspa = NULL; 4982 4983 mutex_enter(&spa_namespace_lock); 4984 while ((altspa = spa_next(altspa)) != NULL) { 4985 if (altspa->spa_state != POOL_STATE_ACTIVE || 4986 altspa == spa) 4987 continue; 4988 4989 spa_open_ref(altspa, FTAG); 4990 mutex_exit(&spa_namespace_lock); 4991 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4992 mutex_enter(&spa_namespace_lock); 4993 spa_close(altspa, FTAG); 4994 } 4995 mutex_exit(&spa_namespace_lock); 4996 4997 /* search the rest of the vdevs for spares to remove */ 4998 spa_vdev_resilver_done(spa); 4999 } 5000 5001 /* all done with the spa; OK to release */ 5002 mutex_enter(&spa_namespace_lock); 5003 spa_close(spa, FTAG); 5004 mutex_exit(&spa_namespace_lock); 5005 5006 return (error); 5007 } 5008 5009 /* 5010 * Split a set of devices from their mirrors, and create a new pool from them. 5011 */ 5012 int 5013 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 5014 nvlist_t *props, boolean_t exp) 5015 { 5016 int error = 0; 5017 uint64_t txg, *glist; 5018 spa_t *newspa; 5019 uint_t c, children, lastlog; 5020 nvlist_t **child, *nvl, *tmp; 5021 dmu_tx_t *tx; 5022 char *altroot = NULL; 5023 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 5024 boolean_t activate_slog; 5025 5026 ASSERT(spa_writeable(spa)); 5027 5028 txg = spa_vdev_enter(spa); 5029 5030 /* clear the log and flush everything up to now */ 5031 activate_slog = spa_passivate_log(spa); 5032 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5033 error = spa_offline_log(spa); 5034 txg = spa_vdev_config_enter(spa); 5035 5036 if (activate_slog) 5037 spa_activate_log(spa); 5038 5039 if (error != 0) 5040 return (spa_vdev_exit(spa, NULL, txg, error)); 5041 5042 /* check new spa name before going any further */ 5043 if (spa_lookup(newname) != NULL) 5044 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 5045 5046 /* 5047 * scan through all the children to ensure they're all mirrors 5048 */ 5049 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 5050 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 5051 &children) != 0) 5052 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5053 5054 /* first, check to ensure we've got the right child count */ 5055 rvd = spa->spa_root_vdev; 5056 lastlog = 0; 5057 for (c = 0; c < rvd->vdev_children; c++) { 5058 vdev_t *vd = rvd->vdev_child[c]; 5059 5060 /* don't count the holes & logs as children */ 5061 if (vd->vdev_islog || vd->vdev_ishole) { 5062 if (lastlog == 0) 5063 lastlog = c; 5064 continue; 5065 } 5066 5067 lastlog = 0; 5068 } 5069 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 5070 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5071 5072 /* next, ensure no spare or cache devices are part of the split */ 5073 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 5074 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 5075 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5076 5077 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 5078 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 5079 5080 /* then, loop over each vdev and validate it */ 5081 for (c = 0; c < children; c++) { 5082 uint64_t is_hole = 0; 5083 5084 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 5085 &is_hole); 5086 5087 if (is_hole != 0) { 5088 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 5089 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 5090 continue; 5091 } else { 5092 error = SET_ERROR(EINVAL); 5093 break; 5094 } 5095 } 5096 5097 /* which disk is going to be split? */ 5098 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 5099 &glist[c]) != 0) { 5100 error = SET_ERROR(EINVAL); 5101 break; 5102 } 5103 5104 /* look it up in the spa */ 5105 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 5106 if (vml[c] == NULL) { 5107 error = SET_ERROR(ENODEV); 5108 break; 5109 } 5110 5111 /* make sure there's nothing stopping the split */ 5112 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 5113 vml[c]->vdev_islog || 5114 vml[c]->vdev_ishole || 5115 vml[c]->vdev_isspare || 5116 vml[c]->vdev_isl2cache || 5117 !vdev_writeable(vml[c]) || 5118 vml[c]->vdev_children != 0 || 5119 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 5120 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 5121 error = SET_ERROR(EINVAL); 5122 break; 5123 } 5124 5125 if (vdev_dtl_required(vml[c])) { 5126 error = SET_ERROR(EBUSY); 5127 break; 5128 } 5129 5130 /* we need certain info from the top level */ 5131 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5132 vml[c]->vdev_top->vdev_ms_array) == 0); 5133 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5134 vml[c]->vdev_top->vdev_ms_shift) == 0); 5135 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5136 vml[c]->vdev_top->vdev_asize) == 0); 5137 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5138 vml[c]->vdev_top->vdev_ashift) == 0); 5139 5140 /* transfer per-vdev ZAPs */ 5141 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 5142 VERIFY0(nvlist_add_uint64(child[c], 5143 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 5144 5145 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 5146 VERIFY0(nvlist_add_uint64(child[c], 5147 ZPOOL_CONFIG_VDEV_TOP_ZAP, 5148 vml[c]->vdev_parent->vdev_top_zap)); 5149 } 5150 5151 if (error != 0) { 5152 kmem_free(vml, children * sizeof (vdev_t *)); 5153 kmem_free(glist, children * sizeof (uint64_t)); 5154 return (spa_vdev_exit(spa, NULL, txg, error)); 5155 } 5156 5157 /* stop writers from using the disks */ 5158 for (c = 0; c < children; c++) { 5159 if (vml[c] != NULL) 5160 vml[c]->vdev_offline = B_TRUE; 5161 } 5162 vdev_reopen(spa->spa_root_vdev); 5163 5164 /* 5165 * Temporarily record the splitting vdevs in the spa config. This 5166 * will disappear once the config is regenerated. 5167 */ 5168 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5169 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5170 glist, children) == 0); 5171 kmem_free(glist, children * sizeof (uint64_t)); 5172 5173 mutex_enter(&spa->spa_props_lock); 5174 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5175 nvl) == 0); 5176 mutex_exit(&spa->spa_props_lock); 5177 spa->spa_config_splitting = nvl; 5178 vdev_config_dirty(spa->spa_root_vdev); 5179 5180 /* configure and create the new pool */ 5181 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5182 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5183 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5184 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5185 spa_version(spa)) == 0); 5186 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5187 spa->spa_config_txg) == 0); 5188 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5189 spa_generate_guid(NULL)) == 0); 5190 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 5191 (void) nvlist_lookup_string(props, 5192 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5193 5194 /* add the new pool to the namespace */ 5195 newspa = spa_add(newname, config, altroot); 5196 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 5197 newspa->spa_config_txg = spa->spa_config_txg; 5198 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5199 5200 /* release the spa config lock, retaining the namespace lock */ 5201 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5202 5203 if (zio_injection_enabled) 5204 zio_handle_panic_injection(spa, FTAG, 1); 5205 5206 spa_activate(newspa, spa_mode_global); 5207 spa_async_suspend(newspa); 5208 5209 /* create the new pool from the disks of the original pool */ 5210 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5211 if (error) 5212 goto out; 5213 5214 /* if that worked, generate a