xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 4a3b1d5b615ff6e54da1cc17f331e1ac794c5191)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 #include <sys/dsl_scan.h>
65 
66 #ifdef	_KERNEL
67 #include <sys/bootprops.h>
68 #include <sys/callb.h>
69 #include <sys/cpupart.h>
70 #include <sys/pool.h>
71 #include <sys/sysdc.h>
72 #include <sys/zone.h>
73 #endif	/* _KERNEL */
74 
75 #include "zfs_prop.h"
76 #include "zfs_comutil.h"
77 
78 typedef enum zti_modes {
79 	zti_mode_fixed,			/* value is # of threads (min 1) */
80 	zti_mode_online_percent,	/* value is % of online CPUs */
81 	zti_mode_batch,			/* cpu-intensive; value is ignored */
82 	zti_mode_null,			/* don't create a taskq */
83 	zti_nmodes
84 } zti_modes_t;
85 
86 #define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
87 #define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
88 #define	ZTI_BATCH	{ zti_mode_batch, 0 }
89 #define	ZTI_NULL	{ zti_mode_null, 0 }
90 
91 #define	ZTI_ONE		ZTI_FIX(1)
92 
93 typedef struct zio_taskq_info {
94 	enum zti_modes zti_mode;
95 	uint_t zti_value;
96 } zio_taskq_info_t;
97 
98 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
99 	"issue", "issue_high", "intr", "intr_high"
100 };
101 
102 /*
103  * Define the taskq threads for the following I/O types:
104  * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
105  */
106 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
107 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
108 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
109 	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
110 	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
111 	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
112 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
113 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
114 };
115 
116 static dsl_syncfunc_t spa_sync_props;
117 static boolean_t spa_has_active_shared_spare(spa_t *spa);
118 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
119     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
120     char **ereport);
121 static void spa_vdev_resilver_done(spa_t *spa);
122 
123 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
124 id_t		zio_taskq_psrset_bind = PS_NONE;
125 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
126 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
127 
128 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
129 
130 /*
131  * This (illegal) pool name is used when temporarily importing a spa_t in order
132  * to get the vdev stats associated with the imported devices.
133  */
134 #define	TRYIMPORT_NAME	"$import"
135 
136 /*
137  * ==========================================================================
138  * SPA properties routines
139  * ==========================================================================
140  */
141 
142 /*
143  * Add a (source=src, propname=propval) list to an nvlist.
144  */
145 static void
146 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
147     uint64_t intval, zprop_source_t src)
148 {
149 	const char *propname = zpool_prop_to_name(prop);
150 	nvlist_t *propval;
151 
152 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
153 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
154 
155 	if (strval != NULL)
156 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
157 	else
158 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
159 
160 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
161 	nvlist_free(propval);
162 }
163 
164 /*
165  * Get property values from the spa configuration.
166  */
167 static void
168 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
169 {
170 	uint64_t size;
171 	uint64_t alloc;
172 	uint64_t cap, version;
173 	zprop_source_t src = ZPROP_SRC_NONE;
174 	spa_config_dirent_t *dp;
175 
176 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
177 
178 	if (spa->spa_root_vdev != NULL) {
179 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
180 		size = metaslab_class_get_space(spa_normal_class(spa));
181 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
182 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
183 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
184 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
185 		    size - alloc, src);
186 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
187 		    (spa_mode(spa) == FREAD), src);
188 
189 		cap = (size == 0) ? 0 : (alloc * 100 / size);
190 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
191 
192 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
193 		    ddt_get_pool_dedup_ratio(spa), src);
194 
195 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
196 		    spa->spa_root_vdev->vdev_state, src);
197 
198 		version = spa_version(spa);
199 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
200 			src = ZPROP_SRC_DEFAULT;
201 		else
202 			src = ZPROP_SRC_LOCAL;
203 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
204 	}
205 
206 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
207 
208 	if (spa->spa_comment != NULL) {
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
210 		    0, ZPROP_SRC_LOCAL);
211 	}
212 
213 	if (spa->spa_root != NULL)
214 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
215 		    0, ZPROP_SRC_LOCAL);
216 
217 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
218 		if (dp->scd_path == NULL) {
219 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
220 			    "none", 0, ZPROP_SRC_LOCAL);
221 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
222 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
223 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
224 		}
225 	}
226 }
227 
228 /*
229  * Get zpool property values.
230  */
231 int
232 spa_prop_get(spa_t *spa, nvlist_t **nvp)
233 {
234 	objset_t *mos = spa->spa_meta_objset;
235 	zap_cursor_t zc;
236 	zap_attribute_t za;
237 	int err;
238 
239 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
240 
241 	mutex_enter(&spa->spa_props_lock);
242 
243 	/*
244 	 * Get properties from the spa config.
245 	 */
246 	spa_prop_get_config(spa, nvp);
247 
248 	/* If no pool property object, no more prop to get. */
249 	if (mos == NULL || spa->spa_pool_props_object == 0) {
250 		mutex_exit(&spa->spa_props_lock);
251 		return (0);
252 	}
253 
254 	/*
255 	 * Get properties from the MOS pool property object.
256 	 */
257 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
258 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
259 	    zap_cursor_advance(&zc)) {
260 		uint64_t intval = 0;
261 		char *strval = NULL;
262 		zprop_source_t src = ZPROP_SRC_DEFAULT;
263 		zpool_prop_t prop;
264 
265 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
266 			continue;
267 
268 		switch (za.za_integer_length) {
269 		case 8:
270 			/* integer property */
271 			if (za.za_first_integer !=
272 			    zpool_prop_default_numeric(prop))
273 				src = ZPROP_SRC_LOCAL;
274 
275 			if (prop == ZPOOL_PROP_BOOTFS) {
276 				dsl_pool_t *dp;
277 				dsl_dataset_t *ds = NULL;
278 
279 				dp = spa_get_dsl(spa);
280 				rw_enter(&dp->dp_config_rwlock, RW_READER);
281 				if (err = dsl_dataset_hold_obj(dp,
282 				    za.za_first_integer, FTAG, &ds)) {
283 					rw_exit(&dp->dp_config_rwlock);
284 					break;
285 				}
286 
287 				strval = kmem_alloc(
288 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
289 				    KM_SLEEP);
290 				dsl_dataset_name(ds, strval);
291 				dsl_dataset_rele(ds, FTAG);
292 				rw_exit(&dp->dp_config_rwlock);
293 			} else {
294 				strval = NULL;
295 				intval = za.za_first_integer;
296 			}
297 
298 			spa_prop_add_list(*nvp, prop, strval, intval, src);
299 
300 			if (strval != NULL)
301 				kmem_free(strval,
302 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
303 
304 			break;
305 
306 		case 1:
307 			/* string property */
308 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
309 			err = zap_lookup(mos, spa->spa_pool_props_object,
310 			    za.za_name, 1, za.za_num_integers, strval);
311 			if (err) {
312 				kmem_free(strval, za.za_num_integers);
313 				break;
314 			}
315 			spa_prop_add_list(*nvp, prop, strval, 0, src);
316 			kmem_free(strval, za.za_num_integers);
317 			break;
318 
319 		default:
320 			break;
321 		}
322 	}
323 	zap_cursor_fini(&zc);
324 	mutex_exit(&spa->spa_props_lock);
325 out:
326 	if (err && err != ENOENT) {
327 		nvlist_free(*nvp);
328 		*nvp = NULL;
329 		return (err);
330 	}
331 
332 	return (0);
333 }
334 
335 /*
336  * Validate the given pool properties nvlist and modify the list
337  * for the property values to be set.
338  */
339 static int
340 spa_prop_validate(spa_t *spa, nvlist_t *props)
341 {
342 	nvpair_t *elem;
343 	int error = 0, reset_bootfs = 0;
344 	uint64_t objnum;
345 
346 	elem = NULL;
347 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
348 		zpool_prop_t prop;
349 		char *propname, *strval;
350 		uint64_t intval;
351 		objset_t *os;
352 		char *slash, *check;
353 
354 		propname = nvpair_name(elem);
355 
356 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
357 			return (EINVAL);
358 
359 		switch (prop) {
360 		case ZPOOL_PROP_VERSION:
361 			error = nvpair_value_uint64(elem, &intval);
362 			if (!error &&
363 			    (intval < spa_version(spa) || intval > SPA_VERSION))
364 				error = EINVAL;
365 			break;
366 
367 		case ZPOOL_PROP_DELEGATION:
368 		case ZPOOL_PROP_AUTOREPLACE:
369 		case ZPOOL_PROP_LISTSNAPS:
370 		case ZPOOL_PROP_AUTOEXPAND:
371 			error = nvpair_value_uint64(elem, &intval);
372 			if (!error && intval > 1)
373 				error = EINVAL;
374 			break;
375 
376 		case ZPOOL_PROP_BOOTFS:
377 			/*
378 			 * If the pool version is less than SPA_VERSION_BOOTFS,
379 			 * or the pool is still being created (version == 0),
380 			 * the bootfs property cannot be set.
