xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 4aab0a3be69ed9c4e0119c5c3f17d8cac3b27c17)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright 2018 Joyent, Inc.
31  * Copyright (c) 2017 Datto Inc.
32  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
33  */
34 
35 /*
36  * SPA: Storage Pool Allocator
37  *
38  * This file contains all the routines used when modifying on-disk SPA state.
39  * This includes opening, importing, destroying, exporting a pool, and syncing a
40  * pool.
41  */
42 
43 #include <sys/zfs_context.h>
44 #include <sys/fm/fs/zfs.h>
45 #include <sys/spa_impl.h>
46 #include <sys/zio.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_tx.h>
50 #include <sys/zap.h>
51 #include <sys/zil.h>
52 #include <sys/ddt.h>
53 #include <sys/vdev_impl.h>
54 #include <sys/vdev_removal.h>
55 #include <sys/vdev_indirect_mapping.h>
56 #include <sys/vdev_indirect_births.h>
57 #include <sys/vdev_initialize.h>
58 #include <sys/metaslab.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/uberblock_impl.h>
61 #include <sys/txg.h>
62 #include <sys/avl.h>
63 #include <sys/bpobj.h>
64 #include <sys/dmu_traverse.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/unique.h>
67 #include <sys/dsl_pool.h>
68 #include <sys/dsl_dataset.h>
69 #include <sys/dsl_dir.h>
70 #include <sys/dsl_prop.h>
71 #include <sys/dsl_synctask.h>
72 #include <sys/fs/zfs.h>
73 #include <sys/arc.h>
74 #include <sys/callb.h>
75 #include <sys/systeminfo.h>
76 #include <sys/spa_boot.h>
77 #include <sys/zfs_ioctl.h>
78 #include <sys/dsl_scan.h>
79 #include <sys/zfeature.h>
80 #include <sys/dsl_destroy.h>
81 #include <sys/abd.h>
82 
83 #ifdef	_KERNEL
84 #include <sys/bootprops.h>
85 #include <sys/callb.h>
86 #include <sys/cpupart.h>
87 #include <sys/pool.h>
88 #include <sys/sysdc.h>
89 #include <sys/zone.h>
90 #endif	/* _KERNEL */
91 
92 #include "zfs_prop.h"
93 #include "zfs_comutil.h"
94 
95 /*
96  * The interval, in seconds, at which failed configuration cache file writes
97  * should be retried.
98  */
99 int zfs_ccw_retry_interval = 300;
100 
101 typedef enum zti_modes {
102 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
103 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
104 	ZTI_MODE_NULL,			/* don't create a taskq */
105 	ZTI_NMODES
106 } zti_modes_t;
107 
108 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
109 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
110 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
111 
112 #define	ZTI_N(n)	ZTI_P(n, 1)
113 #define	ZTI_ONE		ZTI_N(1)
114 
115 typedef struct zio_taskq_info {
116 	zti_modes_t zti_mode;
117 	uint_t zti_value;
118 	uint_t zti_count;
119 } zio_taskq_info_t;
120 
121 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
122 	"issue", "issue_high", "intr", "intr_high"
123 };
124 
125 /*
126  * This table defines the taskq settings for each ZFS I/O type. When
127  * initializing a pool, we use this table to create an appropriately sized
128  * taskq. Some operations are low volume and therefore have a small, static
129  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
130  * macros. Other operations process a large amount of data; the ZTI_BATCH
131  * macro causes us to create a taskq oriented for throughput. Some operations
132  * are so high frequency and short-lived that the taskq itself can become a a
133  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
134  * additional degree of parallelism specified by the number of threads per-
135  * taskq and the number of taskqs; when dispatching an event in this case, the
136  * particular taskq is chosen at random.
137  *
138  * The different taskq priorities are to handle the different contexts (issue
139  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
140  * need to be handled with minimum delay.
141  */
142 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
143 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
144 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
145 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
146 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
147 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
148 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
149 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
150 };
151 
152 static void spa_sync_version(void *arg, dmu_tx_t *tx);
153 static void spa_sync_props(void *arg, dmu_tx_t *tx);
154 static boolean_t spa_has_active_shared_spare(spa_t *spa);
155 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
156 static void spa_vdev_resilver_done(spa_t *spa);
157 
158 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
159 id_t		zio_taskq_psrset_bind = PS_NONE;
160 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
161 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
162 
163 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
164 extern int	zfs_sync_pass_deferred_free;
165 
166 /*
167  * Report any spa_load_verify errors found, but do not fail spa_load.
168  * This is used by zdb to analyze non-idle pools.
169  */
170 boolean_t	spa_load_verify_dryrun = B_FALSE;
171 
172 /*
173  * This (illegal) pool name is used when temporarily importing a spa_t in order
174  * to get the vdev stats associated with the imported devices.
175  */
176 #define	TRYIMPORT_NAME	"$import"
177 
178 /*
179  * For debugging purposes: print out vdev tree during pool import.
180  */
181 boolean_t	spa_load_print_vdev_tree = B_FALSE;
182 
183 /*
184  * A non-zero value for zfs_max_missing_tvds means that we allow importing
185  * pools with missing top-level vdevs. This is strictly intended for advanced
186  * pool recovery cases since missing data is almost inevitable. Pools with
187  * missing devices can only be imported read-only for safety reasons, and their
188  * fail-mode will be automatically set to "continue".
189  *
190  * With 1 missing vdev we should be able to import the pool and mount all
191  * datasets. User data that was not modified after the missing device has been
192  * added should be recoverable. This means that snapshots created prior to the
193  * addition of that device should be completely intact.
194  *
195  * With 2 missing vdevs, some datasets may fail to mount since there are
196  * dataset statistics that are stored as regular metadata. Some data might be
197  * recoverable if those vdevs were added recently.
198  *
199  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
200  * may be missing entirely. Chances of data recovery are very low. Note that
201  * there are also risks of performing an inadvertent rewind as we might be
202  * missing all the vdevs with the latest uberblocks.
203  */
204 uint64_t	zfs_max_missing_tvds = 0;
205 
206 /*
207  * The parameters below are similar to zfs_max_missing_tvds but are only
208  * intended for a preliminary open of the pool with an untrusted config which
209  * might be incomplete or out-dated.
210  *
211  * We are more tolerant for pools opened from a cachefile since we could have
212  * an out-dated cachefile where a device removal was not registered.
213  * We could have set the limit arbitrarily high but in the case where devices
214  * are really missing we would want to return the proper error codes; we chose
215  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
216  * and we get a chance to retrieve the trusted config.
217  */
218 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
219 
220 /*
221  * In the case where config was assembled by scanning device paths (/dev/dsks
222  * by default) we are less tolerant since all the existing devices should have
223  * been detected and we want spa_load to return the right error codes.
224  */
225 uint64_t	zfs_max_missing_tvds_scan = 0;
226 
227 /*
228  * Debugging aid that pauses spa_sync() towards the end.
229  */
230 boolean_t	zfs_pause_spa_sync = B_FALSE;
231 
232 /*
233  * ==========================================================================
234  * SPA properties routines
235  * ==========================================================================
236  */
237 
238 /*
239  * Add a (source=src, propname=propval) list to an nvlist.
240  */
241 static void
242 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
243     uint64_t intval, zprop_source_t src)
244 {
245 	const char *propname = zpool_prop_to_name(prop);
246 	nvlist_t *propval;
247 
248 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
249 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
250 
251 	if (strval != NULL)
252 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
253 	else
254 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
255 
256 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
257 	nvlist_free(propval);
258 }
259 
260 /*
261  * Get property values from the spa configuration.
262  */
263 static void
264 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
265 {
266 	vdev_t *rvd = spa->spa_root_vdev;
267 	dsl_pool_t *pool = spa->spa_dsl_pool;
268 	uint64_t size, alloc, cap, version;
269 	zprop_source_t src = ZPROP_SRC_NONE;
270 	spa_config_dirent_t *dp;
271 	metaslab_class_t *mc = spa_normal_class(spa);
272 
273 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
274 
275 	if (rvd != NULL) {
276 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
277 		size = metaslab_class_get_space(spa_normal_class(spa));
278 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
279 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
280 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
281 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
282 		    size - alloc, src);
283 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
284 		    spa->spa_checkpoint_info.sci_dspace, src);
285 
286 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
287 		    metaslab_class_fragmentation(mc), src);
288 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
289 		    metaslab_class_expandable_space(mc), src);
290 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
291 		    (spa_mode(spa) == FREAD), src);
292 
293 		cap = (size == 0) ? 0 : (alloc * 100 / size);
294 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
295 
296 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
297 		    ddt_get_pool_dedup_ratio(spa), src);
298 
299 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
300 		    rvd->vdev_state, src);
301 
302 		version = spa_version(spa);
303 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
304 			src = ZPROP_SRC_DEFAULT;
305 		else
306 			src = ZPROP_SRC_LOCAL;
307 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
308 	}
309 
310 	if (pool != NULL) {
311 		/*
312 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
313 		 * when opening pools before this version freedir will be NULL.
314 		 */
315 		if (pool->dp_free_dir != NULL) {
316 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
317 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
318 			    src);
319 		} else {
320 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
321 			    NULL, 0, src);
322 		}
323 
324 		if (pool->dp_leak_dir != NULL) {
325 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
326 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
327 			    src);
328 		} else {
329 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
330 			    NULL, 0, src);
331 		}
332 	}
333 
334 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
335 
336 	if (spa->spa_comment != NULL) {
337 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
338 		    0, ZPROP_SRC_LOCAL);
339 	}
340 
341 	if (spa->spa_root != NULL)
342 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
343 		    0, ZPROP_SRC_LOCAL);
344 
345 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
346 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
347 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
348 	} else {
349 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
350 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
351 	}
352 
353 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
354 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
355 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
356 	} else {
357 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
358 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
359 	}
360 
361 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
362 		if (dp->scd_path == NULL) {
363 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
364 			    "none", 0, ZPROP_SRC_LOCAL);
365 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
366 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
367 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
368 		}
369 	}
370 }
371 
372 /*
373  * Get zpool property values.
374  */
375 int
376 spa_prop_get(spa_t *spa, nvlist_t **nvp)
377 {
378 	objset_t *mos = spa->spa_meta_objset;
379 	zap_cursor_t zc;
380 	zap_attribute_t za;
381 	int err;
382 
383 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
384 
385 	mutex_enter(&spa->spa_props_lock);
386 
387 	/*
388 	 * Get properties from the spa config.
389 	 */
390 	spa_prop_get_config(spa, nvp);
391 
392 	/* If no pool property object, no more prop to get. */
393 	if (mos == NULL || spa->spa_pool_props_object == 0) {
394 		mutex_exit(&spa->spa_props_lock);
395 		return (0);
396 	}
397 
398 	/*
399 	 * Get properties from the MOS pool property object.
400 	 */
401 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
402 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
403 	    zap_cursor_advance(&zc)) {
404 		uint64_t intval = 0;
405 		char *strval = NULL;
406 		zprop_source_t src = ZPROP_SRC_DEFAULT;
407 		zpool_prop_t prop;
408 
409 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
410 			continue;
411 
412 		switch (za.za_integer_length) {
413 		case 8:
414 			/* integer property */
415 			if (za.za_first_integer !=
416 			    zpool_prop_default_numeric(prop))
417 				src = ZPROP_SRC_LOCAL;
418 
419 			if (prop == ZPOOL_PROP_BOOTFS) {
420 				dsl_pool_t *dp;
421 				dsl_dataset_t *ds = NULL;
422 
423 				dp = spa_get_dsl(spa);
424 				dsl_pool_config_enter(dp, FTAG);
425 				err = dsl_dataset_hold_obj(dp,
426 				    za.za_first_integer, FTAG, &ds);
427 				if (err != 0) {
428 					dsl_pool_config_exit(dp, FTAG);
429 					break;
430 				}
431 
432 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
433 				    KM_SLEEP);
434 				dsl_dataset_name(ds, strval);
435 				dsl_dataset_rele(ds, FTAG);
436 				dsl_pool_config_exit(dp, FTAG);
437 			} else {
438 				strval = NULL;
439 				intval = za.za_first_integer;
440 			}
441 
442 			spa_prop_add_list(*nvp, prop, strval, intval, src);
443 
444 			if (strval != NULL)
445 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
446 
447 			break;
448 
449 		case 1:
450 			/* string property */
451 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
452 			err = zap_lookup(mos, spa->spa_pool_props_object,
453 			    za.za_name, 1, za.za_num_integers, strval);
454 			if (err) {
455 				kmem_free(strval, za.za_num_integers);
456 				break;
457 			}
458 			spa_prop_add_list(*nvp, prop, strval, 0, src);
459 			kmem_free(strval, za.za_num_integers);
460 			break;
461 
462 		default:
463 			break;
464 		}
465 	}
466 	zap_cursor_fini(&zc);
467 	mutex_exit(&spa->spa_props_lock);
468 out:
469 	if (err && err != ENOENT) {
470 		nvlist_free(*nvp);
471 		*nvp = NULL;
472 		return (err);
473 	}
474 
475 	return (0);
476 }
477 
478 /*
479  * Validate the given pool properties nvlist and modify the list
480  * for the property values to be set.
481  */
482 static int
483 spa_prop_validate(spa_t *spa, nvlist_t *props)
484 {
485 	nvpair_t *elem;
486 	int error = 0, reset_bootfs = 0;
487 	uint64_t objnum = 0;
488 	boolean_t has_feature = B_FALSE;
489 
490 	elem = NULL;
491 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
492 		uint64_t intval;
493 		char *strval, *slash, *check, *fname;
494 		const char *propname = nvpair_name(elem);
495 		zpool_prop_t prop = zpool_name_to_prop(propname);
496 
497 		switch (prop) {
498 		case ZPOOL_PROP_INVAL:
499 			if (!zpool_prop_feature(propname)) {
500 				error = SET_ERROR(EINVAL);
501 				break;
502 			}
503 
504 			/*
505 			 * Sanitize the input.
506 			 */
507 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
508 				error = SET_ERROR(EINVAL);
509 				break;
510 			}
511 
512 			if (nvpair_value_uint64(elem, &intval) != 0) {
513 				error = SET_ERROR(EINVAL);
514 				break;
515 			}
516 
517 			if (intval != 0) {
518 				error = SET_ERROR(EINVAL);
519 				break;
520 			}
521 
522 			fname = strchr(propname, '@') + 1;
523 			if (zfeature_lookup_name(fname, NULL) != 0) {
524 				error = SET_ERROR(EINVAL);
525 				break;
526 			}
527 
528 			has_feature = B_TRUE;
529 			break;
530 
531 		case ZPOOL_PROP_VERSION:
532 			error = nvpair_value_uint64(elem, &intval);
533 			if (!error &&
534 			    (intval < spa_version(spa) ||
535 			    intval > SPA_VERSION_BEFORE_FEATURES ||
536 			    has_feature))
537 				error = SET_ERROR(EINVAL);
538 			break;
539 
540 		case ZPOOL_PROP_DELEGATION:
541 		case ZPOOL_PROP_AUTOREPLACE:
542 		case ZPOOL_PROP_LISTSNAPS:
543 		case ZPOOL_PROP_AUTOEXPAND:
544 			error = nvpair_value_uint64(elem, &intval);
545 			if (!error && intval > 1)
546 				error = SET_ERROR(EINVAL);
547 			break;
548 
549 		case ZPOOL_PROP_BOOTFS:
550 			/*
551 			 * If the pool version is less than SPA_VERSION_BOOTFS,
552 			 * or the pool is still being created (version == 0),
553 			 * the bootfs property cannot be set.
554 			 */
555 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
556 				error = SET_ERROR(ENOTSUP);
557 				break;
558 			}
559 
560 			/*
561 			 * Make sure the vdev config is bootable
562 			 */
563 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
564 				error = SET_ERROR(ENOTSUP);
565 				break;
566 			}
567 
568 			reset_bootfs = 1;
569 
570 			error = nvpair_value_string(elem, &strval);
571 
572 			if (!error) {
573 				objset_t *os;
574 				uint64_t propval;
575 
576 				if (strval == NULL || strval[0] == '\0') {
577 					objnum = zpool_prop_default_numeric(
578 					    ZPOOL_PROP_BOOTFS);
579 					break;
580 				}
581 
582 				error = dmu_objset_hold(strval, FTAG, &os);
583 				if (error != 0)
584 					break;
585 
586 				/*
587 				 * Must be ZPL, and its property settings
588 				 * must be supported.
589 				 */
590 
591 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
592 					error = SET_ERROR(ENOTSUP);
593 				} else if ((error =
594 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
595 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
596 				    &propval)) == 0 &&
597 				    !BOOTFS_COMPRESS_VALID(propval)) {
598 					error = SET_ERROR(ENOTSUP);
599 				} else {
600 					objnum = dmu_objset_id(os);
601 				}
602 				dmu_objset_rele(os, FTAG);
603 			}
604 			break;
605 
606 		case ZPOOL_PROP_FAILUREMODE:
607 			error = nvpair_value_uint64(elem, &intval);
608 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
609 			    intval > ZIO_FAILURE_MODE_PANIC))
610 				error = SET_ERROR(EINVAL);
611 
612 			/*
613 			 * This is a special case which only occurs when
614 			 * the pool has completely failed. This allows
615 			 * the user to change the in-core failmode property
616 			 * without syncing it out to disk (I/Os might
617 			 * currently be blocked). We do this by returning
618 			 * EIO to the caller (spa_prop_set) to trick it
619 			 * into thinking we encountered a property validation
620 			 * error.
621 			 */
622 			if (!error && spa_suspended(spa)) {
623 				spa->spa_failmode = intval;
624 				error = SET_ERROR(EIO);
625 			}
626 			break;
627 
628 		case ZPOOL_PROP_CACHEFILE:
629 			if ((error = nvpair_value_string(elem, &strval)) != 0)
630 				break;
631 
632 			if (strval[0] == '\0')
633 				break;
634 
635 			if (strcmp(strval, "none") == 0)
636 				break;
637 
638 			if (strval[0] != '/') {
639 				error = SET_ERROR(EINVAL);
640 				break;
641 			}
642 
643 			slash = strrchr(strval, '/');
644 			ASSERT(slash != NULL);
645 
646 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
647 			    strcmp(slash, "/..") == 0)
648 				error = SET_ERROR(EINVAL);
649 			break;
650 
651 		case ZPOOL_PROP_COMMENT:
652 			if ((error = nvpair_value_string(elem, &strval)) != 0)
653 				break;
654 			for (check = strval; *check != '\0'; check++) {
655 				/*
656 				 * The kernel doesn't have an easy isprint()
657 				 * check.  For this kernel check, we merely
658 				 * check ASCII apart from DEL.  Fix this if
659 				 * there is an easy-to-use kernel isprint().
660 				 */
661 				if (*check >= 0x7f) {
662 					error = SET_ERROR(EINVAL);
663 					break;
664 				}
665 			}
666 			if (strlen(strval) > ZPROP_MAX_COMMENT)
667 				error = E2BIG;
668 			break;
669 
670 		case ZPOOL_PROP_DEDUPDITTO:
671 			if (spa_version(spa) < SPA_VERSION_DEDUP)
672 				error = SET_ERROR(ENOTSUP);
673 			else
674 				error = nvpair_value_uint64(elem, &intval);
675 			if (error == 0 &&
676 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
677 				error = SET_ERROR(EINVAL);
678 			break;
679 		}
680 
681 		if (error)
682 			break;
683 	}
684 
685 	if (!error && reset_bootfs) {
686 		error = nvlist_remove(props,
687 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
688 
689 		if (!error) {
690 			error = nvlist_add_uint64(props,
691 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
692 		}
693 	}
694 
695 	return (error);
696 }
697 
698 void
699 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
700 {
701 	char *cachefile;
702 	spa_config_dirent_t *dp;
703 
704 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
705 	    &cachefile) != 0)
706 		return;
707 
708 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
709 	    KM_SLEEP);
710 
711 	if (cachefile[0] == '\0')
712 		dp->scd_path = spa_strdup(spa_config_path);
713 	else if (strcmp(cachefile, "none") == 0)
714 		dp->scd_path = NULL;
715 	else
716 		dp->scd_path = spa_strdup(cachefile);
717 
718 	list_insert_head(&spa->spa_config_list, dp);
719 	if (need_sync)
720 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
721 }
722 
723 int
724 spa_prop_set(spa_t *spa, nvlist_t *nvp)
725 {
726 	int error;
727 	nvpair_t *elem = NULL;
728 	boolean_t need_sync = B_FALSE;
729 
730 	if ((error = spa_prop_validate(spa, nvp)) != 0)
731 		return (error);
732 
733 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
734 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
735 
736 		if (prop == ZPOOL_PROP_CACHEFILE ||
737 		    prop == ZPOOL_PROP_ALTROOT ||
738 		    prop == ZPOOL_PROP_READONLY)
739 			continue;
740 
741 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
742 			uint64_t ver;
743 
744 			if (prop == ZPOOL_PROP_VERSION) {
745 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
746 			} else {
747 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
748 				ver = SPA_VERSION_FEATURES;
749 				need_sync = B_TRUE;
750 			}
751 
752 			/* Save time if the version is already set. */
753 			if (ver == spa_version(spa))
754 				continue;
755 
756 			/*
757 			 * In addition to the pool directory object, we might
758 			 * create the pool properties object, the features for
759 			 * read object, the features for write object, or the
760 			 * feature descriptions object.
761 			 */
762 			error = dsl_sync_task(spa->spa_name, NULL,
763 			    spa_sync_version, &ver,
764 			    6, ZFS_SPACE_CHECK_RESERVED);
765 			if (error)
766 				return (error);
767 			continue;
768 		}
769 
770 		need_sync = B_TRUE;
771 		break;
772 	}
773 
774 	if (need_sync) {
775 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
776 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
777 	}
778 
779 	return (0);
780 }
781 
782 /*
783  * If the bootfs property value is dsobj, clear it.
784  */
785 void
786 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
787 {
788 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
789 		VERIFY(zap_remove(spa->spa_meta_objset,
790 		    spa->spa_pool_props_object,
791 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
792 		spa->spa_bootfs = 0;
793 	}
794 }
795 
796 /*ARGSUSED*/
797 static int
798 spa_change_guid_check(void *arg, dmu_tx_t *tx)
799 {
800 	uint64_t *newguid = arg;
801 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
802 	vdev_t *rvd = spa->spa_root_vdev;
803 	uint64_t vdev_state;
804 
805 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
806 		int error = (spa_has_checkpoint(spa)) ?
807 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
808 		return (SET_ERROR(error));
809 	}
810 
811 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
812 	vdev_state = rvd->vdev_state;
813 	spa_config_exit(spa, SCL_STATE, FTAG);
814 
815 	if (vdev_state != VDEV_STATE_HEALTHY)
816 		return (SET_ERROR(ENXIO));
817 
818 	ASSERT3U(spa_guid(spa), !=, *newguid);
819 
820 	return (0);
821 }
822 
823 static void
824 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
825 {
826 	uint64_t *newguid = arg;
827 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
828 	uint64_t oldguid;
829 	vdev_t *rvd = spa->spa_root_vdev;
830 
831 	oldguid = spa_guid(spa);
832 
833 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
834 	rvd->vdev_guid = *newguid;
835 	rvd->vdev_guid_sum += (*newguid - oldguid);
836 	vdev_config_dirty(rvd);
837 	spa_config_exit(spa, SCL_STATE, FTAG);
838 
839 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
840 	    oldguid, *newguid);
841 }
842 
843 /*
844  * Change the GUID for the pool.  This is done so that we can later
845  * re-import a pool built from a clone of our own vdevs.  We will modify
846  * the root vdev's guid, our own pool guid, and then mark all of our
847  * vdevs dirty.  Note that we must make sure that all our vdevs are
848  * online when we do this, or else any vdevs that weren't present
849  * would be orphaned from our pool.  We are also going to issue a
850  * sysevent to update any watchers.
851  */
852 int
853 spa_change_guid(spa_t *spa)
854 {
855 	int error;
856 	uint64_t guid;
857 
858 	mutex_enter(&spa->spa_vdev_top_lock);
859 	mutex_enter(&spa_namespace_lock);
860 	guid = spa_generate_guid(NULL);
861 
862 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
863 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
864 
865 	if (error == 0) {
866 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
867 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
868 	}
869 
870 	mutex_exit(&spa_namespace_lock);
871 	mutex_exit(&spa->spa_vdev_top_lock);
872 
873 	return (error);
874 }
875 
876 /*
877  * ==========================================================================
878  * SPA state manipulation (open/create/destroy/import/export)
879  * ==========================================================================
880  */
881 
882 static int
883 spa_error_entry_compare(const void *a, const void *b)
884 {
885 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
886 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
887 	int ret;
888 
889 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
890 	    sizeof (zbookmark_phys_t));
891 
892 	if (ret < 0)
893 		return (-1);
894 	else if (ret > 0)
895 		return (1);
896 	else
897 		return (0);
898 }
899 
900 /*
901  * Utility function which retrieves copies of the current logs and
902  * re-initializes them in the process.
903  */
904 void
905 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
906 {
907 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
908 
909 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
910 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
911 
912 	avl_create(&spa->spa_errlist_scrub,
913 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
914 	    offsetof(spa_error_entry_t, se_avl));
915 	avl_create(&spa->spa_errlist_last,
916 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
917 	    offsetof(spa_error_entry_t, se_avl));
918 }
919 
920 static void
921 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
922 {
923 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
924 	enum zti_modes mode = ztip->zti_mode;
925 	uint_t value = ztip->zti_value;
926 	uint_t count = ztip->zti_count;
927 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
928 	char name[32];
929 	uint_t flags = 0;
930 	boolean_t batch = B_FALSE;
931 
932 	if (mode == ZTI_MODE_NULL) {
933 		tqs->stqs_count = 0;
934 		tqs->stqs_taskq = NULL;
935 		return;
936 	}
937 
938 	ASSERT3U(count, >, 0);
939 
940 	tqs->stqs_count = count;
941 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
942 
943 	switch (mode) {
944 	case ZTI_MODE_FIXED:
945 		ASSERT3U(value, >=, 1);
946 		value = MAX(value, 1);
947 		break;
948 
949 	case ZTI_MODE_BATCH:
950 		batch = B_TRUE;
951 		flags |= TASKQ_THREADS_CPU_PCT;
952 		value = zio_taskq_batch_pct;
953 		break;
954 
955 	default:
956 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
957 		    "spa_activate()",
958 		    zio_type_name[t], zio_taskq_types[q], mode, value);
959 		break;
960 	}
961 
962 	for (uint_t i = 0; i < count; i++) {
963 		taskq_t *tq;
964 
965 		if (count > 1) {
966 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
967 			    zio_type_name[t], zio_taskq_types[q], i);
968 		} else {
969 			(void) snprintf(name, sizeof (name), "%s_%s",
970 			    zio_type_name[t], zio_taskq_types[q]);
971 		}
972 
973 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
974 			if (batch)
975 				flags |= TASKQ_DC_BATCH;
976 
977 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
978 			    spa->spa_proc, zio_taskq_basedc, flags);
979 		} else {
980 			pri_t pri = maxclsyspri;
981 			/*
982 			 * The write issue taskq can be extremely CPU
983 			 * intensive.  Run it at slightly lower priority
984 			 * than the other taskqs.
985 			 */
986 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
987 				pri--;
988 
989 			tq = taskq_create_proc(name, value, pri, 50,
990 			    INT_MAX, spa->spa_proc, flags);
991 		}
992 
993 		tqs->stqs_taskq[i] = tq;
994 	}
995 }
996 
997 static void
998 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
999 {
1000 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1001 
1002 	if (tqs->stqs_taskq == NULL) {
1003 		ASSERT0(tqs->stqs_count);
1004 		return;
1005 	}
1006 
1007 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1008 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1009 		taskq_destroy(tqs->stqs_taskq[i]);
1010 	}
1011 
1012 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1013 	tqs->stqs_taskq = NULL;
1014 }
1015 
1016 /*
1017  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1018  * Note that a type may have multiple discrete taskqs to avoid lock contention
1019  * on the taskq itself. In that case we choose which taskq at random by using
1020  * the low bits of gethrtime().
1021  */
1022 void
1023 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1024     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1025 {
1026 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1027 	taskq_t *tq;
1028 
1029 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1030 	ASSERT3U(tqs->stqs_count, !=, 0);
1031 
1032 	if (tqs->stqs_count == 1) {
1033 		tq = tqs->stqs_taskq[0];
1034 	} else {
1035 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1036 	}
1037 
1038 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1039 }
1040 
1041 static void
1042 spa_create_zio_taskqs(spa_t *spa)
1043 {
1044 	for (int t = 0; t < ZIO_TYPES; t++) {
1045 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1046 			spa_taskqs_init(spa, t, q);
1047 		}
1048 	}
1049 }
1050 
1051 #ifdef _KERNEL
1052 static void
1053 spa_thread(void *arg)
1054 {
1055 	callb_cpr_t cprinfo;
1056 
1057 	spa_t *spa = arg;
1058 	user_t *pu = PTOU(curproc);
1059 
1060 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1061 	    spa->spa_name);
1062 
1063 	ASSERT(curproc != &p0);
1064 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1065 	    "zpool-%s", spa->spa_name);
1066 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1067 
1068 	/* bind this thread to the requested psrset */
1069 	if (zio_taskq_psrset_bind != PS_NONE) {
1070 		pool_lock();
1071 		mutex_enter(&cpu_lock);
1072 		mutex_enter(&pidlock);
1073 		mutex_enter(&curproc->p_lock);
1074 
1075 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1076 		    0, NULL, NULL) == 0)  {
1077 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1078 		} else {
1079 			cmn_err(CE_WARN,
1080 			    "Couldn't bind process for zfs pool \"%s\" to "
1081 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1082 		}
1083 
1084 		mutex_exit(&curproc->p_lock);
1085 		mutex_exit(&pidlock);
1086 		mutex_exit(&cpu_lock);
1087 		pool_unlock();
1088 	}
1089 
1090 	if (zio_taskq_sysdc) {
1091 		sysdc_thread_enter(curthread, 100, 0);
1092 	}
1093 
1094 	spa->spa_proc = curproc;
1095 	spa->spa_did = curthread->t_did;
1096 
1097 	spa_create_zio_taskqs(spa);
1098 
1099 	mutex_enter(&spa->spa_proc_lock);
1100 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1101 
1102 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1103 	cv_broadcast(&spa->spa_proc_cv);
1104 
1105 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1106 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1107 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1108 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1109 
1110 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1111 	spa->spa_proc_state = SPA_PROC_GONE;
1112 	spa->spa_proc = &p0;
1113 	cv_broadcast(&spa->spa_proc_cv);
1114 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1115 
1116 	mutex_enter(&curproc->p_lock);
1117 	lwp_exit();
1118 }
1119 #endif
1120 
1121 /*
1122  * Activate an uninitialized pool.