real config for the new pool */ 5215 if (newspa->spa_root_vdev != NULL) { 5216 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5217 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5218 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5219 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5220 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5221 B_TRUE)); 5222 } 5223 5224 /* set the props */ 5225 if (props != NULL) { 5226 spa_configfile_set(newspa, props, B_FALSE); 5227 error = spa_prop_set(newspa, props); 5228 if (error) 5229 goto out; 5230 } 5231 5232 /* flush everything */ 5233 txg = spa_vdev_config_enter(newspa); 5234 vdev_config_dirty(newspa->spa_root_vdev); 5235 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5236 5237 if (zio_injection_enabled) 5238 zio_handle_panic_injection(spa, FTAG, 2); 5239 5240 spa_async_resume(newspa); 5241 5242 /* finally, update the original pool's config */ 5243 txg = spa_vdev_config_enter(spa); 5244 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5245 error = dmu_tx_assign(tx, TXG_WAIT); 5246 if (error != 0) 5247 dmu_tx_abort(tx); 5248 for (c = 0; c < children; c++) { 5249 if (vml[c] != NULL) { 5250 vdev_split(vml[c]); 5251 if (error == 0) 5252 spa_history_log_internal(spa, "detach", tx, 5253 "vdev=%s", vml[c]->vdev_path); 5254 5255 vdev_free(vml[c]); 5256 } 5257 } 5258 spa->spa_avz_action = AVZ_ACTION_REBUILD; 5259 vdev_config_dirty(spa->spa_root_vdev); 5260 spa->spa_config_splitting = NULL; 5261 nvlist_free(nvl); 5262 if (error == 0) 5263 dmu_tx_commit(tx); 5264 (void) spa_vdev_exit(spa, NULL, txg, 0); 5265 5266 if (zio_injection_enabled) 5267 zio_handle_panic_injection(spa, FTAG, 3); 5268 5269 /* split is complete; log a history record */ 5270 spa_history_log_internal(newspa, "split", NULL, 5271 "from pool %s", spa_name(spa)); 5272 5273 kmem_free(vml, children * sizeof (vdev_t *)); 5274 5275 /* if we're not going to mount the filesystems in userland, export */ 5276 if (exp) 5277 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5278 B_FALSE, B_FALSE); 5279 5280 return (error); 5281 5282 out: 5283 spa_unload(newspa); 5284 spa_deactivate(newspa); 5285 spa_remove(newspa); 5286 5287 txg = spa_vdev_config_enter(spa); 5288 5289 /* re-online all offlined disks */ 5290 for (c = 0; c < children; c++) { 5291 if (vml[c] != NULL) 5292 vml[c]->vdev_offline = B_FALSE; 5293 } 5294 vdev_reopen(spa->spa_root_vdev); 5295 5296 nvlist_free(spa->spa_config_splitting); 5297 spa->spa_config_splitting = NULL; 5298 (void) spa_vdev_exit(spa, NULL, txg, error); 5299 5300 kmem_free(vml, children * sizeof (vdev_t *)); 5301 return (error); 5302 } 5303 5304 static nvlist_t * 5305 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5306 { 5307 for (int i = 0; i < count; i++) { 5308 uint64_t guid; 5309 5310 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5311 &guid) == 0); 5312 5313 if (guid == target_guid) 5314 return (nvpp[i]); 5315 } 5316 5317 return (NULL); 5318 } 5319 5320 static void 5321 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5322 nvlist_t *dev_to_remove) 5323 { 5324 nvlist_t **newdev = NULL; 5325 5326 if (count > 1) 5327 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5328 5329 for (int i = 0, j = 0; i < count; i++) { 5330 if (dev[i] == dev_to_remove) 5331 continue; 5332 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5333 } 5334 5335 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5336 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5337 5338 for (int i = 0; i < count - 1; i++) 5339 nvlist_free(newdev[i]); 5340 5341 if (count > 1) 5342 kmem_free(newdev, (count - 1) * sizeof (void *)); 5343 } 5344 5345 /* 5346 * Evacuate the device. 5347 */ 5348 static int 5349 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5350 { 5351 uint64_t txg; 5352 int error = 0; 5353 5354 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5355 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5356 ASSERT(vd == vd->vdev_top); 5357 5358 /* 5359 * Evacuate the device. We don't hold the config lock as writer 5360 * since we need to do I/O but we do keep the 5361 * spa_namespace_lock held. Once this completes the device 5362 * should no longer have any blocks allocated on it. 5363 */ 5364 if (vd->vdev_islog) { 5365 if (vd->vdev_stat.vs_alloc != 0) 5366 error = spa_offline_log(spa); 5367 } else { 5368 error = SET_ERROR(ENOTSUP); 5369 } 5370 5371 if (error) 5372 return (error); 5373 5374 /* 5375 * The evacuation succeeded. Remove any remaining MOS metadata 5376 * associated with this vdev, and wait for these changes to sync. 5377 */ 5378 ASSERT0(vd->vdev_stat.vs_alloc); 5379 txg = spa_vdev_config_enter(spa); 5380 vd->vdev_removing = B_TRUE; 5381 vdev_dirty_leaves(vd, VDD_DTL, txg); 5382 vdev_config_dirty(vd); 5383 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5384 5385 return (0); 5386 } 5387 5388 /* 5389 * Complete the removal by cleaning up the namespace. 5390 */ 5391 static void 5392 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5393 { 5394 vdev_t *rvd = spa->spa_root_vdev; 5395 uint64_t id = vd->vdev_id; 5396 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5397 5398 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5399 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5400 ASSERT(vd == vd->vdev_top); 5401 5402 /* 5403 * Only remove any devices which are empty. 5404 */ 5405 if (vd->vdev_stat.vs_alloc != 0) 5406 return; 5407 5408 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5409 5410 if (list_link_active(&vd->vdev_state_dirty_node)) 5411 vdev_state_clean(vd); 5412 if (list_link_active(&vd->vdev_config_dirty_node)) 5413 vdev_config_clean(vd); 5414 5415 vdev_free(vd); 5416 5417 if (last_vdev) { 5418 vdev_compact_children(rvd); 5419 } else { 5420 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5421 vdev_add_child(rvd, vd); 5422 } 5423 vdev_config_dirty(rvd); 5424 5425 /* 5426 * Reassess the health of our root vdev. 5427 */ 5428 vdev_reopen(rvd); 5429 } 5430 5431 /* 5432 * Remove a device from the pool - 5433 * 5434 * Removing a device from the vdev namespace requires several steps 5435 * and can take a significant amount of time. As a result we use 5436 * the spa_vdev_config_[enter/exit] functions which allow us to 5437 * grab and release the spa_config_lock while still holding the namespace 5438 * lock. During each step the configuration is synced out. 5439 * 5440 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5441 * devices. 5442 */ 5443 int 5444 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5445 { 5446 vdev_t *vd; 5447 sysevent_t *ev = NULL; 5448 metaslab_group_t *mg; 5449 nvlist_t **spares, **l2cache, *nv; 5450 uint64_t txg = 0; 5451 uint_t nspares, nl2cache; 5452 int error = 0; 5453 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5454 5455 ASSERT(spa_writeable(spa)); 5456 5457 if (!locked) 5458 txg = spa_vdev_enter(spa); 5459 5460 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5461 5462 if (spa->spa_spares.sav_vdevs != NULL && 5463 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5464 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5465 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5466 /* 5467 * Only remove the hot spare if it's not currently in use 5468 * in this pool. 5469 */ 5470 if (vd == NULL || unspare) { 5471 if (vd == NULL) 5472 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 5473 ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX); 5474 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5475 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5476 spa_load_spares(spa); 5477 spa->spa_spares.sav_sync = B_TRUE; 5478 } else { 5479 error = SET_ERROR(EBUSY); 5480 } 5481 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5482 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5483 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5484 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5485 /* 5486 * Cache devices can always be removed. 