381 			 */
382 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
383 				error = ENOTSUP;
384 				break;
385 			}
386 
387 			/*
388 			 * Make sure the vdev config is bootable
389 			 */
390 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
391 				error = ENOTSUP;
392 				break;
393 			}
394 
395 			reset_bootfs = 1;
396 
397 			error = nvpair_value_string(elem, &strval);
398 
399 			if (!error) {
400 				uint64_t compress;
401 
402 				if (strval == NULL || strval[0] == '\0') {
403 					objnum = zpool_prop_default_numeric(
404 					    ZPOOL_PROP_BOOTFS);
405 					break;
406 				}
407 
408 				if (error = dmu_objset_hold(strval, FTAG, &os))
409 					break;
410 
411 				/* Must be ZPL and not gzip compressed. */
412 
413 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
414 					error = ENOTSUP;
415 				} else if ((error = dsl_prop_get_integer(strval,
416 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
417 				    &compress, NULL)) == 0 &&
418 				    !BOOTFS_COMPRESS_VALID(compress)) {
419 					error = ENOTSUP;
420 				} else {
421 					objnum = dmu_objset_id(os);
422 				}
423 				dmu_objset_rele(os, FTAG);
424 			}
425 			break;
426 
427 		case ZPOOL_PROP_FAILUREMODE:
428 			error = nvpair_value_uint64(elem, &intval);
429 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
430 			    intval > ZIO_FAILURE_MODE_PANIC))
431 				error = EINVAL;
432 
433 			/*
434 			 * This is a special case which only occurs when
435 			 * the pool has completely failed. This allows
436 			 * the user to change the in-core failmode property
437 			 * without syncing it out to disk (I/Os might
438 			 * currently be blocked). We do this by returning
439 			 * EIO to the caller (spa_prop_set) to trick it
440 			 * into thinking we encountered a property validation
441 			 * error.
442 			 */
443 			if (!error && spa_suspended(spa)) {
444 				spa->spa_failmode = intval;
445 				error = EIO;
446 			}
447 			break;
448 
449 		case ZPOOL_PROP_CACHEFILE:
450 			if ((error = nvpair_value_string(elem, &strval)) != 0)
451 				break;
452 
453 			if (strval[0] == '\0')
454 				break;
455 
456 			if (strcmp(strval, "none") == 0)
457 				break;
458 
459 			if (strval[0] != '/') {
460 				error = EINVAL;
461 				break;
462 			}
463 
464 			slash = strrchr(strval, '/');
465 			ASSERT(slash != NULL);
466 
467 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
468 			    strcmp(slash, "/..") == 0)
469 				error = EINVAL;
470 			break;
471 
472 		case ZPOOL_PROP_COMMENT:
473 			if ((error = nvpair_value_string(elem, &strval)) != 0)
474 				break;
475 			for (check = strval; *check != '\0'; check++) {
476 				/*
477 				 * The kernel doesn't have an easy isprint()
478 				 * check.  For this kernel check, we merely
479 				 * check ASCII apart from DEL.  Fix this if
480 				 * there is an easy-to-use kernel isprint().
481 				 */
482 				if (*check >= 0x7f) {
483 					error = EINVAL;
484 					break;
485 				}
486 				check++;
487 			}
488 			if (strlen(strval) > ZPROP_MAX_COMMENT)
489 				error = E2BIG;
490 			break;
491 
492 		case ZPOOL_PROP_DEDUPDITTO:
493 			if (spa_version(spa) < SPA_VERSION_DEDUP)
494 				error = ENOTSUP;
495 			else
496 				error = nvpair_value_uint64(elem, &intval);
497 			if (error == 0 &&
498 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
499 				error = EINVAL;
500 			break;
501 		}
502 
503 		if (error)
504 			break;
505 	}
506 
507 	if (!error && reset_bootfs) {
508 		error = nvlist_remove(props,
509 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
510 
511 		if (!error) {
512 			error = nvlist_add_uint64(props,
513 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
514 		}
515 	}
516 
517 	return (error);
518 }
519 
520 void
521 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
522 {
523 	char *cachefile;
524 	spa_config_dirent_t *dp;
525 
526 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
527 	    &cachefile) != 0)
528 		return;
529 
530 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
531 	    KM_SLEEP);
532 
533 	if (cachefile[0] == '\0')
534 		dp->scd_path = spa_strdup(spa_config_path);
535 	else if (strcmp(cachefile, "none") == 0)
536 		dp->scd_path = NULL;
537 	else
538 		dp->scd_path = spa_strdup(cachefile);
539 
540 	list_insert_head(&spa->spa_config_list, dp);
541 	if (need_sync)
542 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
543 }
544 
545 int
546 spa_prop_set(spa_t *spa, nvlist_t *nvp)
547 {
548 	int error;
549 	nvpair_t *elem;
550 	boolean_t need_sync = B_FALSE;
551 	zpool_prop_t prop;
552 
553 	if ((error = spa_prop_validate(spa, nvp)) != 0)
554 		return (error);
555 
556 	elem = NULL;
557 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
558 		if ((prop = zpool_name_to_prop(
559 		    nvpair_name(elem))) == ZPROP_INVAL)
560 			return (EINVAL);
561 
562 		if (prop == ZPOOL_PROP_CACHEFILE ||
563 		    prop == ZPOOL_PROP_ALTROOT ||
564 		    prop == ZPOOL_PROP_READONLY)
565 			continue;
566 
567 		need_sync = B_TRUE;
568 		break;
569 	}
570 
571 	if (need_sync)
572 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
573 		    spa, nvp, 3));
574 	else
575 		return (0);
576 }
577 
578 /*
579  * If the bootfs property value is dsobj, clear it.
580  */
581 void
582 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
583 {
584 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
585 		VERIFY(zap_remove(spa->spa_meta_objset,
586 		    spa->spa_pool_props_object,
587 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
588 		spa->spa_bootfs = 0;
589 	}
590 }
591 
592 /*
593  * Change the GUID for the pool.  This is done so that we can later
594  * re-import a pool built from a clone of our own vdevs.  We will modify
595  * the root vdev's guid, our own pool guid, and then mark all of our
596  * vdevs dirty.  Note that we must make sure that all our vdevs are
597  * online when we do this, or else any vdevs that weren't present
598  * would be orphaned from our pool.  We are also going to issue a
599  * sysevent to update any watchers.
600  */
601 int
602 spa_change_guid(spa_t *spa)
603 {
604 	uint64_t	oldguid, newguid;
605 	uint64_t	txg;
606 
607 	if (!(spa_mode_global & FWRITE))
608 		return (EROFS);
609 
610 	txg = spa_vdev_enter(spa);
611 
612 	if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY)
613 		return (spa_vdev_exit(spa, NULL, txg, ENXIO));
614 
615 	oldguid = spa_guid(spa);
616 	newguid = spa_generate_guid(NULL);
617 	ASSERT3U(oldguid, !=, newguid);
618 
619 	spa->spa_root_vdev->vdev_guid = newguid;
620 	spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid);
621 
622 	vdev_config_dirty(spa->spa_root_vdev);
623 
624 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
625 
626 	return (spa_vdev_exit(spa, NULL, txg, 0));
627 }
628 
629 /*
630  * ==========================================================================
631  * SPA state manipulation (open/create/destroy/import/export)
632  * ==========================================================================
633  */
634 
635 static int
636 spa_error_entry_compare(const void *a, const void *b)
637 {
638 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
639 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
640 	int ret;
641 
642 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
643 	    sizeof (zbookmark_t));
644 
645 	if (ret < 0)
646 		return (-1);
647 	else if (ret > 0)
648 		return (1);
649 	else
650 		return (0);
651 }
652 
653 /*
654  * Utility function which retrieves copies of the current logs and
655  * re-initializes them in the process.