1123  */
1124 static void
1125 spa_activate(spa_t *spa, int mode)
1126 {
1127 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1128 
1129 	spa->spa_state = POOL_STATE_ACTIVE;
1130 	spa->spa_mode = mode;
1131 
1132 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1133 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1134 
1135 	/* Try to create a covering process */
1136 	mutex_enter(&spa->spa_proc_lock);
1137 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1138 	ASSERT(spa->spa_proc == &p0);
1139 	spa->spa_did = 0;
1140 
1141 	/* Only create a process if we're going to be around a while. */
1142 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1143 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1144 		    NULL, 0) == 0) {
1145 			spa->spa_proc_state = SPA_PROC_CREATED;
1146 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1147 				cv_wait(&spa->spa_proc_cv,
1148 				    &spa->spa_proc_lock);
1149 			}
1150 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1151 			ASSERT(spa->spa_proc != &p0);
1152 			ASSERT(spa->spa_did != 0);
1153 		} else {
1154 #ifdef _KERNEL
1155 			cmn_err(CE_WARN,
1156 			    "Couldn't create process for zfs pool \"%s\"\n",
1157 			    spa->spa_name);
1158 #endif
1159 		}
1160 	}
1161 	mutex_exit(&spa->spa_proc_lock);
1162 
1163 	/* If we didn't create a process, we need to create our taskqs. */
1164 	if (spa->spa_proc == &p0) {
1165 		spa_create_zio_taskqs(spa);
1166 	}
1167 
1168 	for (size_t i = 0; i < TXG_SIZE; i++) {
1169 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1170 		    ZIO_FLAG_CANFAIL);
1171 	}
1172 
1173 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1174 	    offsetof(vdev_t, vdev_config_dirty_node));
1175 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1176 	    offsetof(objset_t, os_evicting_node));
1177 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1178 	    offsetof(vdev_t, vdev_state_dirty_node));
1179 
1180 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1181 	    offsetof(struct vdev, vdev_txg_node));
1182 
1183 	avl_create(&spa->spa_errlist_scrub,
1184 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1185 	    offsetof(spa_error_entry_t, se_avl));
1186 	avl_create(&spa->spa_errlist_last,
1187 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1188 	    offsetof(spa_error_entry_t, se_avl));
1189 }
1190 
1191 /*
1192  * Opposite of spa_activate().
1193  */
1194 static void
1195 spa_deactivate(spa_t *spa)
1196 {
1197 	ASSERT(spa->spa_sync_on == B_FALSE);
1198 	ASSERT(spa->spa_dsl_pool == NULL);
1199 	ASSERT(spa->spa_root_vdev == NULL);
1200 	ASSERT(spa->spa_async_zio_root == NULL);
1201 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1202 
1203 	spa_evicting_os_wait(spa);
1204 
1205 	txg_list_destroy(&spa->spa_vdev_txg_list);
1206 
1207 	list_destroy(&spa->spa_config_dirty_list);
1208 	list_destroy(&spa->spa_evicting_os_list);
1209 	list_destroy(&spa->spa_state_dirty_list);
1210 
1211 	for (int t = 0; t < ZIO_TYPES; t++) {
1212 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1213 			spa_taskqs_fini(spa, t, q);
1214 		}
1215 	}
1216 
1217 	for (size_t i = 0; i < TXG_SIZE; i++) {
1218 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1219 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1220 		spa->spa_txg_zio[i] = NULL;
1221 	}
1222 
1223 	metaslab_class_destroy(spa->spa_normal_class);
1224 	spa->spa_normal_class = NULL;
1225 
1226 	metaslab_class_destroy(spa->spa_log_class);
1227 	spa->spa_log_class = NULL;
1228 
1229 	/*
1230 	 * If this was part of an import or the open otherwise failed, we may
1231 	 * still have errors left in the queues.  Empty them just in case.
1232 	 */
1233 	spa_errlog_drain(spa);
1234 
1235 	avl_destroy(&spa->spa_errlist_scrub);
1236 	avl_destroy(&spa->spa_errlist_last);
1237 
1238 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1239 
1240 	mutex_enter(&spa->spa_proc_lock);
1241 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1242 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1243 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1244 		cv_broadcast(&spa->spa_proc_cv);
1245 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1246 			ASSERT(spa->spa_proc != &p0);
1247 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1248 		}
1249 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1250 		spa->spa_proc_state = SPA_PROC_NONE;
1251 	}
1252 	ASSERT(spa->spa_proc == &p0);
1253 	mutex_exit(&spa->spa_proc_lock);
1254 
1255 	/*
1256 	 * We want to make sure spa_thread() has actually exited the ZFS
1257 	 * module, so that the module can't be unloaded out from underneath
1258 	 * it.
1259 	 */
1260 	if (spa->spa_did != 0) {
1261 		thread_join(spa->spa_did);
1262 		spa->spa_did = 0;
1263 	}
1264 }
1265 
1266 /*
1267  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1268  * will create all the necessary vdevs in the appropriate layout, with each vdev
1269  * in the CLOSED state.  This will prep the pool before open/creation/import.
1270  * All vdev validation is done by the vdev_alloc() routine.
1271  */
1272 static int
1273 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1274     uint_t id, int atype)
1275 {
1276 	nvlist_t **child;
1277 	uint_t children;
1278 	int error;
1279 
1280 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1281 		return (error);
1282 
1283 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1284 		return (0);
1285 
1286 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1287 	    &child, &children);
1288 
1289 	if (error == ENOENT)
1290 		return (0);
1291 
1292 	if (error) {
1293 		vdev_free(*vdp);
1294 		*vdp = NULL;
1295 		return (SET_ERROR(EINVAL));
1296 	}
1297 
1298 	for (int c = 0; c < children; c++) {
1299 		vdev_t *vd;
1300 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1301 		    atype)) != 0) {
1302 			vdev_free(*vdp);
1303 			*vdp = NULL;
1304 			return (error);
1305 		}
1306 	}
1307 
1308 	ASSERT(*vdp != NULL);
1309 
1310 	return (0);
1311 }
1312 
1313 /*
1314  * Opposite of spa_load().
1315  */
1316 static void
1317 spa_unload(spa_t *spa)
1318 {
1319 	int i;
1320 
1321 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1322 
1323 	spa_load_note(spa, "UNLOADING");
1324 
1325 	/*
1326 	 * Stop async tasks.
1327 	 */
1328 	spa_async_suspend(spa);
1329 
1330 	if (spa->spa_root_vdev) {
1331 		vdev_initialize_stop_all(spa->spa_root_vdev,
1332 		    VDEV_INITIALIZE_ACTIVE);
1333 	}
1334 
1335 	/*
1336 	 * Stop syncing.
1337 	 */
1338 	if (spa->spa_sync_on) {
1339 		txg_sync_stop(spa->spa_dsl_pool);
1340 		spa->spa_sync_on = B_FALSE;
1341 	}
1342 
1343 	/*
1344 	 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1345 	 * to call it earlier, before we wait for async i/o to complete.
1346 	 * This ensures that there is no async metaslab prefetching, by
1347 	 * calling taskq_wait(mg_taskq).
1348 	 */
1349 	if (spa->spa_root_vdev != NULL) {
1350 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1351 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1352 			vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1353 		spa_config_exit(spa, SCL_ALL, spa);
1354 	}
1355 
1356 	/*
1357 	 * Wait for any outstanding async I/O to complete.
1358 	 */
1359 	if (spa->spa_async_zio_root != NULL) {
1360 		for (int i = 0; i < max_ncpus; i++)
1361 			(void) zio_wait(spa->spa_async_zio_root[i]);
1362 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1363 		spa->spa_async_zio_root = NULL;
1364 	}
1365 
1366 	if (spa->spa_vdev_removal != NULL) {
1367 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1368 		spa->spa_vdev_removal = NULL;
1369 	}
1370 
1371 	if (spa->spa_condense_zthr != NULL) {
1372 		ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
1373 		zthr_destroy(spa->spa_condense_zthr);
1374 		spa->spa_condense_zthr = NULL;
1375 	}
1376 
1377 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1378 		ASSERT(!zthr_isrunning(spa->spa_checkpoint_discard_zthr));
1379 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1380 		spa->spa_checkpoint_discard_zthr = NULL;
1381 	}
1382 
1383 	spa_condense_fini(spa);
1384 
1385 	bpobj_close(&spa->spa_deferred_bpobj);
1386 
1387 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1388 
1389 	/*
1390 	 * Close all vdevs.
1391 	 */
1392 	if (spa->spa_root_vdev)
1393 		vdev_free(spa->spa_root_vdev);
1394 	ASSERT(spa->spa_root_vdev == NULL);
1395 
1396 	/*
1397 	 * Close the dsl pool.
1398 	 */
1399 	if (spa->spa_dsl_pool) {
1400 		dsl_pool_close(spa->spa_dsl_pool);
1401 		spa->spa_dsl_pool = NULL;
1402 		spa->spa_meta_objset = NULL;
1403 	}
1404 
1405 	ddt_unload(spa);
1406 
1407 	/*
1408 	 * Drop and purge level 2 cache
1409 	 */
1410 	spa_l2cache_drop(spa);
1411 
1412 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1413 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1414 	if (spa->spa_spares.sav_vdevs) {
1415 		kmem_free(spa->spa_spares.sav_vdevs,
1416 		    spa->spa_spares.sav_count * sizeof (void *));
1417 		spa->spa_spares.sav_vdevs = NULL;
1418 	}
1419 	if (spa->spa_spares.sav_config) {
1420 		nvlist_free(spa->spa_spares.sav_config);
1421 		spa->spa_spares.sav_config = NULL;
1422 	}
1423 	spa->spa_spares.sav_count = 0;
1424 
1425 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1426 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1427 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1428 	}
1429 	if (spa->spa_l2cache.sav_vdevs) {
1430 		kmem_free(spa->spa_l2cache.sav_vdevs,
1431 		    spa->spa_l2cache.sav_count * sizeof (void *));
1432 		spa->spa_l2cache.sav_vdevs = NULL;
1433 	}
1434 	if (spa->spa_l2cache.sav_config) {
1435 		nvlist_free(spa->spa_l2cache.sav_config);
1436 		spa->spa_l2cache.sav_config = NULL;
1437 	}
1438 	spa->spa_l2cache.sav_count = 0;
1439 
1440 	spa->spa_async_suspended = 0;
1441 
1442 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1443 
1444 	if (spa->spa_comment != NULL) {
1445 		spa_strfree(spa->spa_comment);
1446 		spa->spa_comment = NULL;
1447 	}
1448 
1449 	spa_config_exit(spa, SCL_ALL, spa);
1450 }
1451 
1452 /*
1453  * Load (or re-load) the current list of vdevs describing the active spares for
1454  * this pool.  When this is called, we have some form of basic information in
1455  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1456  * then re-generate a more complete list including status information.
1457  */
1458 void
1459 spa_load_spares(spa_t *spa)
1460 {
1461 	nvlist_t **spares;
1462 	uint_t nspares;
1463 	int i;
1464 	vdev_t *vd, *tvd;
1465 
1466 #ifndef _KERNEL
1467 	/*
1468 	 * zdb opens both the current state of the pool and the
1469 	 * checkpointed state (if present), with a different spa_t.
1470 	 *
1471 	 * As spare vdevs are shared among open pools, we skip loading
1472 	 * them when we load the checkpointed state of the pool.
1473 	 */
1474 	if (!spa_writeable(spa))
1475 		return;
1476 #endif
1477 
1478 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1479 
1480 	/*
1481 	 * First, close and free any existing spare vdevs.
1482 	 */
1483 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1484 		vd = spa->spa_spares.sav_vdevs[i];
1485 
1486 		/* Undo the call to spa_activate() below */
1487 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1488 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1489 			spa_spare_remove(tvd);
1490 		vdev_close(vd);
1491 		vdev_free(vd);
1492 	}
1493 
1494 	if (spa->spa_spares.sav_vdevs)
1495 		kmem_free(spa->spa_spares.sav_vdevs,
1496 		    spa->spa_spares.sav_count * sizeof (void *));
1497 
1498 	if (spa->spa_spares.sav_config == NULL)
1499 		nspares = 0;
1500 	else
1501 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1502 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1503 
1504 	spa->spa_spares.sav_count = (int)nspares;
1505 	spa->spa_spares.sav_vdevs = NULL;
1506 
1507 	if (nspares == 0)
1508 		return;
1509 
1510 	/*
1511 	 * Construct the array of vdevs, opening them to get status in the
1512 	 * process.   For each spare, there is potentially two different vdev_t
1513 	 * structures associated with it: one in the list of spares (used only
1514 	 * for basic validation purposes) and one in the active vdev
1515 	 * configuration (if it's spared in).  During this phase we open and
1516 	 * validate each vdev on the spare list.  If the vdev also exists in the
1517 	 * active configuration, then we also mark this vdev as an active spare.
1518 	 */
1519 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1520 	    KM_SLEEP);
1521 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1522 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1523 		    VDEV_ALLOC_SPARE) == 0);
1524 		ASSERT(vd != NULL);
1525 
1526 		spa->spa_spares.sav_vdevs[i] = vd;
1527 
1528 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1529 		    B_FALSE)) != NULL) {
1530 			if (!tvd->vdev_isspare)
1531 				spa_spare_add(tvd);
1532 
1533 			/*
1534 			 * We only mark the spare active if we were successfully
1535 			 * able to load the vdev.  Otherwise, importing a pool
1536 			 * with a bad active spare would result in strange
1537 			 * behavior, because multiple pool would think the spare
1538 			 * is actively in use.
1539 			 *
1540 			 * There is a vulnerability here to an equally bizarre
1541 			 * circumstance, where a dead active spare is later
1542 			 * brought back to life (onlined or otherwise).  Given
1543 			 * the rarity of this scenario, and the extra complexity
1544 			 * it adds, we ignore the possibility.
1545 			 */
1546 			if (!vdev_is_dead(tvd))
1547 				spa_spare_activate(tvd);
1548 		}
1549 
1550 		vd->vdev_top = vd;
1551 		vd->vdev_aux = &spa->spa_spares;
1552 
1553 		if (vdev_open(vd) != 0)
1554 			continue;
1555 
1556 		if (vdev_validate_aux(vd) == 0)
1557 			spa_spare_add(vd);
1558 	}
1559 
1560 	/*
1561 	 * Recompute the stashed list of spares, with status information
1562 	 * this time.
1563 	 */
1564 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1565 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1566 
1567 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1568 	    KM_SLEEP);
1569 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1570 		spares[i] = vdev_config_generate(spa,
1571 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1572 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1573 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1574 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1575 		nvlist_free(spares[i]);
1576 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1577 }
1578 
1579 /*
1580  * Load (or re-load) the current list of vdevs describing the active l2cache for
1581  * this pool.  When this is called, we have some form of basic information in
1582  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1583  * then re-generate a more complete list including status information.
1584  * Devices which are already active have their details maintained, and are
1585  * not re-opened.
1586  */
1587 void
1588 spa_load_l2cache(spa_t *spa)
1589 {
1590 	nvlist_t **l2cache;
1591 	uint_t nl2cache;
1592 	int i, j, oldnvdevs;
1593 	uint64_t guid;
1594 	vdev_t *vd, **oldvdevs, **newvdevs;
1595 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1596 
1597 #ifndef _KERNEL
1598 	/*
1599 	 * zdb opens both the current state of the pool and the
1600 	 * checkpointed state (if present), with a different spa_t.
1601 	 *
1602 	 * As L2 caches are part of the ARC which is shared among open
1603 	 * pools, we skip loading them when we load the checkpointed
1604 	 * state of the pool.
1605 	 */
1606 	if (!spa_writeable(spa))
1607 		return;
1608 #endif
1609 
1610 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1611 
1612 	if (sav->sav_config != NULL) {
1613 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1614 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1615 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1616 	} else {
1617 		nl2cache = 0;
1618 		newvdevs = NULL;
1619 	}
1620 
1621 	oldvdevs = sav->sav_vdevs;
1622 	oldnvdevs = sav->sav_count;
1623 	sav->sav_vdevs = NULL;
1624 	sav->sav_count = 0;
1625 
1626 	/*
1627 	 * Process new nvlist of vdevs.
1628 	 */
1629 	for (i = 0; i < nl2cache; i++) {
1630 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1631 		    &guid) == 0);
1632 
1633 		newvdevs[i] = NULL;
1634 		for (j = 0; j < oldnvdevs; j++) {
1635 			vd = oldvdevs[j];
1636 			if (vd != NULL && guid == vd->vdev_guid) {
1637 				/*
1638 				 * Retain previous vdev for add/remove ops.
1639 				 */
1640 				newvdevs[i] = vd;
1641 				oldvdevs[j] = NULL;
1642 				break;
1643 			}
1644 		}
1645 
1646 		if (newvdevs[i] == NULL) {
1647 			/*
1648 			 * Create new vdev
1649 			 */
1650 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1651 			    VDEV_ALLOC_L2CACHE) == 0);
1652 			ASSERT(vd != NULL);
1653 			newvdevs[i] = vd;
1654 
1655 			/*
1656 			 * Commit this vdev as an l2cache device,
1657 			 * even if it fails to open.
1658 			 */
1659 			spa_l2cache_add(vd);
1660 
1661 			vd->vdev_top = vd;
1662 			vd->vdev_aux = sav;
1663 
1664 			spa_l2cache_activate(vd);
1665 
1666 			if (vdev_open(vd) != 0)
1667 				continue;
1668 
1669 			(void) vdev_validate_aux(vd);
1670 
1671 			if (!vdev_is_dead(vd))
1672 				l2arc_add_vdev(spa, vd);
1673 		}
1674 	}
1675 
1676 	/*
1677 	 * Purge vdevs that were dropped
1678 	 */
1679 	for (i = 0; i < oldnvdevs; i++) {
1680 		uint64_t pool;
1681 
1682 		vd = oldvdevs[i];
1683 		if (vd != NULL) {
1684 			ASSERT(vd->vdev_isl2cache);
1685 
1686 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1687 			    pool != 0ULL && l2arc_vdev_present(vd))
1688 				l2arc_remove_vdev(vd);
1689 			vdev_clear_stats(vd);
1690 			vdev_free(vd);
1691 		}
1692 	}
1693 
1694 	if (oldvdevs)
1695 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1696 
1697 	if (sav->sav_config == NULL)
1698 		goto out;
1699 
1700 	sav->sav_vdevs = newvdevs;
1701 	sav->sav_count = (int)nl2cache;
1702 
1703 	/*
1704 	 * Recompute the stashed list of l2cache devices, with status
1705 	 * information this time.
1706 	 */
1707 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1708 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1709 
1710 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1711 	for (i = 0; i < sav->sav_count; i++)
1712 		l2cache[i] = vdev_config_generate(spa,
1713 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1714 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1715 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1716 out:
1717 	for (i = 0; i < sav->sav_count; i++)
1718 		nvlist_free(l2cache[i]);
1719 	if (sav->sav_count)
1720 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1721 }
1722 
1723 static int
1724 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1725 {
1726 	dmu_buf_t *db;
1727 	char *packed = NULL;
1728 	size_t nvsize = 0;
1729 	int error;
1730 	*value = NULL;
1731 
1732 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1733 	if (error != 0)
1734 		return (error);
1735 
1736 	nvsize = *(uint64_t *)db->db_data;
1737 	dmu_buf_rele(db, FTAG);
1738 
1739 	packed = kmem_alloc(nvsize, KM_SLEEP);
1740 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1741 	    DMU_READ_PREFETCH);
1742 	if (error == 0)
1743 		error = nvlist_unpack(packed, nvsize, value, 0);
1744 	kmem_free(packed, nvsize);
1745 
1746 	return (error);
1747 }
1748 
1749 /*
1750  * Concrete top-level vdevs that are not missing and are not logs. At every
1751  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1752  */
1753 static uint64_t
1754 spa_healthy_core_tvds(spa_t *spa)
1755 {
1756 	vdev_t *rvd = spa->spa_root_vdev;
1757 	uint64_t tvds = 0;
1758 
1759 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1760 		vdev_t *vd = rvd->vdev_child[i];
1761 		if (vd->vdev_islog)
1762 			continue;
1763 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1764 			tvds++;
1765 	}
1766 
1767 	return (tvds);
1768 }
1769 
1770 /*
1771  * Checks to see if the given vdev could not be opened, in which case we post a
1772  * sysevent to notify the autoreplace code that the device has been removed.
1773  */
1774 static void
1775 spa_check_removed(vdev_t *vd)
1776 {
1777 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1778 		spa_check_removed(vd->vdev_child[c]);
1779 
1780 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1781 	    vdev_is_concrete(vd)) {
1782 		zfs_post_autoreplace(vd->vdev_spa, vd);
1783 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1784 	}
1785 }
1786 
1787 static int
1788 spa_check_for_missing_logs(spa_t *spa)
1789 {
1790 	vdev_t *rvd = spa->spa_root_vdev;
1791 
1792 	/*
1793 	 * If we're doing a normal import, then build up any additional
1794 	 * diagnostic information about missing log devices.
1795 	 * We'll pass this up to the user for further processing.
1796 	 */
1797 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1798 		nvlist_t **child, *nv;
1799 		uint64_t idx = 0;
1800 
1801 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1802 		    KM_SLEEP);
1803 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1804 
1805 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1806 			vdev_t *tvd = rvd->vdev_child[c];
1807 
1808 			/*
1809 			 * We consider a device as missing only if it failed
1810 			 * to open (i.e. offline or faulted is not considered
1811 			 * as missing).
1812 			 */
1813 			if (tvd->vdev_islog &&
1814 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1815 				child[idx++] = vdev_config_generate(spa, tvd,
1816 				    B_FALSE, VDEV_CONFIG_MISSING);
1817 			}
1818 		}
1819 
1820 		if (idx > 0) {
1821 			fnvlist_add_nvlist_array(nv,
1822 			    ZPOOL_CONFIG_CHILDREN, child, idx);
1823 			fnvlist_add_nvlist(spa->spa_load_info,
1824 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1825 
1826 			for (uint64_t i = 0; i < idx; i++)
1827 				nvlist_free(child[i]);
1828 		}
1829 		nvlist_free(nv);
1830 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1831 
1832 		if (idx > 0) {
1833 			spa_load_failed(spa, "some log devices are missing");
1834 			vdev_dbgmsg_print_tree(rvd, 2);
1835 			return (SET_ERROR(ENXIO));
1836 		}
1837 	} else {
1838 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1839 			vdev_t *tvd = rvd->vdev_child[c];
1840 
1841 			if (tvd->vdev_islog &&
1842 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1843 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1844 				spa_load_note(spa, "some log devices are "
1845 				    "missing, ZIL is dropped.");
1846 				vdev_dbgmsg_print_tree(rvd, 2);
1847 				break;
1848 			}
1849 		}
1850 	}
1851 
1852 	return (0);
1853 }
1854 
1855 /*
1856  * Check for missing log devices
1857  */
1858 static boolean_t
1859 spa_check_logs(spa_t *spa)
1860 {
1861 	boolean_t rv = B_FALSE;
1862 	dsl_pool_t *dp = spa_get_dsl(spa);
1863 
1864 	switch (spa->spa_log_state) {
1865 	case SPA_LOG_MISSING:
1866 		/* need to recheck in case slog has been restored */
1867 	case SPA_LOG_UNKNOWN:
1868 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1869 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1870 		if (rv)
1871 			spa_set_log_state(spa, SPA_LOG_MISSING);
1872 		break;
1873 	}
1874 	return (rv);
1875 }
1876 
1877 static boolean_t
1878 spa_passivate_log(spa_t *spa)
1879 {
1880 	vdev_t *rvd = spa->spa_root_vdev;
1881 	boolean_t slog_found = B_FALSE;
1882 
1883 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1884 
1885 	if (!spa_has_slogs(spa))
1886 		return (B_FALSE);
1887 
1888 	for (int c = 0; c < rvd->vdev_children; c++) {
1889 		vdev_t *tvd = rvd->vdev_child[c];
1890 		metaslab_group_t *mg = tvd->vdev_mg;
1891 
1892 		if (tvd->vdev_islog) {
1893 			metaslab_group_passivate(mg);
1894 			slog_found = B_TRUE;
1895 		}
1896 	}
1897 
1898 	return (slog_found);
1899 }
1900 
1901 static void
1902 spa_activate_log(spa_t *spa)
1903 {
1904 	vdev_t *rvd = spa->spa_root_vdev;
1905 
1906 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1907 
1908 	for (int c = 0; c < rvd->vdev_children; c++) {
1909 		vdev_t *tvd = rvd->vdev_child[c];
1910 		metaslab_group_t *mg = tvd->vdev_mg;
1911 
1912 		if (tvd->vdev_islog)
1913 			metaslab_group_activate(mg);
1914 	}
1915 }
1916 
1917 int
1918 spa_reset_logs(spa_t *spa)
1919 {
1920 	int error;
1921 
1922 	error = dmu_objset_find(spa_name(spa), zil_reset,
1923 	    NULL, DS_FIND_CHILDREN);
1924 	if (error == 0) {
1925 		/*
1926 		 * We successfully offlined the log device, sync out the
1927 		 * current txg so that the "stubby" block can be removed
1928 		 * by zil_sync().
1929 		 */
1930 		txg_wait_synced(spa->spa_dsl_pool, 0);
1931 	}
1932 	return (error);
1933 }
1934 
1935 static void
1936 spa_aux_check_removed(spa_aux_vdev_t *sav)
1937 {
1938 	for (int i = 0; i < sav->sav_count; i++)
1939 		spa_check_removed(sav->sav_vdevs[i]);
1940 }
1941 
1942 void
1943 spa_claim_notify(zio_t *zio)
1944 {
1945 	spa_t *spa = zio->io_spa;
1946 
1947 	if (zio->io_error)
1948 		return;
1949 
1950 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1951 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1952 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1953 	mutex_exit(&spa->spa_props_lock);
1954 }
1955 
1956 typedef struct spa_load_error {
1957 	uint64_t	sle_meta_count;
1958 	uint64_t	sle_data_count;
1959 } spa_load_error_t;
1960 
1961 static void
1962 spa_load_verify_done(zio_t *zio)
1963 {
1964 	blkptr_t *bp = zio->io_bp;
1965 	spa_load_error_t *sle = zio->io_private;
1966 	dmu_object_type_t type = BP_GET_TYPE(bp);
1967 	int error = zio->io_error;
1968 	spa_t *spa = zio->io_spa;
1969 
1970 	abd_free(zio->io_abd);
1971 	if (error) {
1972 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1973 		    type != DMU_OT_INTENT_LOG)
1974 			atomic_inc_64(&sle->sle_meta_count);
1975 		else
1976 			atomic_inc_64(&sle->sle_data_count);
1977 	}
1978 
1979 	mutex_enter(&spa->spa_scrub_lock);
1980 	spa->spa_scrub_inflight--;
1981 	cv_broadcast(&spa->spa_scrub_io_cv);
1982 	mutex_exit(&spa->spa_scrub_lock);
1983 }
1984 
1985 /*
1986  * Maximum number of concurrent scrub i/os to create while verifying
1987  * a pool while importing it.
1988  */
1989 int spa_load_verify_maxinflight = 10000;
1990 boolean_t spa_load_verify_metadata = B_TRUE;
1991 boolean_t spa_load_verify_data = B_TRUE;
1992 
1993 /*ARGSUSED*/
1994 static int
1995 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1996     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1997 {
1998 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1999 		return (0);
2000 	/*
2001 	 * Note: normally this routine will not be called if
2002 	 * spa_load_verify_metadata is not set.  However, it may be useful
2003 	 * to manually set the flag after the traversal has begun.
2004 	 */
2005 	if (!spa_load_verify_metadata)
2006 		return (0);
2007 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2008 		return (0);
2009 
2010 	zio_t *rio = arg;
2011 	size_t size = BP_GET_PSIZE(bp);
2012 
2013 	mutex_enter(&spa->spa_scrub_lock);
2014 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
2015 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2016 	spa->spa_scrub_inflight++;
2017 	mutex_exit(&spa->spa_scrub_lock);
2018 
2019 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2020 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2021 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2022 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2023 	return (0);
2024 }
2025 
2026 /* ARGSUSED */
2027 int
2028 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2029 {
2030 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2031 		return (SET_ERROR(ENAMETOOLONG));
2032 
2033 	return (0);
2034 }
2035 
2036 static int
2037 spa_load_verify(spa_t *spa)
2038 {
2039 	zio_t *rio;
2040 	spa_load_error_t sle = { 0 };
2041 	zpool_load_policy_t policy;
2042 	boolean_t verify_ok = B_FALSE;
2043 	int error = 0;
2044 
2045 	zpool_get_load_policy(spa->spa_config, &policy);
2046 
2047 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2048 		return (0);
2049 
2050 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2051 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2052 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2053 	    DS_FIND_CHILDREN);
2054 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2055 	if (error != 0)
2056 		return (error);
2057 
2058 	rio = zio_root(spa, NULL, &sle,
2059 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2060 
2061 	if (spa_load_verify_metadata) {
2062 		if (spa->spa_extreme_rewind) {
2063 			spa_load_note(spa, "performing a complete scan of the "
2064 			    "pool since extreme rewind is on. This may take "
2065 			    "a very long time.\n  (spa_load_verify_data=%u, "
2066 			    "spa_load_verify_metadata=%u)",
2067 			    spa_load_verify_data, spa_load_verify_metadata);
2068 		}
2069 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2070 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2071 		    spa_load_verify_cb, rio);
2072 	}
2073 
2074 	(void) zio_wait(rio);
2075 
2076 	spa->spa_load_meta_errors = sle.sle_meta_count;
2077 	spa->spa_load_data_errors = sle.sle_data_count;
2078 
2079 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2080 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2081 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2082 		    (u_longlong_t)sle.sle_data_count);
2083 	}
2084 
2085 	if (spa_load_verify_dryrun ||
2086 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2087 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2088 		int64_t loss = 0;
2089 
2090 		verify_ok = B_TRUE;
2091 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2092 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2093 
2094 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2095 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2096 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2097 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2098 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2099 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2100 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2101 	} else {
2102 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2103 	}
2104 
2105 	if (spa_load_verify_dryrun)
2106 		return (0);
2107 
2108 	if (error) {
2109 		if (error != ENXIO && error != EIO)
2110 			error = SET_ERROR(EIO);
2111 		return (error);
2112 	}
2113 
2114 	return (verify_ok ? 0 : EIO);
2115 }
2116 
2117 /*
2118  * Find a value in the pool props object.
2119  */
2120 static void
2121 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2122 {
2123 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2124 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2125 }
2126 
2127 /*
2128  * Find a value in the pool directory object.
2129  */
2130 static int
2131 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2132 {
2133 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2134 	    name, sizeof (uint64_t), 1, val);
2135 
2136 	if (error != 0 && (error != ENOENT || log_enoent)) {
2137 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2138 		    "[error=%d]", name, error);
2139 	}
2140 
2141 	return (error);
2142 }
2143 
2144 static int
2145 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2146 {
2147 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2148 	return (SET_ERROR(err));
2149 }
2150 
2151 static void
2152 spa_spawn_aux_threads(spa_t *spa)
2153 {
2154 	ASSERT(spa_writeable(spa));
2155 
2156 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2157 
2158 	spa_start_indirect_condensing_thread(spa);
2159 
2160 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2161 	spa->spa_checkpoint_discard_zthr =
2162 	    zthr_create(spa_checkpoint_discard_thread_check,
2163 	    spa_checkpoint_discard_thread, spa);
2164 }
2165 
2166 /*
2167  * Fix up config after a partly-completed split.  This is done with the
2168  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2169  * pool have that entry in their config, but only the splitting one contains
2170  * a list of all the guids of the vdevs that are being split off.