5487 */ 5488 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 5489 ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX); 5490 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5491 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5492 spa_load_l2cache(spa); 5493 spa->spa_l2cache.sav_sync = B_TRUE; 5494 } else if (vd != NULL && vd->vdev_islog) { 5495 ASSERT(!locked); 5496 ASSERT(vd == vd->vdev_top); 5497 5498 mg = vd->vdev_mg; 5499 5500 /* 5501 * Stop allocating from this vdev. 5502 */ 5503 metaslab_group_passivate(mg); 5504 5505 /* 5506 * Wait for the youngest allocations and frees to sync, 5507 * and then wait for the deferral of those frees to finish. 5508 */ 5509 spa_vdev_config_exit(spa, NULL, 5510 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5511 5512 /* 5513 * Attempt to evacuate the vdev. 5514 */ 5515 error = spa_vdev_remove_evacuate(spa, vd); 5516 5517 txg = spa_vdev_config_enter(spa); 5518 5519 /* 5520 * If we couldn't evacuate the vdev, unwind. 5521 */ 5522 if (error) { 5523 metaslab_group_activate(mg); 5524 return (spa_vdev_exit(spa, NULL, txg, error)); 5525 } 5526 5527 /* 5528 * Clean up the vdev namespace. 5529 */ 5530 ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV); 5531 spa_vdev_remove_from_namespace(spa, vd); 5532 5533 } else if (vd != NULL) { 5534 /* 5535 * Normal vdevs cannot be removed (yet). 5536 */ 5537 error = SET_ERROR(ENOTSUP); 5538 } else { 5539 /* 5540 * There is no vdev of any kind with the specified guid. 5541 */ 5542 error = SET_ERROR(ENOENT); 5543 } 5544 5545 if (!locked) 5546 error = spa_vdev_exit(spa, NULL, txg, error); 5547 5548 if (ev) 5549 spa_event_post(ev); 5550 5551 return (error); 5552 } 5553 5554 /* 5555 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5556 * currently spared, so we can detach it. 5557 */ 5558 static vdev_t * 5559 spa_vdev_resilver_done_hunt(vdev_t *vd) 5560 { 5561 vdev_t *newvd, *oldvd; 5562 5563 for (int c = 0; c < vd->vdev_children; c++) { 5564 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5565 if (oldvd != NULL) 5566 return (oldvd); 5567 } 5568 5569 /* 5570 * Check for a completed replacement. We always consider the first 5571 * vdev in the list to be the oldest vdev, and the last one to be 5572 * the newest (see spa_vdev_attach() for how that works). In 5573 * the case where the newest vdev is faulted, we will not automatically 5574 * remove it after a resilver completes. This is OK as it will require 5575 * user intervention to determine which disk the admin wishes to keep. 5576 */ 5577 if (vd->vdev_ops == &vdev_replacing_ops) { 5578 ASSERT(vd->vdev_children > 1); 5579 5580 newvd = vd->vdev_child[vd->vdev_children - 1]; 5581 oldvd = vd->vdev_child[0]; 5582 5583 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5584 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5585 !vdev_dtl_required(oldvd)) 5586 return (oldvd); 5587 } 5588 5589 /* 5590 * Check for a completed resilver with the 'unspare' flag set. 5591 */ 5592 if (vd->vdev_ops == &vdev_spare_ops) { 5593 vdev_t *first = vd->vdev_child[0]; 5594 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5595 5596 if (last->vdev_unspare) { 5597 oldvd = first; 5598 newvd = last; 5599 } else if (first->vdev_unspare) { 5600 oldvd = last; 5601 newvd = first; 5602 } else { 5603 oldvd = NULL; 5604 } 5605 5606 if (oldvd != NULL && 5607 vdev_dtl_empty(newvd, DTL_MISSING) && 5608 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5609 !vdev_dtl_required(oldvd)) 5610 return (oldvd); 5611 5612 /* 5613 * If there are more than two spares attached to a disk, 5614 * and those spares are not required, then we want to 5615 * attempt to free them up now so that they can be used 5616 * by other pools. Once we're back down to a single 5617 * disk+spare, we stop removing them. 5618 */ 5619 if (vd->vdev_children > 2) { 5620 newvd = vd->vdev_child[1]; 5621 5622 if (newvd->vdev_isspare && last->vdev_isspare && 5623 vdev_dtl_empty(last, DTL_MISSING) && 5624 vdev_dtl_empty(last, DTL_OUTAGE) && 5625 !vdev_dtl_required(newvd)) 5626 return (newvd); 5627 } 5628 } 5629 5630 return (NULL); 5631 } 5632 5633 static void 5634 spa_vdev_resilver_done(spa_t *spa) 5635 { 5636 vdev_t *vd, *pvd, *ppvd; 5637 uint64_t guid, sguid, pguid, ppguid; 5638 5639 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5640 5641 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5642 pvd = vd->vdev_parent; 5643 ppvd = pvd->vdev_parent; 5644 guid = vd->vdev_guid; 5645 pguid = pvd->vdev_guid; 5646 ppguid = ppvd->vdev_guid; 5647 sguid = 0; 5648 /* 5649 * If we have just finished replacing a hot spared device, then 5650 * we need to detach the parent's first child (the original hot 5651 * spare) as well. 5652 */ 5653 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5654 ppvd->vdev_children == 2) { 5655 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5656 sguid = ppvd->vdev_child[1]->vdev_guid; 5657 } 5658 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5659 5660 spa_config_exit(spa, SCL_ALL, FTAG); 5661 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5662 return; 5663 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5664 return; 5665 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5666 } 5667 5668 spa_config_exit(spa, SCL_ALL, FTAG); 5669 } 5670 5671 /* 5672 * Update the stored path or FRU for this vdev. 5673 */ 5674 int 5675 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5676 boolean_t ispath) 5677 { 5678 vdev_t *vd; 5679 boolean_t sync = B_FALSE; 5680 5681 ASSERT(spa_writeable(spa)); 5682 5683 spa_vdev_state_enter(spa, SCL_ALL); 5684 5685 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5686 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5687 5688 if (!vd->vdev_ops->vdev_op_leaf) 5689 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5690 5691 if (ispath) { 5692 if (strcmp(value, vd->vdev_path) != 0) { 5693 spa_strfree(vd->vdev_path); 5694 vd->vdev_path = spa_strdup(value); 5695 sync = B_TRUE; 5696 } 5697 } else { 5698 if (vd->vdev_fru == NULL) { 5699 vd->vdev_fru = spa_strdup(value); 5700 sync = B_TRUE; 5701 } else if (strcmp(value, vd->vdev_fru) != 0) { 5702 spa_strfree(vd->vdev_fru); 5703 vd->vdev_fru = spa_strdup(value); 5704 sync = B_TRUE; 5705 } 5706 } 5707 5708 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5709 } 5710 5711 int 5712 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5713 { 5714 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5715 } 5716 5717 int 5718 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5719 { 5720 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5721 } 5722 5723 /* 5724 * ========================================================================== 5725 * SPA Scanning 5726 * ========================================================================== 5727 */ 5728 5729 int 5730 spa_scan_stop(spa_t *spa) 5731 { 5732 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5733 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5734 return (SET_ERROR(EBUSY)); 5735 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5736 } 5737 5738 int 5739 spa_scan(spa_t *spa, pool_scan_func_t func) 5740 { 5741 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5742 5743 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5744 return (SET_ERROR(ENOTSUP)); 5745 5746 /* 5747 * If a resilver was requested, but there is no DTL on a 5748 * writeable leaf device, we have nothing to do. 5749 */ 5750 if (func == POOL_SCAN_RESILVER && 5751 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5752 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5753 return (0); 5754 } 5755 5756 return (dsl_scan(spa->spa_dsl_pool, func)); 5757 } 5758 5759 /* 5760 * ========================================================================== 5761 * SPA async task processing 5762 * ========================================================================== 5763 */ 5764 5765 static void 5766 spa_async_remove(spa_t *spa, vdev_t *vd) 5767 { 5768 if (vd->vdev_remove_wanted) { 5769 vd->vdev_remove_wanted = B_FALSE; 5770 vd->vdev_delayed_close = B_FALSE; 5771 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5772 5773 /* 5774 * We want to clear the stats, but we don't want to do a full 5775 * vdev_clear() as that will cause us to throw away 5776 * degraded/faulted state as well as attempt to reopen the 5777 * device, all of which is a waste. 