656  */
657 void
658 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
659 {
660 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
661 
662 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
663 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
664 
665 	avl_create(&spa->spa_errlist_scrub,
666 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
667 	    offsetof(spa_error_entry_t, se_avl));
668 	avl_create(&spa->spa_errlist_last,
669 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
670 	    offsetof(spa_error_entry_t, se_avl));
671 }
672 
673 static taskq_t *
674 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
675     uint_t value)
676 {
677 	uint_t flags = 0;
678 	boolean_t batch = B_FALSE;
679 
680 	switch (mode) {
681 	case zti_mode_null:
682 		return (NULL);		/* no taskq needed */
683 
684 	case zti_mode_fixed:
685 		ASSERT3U(value, >=, 1);
686 		value = MAX(value, 1);
687 		break;
688 
689 	case zti_mode_batch:
690 		batch = B_TRUE;
691 		flags |= TASKQ_THREADS_CPU_PCT;
692 		value = zio_taskq_batch_pct;
693 		break;
694 
695 	case zti_mode_online_percent:
696 		flags |= TASKQ_THREADS_CPU_PCT;
697 		break;
698 
699 	default:
700 		panic("unrecognized mode for %s taskq (%u:%u) in "
701 		    "spa_activate()",
702 		    name, mode, value);
703 		break;
704 	}
705 
706 	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
707 		if (batch)
708 			flags |= TASKQ_DC_BATCH;
709 
710 		return (taskq_create_sysdc(name, value, 50, INT_MAX,
711 		    spa->spa_proc, zio_taskq_basedc, flags));
712 	}
713 	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
714 	    spa->spa_proc, flags));
715 }
716 
717 static void
718 spa_create_zio_taskqs(spa_t *spa)
719 {
720 	for (int t = 0; t < ZIO_TYPES; t++) {
721 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
722 			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
723 			enum zti_modes mode = ztip->zti_mode;
724 			uint_t value = ztip->zti_value;
725 			char name[32];
726 
727 			(void) snprintf(name, sizeof (name),
728 			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
729 
730 			spa->spa_zio_taskq[t][q] =
731 			    spa_taskq_create(spa, name, mode, value);
732 		}
733 	}
734 }
735 
736 #ifdef _KERNEL
737 static void
738 spa_thread(void *arg)
739 {
740 	callb_cpr_t cprinfo;
741 
742 	spa_t *spa = arg;
743 	user_t *pu = PTOU(curproc);
744 
745 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
746 	    spa->spa_name);
747 
748 	ASSERT(curproc != &p0);
749 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
750 	    "zpool-%s", spa->spa_name);
751 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
752 
753 	/* bind this thread to the requested psrset */
754 	if (zio_taskq_psrset_bind != PS_NONE) {
755 		pool_lock();
756 		mutex_enter(&cpu_lock);
757 		mutex_enter(&pidlock);
758 		mutex_enter(&curproc->p_lock);
759 
760 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
761 		    0, NULL, NULL) == 0)  {
762 			curthread->t_bind_pset = zio_taskq_psrset_bind;
763 		} else {
764 			cmn_err(CE_WARN,
765 			    "Couldn't bind process for zfs pool \"%s\" to "
766 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
767 		}
768 
769 		mutex_exit(&curproc->p_lock);
770 		mutex_exit(&pidlock);
771 		mutex_exit(&cpu_lock);
772 		pool_unlock();
773 	}
774 
775 	if (zio_taskq_sysdc) {
776 		sysdc_thread_enter(curthread, 100, 0);
777 	}
778 
779 	spa->spa_proc = curproc;
780 	spa->spa_did = curthread->t_did;
781 
782 	spa_create_zio_taskqs(spa);
783 
784 	mutex_enter(&spa->spa_proc_lock);
785 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
786 
787 	spa->spa_proc_state = SPA_PROC_ACTIVE;
788 	cv_broadcast(&spa->spa_proc_cv);
789 
790 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
791 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
792 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
793 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
794 
795 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
796 	spa->spa_proc_state = SPA_PROC_GONE;
797 	spa->spa_proc = &p0;
798 	cv_broadcast(&spa->spa_proc_cv);
799 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
800 
801 	mutex_enter(&curproc->p_lock);
802 	lwp_exit();
803 }
804 #endif
805 
806 /*
807  * Activate an uninitialized pool.
808  */
809 static void
810 spa_activate(spa_t *spa, int mode)
811 {
812 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
813 
814 	spa->spa_state = POOL_STATE_ACTIVE;
815 	spa->spa_mode = mode;
816 
817 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
818 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
819 
820 	/* Try to create a covering process */
821 	mutex_enter(&spa->spa_proc_lock);
822 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
823 	ASSERT(spa->spa_proc == &p0);
824 	spa->spa_did = 0;
825 
826 	/* Only create a process if we're going to be around a while. */
827 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
828 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
829 		    NULL, 0) == 0) {
830 			spa->spa_proc_state = SPA_PROC_CREATED;
831 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
832 				cv_wait(&spa->spa_proc_cv,
833 				    &spa->spa_proc_lock);
834 			}
835 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
836 			ASSERT(spa->spa_proc != &p0);
837 			ASSERT(spa->spa_did != 0);
838 		} else {
839 #ifdef _KERNEL
840 			cmn_err(CE_WARN,
841 			    "Couldn't create process for zfs pool \"%s\"\n",
842 			    spa->spa_name);
843 #endif
844 		}
845 	}
846 	mutex_exit(&spa->spa_proc_lock);
847 
848 	/* If we didn't create a process, we need to create our taskqs. */
849 	if (spa->spa_proc == &p0) {
850 		spa_create_zio_taskqs(spa);
851 	}
852 
853 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
854 	    offsetof(vdev_t, vdev_config_dirty_node));
855 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
856 	    offsetof(vdev_t, vdev_state_dirty_node));
857 
858 	txg_list_create(&spa->spa_vdev_txg_list,
859 	    offsetof(struct vdev, vdev_txg_node));
860 
861 	avl_create(&spa->spa_errlist_scrub,
862 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
863 	    offsetof(spa_error_entry_t, se_avl));
864 	avl_create(&spa->spa_errlist_last,
865 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
866 	    offsetof(spa_error_entry_t, se_avl));
867 }
868 
869 /*
870  * Opposite of spa_activate().
871  */
872 static void
873 spa_deactivate(spa_t *spa)
874 {
875 	ASSERT(spa->spa_sync_on == B_FALSE);
876 	ASSERT(spa->spa_dsl_pool == NULL);
877 	ASSERT(spa->spa_root_vdev == NULL);
878 	ASSERT(spa->spa_async_zio_root == NULL);
879 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
880 
881 	txg_list_destroy(&spa->spa_vdev_txg_list);
882 
883 	list_destroy(&spa->spa_config_dirty_list);
884 	list_destroy(&spa->spa_state_dirty_list);
885 
886 	for (int t = 0; t < ZIO_TYPES; t++) {
887 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
888 			if (spa->spa_zio_taskq[t][q] != NULL)
889 				taskq_destroy(spa->spa_zio_taskq[t][q]);
890 			spa->spa_zio_taskq[t][q] = NULL;
891 		}
892 	}
893 
894 	metaslab_class_destroy(spa->spa_normal_class);
895 	spa->spa_normal_class = NULL;
896 
897 	metaslab_class_destroy(spa->spa_log_class);
898 	spa->spa_log_class = NULL;
899 
900 	/*
901 	 * If this was part of an import or the open otherwise failed, we may
902 	 * still have errors left in the queues.  Empty them just in case.
903 	 */
904 	spa_errlog_drain(spa);
905 
906 	avl_destroy(&spa->spa_errlist_scrub);
907 	avl_destroy(&spa->spa_errlist_last);
908 
909 	spa->spa_state = POOL_STATE_UNINITIALIZED;
910 
911 	mutex_enter(&spa->spa_proc_lock);
912 	if (spa->spa_proc_state != SPA_PROC_NONE) {
913 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
914 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
915 		cv_broadcast(&spa->spa_proc_cv);
916 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
917 			ASSERT(spa->spa_proc != &p0);
918 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
919 		}
920 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
921 		spa->spa_proc_state = SPA_PROC_NONE;
922 	}
923 	ASSERT(spa->spa_proc == &p0);
924 	mutex_exit(&spa->spa_proc_lock);
925 
926 	/*
927 	 * We want to make sure spa_thread() has actually exited the ZFS
928 	 * module, so that the module can't be unloaded out from underneath
929 	 * it.
930 	 */
931 	if (spa->spa_did != 0) {
932 		thread_join(spa->spa_did);
933 		spa->spa_did = 0;
934 	}
935 }
936 
937 /*
938  * Verify a pool configuration, and construct the vdev tree appropriately.  This
939  * will create all the necessary vdevs in the appropriate layout, with each vdev
940  * in the CLOSED state.  This will prep the pool before open/creation/import.
941  * All vdev validation is done by the vdev_alloc() routine.
942  */
943 static int
944 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
945     uint_t id, int atype)
946 {
947 	nvlist_t **child;
948 	uint_t children;
949 	int error;
950 
951 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
952 		return (error);
953 
954 	if ((*vdp)->vdev_ops->vdev_op_leaf)
955 		return (0);
956 
957 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
958 	    &child, &children);
959 
960 	if (error == ENOENT)
961 		return (0);
962 
963 	if (error) {
964 		vdev_free(*vdp);
965 		*vdp = NULL;
966 		return (EINVAL);
967 	}
968 
969 	for (int c = 0; c < children; c++) {
970 		vdev_t *vd;
971 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
972 		    atype)) != 0) {
973 			vdev_free(*vdp);
974 			*vdp = NULL;
975 			return (error);
976 		}
977 	}
978 
979 	ASSERT(*vdp != NULL);
980 
981 	return (0);
982 }
983 
984 /*
985  * Opposite of spa_load().