2171  *
2172  * This function determines what to do with that list: either rejoin
2173  * all the disks to the pool, or complete the splitting process.  To attempt
2174  * the rejoin, each disk that is offlined is marked online again, and
2175  * we do a reopen() call.  If the vdev label for every disk that was
2176  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2177  * then we call vdev_split() on each disk, and complete the split.
2178  *
2179  * Otherwise we leave the config alone, with all the vdevs in place in
2180  * the original pool.
2181  */
2182 static void
2183 spa_try_repair(spa_t *spa, nvlist_t *config)
2184 {
2185 	uint_t extracted;
2186 	uint64_t *glist;
2187 	uint_t i, gcount;
2188 	nvlist_t *nvl;
2189 	vdev_t **vd;
2190 	boolean_t attempt_reopen;
2191 
2192 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2193 		return;
2194 
2195 	/* check that the config is complete */
2196 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2197 	    &glist, &gcount) != 0)
2198 		return;
2199 
2200 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2201 
2202 	/* attempt to online all the vdevs & validate */
2203 	attempt_reopen = B_TRUE;
2204 	for (i = 0; i < gcount; i++) {
2205 		if (glist[i] == 0)	/* vdev is hole */
2206 			continue;
2207 
2208 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2209 		if (vd[i] == NULL) {
2210 			/*
2211 			 * Don't bother attempting to reopen the disks;
2212 			 * just do the split.
2213 			 */
2214 			attempt_reopen = B_FALSE;
2215 		} else {
2216 			/* attempt to re-online it */
2217 			vd[i]->vdev_offline = B_FALSE;
2218 		}
2219 	}
2220 
2221 	if (attempt_reopen) {
2222 		vdev_reopen(spa->spa_root_vdev);
2223 
2224 		/* check each device to see what state it's in */
2225 		for (extracted = 0, i = 0; i < gcount; i++) {
2226 			if (vd[i] != NULL &&
2227 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2228 				break;
2229 			++extracted;
2230 		}
2231 	}
2232 
2233 	/*
2234 	 * If every disk has been moved to the new pool, or if we never
2235 	 * even attempted to look at them, then we split them off for
2236 	 * good.
2237 	 */
2238 	if (!attempt_reopen || gcount == extracted) {
2239 		for (i = 0; i < gcount; i++)
2240 			if (vd[i] != NULL)
2241 				vdev_split(vd[i]);
2242 		vdev_reopen(spa->spa_root_vdev);
2243 	}
2244 
2245 	kmem_free(vd, gcount * sizeof (vdev_t *));
2246 }
2247 
2248 static int
2249 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2250 {
2251 	char *ereport = FM_EREPORT_ZFS_POOL;
2252 	int error;
2253 
2254 	spa->spa_load_state = state;
2255 
2256 	gethrestime(&spa->spa_loaded_ts);
2257 	error = spa_load_impl(spa, type, &ereport);
2258 
2259 	/*
2260 	 * Don't count references from objsets that are already closed
2261 	 * and are making their way through the eviction process.
2262 	 */
2263 	spa_evicting_os_wait(spa);
2264 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2265 	if (error) {
2266 		if (error != EEXIST) {
2267 			spa->spa_loaded_ts.tv_sec = 0;
2268 			spa->spa_loaded_ts.tv_nsec = 0;
2269 		}
2270 		if (error != EBADF) {
2271 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2272 		}
2273 	}
2274 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2275 	spa->spa_ena = 0;
2276 
2277 	return (error);
2278 }
2279 
2280 /*
2281  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2282  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2283  * spa's per-vdev ZAP list.
2284  */
2285 static uint64_t
2286 vdev_count_verify_zaps(vdev_t *vd)
2287 {
2288 	spa_t *spa = vd->vdev_spa;
2289 	uint64_t total = 0;
2290 	if (vd->vdev_top_zap != 0) {
2291 		total++;
2292 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2293 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2294 	}
2295 	if (vd->vdev_leaf_zap != 0) {
2296 		total++;
2297 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2298 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2299 	}
2300 
2301 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2302 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2303 	}
2304 
2305 	return (total);
2306 }
2307 
2308 static int
2309 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2310 {
2311 	uint64_t hostid;
2312 	char *hostname;
2313 	uint64_t myhostid = 0;
2314 
2315 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2316 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2317 		hostname = fnvlist_lookup_string(mos_config,
2318 		    ZPOOL_CONFIG_HOSTNAME);
2319 
2320 		myhostid = zone_get_hostid(NULL);
2321 
2322 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2323 			cmn_err(CE_WARN, "pool '%s' could not be "
2324 			    "loaded as it was last accessed by "
2325 			    "another system (host: %s hostid: 0x%llx). "
2326 			    "See: http://illumos.org/msg/ZFS-8000-EY",
2327 			    spa_name(spa), hostname, (u_longlong_t)hostid);
2328 			spa_load_failed(spa, "hostid verification failed: pool "
2329 			    "last accessed by host: %s (hostid: 0x%llx)",
2330 			    hostname, (u_longlong_t)hostid);
2331 			return (SET_ERROR(EBADF));
2332 		}
2333 	}
2334 
2335 	return (0);
2336 }
2337 
2338 static int
2339 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2340 {
2341 	int error = 0;
2342 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2343 	int parse;
2344 	vdev_t *rvd;
2345 	uint64_t pool_guid;
2346 	char *comment;
2347 
2348 	/*
2349 	 * Versioning wasn't explicitly added to the label until later, so if
2350 	 * it's not present treat it as the initial version.
2351 	 */
2352 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2353 	    &spa->spa_ubsync.ub_version) != 0)
2354 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2355 
2356 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2357 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2358 		    ZPOOL_CONFIG_POOL_GUID);
2359 		return (SET_ERROR(EINVAL));
2360 	}
2361 
2362 	/*
2363 	 * If we are doing an import, ensure that the pool is not already
2364 	 * imported by checking if its pool guid already exists in the
2365 	 * spa namespace.
2366 	 *
2367 	 * The only case that we allow an already imported pool to be
2368 	 * imported again, is when the pool is checkpointed and we want to
2369 	 * look at its checkpointed state from userland tools like zdb.
2370 	 */
2371 #ifdef _KERNEL
2372 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2373 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2374 	    spa_guid_exists(pool_guid, 0)) {
2375 #else
2376 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2377 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2378 	    spa_guid_exists(pool_guid, 0) &&
2379 	    !spa_importing_readonly_checkpoint(spa)) {
2380 #endif
2381 		spa_load_failed(spa, "a pool with guid %llu is already open",
2382 		    (u_longlong_t)pool_guid);
2383 		return (SET_ERROR(EEXIST));
2384 	}
2385 
2386 	spa->spa_config_guid = pool_guid;
2387 
2388 	nvlist_free(spa->spa_load_info);
2389 	spa->spa_load_info = fnvlist_alloc();
2390 
2391 	ASSERT(spa->spa_comment == NULL);
2392 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2393 		spa->spa_comment = spa_strdup(comment);
2394 
2395 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2396 	    &spa->spa_config_txg);
2397 
2398 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2399 		spa->spa_config_splitting = fnvlist_dup(nvl);
2400 
2401 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2402 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2403 		    ZPOOL_CONFIG_VDEV_TREE);
2404 		return (SET_ERROR(EINVAL));
2405 	}
2406 
2407 	/*
2408 	 * Create "The Godfather" zio to hold all async IOs
2409 	 */
2410 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2411 	    KM_SLEEP);
2412 	for (int i = 0; i < max_ncpus; i++) {
2413 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2414 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2415 		    ZIO_FLAG_GODFATHER);
2416 	}
2417 
2418 	/*
2419 	 * Parse the configuration into a vdev tree.  We explicitly set the
2420 	 * value that will be returned by spa_version() since parsing the
2421 	 * configuration requires knowing the version number.
2422 	 */
2423 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2424 	parse = (type == SPA_IMPORT_EXISTING ?
2425 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2426 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2427 	spa_config_exit(spa, SCL_ALL, FTAG);
2428 
2429 	if (error != 0) {
2430 		spa_load_failed(spa, "unable to parse config [error=%d]",
2431 		    error);
2432 		return (error);
2433 	}
2434 
2435 	ASSERT(spa->spa_root_vdev == rvd);
2436 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2437 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2438 
2439 	if (type != SPA_IMPORT_ASSEMBLE) {
2440 		ASSERT(spa_guid(spa) == pool_guid);
2441 	}
2442 
2443 	return (0);
2444 }
2445 
2446 /*
2447  * Recursively open all vdevs in the vdev tree. This function is called twice:
2448  * first with the untrusted config, then with the trusted config.
2449  */
2450 static int
2451 spa_ld_open_vdevs(spa_t *spa)
2452 {
2453 	int error = 0;
2454 
2455 	/*
2456 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2457 	 * missing/unopenable for the root vdev to be still considered openable.
2458 	 */
2459 	if (spa->spa_trust_config) {
2460 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2461 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2462 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2463 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2464 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2465 	} else {
2466 		spa->spa_missing_tvds_allowed = 0;
2467 	}
2468 
2469 	spa->spa_missing_tvds_allowed =
2470 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2471 
2472 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2473 	error = vdev_open(spa->spa_root_vdev);
2474 	spa_config_exit(spa, SCL_ALL, FTAG);
2475 
2476 	if (spa->spa_missing_tvds != 0) {
2477 		spa_load_note(spa, "vdev tree has %lld missing top-level "
2478 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2479 		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2480 			/*
2481 			 * Although theoretically we could allow users to open
2482 			 * incomplete pools in RW mode, we'd need to add a lot
2483 			 * of extra logic (e.g. adjust pool space to account
2484 			 * for missing vdevs).
2485 			 * This limitation also prevents users from accidentally
2486 			 * opening the pool in RW mode during data recovery and
2487 			 * damaging it further.
2488 			 */
2489 			spa_load_note(spa, "pools with missing top-level "
2490 			    "vdevs can only be opened in read-only mode.");
2491 			error = SET_ERROR(ENXIO);
2492 		} else {
2493 			spa_load_note(spa, "current settings allow for maximum "
2494 			    "%lld missing top-level vdevs at this stage.",
2495 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2496 		}
2497 	}
2498 	if (error != 0) {
2499 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2500 		    error);
2501 	}
2502 	if (spa->spa_missing_tvds != 0 || error != 0)
2503 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2504 
2505 	return (error);
2506 }
2507 
2508 /*
2509  * We need to validate the vdev labels against the configuration that
2510  * we have in hand. This function is called twice: first with an untrusted
2511  * config, then with a trusted config. The validation is more strict when the
2512  * config is trusted.
2513  */
2514 static int
2515 spa_ld_validate_vdevs(spa_t *spa)
2516 {
2517 	int error = 0;
2518 	vdev_t *rvd = spa->spa_root_vdev;
2519 
2520 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2521 	error = vdev_validate(rvd);
2522 	spa_config_exit(spa, SCL_ALL, FTAG);
2523 
2524 	if (error != 0) {
2525 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2526 		return (error);
2527 	}
2528 
2529 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2530 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2531 		    "some vdevs");
2532 		vdev_dbgmsg_print_tree(rvd, 2);
2533 		return (SET_ERROR(ENXIO));
2534 	}
2535 
2536 	return (0);
2537 }
2538 
2539 static void
2540 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2541 {
2542 	spa->spa_state = POOL_STATE_ACTIVE;
2543 	spa->spa_ubsync = spa->spa_uberblock;
2544 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2545 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2546 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2547 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2548 	spa->spa_claim_max_txg = spa->spa_first_txg;
2549 	spa->spa_prev_software_version = ub->ub_software_version;
2550 }
2551 
2552 static int
2553 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2554 {
2555 	vdev_t *rvd = spa->spa_root_vdev;
2556 	nvlist_t *label;
2557 	uberblock_t *ub = &spa->spa_uberblock;
2558 
2559 	/*
2560 	 * If we are opening the checkpointed state of the pool by
2561 	 * rewinding to it, at this point we will have written the
2562 	 * checkpointed uberblock to the vdev labels, so searching
2563 	 * the labels will find the right uberblock.  However, if
2564 	 * we are opening the checkpointed state read-only, we have
2565 	 * not modified the labels. Therefore, we must ignore the
2566 	 * labels and continue using the spa_uberblock that was set
2567 	 * by spa_ld_checkpoint_rewind.
2568 	 *
2569 	 * Note that it would be fine to ignore the labels when
2570 	 * rewinding (opening writeable) as well. However, if we
2571 	 * crash just after writing the labels, we will end up
2572 	 * searching the labels. Doing so in the common case means
2573 	 * that this code path gets exercised normally, rather than
2574 	 * just in the edge case.
2575 	 */
2576 	if (ub->ub_checkpoint_txg != 0 &&
2577 	    spa_importing_readonly_checkpoint(spa)) {
2578 		spa_ld_select_uberblock_done(spa, ub);
2579 		return (0);
2580 	}
2581 
2582 	/*
2583 	 * Find the best uberblock.
2584 	 */
2585 	vdev_uberblock_load(rvd, ub, &label);
2586 
2587 	/*
2588 	 * If we weren't able to find a single valid uberblock, return failure.
2589 	 */
2590 	if (ub->ub_txg == 0) {
2591 		nvlist_free(label);
2592 		spa_load_failed(spa, "no valid uberblock found");
2593 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2594 	}
2595 
2596 	spa_load_note(spa, "using uberblock with txg=%llu",
2597 	    (u_longlong_t)ub->ub_txg);
2598 
2599 	/*
2600 	 * If the pool has an unsupported version we can't open it.
2601 	 */
2602 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2603 		nvlist_free(label);
2604 		spa_load_failed(spa, "version %llu is not supported",
2605 		    (u_longlong_t)ub->ub_version);
2606 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2607 	}
2608 
2609 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2610 		nvlist_t *features;
2611 
2612 		/*
2613 		 * If we weren't able to find what's necessary for reading the
2614 		 * MOS in the label, return failure.
2615 		 */
2616 		if (label == NULL) {
2617 			spa_load_failed(spa, "label config unavailable");
2618 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2619 			    ENXIO));
2620 		}
2621 
2622 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2623 		    &features) != 0) {
2624 			nvlist_free(label);
2625 			spa_load_failed(spa, "invalid label: '%s' missing",
2626 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
2627 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2628 			    ENXIO));
2629 		}
2630 
2631 		/*
2632 		 * Update our in-core representation with the definitive values
2633 		 * from the label.
2634 		 */
2635 		nvlist_free(spa->spa_label_features);
2636 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2637 	}
2638 
2639 	nvlist_free(label);
2640 
2641 	/*
2642 	 * Look through entries in the label nvlist's features_for_read. If
2643 	 * there is a feature listed there which we don't understand then we
2644 	 * cannot open a pool.
2645 	 */
2646 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2647 		nvlist_t *unsup_feat;
2648 
2649 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2650 		    0);
2651 
2652 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2653 		    NULL); nvp != NULL;
2654 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2655 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2656 				VERIFY(nvlist_add_string(unsup_feat,
2657 				    nvpair_name(nvp), "") == 0);
2658 			}
2659 		}
2660 
2661 		if (!nvlist_empty(unsup_feat)) {
2662 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2663 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2664 			nvlist_free(unsup_feat);
2665 			spa_load_failed(spa, "some features are unsupported");
2666 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2667 			    ENOTSUP));
2668 		}
2669 
2670 		nvlist_free(unsup_feat);
2671 	}
2672 
2673 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2674 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2675 		spa_try_repair(spa, spa->spa_config);
2676 		spa_config_exit(spa, SCL_ALL, FTAG);
2677 		nvlist_free(spa->spa_config_splitting);
2678 		spa->spa_config_splitting = NULL;
2679 	}
2680 
2681 	/*
2682 	 * Initialize internal SPA structures.
2683 	 */
2684 	spa_ld_select_uberblock_done(spa, ub);
2685 
2686 	return (0);
2687 }
2688 
2689 static int
2690 spa_ld_open_rootbp(spa_t *spa)
2691 {
2692 	int error = 0;
2693 	vdev_t *rvd = spa->spa_root_vdev;
2694 
2695 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2696 	if (error != 0) {
2697 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2698 		    "[error=%d]", error);
2699 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2700 	}
2701 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2702 
2703 	return (0);
2704 }
2705 
2706 static int
2707 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
2708     boolean_t reloading)
2709 {
2710 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
2711 	nvlist_t *nv, *mos_config, *policy;
2712 	int error = 0, copy_error;
2713 	uint64_t healthy_tvds, healthy_tvds_mos;
2714 	uint64_t mos_config_txg;
2715 
2716 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2717 	    != 0)
2718 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2719 
2720 	/*
2721 	 * If we're assembling a pool from a split, the config provided is
2722 	 * already trusted so there is nothing to do.
2723 	 */
2724 	if (type == SPA_IMPORT_ASSEMBLE)
2725 		return (0);
2726 
2727 	healthy_tvds = spa_healthy_core_tvds(spa);
2728 
2729 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2730 	    != 0) {
2731 		spa_load_failed(spa, "unable to retrieve MOS config");
2732 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2733 	}
2734 
2735 	/*
2736 	 * If we are doing an open, pool owner wasn't verified yet, thus do
2737 	 * the verification here.
2738 	 */
2739 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
2740 		error = spa_verify_host(spa, mos_config);
2741 		if (error != 0) {
2742 			nvlist_free(mos_config);
2743 			return (error);
2744 		}
2745 	}
2746 
2747 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
2748 
2749 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2750 
2751 	/*
2752 	 * Build a new vdev tree from the trusted config
2753 	 */
2754 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
2755 
2756 	/*
2757 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
2758 	 * obtained by scanning /dev/dsk, then it will have the right vdev
2759 	 * paths. We update the trusted MOS config with this information.
2760 	 * We first try to copy the paths with vdev_copy_path_strict, which
2761 	 * succeeds only when both configs have exactly the same vdev tree.
2762 	 * If that fails, we fall back to a more flexible method that has a
2763 	 * best effort policy.
2764 	 */
2765 	copy_error = vdev_copy_path_strict(rvd, mrvd);
2766 	if (copy_error != 0 || spa_load_print_vdev_tree) {
2767 		spa_load_note(spa, "provided vdev tree:");
2768 		vdev_dbgmsg_print_tree(rvd, 2);
2769 		spa_load_note(spa, "MOS vdev tree:");
2770 		vdev_dbgmsg_print_tree(mrvd, 2);
2771 	}
2772 	if (copy_error != 0) {
2773 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
2774 		    "back to vdev_copy_path_relaxed");
2775 		vdev_copy_path_relaxed(rvd, mrvd);
2776 	}
2777 
2778 	vdev_close(rvd);
2779 	vdev_free(rvd);
2780 	spa->spa_root_vdev = mrvd;
2781 	rvd = mrvd;
2782 	spa_config_exit(spa, SCL_ALL, FTAG);
2783 
2784 	/*
2785 	 * We will use spa_config if we decide to reload the spa or if spa_load
2786 	 * fails and we rewind. We must thus regenerate the config using the
2787 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
2788 	 * pass settings on how to load the pool and is not stored in the MOS.
2789 	 * We copy it over to our new, trusted config.
2790 	 */
2791 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
2792 	    ZPOOL_CONFIG_POOL_TXG);
2793 	nvlist_free(mos_config);
2794 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
2795 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
2796 	    &policy) == 0)
2797 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
2798 	spa_config_set(spa, mos_config);
2799 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
2800 
2801 	/*
2802 	 * Now that we got the config from the MOS, we should be more strict
2803 	 * in checking blkptrs and can make assumptions about the consistency
2804 	 * of the vdev tree. spa_trust_config must be set to true before opening
2805 	 * vdevs in order for them to be writeable.
2806 	 */
2807 	spa->spa_trust_config = B_TRUE;
2808 
2809 	/*
2810 	 * Open and validate the new vdev tree
2811 	 */
2812 	error = spa_ld_open_vdevs(spa);
2813 	if (error != 0)
2814 		return (error);
2815 
2816 	error = spa_ld_validate_vdevs(spa);
2817 	if (error != 0)
2818 		return (error);
2819 
2820 	if (copy_error != 0 || spa_load_print_vdev_tree) {
2821 		spa_load_note(spa, "final vdev tree:");
2822 		vdev_dbgmsg_print_tree(rvd, 2);
2823 	}
2824 
2825 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
2826 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
2827 		/*
2828 		 * Sanity check to make sure that we are indeed loading the
2829 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
2830 		 * in the config provided and they happened to be the only ones
2831 		 * to have the latest uberblock, we could involuntarily perform
2832 		 * an extreme rewind.
2833 		 */
2834 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
2835 		if (healthy_tvds_mos - healthy_tvds >=
2836 		    SPA_SYNC_MIN_VDEVS) {
2837 			spa_load_note(spa, "config provided misses too many "
2838 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
2839 			    (u_longlong_t)healthy_tvds,
2840 			    (u_longlong_t)healthy_tvds_mos);
2841 			spa_load_note(spa, "vdev tree:");
2842 			vdev_dbgmsg_print_tree(rvd, 2);
2843 			if (reloading) {
2844 				spa_load_failed(spa, "config was already "
2845 				    "provided from MOS. Aborting.");
2846 				return (spa_vdev_err(rvd,
2847 				    VDEV_AUX_CORRUPT_DATA, EIO));
2848 			}
2849 			spa_load_note(spa, "spa must be reloaded using MOS "
2850 			    "config");
2851 			return (SET_ERROR(EAGAIN));
2852 		}
2853 	}
2854 
2855 	error = spa_check_for_missing_logs(spa);
2856 	if (error != 0)
2857 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2858 
2859 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
2860 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
2861 		    "guid sum (%llu != %llu)",
2862 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
2863 		    (u_longlong_t)rvd->vdev_guid_sum);
2864 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2865 		    ENXIO));
2866 	}
2867 
2868 	return (0);
2869 }
2870 
2871 static int
2872 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
2873 {
2874 	int error = 0;
2875 	vdev_t *rvd = spa->spa_root_vdev;
2876 
2877 	/*
2878 	 * Everything that we read before spa_remove_init() must be stored
2879 	 * on concreted vdevs.  Therefore we do this as early as possible.
2880 	 */
2881 	error = spa_remove_init(spa);
2882 	if (error != 0) {
2883 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
2884 		    error);
2885 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2886 	}
2887 
2888 	/*
2889 	 * Retrieve information needed to condense indirect vdev mappings.
2890 	 */
2891 	error = spa_condense_init(spa);
2892 	if (error != 0) {
2893 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
2894 		    error);
2895 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2896 	}
2897 
2898 	return (0);
2899 }
2900 
2901 static int
2902 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
2903 {
2904 	int error = 0;
2905 	vdev_t *rvd = spa->spa_root_vdev;
2906 
2907 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2908 		boolean_t missing_feat_read = B_FALSE;
2909 		nvlist_t *unsup_feat, *enabled_feat;
2910 
2911 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2912 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
2913 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2914 		}
2915 
2916 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2917 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
2918 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2919 		}
2920 
2921 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2922 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
2923 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2924 		}
2925 
2926 		enabled_feat = fnvlist_alloc();
2927 		unsup_feat = fnvlist_alloc();
2928 
2929 		if (!spa_features_check(spa, B_FALSE,
2930 		    unsup_feat, enabled_feat))
2931 			missing_feat_read = B_TRUE;
2932 
2933 		if (spa_writeable(spa) ||
2934 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
2935 			if (!spa_features_check(spa, B_TRUE,
2936 			    unsup_feat, enabled_feat)) {
2937 				*missing_feat_writep = B_TRUE;
2938 			}
2939 		}
2940 
2941 		fnvlist_add_nvlist(spa->spa_load_info,
2942 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2943 
2944 		if (!nvlist_empty(unsup_feat)) {
2945 			fnvlist_add_nvlist(spa->spa_load_info,
2946 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2947 		}
2948 
2949 		fnvlist_free(enabled_feat);
2950 		fnvlist_free(unsup_feat);
2951 
2952 		if (!missing_feat_read) {
2953 			fnvlist_add_boolean(spa->spa_load_info,
2954 			    ZPOOL_CONFIG_CAN_RDONLY);
2955 		}
2956 
2957 		/*
2958 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2959 		 * twofold: to determine whether the pool is available for
2960 		 * import in read-write mode and (if it is not) whether the
2961 		 * pool is available for import in read-only mode. If the pool
2962 		 * is available for import in read-write mode, it is displayed
2963 		 * as available in userland; if it is not available for import
2964 		 * in read-only mode, it is displayed as unavailable in
2965 		 * userland. If the pool is available for import in read-only
2966 		 * mode but not read-write mode, it is displayed as unavailable
2967 		 * in userland with a special note that the pool is actually
2968 		 * available for open in read-only mode.
2969 		 *
2970 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2971 		 * missing a feature for write, we must first determine whether
2972 		 * the pool can be opened read-only before returning to
2973 		 * userland in order to know whether to display the
2974 		 * abovementioned note.
2975 		 */
2976 		if (missing_feat_read || (*missing_feat_writep &&
2977 		    spa_writeable(spa))) {
2978 			spa_load_failed(spa, "pool uses unsupported features");
2979 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2980 			    ENOTSUP));
2981 		}
2982 
2983 		/*
2984 		 * Load refcounts for ZFS features from disk into an in-memory
2985 		 * cache during SPA initialization.
2986 		 */
2987 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2988 			uint64_t refcount;
2989 
2990 			error = feature_get_refcount_from_disk(spa,
2991 			    &spa_feature_table[i], &refcount);
2992 			if (error == 0) {
2993 				spa->spa_feat_refcount_cache[i] = refcount;
2994 			} else if (error == ENOTSUP) {
2995 				spa->spa_feat_refcount_cache[i] =
2996 				    SPA_FEATURE_DISABLED;
2997 			} else {
2998 				spa_load_failed(spa, "error getting refcount "
2999 				    "for feature %s [error=%d]",
3000 				    spa_feature_table[i].fi_guid, error);
3001 				return (spa_vdev_err(rvd,
3002 				    VDEV_AUX_CORRUPT_DATA, EIO));
3003 			}
3004 		}
3005 	}
3006 
3007 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3008 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3009 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3010 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3011 	}
3012 
3013 	return (0);
3014 }
3015 
3016 static int
3017 spa_ld_load_special_directories(spa_t *spa)
3018 {
3019 	int error = 0;
3020 	vdev_t *rvd = spa->spa_root_vdev;
3021 
3022 	spa->spa_is_initializing = B_TRUE;
3023 	error = dsl_pool_open(spa->spa_dsl_pool);
3024 	spa->spa_is_initializing = B_FALSE;
3025 	if (error != 0) {
3026 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3027 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3028 	}
3029 
3030 	return (0);
3031 }
3032 
3033 static int
3034 spa_ld_get_props(spa_t *spa)
3035 {
3036 	int error = 0;
3037 	uint64_t obj;
3038 	vdev_t *rvd = spa->spa_root_vdev;
3039 
3040 	/* Grab the secret checksum salt from the MOS. */
3041 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3042 	    DMU_POOL_CHECKSUM_SALT, 1,
3043 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3044 	    spa->spa_cksum_salt.zcs_bytes);
3045 	if (error == ENOENT) {
3046 		/* Generate a new salt for subsequent use */
3047 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3048 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3049 	} else if (error != 0) {
3050 		spa_load_failed(spa, "unable to retrieve checksum salt from "
3051 		    "MOS [error=%d]", error);
3052 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3053 	}
3054 
3055 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3056 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3057 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3058 	if (error != 0) {
3059 		spa_load_failed(spa, "error opening deferred-frees bpobj "
3060 		    "[error=%d]", error);
3061 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3062 	}
3063 
3064 	/*
3065 	 * Load the bit that tells us to use the new accounting function
3066 	 * (raid-z deflation).  If we have an older pool, this will not
3067 	 * be present.
3068 	 */
3069 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3070 	if (error != 0 && error != ENOENT)
3071 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3072 
3073 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3074 	    &spa->spa_creation_version, B_FALSE);
3075 	if (error != 0 && error != ENOENT)
3076 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3077 
3078 	/*
3079 	 * Load the persistent error log.  If we have an older pool, this will
3080 	 * not be present.
3081 	 */
3082 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3083 	    B_FALSE);
3084 	if (error != 0 && error != ENOENT)
3085 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3086 
3087 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3088 	    &spa->spa_errlog_scrub, B_FALSE);
3089 	if (error != 0 && error != ENOENT)
3090 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3091 
3092 	/*
3093 	 * Load the history object.  If we have an older pool, this
3094 	 * will not be present.
3095 	 */
3096 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3097 	if (error != 0 && error != ENOENT)
3098 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3099 
3100 	/*
3101 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3102 	 * be present; in this case, defer its creation to a later time to
3103 	 * avoid dirtying the MOS this early / out of sync context. See
3104 	 * spa_sync_config_object.
3105 	 */
3106 
3107 	/* The sentinel is only available in the MOS config. */
3108 	nvlist_t *mos_config;
3109 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3110 		spa_load_failed(spa, "unable to retrieve MOS config");
3111 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3112 	}
3113 
3114 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3115 	    &spa->spa_all_vdev_zaps, B_FALSE);
3116 
3117 	if (error == ENOENT) {
3118 		VERIFY(!nvlist_exists(mos_config,
3119 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3120 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3121 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3122 	} else if (error != 0) {
3123 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3124 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3125 		/*
3126 		 * An older version of ZFS overwrote the sentinel value, so
3127 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3128 		 * destruction to later; see spa_sync_config_object.
3129 		 */
3130 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3131 		/*
3132 		 * We're assuming that no vdevs have had their ZAPs created
3133 		 * before this. Better be sure of it.
3134 		 */
3135 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3136 	}
3137 	nvlist_free(mos_config);
3138 
3139 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3140 
3141 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3142 	    B_FALSE);
3143 	if (error && error != ENOENT)
3144 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3145 
3146 	if (error == 0) {
3147 		uint64_t autoreplace;
3148 
3149 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3150 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3151 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3152 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3153 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3154 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3155 		    &spa->spa_dedup_ditto);
3156 
3157 		spa->spa_autoreplace = (autoreplace != 0);
3158 	}
3159 
3160 	/*
3161 	 * If we are importing a pool with missing top-level vdevs,
3162 	 * we enforce that the pool doesn't panic or get suspended on
3163 	 * error since the likelihood of missing data is extremely high.