5778 */ 5779 vd->vdev_stat.vs_read_errors = 0; 5780 vd->vdev_stat.vs_write_errors = 0; 5781 vd->vdev_stat.vs_checksum_errors = 0; 5782 5783 vdev_state_dirty(vd->vdev_top); 5784 } 5785 5786 for (int c = 0; c < vd->vdev_children; c++) 5787 spa_async_remove(spa, vd->vdev_child[c]); 5788 } 5789 5790 static void 5791 spa_async_probe(spa_t *spa, vdev_t *vd) 5792 { 5793 if (vd->vdev_probe_wanted) { 5794 vd->vdev_probe_wanted = B_FALSE; 5795 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5796 } 5797 5798 for (int c = 0; c < vd->vdev_children; c++) 5799 spa_async_probe(spa, vd->vdev_child[c]); 5800 } 5801 5802 static void 5803 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5804 { 5805 sysevent_id_t eid; 5806 nvlist_t *attr; 5807 char *physpath; 5808 5809 if (!spa->spa_autoexpand) 5810 return; 5811 5812 for (int c = 0; c < vd->vdev_children; c++) { 5813 vdev_t *cvd = vd->vdev_child[c]; 5814 spa_async_autoexpand(spa, cvd); 5815 } 5816 5817 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5818 return; 5819 5820 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5821 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5822 5823 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5824 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5825 5826 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5827 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5828 5829 nvlist_free(attr); 5830 kmem_free(physpath, MAXPATHLEN); 5831 } 5832 5833 static void 5834 spa_async_thread(spa_t *spa) 5835 { 5836 int tasks; 5837 5838 ASSERT(spa->spa_sync_on); 5839 5840 mutex_enter(&spa->spa_async_lock); 5841 tasks = spa->spa_async_tasks; 5842 spa->spa_async_tasks = 0; 5843 mutex_exit(&spa->spa_async_lock); 5844 5845 /* 5846 * See if the config needs to be updated. 5847 */ 5848 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5849 uint64_t old_space, new_space; 5850 5851 mutex_enter(&spa_namespace_lock); 5852 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5853 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5854 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5855 mutex_exit(&spa_namespace_lock); 5856 5857 /* 5858 * If the pool grew as a result of the config update, 5859 * then log an internal history event. 5860 */ 5861 if (new_space != old_space) { 5862 spa_history_log_internal(spa, "vdev online", NULL, 5863 "pool '%s' size: %llu(+%llu)", 5864 spa_name(spa), new_space, new_space - old_space); 5865 } 5866 } 5867 5868 /* 5869 * See if any devices need to be marked REMOVED. 5870 */ 5871 if (tasks & SPA_ASYNC_REMOVE) { 5872 spa_vdev_state_enter(spa, SCL_NONE); 5873 spa_async_remove(spa, spa->spa_root_vdev); 5874 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5875 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5876 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5877 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5878 (void) spa_vdev_state_exit(spa, NULL, 0); 5879 } 5880 5881 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5882 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5883 spa_async_autoexpand(spa, spa->spa_root_vdev); 5884 spa_config_exit(spa, SCL_CONFIG, FTAG); 5885 } 5886 5887 /* 5888 * See if any devices need to be probed. 5889 */ 5890 if (tasks & SPA_ASYNC_PROBE) { 5891 spa_vdev_state_enter(spa, SCL_NONE); 5892 spa_async_probe(spa, spa->spa_root_vdev); 5893 (void) spa_vdev_state_exit(spa, NULL, 0); 5894 } 5895 5896 /* 5897 * If any devices are done replacing, detach them. 5898 */ 5899 if (tasks & SPA_ASYNC_RESILVER_DONE) 5900 spa_vdev_resilver_done(spa); 5901 5902 /* 5903 * Kick off a resilver. 5904 */ 5905 if (tasks & SPA_ASYNC_RESILVER) 5906 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5907 5908 /* 5909 * Let the world know that we're done. 5910 */ 5911 mutex_enter(&spa->spa_async_lock); 5912 spa->spa_async_thread = NULL; 5913 cv_broadcast(&spa->spa_async_cv); 5914 mutex_exit(&spa->spa_async_lock); 5915 thread_exit(); 5916 } 5917 5918 void 5919 spa_async_suspend(spa_t *spa) 5920 { 5921 mutex_enter(&spa->spa_async_lock); 5922 spa->spa_async_suspended++; 5923 while (spa->spa_async_thread != NULL) 5924 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5925 mutex_exit(&spa->spa_async_lock); 5926 } 5927 5928 void 5929 spa_async_resume(spa_t *spa) 5930 { 5931 mutex_enter(&spa->spa_async_lock); 5932 ASSERT(spa->spa_async_suspended != 0); 5933 spa->spa_async_suspended--; 5934 mutex_exit(&spa->spa_async_lock); 5935 } 5936 5937 static boolean_t 5938 spa_async_tasks_pending(spa_t *spa) 5939 { 5940 uint_t non_config_tasks; 5941 uint_t config_task; 5942 boolean_t config_task_suspended; 5943 5944 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5945 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5946 if (spa->spa_ccw_fail_time == 0) { 5947 config_task_suspended = B_FALSE; 5948 } else { 5949 config_task_suspended = 5950 (gethrtime() - spa->spa_ccw_fail_time) < 5951 (zfs_ccw_retry_interval * NANOSEC); 5952 } 5953 5954 return (non_config_tasks || (config_task && !config_task_suspended)); 5955 } 5956 5957 static void 5958 spa_async_dispatch(spa_t *spa) 5959 { 5960 mutex_enter(&spa->spa_async_lock); 5961 if (spa_async_tasks_pending(spa) && 5962 !spa->spa_async_suspended && 5963 spa->spa_async_thread == NULL && 5964 rootdir != NULL) 5965 spa->spa_async_thread = thread_create(NULL, 0, 5966 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5967 mutex_exit(&spa->spa_async_lock); 5968 } 5969 5970 void 5971 spa_async_request(spa_t *spa, int task) 5972 { 5973 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5974 mutex_enter(&spa->spa_async_lock); 5975 spa->spa_async_tasks |= task; 5976 mutex_exit(&spa->spa_async_lock); 5977 } 5978 5979 /* 5980 * ========================================================================== 5981 * SPA syncing routines 5982 * ========================================================================== 5983 */ 5984 5985 static int 5986 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5987 { 5988 bpobj_t *bpo = arg; 5989 bpobj_enqueue(bpo, bp, tx); 5990 return (0); 5991 } 5992 5993 static int 5994 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5995 { 5996 zio_t *zio = arg; 5997 5998 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5999 zio->io_flags)); 6000 return (0); 6001 } 6002 6003 /* 6004 * Note: this simple function is not inlined to make it easier to dtrace the 6005 * amount of time spent syncing frees. 