986  */
987 static void
988 spa_unload(spa_t *spa)
989 {
990 	int i;
991 
992 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
993 
994 	/*
995 	 * Stop async tasks.
996 	 */
997 	spa_async_suspend(spa);
998 
999 	/*
1000 	 * Stop syncing.
1001 	 */
1002 	if (spa->spa_sync_on) {
1003 		txg_sync_stop(spa->spa_dsl_pool);
1004 		spa->spa_sync_on = B_FALSE;
1005 	}
1006 
1007 	/*
1008 	 * Wait for any outstanding async I/O to complete.
1009 	 */
1010 	if (spa->spa_async_zio_root != NULL) {
1011 		(void) zio_wait(spa->spa_async_zio_root);
1012 		spa->spa_async_zio_root = NULL;
1013 	}
1014 
1015 	bpobj_close(&spa->spa_deferred_bpobj);
1016 
1017 	/*
1018 	 * Close the dsl pool.
1019 	 */
1020 	if (spa->spa_dsl_pool) {
1021 		dsl_pool_close(spa->spa_dsl_pool);
1022 		spa->spa_dsl_pool = NULL;
1023 		spa->spa_meta_objset = NULL;
1024 	}
1025 
1026 	ddt_unload(spa);
1027 
1028 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1029 
1030 	/*
1031 	 * Drop and purge level 2 cache
1032 	 */
1033 	spa_l2cache_drop(spa);
1034 
1035 	/*
1036 	 * Close all vdevs.
1037 	 */
1038 	if (spa->spa_root_vdev)
1039 		vdev_free(spa->spa_root_vdev);
1040 	ASSERT(spa->spa_root_vdev == NULL);
1041 
1042 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1043 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1044 	if (spa->spa_spares.sav_vdevs) {
1045 		kmem_free(spa->spa_spares.sav_vdevs,
1046 		    spa->spa_spares.sav_count * sizeof (void *));
1047 		spa->spa_spares.sav_vdevs = NULL;
1048 	}
1049 	if (spa->spa_spares.sav_config) {
1050 		nvlist_free(spa->spa_spares.sav_config);
1051 		spa->spa_spares.sav_config = NULL;
1052 	}
1053 	spa->spa_spares.sav_count = 0;
1054 
1055 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
1056 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1057 	if (spa->spa_l2cache.sav_vdevs) {
1058 		kmem_free(spa->spa_l2cache.sav_vdevs,
1059 		    spa->spa_l2cache.sav_count * sizeof (void *));
1060 		spa->spa_l2cache.sav_vdevs = NULL;
1061 	}
1062 	if (spa->spa_l2cache.sav_config) {
1063 		nvlist_free(spa->spa_l2cache.sav_config);
1064 		spa->spa_l2cache.sav_config = NULL;
1065 	}
1066 	spa->spa_l2cache.sav_count = 0;
1067 
1068 	spa->spa_async_suspended = 0;
1069 
1070 	if (spa->spa_comment != NULL) {
1071 		spa_strfree(spa->spa_comment);
1072 		spa->spa_comment = NULL;
1073 	}
1074 
1075 	spa_config_exit(spa, SCL_ALL, FTAG);
1076 }
1077 
1078 /*
1079  * Load (or re-load) the current list of vdevs describing the active spares for
1080  * this pool.  When this is called, we have some form of basic information in
1081  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1082  * then re-generate a more complete list including status information.
1083  */
1084 static void
1085 spa_load_spares(spa_t *spa)
1086 {
1087 	nvlist_t **spares;
1088 	uint_t nspares;
1089 	int i;
1090 	vdev_t *vd, *tvd;
1091 
1092 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1093 
1094 	/*
1095 	 * First, close and free any existing spare vdevs.
1096 	 */
1097 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1098 		vd = spa->spa_spares.sav_vdevs[i];
1099 
1100 		/* Undo the call to spa_activate() below */
1101 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1102 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1103 			spa_spare_remove(tvd);
1104 		vdev_close(vd);
1105 		vdev_free(vd);
1106 	}
1107 
1108 	if (spa->spa_spares.sav_vdevs)
1109 		kmem_free(spa->spa_spares.sav_vdevs,
1110 		    spa->spa_spares.sav_count * sizeof (void *));
1111 
1112 	if (spa->spa_spares.sav_config == NULL)
1113 		nspares = 0;
1114 	else
1115 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1116 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1117 
1118 	spa->spa_spares.sav_count = (int)nspares;
1119 	spa->spa_spares.sav_vdevs = NULL;
1120 
1121 	if (nspares == 0)
1122 		return;
1123 
1124 	/*
1125 	 * Construct the array of vdevs, opening them to get status in the
1126 	 * process.   For each spare, there is potentially two different vdev_t
1127 	 * structures associated with it: one in the list of spares (used only
1128 	 * for basic validation purposes) and one in the active vdev
1129 	 * configuration (if it's spared in).  During this phase we open and
1130 	 * validate each vdev on the spare list.  If the vdev also exists in the
1131 	 * active configuration, then we also mark this vdev as an active spare.
1132 	 */
1133 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1134 	    KM_SLEEP);
1135 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1136 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1137 		    VDEV_ALLOC_SPARE) == 0);
1138 		ASSERT(vd != NULL);
1139 
1140 		spa->spa_spares.sav_vdevs[i] = vd;
1141 
1142 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1143 		    B_FALSE)) != NULL) {
1144 			if (!tvd->vdev_isspare)
1145 				spa_spare_add(tvd);
1146 
1147 			/*
1148 			 * We only mark the spare active if we were successfully
1149 			 * able to load the vdev.  Otherwise, importing a pool
1150 			 * with a bad active spare would result in strange
1151 			 * behavior, because multiple pool would think the spare
1152 			 * is actively in use.
1153 			 *
1154 			 * There is a vulnerability here to an equally bizarre
1155 			 * circumstance, where a dead active spare is later
1156 			 * brought back to life (onlined or otherwise).  Given
1157 			 * the rarity of this scenario, and the extra complexity
1158 			 * it adds, we ignore the possibility.
1159 			 */
1160 			if (!vdev_is_dead(tvd))
1161 				spa_spare_activate(tvd);
1162 		}
1163 
1164 		vd->vdev_top = vd;
1165 		vd->vdev_aux = &spa->spa_spares;
1166 
1167 		if (vdev_open(vd) != 0)
1168 			continue;
1169 
1170 		if (vdev_validate_aux(vd) == 0)
1171 			spa_spare_add(vd);
1172 	}
1173 
1174 	/*
1175 	 * Recompute the stashed list of spares, with status information
1176 	 * this time.
1177 	 */
1178 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1179 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1180 
1181 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1182 	    KM_SLEEP);
1183 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1184 		spares[i] = vdev_config_generate(spa,
1185 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1186 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1187 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1188 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1189 		nvlist_free(spares[i]);
1190 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1191 }
1192 
1193 /*
1194  * Load (or re-load) the current list of vdevs describing the active l2cache for
1195  * this pool.  When this is called, we have some form of basic information in
1196  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1197  * then re-generate a more complete list including status information.
1198  * Devices which are already active have their details maintained, and are
1199  * not re-opened.
1200  */
1201 static void
1202 spa_load_l2cache(spa_t *spa)
1203 {
1204 	nvlist_t **l2cache;
1205 	uint_t nl2cache;
1206 	int i, j, oldnvdevs;
1207 	uint64_t guid;
1208 	vdev_t *vd, **oldvdevs, **newvdevs;
1209 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1210 
1211 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1212 
1213 	if (sav->sav_config != NULL) {
1214 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1215 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1216 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1217 	} else {
1218 		nl2cache = 0;
1219 	}
1220 
1221 	oldvdevs = sav->sav_vdevs;
1222 	oldnvdevs = sav->sav_count;
1223 	sav->sav_vdevs = NULL;
1224 	sav->sav_count = 0;
1225 
1226 	/*
1227 	 * Process new nvlist of vdevs.
1228 	 */
1229 	for (i = 0; i < nl2cache; i++) {
1230 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1231 		    &guid) == 0);
1232 
1233 		newvdevs[i] = NULL;
1234 		for (j = 0; j < oldnvdevs; j++) {
1235 			vd = oldvdevs[j];
1236 			if (vd != NULL && guid == vd->vdev_guid) {
1237 				/*
1238 				 * Retain previous vdev for add/remove ops.