3164 	 */
3165 	if (spa->spa_missing_tvds > 0 &&
3166 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3167 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3168 		spa_load_note(spa, "forcing failmode to 'continue' "
3169 		    "as some top level vdevs are missing");
3170 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3171 	}
3172 
3173 	return (0);
3174 }
3175 
3176 static int
3177 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3178 {
3179 	int error = 0;
3180 	vdev_t *rvd = spa->spa_root_vdev;
3181 
3182 	/*
3183 	 * If we're assembling the pool from the split-off vdevs of
3184 	 * an existing pool, we don't want to attach the spares & cache
3185 	 * devices.
3186 	 */
3187 
3188 	/*
3189 	 * Load any hot spares for this pool.
3190 	 */
3191 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3192 	    B_FALSE);
3193 	if (error != 0 && error != ENOENT)
3194 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3195 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3196 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3197 		if (load_nvlist(spa, spa->spa_spares.sav_object,
3198 		    &spa->spa_spares.sav_config) != 0) {
3199 			spa_load_failed(spa, "error loading spares nvlist");
3200 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3201 		}
3202 
3203 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3204 		spa_load_spares(spa);
3205 		spa_config_exit(spa, SCL_ALL, FTAG);
3206 	} else if (error == 0) {
3207 		spa->spa_spares.sav_sync = B_TRUE;
3208 	}
3209 
3210 	/*
3211 	 * Load any level 2 ARC devices for this pool.
3212 	 */
3213 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3214 	    &spa->spa_l2cache.sav_object, B_FALSE);
3215 	if (error != 0 && error != ENOENT)
3216 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3217 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3218 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3219 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3220 		    &spa->spa_l2cache.sav_config) != 0) {
3221 			spa_load_failed(spa, "error loading l2cache nvlist");
3222 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3223 		}
3224 
3225 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3226 		spa_load_l2cache(spa);
3227 		spa_config_exit(spa, SCL_ALL, FTAG);
3228 	} else if (error == 0) {
3229 		spa->spa_l2cache.sav_sync = B_TRUE;
3230 	}
3231 
3232 	return (0);
3233 }
3234 
3235 static int
3236 spa_ld_load_vdev_metadata(spa_t *spa)
3237 {
3238 	int error = 0;
3239 	vdev_t *rvd = spa->spa_root_vdev;
3240 
3241 	/*
3242 	 * If the 'autoreplace' property is set, then post a resource notifying
3243 	 * the ZFS DE that it should not issue any faults for unopenable
3244 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3245 	 * unopenable vdevs so that the normal autoreplace handler can take
3246 	 * over.
3247 	 */
3248 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3249 		spa_check_removed(spa->spa_root_vdev);
3250 		/*
3251 		 * For the import case, this is done in spa_import(), because
3252 		 * at this point we're using the spare definitions from
3253 		 * the MOS config, not necessarily from the userland config.
3254 		 */
3255 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3256 			spa_aux_check_removed(&spa->spa_spares);
3257 			spa_aux_check_removed(&spa->spa_l2cache);
3258 		}
3259 	}
3260 
3261 	/*
3262 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3263 	 */
3264 	error = vdev_load(rvd);
3265 	if (error != 0) {
3266 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3267 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3268 	}
3269 
3270 	/*
3271 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3272 	 */
3273 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3274 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3275 	spa_config_exit(spa, SCL_ALL, FTAG);
3276 
3277 	return (0);
3278 }
3279 
3280 static int
3281 spa_ld_load_dedup_tables(spa_t *spa)
3282 {
3283 	int error = 0;
3284 	vdev_t *rvd = spa->spa_root_vdev;
3285 
3286 	error = ddt_load(spa);
3287 	if (error != 0) {
3288 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3289 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3290 	}
3291 
3292 	return (0);
3293 }
3294 
3295 static int
3296 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3297 {
3298 	vdev_t *rvd = spa->spa_root_vdev;
3299 
3300 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3301 		boolean_t missing = spa_check_logs(spa);
3302 		if (missing) {
3303 			if (spa->spa_missing_tvds != 0) {
3304 				spa_load_note(spa, "spa_check_logs failed "
3305 				    "so dropping the logs");
3306 			} else {
3307 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3308 				spa_load_failed(spa, "spa_check_logs failed");
3309 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3310 				    ENXIO));
3311 			}
3312 		}
3313 	}
3314 
3315 	return (0);
3316 }
3317 
3318 static int
3319 spa_ld_verify_pool_data(spa_t *spa)
3320 {
3321 	int error = 0;
3322 	vdev_t *rvd = spa->spa_root_vdev;
3323 
3324 	/*
3325 	 * We've successfully opened the pool, verify that we're ready
3326 	 * to start pushing transactions.
3327 	 */
3328 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3329 		error = spa_load_verify(spa);
3330 		if (error != 0) {
3331 			spa_load_failed(spa, "spa_load_verify failed "
3332 			    "[error=%d]", error);
3333 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3334 			    error));
3335 		}
3336 	}
3337 
3338 	return (0);
3339 }
3340 
3341 static void
3342 spa_ld_claim_log_blocks(spa_t *spa)
3343 {
3344 	dmu_tx_t *tx;
3345 	dsl_pool_t *dp = spa_get_dsl(spa);
3346 
3347 	/*
3348 	 * Claim log blocks that haven't been committed yet.
3349 	 * This must all happen in a single txg.
3350 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3351 	 * invoked from zil_claim_log_block()'s i/o done callback.
3352 	 * Price of rollback is that we abandon the log.
3353 	 */
3354 	spa->spa_claiming = B_TRUE;
3355 
3356 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3357 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3358 	    zil_claim, tx, DS_FIND_CHILDREN);
3359 	dmu_tx_commit(tx);
3360 
3361 	spa->spa_claiming = B_FALSE;
3362 
3363 	spa_set_log_state(spa, SPA_LOG_GOOD);
3364 }
3365 
3366 static void
3367 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3368     boolean_t update_config_cache)
3369 {
3370 	vdev_t *rvd = spa->spa_root_vdev;
3371 	int need_update = B_FALSE;
3372 
3373 	/*
3374 	 * If the config cache is stale, or we have uninitialized
3375 	 * metaslabs (see spa_vdev_add()), then update the config.
3376 	 *
3377 	 * If this is a verbatim import, trust the current
3378 	 * in-core spa_config and update the disk labels.
3379 	 */
3380 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3381 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3382 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3383 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3384 		need_update = B_TRUE;
3385 
3386 	for (int c = 0; c < rvd->vdev_children; c++)
3387 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3388 			need_update = B_TRUE;
3389 
3390 	/*
3391 	 * Update the config cache asychronously in case we're the
3392 	 * root pool, in which case the config cache isn't writable yet.
3393 	 */
3394 	if (need_update)
3395 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3396 }
3397 
3398 static void
3399 spa_ld_prepare_for_reload(spa_t *spa)
3400 {
3401 	int mode = spa->spa_mode;
3402 	int async_suspended = spa->spa_async_suspended;
3403 
3404 	spa_unload(spa);
3405 	spa_deactivate(spa);
3406 	spa_activate(spa, mode);
3407 
3408 	/*
3409 	 * We save the value of spa_async_suspended as it gets reset to 0 by
3410 	 * spa_unload(). We want to restore it back to the original value before
3411 	 * returning as we might be calling spa_async_resume() later.
3412 	 */
3413 	spa->spa_async_suspended = async_suspended;
3414 }
3415 
3416 static int
3417 spa_ld_read_checkpoint_txg(spa_t *spa)
3418 {
3419 	uberblock_t checkpoint;
3420 	int error = 0;
3421 
3422 	ASSERT0(spa->spa_checkpoint_txg);
3423 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3424 
3425 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3426 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3427 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3428 
3429 	if (error == ENOENT)
3430 		return (0);
3431 
3432 	if (error != 0)
3433 		return (error);
3434 
3435 	ASSERT3U(checkpoint.ub_txg, !=, 0);
3436 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3437 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3438 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3439 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3440 
3441 	return (0);
3442 }
3443 
3444 static int
3445 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3446 {
3447 	int error = 0;
3448 
3449 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3450 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3451 
3452 	/*
3453 	 * Never trust the config that is provided unless we are assembling
3454 	 * a pool following a split.
3455 	 * This means don't trust blkptrs and the vdev tree in general. This
3456 	 * also effectively puts the spa in read-only mode since
3457 	 * spa_writeable() checks for spa_trust_config to be true.
3458 	 * We will later load a trusted config from the MOS.
3459 	 */
3460 	if (type != SPA_IMPORT_ASSEMBLE)
3461 		spa->spa_trust_config = B_FALSE;
3462 
3463 	/*
3464 	 * Parse the config provided to create a vdev tree.
3465 	 */
3466 	error = spa_ld_parse_config(spa, type);
3467 	if (error != 0)
3468 		return (error);
3469 
3470 	/*
3471 	 * Now that we have the vdev tree, try to open each vdev. This involves
3472 	 * opening the underlying physical device, retrieving its geometry and
3473 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3474 	 * based on the success of those operations. After this we'll be ready
3475 	 * to read from the vdevs.
3476 	 */
3477 	error = spa_ld_open_vdevs(spa);
3478 	if (error != 0)
3479 		return (error);
3480 
3481 	/*
3482 	 * Read the label of each vdev and make sure that the GUIDs stored
3483 	 * there match the GUIDs in the config provided.
3484 	 * If we're assembling a new pool that's been split off from an
3485 	 * existing pool, the labels haven't yet been updated so we skip
3486 	 * validation for now.
3487 	 */
3488 	if (type != SPA_IMPORT_ASSEMBLE) {
3489 		error = spa_ld_validate_vdevs(spa);
3490 		if (error != 0)
3491 			return (error);
3492 	}
3493 
3494 	/*
3495 	 * Read all vdev labels to find the best uberblock (i.e. latest,
3496 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3497 	 * get the list of features required to read blkptrs in the MOS from
3498 	 * the vdev label with the best uberblock and verify that our version
3499 	 * of zfs supports them all.
3500 	 */
3501 	error = spa_ld_select_uberblock(spa, type);
3502 	if (error != 0)
3503 		return (error);
3504 
3505 	/*
3506 	 * Pass that uberblock to the dsl_pool layer which will open the root
3507 	 * blkptr. This blkptr points to the latest version of the MOS and will
3508 	 * allow us to read its contents.
3509 	 */
3510 	error = spa_ld_open_rootbp(spa);
3511 	if (error != 0)
3512 		return (error);
3513 
3514 	return (0);
3515 }
3516 
3517 static int
3518 spa_ld_checkpoint_rewind(spa_t *spa)
3519 {
3520 	uberblock_t checkpoint;
3521 	int error = 0;
3522 
3523 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3524 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3525 
3526 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3527 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3528 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3529 
3530 	if (error != 0) {
3531 		spa_load_failed(spa, "unable to retrieve checkpointed "
3532 		    "uberblock from the MOS config [error=%d]", error);
3533 
3534 		if (error == ENOENT)
3535 			error = ZFS_ERR_NO_CHECKPOINT;
3536 
3537 		return (error);
3538 	}
3539 
3540 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
3541 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
3542 
3543 	/*
3544 	 * We need to update the txg and timestamp of the checkpointed
3545 	 * uberblock to be higher than the latest one. This ensures that
3546 	 * the checkpointed uberblock is selected if we were to close and
3547 	 * reopen the pool right after we've written it in the vdev labels.
3548 	 * (also see block comment in vdev_uberblock_compare)
3549 	 */
3550 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
3551 	checkpoint.ub_timestamp = gethrestime_sec();
3552 
3553 	/*
3554 	 * Set current uberblock to be the checkpointed uberblock.
3555 	 */
3556 	spa->spa_uberblock = checkpoint;
3557 
3558 	/*
3559 	 * If we are doing a normal rewind, then the pool is open for
3560 	 * writing and we sync the "updated" checkpointed uberblock to
3561 	 * disk. Once this is done, we've basically rewound the whole
3562 	 * pool and there is no way back.
3563 	 *
3564 	 * There are cases when we don't want to attempt and sync the
3565 	 * checkpointed uberblock to disk because we are opening a
3566 	 * pool as read-only. Specifically, verifying the checkpointed
3567 	 * state with zdb, and importing the checkpointed state to get
3568 	 * a "preview" of its content.
3569 	 */
3570 	if (spa_writeable(spa)) {
3571 		vdev_t *rvd = spa->spa_root_vdev;
3572 
3573 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3574 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
3575 		int svdcount = 0;
3576 		int children = rvd->vdev_children;
3577 		int c0 = spa_get_random(children);
3578 
3579 		for (int c = 0; c < children; c++) {
3580 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
3581 
3582 			/* Stop when revisiting the first vdev */
3583 			if (c > 0 && svd[0] == vd)
3584 				break;
3585 
3586 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
3587 			    !vdev_is_concrete(vd))
3588 				continue;
3589 
3590 			svd[svdcount++] = vd;
3591 			if (svdcount == SPA_SYNC_MIN_VDEVS)
3592 				break;
3593 		}
3594 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
3595 		if (error == 0)
3596 			spa->spa_last_synced_guid = rvd->vdev_guid;
3597 		spa_config_exit(spa, SCL_ALL, FTAG);
3598 
3599 		if (error != 0) {
3600 			spa_load_failed(spa, "failed to write checkpointed "
3601 			    "uberblock to the vdev labels [error=%d]", error);
3602 			return (error);
3603 		}
3604 	}
3605 
3606 	return (0);
3607 }
3608 
3609 static int
3610 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
3611     boolean_t *update_config_cache)
3612 {
3613 	int error;
3614 
3615 	/*
3616 	 * Parse the config for pool, open and validate vdevs,
3617 	 * select an uberblock, and use that uberblock to open
3618 	 * the MOS.
3619 	 */
3620 	error = spa_ld_mos_init(spa, type);
3621 	if (error != 0)
3622 		return (error);
3623 
3624 	/*
3625 	 * Retrieve the trusted config stored in the MOS and use it to create
3626 	 * a new, exact version of the vdev tree, then reopen all vdevs.
3627 	 */
3628 	error = spa_ld_trusted_config(spa, type, B_FALSE);
3629 	if (error == EAGAIN) {
3630 		if (update_config_cache != NULL)
3631 			*update_config_cache = B_TRUE;
3632 
3633 		/*
3634 		 * Redo the loading process with the trusted config if it is
3635 		 * too different from the untrusted config.
3636 		 */
3637 		spa_ld_prepare_for_reload(spa);
3638 		spa_load_note(spa, "RELOADING");
3639 		error = spa_ld_mos_init(spa, type);
3640 		if (error != 0)
3641 			return (error);
3642 
3643 		error = spa_ld_trusted_config(spa, type, B_TRUE);
3644 		if (error != 0)
3645 			return (error);
3646 
3647 	} else if (error != 0) {
3648 		return (error);
3649 	}
3650 
3651 	return (0);
3652 }
3653 
3654 /*
3655  * Load an existing storage pool, using the config provided. This config
3656  * describes which vdevs are part of the pool and is later validated against
3657  * partial configs present in each vdev's label and an entire copy of the
3658  * config stored in the MOS.
3659  */
3660 static int
3661 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
3662 {
3663 	int error = 0;
3664 	boolean_t missing_feat_write = B_FALSE;
3665 	boolean_t checkpoint_rewind =
3666 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3667 	boolean_t update_config_cache = B_FALSE;
3668 
3669 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3670 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3671 
3672 	spa_load_note(spa, "LOADING");
3673 
3674 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
3675 	if (error != 0)
3676 		return (error);
3677 
3678 	/*
3679 	 * If we are rewinding to the checkpoint then we need to repeat
3680 	 * everything we've done so far in this function but this time
3681 	 * selecting the checkpointed uberblock and using that to open
3682 	 * the MOS.
3683 	 */
3684 	if (checkpoint_rewind) {
3685 		/*
3686 		 * If we are rewinding to the checkpoint update config cache
3687 		 * anyway.
3688 		 */
3689 		update_config_cache = B_TRUE;
3690 
3691 		/*
3692 		 * Extract the checkpointed uberblock from the current MOS
3693 		 * and use this as the pool's uberblock from now on. If the
3694 		 * pool is imported as writeable we also write the checkpoint
3695 		 * uberblock to the labels, making the rewind permanent.
3696 		 */
3697 		error = spa_ld_checkpoint_rewind(spa);
3698 		if (error != 0)
3699 			return (error);
3700 
3701 		/*
3702 		 * Redo the loading process process again with the
3703 		 * checkpointed uberblock.
3704 		 */
3705 		spa_ld_prepare_for_reload(spa);
3706 		spa_load_note(spa, "LOADING checkpointed uberblock");
3707 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
3708 		if (error != 0)
3709 			return (error);
3710 	}
3711 
3712 	/*
3713 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
3714 	 */
3715 	error = spa_ld_read_checkpoint_txg(spa);
3716 	if (error != 0)
3717 		return (error);
3718 
3719 	/*
3720 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3721 	 * from the pool and their contents were re-mapped to other vdevs. Note
3722 	 * that everything that we read before this step must have been
3723 	 * rewritten on concrete vdevs after the last device removal was
3724 	 * initiated. Otherwise we could be reading from indirect vdevs before
3725 	 * we have loaded their mappings.
3726 	 */
3727 	error = spa_ld_open_indirect_vdev_metadata(spa);
3728 	if (error != 0)
3729 		return (error);
3730 
3731 	/*
3732 	 * Retrieve the full list of active features from the MOS and check if
3733 	 * they are all supported.
3734 	 */
3735 	error = spa_ld_check_features(spa, &missing_feat_write);
3736 	if (error != 0)
3737 		return (error);
3738 
3739 	/*
3740 	 * Load several special directories from the MOS needed by the dsl_pool
3741 	 * layer.
3742 	 */
3743 	error = spa_ld_load_special_directories(spa);
3744 	if (error != 0)
3745 		return (error);
3746 
3747 	/*
3748 	 * Retrieve pool properties from the MOS.
3749 	 */
3750 	error = spa_ld_get_props(spa);
3751 	if (error != 0)
3752 		return (error);
3753 
3754 	/*
3755 	 * Retrieve the list of auxiliary devices - cache devices and spares -
3756 	 * and open them.
3757 	 */
3758 	error = spa_ld_open_aux_vdevs(spa, type);
3759 	if (error != 0)
3760 		return (error);
3761 
3762 	/*
3763 	 * Load the metadata for all vdevs. Also check if unopenable devices
3764 	 * should be autoreplaced.
3765 	 */
3766 	error = spa_ld_load_vdev_metadata(spa);
3767 	if (error != 0)
3768 		return (error);
3769 
3770 	error = spa_ld_load_dedup_tables(spa);
3771 	if (error != 0)
3772 		return (error);
3773 
3774 	/*
3775 	 * Verify the logs now to make sure we don't have any unexpected errors
3776 	 * when we claim log blocks later.
3777 	 */
3778 	error = spa_ld_verify_logs(spa, type, ereport);
3779 	if (error != 0)
3780 		return (error);
3781 
3782 	if (missing_feat_write) {
3783 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
3784 
3785 		/*
3786 		 * At this point, we know that we can open the pool in
3787 		 * read-only mode but not read-write mode. We now have enough
3788 		 * information and can return to userland.
3789 		 */
3790 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3791 		    ENOTSUP));
3792 	}
3793 
3794 	/*
3795 	 * Traverse the last txgs to make sure the pool was left off in a safe
3796 	 * state. When performing an extreme rewind, we verify the whole pool,
3797 	 * which can take a very long time.
3798 	 */
3799 	error = spa_ld_verify_pool_data(spa);
3800 	if (error != 0)
3801 		return (error);
3802 
3803 	/*
3804 	 * Calculate the deflated space for the pool. This must be done before
3805 	 * we write anything to the pool because we'd need to update the space
3806 	 * accounting using the deflated sizes.
3807 	 */
3808 	spa_update_dspace(spa);
3809 
3810 	/*
3811 	 * We have now retrieved all the information we needed to open the
3812 	 * pool. If we are importing the pool in read-write mode, a few
3813 	 * additional steps must be performed to finish the import.
3814 	 */
3815 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
3816 	    spa->spa_load_max_txg == UINT64_MAX)) {
3817 		uint64_t config_cache_txg = spa->spa_config_txg;
3818 
3819 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
3820 
3821 		/*
3822 		 * In case of a checkpoint rewind, log the original txg
3823 		 * of the checkpointed uberblock.
3824 		 */
3825 		if (checkpoint_rewind) {
3826 			spa_history_log_internal(spa, "checkpoint rewind",
3827 			    NULL, "rewound state to txg=%llu",
3828 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
3829 		}
3830 
3831 		/*
3832 		 * Traverse the ZIL and claim all blocks.
3833 		 */
3834 		spa_ld_claim_log_blocks(spa);
3835 
3836 		/*
3837 		 * Kick-off the syncing thread.
3838 		 */
3839 		spa->spa_sync_on = B_TRUE;
3840 		txg_sync_start(spa->spa_dsl_pool);
3841 
3842 		/*
3843 		 * Wait for all claims to sync.  We sync up to the highest
3844 		 * claimed log block birth time so that claimed log blocks
3845 		 * don't appear to be from the future.  spa_claim_max_txg
3846 		 * will have been set for us by ZIL traversal operations
3847 		 * performed above.
3848 		 */
3849 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3850 
3851 		/*
3852 		 * Check if we need to request an update of the config. On the
3853 		 * next sync, we would update the config stored in vdev labels
3854 		 * and the cachefile (by default /etc/zfs/zpool.cache).
3855 		 */
3856 		spa_ld_check_for_config_update(spa, config_cache_txg,
3857 		    update_config_cache);
3858 
3859 		/*
3860 		 * Check all DTLs to see if anything needs resilvering.
3861 		 */
3862 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3863 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3864 			spa_async_request(spa, SPA_ASYNC_RESILVER);
3865 
3866 		/*
3867 		 * Log the fact that we booted up (so that we can detect if
3868 		 * we rebooted in the middle of an operation).
3869 		 */
3870 		spa_history_log_version(spa, "open");
3871 
3872 		spa_restart_removal(spa);
3873 		spa_spawn_aux_threads(spa);
3874 
3875 		/*
3876 		 * Delete any inconsistent datasets.
3877 		 *
3878 		 * Note:
3879 		 * Since we may be issuing deletes for clones here,
3880 		 * we make sure to do so after we've spawned all the
3881 		 * auxiliary threads above (from which the livelist
3882 		 * deletion zthr is part of).
3883 		 */
3884 		(void) dmu_objset_find(spa_name(spa),
3885 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3886 
3887 		/*
3888 		 * Clean up any stale temporary dataset userrefs.
3889 		 */
3890 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3891 
3892 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3893 		vdev_initialize_restart(spa->spa_root_vdev);
3894 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3895 	}
3896 
3897 	spa_load_note(spa, "LOADED");
3898 
3899 	return (0);
3900 }
3901 
3902 static int
3903 spa_load_retry(spa_t *spa, spa_load_state_t state)
3904 {
3905 	int mode = spa->spa_mode;
3906 
3907 	spa_unload(spa);
3908 	spa_deactivate(spa);
3909 
3910 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3911 
3912 	spa_activate(spa, mode);
3913 	spa_async_suspend(spa);
3914 
3915 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3916 	    (u_longlong_t)spa->spa_load_max_txg);
3917 
3918 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
3919 }
3920 
3921 /*
3922  * If spa_load() fails this function will try loading prior txg's. If
3923  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3924  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3925  * function will not rewind the pool and will return the same error as
3926  * spa_load().
3927  */
3928 static int
3929 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
3930     int rewind_flags)
3931 {
3932 	nvlist_t *loadinfo = NULL;
3933 	nvlist_t *config = NULL;
3934 	int load_error, rewind_error;
3935 	uint64_t safe_rewind_txg;
3936 	uint64_t min_txg;
3937 
3938 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3939 		spa->spa_load_max_txg = spa->spa_load_txg;
3940 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3941 	} else {
3942 		spa->spa_load_max_txg = max_request;
3943 		if (max_request != UINT64_MAX)
3944 			spa->spa_extreme_rewind = B_TRUE;
3945 	}
3946 
3947 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
3948 	if (load_error == 0)
3949 		return (0);
3950 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
3951 		/*
3952 		 * When attempting checkpoint-rewind on a pool with no
3953 		 * checkpoint, we should not attempt to load uberblocks
3954 		 * from previous txgs when spa_load fails.
3955 		 */
3956 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3957 		return (load_error);
3958 	}
3959 
3960 	if (spa->spa_root_vdev != NULL)
3961 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3962 
3963 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3964 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3965 
3966 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
3967 		nvlist_free(config);
3968 		return (load_error);
3969 	}
3970 
3971 	if (state == SPA_LOAD_RECOVER) {
3972 		/* Price of rolling back is discarding txgs, including log */
3973 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3974 	} else {
3975 		/*
3976 		 * If we aren't rolling back save the load info from our first
3977 		 * import attempt so that we can restore it after attempting
3978 		 * to rewind.
3979 		 */
3980 		loadinfo = spa->spa_load_info;
3981 		spa->spa_load_info = fnvlist_alloc();
3982 	}
3983 
3984 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3985 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3986 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3987 	    TXG_INITIAL : safe_rewind_txg;
3988 
3989 	/*
3990 	 * Continue as long as we're finding errors, we're still within
3991 	 * the acceptable rewind range, and we're still finding uberblocks
3992 	 */
3993 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3994 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3995 		if (spa->spa_load_max_txg < safe_rewind_txg)
3996 			spa->spa_extreme_rewind = B_TRUE;
3997 		rewind_error = spa_load_retry(spa, state);
3998 	}
3999 
4000 	spa->spa_extreme_rewind = B_FALSE;
4001 	spa->spa_load_max_txg = UINT64_MAX;
4002 
4003 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4004 		spa_config_set(spa, config);
4005 	else
4006 		nvlist_free(config);
4007 
4008 	if (state == SPA_LOAD_RECOVER) {
4009 		ASSERT3P(loadinfo, ==, NULL);
4010 		return (rewind_error);
4011 	} else {
4012 		/* Store the rewind info as part of the initial load info */
4013 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4014 		    spa->spa_load_info);
4015 
4016 		/* Restore the initial load info */
4017 		fnvlist_free(spa->spa_load_info);
4018 		spa->spa_load_info = loadinfo;
4019 
4020 		return (load_error);
4021 	}
4022 }
4023 
4024 /*
4025  * Pool Open/Import
4026  *
4027  * The import case is identical to an open except that the configuration is sent
4028  * down from userland, instead of grabbed from the configuration cache.  For the
4029  * case of an open, the pool configuration will exist in the
4030  * POOL_STATE_UNINITIALIZED state.
4031  *
4032  * The stats information (gen/count/ustats) is used to gather vdev statistics at
4033  * the same time open the pool, without having to keep around the spa_t in some
4034  * ambiguous state.
4035  */
4036 static int
4037 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4038     nvlist_t **config)
4039 {
4040 	spa_t *spa;
4041 	spa_load_state_t state = SPA_LOAD_OPEN;
4042 	int error;
4043 	int locked = B_FALSE;
4044 
4045 	*spapp = NULL;
4046 
4047 	/*
4048 	 * As disgusting as this is, we need to support recursive calls to this
4049 	 * function because dsl_dir_open() is called during spa_load(), and ends
4050 	 * up calling spa_open() again.  The real fix is to figure out how to
4051 	 * avoid dsl_dir_open() calling this in the first place.
4052 	 */
4053 	if (mutex_owner(&spa_namespace_lock) != curthread) {
4054 		mutex_enter(&spa_namespace_lock);
4055 		locked = B_TRUE;
4056 	}
4057 
4058 	if ((spa = spa_lookup(pool)) == NULL) {
4059 		if (locked)
4060 			mutex_exit(&spa_namespace_lock);
4061 		return (SET_ERROR(ENOENT));
4062 	}
4063 
4064 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4065 		zpool_load_policy_t policy;
4066 
4067 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4068 		    &policy);
4069 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4070 			state = SPA_LOAD_RECOVER;
4071 
4072 		spa_activate(spa, spa_mode_global);
4073 
4074 		if (state != SPA_LOAD_RECOVER)
4075 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4076 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4077 
4078 		zfs_dbgmsg("spa_open_common: opening %s", pool);
4079 		error = spa_load_best(spa, state, policy.zlp_txg,
4080 		    policy.zlp_rewind);
4081 
4082 		if (error == EBADF) {
4083 			/*
4084 			 * If vdev_validate() returns failure (indicated by
4085 			 * EBADF), it indicates that one of the vdevs indicates
4086 			 * that the pool has been exported or destroyed.  If
4087 			 * this is the case, the config cache is out of sync and
4088 			 * we should remove the pool from the namespace.
4089 			 */
4090 			spa_unload(spa);
4091 			spa_deactivate(spa);
4092 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4093 			spa_remove(spa);
4094 			if (locked)
4095 				mutex_exit(&spa_namespace_lock);
4096 			return (SET_ERROR(ENOENT));
4097 		}
4098 
4099 		if (error) {
4100 			/*
4101 			 * We can't open the pool, but we still have useful
4102 			 * information: the state of each vdev after the
4103 			 * attempted vdev_open().  Return this to the user.
4104 			 */
4105 			if (config != NULL && spa->spa_config) {
4106 				VERIFY(nvlist_dup(spa->spa_config, config,
4107 				    KM_SLEEP) == 0);
4108 				VERIFY(nvlist_add_nvlist(*config,
4109 				    ZPOOL_CONFIG_LOAD_INFO,
4110 				    spa->spa_load_info) == 0);
4111 			}
4112 			spa_unload(spa);
4113 			spa_deactivate(spa);
4114 			spa->spa_last_open_failed = error;
4115 			if (locked)
4116 				mutex_exit(&spa_namespace_lock);
4117 			*spapp = NULL;
4118 			return (error);
4119 		}
4120 	}
4121 
4122 	spa_open_ref(spa, tag);
4123 
4124 	if (config != NULL)
4125 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4126 
4127 	/*
4128 	 * If we've recovered the pool, pass back any information we
4129 	 * gathered while doing the load.
4130 	 */
4131 	if (state == SPA_LOAD_RECOVER) {
4132 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4133 		    spa->spa_load_info) == 0);
4134 	}
4135 
4136 	if (locked) {
4137 		spa->spa_last_open_failed = 0;
4138 		spa->spa_last_ubsync_txg = 0;
4139 		spa->spa_load_txg = 0;
4140 		mutex_exit(&spa_namespace_lock);
4141 	}
4142 
4143 	*spapp = spa;
4144 
4145 	return (0);
4146 }
4147 
4148 int
4149 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4150     nvlist_t **config)
4151 {
4152 	return (spa_open_common(name, spapp, tag, policy, config));
4153 }
4154 
4155 int
4156 spa_open(const char *name, spa_t **spapp, void *tag)
4157 {
4158 	return (spa_open_common(name, spapp, tag, NULL, NULL));
4159 }
4160 
4161 /*
4162  * Lookup the given spa_t, incrementing the inject count in the process,
4163  * preventing it from being exported or destroyed.