6006 */ 6007 static void 6008 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 6009 { 6010 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6011 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 6012 VERIFY(zio_wait(zio) == 0); 6013 } 6014 6015 /* 6016 * Note: this simple function is not inlined to make it easier to dtrace the 6017 * amount of time spent syncing deferred frees. 6018 */ 6019 static void 6020 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 6021 { 6022 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6023 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 6024 spa_free_sync_cb, zio, tx), ==, 0); 6025 VERIFY0(zio_wait(zio)); 6026 } 6027 6028 6029 static void 6030 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 6031 { 6032 char *packed = NULL; 6033 size_t bufsize; 6034 size_t nvsize = 0; 6035 dmu_buf_t *db; 6036 6037 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 6038 6039 /* 6040 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 6041 * information. This avoids the dmu_buf_will_dirty() path and 6042 * saves us a pre-read to get data we don't actually care about. 6043 */ 6044 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 6045 packed = kmem_alloc(bufsize, KM_SLEEP); 6046 6047 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 6048 KM_SLEEP) == 0); 6049 bzero(packed + nvsize, bufsize - nvsize); 6050 6051 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 6052 6053 kmem_free(packed, bufsize); 6054 6055 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 6056 dmu_buf_will_dirty(db, tx); 6057 *(uint64_t *)db->db_data = nvsize; 6058 dmu_buf_rele(db, FTAG); 6059 } 6060 6061 static void 6062 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 6063 const char *config, const char *entry) 6064 { 6065 nvlist_t *nvroot; 6066 nvlist_t **list; 6067 int i; 6068 6069 if (!sav->sav_sync) 6070 return; 6071 6072 /* 6073 * Update the MOS nvlist describing the list of available devices. 6074 * spa_validate_aux() will have already made sure this nvlist is 6075 * valid and the vdevs are labeled appropriately. 6076 */ 6077 if (sav->sav_object == 0) { 6078 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 6079 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 6080 sizeof (uint64_t), tx); 6081 VERIFY(zap_update(spa->spa_meta_objset, 6082 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 6083 &sav->sav_object, tx) == 0); 6084 } 6085 6086 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6087 if (sav->sav_count == 0) { 6088 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 6089 } else { 6090 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 6091 for (i = 0; i < sav->sav_count; i++) 6092 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 6093 B_FALSE, VDEV_CONFIG_L2CACHE); 6094 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 6095 sav->sav_count) == 0); 6096 for (i = 0; i < sav->sav_count; i++) 6097 nvlist_free(list[i]); 6098 kmem_free(list, sav->sav_count * sizeof (void *)); 6099 } 6100 6101 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 6102 nvlist_free(nvroot); 6103 6104 sav->sav_sync = B_FALSE; 6105 } 6106 6107 /* 6108 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 6109 * The all-vdev ZAP must be empty. 6110 */ 6111 static void 6112 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 6113 { 6114 spa_t *spa = vd->vdev_spa; 6115 if (vd->vdev_top_zap != 0) { 6116 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6117 vd->vdev_top_zap, tx)); 6118 } 6119 if (vd->vdev_leaf_zap != 0) { 6120 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6121 vd->vdev_leaf_zap, tx)); 6122 } 6123 for (uint64_t i = 0; i < vd->vdev_children; i++) { 6124 spa_avz_build(vd->vdev_child[i], avz, tx); 6125 } 6126 } 6127 6128 static void 6129 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 6130 { 6131 nvlist_t *config; 6132 6133 /* 6134 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 6135 * its config may not be dirty but we still need to build per-vdev ZAPs. 6136 * Similarly, if the pool is being assembled (e.g. after a split), we 6137 * need to rebuild the AVZ although the config may not be dirty. 6138 */ 6139 if (list_is_empty(&spa->spa_config_dirty_list) && 6140 spa->spa_avz_action == AVZ_ACTION_NONE) 6141 return; 6142 6143 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6144 6145 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 6146 spa->spa_all_vdev_zaps != 0); 6147 6148 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 6149 /* Make and build the new AVZ */ 6150 uint64_t new_avz = zap_create(spa->spa_meta_objset, 6151 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 6152 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 6153 6154 /* Diff old AVZ with new one */ 6155 zap_cursor_t zc; 6156 zap_attribute_t za; 6157 6158 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6159 spa->spa_all_vdev_zaps); 6160 zap_cursor_retrieve(&zc, &za) == 0; 6161 zap_cursor_advance(&zc)) { 6162 uint64_t vdzap = za.za_first_integer; 6163 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 6164 vdzap) == ENOENT) { 6165 /* 6166 * ZAP is listed in old AVZ but not in new one; 6167 * destroy it 6168 */ 6169 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 6170 tx)); 6171 } 6172 } 6173 6174 zap_cursor_fini(&zc); 6175 6176 /* Destroy the old AVZ */ 6177 VERIFY0(zap_destroy(spa->spa_meta_objset, 6178 spa->spa_all_vdev_zaps, tx)); 6179 6180 /* Replace the old AVZ in the dir obj with the new one */ 6181 VERIFY0(zap_update(spa->spa_meta_objset, 6182 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 6183 sizeof (new_avz), 1, &new_avz, tx)); 6184 6185 spa->spa_all_vdev_zaps = new_avz; 6186 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 6187 zap_cursor_t zc; 6188 zap_attribute_t za; 6189 6190 /* Walk through the AVZ and destroy all listed ZAPs */ 6191 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6192 spa->spa_all_vdev_zaps); 6193 zap_cursor_retrieve(&zc, &za) == 0; 6194 zap_cursor_advance(&zc)) { 6195 uint64_t zap = za.za_first_integer; 6196 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 6197 } 6198 6199 zap_cursor_fini(&zc); 6200 6201 /* Destroy and unlink the AVZ itself */ 6202 VERIFY0(zap_destroy(spa->spa_meta_objset, 6203 spa->spa_all_vdev_zaps, tx)); 6204 VERIFY0(zap_remove(spa->spa_meta_objset, 6205 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 6206 spa->spa_all_vdev_zaps = 0; 6207 } 6208 6209 if (spa->spa_all_vdev_zaps == 0) { 6210 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 6211 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 6212 DMU_POOL_VDEV_ZAP_MAP, tx); 6213 } 6214 spa->spa_avz_action = AVZ_ACTION_NONE; 6215 6216 /* Create ZAPs for vdevs that don't have them. */ 6217 vdev_construct_zaps(spa->spa_root_vdev, tx); 6218 6219 config = spa_config_generate(spa, spa->spa_root_vdev, 6220 dmu_tx_get_txg(tx), B_FALSE); 6221 6222 /* 6223 * If we're upgrading the spa version then make sure that 6224 * the config object gets updated with the correct version. 6225 */ 6226 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 6227 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 6228 spa->spa_uberblock.ub_version); 6229 6230 spa_config_exit(spa, SCL_STATE, FTAG); 6231 6232 nvlist_free(spa->spa_config_syncing); 6233 spa->spa_config_syncing = config; 6234 6235 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 6236 } 6237 6238 static void 6239 spa_sync_version(void *arg, dmu_tx_t *tx) 6240 { 6241 uint64_t *versionp = arg; 6242 uint64_t version = *versionp; 6243 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6244 6245 /* 6246 * Setting the version is special cased when first creating the pool. 6247 */ 6248 ASSERT(tx->tx_txg != TXG_INITIAL); 6249 6250 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6251 ASSERT(version >= spa_version(spa)); 6252 6253 spa->spa_uberblock.ub_version = version; 6254 vdev_config_dirty(spa->spa_root_vdev); 6255 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6256 } 6257 6258 /* 6259 * Set zpool properties. 