1239 				 */
1240 				newvdevs[i] = vd;
1241 				oldvdevs[j] = NULL;
1242 				break;
1243 			}
1244 		}
1245 
1246 		if (newvdevs[i] == NULL) {
1247 			/*
1248 			 * Create new vdev
1249 			 */
1250 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1251 			    VDEV_ALLOC_L2CACHE) == 0);
1252 			ASSERT(vd != NULL);
1253 			newvdevs[i] = vd;
1254 
1255 			/*
1256 			 * Commit this vdev as an l2cache device,
1257 			 * even if it fails to open.
1258 			 */
1259 			spa_l2cache_add(vd);
1260 
1261 			vd->vdev_top = vd;
1262 			vd->vdev_aux = sav;
1263 
1264 			spa_l2cache_activate(vd);
1265 
1266 			if (vdev_open(vd) != 0)
1267 				continue;
1268 
1269 			(void) vdev_validate_aux(vd);
1270 
1271 			if (!vdev_is_dead(vd))
1272 				l2arc_add_vdev(spa, vd);
1273 		}
1274 	}
1275 
1276 	/*
1277 	 * Purge vdevs that were dropped
1278 	 */
1279 	for (i = 0; i < oldnvdevs; i++) {
1280 		uint64_t pool;
1281 
1282 		vd = oldvdevs[i];
1283 		if (vd != NULL) {
1284 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1285 			    pool != 0ULL && l2arc_vdev_present(vd))
1286 				l2arc_remove_vdev(vd);
1287 			(void) vdev_close(vd);
1288 			spa_l2cache_remove(vd);
1289 		}
1290 	}
1291 
1292 	if (oldvdevs)
1293 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1294 
1295 	if (sav->sav_config == NULL)
1296 		goto out;
1297 
1298 	sav->sav_vdevs = newvdevs;
1299 	sav->sav_count = (int)nl2cache;
1300 
1301 	/*
1302 	 * Recompute the stashed list of l2cache devices, with status
1303 	 * information this time.
1304 	 */
1305 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1306 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1307 
1308 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1309 	for (i = 0; i < sav->sav_count; i++)
1310 		l2cache[i] = vdev_config_generate(spa,
1311 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1312 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1313 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1314 out:
1315 	for (i = 0; i < sav->sav_count; i++)
1316 		nvlist_free(l2cache[i]);
1317 	if (sav->sav_count)
1318 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1319 }
1320 
1321 static int
1322 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1323 {
1324 	dmu_buf_t *db;
1325 	char *packed = NULL;
1326 	size_t nvsize = 0;
1327 	int error;
1328 	*value = NULL;
1329 
1330 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1331 	nvsize = *(uint64_t *)db->db_data;
1332 	dmu_buf_rele(db, FTAG);
1333 
1334 	packed = kmem_alloc(nvsize, KM_SLEEP);
1335 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1336 	    DMU_READ_PREFETCH);
1337 	if (error == 0)
1338 		error = nvlist_unpack(packed, nvsize, value, 0);
1339 	kmem_free(packed, nvsize);
1340 
1341 	return (error);
1342 }
1343 
1344 /*
1345  * Checks to see if the given vdev could not be opened, in which case we post a
1346  * sysevent to notify the autoreplace code that the device has been removed.
1347  */
1348 static void
1349 spa_check_removed(vdev_t *vd)
1350 {
1351 	for (int c = 0; c < vd->vdev_children; c++)
1352 		spa_check_removed(vd->vdev_child[c]);
1353 
1354 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1355 		zfs_post_autoreplace(vd->vdev_spa, vd);
1356 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1357 	}
1358 }
1359 
1360 /*
1361  * Validate the current config against the MOS config
1362  */
1363 static boolean_t
1364 spa_config_valid(spa_t *spa, nvlist_t *config)
1365 {
1366 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1367 	nvlist_t *nv;
1368 
1369 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1370 
1371 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1372 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1373 
1374 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1375 
1376 	/*
1377 	 * If we're doing a normal import, then build up any additional
1378 	 * diagnostic information about missing devices in this config.
1379 	 * We'll pass this up to the user for further processing.
1380 	 */
1381 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1382 		nvlist_t **child, *nv;
1383 		uint64_t idx = 0;
1384 
1385 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1386 		    KM_SLEEP);
1387 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1388 
1389 		for (int c = 0; c < rvd->vdev_children; c++) {
1390 			vdev_t *tvd = rvd->vdev_child[c];
1391 			vdev_t *mtvd  = mrvd->vdev_child[c];
1392 
1393 			if (tvd->vdev_ops == &vdev_missing_ops &&
1394 			    mtvd->vdev_ops != &vdev_missing_ops &&
1395 			    mtvd->vdev_islog)
1396 				child[idx++] = vdev_config_generate(spa, mtvd,
1397 				    B_FALSE, 0);
1398 		}
1399 
1400 		if (idx) {
1401 			VERIFY(nvlist_add_nvlist_array(nv,
1402 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1403 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1404 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1405 
1406 			for (int i = 0; i < idx; i++)
1407 				nvlist_free(child[i]);
1408 		}
1409 		nvlist_free(nv);
1410 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1411 	}
1412 
1413 	/*
1414 	 * Compare the root vdev tree with the information we have
1415 	 * from the MOS config (mrvd). Check each top-level vdev
1416 	 * with the corresponding MOS config top-level (mtvd).
1417 	 */
1418 	for (int c = 0; c < rvd->vdev_children; c++) {
1419 		vdev_t *tvd = rvd->vdev_child[c];
1420 		vdev_t *mtvd  = mrvd->vdev_child[c];
1421 
1422 		/*
1423 		 * Resolve any "missing" vdevs in the current configuration.
1424 		 * If we find that the MOS config has more accurate information
1425 		 * about the top-level vdev then use that vdev instead.
1426 		 */
1427 		if (tvd->vdev_ops == &vdev_missing_ops &&
1428 		    mtvd->vdev_ops != &vdev_missing_ops) {
1429 
1430 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1431 				continue;
1432 
1433 			/*
1434 			 * Device specific actions.
1435 			 */
1436 			if (mtvd->vdev_islog) {
1437 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1438 			} else {
1439 				/*
1440 				 * XXX - once we have 'readonly' pool
1441 				 * support we should be able to handle
1442 				 * missing data devices by transitioning
1443 				 * the pool to readonly.
1444 				 */
1445 				continue;
1446 			}
1447 
1448 			/*
1449 			 * Swap the missing vdev with the data we were
1450 			 * able to obtain from the MOS config.
1451 			 */
1452 			vdev_remove_child(rvd, tvd);
1453 			vdev_remove_child(mrvd, mtvd);
1454 
1455 			vdev_add_child(rvd, mtvd);
1456 			vdev_add_child(mrvd, tvd);
1457 
1458 			spa_config_exit(spa, SCL_ALL, FTAG);
1459 			vdev_load(mtvd);
1460 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1461 
1462 			vdev_reopen(rvd);
1463 		} else if (mtvd->vdev_islog) {
1464 			/*
1465 			 * Load the slog device's state from the MOS config
1466 			 * since it's possible that the label does not
1467 			 * contain the most up-to-date information.
1468 			 */
1469 			vdev_load_log_state(tvd, mtvd);
1470 			vdev_reopen(tvd);
1471 		}
1472 	}
1473 	vdev_free(mrvd);
1474 	spa_config_exit(spa, SCL_ALL, FTAG);
1475 
1476 	/*
1477 	 * Ensure we were able to validate the config.
1478 	 */
1479 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1480 }
1481 
1482 /*
1483  * Check for missing log devices
1484  */
1485 static int
1486 spa_check_logs(spa_t *spa)
1487 {
1488 	switch (spa->spa_log_state) {
1489 	case SPA_LOG_MISSING:
1490 		/* need to recheck in case slog has been restored */
1491 	case SPA_LOG_UNKNOWN:
1492 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1493 		    DS_FIND_CHILDREN)) {
1494 			spa_set_log_state(spa, SPA_LOG_MISSING);
1495 			return (1);
1496 		}
1497 		break;
1498 	}
1499 	return (0);
1500 }
1501 
1502 static boolean_t
1503 spa_passivate_log(spa_t *spa)
1504 {
1505 	vdev_t *rvd = spa->spa_root_vdev;
1506 	boolean_t slog_found = B_FALSE;
1507 
1508 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1509 
1510 	if (!spa_has_slogs(spa))
1511 		return (B_FALSE);
1512 
1513 	for (int c = 0; c < rvd->vdev_children; c++) {
1514 		vdev_t *tvd = rvd->vdev_child[c];
1515 		metaslab_group_t *mg = tvd->vdev_mg;
1516 
1517 		if (tvd->vdev_islog) {
1518 			metaslab_group_passivate(mg);
1519 			slog_found = B_TRUE;
1520 		}
1521 	}
1522 
1523 	return (slog_found);
1524 }
1525 
1526 static void
1527 spa_activate_log(spa_t *spa)
1528 {
1529 	vdev_t *rvd = spa->spa_root_vdev;
1530 
1531 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1532 
1533 	for (int c = 0; c < rvd->vdev_children; c++) {
1534 		vdev_t *tvd = rvd->vdev_child[c];
1535 		metaslab_group_t *mg = tvd->vdev_mg;
1536 
1537 		if (tvd->vdev_islog)
1538 			metaslab_group_activate(mg);
1539 	}
1540 }
1541 
1542 int
1543 spa_offline_log(spa_t *spa)
1544 {
1545 	int error = 0;
1546 
1547 	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1548 	    NULL, DS_FIND_CHILDREN)) == 0) {
1549 
1550 		/*
1551 		 * We successfully offlined the log device, sync out the
1552 		 * current txg so that the "stubby" block can be removed
1553 		 * by zil_sync().