4164  */
4165 spa_t *
4166 spa_inject_addref(char *name)
4167 {
4168 	spa_t *spa;
4169 
4170 	mutex_enter(&spa_namespace_lock);
4171 	if ((spa = spa_lookup(name)) == NULL) {
4172 		mutex_exit(&spa_namespace_lock);
4173 		return (NULL);
4174 	}
4175 	spa->spa_inject_ref++;
4176 	mutex_exit(&spa_namespace_lock);
4177 
4178 	return (spa);
4179 }
4180 
4181 void
4182 spa_inject_delref(spa_t *spa)
4183 {
4184 	mutex_enter(&spa_namespace_lock);
4185 	spa->spa_inject_ref--;
4186 	mutex_exit(&spa_namespace_lock);
4187 }
4188 
4189 /*
4190  * Add spares device information to the nvlist.
4191  */
4192 static void
4193 spa_add_spares(spa_t *spa, nvlist_t *config)
4194 {
4195 	nvlist_t **spares;
4196 	uint_t i, nspares;
4197 	nvlist_t *nvroot;
4198 	uint64_t guid;
4199 	vdev_stat_t *vs;
4200 	uint_t vsc;
4201 	uint64_t pool;
4202 
4203 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4204 
4205 	if (spa->spa_spares.sav_count == 0)
4206 		return;
4207 
4208 	VERIFY(nvlist_lookup_nvlist(config,
4209 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4210 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4211 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4212 	if (nspares != 0) {
4213 		VERIFY(nvlist_add_nvlist_array(nvroot,
4214 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4215 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4216 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4217 
4218 		/*
4219 		 * Go through and find any spares which have since been
4220 		 * repurposed as an active spare.  If this is the case, update
4221 		 * their status appropriately.
4222 		 */
4223 		for (i = 0; i < nspares; i++) {
4224 			VERIFY(nvlist_lookup_uint64(spares[i],
4225 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4226 			if (spa_spare_exists(guid, &pool, NULL) &&
4227 			    pool != 0ULL) {
4228 				VERIFY(nvlist_lookup_uint64_array(
4229 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4230 				    (uint64_t **)&vs, &vsc) == 0);
4231 				vs->vs_state = VDEV_STATE_CANT_OPEN;
4232 				vs->vs_aux = VDEV_AUX_SPARED;
4233 			}
4234 		}
4235 	}
4236 }
4237 
4238 /*
4239  * Add l2cache device information to the nvlist, including vdev stats.
4240  */
4241 static void
4242 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4243 {
4244 	nvlist_t **l2cache;
4245 	uint_t i, j, nl2cache;
4246 	nvlist_t *nvroot;
4247 	uint64_t guid;
4248 	vdev_t *vd;
4249 	vdev_stat_t *vs;
4250 	uint_t vsc;
4251 
4252 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4253 
4254 	if (spa->spa_l2cache.sav_count == 0)
4255 		return;
4256 
4257 	VERIFY(nvlist_lookup_nvlist(config,
4258 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4259 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4260 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4261 	if (nl2cache != 0) {
4262 		VERIFY(nvlist_add_nvlist_array(nvroot,
4263 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4264 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4265 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4266 
4267 		/*
4268 		 * Update level 2 cache device stats.
4269 		 */
4270 
4271 		for (i = 0; i < nl2cache; i++) {
4272 			VERIFY(nvlist_lookup_uint64(l2cache[i],
4273 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4274 
4275 			vd = NULL;
4276 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4277 				if (guid ==
4278 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4279 					vd = spa->spa_l2cache.sav_vdevs[j];
4280 					break;
4281 				}
4282 			}
4283 			ASSERT(vd != NULL);
4284 
4285 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4286 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4287 			    == 0);
4288 			vdev_get_stats(vd, vs);
4289 		}
4290 	}
4291 }
4292 
4293 static void
4294 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4295 {
4296 	nvlist_t *features;
4297 	zap_cursor_t zc;
4298 	zap_attribute_t za;
4299 
4300 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4301 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4302 
4303 	if (spa->spa_feat_for_read_obj != 0) {
4304 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4305 		    spa->spa_feat_for_read_obj);
4306 		    zap_cursor_retrieve(&zc, &za) == 0;
4307 		    zap_cursor_advance(&zc)) {
4308 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4309 			    za.za_num_integers == 1);
4310 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4311 			    za.za_first_integer));
4312 		}
4313 		zap_cursor_fini(&zc);
4314 	}
4315 
4316 	if (spa->spa_feat_for_write_obj != 0) {
4317 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4318 		    spa->spa_feat_for_write_obj);
4319 		    zap_cursor_retrieve(&zc, &za) == 0;
4320 		    zap_cursor_advance(&zc)) {
4321 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4322 			    za.za_num_integers == 1);
4323 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4324 			    za.za_first_integer));
4325 		}
4326 		zap_cursor_fini(&zc);
4327 	}
4328 
4329 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4330 	    features) == 0);
4331 	nvlist_free(features);
4332 }
4333 
4334 int
4335 spa_get_stats(const char *name, nvlist_t **config,
4336     char *altroot, size_t buflen)
4337 {
4338 	int error;
4339 	spa_t *spa;
4340 
4341 	*config = NULL;
4342 	error = spa_open_common(name, &spa, FTAG, NULL, config);
4343 
4344 	if (spa != NULL) {
4345 		/*
4346 		 * This still leaves a window of inconsistency where the spares
4347 		 * or l2cache devices could change and the config would be
4348 		 * self-inconsistent.
4349 		 */
4350 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4351 
4352 		if (*config != NULL) {
4353 			uint64_t loadtimes[2];
4354 
4355 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4356 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4357 			VERIFY(nvlist_add_uint64_array(*config,
4358 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4359 
4360 			VERIFY(nvlist_add_uint64(*config,
4361 			    ZPOOL_CONFIG_ERRCOUNT,
4362 			    spa_get_errlog_size(spa)) == 0);
4363 
4364 			if (spa_suspended(spa))
4365 				VERIFY(nvlist_add_uint64(*config,
4366 				    ZPOOL_CONFIG_SUSPENDED,
4367 				    spa->spa_failmode) == 0);
4368 
4369 			spa_add_spares(spa, *config);
4370 			spa_add_l2cache(spa, *config);
4371 			spa_add_feature_stats(spa, *config);
4372 		}
4373 	}
4374 
4375 	/*
4376 	 * We want to get the alternate root even for faulted pools, so we cheat
4377 	 * and call spa_lookup() directly.
4378 	 */
4379 	if (altroot) {
4380 		if (spa == NULL) {
4381 			mutex_enter(&spa_namespace_lock);
4382 			spa = spa_lookup(name);
4383 			if (spa)
4384 				spa_altroot(spa, altroot, buflen);
4385 			else
4386 				altroot[0] = '\0';
4387 			spa = NULL;
4388 			mutex_exit(&spa_namespace_lock);
4389 		} else {
4390 			spa_altroot(spa, altroot, buflen);
4391 		}
4392 	}
4393 
4394 	if (spa != NULL) {
4395 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4396 		spa_close(spa, FTAG);
4397 	}
4398 
4399 	return (error);
4400 }
4401 
4402 /*
4403  * Validate that the auxiliary device array is well formed.  We must have an
4404  * array of nvlists, each which describes a valid leaf vdev.  If this is an
4405  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4406  * specified, as long as they are well-formed.
4407  */
4408 static int
4409 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4410     spa_aux_vdev_t *sav, const char *config, uint64_t version,
4411     vdev_labeltype_t label)
4412 {
4413 	nvlist_t **dev;
4414 	uint_t i, ndev;
4415 	vdev_t *vd;
4416 	int error;
4417 
4418 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4419 
4420 	/*
4421 	 * It's acceptable to have no devs specified.
4422 	 */
4423 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4424 		return (0);
4425 
4426 	if (ndev == 0)
4427 		return (SET_ERROR(EINVAL));
4428 
4429 	/*
4430 	 * Make sure the pool is formatted with a version that supports this
4431 	 * device type.
4432 	 */
4433 	if (spa_version(spa) < version)
4434 		return (SET_ERROR(ENOTSUP));
4435 
4436 	/*
4437 	 * Set the pending device list so we correctly handle device in-use
4438 	 * checking.
4439 	 */
4440 	sav->sav_pending = dev;
4441 	sav->sav_npending = ndev;
4442 
4443 	for (i = 0; i < ndev; i++) {
4444 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4445 		    mode)) != 0)
4446 			goto out;
4447 
4448 		if (!vd->vdev_ops->vdev_op_leaf) {
4449 			vdev_free(vd);
4450 			error = SET_ERROR(EINVAL);
4451 			goto out;
4452 		}
4453 
4454 		/*
4455 		 * The L2ARC currently only supports disk devices in
4456 		 * kernel context.  For user-level testing, we allow it.
4457 		 */
4458 #ifdef _KERNEL
4459 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
4460 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
4461 			error = SET_ERROR(ENOTBLK);
4462 			vdev_free(vd);
4463 			goto out;
4464 		}
4465 #endif
4466 		vd->vdev_top = vd;
4467 
4468 		if ((error = vdev_open(vd)) == 0 &&
4469 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4470 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4471 			    vd->vdev_guid) == 0);
4472 		}
4473 
4474 		vdev_free(vd);
4475 
4476 		if (error &&
4477 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4478 			goto out;
4479 		else
4480 			error = 0;
4481 	}
4482 
4483 out:
4484 	sav->sav_pending = NULL;
4485 	sav->sav_npending = 0;
4486 	return (error);
4487 }
4488 
4489 static int
4490 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4491 {
4492 	int error;
4493 
4494 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4495 
4496 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4497 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4498 	    VDEV_LABEL_SPARE)) != 0) {
4499 		return (error);
4500 	}
4501 
4502 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4503 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4504 	    VDEV_LABEL_L2CACHE));
4505 }
4506 
4507 static void
4508 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4509     const char *config)
4510 {
4511 	int i;
4512 
4513 	if (sav->sav_config != NULL) {
4514 		nvlist_t **olddevs;
4515 		uint_t oldndevs;
4516 		nvlist_t **newdevs;
4517 
4518 		/*
4519 		 * Generate new dev list by concatentating with the
4520 		 * current dev list.
4521 		 */
4522 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4523 		    &olddevs, &oldndevs) == 0);
4524 
4525 		newdevs = kmem_alloc(sizeof (void *) *
4526 		    (ndevs + oldndevs), KM_SLEEP);
4527 		for (i = 0; i < oldndevs; i++)
4528 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4529 			    KM_SLEEP) == 0);
4530 		for (i = 0; i < ndevs; i++)
4531 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4532 			    KM_SLEEP) == 0);
4533 
4534 		VERIFY(nvlist_remove(sav->sav_config, config,
4535 		    DATA_TYPE_NVLIST_ARRAY) == 0);
4536 
4537 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4538 		    config, newdevs, ndevs + oldndevs) == 0);
4539 		for (i = 0; i < oldndevs + ndevs; i++)
4540 			nvlist_free(newdevs[i]);
4541 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4542 	} else {
4543 		/*
4544 		 * Generate a new dev list.
4545 		 */
4546 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4547 		    KM_SLEEP) == 0);
4548 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4549 		    devs, ndevs) == 0);
4550 	}
4551 }
4552 
4553 /*
4554  * Stop and drop level 2 ARC devices
4555  */
4556 void
4557 spa_l2cache_drop(spa_t *spa)
4558 {
4559 	vdev_t *vd;
4560 	int i;
4561 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
4562 
4563 	for (i = 0; i < sav->sav_count; i++) {
4564 		uint64_t pool;
4565 
4566 		vd = sav->sav_vdevs[i];
4567 		ASSERT(vd != NULL);
4568 
4569 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4570 		    pool != 0ULL && l2arc_vdev_present(vd))
4571 			l2arc_remove_vdev(vd);
4572 	}
4573 }
4574 
4575 /*
4576  * Pool Creation
4577  */
4578 int
4579 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4580     nvlist_t *zplprops)
4581 {
4582 	spa_t *spa;
4583 	char *altroot = NULL;
4584 	vdev_t *rvd;
4585 	dsl_pool_t *dp;
4586 	dmu_tx_t *tx;
4587 	int error = 0;
4588 	uint64_t txg = TXG_INITIAL;
4589 	nvlist_t **spares, **l2cache;
4590 	uint_t nspares, nl2cache;
4591 	uint64_t version, obj;
4592 	boolean_t has_features;
4593 	char *poolname;
4594 	nvlist_t *nvl;
4595 
4596 	if (nvlist_lookup_string(props,
4597 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
4598 		poolname = (char *)pool;
4599 
4600 	/*
4601 	 * If this pool already exists, return failure.
4602 	 */
4603 	mutex_enter(&spa_namespace_lock);
4604 	if (spa_lookup(poolname) != NULL) {
4605 		mutex_exit(&spa_namespace_lock);
4606 		return (SET_ERROR(EEXIST));
4607 	}
4608 
4609 	/*
4610 	 * Allocate a new spa_t structure.
4611 	 */
4612 	nvl = fnvlist_alloc();
4613 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
4614 	(void) nvlist_lookup_string(props,
4615 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4616 	spa = spa_add(poolname, nvl, altroot);
4617 	fnvlist_free(nvl);
4618 	spa_activate(spa, spa_mode_global);
4619 
4620 	if (props && (error = spa_prop_validate(spa, props))) {
4621 		spa_deactivate(spa);
4622 		spa_remove(spa);
4623 		mutex_exit(&spa_namespace_lock);
4624 		return (error);
4625 	}
4626 
4627 	/*
4628 	 * Temporary pool names should never be written to disk.
4629 	 */
4630 	if (poolname != pool)
4631 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
4632 
4633 	has_features = B_FALSE;
4634 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4635 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4636 		if (zpool_prop_feature(nvpair_name(elem)))
4637 			has_features = B_TRUE;
4638 	}
4639 
4640 	if (has_features || nvlist_lookup_uint64(props,
4641 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4642 		version = SPA_VERSION;
4643 	}
4644 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4645 
4646 	spa->spa_first_txg = txg;
4647 	spa->spa_uberblock.ub_txg = txg - 1;
4648 	spa->spa_uberblock.ub_version = version;
4649 	spa->spa_ubsync = spa->spa_uberblock;
4650 	spa->spa_load_state = SPA_LOAD_CREATE;
4651 	spa->spa_removing_phys.sr_state = DSS_NONE;
4652 	spa->spa_removing_phys.sr_removing_vdev = -1;
4653 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4654 
4655 	/*
4656 	 * Create "The Godfather" zio to hold all async IOs
4657 	 */
4658 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4659 	    KM_SLEEP);
4660 	for (int i = 0; i < max_ncpus; i++) {
4661 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4662 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4663 		    ZIO_FLAG_GODFATHER);
4664 	}
4665 
4666 	/*
4667 	 * Create the root vdev.
4668 	 */
4669 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4670 
4671 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4672 
4673 	ASSERT(error != 0 || rvd != NULL);
4674 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4675 
4676 	if (error == 0 && !zfs_allocatable_devs(nvroot))
4677 		error = SET_ERROR(EINVAL);
4678 
4679 	if (error == 0 &&
4680 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4681 	    (error = spa_validate_aux(spa, nvroot, txg,
4682 	    VDEV_ALLOC_ADD)) == 0) {
4683 		for (int c = 0; c < rvd->vdev_children; c++) {
4684 			vdev_metaslab_set_size(rvd->vdev_child[c]);
4685 			vdev_expand(rvd->vdev_child[c], txg);
4686 		}
4687 	}
4688 
4689 	spa_config_exit(spa, SCL_ALL, FTAG);
4690 
4691 	if (error != 0) {
4692 		spa_unload(spa);
4693 		spa_deactivate(spa);
4694 		spa_remove(spa);
4695 		mutex_exit(&spa_namespace_lock);
4696 		return (error);
4697 	}
4698 
4699 	/*
4700 	 * Get the list of spares, if specified.
4701 	 */
4702 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4703 	    &spares, &nspares) == 0) {
4704 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4705 		    KM_SLEEP) == 0);
4706 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4707 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4708 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4709 		spa_load_spares(spa);
4710 		spa_config_exit(spa, SCL_ALL, FTAG);
4711 		spa->spa_spares.sav_sync = B_TRUE;
4712 	}
4713 
4714 	/*
4715 	 * Get the list of level 2 cache devices, if specified.
4716 	 */
4717 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4718 	    &l2cache, &nl2cache) == 0) {
4719 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4720 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4721 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4722 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4723 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4724 		spa_load_l2cache(spa);
4725 		spa_config_exit(spa, SCL_ALL, FTAG);
4726 		spa->spa_l2cache.sav_sync = B_TRUE;
4727 	}
4728 
4729 	spa->spa_is_initializing = B_TRUE;
4730 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4731 	spa->spa_meta_objset = dp->dp_meta_objset;
4732 	spa->spa_is_initializing = B_FALSE;
4733 
4734 	/*
4735 	 * Create DDTs (dedup tables).
4736 	 */
4737 	ddt_create(spa);
4738 
4739 	spa_update_dspace(spa);
4740 
4741 	tx = dmu_tx_create_assigned(dp, txg);
4742 
4743 	/*
4744 	 * Create the pool config object.
4745 	 */
4746 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4747 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4748 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4749 
4750 	if (zap_add(spa->spa_meta_objset,
4751 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4752 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4753 		cmn_err(CE_PANIC, "failed to add pool config");
4754 	}
4755 
4756 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
4757 		spa_feature_create_zap_objects(spa, tx);
4758 
4759 	if (zap_add(spa->spa_meta_objset,
4760 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4761 	    sizeof (uint64_t), 1, &version, tx) != 0) {
4762 		cmn_err(CE_PANIC, "failed to add pool version");
4763 	}
4764 
4765 	/* Newly created pools with the right version are always deflated. */
4766 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4767 		spa->spa_deflate = TRUE;
4768 		if (zap_add(spa->spa_meta_objset,
4769 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4770 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4771 			cmn_err(CE_PANIC, "failed to add deflate");
4772 		}
4773 	}
4774 
4775 	/*
4776 	 * Create the deferred-free bpobj.  Turn off compression
4777 	 * because sync-to-convergence takes longer if the blocksize
4778 	 * keeps changing.
4779 	 */
4780 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4781 	dmu_object_set_compress(spa->spa_meta_objset, obj,
4782 	    ZIO_COMPRESS_OFF, tx);
4783 	if (zap_add(spa->spa_meta_objset,
4784 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4785 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
4786 		cmn_err(CE_PANIC, "failed to add bpobj");
4787 	}
4788 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4789 	    spa->spa_meta_objset, obj));
4790 
4791 	/*
4792 	 * Create the pool's history object.
4793 	 */
4794 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
4795 		spa_history_create_obj(spa, tx);
4796 
4797 	/*
4798 	 * Generate some random noise for salted checksums to operate on.
4799 	 */
4800 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4801 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
4802 
4803 	/*
4804 	 * Set pool properties.
4805 	 */
4806 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4807 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4808 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4809 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4810 
4811 	if (props != NULL) {
4812 		spa_configfile_set(spa, props, B_FALSE);
4813 		spa_sync_props(props, tx);
4814 	}
4815 
4816 	dmu_tx_commit(tx);
4817 
4818 	spa->spa_sync_on = B_TRUE;
4819 	txg_sync_start(spa->spa_dsl_pool);
4820 
4821 	/*
4822 	 * We explicitly wait for the first transaction to complete so that our
4823 	 * bean counters are appropriately updated.
4824 	 */
4825 	txg_wait_synced(spa->spa_dsl_pool, txg);
4826 
4827 	spa_spawn_aux_threads(spa);
4828 
4829 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
4830 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4831 
4832 	spa_history_log_version(spa, "create");
4833 
4834 	/*
4835 	 * Don't count references from objsets that are already closed
4836 	 * and are making their way through the eviction process.
4837 	 */
4838 	spa_evicting_os_wait(spa);
4839 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
4840 	spa->spa_load_state = SPA_LOAD_NONE;
4841 
4842 	mutex_exit(&spa_namespace_lock);
4843 
4844 	return (0);
4845 }
4846 
4847 #ifdef _KERNEL
4848 /*
4849  * Get the root pool information from the root disk, then import the root pool
4850  * during the system boot up time.
4851  */
4852 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
4853 
4854 static nvlist_t *
4855 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
4856 {
4857 	nvlist_t *config;
4858 	nvlist_t *nvtop, *nvroot;
4859 	uint64_t pgid;
4860 
4861 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
4862 		return (NULL);
4863 
4864 	/*
4865 	 * Add this top-level vdev to the child array.
4866 	 */
4867 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4868 	    &nvtop) == 0);
4869 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4870 	    &pgid) == 0);
4871 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
4872 
4873 	/*
4874 	 * Put this pool's top-level vdevs into a root vdev.
4875 	 */
4876 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4877 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4878 	    VDEV_TYPE_ROOT) == 0);
4879 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4880 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4881 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4882 	    &nvtop, 1) == 0);
4883 
4884 	/*
4885 	 * Replace the existing vdev_tree with the new root vdev in
4886 	 * this pool's configuration (remove the old, add the new).
4887 	 */
4888 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4889 	nvlist_free(nvroot);
4890 	return (config);
4891 }
4892 
4893 /*
4894  * Walk the vdev tree and see if we can find a device with "better"
4895  * configuration. A configuration is "better" if the label on that
4896  * device has a more recent txg.
4897  */
4898 static void
4899 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
4900 {
4901 	for (int c = 0; c < vd->vdev_children; c++)
4902 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
4903 
4904 	if (vd->vdev_ops->vdev_op_leaf) {
4905 		nvlist_t *label;
4906 		uint64_t label_txg;
4907 
4908 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
4909 		    &label) != 0)
4910 			return;
4911 
4912 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
4913 		    &label_txg) == 0);
4914 
4915 		/*
4916 		 * Do we have a better boot device?
4917 		 */
4918 		if (label_txg > *txg) {
4919 			*txg = label_txg;
4920 			*avd = vd;
4921 		}
4922 		nvlist_free(label);
4923 	}
4924 }
4925 
4926 /*
4927  * Import a root pool.
4928  *
4929  * For x86. devpath_list will consist of devid and/or physpath name of
4930  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4931  * The GRUB "findroot" command will return the vdev we should boot.
4932  *
4933  * For Sparc, devpath_list consists the physpath name of the booting device
4934  * no matter the rootpool is a single device pool or a mirrored pool.
4935  * e.g.
4936  *	"/pci@1f,0/ide@d/disk@0,0:a"
4937  */
4938 int
4939 spa_import_rootpool(char *devpath, char *devid)
4940 {
4941 	spa_t *spa;
4942 	vdev_t *rvd, *bvd, *avd = NULL;
4943 	nvlist_t *config, *nvtop;
4944 	uint64_t guid, txg;
4945 	char *pname;
4946 	int error;
4947 
4948 	/*
4949 	 * Read the label from the boot device and generate a configuration.
4950 	 */
4951 	config = spa_generate_rootconf(devpath, devid, &guid);
4952 #if defined(_OBP) && defined(_KERNEL)
4953 	if (config == NULL) {
4954 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
4955 			/* iscsi boot */
4956 			get_iscsi_bootpath_phy(devpath);
4957 			config = spa_generate_rootconf(devpath, devid, &guid);
4958 		}
4959 	}
4960 #endif
4961 	if (config == NULL) {
4962 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4963 		    devpath);
4964 		return (SET_ERROR(EIO));
4965 	}
4966 
4967 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4968 	    &pname) == 0);
4969 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4970 
4971 	mutex_enter(&spa_namespace_lock);
4972 	if ((spa = spa_lookup(pname)) != NULL) {
4973 		/*
4974 		 * Remove the existing root pool from the namespace so that we
4975 		 * can replace it with the correct config we just read in.
4976 		 */
4977 		spa_remove(spa);
4978 	}
4979 
4980 	spa = spa_add(pname, config, NULL);
4981 	spa->spa_is_root = B_TRUE;
4982 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4983 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4984 	    &spa->spa_ubsync.ub_version) != 0)
4985 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4986 
4987 	/*
4988 	 * Build up a vdev tree based on the boot device's label config.
4989 	 */
4990 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4991 	    &nvtop) == 0);
4992 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4993 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4994 	    VDEV_ALLOC_ROOTPOOL);
4995 	spa_config_exit(spa, SCL_ALL, FTAG);
4996 	if (error) {
4997 		mutex_exit(&spa_namespace_lock);
4998 		nvlist_free(config);
4999 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5000 		    pname);
5001 		return (error);
5002 	}
5003 
5004 	/*
5005 	 * Get the boot vdev.
5006 	 */
5007 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5008 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5009 		    (u_longlong_t)guid);
5010 		error = SET_ERROR(ENOENT);
5011 		goto out;
5012 	}
5013 
5014 	/*
5015 	 * Determine if there is a better boot device.
5016 	 */
5017 	avd = bvd;
5018 	spa_alt_rootvdev(rvd, &avd, &txg);
5019 	if (avd != bvd) {
5020 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5021 		    "try booting from '%s'", avd->vdev_path);
5022 		error = SET_ERROR(EINVAL);
5023 		goto out;
5024 	}
5025 
5026 	/*
5027 	 * If the boot device is part of a spare vdev then ensure that
5028 	 * we're booting off the active spare.
5029 	 */
5030 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5031 	    !bvd->vdev_isspare) {
5032 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5033 		    "try booting from '%s'",
5034 		    bvd->vdev_parent->
5035 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5036 		error = SET_ERROR(EINVAL);
5037 		goto out;
5038 	}
5039 
5040 	error = 0;
5041 out:
5042 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5043 	vdev_free(rvd);
5044 	spa_config_exit(spa, SCL_ALL, FTAG);
5045 	mutex_exit(&spa_namespace_lock);
5046 
5047 	nvlist_free(config);
5048 	return (error);
5049 }
5050 
5051 #endif
5052 
5053 /*
5054  * Import a non-root pool into the system.
5055  */
5056 int
5057 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5058 {
5059 	spa_t *spa;
5060 	char *altroot = NULL;
5061 	spa_load_state_t state = SPA_LOAD_IMPORT;
5062 	zpool_load_policy_t policy;
5063 	uint64_t mode = spa_mode_global;
5064 	uint64_t readonly = B_FALSE;
5065 	int error;
5066 	nvlist_t *nvroot;
5067 	nvlist_t **spares, **l2cache;
5068 	uint_t nspares, nl2cache;
5069 
5070 	/*
5071 	 * If a pool with this name exists, return failure.
5072 	 */
5073 	mutex_enter(&spa_namespace_lock);
5074 	if (spa_lookup(pool) != NULL) {
5075 		mutex_exit(&spa_namespace_lock);
5076 		return (SET_ERROR(EEXIST));
5077 	}
5078 
5079 	/*
5080 	 * Create and initialize the spa structure.
5081 	 */
5082 	(void) nvlist_lookup_string(props,
5083 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5084 	(void) nvlist_lookup_uint64(props,
5085 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5086 	if (readonly)
5087 		mode = FREAD;
5088 	spa = spa_add(pool, config, altroot);
5089 	spa->spa_import_flags = flags;
5090 
5091 	/*
5092 	 * Verbatim import - Take a pool and insert it into the namespace
5093 	 * as if it had been loaded at boot.
5094 	 */
5095 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5096 		if (props != NULL)
5097 			spa_configfile_set(spa, props, B_FALSE);
5098 
5099 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5100 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5101 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5102 		mutex_exit(&spa_namespace_lock);
5103 		return (0);
5104 	}
5105 
5106 	spa_activate(spa, mode);
5107 
5108 	/*
5109 	 * Don't start async tasks until we know everything is healthy.
5110 	 */
5111 	spa_async_suspend(spa);
5112 
5113 	zpool_get_load_policy(config, &policy);
5114 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5115 		state = SPA_LOAD_RECOVER;
5116 
5117 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5118 
5119 	if (state != SPA_LOAD_RECOVER) {
5120 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5121 		zfs_dbgmsg("spa_import: importing %s", pool);
5122 	} else {
5123 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5124 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5125 	}
5126 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5127 
5128 	/*
5129 	 * Propagate anything learned while loading the pool and pass it
5130 	 * back to caller (i.e. rewind info, missing devices, etc).
5131 	 */
5132 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5133 	    spa->spa_load_info) == 0);
5134 
5135 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5136 	/*
5137 	 * Toss any existing sparelist, as it doesn't have any validity
5138 	 * anymore, and conflicts with spa_has_spare().
5139 	 */
5140 	if (spa->spa_spares.sav_config) {
5141 		nvlist_free(spa->spa_spares.sav_config);
5142 		spa->spa_spares.sav_config = NULL;
5143 		spa_load_spares(spa);
5144 	}
5145 	if (spa->spa_l2cache.sav_config) {
5146 		nvlist_free(spa->spa_l2cache.sav_config);
5147 		spa->spa_l2cache.sav_config = NULL;
5148 		spa_load_l2cache(spa);
5149 	}
5150 
5151 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5152 	    &nvroot) == 0);
5153 	if (error == 0)
5154 		error = spa_validate_aux(spa, nvroot, -1ULL,
5155 		    VDEV_ALLOC_SPARE);
5156 	if (error == 0)
5157 		error = spa_validate_aux(spa, nvroot, -1ULL,
5158 		    VDEV_ALLOC_L2CACHE);
5159 	spa_config_exit(spa, SCL_ALL, FTAG);
5160 
5161 	if (props != NULL)
5162 		spa_configfile_set(spa, props, B_FALSE);
5163 
5164 	if (error != 0 || (props && spa_writeable(spa) &&
5165 	    (error = spa_prop_set(spa, props)))) {
5166 		spa_unload(spa);
5167 		spa_deactivate(spa);
5168 		spa_remove(spa);
5169 		mutex_exit(&spa_namespace_lock);
5170 		return (error);
5171 	}
5172 
5173 	spa_async_resume(spa);
5174 
5175 	/*
5176 	 * Override any spares and level 2 cache devices as specified by
5177 	 * the user, as these may have correct device names/devids, etc.
5178 	 */
5179 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5180 	    &spares, &nspares) == 0) {
5181 		if (spa->spa_spares.sav_config)
5182 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5183 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5184 		else
5185 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5186 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5187 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5188 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5189 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5190 		spa_load_spares(spa);
5191 		spa_config_exit(spa, SCL_ALL, FTAG);
5192 		spa->spa_spares.sav_sync = B_TRUE;
5193 	}
5194 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5195 	    &l2cache, &nl2cache) == 0) {
5196 		if (spa->spa_l2cache.sav_config)
5197 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5198 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5199 		else
5200 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5201 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5202 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5203 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5204 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5205 		spa_load_l2cache(spa);
5206 		spa_config_exit(spa, SCL_ALL, FTAG);
5207 		spa->spa_l2cache.sav_sync = B_TRUE;
5208 	}
5209 
5210 	/*
5211 	 * Check for any removed devices.
5212 	 */
5213 	if (spa->spa_autoreplace) {
5214 		spa_aux_check_removed(&spa->spa_spares);
5215 		spa_aux_check_removed(&spa->spa_l2cache);
5216 	}
5217 
5218 	if (spa_writeable(spa)) {
5219 		/*
5220 		 * Update the config cache to include the newly-imported pool.