6260 */ 6261 static void 6262 spa_sync_props(void *arg, dmu_tx_t *tx) 6263 { 6264 nvlist_t *nvp = arg; 6265 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6266 objset_t *mos = spa->spa_meta_objset; 6267 nvpair_t *elem = NULL; 6268 6269 mutex_enter(&spa->spa_props_lock); 6270 6271 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6272 uint64_t intval; 6273 char *strval, *fname; 6274 zpool_prop_t prop; 6275 const char *propname; 6276 zprop_type_t proptype; 6277 spa_feature_t fid; 6278 6279 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6280 case ZPROP_INVAL: 6281 /* 6282 * We checked this earlier in spa_prop_validate(). 6283 */ 6284 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6285 6286 fname = strchr(nvpair_name(elem), '@') + 1; 6287 VERIFY0(zfeature_lookup_name(fname, &fid)); 6288 6289 spa_feature_enable(spa, fid, tx); 6290 spa_history_log_internal(spa, "set", tx, 6291 "%s=enabled", nvpair_name(elem)); 6292 break; 6293 6294 case ZPOOL_PROP_VERSION: 6295 intval = fnvpair_value_uint64(elem); 6296 /* 6297 * The version is synced seperatly before other 6298 * properties and should be correct by now. 6299 */ 6300 ASSERT3U(spa_version(spa), >=, intval); 6301 break; 6302 6303 case ZPOOL_PROP_ALTROOT: 6304 /* 6305 * 'altroot' is a non-persistent property. It should 6306 * have been set temporarily at creation or import time. 6307 */ 6308 ASSERT(spa->spa_root != NULL); 6309 break; 6310 6311 case ZPOOL_PROP_READONLY: 6312 case ZPOOL_PROP_CACHEFILE: 6313 /* 6314 * 'readonly' and 'cachefile' are also non-persisitent 6315 * properties. 6316 */ 6317 break; 6318 case ZPOOL_PROP_COMMENT: 6319 strval = fnvpair_value_string(elem); 6320 if (spa->spa_comment != NULL) 6321 spa_strfree(spa->spa_comment); 6322 spa->spa_comment = spa_strdup(strval); 6323 /* 6324 * We need to dirty the configuration on all the vdevs 6325 * so that their labels get updated. It's unnecessary 6326 * to do this for pool creation since the vdev's 6327 * configuratoin has already been dirtied. 6328 */ 6329 if (tx->tx_txg != TXG_INITIAL) 6330 vdev_config_dirty(spa->spa_root_vdev); 6331 spa_history_log_internal(spa, "set", tx, 6332 "%s=%s", nvpair_name(elem), strval); 6333 break; 6334 default: 6335 /* 6336 * Set pool property values in the poolprops mos object. 6337 */ 6338 if (spa->spa_pool_props_object == 0) { 6339 spa->spa_pool_props_object = 6340 zap_create_link(mos, DMU_OT_POOL_PROPS, 6341 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6342 tx); 6343 } 6344 6345 /* normalize the property name */ 6346 propname = zpool_prop_to_name(prop); 6347 proptype = zpool_prop_get_type(prop); 6348 6349 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6350 ASSERT(proptype == PROP_TYPE_STRING); 6351 strval = fnvpair_value_string(elem); 6352 VERIFY0(zap_update(mos, 6353 spa->spa_pool_props_object, propname, 6354 1, strlen(strval) + 1, strval, tx)); 6355 spa_history_log_internal(spa, "set", tx, 6356 "%s=%s", nvpair_name(elem), strval); 6357 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6358 intval = fnvpair_value_uint64(elem); 6359 6360 if (proptype == PROP_TYPE_INDEX) { 6361 const char *unused; 6362 VERIFY0(zpool_prop_index_to_string( 6363 prop, intval, &unused)); 6364 } 6365 VERIFY0(zap_update(mos, 6366 spa->spa_pool_props_object, propname, 6367 8, 1, &intval, tx)); 6368 spa_history_log_internal(spa, "set", tx, 6369 "%s=%lld", nvpair_name(elem), intval); 6370 } else { 6371 ASSERT(0); /* not allowed */ 6372 } 6373 6374 switch (prop) { 6375 case ZPOOL_PROP_DELEGATION: 6376 spa->spa_delegation = intval; 6377 break; 6378 case ZPOOL_PROP_BOOTFS: 6379 spa->spa_bootfs = intval; 6380 break; 6381 case ZPOOL_PROP_FAILUREMODE: 6382 spa->spa_failmode = intval; 6383 break; 6384 case ZPOOL_PROP_AUTOEXPAND: 6385 spa->spa_autoexpand = intval; 6386 if (tx->tx_txg != TXG_INITIAL) 6387 spa_async_request(spa, 6388 SPA_ASYNC_AUTOEXPAND); 6389 break; 6390 case ZPOOL_PROP_DEDUPDITTO: 6391 spa->spa_dedup_ditto = intval; 6392 break; 6393 default: 6394 break; 6395 } 6396 } 6397 6398 } 6399 6400 mutex_exit(&spa->spa_props_lock); 6401 } 6402 6403 /* 6404 * Perform one-time upgrade on-disk changes. spa_version() does not 6405 * reflect the new version this txg, so there must be no changes this 6406 * txg to anything that the upgrade code depends on after it executes. 6407 * Therefore this must be called after dsl_pool_sync() does the sync 6408 * tasks. 6409 */ 6410 static void 6411 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6412 { 6413 dsl_pool_t *dp = spa->spa_dsl_pool; 6414 6415 ASSERT(spa->spa_sync_pass == 1); 6416 6417 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6418 6419 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6420 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6421 dsl_pool_create_origin(dp, tx); 6422 6423 /* Keeping the origin open increases spa_minref */ 6424 spa->spa_minref += 3; 6425 } 6426 6427 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6428 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6429 dsl_pool_upgrade_clones(dp, tx); 6430 } 6431 6432 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6433 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6434 dsl_pool_upgrade_dir_clones(dp, tx); 6435 6436 /* Keeping the freedir open increases spa_minref */ 6437 spa->spa_minref += 3; 6438 } 6439 6440 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6441 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6442 spa_feature_create_zap_objects(spa, tx); 6443 } 6444 6445 /* 6446 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6447 * when possibility to use lz4 compression for metadata was added 6448 * Old pools that have this feature enabled must be upgraded to have 6449 * this feature active 6450 */ 6451 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6452 boolean_t lz4_en = spa_feature_is_enabled(spa, 6453 SPA_FEATURE_LZ4_COMPRESS); 6454 boolean_t lz4_ac = spa_feature_is_active(spa, 6455 SPA_FEATURE_LZ4_COMPRESS); 6456 6457 if (lz4_en && !lz4_ac) 6458 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6459 } 6460 6461 /* 6462 * If we haven't written the salt, do so now. Note that the 6463 * feature may not be activated yet, but that's fine since 6464 * the presence of this ZAP entry is backwards compatible. 6465 */ 6466 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 6467 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 6468 VERIFY0(zap_add(spa->spa_meta_objset, 6469 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 6470 sizeof (spa->spa_cksum_salt.zcs_bytes), 6471 spa->spa_cksum_salt.zcs_bytes, tx)); 6472 } 6473 6474 rrw_exit(&dp->dp_config_rwlock, FTAG); 6475 } 6476 6477 /* 6478 * Sync the specified transaction group. New blocks may be dirtied as 6479 * part of the process, so we iterate until it converges. 6480 */ 6481 void 6482 spa_sync(spa_t *spa, uint64_t txg) 6483 { 6484 dsl_pool_t *dp = spa->spa_dsl_pool; 6485 objset_t *mos = spa->spa_meta_objset; 6486 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6487 vdev_t *rvd = spa->spa_root_vdev; 6488 vdev_t *vd; 6489 dmu_tx_t *tx; 6490 int error; 6491 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 6492 zfs_vdev_queue_depth_pct / 100; 6493 6494 VERIFY(spa_writeable(spa)); 6495 6496 /* 6497 * Lock out configuration changes. 