1554 		 */
1555 		txg_wait_synced(spa->spa_dsl_pool, 0);
1556 	}
1557 	return (error);
1558 }
1559 
1560 static void
1561 spa_aux_check_removed(spa_aux_vdev_t *sav)
1562 {
1563 	for (int i = 0; i < sav->sav_count; i++)
1564 		spa_check_removed(sav->sav_vdevs[i]);
1565 }
1566 
1567 void
1568 spa_claim_notify(zio_t *zio)
1569 {
1570 	spa_t *spa = zio->io_spa;
1571 
1572 	if (zio->io_error)
1573 		return;
1574 
1575 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1576 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1577 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1578 	mutex_exit(&spa->spa_props_lock);
1579 }
1580 
1581 typedef struct spa_load_error {
1582 	uint64_t	sle_meta_count;
1583 	uint64_t	sle_data_count;
1584 } spa_load_error_t;
1585 
1586 static void
1587 spa_load_verify_done(zio_t *zio)
1588 {
1589 	blkptr_t *bp = zio->io_bp;
1590 	spa_load_error_t *sle = zio->io_private;
1591 	dmu_object_type_t type = BP_GET_TYPE(bp);
1592 	int error = zio->io_error;
1593 
1594 	if (error) {
1595 		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1596 		    type != DMU_OT_INTENT_LOG)
1597 			atomic_add_64(&sle->sle_meta_count, 1);
1598 		else
1599 			atomic_add_64(&sle->sle_data_count, 1);
1600 	}
1601 	zio_data_buf_free(zio->io_data, zio->io_size);
1602 }
1603 
1604 /*ARGSUSED*/
1605 static int
1606 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1607     arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1608 {
1609 	if (bp != NULL) {
1610 		zio_t *rio = arg;
1611 		size_t size = BP_GET_PSIZE(bp);
1612 		void *data = zio_data_buf_alloc(size);
1613 
1614 		zio_nowait(zio_read(rio, spa, bp, data, size,
1615 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1616 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1617 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1618 	}
1619 	return (0);
1620 }
1621 
1622 static int
1623 spa_load_verify(spa_t *spa)
1624 {
1625 	zio_t *rio;
1626 	spa_load_error_t sle = { 0 };
1627 	zpool_rewind_policy_t policy;
1628 	boolean_t verify_ok = B_FALSE;
1629 	int error;
1630 
1631 	zpool_get_rewind_policy(spa->spa_config, &policy);
1632 
1633 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1634 		return (0);
1635 
1636 	rio = zio_root(spa, NULL, &sle,
1637 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1638 
1639 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1640 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1641 
1642 	(void) zio_wait(rio);
1643 
1644 	spa->spa_load_meta_errors = sle.sle_meta_count;
1645 	spa->spa_load_data_errors = sle.sle_data_count;
1646 
1647 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1648 	    sle.sle_data_count <= policy.zrp_maxdata) {
1649 		int64_t loss = 0;
1650 
1651 		verify_ok = B_TRUE;
1652 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1653 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1654 
1655 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1656 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1657 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1658 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1659 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1660 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1661 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1662 	} else {
1663 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1664 	}
1665 
1666 	if (error) {
1667 		if (error != ENXIO && error != EIO)
1668 			error = EIO;
1669 		return (error);
1670 	}
1671 
1672 	return (verify_ok ? 0 : EIO);
1673 }
1674 
1675 /*
1676  * Find a value in the pool props object.
1677  */
1678 static void
1679 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1680 {
1681 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1682 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1683 }
1684 
1685 /*
1686  * Find a value in the pool directory object.
1687  */
1688 static int
1689 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1690 {
1691 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1692 	    name, sizeof (uint64_t), 1, val));
1693 }
1694 
1695 static int
1696 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1697 {
1698 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1699 	return (err);
1700 }
1701 
1702 /*
1703  * Fix up config after a partly-completed split.  This is done with the
1704  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1705  * pool have that entry in their config, but only the splitting one contains
1706  * a list of all the guids of the vdevs that are being split off.
1707  *
1708  * This function determines what to do with that list: either rejoin
1709  * all the disks to the pool, or complete the splitting process.  To attempt
1710  * the rejoin, each disk that is offlined is marked online again, and
1711  * we do a reopen() call.  If the vdev label for every disk that was
1712  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1713  * then we call vdev_split() on each disk, and complete the split.
1714  *
1715  * Otherwise we leave the config alone, with all the vdevs in place in
1716  * the original pool.
1717  */
1718 static void
1719 spa_try_repair(spa_t *spa, nvlist_t *config)
1720 {
1721 	uint_t extracted;
1722 	uint64_t *glist;
1723 	uint_t i, gcount;
1724 	nvlist_t *nvl;
1725 	vdev_t **vd;
1726 	boolean_t attempt_reopen;
1727 
1728 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1729 		return;
1730 
1731 	/* check that the config is complete */
1732 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1733 	    &glist, &gcount) != 0)
1734 		return;
1735 
1736 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1737 
1738 	/* attempt to online all the vdevs & validate */
1739 	attempt_reopen = B_TRUE;
1740 	for (i = 0; i < gcount; i++) {
1741 		if (glist[i] == 0)	/* vdev is hole */
1742 			continue;
1743 
1744 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1745 		if (vd[i] == NULL) {
1746 			/*
1747 			 * Don't bother attempting to reopen the disks;
1748 			 * just do the split.
1749 			 */
1750 			attempt_reopen = B_FALSE;
1751 		} else {
1752 			/* attempt to re-online it */
1753 			vd[i]->vdev_offline = B_FALSE;
1754 		}
1755 	}
1756 
1757 	if (attempt_reopen) {
1758 		vdev_reopen(spa->spa_root_vdev);
1759 
1760 		/* check each device to see what state it's in */
1761 		for (extracted = 0, i = 0; i < gcount; i++) {
1762 			if (vd[i] != NULL &&
1763 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1764 				break;
1765 			++extracted;
1766 		}
1767 	}
1768 
1769 	/*
1770 	 * If every disk has been moved to the new pool, or if we never
1771 	 * even attempted to look at them, then we split them off for
1772 	 * good.
1773 	 */
1774 	if (!attempt_reopen || gcount == extracted) {
1775 		for (i = 0; i < gcount; i++)
1776 			if (vd[i] != NULL)
1777 				vdev_split(vd[i]);
1778 		vdev_reopen(spa->spa_root_vdev);
1779 	}
1780 
1781 	kmem_free(vd, gcount * sizeof (vdev_t *));
1782 }
1783 
1784 static int
1785 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1786     boolean_t mosconfig)
1787 {
1788 	nvlist_t *config = spa->spa_config;
1789 	char *ereport = FM_EREPORT_ZFS_POOL;
1790 	char *comment;
1791 	int error;
1792 	uint64_t pool_guid;
1793 	nvlist_t *nvl;
1794 
1795 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1796 		return (EINVAL);
1797 
1798 	ASSERT(spa->spa_comment == NULL);
1799 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1800 		spa->spa_comment = spa_strdup(comment);
1801 
1802 	/*
1803 	 * Versioning wasn't explicitly added to the label until later, so if
1804 	 * it's not present treat it as the initial version.
1805 	 */
1806 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1807 	    &spa->spa_ubsync.ub_version) != 0)
1808 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1809 
1810 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1811 	    &spa->spa_config_txg);
1812 
1813 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1814 	    spa_guid_exists(pool_guid, 0)) {
1815 		error = EEXIST;
1816 	} else {
1817 		spa->spa_config_guid = pool_guid;
1818 
1819 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1820 		    &nvl) == 0) {
1821 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1822 			    KM_SLEEP) == 0);
1823 		}
1824 
1825 		gethrestime(&spa->spa_loaded_ts);
1826 		error = spa_load_impl(spa, pool_guid, config, state, type,
1827 		    mosconfig, &ereport);
1828 	}
1829 
1830 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1831 	if (error) {
1832 		if (error != EEXIST) {
1833 			spa->spa_loaded_ts.tv_sec = 0;
1834 			spa->spa_loaded_ts.tv_nsec = 0;
1835 		}
1836 		if (error != EBADF) {
1837 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1838 		}
1839 	}
1840 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1841 	spa->spa_ena = 0;
1842 
1843 	return (error);
1844 }
1845 
1846 /*
1847  * Load an existing storage pool, using the pool's builtin spa_config as a
1848  * source of configuration information.