5221 		 */
5222 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5223 	}
5224 
5225 	/*
5226 	 * It's possible that the pool was expanded while it was exported.
5227 	 * We kick off an async task to handle this for us.
5228 	 */
5229 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5230 
5231 	spa_history_log_version(spa, "import");
5232 
5233 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5234 
5235 	mutex_exit(&spa_namespace_lock);
5236 
5237 	return (0);
5238 }
5239 
5240 nvlist_t *
5241 spa_tryimport(nvlist_t *tryconfig)
5242 {
5243 	nvlist_t *config = NULL;
5244 	char *poolname, *cachefile;
5245 	spa_t *spa;
5246 	uint64_t state;
5247 	int error;
5248 	zpool_load_policy_t policy;
5249 
5250 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5251 		return (NULL);
5252 
5253 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5254 		return (NULL);
5255 
5256 	/*
5257 	 * Create and initialize the spa structure.
5258 	 */
5259 	mutex_enter(&spa_namespace_lock);
5260 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5261 	spa_activate(spa, FREAD);
5262 
5263 	/*
5264 	 * Rewind pool if a max txg was provided.
5265 	 */
5266 	zpool_get_load_policy(spa->spa_config, &policy);
5267 	if (policy.zlp_txg != UINT64_MAX) {
5268 		spa->spa_load_max_txg = policy.zlp_txg;
5269 		spa->spa_extreme_rewind = B_TRUE;
5270 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5271 		    poolname, (longlong_t)policy.zlp_txg);
5272 	} else {
5273 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5274 	}
5275 
5276 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5277 	    == 0) {
5278 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5279 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5280 	} else {
5281 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5282 	}
5283 
5284 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5285 
5286 	/*
5287 	 * If 'tryconfig' was at least parsable, return the current config.
5288 	 */
5289 	if (spa->spa_root_vdev != NULL) {
5290 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5291 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5292 		    poolname) == 0);
5293 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5294 		    state) == 0);
5295 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5296 		    spa->spa_uberblock.ub_timestamp) == 0);
5297 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5298 		    spa->spa_load_info) == 0);
5299 
5300 		/*
5301 		 * If the bootfs property exists on this pool then we
5302 		 * copy it out so that external consumers can tell which
5303 		 * pools are bootable.
5304 		 */
5305 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5306 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5307 
5308 			/*
5309 			 * We have to play games with the name since the
5310 			 * pool was opened as TRYIMPORT_NAME.
5311 			 */
5312 			if (dsl_dsobj_to_dsname(spa_name(spa),
5313 			    spa->spa_bootfs, tmpname) == 0) {
5314 				char *cp;
5315 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5316 
5317 				cp = strchr(tmpname, '/');
5318 				if (cp == NULL) {
5319 					(void) strlcpy(dsname, tmpname,
5320 					    MAXPATHLEN);
5321 				} else {
5322 					(void) snprintf(dsname, MAXPATHLEN,
5323 					    "%s/%s", poolname, ++cp);
5324 				}
5325 				VERIFY(nvlist_add_string(config,
5326 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5327 				kmem_free(dsname, MAXPATHLEN);
5328 			}
5329 			kmem_free(tmpname, MAXPATHLEN);
5330 		}
5331 
5332 		/*
5333 		 * Add the list of hot spares and level 2 cache devices.
5334 		 */
5335 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5336 		spa_add_spares(spa, config);
5337 		spa_add_l2cache(spa, config);
5338 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5339 	}
5340 
5341 	spa_unload(spa);
5342 	spa_deactivate(spa);
5343 	spa_remove(spa);
5344 	mutex_exit(&spa_namespace_lock);
5345 
5346 	return (config);
5347 }
5348 
5349 /*
5350  * Pool export/destroy
5351  *
5352  * The act of destroying or exporting a pool is very simple.  We make sure there
5353  * is no more pending I/O and any references to the pool are gone.  Then, we
5354  * update the pool state and sync all the labels to disk, removing the
5355  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5356  * we don't sync the labels or remove the configuration cache.
5357  */
5358 static int
5359 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5360     boolean_t force, boolean_t hardforce)
5361 {
5362 	spa_t *spa;
5363 
5364 	if (oldconfig)
5365 		*oldconfig = NULL;
5366 
5367 	if (!(spa_mode_global & FWRITE))
5368 		return (SET_ERROR(EROFS));
5369 
5370 	mutex_enter(&spa_namespace_lock);
5371 	if ((spa = spa_lookup(pool)) == NULL) {
5372 		mutex_exit(&spa_namespace_lock);
5373 		return (SET_ERROR(ENOENT));
5374 	}
5375 
5376 	/*
5377 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5378 	 * reacquire the namespace lock, and see if we can export.
5379 	 */
5380 	spa_open_ref(spa, FTAG);
5381 	mutex_exit(&spa_namespace_lock);
5382 	spa_async_suspend(spa);
5383 	mutex_enter(&spa_namespace_lock);
5384 	spa_close(spa, FTAG);
5385 
5386 	/*
5387 	 * The pool will be in core if it's openable,
5388 	 * in which case we can modify its state.
5389 	 */
5390 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5391 
5392 		/*
5393 		 * Objsets may be open only because they're dirty, so we
5394 		 * have to force it to sync before checking spa_refcnt.
5395 		 */
5396 		txg_wait_synced(spa->spa_dsl_pool, 0);
5397 		spa_evicting_os_wait(spa);
5398 
5399 		/*
5400 		 * A pool cannot be exported or destroyed if there are active
5401 		 * references.  If we are resetting a pool, allow references by
5402 		 * fault injection handlers.
5403 		 */
5404 		if (!spa_refcount_zero(spa) ||
5405 		    (spa->spa_inject_ref != 0 &&
5406 		    new_state != POOL_STATE_UNINITIALIZED)) {
5407 			spa_async_resume(spa);
5408 			mutex_exit(&spa_namespace_lock);
5409 			return (SET_ERROR(EBUSY));
5410 		}
5411 
5412 		/*
5413 		 * A pool cannot be exported if it has an active shared spare.
5414 		 * This is to prevent other pools stealing the active spare
5415 		 * from an exported pool. At user's own will, such pool can
5416 		 * be forcedly exported.
5417 		 */
5418 		if (!force && new_state == POOL_STATE_EXPORTED &&
5419 		    spa_has_active_shared_spare(spa)) {
5420 			spa_async_resume(spa);
5421 			mutex_exit(&spa_namespace_lock);
5422 			return (SET_ERROR(EXDEV));
5423 		}
5424 
5425 		/*
5426 		 * We're about to export or destroy this pool. Make sure
5427 		 * we stop all initializtion activity here before we
5428 		 * set the spa_final_txg. This will ensure that all
5429 		 * dirty data resulting from the initialization is
5430 		 * committed to disk before we unload the pool.
5431 		 */
5432 		if (spa->spa_root_vdev != NULL) {
5433 			vdev_initialize_stop_all(spa->spa_root_vdev,
5434 			    VDEV_INITIALIZE_ACTIVE);
5435 		}
5436 
5437 		/*
5438 		 * We want this to be reflected on every label,
5439 		 * so mark them all dirty.  spa_unload() will do the
5440 		 * final sync that pushes these changes out.
5441 		 */
5442 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5443 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5444 			spa->spa_state = new_state;
5445 			spa->spa_final_txg = spa_last_synced_txg(spa) +
5446 			    TXG_DEFER_SIZE + 1;
5447 			vdev_config_dirty(spa->spa_root_vdev);
5448 			spa_config_exit(spa, SCL_ALL, FTAG);
5449 		}
5450 	}
5451 
5452 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5453 
5454 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5455 		spa_unload(spa);
5456 		spa_deactivate(spa);
5457 	}
5458 
5459 	if (oldconfig && spa->spa_config)
5460 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5461 
5462 	if (new_state != POOL_STATE_UNINITIALIZED) {
5463 		if (!hardforce)
5464 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5465 		spa_remove(spa);
5466 	}
5467 	mutex_exit(&spa_namespace_lock);
5468 
5469 	return (0);
5470 }
5471 
5472 /*
5473  * Destroy a storage pool.
5474  */
5475 int
5476 spa_destroy(char *pool)
5477 {
5478 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5479 	    B_FALSE, B_FALSE));
5480 }
5481 
5482 /*
5483  * Export a storage pool.
5484  */
5485 int
5486 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5487     boolean_t hardforce)
5488 {
5489 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5490 	    force, hardforce));
5491 }
5492 
5493 /*
5494  * Similar to spa_export(), this unloads the spa_t without actually removing it
5495  * from the namespace in any way.
5496  */
5497 int
5498 spa_reset(char *pool)
5499 {
5500 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5501 	    B_FALSE, B_FALSE));
5502 }
5503 
5504 /*
5505  * ==========================================================================
5506  * Device manipulation
5507  * ==========================================================================
5508  */
5509 
5510 /*
5511  * Add a device to a storage pool.
5512  */
5513 int
5514 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5515 {
5516 	uint64_t txg, id;
5517 	int error;
5518 	vdev_t *rvd = spa->spa_root_vdev;
5519 	vdev_t *vd, *tvd;
5520 	nvlist_t **spares, **l2cache;
5521 	uint_t nspares, nl2cache;
5522 
5523 	ASSERT(spa_writeable(spa));
5524 
5525 	txg = spa_vdev_enter(spa);
5526 
5527 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5528 	    VDEV_ALLOC_ADD)) != 0)
5529 		return (spa_vdev_exit(spa, NULL, txg, error));
5530 
5531 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
5532 
5533 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5534 	    &nspares) != 0)
5535 		nspares = 0;
5536 
5537 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5538 	    &nl2cache) != 0)
5539 		nl2cache = 0;
5540 
5541 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5542 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
5543 
5544 	if (vd->vdev_children != 0 &&
5545 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
5546 		return (spa_vdev_exit(spa, vd, txg, error));
5547 
5548 	/*
5549 	 * We must validate the spares and l2cache devices after checking the
5550 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
5551 	 */
5552 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5553 		return (spa_vdev_exit(spa, vd, txg, error));
5554 
5555 	/*
5556 	 * If we are in the middle of a device removal, we can only add
5557 	 * devices which match the existing devices in the pool.
5558 	 * If we are in the middle of a removal, or have some indirect
5559 	 * vdevs, we can not add raidz toplevels.
5560 	 */
5561 	if (spa->spa_vdev_removal != NULL ||
5562 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5563 		for (int c = 0; c < vd->vdev_children; c++) {
5564 			tvd = vd->vdev_child[c];
5565 			if (spa->spa_vdev_removal != NULL &&
5566 			    tvd->vdev_ashift != spa->spa_max_ashift) {
5567 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5568 			}
5569 			/* Fail if top level vdev is raidz */
5570 			if (tvd->vdev_ops == &vdev_raidz_ops) {
5571 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5572 			}
5573 			/*
5574 			 * Need the top level mirror to be
5575 			 * a mirror of leaf vdevs only
5576 			 */
5577 			if (tvd->vdev_ops == &vdev_mirror_ops) {
5578 				for (uint64_t cid = 0;
5579 				    cid < tvd->vdev_children; cid++) {
5580 					vdev_t *cvd = tvd->vdev_child[cid];
5581 					if (!cvd->vdev_ops->vdev_op_leaf) {
5582 						return (spa_vdev_exit(spa, vd,
5583 						    txg, EINVAL));
5584 					}
5585 				}
5586 			}
5587 		}
5588 	}
5589 
5590 	for (int c = 0; c < vd->vdev_children; c++) {
5591 
5592 		/*
5593 		 * Set the vdev id to the first hole, if one exists.
5594 		 */
5595 		for (id = 0; id < rvd->vdev_children; id++) {
5596 			if (rvd->vdev_child[id]->vdev_ishole) {
5597 				vdev_free(rvd->vdev_child[id]);
5598 				break;
5599 			}
5600 		}
5601 		tvd = vd->vdev_child[c];
5602 		vdev_remove_child(vd, tvd);
5603 		tvd->vdev_id = id;
5604 		vdev_add_child(rvd, tvd);
5605 		vdev_config_dirty(tvd);
5606 	}
5607 
5608 	if (nspares != 0) {
5609 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5610 		    ZPOOL_CONFIG_SPARES);
5611 		spa_load_spares(spa);
5612 		spa->spa_spares.sav_sync = B_TRUE;
5613 	}
5614 
5615 	if (nl2cache != 0) {
5616 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5617 		    ZPOOL_CONFIG_L2CACHE);
5618 		spa_load_l2cache(spa);
5619 		spa->spa_l2cache.sav_sync = B_TRUE;
5620 	}
5621 
5622 	/*
5623 	 * We have to be careful when adding new vdevs to an existing pool.
5624 	 * If other threads start allocating from these vdevs before we
5625 	 * sync the config cache, and we lose power, then upon reboot we may
5626 	 * fail to open the pool because there are DVAs that the config cache
5627 	 * can't translate.  Therefore, we first add the vdevs without
5628 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5629 	 * and then let spa_config_update() initialize the new metaslabs.
5630 	 *
5631 	 * spa_load() checks for added-but-not-initialized vdevs, so that
5632 	 * if we lose power at any point in this sequence, the remaining
5633 	 * steps will be completed the next time we load the pool.
5634 	 */
5635 	(void) spa_vdev_exit(spa, vd, txg, 0);
5636 
5637 	mutex_enter(&spa_namespace_lock);
5638 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5639 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5640 	mutex_exit(&spa_namespace_lock);
5641 
5642 	return (0);
5643 }
5644 
5645 /*
5646  * Attach a device to a mirror.  The arguments are the path to any device
5647  * in the mirror, and the nvroot for the new device.  If the path specifies
5648  * a device that is not mirrored, we automatically insert the mirror vdev.
5649  *
5650  * If 'replacing' is specified, the new device is intended to replace the
5651  * existing device; in this case the two devices are made into their own
5652  * mirror using the 'replacing' vdev, which is functionally identical to
5653  * the mirror vdev (it actually reuses all the same ops) but has a few
5654  * extra rules: you can't attach to it after it's been created, and upon
5655  * completion of resilvering, the first disk (the one being replaced)
5656  * is automatically detached.
5657  */
5658 int
5659 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5660 {
5661 	uint64_t txg, dtl_max_txg;
5662 	vdev_t *rvd = spa->spa_root_vdev;
5663 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5664 	vdev_ops_t *pvops;
5665 	char *oldvdpath, *newvdpath;
5666 	int newvd_isspare;
5667 	int error;
5668 
5669 	ASSERT(spa_writeable(spa));
5670 
5671 	txg = spa_vdev_enter(spa);
5672 
5673 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5674 
5675 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5676 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5677 		error = (spa_has_checkpoint(spa)) ?
5678 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5679 		return (spa_vdev_exit(spa, NULL, txg, error));
5680 	}
5681 
5682 	if (spa->spa_vdev_removal != NULL)
5683 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5684 
5685 	if (oldvd == NULL)
5686 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5687 
5688 	if (!oldvd->vdev_ops->vdev_op_leaf)
5689 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5690 
5691 	pvd = oldvd->vdev_parent;
5692 
5693 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5694 	    VDEV_ALLOC_ATTACH)) != 0)
5695 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5696 
5697 	if (newrootvd->vdev_children != 1)
5698 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5699 
5700 	newvd = newrootvd->vdev_child[0];
5701 
5702 	if (!newvd->vdev_ops->vdev_op_leaf)
5703 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5704 
5705 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5706 		return (spa_vdev_exit(spa, newrootvd, txg, error));
5707 
5708 	/*
5709 	 * Spares can't replace logs
5710 	 */
5711 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5712 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5713 
5714 	if (!replacing) {
5715 		/*
5716 		 * For attach, the only allowable parent is a mirror or the root
5717 		 * vdev.
5718 		 */
5719 		if (pvd->vdev_ops != &vdev_mirror_ops &&
5720 		    pvd->vdev_ops != &vdev_root_ops)
5721 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5722 
5723 		pvops = &vdev_mirror_ops;
5724 	} else {
5725 		/*
5726 		 * Active hot spares can only be replaced by inactive hot
5727 		 * spares.
5728 		 */
5729 		if (pvd->vdev_ops == &vdev_spare_ops &&
5730 		    oldvd->vdev_isspare &&
5731 		    !spa_has_spare(spa, newvd->vdev_guid))
5732 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5733 
5734 		/*
5735 		 * If the source is a hot spare, and the parent isn't already a
5736 		 * spare, then we want to create a new hot spare.  Otherwise, we
5737 		 * want to create a replacing vdev.  The user is not allowed to
5738 		 * attach to a spared vdev child unless the 'isspare' state is
5739 		 * the same (spare replaces spare, non-spare replaces
5740 		 * non-spare).
5741 		 */
5742 		if (pvd->vdev_ops == &vdev_replacing_ops &&
5743 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5744 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5745 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
5746 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
5747 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5748 		}
5749 
5750 		if (newvd->vdev_isspare)
5751 			pvops = &vdev_spare_ops;
5752 		else
5753 			pvops = &vdev_replacing_ops;
5754 	}
5755 
5756 	/*
5757 	 * Make sure the new device is big enough.
5758 	 */
5759 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
5760 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
5761 
5762 	/*
5763 	 * The new device cannot have a higher alignment requirement
5764 	 * than the top-level vdev.
5765 	 */
5766 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
5767 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
5768 
5769 	/*
5770 	 * If this is an in-place replacement, update oldvd's path and devid
5771 	 * to make it distinguishable from newvd, and unopenable from now on.
5772 	 */
5773 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
5774 		spa_strfree(oldvd->vdev_path);
5775 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
5776 		    KM_SLEEP);
5777 		(void) sprintf(oldvd->vdev_path, "%s/%s",
5778 		    newvd->vdev_path, "old");
5779 		if (oldvd->vdev_devid != NULL) {
5780 			spa_strfree(oldvd->vdev_devid);
5781 			oldvd->vdev_devid = NULL;
5782 		}
5783 	}
5784 
5785 	/* mark the device being resilvered */
5786 	newvd->vdev_resilver_txg = txg;
5787 
5788 	/*
5789 	 * If the parent is not a mirror, or if we're replacing, insert the new
5790 	 * mirror/replacing/spare vdev above oldvd.
5791 	 */
5792 	if (pvd->vdev_ops != pvops)
5793 		pvd = vdev_add_parent(oldvd, pvops);
5794 
5795 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
5796 	ASSERT(pvd->vdev_ops == pvops);
5797 	ASSERT(oldvd->vdev_parent == pvd);
5798 
5799 	/*
5800 	 * Extract the new device from its root and add it to pvd.
5801 	 */
5802 	vdev_remove_child(newrootvd, newvd);
5803 	newvd->vdev_id = pvd->vdev_children;
5804 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
5805 	vdev_add_child(pvd, newvd);
5806 
5807 	tvd = newvd->vdev_top;
5808 	ASSERT(pvd->vdev_top == tvd);
5809 	ASSERT(tvd->vdev_parent == rvd);
5810 
5811 	vdev_config_dirty(tvd);
5812 
5813 	/*
5814 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5815 	 * for any dmu_sync-ed blocks.  It will propagate upward when
5816 	 * spa_vdev_exit() calls vdev_dtl_reassess().
5817 	 */
5818 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5819 
5820 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5821 	    dtl_max_txg - TXG_INITIAL);
5822 
5823 	if (newvd->vdev_isspare) {
5824 		spa_spare_activate(newvd);
5825 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
5826 	}
5827 
5828 	oldvdpath = spa_strdup(oldvd->vdev_path);
5829 	newvdpath = spa_strdup(newvd->vdev_path);
5830 	newvd_isspare = newvd->vdev_isspare;
5831 
5832 	/*
5833 	 * Mark newvd's DTL dirty in this txg.
5834 	 */
5835 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
5836 
5837 	/*
5838 	 * Schedule the resilver to restart in the future. We do this to
5839 	 * ensure that dmu_sync-ed blocks have been stitched into the
5840 	 * respective datasets.
5841 	 */
5842 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5843 
5844 	if (spa->spa_bootfs)
5845 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5846 
5847 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5848 
5849 	/*
5850 	 * Commit the config
5851 	 */
5852 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5853 
5854 	spa_history_log_internal(spa, "vdev attach", NULL,
5855 	    "%s vdev=%s %s vdev=%s",
5856 	    replacing && newvd_isspare ? "spare in" :
5857 	    replacing ? "replace" : "attach", newvdpath,
5858 	    replacing ? "for" : "to", oldvdpath);
5859 
5860 	spa_strfree(oldvdpath);
5861 	spa_strfree(newvdpath);
5862 
5863 	return (0);
5864 }
5865 
5866 /*
5867  * Detach a device from a mirror or replacing vdev.
5868  *
5869  * If 'replace_done' is specified, only detach if the parent
5870  * is a replacing vdev.
5871  */
5872 int
5873 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5874 {
5875 	uint64_t txg;
5876 	int error;
5877 	vdev_t *rvd = spa->spa_root_vdev;
5878 	vdev_t *vd, *pvd, *cvd, *tvd;
5879 	boolean_t unspare = B_FALSE;
5880 	uint64_t unspare_guid = 0;
5881 	char *vdpath;
5882 
5883 	ASSERT(spa_writeable(spa));
5884 
5885 	txg = spa_vdev_enter(spa);
5886 
5887 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5888 
5889 	/*
5890 	 * Besides being called directly from the userland through the
5891 	 * ioctl interface, spa_vdev_detach() can be potentially called
5892 	 * at the end of spa_vdev_resilver_done().
5893 	 *
5894 	 * In the regular case, when we have a checkpoint this shouldn't
5895 	 * happen as we never empty the DTLs of a vdev during the scrub
5896 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
5897 	 * should never get here when we have a checkpoint.
5898 	 *
5899 	 * That said, even in a case when we checkpoint the pool exactly
5900 	 * as spa_vdev_resilver_done() calls this function everything
5901 	 * should be fine as the resilver will return right away.
5902 	 */
5903 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5904 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5905 		error = (spa_has_checkpoint(spa)) ?
5906 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5907 		return (spa_vdev_exit(spa, NULL, txg, error));
5908 	}
5909 
5910 	if (vd == NULL)
5911 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5912 
5913 	if (!vd->vdev_ops->vdev_op_leaf)
5914 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5915 
5916 	pvd = vd->vdev_parent;
5917 
5918 	/*
5919 	 * If the parent/child relationship is not as expected, don't do it.
5920 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5921 	 * vdev that's replacing B with C.  The user's intent in replacing
5922 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5923 	 * the replace by detaching C, the expected behavior is to end up
5924 	 * M(A,B).  But suppose that right after deciding to detach C,
5925 	 * the replacement of B completes.  We would have M(A,C), and then
5926 	 * ask to detach C, which would leave us with just A -- not what
5927 	 * the user wanted.  To prevent this, we make sure that the
5928 	 * parent/child relationship hasn't changed -- in this example,
5929 	 * that C's parent is still the replacing vdev R.
5930 	 */
5931 	if (pvd->vdev_guid != pguid && pguid != 0)
5932 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5933 
5934 	/*
5935 	 * Only 'replacing' or 'spare' vdevs can be replaced.
5936 	 */
5937 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5938 	    pvd->vdev_ops != &vdev_spare_ops)
5939 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5940 
5941 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5942 	    spa_version(spa) >= SPA_VERSION_SPARES);
5943 
5944 	/*
5945 	 * Only mirror, replacing, and spare vdevs support detach.
5946 	 */
5947 	if (pvd->vdev_ops != &vdev_replacing_ops &&
5948 	    pvd->vdev_ops != &vdev_mirror_ops &&
5949 	    pvd->vdev_ops != &vdev_spare_ops)
5950 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5951 
5952 	/*
5953 	 * If this device has the only valid copy of some data,
5954 	 * we cannot safely detach it.
5955 	 */
5956 	if (vdev_dtl_required(vd))
5957 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5958 
5959 	ASSERT(pvd->vdev_children >= 2);
5960 
5961 	/*
5962 	 * If we are detaching the second disk from a replacing vdev, then
5963 	 * check to see if we changed the original vdev's path to have "/old"
5964 	 * at the end in spa_vdev_attach().  If so, undo that change now.
5965 	 */
5966 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5967 	    vd->vdev_path != NULL) {
5968 		size_t len = strlen(vd->vdev_path);
5969 
5970 		for (int c = 0; c < pvd->vdev_children; c++) {
5971 			cvd = pvd->vdev_child[c];
5972 
5973 			if (cvd == vd || cvd->vdev_path == NULL)
5974 				continue;
5975 
5976 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5977 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5978 				spa_strfree(cvd->vdev_path);
5979 				cvd->vdev_path = spa_strdup(vd->vdev_path);
5980 				break;
5981 			}
5982 		}
5983 	}
5984 
5985 	/*
5986 	 * If we are detaching the original disk from a spare, then it implies
5987 	 * that the spare should become a real disk, and be removed from the
5988 	 * active spare list for the pool.
5989 	 */
5990 	if (pvd->vdev_ops == &vdev_spare_ops &&
5991 	    vd->vdev_id == 0 &&
5992 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5993 		unspare = B_TRUE;
5994 
5995 	/*
5996 	 * Erase the disk labels so the disk can be used for other things.
5997 	 * This must be done after all other error cases are handled,
5998 	 * but before we disembowel vd (so we can still do I/O to it).
5999 	 * But if we can't do it, don't treat the error as fatal --
6000 	 * it may be that the unwritability of the disk is the reason
6001 	 * it's being detached!
6002 	 */
6003 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6004 
6005 	/*
6006 	 * Remove vd from its parent and compact the parent's children.
6007 	 */
6008 	vdev_remove_child(pvd, vd);
6009 	vdev_compact_children(pvd);
6010 
6011 	/*
6012 	 * Remember one of the remaining children so we can get tvd below.
6013 	 */
6014 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6015 
6016 	/*
6017 	 * If we need to remove the remaining child from the list of hot spares,
6018 	 * do it now, marking the vdev as no longer a spare in the process.
6019 	 * We must do this before vdev_remove_parent(), because that can
6020 	 * change the GUID if it creates a new toplevel GUID.  For a similar
6021 	 * reason, we must remove the spare now, in the same txg as the detach;
6022 	 * otherwise someone could attach a new sibling, change the GUID, and
6023 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6024 	 */
6025 	if (unspare) {
6026 		ASSERT(cvd->vdev_isspare);
6027 		spa_spare_remove(cvd);
6028 		unspare_guid = cvd->vdev_guid;
6029 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6030 		cvd->vdev_unspare = B_TRUE;
6031 	}
6032 
6033 	/*
6034 	 * If the parent mirror/replacing vdev only has one child,
6035 	 * the parent is no longer needed.  Remove it from the tree.
6036 	 */
6037 	if (pvd->vdev_children == 1) {
6038 		if (pvd->vdev_ops == &vdev_spare_ops)
6039 			cvd->vdev_unspare = B_FALSE;
6040 		vdev_remove_parent(cvd);
6041 	}
6042 
6043 
6044 	/*
6045 	 * We don't set tvd until now because the parent we just removed
6046 	 * may have been the previous top-level vdev.
6047 	 */
6048 	tvd = cvd->vdev_top;
6049 	ASSERT(tvd->vdev_parent == rvd);
6050 
6051 	/*
6052 	 * Reevaluate the parent vdev state.
6053 	 */
6054 	vdev_propagate_state(cvd);
6055 
6056 	/*
6057 	 * If the 'autoexpand' property is set on the pool then automatically
6058 	 * try to expand the size of the pool. For example if the device we
6059 	 * just detached was smaller than the others, it may be possible to
6060 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6061 	 * first so that we can obtain the updated sizes of the leaf vdevs.
6062 	 */
6063 	if (spa->spa_autoexpand) {
6064 		vdev_reopen(tvd);
6065 		vdev_expand(tvd, txg);
6066 	}
6067 
6068 	vdev_config_dirty(tvd);
6069 
6070 	/*
6071 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6072 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6073 	 * But first make sure we're not on any *other* txg's DTL list, to
6074 	 * prevent vd from being accessed after it's freed.
6075 	 */
6076 	vdpath = spa_strdup(vd->vdev_path);
6077 	for (int t = 0; t < TXG_SIZE; t++)
6078 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6079 	vd->vdev_detached = B_TRUE;
6080 	vdev_dirty(tvd, VDD_DTL, vd, txg);
6081 
6082 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6083 
6084 	/* hang on to the spa before we release the lock */
6085 	spa_open_ref(spa, FTAG);
6086 
6087 	error = spa_vdev_exit(spa, vd, txg, 0);
6088 
6089 	spa_history_log_internal(spa, "detach", NULL,
6090 	    "vdev=%s", vdpath);
6091 	spa_strfree(vdpath);
6092 
6093 	/*
6094 	 * If this was the removal of the original device in a hot spare vdev,
6095 	 * then we want to go through and remove the device from the hot spare
6096 	 * list of every other pool.
6097 	 */
6098 	if (unspare) {
6099 		spa_t *altspa = NULL;
6100 
6101 		mutex_enter(&spa_namespace_lock);
6102 		while ((altspa = spa_next(altspa)) != NULL) {
6103 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6104 			    altspa == spa)
6105 				continue;
6106 
6107 			spa_open_ref(altspa, FTAG);
6108 			mutex_exit(&spa_namespace_lock);
6109 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6110 			mutex_enter(&spa_namespace_lock);
6111 			spa_close(altspa, FTAG);
6112 		}
6113 		mutex_exit(&spa_namespace_lock);
6114 
6115 		/* search the rest of the vdevs for spares to remove */
6116 		spa_vdev_resilver_done(spa);
6117 	}
6118 
6119 	/* all done with the spa; OK to release */
6120 	mutex_enter(&spa_namespace_lock);
6121 	spa_close(spa, FTAG);
6122 	mutex_exit(&spa_namespace_lock);
6123 
6124 	return (error);
6125 }
6126 
6127 int
6128 spa_vdev_initialize(spa_t *spa, uint64_t guid, uint64_t cmd_type)
6129 {
6130 	/*
6131 	 * We hold the namespace lock through the whole function
6132 	 * to prevent any changes to the pool while we're starting or
6133 	 * stopping initialization. The config and state locks are held so that
6134 	 * we can properly assess the vdev state before we commit to
6135 	 * the initializing operation.
6136 	 */
6137 	mutex_enter(&spa_namespace_lock);
6138 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6139 
6140 	/* Look up vdev and ensure it's a leaf. */
6141 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6142 	if (vd == NULL || vd->vdev_detached) {
6143 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6144 		mutex_exit(&spa_namespace_lock);
6145 		return (SET_ERROR(ENODEV));
6146 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6147 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6148 		mutex_exit(&spa_namespace_lock);
6149 		return (SET_ERROR(EINVAL));
6150 	} else if (!vdev_writeable(vd)) {
6151 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6152 		mutex_exit(&spa_namespace_lock);
6153 		return (SET_ERROR(EROFS));
6154 	}
6155 	mutex_enter(&vd->vdev_initialize_lock);
6156 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6157 
6158 	/*
6159 	 * When we activate an initialize action we check to see
6160 	 * if the vdev_initialize_thread is NULL. We do this instead
6161 	 * of using the vdev_initialize_state since there might be
6162 	 * a previous initialization process which has completed but
6163 	 * the thread is not exited.