6498 */ 6499 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6500 6501 spa->spa_syncing_txg = txg; 6502 spa->spa_sync_pass = 0; 6503 6504 mutex_enter(&spa->spa_alloc_lock); 6505 VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); 6506 mutex_exit(&spa->spa_alloc_lock); 6507 6508 /* 6509 * If there are any pending vdev state changes, convert them 6510 * into config changes that go out with this transaction group. 6511 */ 6512 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6513 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6514 /* 6515 * We need the write lock here because, for aux vdevs, 6516 * calling vdev_config_dirty() modifies sav_config. 6517 * This is ugly and will become unnecessary when we 6518 * eliminate the aux vdev wart by integrating all vdevs 6519 * into the root vdev tree. 6520 */ 6521 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6522 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6523 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6524 vdev_state_clean(vd); 6525 vdev_config_dirty(vd); 6526 } 6527 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6528 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6529 } 6530 spa_config_exit(spa, SCL_STATE, FTAG); 6531 6532 tx = dmu_tx_create_assigned(dp, txg); 6533 6534 spa->spa_sync_starttime = gethrtime(); 6535 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6536 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6537 6538 /* 6539 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6540 * set spa_deflate if we have no raid-z vdevs. 6541 */ 6542 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6543 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6544 int i; 6545 6546 for (i = 0; i < rvd->vdev_children; i++) { 6547 vd = rvd->vdev_child[i]; 6548 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6549 break; 6550 } 6551 if (i == rvd->vdev_children) { 6552 spa->spa_deflate = TRUE; 6553 VERIFY(0 == zap_add(spa->spa_meta_objset, 6554 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6555 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6556 } 6557 } 6558 6559 /* 6560 * Set the top-level vdev's max queue depth. Evaluate each 6561 * top-level's async write queue depth in case it changed. 6562 * The max queue depth will not change in the middle of syncing 6563 * out this txg. 6564 */ 6565 uint64_t queue_depth_total = 0; 6566 for (int c = 0; c < rvd->vdev_children; c++) { 6567 vdev_t *tvd = rvd->vdev_child[c]; 6568 metaslab_group_t *mg = tvd->vdev_mg; 6569 6570 if (mg == NULL || mg->mg_class != spa_normal_class(spa) || 6571 !metaslab_group_initialized(mg)) 6572 continue; 6573 6574 /* 6575 * It is safe to do a lock-free check here because only async 6576 * allocations look at mg_max_alloc_queue_depth, and async 6577 * allocations all happen from spa_sync(). 6578 */ 6579 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth)); 6580 mg->mg_max_alloc_queue_depth = max_queue_depth; 6581 queue_depth_total += mg->mg_max_alloc_queue_depth; 6582 } 6583 metaslab_class_t *mc = spa_normal_class(spa); 6584 ASSERT0(refcount_count(&mc->mc_alloc_slots)); 6585 mc->mc_alloc_max_slots = queue_depth_total; 6586 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 6587 6588 ASSERT3U(mc->mc_alloc_max_slots, <=, 6589 max_queue_depth * rvd->vdev_children); 6590 6591 /* 6592 * Iterate to convergence. 6593 */ 6594 do { 6595 int pass = ++spa->spa_sync_pass; 6596 6597 spa_sync_config_object(spa, tx); 6598 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6599 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6600 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6601 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6602 spa_errlog_sync(spa, txg); 6603 dsl_pool_sync(dp, txg); 6604 6605 if (pass < zfs_sync_pass_deferred_free) { 6606 spa_sync_frees(spa, free_bpl, tx); 6607 } else { 6608 /* 6609 * We can not defer frees in pass 1, because 6610 * we sync the deferred frees later in pass 1. 6611 */ 6612 ASSERT3U(pass, >, 1); 6613 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6614 &spa->spa_deferred_bpobj, tx); 6615 } 6616 6617 ddt_sync(spa, txg); 6618 dsl_scan_sync(dp, tx); 6619 6620 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6621 vdev_sync(vd, txg); 6622 6623 if (pass == 1) { 6624 spa_sync_upgrades(spa, tx); 6625 ASSERT3U(txg, >=, 6626 spa->spa_uberblock.ub_rootbp.blk_birth); 6627 /* 6628 * Note: We need to check if the MOS is dirty 6629 * because we could have marked the MOS dirty 6630 * without updating the uberblock (e.g. if we 6631 * have sync tasks but no dirty user data). We 6632 * need to check the uberblock's rootbp because 6633 * it is updated if we have synced out dirty 6634 * data (though in this case the MOS will most 6635 * likely also be dirty due to second order 6636 * effects, we don't want to rely on that here). 6637 */ 6638 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 6639 !dmu_objset_is_dirty(mos, txg)) { 6640 /* 6641 * Nothing changed on the first pass, 6642 * therefore this TXG is a no-op. Avoid 6643 * syncing deferred frees, so that we 6644 * can keep this TXG as a no-op. 6645 */ 6646 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 6647 txg)); 6648 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6649 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 6650 break; 6651 } 6652 spa_sync_deferred_frees(spa, tx); 6653 } 6654 6655 } while (dmu_objset_is_dirty(mos, txg)); 6656 6657 if (!list_is_empty(&spa->spa_config_dirty_list)) { 6658 /* 6659 * Make sure that the number of ZAPs for all the vdevs matches 6660 * the number of ZAPs in the per-vdev ZAP list. This only gets 6661 * called if the config is dirty; otherwise there may be 6662 * outstanding AVZ operations that weren't completed in 6663 * spa_sync_config_object. 6664 */ 6665 uint64_t all_vdev_zap_entry_count; 6666 ASSERT0(zap_count(spa->spa_meta_objset, 6667 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 6668 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 6669 all_vdev_zap_entry_count); 6670 } 6671 6672 /* 6673 * Rewrite the vdev configuration (which includes the uberblock) 6674 * to commit the transaction group. 6675 * 6676 * If there are no dirty vdevs, we sync the uberblock to a few 6677 * random top-level vdevs that are known to be visible in the 6678 * config cache (see spa_vdev_add() for a complete description). 6679 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6680 */ 6681 for (;;) { 6682 /* 6683 * We hold SCL_STATE to prevent vdev open/close/etc. 6684 * while we're attempting to write the vdev labels. 6685 */ 6686 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6687 6688 if (list_is_empty(&spa->spa_config_dirty_list)) { 6689 vdev_t *svd[SPA_DVAS_PER_BP]; 6690 int svdcount = 0; 6691 int children = rvd->vdev_children; 6692 int c0 = spa_get_random(children); 6693 6694 for (int c = 0; c < children; c++) { 6695 vd = rvd->vdev_child[(c0 + c) % children]; 6696 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6697 continue; 6698 svd[svdcount++] = vd; 6699 if (svdcount == SPA_DVAS_PER_BP) 6700 break; 6701 } 6702 error = vdev_config_sync(svd, svdcount, txg); 6703 } else { 6704 error = vdev_config_sync(rvd->vdev_child, 6705 rvd->vdev_children, txg); 6706 } 6707 6708 if (error == 0) 6709 spa->spa_last_synced_guid = rvd->vdev_guid; 6710 6711 spa_config_exit(spa, SCL_STATE, FTAG); 6712 6713 if (error == 0) 6714 break; 6715 zio_suspend(spa, NULL); 6716 zio_resume_wait(spa); 6717 } 6718 dmu_tx_commit(tx); 6719 6720 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6721 6722 /* 6723 * Clear the dirty config list. 6724 */ 6725 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6726 vdev_config_clean(vd); 6727 6728 /* 6729 * Now that the new config has synced transactionally, 6730 * let it become visible to the config cache. 