1849  */
1850 static int
1851 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1852     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1853     char **ereport)
1854 {
1855 	int error = 0;
1856 	nvlist_t *nvroot = NULL;
1857 	vdev_t *rvd;
1858 	uberblock_t *ub = &spa->spa_uberblock;
1859 	uint64_t children, config_cache_txg = spa->spa_config_txg;
1860 	int orig_mode = spa->spa_mode;
1861 	int parse;
1862 	uint64_t obj;
1863 
1864 	/*
1865 	 * If this is an untrusted config, access the pool in read-only mode.
1866 	 * This prevents things like resilvering recently removed devices.
1867 	 */
1868 	if (!mosconfig)
1869 		spa->spa_mode = FREAD;
1870 
1871 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1872 
1873 	spa->spa_load_state = state;
1874 
1875 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1876 		return (EINVAL);
1877 
1878 	parse = (type == SPA_IMPORT_EXISTING ?
1879 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1880 
1881 	/*
1882 	 * Create "The Godfather" zio to hold all async IOs
1883 	 */
1884 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1885 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1886 
1887 	/*
1888 	 * Parse the configuration into a vdev tree.  We explicitly set the
1889 	 * value that will be returned by spa_version() since parsing the
1890 	 * configuration requires knowing the version number.
1891 	 */
1892 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1893 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1894 	spa_config_exit(spa, SCL_ALL, FTAG);
1895 
1896 	if (error != 0)
1897 		return (error);
1898 
1899 	ASSERT(spa->spa_root_vdev == rvd);
1900 
1901 	if (type != SPA_IMPORT_ASSEMBLE) {
1902 		ASSERT(spa_guid(spa) == pool_guid);
1903 	}
1904 
1905 	/*
1906 	 * Try to open all vdevs, loading each label in the process.
1907 	 */
1908 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1909 	error = vdev_open(rvd);
1910 	spa_config_exit(spa, SCL_ALL, FTAG);
1911 	if (error != 0)
1912 		return (error);
1913 
1914 	/*
1915 	 * We need to validate the vdev labels against the configuration that
1916 	 * we have in hand, which is dependent on the setting of mosconfig. If
1917 	 * mosconfig is true then we're validating the vdev labels based on
1918 	 * that config.  Otherwise, we're validating against the cached config
1919 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1920 	 * later we will recursively call spa_load() and validate against
1921 	 * the vdev config.
1922 	 *
1923 	 * If we're assembling a new pool that's been split off from an
1924 	 * existing pool, the labels haven't yet been updated so we skip
1925 	 * validation for now.
1926 	 */
1927 	if (type != SPA_IMPORT_ASSEMBLE) {
1928 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1929 		error = vdev_validate(rvd);
1930 		spa_config_exit(spa, SCL_ALL, FTAG);
1931 
1932 		if (error != 0)
1933 			return (error);
1934 
1935 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1936 			return (ENXIO);
1937 	}
1938 
1939 	/*
1940 	 * Find the best uberblock.
1941 	 */
1942 	vdev_uberblock_load(NULL, rvd, ub);
1943 
1944 	/*
1945 	 * If we weren't able to find a single valid uberblock, return failure.
1946 	 */
1947 	if (ub->ub_txg == 0)
1948 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1949 
1950 	/*
1951 	 * If the pool is newer than the code, we can't open it.
1952 	 */
1953 	if (ub->ub_version > SPA_VERSION)
1954 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1955 
1956 	/*
1957 	 * If the vdev guid sum doesn't match the uberblock, we have an
1958 	 * incomplete configuration.  We first check to see if the pool
1959 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
1960 	 * If it is, defer the vdev_guid_sum check till later so we
1961 	 * can handle missing vdevs.
1962 	 */
1963 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
1964 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1965 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
1966 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1967 
1968 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1969 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1970 		spa_try_repair(spa, config);
1971 		spa_config_exit(spa, SCL_ALL, FTAG);
1972 		nvlist_free(spa->spa_config_splitting);
1973 		spa->spa_config_splitting = NULL;
1974 	}
1975 
1976 	/*
1977 	 * Initialize internal SPA structures.
1978 	 */
1979 	spa->spa_state = POOL_STATE_ACTIVE;
1980 	spa->spa_ubsync = spa->spa_uberblock;
1981 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1982 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1983 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1984 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1985 	spa->spa_claim_max_txg = spa->spa_first_txg;
1986 	spa->spa_prev_software_version = ub->ub_software_version;
1987 
1988 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1989 	if (error)
1990 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1991 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1992 
1993 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
1994 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1995 
1996 	if (!mosconfig) {
1997 		uint64_t hostid;
1998 		nvlist_t *policy = NULL, *nvconfig;
1999 
2000 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2001 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2002 
2003 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2004 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2005 			char *hostname;
2006 			unsigned long myhostid = 0;
2007 
2008 			VERIFY(nvlist_lookup_string(nvconfig,
2009 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2010 
2011 #ifdef	_KERNEL
2012 			myhostid = zone_get_hostid(NULL);
2013 #else	/* _KERNEL */
2014 			/*
2015 			 * We're emulating the system's hostid in userland, so
2016 			 * we can't use zone_get_hostid().
2017 			 */
2018 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2019 #endif	/* _KERNEL */
2020 			if (hostid != 0 && myhostid != 0 &&
2021 			    hostid != myhostid) {
2022 				nvlist_free(nvconfig);
2023 				cmn_err(CE_WARN, "pool '%s' could not be "
2024 				    "loaded as it was last accessed by "
2025 				    "another system (host: %s hostid: 0x%lx). "
2026 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
2027 				    spa_name(spa), hostname,
2028 				    (unsigned long)hostid);
2029 				return (EBADF);
2030 			}
2031 		}
2032 		if (nvlist_lookup_nvlist(spa->spa_config,
2033 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2034 			VERIFY(nvlist_add_nvlist(nvconfig,
2035 			    ZPOOL_REWIND_POLICY, policy) == 0);
2036 
2037 		spa_config_set(spa, nvconfig);
2038 		spa_unload(spa);
2039 		spa_deactivate(spa);
2040 		spa_activate(spa, orig_mode);
2041 
2042 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2043 	}
2044 
2045 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2046 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2047 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2048 	if (error != 0)
2049 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2050 
2051 	/*
2052 	 * Load the bit that tells us to use the new accounting function
2053 	 * (raid-z deflation).  If we have an older pool, this will not
2054 	 * be present.
2055 	 */
2056 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2057 	if (error != 0 && error != ENOENT)
2058 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2059 
2060 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2061 	    &spa->spa_creation_version);
2062 	if (error != 0 && error != ENOENT)
2063 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2064 
2065 	/*
2066 	 * Load the persistent error log.  If we have an older pool, this will
2067 	 * not be present.
2068 	 */
2069 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2070 	if (error != 0 && error != ENOENT)
2071 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2072 
2073 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2074 	    &spa->spa_errlog_scrub);
2075 	if (error != 0 && error != ENOENT)
2076 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2077 
2078 	/*
2079 	 * Load the history object.  If we have an older pool, this
2080 	 * will not be present.
2081 	 */
2082 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2083 	if (error != 0 && error != ENOENT)
2084 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2085 
2086 	/*
2087 	 * If we're assembling the pool from the split-off vdevs of
2088 	 * an existing pool, we don't want to attach the spares & cache
2089 	 * devices.
2090 	 */
2091 
2092 	/*
2093 	 * Load any hot spares for this pool.
2094 	 */
2095 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2096 	if (error != 0 && error != ENOENT)
2097 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2098 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2099 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2100 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2101 		    &spa->spa_spares.sav_config) != 0)
2102 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2103 
2104 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2105 		spa_load_spares(spa);
2106 		spa_config_exit(spa, SCL_ALL, FTAG);
2107 	} else if (error == 0) {
2108 		spa->spa_spares.sav_sync = B_TRUE;
2109 	}
2110 
2111 	/*
2112 	 * Load any level 2 ARC devices for this pool.