6164 	 */
6165 	if (cmd_type == POOL_INITIALIZE_DO &&
6166 	    (vd->vdev_initialize_thread != NULL ||
6167 	    vd->vdev_top->vdev_removing)) {
6168 		mutex_exit(&vd->vdev_initialize_lock);
6169 		mutex_exit(&spa_namespace_lock);
6170 		return (SET_ERROR(EBUSY));
6171 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6172 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6173 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6174 		mutex_exit(&vd->vdev_initialize_lock);
6175 		mutex_exit(&spa_namespace_lock);
6176 		return (SET_ERROR(ESRCH));
6177 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6178 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6179 		mutex_exit(&vd->vdev_initialize_lock);
6180 		mutex_exit(&spa_namespace_lock);
6181 		return (SET_ERROR(ESRCH));
6182 	}
6183 
6184 	switch (cmd_type) {
6185 	case POOL_INITIALIZE_DO:
6186 		vdev_initialize(vd);
6187 		break;
6188 	case POOL_INITIALIZE_CANCEL:
6189 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED);
6190 		break;
6191 	case POOL_INITIALIZE_SUSPEND:
6192 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED);
6193 		break;
6194 	default:
6195 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6196 	}
6197 	mutex_exit(&vd->vdev_initialize_lock);
6198 
6199 	/* Sync out the initializing state */
6200 	txg_wait_synced(spa->spa_dsl_pool, 0);
6201 	mutex_exit(&spa_namespace_lock);
6202 
6203 	return (0);
6204 }
6205 
6206 
6207 /*
6208  * Split a set of devices from their mirrors, and create a new pool from them.
6209  */
6210 int
6211 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6212     nvlist_t *props, boolean_t exp)
6213 {
6214 	int error = 0;
6215 	uint64_t txg, *glist;
6216 	spa_t *newspa;
6217 	uint_t c, children, lastlog;
6218 	nvlist_t **child, *nvl, *tmp;
6219 	dmu_tx_t *tx;
6220 	char *altroot = NULL;
6221 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6222 	boolean_t activate_slog;
6223 
6224 	ASSERT(spa_writeable(spa));
6225 
6226 	txg = spa_vdev_enter(spa);
6227 
6228 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6229 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6230 		error = (spa_has_checkpoint(spa)) ?
6231 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6232 		return (spa_vdev_exit(spa, NULL, txg, error));
6233 	}
6234 
6235 	/* clear the log and flush everything up to now */
6236 	activate_slog = spa_passivate_log(spa);
6237 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6238 	error = spa_reset_logs(spa);
6239 	txg = spa_vdev_config_enter(spa);
6240 
6241 	if (activate_slog)
6242 		spa_activate_log(spa);
6243 
6244 	if (error != 0)
6245 		return (spa_vdev_exit(spa, NULL, txg, error));
6246 
6247 	/* check new spa name before going any further */
6248 	if (spa_lookup(newname) != NULL)
6249 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6250 
6251 	/*
6252 	 * scan through all the children to ensure they're all mirrors
6253 	 */
6254 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6255 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6256 	    &children) != 0)
6257 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6258 
6259 	/* first, check to ensure we've got the right child count */
6260 	rvd = spa->spa_root_vdev;
6261 	lastlog = 0;
6262 	for (c = 0; c < rvd->vdev_children; c++) {
6263 		vdev_t *vd = rvd->vdev_child[c];
6264 
6265 		/* don't count the holes & logs as children */
6266 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6267 			if (lastlog == 0)
6268 				lastlog = c;
6269 			continue;
6270 		}
6271 
6272 		lastlog = 0;
6273 	}
6274 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6275 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6276 
6277 	/* next, ensure no spare or cache devices are part of the split */
6278 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6279 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6280 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6281 
6282 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6283 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6284 
6285 	/* then, loop over each vdev and validate it */
6286 	for (c = 0; c < children; c++) {
6287 		uint64_t is_hole = 0;
6288 
6289 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6290 		    &is_hole);
6291 
6292 		if (is_hole != 0) {
6293 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6294 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6295 				continue;
6296 			} else {
6297 				error = SET_ERROR(EINVAL);
6298 				break;
6299 			}
6300 		}
6301 
6302 		/* which disk is going to be split? */
6303 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6304 		    &glist[c]) != 0) {
6305 			error = SET_ERROR(EINVAL);
6306 			break;
6307 		}
6308 
6309 		/* look it up in the spa */
6310 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6311 		if (vml[c] == NULL) {
6312 			error = SET_ERROR(ENODEV);
6313 			break;
6314 		}
6315 
6316 		/* make sure there's nothing stopping the split */
6317 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6318 		    vml[c]->vdev_islog ||
6319 		    !vdev_is_concrete(vml[c]) ||
6320 		    vml[c]->vdev_isspare ||
6321 		    vml[c]->vdev_isl2cache ||
6322 		    !vdev_writeable(vml[c]) ||
6323 		    vml[c]->vdev_children != 0 ||
6324 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6325 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6326 			error = SET_ERROR(EINVAL);
6327 			break;
6328 		}
6329 
6330 		if (vdev_dtl_required(vml[c])) {
6331 			error = SET_ERROR(EBUSY);
6332 			break;
6333 		}
6334 
6335 		/* we need certain info from the top level */
6336 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6337 		    vml[c]->vdev_top->vdev_ms_array) == 0);
6338 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6339 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
6340 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6341 		    vml[c]->vdev_top->vdev_asize) == 0);
6342 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6343 		    vml[c]->vdev_top->vdev_ashift) == 0);
6344 
6345 		/* transfer per-vdev ZAPs */
6346 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6347 		VERIFY0(nvlist_add_uint64(child[c],
6348 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6349 
6350 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6351 		VERIFY0(nvlist_add_uint64(child[c],
6352 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
6353 		    vml[c]->vdev_parent->vdev_top_zap));
6354 	}
6355 
6356 	if (error != 0) {
6357 		kmem_free(vml, children * sizeof (vdev_t *));
6358 		kmem_free(glist, children * sizeof (uint64_t));
6359 		return (spa_vdev_exit(spa, NULL, txg, error));
6360 	}
6361 
6362 	/* stop writers from using the disks */
6363 	for (c = 0; c < children; c++) {
6364 		if (vml[c] != NULL)
6365 			vml[c]->vdev_offline = B_TRUE;
6366 	}
6367 	vdev_reopen(spa->spa_root_vdev);
6368 
6369 	/*
6370 	 * Temporarily record the splitting vdevs in the spa config.  This
6371 	 * will disappear once the config is regenerated.
6372 	 */
6373 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6374 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6375 	    glist, children) == 0);
6376 	kmem_free(glist, children * sizeof (uint64_t));
6377 
6378 	mutex_enter(&spa->spa_props_lock);
6379 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6380 	    nvl) == 0);
6381 	mutex_exit(&spa->spa_props_lock);
6382 	spa->spa_config_splitting = nvl;
6383 	vdev_config_dirty(spa->spa_root_vdev);
6384 
6385 	/* configure and create the new pool */
6386 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6387 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6388 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6389 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6390 	    spa_version(spa)) == 0);
6391 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6392 	    spa->spa_config_txg) == 0);
6393 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6394 	    spa_generate_guid(NULL)) == 0);
6395 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6396 	(void) nvlist_lookup_string(props,
6397 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6398 
6399 	/* add the new pool to the namespace */
6400 	newspa = spa_add(newname, config, altroot);
6401 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6402 	newspa->spa_config_txg = spa->spa_config_txg;
6403 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
6404 
6405 	/* release the spa config lock, retaining the namespace lock */
6406 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6407 
6408 	if (zio_injection_enabled)
6409 		zio_handle_panic_injection(spa, FTAG, 1);
6410 
6411 	spa_activate(newspa, spa_mode_global);
6412 	spa_async_suspend(newspa);
6413 
6414 	for (c = 0; c < children; c++) {
6415 		if (vml[c] != NULL) {
6416 			/*
6417 			 * Temporarily stop the initializing activity. We set
6418 			 * the state to ACTIVE so that we know to resume
6419 			 * the initializing once the split has completed.
6420 			 */
6421 			mutex_enter(&vml[c]->vdev_initialize_lock);
6422 			vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE);
6423 			mutex_exit(&vml[c]->vdev_initialize_lock);
6424 		}
6425 	}
6426 
6427 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
6428 
6429 	/* create the new pool from the disks of the original pool */
6430 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
6431 	if (error)
6432 		goto out;
6433 
6434 	/* if that worked, generate a real config for the new pool */
6435 	if (newspa->spa_root_vdev != NULL) {
6436 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
6437 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
6438 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
6439 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
6440 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
6441 		    B_TRUE));
6442 	}
6443 
6444 	/* set the props */
6445 	if (props != NULL) {
6446 		spa_configfile_set(newspa, props, B_FALSE);
6447 		error = spa_prop_set(newspa, props);
6448 		if (error)
6449 			goto out;
6450 	}
6451 
6452 	/* flush everything */
6453 	txg = spa_vdev_config_enter(newspa);
6454 	vdev_config_dirty(newspa->spa_root_vdev);
6455 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
6456 
6457 	if (zio_injection_enabled)
6458 		zio_handle_panic_injection(spa, FTAG, 2);
6459 
6460 	spa_async_resume(newspa);
6461 
6462 	/* finally, update the original pool's config */
6463 	txg = spa_vdev_config_enter(spa);
6464 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
6465 	error = dmu_tx_assign(tx, TXG_WAIT);
6466 	if (error != 0)
6467 		dmu_tx_abort(tx);
6468 	for (c = 0; c < children; c++) {
6469 		if (vml[c] != NULL) {
6470 			vdev_split(vml[c]);
6471 			if (error == 0)
6472 				spa_history_log_internal(spa, "detach", tx,
6473 				    "vdev=%s", vml[c]->vdev_path);
6474 
6475 			vdev_free(vml[c]);
6476 		}
6477 	}
6478 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
6479 	vdev_config_dirty(spa->spa_root_vdev);
6480 	spa->spa_config_splitting = NULL;
6481 	nvlist_free(nvl);
6482 	if (error == 0)
6483 		dmu_tx_commit(tx);
6484 	(void) spa_vdev_exit(spa, NULL, txg, 0);
6485 
6486 	if (zio_injection_enabled)
6487 		zio_handle_panic_injection(spa, FTAG, 3);
6488 
6489 	/* split is complete; log a history record */
6490 	spa_history_log_internal(newspa, "split", NULL,
6491 	    "from pool %s", spa_name(spa));
6492 
6493 	kmem_free(vml, children * sizeof (vdev_t *));
6494 
6495 	/* if we're not going to mount the filesystems in userland, export */
6496 	if (exp)
6497 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6498 		    B_FALSE, B_FALSE);
6499 
6500 	return (error);
6501 
6502 out:
6503 	spa_unload(newspa);
6504 	spa_deactivate(newspa);
6505 	spa_remove(newspa);
6506 
6507 	txg = spa_vdev_config_enter(spa);
6508 
6509 	/* re-online all offlined disks */
6510 	for (c = 0; c < children; c++) {
6511 		if (vml[c] != NULL)
6512 			vml[c]->vdev_offline = B_FALSE;
6513 	}
6514 
6515 	/* restart initializing disks as necessary */
6516 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
6517 
6518 	vdev_reopen(spa->spa_root_vdev);
6519 
6520 	nvlist_free(spa->spa_config_splitting);
6521 	spa->spa_config_splitting = NULL;
6522 	(void) spa_vdev_exit(spa, NULL, txg, error);
6523 
6524 	kmem_free(vml, children * sizeof (vdev_t *));
6525 	return (error);
6526 }
6527 
6528 /*
6529  * Find any device that's done replacing, or a vdev marked 'unspare' that's
6530  * currently spared, so we can detach it.
6531  */
6532 static vdev_t *
6533 spa_vdev_resilver_done_hunt(vdev_t *vd)
6534 {
6535 	vdev_t *newvd, *oldvd;
6536 
6537 	for (int c = 0; c < vd->vdev_children; c++) {
6538 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6539 		if (oldvd != NULL)
6540 			return (oldvd);
6541 	}
6542 
6543 	/*
6544 	 * Check for a completed replacement.  We always consider the first
6545 	 * vdev in the list to be the oldest vdev, and the last one to be
6546 	 * the newest (see spa_vdev_attach() for how that works).  In
6547 	 * the case where the newest vdev is faulted, we will not automatically
6548 	 * remove it after a resilver completes.  This is OK as it will require
6549 	 * user intervention to determine which disk the admin wishes to keep.
6550 	 */
6551 	if (vd->vdev_ops == &vdev_replacing_ops) {
6552 		ASSERT(vd->vdev_children > 1);
6553 
6554 		newvd = vd->vdev_child[vd->vdev_children - 1];
6555 		oldvd = vd->vdev_child[0];
6556 
6557 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6558 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6559 		    !vdev_dtl_required(oldvd))
6560 			return (oldvd);
6561 	}
6562 
6563 	/*
6564 	 * Check for a completed resilver with the 'unspare' flag set.
6565 	 * Also potentially update faulted state.
6566 	 */
6567 	if (vd->vdev_ops == &vdev_spare_ops) {
6568 		vdev_t *first = vd->vdev_child[0];
6569 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6570 
6571 		if (last->vdev_unspare) {
6572 			oldvd = first;
6573 			newvd = last;
6574 		} else if (first->vdev_unspare) {
6575 			oldvd = last;
6576 			newvd = first;
6577 		} else {
6578 			oldvd = NULL;
6579 		}
6580 
6581 		if (oldvd != NULL &&
6582 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
6583 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6584 		    !vdev_dtl_required(oldvd))
6585 			return (oldvd);
6586 
6587 		vdev_propagate_state(vd);
6588 
6589 		/*
6590 		 * If there are more than two spares attached to a disk,
6591 		 * and those spares are not required, then we want to
6592 		 * attempt to free them up now so that they can be used
6593 		 * by other pools.  Once we're back down to a single
6594 		 * disk+spare, we stop removing them.
6595 		 */
6596 		if (vd->vdev_children > 2) {
6597 			newvd = vd->vdev_child[1];
6598 
6599 			if (newvd->vdev_isspare && last->vdev_isspare &&
6600 			    vdev_dtl_empty(last, DTL_MISSING) &&
6601 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
6602 			    !vdev_dtl_required(newvd))
6603 				return (newvd);
6604 		}
6605 	}
6606 
6607 	return (NULL);
6608 }
6609 
6610 static void
6611 spa_vdev_resilver_done(spa_t *spa)
6612 {
6613 	vdev_t *vd, *pvd, *ppvd;
6614 	uint64_t guid, sguid, pguid, ppguid;
6615 
6616 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6617 
6618 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6619 		pvd = vd->vdev_parent;
6620 		ppvd = pvd->vdev_parent;
6621 		guid = vd->vdev_guid;
6622 		pguid = pvd->vdev_guid;
6623 		ppguid = ppvd->vdev_guid;
6624 		sguid = 0;
6625 		/*
6626 		 * If we have just finished replacing a hot spared device, then
6627 		 * we need to detach the parent's first child (the original hot
6628 		 * spare) as well.
6629 		 */
6630 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6631 		    ppvd->vdev_children == 2) {
6632 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6633 			sguid = ppvd->vdev_child[1]->vdev_guid;
6634 		}
6635 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6636 
6637 		spa_config_exit(spa, SCL_ALL, FTAG);
6638 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6639 			return;
6640 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6641 			return;
6642 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6643 	}
6644 
6645 	spa_config_exit(spa, SCL_ALL, FTAG);
6646 }
6647 
6648 /*
6649  * Update the stored path or FRU for this vdev.
6650  */
6651 int
6652 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
6653     boolean_t ispath)
6654 {
6655 	vdev_t *vd;
6656 	boolean_t sync = B_FALSE;
6657 
6658 	ASSERT(spa_writeable(spa));
6659 
6660 	spa_vdev_state_enter(spa, SCL_ALL);
6661 
6662 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6663 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
6664 
6665 	if (!vd->vdev_ops->vdev_op_leaf)
6666 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6667 
6668 	if (ispath) {
6669 		if (strcmp(value, vd->vdev_path) != 0) {
6670 			spa_strfree(vd->vdev_path);
6671 			vd->vdev_path = spa_strdup(value);
6672 			sync = B_TRUE;
6673 		}
6674 	} else {
6675 		if (vd->vdev_fru == NULL) {
6676 			vd->vdev_fru = spa_strdup(value);
6677 			sync = B_TRUE;
6678 		} else if (strcmp(value, vd->vdev_fru) != 0) {
6679 			spa_strfree(vd->vdev_fru);
6680 			vd->vdev_fru = spa_strdup(value);
6681 			sync = B_TRUE;
6682 		}
6683 	}
6684 
6685 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6686 }
6687 
6688 int
6689 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6690 {
6691 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6692 }
6693 
6694 int
6695 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6696 {
6697 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6698 }
6699 
6700 /*
6701  * ==========================================================================
6702  * SPA Scanning
6703  * ==========================================================================
6704  */
6705 int
6706 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6707 {
6708 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6709 
6710 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6711 		return (SET_ERROR(EBUSY));
6712 
6713 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6714 }
6715 
6716 int
6717 spa_scan_stop(spa_t *spa)
6718 {
6719 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6720 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6721 		return (SET_ERROR(EBUSY));
6722 	return (dsl_scan_cancel(spa->spa_dsl_pool));
6723 }
6724 
6725 int
6726 spa_scan(spa_t *spa, pool_scan_func_t func)
6727 {
6728 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6729 
6730 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6731 		return (SET_ERROR(ENOTSUP));
6732 
6733 	/*
6734 	 * If a resilver was requested, but there is no DTL on a
6735 	 * writeable leaf device, we have nothing to do.
6736 	 */
6737 	if (func == POOL_SCAN_RESILVER &&
6738 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6739 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6740 		return (0);
6741 	}
6742 
6743 	return (dsl_scan(spa->spa_dsl_pool, func));
6744 }
6745 
6746 /*
6747  * ==========================================================================
6748  * SPA async task processing
6749  * ==========================================================================
6750  */
6751 
6752 static void
6753 spa_async_remove(spa_t *spa, vdev_t *vd)
6754 {
6755 	if (vd->vdev_remove_wanted) {
6756 		vd->vdev_remove_wanted = B_FALSE;
6757 		vd->vdev_delayed_close = B_FALSE;
6758 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6759 
6760 		/*
6761 		 * We want to clear the stats, but we don't want to do a full
6762 		 * vdev_clear() as that will cause us to throw away
6763 		 * degraded/faulted state as well as attempt to reopen the
6764 		 * device, all of which is a waste.
6765 		 */
6766 		vd->vdev_stat.vs_read_errors = 0;
6767 		vd->vdev_stat.vs_write_errors = 0;
6768 		vd->vdev_stat.vs_checksum_errors = 0;
6769 
6770 		vdev_state_dirty(vd->vdev_top);
6771 	}
6772 
6773 	for (int c = 0; c < vd->vdev_children; c++)
6774 		spa_async_remove(spa, vd->vdev_child[c]);
6775 }
6776 
6777 static void
6778 spa_async_probe(spa_t *spa, vdev_t *vd)
6779 {
6780 	if (vd->vdev_probe_wanted) {
6781 		vd->vdev_probe_wanted = B_FALSE;
6782 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6783 	}
6784 
6785 	for (int c = 0; c < vd->vdev_children; c++)
6786 		spa_async_probe(spa, vd->vdev_child[c]);
6787 }
6788 
6789 static void
6790 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6791 {
6792 	sysevent_id_t eid;
6793 	nvlist_t *attr;
6794 	char *physpath;
6795 
6796 	if (!spa->spa_autoexpand)
6797 		return;
6798 
6799 	for (int c = 0; c < vd->vdev_children; c++) {
6800 		vdev_t *cvd = vd->vdev_child[c];
6801 		spa_async_autoexpand(spa, cvd);
6802 	}
6803 
6804 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6805 		return;
6806 
6807 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6808 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6809 
6810 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6811 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6812 
6813 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6814 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
6815 
6816 	nvlist_free(attr);
6817 	kmem_free(physpath, MAXPATHLEN);
6818 }
6819 
6820 static void
6821 spa_async_thread(void *arg)
6822 {
6823 	spa_t *spa = (spa_t *)arg;
6824 	int tasks;
6825 
6826 	ASSERT(spa->spa_sync_on);
6827 
6828 	mutex_enter(&spa->spa_async_lock);
6829 	tasks = spa->spa_async_tasks;
6830 	spa->spa_async_tasks = 0;
6831 	mutex_exit(&spa->spa_async_lock);
6832 
6833 	/*
6834 	 * See if the config needs to be updated.
6835 	 */
6836 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6837 		uint64_t old_space, new_space;
6838 
6839 		mutex_enter(&spa_namespace_lock);
6840 		old_space = metaslab_class_get_space(spa_normal_class(spa));
6841 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6842 		new_space = metaslab_class_get_space(spa_normal_class(spa));
6843 		mutex_exit(&spa_namespace_lock);
6844 
6845 		/*
6846 		 * If the pool grew as a result of the config update,
6847 		 * then log an internal history event.
6848 		 */
6849 		if (new_space != old_space) {
6850 			spa_history_log_internal(spa, "vdev online", NULL,
6851 			    "pool '%s' size: %llu(+%llu)",
6852 			    spa_name(spa), new_space, new_space - old_space);
6853 		}
6854 	}
6855 
6856 	/*
6857 	 * See if any devices need to be marked REMOVED.
6858 	 */
6859 	if (tasks & SPA_ASYNC_REMOVE) {
6860 		spa_vdev_state_enter(spa, SCL_NONE);
6861 		spa_async_remove(spa, spa->spa_root_vdev);
6862 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6863 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6864 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6865 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6866 		(void) spa_vdev_state_exit(spa, NULL, 0);
6867 	}
6868 
6869 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6870 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6871 		spa_async_autoexpand(spa, spa->spa_root_vdev);
6872 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6873 	}
6874 
6875 	/*
6876 	 * See if any devices need to be probed.
6877 	 */
6878 	if (tasks & SPA_ASYNC_PROBE) {
6879 		spa_vdev_state_enter(spa, SCL_NONE);
6880 		spa_async_probe(spa, spa->spa_root_vdev);
6881 		(void) spa_vdev_state_exit(spa, NULL, 0);
6882 	}
6883 
6884 	/*
6885 	 * If any devices are done replacing, detach them.
6886 	 */
6887 	if (tasks & SPA_ASYNC_RESILVER_DONE)
6888 		spa_vdev_resilver_done(spa);
6889 
6890 	/*
6891 	 * Kick off a resilver.
6892 	 */
6893 	if (tasks & SPA_ASYNC_RESILVER)
6894 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6895 
6896 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
6897 		mutex_enter(&spa_namespace_lock);
6898 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6899 		vdev_initialize_restart(spa->spa_root_vdev);
6900 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6901 		mutex_exit(&spa_namespace_lock);
6902 	}
6903 
6904 	/*
6905 	 * Let the world know that we're done.
6906 	 */
6907 	mutex_enter(&spa->spa_async_lock);
6908 	spa->spa_async_thread = NULL;
6909 	cv_broadcast(&spa->spa_async_cv);
6910 	mutex_exit(&spa->spa_async_lock);
6911 	thread_exit();
6912 }
6913 
6914 void
6915 spa_async_suspend(spa_t *spa)
6916 {
6917 	mutex_enter(&spa->spa_async_lock);
6918 	spa->spa_async_suspended++;
6919 	while (spa->spa_async_thread != NULL)
6920 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6921 	mutex_exit(&spa->spa_async_lock);
6922 
6923 	spa_vdev_remove_suspend(spa);
6924 
6925 	zthr_t *condense_thread = spa->spa_condense_zthr;
6926 	if (condense_thread != NULL && zthr_isrunning(condense_thread))
6927 		VERIFY0(zthr_cancel(condense_thread));
6928 
6929 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
6930 	if (discard_thread != NULL && zthr_isrunning(discard_thread))
6931 		VERIFY0(zthr_cancel(discard_thread));
6932 }
6933 
6934 void
6935 spa_async_resume(spa_t *spa)
6936 {
6937 	mutex_enter(&spa->spa_async_lock);
6938 	ASSERT(spa->spa_async_suspended != 0);
6939 	spa->spa_async_suspended--;
6940 	mutex_exit(&spa->spa_async_lock);
6941 	spa_restart_removal(spa);
6942 
6943 	zthr_t *condense_thread = spa->spa_condense_zthr;
6944 	if (condense_thread != NULL && !zthr_isrunning(condense_thread))
6945 		zthr_resume(condense_thread);
6946 
6947 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
6948 	if (discard_thread != NULL && !zthr_isrunning(discard_thread))
6949 		zthr_resume(discard_thread);
6950 }
6951 
6952 static boolean_t
6953 spa_async_tasks_pending(spa_t *spa)
6954 {
6955 	uint_t non_config_tasks;
6956 	uint_t config_task;
6957 	boolean_t config_task_suspended;
6958 
6959 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6960 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6961 	if (spa->spa_ccw_fail_time == 0) {
6962 		config_task_suspended = B_FALSE;
6963 	} else {
6964 		config_task_suspended =
6965 		    (gethrtime() - spa->spa_ccw_fail_time) <
6966 		    (zfs_ccw_retry_interval * NANOSEC);
6967 	}
6968 
6969 	return (non_config_tasks || (config_task && !config_task_suspended));
6970 }
6971 
6972 static void
6973 spa_async_dispatch(spa_t *spa)
6974 {
6975 	mutex_enter(&spa->spa_async_lock);
6976 	if (spa_async_tasks_pending(spa) &&
6977 	    !spa->spa_async_suspended &&
6978 	    spa->spa_async_thread == NULL &&
6979 	    rootdir != NULL)
6980 		spa->spa_async_thread = thread_create(NULL, 0,
6981 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6982 	mutex_exit(&spa->spa_async_lock);
6983 }
6984 
6985 void
6986 spa_async_request(spa_t *spa, int task)
6987 {
6988 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6989 	mutex_enter(&spa->spa_async_lock);
6990 	spa->spa_async_tasks |= task;
6991 	mutex_exit(&spa->spa_async_lock);
6992 }
6993 
6994 /*
6995  * ==========================================================================
6996  * SPA syncing routines
6997  * ==========================================================================
6998  */
6999 
7000 static int
7001 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7002 {
7003 	bpobj_t *bpo = arg;
7004 	bpobj_enqueue(bpo, bp, tx);
7005 	return (0);
7006 }
7007 
7008 static int
7009 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7010 {
7011 	zio_t *zio = arg;
7012 
7013 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7014 	    zio->io_flags));
7015 	return (0);
7016 }
7017 
7018 /*
7019  * Note: this simple function is not inlined to make it easier to dtrace the
7020  * amount of time spent syncing frees.
7021  */
7022 static void
7023 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7024 {
7025 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7026 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7027 	VERIFY(zio_wait(zio) == 0);
7028 }
7029 
7030 /*
7031  * Note: this simple function is not inlined to make it easier to dtrace the
7032  * amount of time spent syncing deferred frees.
7033  */
7034 static void
7035 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7036 {
7037 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7038 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7039 	    spa_free_sync_cb, zio, tx), ==, 0);
7040 	VERIFY0(zio_wait(zio));
7041 }
7042 
7043 
7044 static void
7045 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7046 {
7047 	char *packed = NULL;
7048 	size_t bufsize;
7049 	size_t nvsize = 0;
7050 	dmu_buf_t *db;
7051 
7052 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7053 
7054 	/*
7055 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7056 	 * information.  This avoids the dmu_buf_will_dirty() path and
7057 	 * saves us a pre-read to get data we don't actually care about.
7058 	 */
7059 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7060 	packed = kmem_alloc(bufsize, KM_SLEEP);
7061 
7062 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7063 	    KM_SLEEP) == 0);
7064 	bzero(packed + nvsize, bufsize - nvsize);
7065 
7066 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7067 
7068 	kmem_free(packed, bufsize);
7069 
7070 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7071 	dmu_buf_will_dirty(db, tx);
7072 	*(uint64_t *)db->db_data = nvsize;
7073 	dmu_buf_rele(db, FTAG);
7074 }
7075 
7076 static void
7077 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7078     const char *config, const char *entry)
7079 {
7080 	nvlist_t *nvroot;
7081 	nvlist_t **list;
7082 	int i;
7083 
7084 	if (!sav->sav_sync)
7085 		return;
7086 
7087 	/*
7088 	 * Update the MOS nvlist describing the list of available devices.
7089 	 * spa_validate_aux() will have already made sure this nvlist is
7090 	 * valid and the vdevs are labeled appropriately.
7091 	 */
7092 	if (sav->sav_object == 0) {
7093 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7094 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7095 		    sizeof (uint64_t), tx);
7096 		VERIFY(zap_update(spa->spa_meta_objset,
7097 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7098 		    &sav->sav_object, tx) == 0);
7099 	}
7100 
7101 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7102 	if (sav->sav_count == 0) {
7103 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7104 	} else {
7105 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7106 		for (i = 0; i < sav->sav_count; i++)
7107 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7108 			    B_FALSE, VDEV_CONFIG_L2CACHE);
7109 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7110 		    sav->sav_count) == 0);
7111 		for (i = 0; i < sav->sav_count; i++)
7112 			nvlist_free(list[i]);
7113 		kmem_free(list, sav->sav_count * sizeof (void *));
7114 	}
7115 
7116 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7117 	nvlist_free(nvroot);
7118 
7119 	sav->sav_sync = B_FALSE;
7120 }
7121 
7122 /*
7123  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7124  * The all-vdev ZAP must be empty.
7125  */
7126 static void
7127 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7128 {
7129 	spa_t *spa = vd->vdev_spa;
7130 	if (vd->vdev_top_zap != 0) {
7131 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7132 		    vd->vdev_top_zap, tx));
7133 	}
7134 	if (vd->vdev_leaf_zap != 0) {
7135 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7136 		    vd->vdev_leaf_zap, tx));
7137 	}
7138 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7139 		spa_avz_build(vd->vdev_child[i], avz, tx);
7140 	}
7141 }
7142 
7143 static void
7144 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7145 {
7146 	nvlist_t *config;
7147 
7148 	/*
7149 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7150 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7151 	 * Similarly, if the pool is being assembled (e.g. after a split), we
7152 	 * need to rebuild the AVZ although the config may not be dirty.