6731 */ 6732 if (spa->spa_config_syncing != NULL) { 6733 spa_config_set(spa, spa->spa_config_syncing); 6734 spa->spa_config_txg = txg; 6735 spa->spa_config_syncing = NULL; 6736 } 6737 6738 dsl_pool_sync_done(dp, txg); 6739 6740 mutex_enter(&spa->spa_alloc_lock); 6741 VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); 6742 mutex_exit(&spa->spa_alloc_lock); 6743 6744 /* 6745 * Update usable space statistics. 6746 */ 6747 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6748 vdev_sync_done(vd, txg); 6749 6750 spa_update_dspace(spa); 6751 6752 /* 6753 * It had better be the case that we didn't dirty anything 6754 * since vdev_config_sync(). 6755 */ 6756 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6757 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6758 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6759 6760 spa->spa_sync_pass = 0; 6761 6762 /* 6763 * Update the last synced uberblock here. We want to do this at 6764 * the end of spa_sync() so that consumers of spa_last_synced_txg() 6765 * will be guaranteed that all the processing associated with 6766 * that txg has been completed. 6767 */ 6768 spa->spa_ubsync = spa->spa_uberblock; 6769 spa_config_exit(spa, SCL_CONFIG, FTAG); 6770 6771 spa_handle_ignored_writes(spa); 6772 6773 /* 6774 * If any async tasks have been requested, kick them off. 6775 */ 6776 spa_async_dispatch(spa); 6777 } 6778 6779 /* 6780 * Sync all pools. We don't want to hold the namespace lock across these 6781 * operations, so we take a reference on the spa_t and drop the lock during the 6782 * sync. 6783 */ 6784 void 6785 spa_sync_allpools(void) 6786 { 6787 spa_t *spa = NULL; 6788 mutex_enter(&spa_namespace_lock); 6789 while ((spa = spa_next(spa)) != NULL) { 6790 if (spa_state(spa) != POOL_STATE_ACTIVE || 6791 !spa_writeable(spa) || spa_suspended(spa)) 6792 continue; 6793 spa_open_ref(spa, FTAG); 6794 mutex_exit(&spa_namespace_lock); 6795 txg_wait_synced(spa_get_dsl(spa), 0); 6796 mutex_enter(&spa_namespace_lock); 6797 spa_close(spa, FTAG); 6798 } 6799 mutex_exit(&spa_namespace_lock); 6800 } 6801 6802 /* 6803 * ========================================================================== 6804 * Miscellaneous routines 6805 * ========================================================================== 6806 */ 6807 6808 /* 6809 * Remove all pools in the system. 6810 */ 6811 void 6812 spa_evict_all(void) 6813 { 6814 spa_t *spa; 6815 6816 /* 6817 * Remove all cached state. All pools should be closed now, 6818 * so every spa in the AVL tree should be unreferenced. 6819 */ 6820 mutex_enter(&spa_namespace_lock); 6821 while ((spa = spa_next(NULL)) != NULL) { 6822 /* 6823 * Stop async tasks. The async thread may need to detach 6824 * a device that's been replaced, which requires grabbing 6825 * spa_namespace_lock, so we must drop it here. 6826 */ 6827 spa_open_ref(spa, FTAG); 6828 mutex_exit(&spa_namespace_lock); 6829 spa_async_suspend(spa); 6830 mutex_enter(&spa_namespace_lock); 6831 spa_close(spa, FTAG); 6832 6833 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6834 spa_unload(spa); 6835 spa_deactivate(spa); 6836 } 6837 spa_remove(spa); 6838 } 6839 mutex_exit(&spa_namespace_lock); 6840 } 6841 6842 vdev_t * 6843 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6844 { 6845 vdev_t *vd; 6846 int i; 6847 6848 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6849 return (vd); 6850 6851 if (aux) { 6852 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6853 vd = spa->spa_l2cache.sav_vdevs[i]; 6854 if (vd->vdev_guid == guid) 6855 return (vd); 6856 } 6857 6858 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6859 vd = spa->spa_spares.sav_vdevs[i]; 6860 if (vd->vdev_guid == guid) 6861 return (vd); 6862 } 6863 } 6864 6865 return (NULL); 6866 } 6867 6868 void 6869 spa_upgrade(spa_t *spa, uint64_t version) 6870 { 6871 ASSERT(spa_writeable(spa)); 6872 6873 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6874 6875 /* 6876 * This should only be called for a non-faulted pool, and since a 6877 * future version would result in an unopenable pool, this shouldn't be 6878 * possible. 6879 */ 6880 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6881 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6882 6883 spa->spa_uberblock.ub_version = version; 6884 vdev_config_dirty(spa->spa_root_vdev); 6885 6886 spa_config_exit(spa, SCL_ALL, FTAG); 6887 6888 txg_wait_synced(spa_get_dsl(spa), 0); 6889 } 6890 6891 boolean_t 6892 spa_has_spare(spa_t *spa, uint64_t guid) 6893 { 6894 int i; 6895 uint64_t spareguid; 6896 spa_aux_vdev_t *sav = &spa->spa_spares; 6897 6898 for (i = 0; i < sav->sav_count; i++) 6899 if (sav->sav_vdevs[i]->vdev_guid == guid) 6900 return (B_TRUE); 6901 6902 for (i = 0; i < sav->sav_npending; i++) { 6903 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6904 &spareguid) == 0 && spareguid == guid) 6905 return (B_TRUE); 6906 } 6907 6908 return (B_FALSE); 6909 } 6910 6911 /* 6912 * Check if a pool has an active shared spare device. 6913 * Note: reference count of an active spare is 2, as a spare and as a replace 6914 */ 6915 static boolean_t 6916 spa_has_active_shared_spare(spa_t *spa) 6917 { 6918 int i, refcnt; 6919 uint64_t pool; 6920 spa_aux_vdev_t *sav = &spa->spa_spares; 6921 6922 for (i = 0; i < sav->sav_count; i++) { 6923 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6924 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6925 refcnt > 2) 6926 return (B_TRUE); 6927 } 6928 6929 return (B_FALSE); 6930 } 6931 6932 static sysevent_t * 6933 spa_event_create(spa_t *spa, vdev_t *vd, const char *name) 6934 { 6935 sysevent_t *ev = NULL; 6936 #ifdef _KERNEL 6937 sysevent_attr_list_t *attr = NULL; 6938 sysevent_value_t value; 6939 6940 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6941 SE_SLEEP); 6942 ASSERT(ev != NULL); 6943 6944 value.value_type = SE_DATA_TYPE_STRING; 6945 value.value.sv_string = spa_name(spa); 6946 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6947 goto done; 6948 6949 value.value_type = SE_DATA_TYPE_UINT64; 6950 value.value.sv_uint64 = spa_guid(spa); 6951 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6952 goto done; 6953 6954 if (vd) { 6955 value.value_type = SE_DATA_TYPE_UINT64; 6956 value.value.sv_uint64 = vd->vdev_guid; 6957 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6958 SE_SLEEP) != 0) 6959 goto done; 6960 6961 if (vd->vdev_path) { 6962 value.value_type = SE_DATA_TYPE_STRING; 6963 value.value.sv_string = vd->vdev_path; 6964 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6965 &value, SE_SLEEP) != 0) 6966 goto done; 6967 } 6968 } 6969 6970 if (sysevent_attach_attributes(ev, attr) != 0) 6971 goto done; 6972 attr = NULL; 6973 6974 done: 6975 if (attr) 6976 sysevent_free_attr(attr); 6977 6978 #endif 6979 return (ev); 6980 } 6981 6982 static void 6983 spa_event_post(sysevent_t *ev) 6984 { 6985 #ifdef _KERNEL 6986 sysevent_id_t eid; 6987 6988 (void) log_sysevent(ev, SE_SLEEP, &eid); 6989 sysevent_free(ev); 6990 #endif 6991 } 6992 6993 /* 6994 * Post a sysevent corresponding to the given event. The 'name' must be one of 6995 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6996 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6997 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6998 * or zdb as real changes. 6999 */ 7000 void 7001 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 7002 { 7003 spa_event_post(spa_event_create(spa, vd, name)); 7004 } 7005