7153 	 */
7154 	if (list_is_empty(&spa->spa_config_dirty_list) &&
7155 	    spa->spa_avz_action == AVZ_ACTION_NONE)
7156 		return;
7157 
7158 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7159 
7160 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7161 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7162 	    spa->spa_all_vdev_zaps != 0);
7163 
7164 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7165 		/* Make and build the new AVZ */
7166 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7167 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7168 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7169 
7170 		/* Diff old AVZ with new one */
7171 		zap_cursor_t zc;
7172 		zap_attribute_t za;
7173 
7174 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7175 		    spa->spa_all_vdev_zaps);
7176 		    zap_cursor_retrieve(&zc, &za) == 0;
7177 		    zap_cursor_advance(&zc)) {
7178 			uint64_t vdzap = za.za_first_integer;
7179 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7180 			    vdzap) == ENOENT) {
7181 				/*
7182 				 * ZAP is listed in old AVZ but not in new one;
7183 				 * destroy it
7184 				 */
7185 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7186 				    tx));
7187 			}
7188 		}
7189 
7190 		zap_cursor_fini(&zc);
7191 
7192 		/* Destroy the old AVZ */
7193 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7194 		    spa->spa_all_vdev_zaps, tx));
7195 
7196 		/* Replace the old AVZ in the dir obj with the new one */
7197 		VERIFY0(zap_update(spa->spa_meta_objset,
7198 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7199 		    sizeof (new_avz), 1, &new_avz, tx));
7200 
7201 		spa->spa_all_vdev_zaps = new_avz;
7202 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7203 		zap_cursor_t zc;
7204 		zap_attribute_t za;
7205 
7206 		/* Walk through the AVZ and destroy all listed ZAPs */
7207 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7208 		    spa->spa_all_vdev_zaps);
7209 		    zap_cursor_retrieve(&zc, &za) == 0;
7210 		    zap_cursor_advance(&zc)) {
7211 			uint64_t zap = za.za_first_integer;
7212 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7213 		}
7214 
7215 		zap_cursor_fini(&zc);
7216 
7217 		/* Destroy and unlink the AVZ itself */
7218 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7219 		    spa->spa_all_vdev_zaps, tx));
7220 		VERIFY0(zap_remove(spa->spa_meta_objset,
7221 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7222 		spa->spa_all_vdev_zaps = 0;
7223 	}
7224 
7225 	if (spa->spa_all_vdev_zaps == 0) {
7226 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7227 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7228 		    DMU_POOL_VDEV_ZAP_MAP, tx);
7229 	}
7230 	spa->spa_avz_action = AVZ_ACTION_NONE;
7231 
7232 	/* Create ZAPs for vdevs that don't have them. */
7233 	vdev_construct_zaps(spa->spa_root_vdev, tx);
7234 
7235 	config = spa_config_generate(spa, spa->spa_root_vdev,
7236 	    dmu_tx_get_txg(tx), B_FALSE);
7237 
7238 	/*
7239 	 * If we're upgrading the spa version then make sure that
7240 	 * the config object gets updated with the correct version.
7241 	 */
7242 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7243 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7244 		    spa->spa_uberblock.ub_version);
7245 
7246 	spa_config_exit(spa, SCL_STATE, FTAG);
7247 
7248 	nvlist_free(spa->spa_config_syncing);
7249 	spa->spa_config_syncing = config;
7250 
7251 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7252 }
7253 
7254 static void
7255 spa_sync_version(void *arg, dmu_tx_t *tx)
7256 {
7257 	uint64_t *versionp = arg;
7258 	uint64_t version = *versionp;
7259 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7260 
7261 	/*
7262 	 * Setting the version is special cased when first creating the pool.
7263 	 */
7264 	ASSERT(tx->tx_txg != TXG_INITIAL);
7265 
7266 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7267 	ASSERT(version >= spa_version(spa));
7268 
7269 	spa->spa_uberblock.ub_version = version;
7270 	vdev_config_dirty(spa->spa_root_vdev);
7271 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7272 }
7273 
7274 /*
7275  * Set zpool properties.
7276  */
7277 static void
7278 spa_sync_props(void *arg, dmu_tx_t *tx)
7279 {
7280 	nvlist_t *nvp = arg;
7281 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7282 	objset_t *mos = spa->spa_meta_objset;
7283 	nvpair_t *elem = NULL;
7284 
7285 	mutex_enter(&spa->spa_props_lock);
7286 
7287 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
7288 		uint64_t intval;
7289 		char *strval, *fname;
7290 		zpool_prop_t prop;
7291 		const char *propname;
7292 		zprop_type_t proptype;
7293 		spa_feature_t fid;
7294 
7295 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7296 		case ZPOOL_PROP_INVAL:
7297 			/*
7298 			 * We checked this earlier in spa_prop_validate().
7299 			 */
7300 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
7301 
7302 			fname = strchr(nvpair_name(elem), '@') + 1;
7303 			VERIFY0(zfeature_lookup_name(fname, &fid));
7304 
7305 			spa_feature_enable(spa, fid, tx);
7306 			spa_history_log_internal(spa, "set", tx,
7307 			    "%s=enabled", nvpair_name(elem));
7308 			break;
7309 
7310 		case ZPOOL_PROP_VERSION:
7311 			intval = fnvpair_value_uint64(elem);
7312 			/*
7313 			 * The version is synced seperatly before other
7314 			 * properties and should be correct by now.
7315 			 */
7316 			ASSERT3U(spa_version(spa), >=, intval);
7317 			break;
7318 
7319 		case ZPOOL_PROP_ALTROOT:
7320 			/*
7321 			 * 'altroot' is a non-persistent property. It should
7322 			 * have been set temporarily at creation or import time.
7323 			 */
7324 			ASSERT(spa->spa_root != NULL);
7325 			break;
7326 
7327 		case ZPOOL_PROP_READONLY:
7328 		case ZPOOL_PROP_CACHEFILE:
7329 			/*
7330 			 * 'readonly' and 'cachefile' are also non-persisitent
7331 			 * properties.
7332 			 */
7333 			break;
7334 		case ZPOOL_PROP_COMMENT:
7335 			strval = fnvpair_value_string(elem);
7336 			if (spa->spa_comment != NULL)
7337 				spa_strfree(spa->spa_comment);
7338 			spa->spa_comment = spa_strdup(strval);
7339 			/*
7340 			 * We need to dirty the configuration on all the vdevs
7341 			 * so that their labels get updated.  It's unnecessary
7342 			 * to do this for pool creation since the vdev's
7343 			 * configuratoin has already been dirtied.
7344 			 */
7345 			if (tx->tx_txg != TXG_INITIAL)
7346 				vdev_config_dirty(spa->spa_root_vdev);
7347 			spa_history_log_internal(spa, "set", tx,
7348 			    "%s=%s", nvpair_name(elem), strval);
7349 			break;
7350 		default:
7351 			/*
7352 			 * Set pool property values in the poolprops mos object.
7353 			 */
7354 			if (spa->spa_pool_props_object == 0) {
7355 				spa->spa_pool_props_object =
7356 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
7357 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7358 				    tx);
7359 			}
7360 
7361 			/* normalize the property name */
7362 			propname = zpool_prop_to_name(prop);
7363 			proptype = zpool_prop_get_type(prop);
7364 
7365 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
7366 				ASSERT(proptype == PROP_TYPE_STRING);
7367 				strval = fnvpair_value_string(elem);
7368 				VERIFY0(zap_update(mos,
7369 				    spa->spa_pool_props_object, propname,
7370 				    1, strlen(strval) + 1, strval, tx));
7371 				spa_history_log_internal(spa, "set", tx,
7372 				    "%s=%s", nvpair_name(elem), strval);
7373 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7374 				intval = fnvpair_value_uint64(elem);
7375 
7376 				if (proptype == PROP_TYPE_INDEX) {
7377 					const char *unused;
7378 					VERIFY0(zpool_prop_index_to_string(
7379 					    prop, intval, &unused));
7380 				}
7381 				VERIFY0(zap_update(mos,
7382 				    spa->spa_pool_props_object, propname,
7383 				    8, 1, &intval, tx));
7384 				spa_history_log_internal(spa, "set", tx,
7385 				    "%s=%lld", nvpair_name(elem), intval);
7386 			} else {
7387 				ASSERT(0); /* not allowed */
7388 			}
7389 
7390 			switch (prop) {
7391 			case ZPOOL_PROP_DELEGATION:
7392 				spa->spa_delegation = intval;
7393 				break;
7394 			case ZPOOL_PROP_BOOTFS:
7395 				spa->spa_bootfs = intval;
7396 				break;
7397 			case ZPOOL_PROP_FAILUREMODE:
7398 				spa->spa_failmode = intval;
7399 				break;
7400 			case ZPOOL_PROP_AUTOEXPAND:
7401 				spa->spa_autoexpand = intval;
7402 				if (tx->tx_txg != TXG_INITIAL)
7403 					spa_async_request(spa,
7404 					    SPA_ASYNC_AUTOEXPAND);
7405 				break;
7406 			case ZPOOL_PROP_DEDUPDITTO:
7407 				spa->spa_dedup_ditto = intval;
7408 				break;
7409 			default:
7410 				break;
7411 			}
7412 		}
7413 
7414 	}
7415 
7416 	mutex_exit(&spa->spa_props_lock);
7417 }
7418 
7419 /*
7420  * Perform one-time upgrade on-disk changes.  spa_version() does not
7421  * reflect the new version this txg, so there must be no changes this
7422  * txg to anything that the upgrade code depends on after it executes.
7423  * Therefore this must be called after dsl_pool_sync() does the sync
7424  * tasks.
7425  */
7426 static void
7427 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7428 {
7429 	dsl_pool_t *dp = spa->spa_dsl_pool;
7430 
7431 	ASSERT(spa->spa_sync_pass == 1);
7432 
7433 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7434 
7435 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7436 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7437 		dsl_pool_create_origin(dp, tx);
7438 
7439 		/* Keeping the origin open increases spa_minref */
7440 		spa->spa_minref += 3;
7441 	}
7442 
7443 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7444 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7445 		dsl_pool_upgrade_clones(dp, tx);
7446 	}
7447 
7448 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7449 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7450 		dsl_pool_upgrade_dir_clones(dp, tx);
7451 
7452 		/* Keeping the freedir open increases spa_minref */
7453 		spa->spa_minref += 3;
7454 	}
7455 
7456 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7457 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7458 		spa_feature_create_zap_objects(spa, tx);
7459 	}
7460 
7461 	/*
7462 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7463 	 * when possibility to use lz4 compression for metadata was added
7464 	 * Old pools that have this feature enabled must be upgraded to have
7465 	 * this feature active
7466 	 */
7467 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7468 		boolean_t lz4_en = spa_feature_is_enabled(spa,
7469 		    SPA_FEATURE_LZ4_COMPRESS);
7470 		boolean_t lz4_ac = spa_feature_is_active(spa,
7471 		    SPA_FEATURE_LZ4_COMPRESS);
7472 
7473 		if (lz4_en && !lz4_ac)
7474 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7475 	}
7476 
7477 	/*
7478 	 * If we haven't written the salt, do so now.  Note that the
7479 	 * feature may not be activated yet, but that's fine since
7480 	 * the presence of this ZAP entry is backwards compatible.
7481 	 */
7482 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7483 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7484 		VERIFY0(zap_add(spa->spa_meta_objset,
7485 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7486 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
7487 		    spa->spa_cksum_salt.zcs_bytes, tx));
7488 	}
7489 
7490 	rrw_exit(&dp->dp_config_rwlock, FTAG);
7491 }
7492 
7493 static void
7494 vdev_indirect_state_sync_verify(vdev_t *vd)
7495 {
7496 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7497 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
7498 
7499 	if (vd->vdev_ops == &vdev_indirect_ops) {
7500 		ASSERT(vim != NULL);
7501 		ASSERT(vib != NULL);
7502 	}
7503 
7504 	if (vdev_obsolete_sm_object(vd) != 0) {
7505 		ASSERT(vd->vdev_obsolete_sm != NULL);
7506 		ASSERT(vd->vdev_removing ||
7507 		    vd->vdev_ops == &vdev_indirect_ops);
7508 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
7509 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
7510 
7511 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
7512 		    space_map_object(vd->vdev_obsolete_sm));
7513 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
7514 		    space_map_allocated(vd->vdev_obsolete_sm));
7515 	}
7516 	ASSERT(vd->vdev_obsolete_segments != NULL);
7517 
7518 	/*
7519 	 * Since frees / remaps to an indirect vdev can only
7520 	 * happen in syncing context, the obsolete segments
7521 	 * tree must be empty when we start syncing.
7522 	 */
7523 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7524 }
7525 
7526 /*
7527  * Sync the specified transaction group.  New blocks may be dirtied as
7528  * part of the process, so we iterate until it converges.
7529  */
7530 void
7531 spa_sync(spa_t *spa, uint64_t txg)
7532 {
7533 	dsl_pool_t *dp = spa->spa_dsl_pool;
7534 	objset_t *mos = spa->spa_meta_objset;
7535 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7536 	vdev_t *rvd = spa->spa_root_vdev;
7537 	vdev_t *vd;
7538 	dmu_tx_t *tx;
7539 	int error;
7540 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7541 	    zfs_vdev_queue_depth_pct / 100;
7542 
7543 	VERIFY(spa_writeable(spa));
7544 
7545 	/*
7546 	 * Wait for i/os issued in open context that need to complete
7547 	 * before this txg syncs.
7548 	 */
7549 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
7550 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
7551 	    ZIO_FLAG_CANFAIL);
7552 
7553 	/*
7554 	 * Lock out configuration changes.
7555 	 */
7556 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7557 
7558 	spa->spa_syncing_txg = txg;
7559 	spa->spa_sync_pass = 0;
7560 
7561 	for (int i = 0; i < spa->spa_alloc_count; i++) {
7562 		mutex_enter(&spa->spa_alloc_locks[i]);
7563 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7564 		mutex_exit(&spa->spa_alloc_locks[i]);
7565 	}
7566 
7567 	/*
7568 	 * If there are any pending vdev state changes, convert them
7569 	 * into config changes that go out with this transaction group.
7570 	 */
7571 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7572 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
7573 		/*
7574 		 * We need the write lock here because, for aux vdevs,
7575 		 * calling vdev_config_dirty() modifies sav_config.
7576 		 * This is ugly and will become unnecessary when we
7577 		 * eliminate the aux vdev wart by integrating all vdevs
7578 		 * into the root vdev tree.
7579 		 */
7580 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7581 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7582 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7583 			vdev_state_clean(vd);
7584 			vdev_config_dirty(vd);
7585 		}
7586 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7587 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7588 	}
7589 	spa_config_exit(spa, SCL_STATE, FTAG);
7590 
7591 	tx = dmu_tx_create_assigned(dp, txg);
7592 
7593 	spa->spa_sync_starttime = gethrtime();
7594 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
7595 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
7596 
7597 	/*
7598 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
7599 	 * set spa_deflate if we have no raid-z vdevs.
7600 	 */
7601 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
7602 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
7603 		int i;
7604 
7605 		for (i = 0; i < rvd->vdev_children; i++) {
7606 			vd = rvd->vdev_child[i];
7607 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
7608 				break;
7609 		}
7610 		if (i == rvd->vdev_children) {
7611 			spa->spa_deflate = TRUE;
7612 			VERIFY(0 == zap_add(spa->spa_meta_objset,
7613 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
7614 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
7615 		}
7616 	}
7617 
7618 	/*
7619 	 * Set the top-level vdev's max queue depth. Evaluate each
7620 	 * top-level's async write queue depth in case it changed.
7621 	 * The max queue depth will not change in the middle of syncing
7622 	 * out this txg.
7623 	 */
7624 	uint64_t slots_per_allocator = 0;
7625 	for (int c = 0; c < rvd->vdev_children; c++) {
7626 		vdev_t *tvd = rvd->vdev_child[c];
7627 		metaslab_group_t *mg = tvd->vdev_mg;
7628 
7629 		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
7630 		    !metaslab_group_initialized(mg))
7631 			continue;
7632 
7633 		/*
7634 		 * It is safe to do a lock-free check here because only async
7635 		 * allocations look at mg_max_alloc_queue_depth, and async
7636 		 * allocations all happen from spa_sync().
7637 		 */
7638 		for (int i = 0; i < spa->spa_alloc_count; i++)
7639 			ASSERT0(zfs_refcount_count(
7640 			    &(mg->mg_alloc_queue_depth[i])));
7641 		mg->mg_max_alloc_queue_depth = max_queue_depth;
7642 
7643 		for (int i = 0; i < spa->spa_alloc_count; i++) {
7644 			mg->mg_cur_max_alloc_queue_depth[i] =
7645 			    zfs_vdev_def_queue_depth;
7646 		}
7647 		slots_per_allocator += zfs_vdev_def_queue_depth;
7648 	}
7649 	metaslab_class_t *mc = spa_normal_class(spa);
7650 	for (int i = 0; i < spa->spa_alloc_count; i++) {
7651 		ASSERT0(zfs_refcount_count(&mc->mc_alloc_slots[i]));
7652 		mc->mc_alloc_max_slots[i] = slots_per_allocator;
7653 	}
7654 	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7655 
7656 	for (int c = 0; c < rvd->vdev_children; c++) {
7657 		vdev_t *vd = rvd->vdev_child[c];
7658 		vdev_indirect_state_sync_verify(vd);
7659 
7660 		if (vdev_indirect_should_condense(vd)) {
7661 			spa_condense_indirect_start_sync(vd, tx);
7662 			break;
7663 		}
7664 	}
7665 
7666 	/*
7667 	 * Iterate to convergence.
7668 	 */
7669 	do {
7670 		int pass = ++spa->spa_sync_pass;
7671 
7672 		spa_sync_config_object(spa, tx);
7673 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7674 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7675 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7676 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7677 		spa_errlog_sync(spa, txg);
7678 		dsl_pool_sync(dp, txg);
7679 
7680 		if (pass < zfs_sync_pass_deferred_free) {
7681 			spa_sync_frees(spa, free_bpl, tx);
7682 		} else {
7683 			/*
7684 			 * We can not defer frees in pass 1, because
7685 			 * we sync the deferred frees later in pass 1.
7686 			 */
7687 			ASSERT3U(pass, >, 1);
7688 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
7689 			    &spa->spa_deferred_bpobj, tx);
7690 		}
7691 
7692 		ddt_sync(spa, txg);
7693 		dsl_scan_sync(dp, tx);
7694 
7695 		if (spa->spa_vdev_removal != NULL)
7696 			svr_sync(spa, tx);
7697 
7698 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7699 		    != NULL)
7700 			vdev_sync(vd, txg);
7701 
7702 		if (pass == 1) {
7703 			spa_sync_upgrades(spa, tx);
7704 			ASSERT3U(txg, >=,
7705 			    spa->spa_uberblock.ub_rootbp.blk_birth);
7706 			/*
7707 			 * Note: We need to check if the MOS is dirty
7708 			 * because we could have marked the MOS dirty
7709 			 * without updating the uberblock (e.g. if we
7710 			 * have sync tasks but no dirty user data).  We
7711 			 * need to check the uberblock's rootbp because
7712 			 * it is updated if we have synced out dirty
7713 			 * data (though in this case the MOS will most
7714 			 * likely also be dirty due to second order
7715 			 * effects, we don't want to rely on that here).
7716 			 */
7717 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7718 			    !dmu_objset_is_dirty(mos, txg)) {
7719 				/*
7720 				 * Nothing changed on the first pass,
7721 				 * therefore this TXG is a no-op.  Avoid
7722 				 * syncing deferred frees, so that we
7723 				 * can keep this TXG as a no-op.
7724 				 */
7725 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7726 				    txg));
7727 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7728 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7729 				ASSERT(txg_list_empty(&dp->dp_early_sync_tasks,
7730 				    txg));
7731 				break;
7732 			}
7733 			spa_sync_deferred_frees(spa, tx);
7734 		}
7735 
7736 	} while (dmu_objset_is_dirty(mos, txg));
7737 
7738 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
7739 		/*
7740 		 * Make sure that the number of ZAPs for all the vdevs matches
7741 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
7742 		 * called if the config is dirty; otherwise there may be
7743 		 * outstanding AVZ operations that weren't completed in
7744 		 * spa_sync_config_object.
7745 		 */
7746 		uint64_t all_vdev_zap_entry_count;
7747 		ASSERT0(zap_count(spa->spa_meta_objset,
7748 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7749 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7750 		    all_vdev_zap_entry_count);
7751 	}
7752 
7753 	if (spa->spa_vdev_removal != NULL) {
7754 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
7755 	}
7756 
7757 	/*
7758 	 * Rewrite the vdev configuration (which includes the uberblock)
7759 	 * to commit the transaction group.
7760 	 *
7761 	 * If there are no dirty vdevs, we sync the uberblock to a few
7762 	 * random top-level vdevs that are known to be visible in the
7763 	 * config cache (see spa_vdev_add() for a complete description).
7764 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7765 	 */
7766 	for (;;) {
7767 		/*
7768 		 * We hold SCL_STATE to prevent vdev open/close/etc.
7769 		 * while we're attempting to write the vdev labels.
7770 		 */
7771 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7772 
7773 		if (list_is_empty(&spa->spa_config_dirty_list)) {
7774 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
7775 			int svdcount = 0;
7776 			int children = rvd->vdev_children;
7777 			int c0 = spa_get_random(children);
7778 
7779 			for (int c = 0; c < children; c++) {
7780 				vd = rvd->vdev_child[(c0 + c) % children];
7781 
7782 				/* Stop when revisiting the first vdev */
7783 				if (c > 0 && svd[0] == vd)
7784 					break;
7785 
7786 				if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
7787 				    !vdev_is_concrete(vd))
7788 					continue;
7789 
7790 				svd[svdcount++] = vd;
7791 				if (svdcount == SPA_SYNC_MIN_VDEVS)
7792 					break;
7793 			}
7794 			error = vdev_config_sync(svd, svdcount, txg);
7795 		} else {
7796 			error = vdev_config_sync(rvd->vdev_child,
7797 			    rvd->vdev_children, txg);
7798 		}
7799 
7800 		if (error == 0)
7801 			spa->spa_last_synced_guid = rvd->vdev_guid;
7802 
7803 		spa_config_exit(spa, SCL_STATE, FTAG);
7804 
7805 		if (error == 0)
7806 			break;
7807 		zio_suspend(spa, NULL);
7808 		zio_resume_wait(spa);
7809 	}
7810 	dmu_tx_commit(tx);
7811 
7812 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7813 
7814 	/*
7815 	 * Clear the dirty config list.
7816 	 */
7817 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7818 		vdev_config_clean(vd);
7819 
7820 	/*
7821 	 * Now that the new config has synced transactionally,
7822 	 * let it become visible to the config cache.
7823 	 */
7824 	if (spa->spa_config_syncing != NULL) {
7825 		spa_config_set(spa, spa->spa_config_syncing);
7826 		spa->spa_config_txg = txg;
7827 		spa->spa_config_syncing = NULL;
7828 	}
7829 
7830 	dsl_pool_sync_done(dp, txg);
7831 
7832 	for (int i = 0; i < spa->spa_alloc_count; i++) {
7833 		mutex_enter(&spa->spa_alloc_locks[i]);
7834 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7835 		mutex_exit(&spa->spa_alloc_locks[i]);
7836 	}
7837 
7838 	/*
7839 	 * Update usable space statistics.
7840 	 */
7841 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7842 	    != NULL)
7843 		vdev_sync_done(vd, txg);
7844 
7845 	spa_update_dspace(spa);
7846 
7847 	/*
7848 	 * It had better be the case that we didn't dirty anything
7849 	 * since vdev_config_sync().
7850 	 */
7851 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7852 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7853 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7854 
7855 	while (zfs_pause_spa_sync)
7856 		delay(1);
7857 
7858 	spa->spa_sync_pass = 0;
7859 
7860 	/*
7861 	 * Update the last synced uberblock here. We want to do this at
7862 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7863 	 * will be guaranteed that all the processing associated with
7864 	 * that txg has been completed.
7865 	 */
7866 	spa->spa_ubsync = spa->spa_uberblock;
7867 	spa_config_exit(spa, SCL_CONFIG, FTAG);
7868 
7869 	spa_handle_ignored_writes(spa);
7870 
7871 	/*
7872 	 * If any async tasks have been requested, kick them off.
7873 	 */
7874 	spa_async_dispatch(spa);
7875 }
7876 
7877 /*
7878  * Sync all pools.  We don't want to hold the namespace lock across these
7879  * operations, so we take a reference on the spa_t and drop the lock during the
7880  * sync.
7881  */
7882 void
7883 spa_sync_allpools(void)
7884 {
7885 	spa_t *spa = NULL;
7886 	mutex_enter(&spa_namespace_lock);
7887 	while ((spa = spa_next(spa)) != NULL) {
7888 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
7889 		    !spa_writeable(spa) || spa_suspended(spa))
7890 			continue;
7891 		spa_open_ref(spa, FTAG);
7892 		mutex_exit(&spa_namespace_lock);
7893 		txg_wait_synced(spa_get_dsl(spa), 0);
7894 		mutex_enter(&spa_namespace_lock);
7895 		spa_close(spa, FTAG);
7896 	}
7897 	mutex_exit(&spa_namespace_lock);
7898 }
7899 
7900 /*
7901  * ==========================================================================
7902  * Miscellaneous routines
7903  * ==========================================================================
7904  */
7905 
7906 /*
7907  * Remove all pools in the system.
7908  */
7909 void
7910 spa_evict_all(void)
7911 {
7912 	spa_t *spa;
7913 
7914 	/*
7915 	 * Remove all cached state.  All pools should be closed now,
7916 	 * so every spa in the AVL tree should be unreferenced.
7917 	 */
7918 	mutex_enter(&spa_namespace_lock);
7919 	while ((spa = spa_next(NULL)) != NULL) {
7920 		/*
7921 		 * Stop async tasks.  The async thread may need to detach
7922 		 * a device that's been replaced, which requires grabbing
7923 		 * spa_namespace_lock, so we must drop it here.
7924 		 */
7925 		spa_open_ref(spa, FTAG);
7926 		mutex_exit(&spa_namespace_lock);
7927 		spa_async_suspend(spa);
7928 		mutex_enter(&spa_namespace_lock);
7929 		spa_close(spa, FTAG);
7930 
7931 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7932 			spa_unload(spa);
7933 			spa_deactivate(spa);
7934 		}
7935 		spa_remove(spa);
7936 	}
7937 	mutex_exit(&spa_namespace_lock);
7938 }
7939 
7940 vdev_t *
7941 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7942 {
7943 	vdev_t *vd;
7944 	int i;
7945 
7946 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7947 		return (vd);
7948 
7949 	if (aux) {
7950 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7951 			vd = spa->spa_l2cache.sav_vdevs[i];
7952 			if (vd->vdev_guid == guid)
7953 				return (vd);
7954 		}
7955 
7956 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
7957 			vd = spa->spa_spares.sav_vdevs[i];
7958 			if (vd->vdev_guid == guid)
7959 				return (vd);
7960 		}
7961 	}
7962 
7963 	return (NULL);
7964 }
7965 
7966 void
7967 spa_upgrade(spa_t *spa, uint64_t version)
7968 {
7969 	ASSERT(spa_writeable(spa));
7970 
7971 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7972 
7973 	/*
7974 	 * This should only be called for a non-faulted pool, and since a
7975 	 * future version would result in an unopenable pool, this shouldn't be
7976 	 * possible.
7977 	 */
7978 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7979 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7980 
7981 	spa->spa_uberblock.ub_version = version;
7982 	vdev_config_dirty(spa->spa_root_vdev);
7983 
7984 	spa_config_exit(spa, SCL_ALL, FTAG);
7985 
7986 	txg_wait_synced(spa_get_dsl(spa), 0);
7987 }
7988 
7989 boolean_t
7990 spa_has_spare(spa_t *spa, uint64_t guid)
7991 {
7992 	int i;
7993 	uint64_t spareguid;
7994 	spa_aux_vdev_t *sav = &spa->spa_spares;
7995 
7996 	for (i = 0; i < sav->sav_count; i++)
7997 		if (sav->sav_vdevs[i]->vdev_guid == guid)
7998 			return (B_TRUE);
7999 
8000 	for (i = 0; i < sav->sav_npending; i++) {
8001 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8002 		    &spareguid) == 0 && spareguid == guid)
8003 			return (B_TRUE);
8004 	}
8005 
8006 	return (B_FALSE);
8007 }
8008 
8009 /*
8010  * Check if a pool has an active shared spare device.
8011  * Note: reference count of an active spare is 2, as a spare and as a replace
8012  */
8013 static boolean_t
8014 spa_has_active_shared_spare(spa_t *spa)
8015 {
8016 	int i, refcnt;
8017 	uint64_t pool;
8018 	spa_aux_vdev_t *sav = &spa->spa_spares;
8019 
8020 	for (i = 0; i < sav->sav_count; i++) {
8021 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8022 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8023 		    refcnt > 2)
8024 			return (B_TRUE);
8025 	}
8026 
8027 	return (B_FALSE);
8028 }
8029 
8030 sysevent_t *
8031 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8032 {
8033 	sysevent_t		*ev = NULL;
8034 #ifdef _KERNEL
8035 	sysevent_attr_list_t	*attr = NULL;
8036 	sysevent_value_t	value;
8037 
8038 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8039 	    SE_SLEEP);
8040 	ASSERT(ev != NULL);
8041 
8042 	value.value_type = SE_DATA_TYPE_STRING;
8043 	value.value.sv_string = spa_name(spa);
8044 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8045 		goto done;
8046 
8047 	value.value_type = SE_DATA_TYPE_UINT64;
8048 	value.value.sv_uint64 = spa_guid(spa);
8049 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8050 		goto done;
8051 
8052 	if (vd) {
8053 		value.value_type = SE_DATA_TYPE_UINT64;
8054 		value.value.sv_uint64 = vd->vdev_guid;
8055 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8056 		    SE_SLEEP) != 0)
8057 			goto done;
8058 
8059 		if (vd->vdev_path) {
8060 			value.value_type = SE_DATA_TYPE_STRING;
8061 			value.value.sv_string = vd->vdev_path;
8062 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8063 			    &value, SE_SLEEP) != 0)
8064 				goto done;
8065 		}
8066 	}
8067 
8068 	if (hist_nvl != NULL) {
8069 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8070 	}
8071 
8072 	if (sysevent_attach_attributes(ev, attr) != 0)
8073 		goto done;
8074 	attr = NULL;
8075 
8076 done:
8077 	if (attr)
8078 		sysevent_free_attr(attr);
8079 
8080 #endif
8081 	return (ev);
8082 }
8083 
8084 void
8085 spa_event_post(sysevent_t *ev)
8086 {
8087 #ifdef _KERNEL
8088 	sysevent_id_t		eid;
8089 
8090 	(void) log_sysevent(ev, SE_SLEEP, &eid);
8091 	sysevent_free(ev);
8092 #endif
8093 }
8094 
8095 void
8096 spa_event_discard(sysevent_t *ev)
8097 {
8098 #ifdef _KERNEL
8099 	sysevent_free(ev);
8100 #endif
8101 }
8102 
8103 /*
8104  * Post a sysevent corresponding to the given event.  The 'name' must be one of
8105  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8106  * filled in from the spa and (optionally) the vdev and history nvl.  This
8107  * doesn't do anything in the userland libzpool, as we don't want consumers to
8108  * misinterpret ztest or zdb as real changes.
8109  */
8110 void
8111 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8112 {
8113 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8114 }
8115