2113 	 */
2114 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2115 	    &spa->spa_l2cache.sav_object);
2116 	if (error != 0 && error != ENOENT)
2117 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2118 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2119 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2120 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2121 		    &spa->spa_l2cache.sav_config) != 0)
2122 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2123 
2124 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2125 		spa_load_l2cache(spa);
2126 		spa_config_exit(spa, SCL_ALL, FTAG);
2127 	} else if (error == 0) {
2128 		spa->spa_l2cache.sav_sync = B_TRUE;
2129 	}
2130 
2131 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2132 
2133 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2134 	if (error && error != ENOENT)
2135 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2136 
2137 	if (error == 0) {
2138 		uint64_t autoreplace;
2139 
2140 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2141 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2142 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2143 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2144 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2145 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2146 		    &spa->spa_dedup_ditto);
2147 
2148 		spa->spa_autoreplace = (autoreplace != 0);
2149 	}
2150 
2151 	/*
2152 	 * If the 'autoreplace' property is set, then post a resource notifying
2153 	 * the ZFS DE that it should not issue any faults for unopenable
2154 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2155 	 * unopenable vdevs so that the normal autoreplace handler can take
2156 	 * over.
2157 	 */
2158 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2159 		spa_check_removed(spa->spa_root_vdev);
2160 		/*
2161 		 * For the import case, this is done in spa_import(), because
2162 		 * at this point we're using the spare definitions from
2163 		 * the MOS config, not necessarily from the userland config.
2164 		 */
2165 		if (state != SPA_LOAD_IMPORT) {
2166 			spa_aux_check_removed(&spa->spa_spares);
2167 			spa_aux_check_removed(&spa->spa_l2cache);
2168 		}
2169 	}
2170 
2171 	/*
2172 	 * Load the vdev state for all toplevel vdevs.
2173 	 */
2174 	vdev_load(rvd);
2175 
2176 	/*
2177 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2178 	 */
2179 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2180 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2181 	spa_config_exit(spa, SCL_ALL, FTAG);
2182 
2183 	/*
2184 	 * Load the DDTs (dedup tables).
2185 	 */
2186 	error = ddt_load(spa);
2187 	if (error != 0)
2188 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2189 
2190 	spa_update_dspace(spa);
2191 
2192 	/*
2193 	 * Validate the config, using the MOS config to fill in any
2194 	 * information which might be missing.  If we fail to validate
2195 	 * the config then declare the pool unfit for use. If we're
2196 	 * assembling a pool from a split, the log is not transferred
2197 	 * over.
2198 	 */
2199 	if (type != SPA_IMPORT_ASSEMBLE) {
2200 		nvlist_t *nvconfig;
2201 
2202 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2203 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2204 
2205 		if (!spa_config_valid(spa, nvconfig)) {
2206 			nvlist_free(nvconfig);
2207 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2208 			    ENXIO));
2209 		}
2210 		nvlist_free(nvconfig);
2211 
2212 		/*
2213 		 * Now that we've validate the config, check the state of the
2214 		 * root vdev.  If it can't be opened, it indicates one or
2215 		 * more toplevel vdevs are faulted.
2216 		 */
2217 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2218 			return (ENXIO);
2219 
2220 		if (spa_check_logs(spa)) {
2221 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2222 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2223 		}
2224 	}
2225 
2226 	/*
2227 	 * We've successfully opened the pool, verify that we're ready
2228 	 * to start pushing transactions.
2229 	 */
2230 	if (state != SPA_LOAD_TRYIMPORT) {
2231 		if (error = spa_load_verify(spa))
2232 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2233 			    error));
2234 	}
2235 
2236 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2237 	    spa->spa_load_max_txg == UINT64_MAX)) {
2238 		dmu_tx_t *tx;
2239 		int need_update = B_FALSE;
2240 
2241 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2242 
2243 		/*
2244 		 * Claim log blocks that haven't been committed yet.
2245 		 * This must all happen in a single txg.
2246 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2247 		 * invoked from zil_claim_log_block()'s i/o done callback.
2248 		 * Price of rollback is that we abandon the log.
2249 		 */
2250 		spa->spa_claiming = B_TRUE;
2251 
2252 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2253 		    spa_first_txg(spa));
2254 		(void) dmu_objset_find(spa_name(spa),
2255 		    zil_claim, tx, DS_FIND_CHILDREN);
2256 		dmu_tx_commit(tx);
2257 
2258 		spa->spa_claiming = B_FALSE;
2259 
2260 		spa_set_log_state(spa, SPA_LOG_GOOD);
2261 		spa->spa_sync_on = B_TRUE;
2262 		txg_sync_start(spa->spa_dsl_pool);
2263 
2264 		/*
2265 		 * Wait for all claims to sync.  We sync up to the highest
2266 		 * claimed log block birth time so that claimed log blocks
2267 		 * don't appear to be from the future.  spa_claim_max_txg
2268 		 * will have been set for us by either zil_check_log_chain()
2269 		 * (invoked from spa_check_logs()) or zil_claim() above.
2270 		 */
2271 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2272 
2273 		/*
2274 		 * If the config cache is stale, or we have uninitialized
2275 		 * metaslabs (see spa_vdev_add()), then update the config.
2276 		 *
2277 		 * If this is a verbatim import, trust the current
2278 		 * in-core spa_config and update the disk labels.
2279 		 */
2280 		if (config_cache_txg != spa->spa_config_txg ||
2281 		    state == SPA_LOAD_IMPORT ||
2282 		    state == SPA_LOAD_RECOVER ||
2283 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2284 			need_update = B_TRUE;
2285 
2286 		for (int c = 0; c < rvd->vdev_children; c++)
2287 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2288 				need_update = B_TRUE;
2289 
2290 		/*
2291 		 * Update the config cache asychronously in case we're the
2292 		 * root pool, in which case the config cache isn't writable yet.
2293 		 */
2294 		if (need_update)
2295 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2296 
2297 		/*
2298 		 * Check all DTLs to see if anything needs resilvering.
2299 		 */
2300 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2301 		    vdev_resilver_needed(rvd, NULL, NULL))
2302 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2303 
2304 		/*
2305 		 * Delete any inconsistent datasets.
2306 		 */
2307 		(void) dmu_objset_find(spa_name(spa),
2308 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2309 
2310 		/*
2311 		 * Clean up any stale temporary dataset userrefs.
2312 		 */
2313 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2314 	}
2315 
2316 	return (0);
2317 }
2318 
2319 static int
2320 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2321 {
2322 	int mode = spa->spa_mode;
2323 
2324 	spa_unload(spa);
2325 	spa_deactivate(spa);
2326 
2327 	spa->spa_load_max_txg--;
2328 
2329 	spa_activate(spa, mode);
2330 	spa_async_suspend(spa);
2331 
2332 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2333 }
2334 
2335 static int
2336 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2337     uint64_t max_request, int rewind_flags)
2338 {
2339 	nvlist_t *config = NULL;
2340 	int load_error, rewind_error;
2341 	uint64_t safe_rewind_txg;
2342 	uint64_t min_txg;
2343 
2344 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2345 		spa->spa_load_max_txg = spa->spa_load_txg;
2346 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2347 	} else {
2348 		spa->spa_load_max_txg = max_request;
2349 	}
2350 
2351 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2352 	    mosconfig);
2353 	if (load_error == 0)
2354 		return (0);
2355 
2356 	if (spa->spa_root_vdev != NULL)
2357 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2358 
2359 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2360 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2361 
2362 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2363 		nvlist_free(config);
2364 		return (load_error);
2365 	}
2366 
2367 	/* Price of rolling back is discarding txgs, including log */
2368 	if (state == SPA_LOAD_RECOVER)
2369 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2370 
2371 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2372 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2373 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2374 	    TXG_INITIAL : safe_rewind_txg;
2375 
2376 	/*
2377 	 * Continue as long as we're finding errors, we're still within
2378 	 * the acceptable rewind range, and we're still finding uberblocks
2379 	 */
2380 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2381 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2382 		if (spa->spa_load_max_txg < safe_rewind_txg)
2383 			spa->spa_extreme_rewind = B_TRUE;
2384 		rewind_error = spa_load_retry(spa, state, mosconfig);
2385 	}
2386 
2387 	spa->spa_extreme_rewind = B_FALSE;
2388 	spa->spa_load_max_txg = UINT64_MAX;
2389 
2390 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2391 		spa_config_set(spa, config);
2392 
2393 	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2394 }
2395 
2396 /*
2397  * Pool Open/Import
2398  *
2399  * The import case is identical to an open except that the configuration is sent
2400  * down from userland, instead of grabbed from the configuration cache.  For the
2401  * case of an open, the pool configuration will exist in the
2402  * POOL_STATE_UNINITIALIZED state.
2403  *
2404  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2405  * the same time open the pool, without having to keep around the spa_t in some
2406  * ambiguous state.
2407  */
2408 static int
2409 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2410     nvlist_t **config)
2411 {
2412 	spa_t *spa;
2413 	spa_load_state_t state = SPA_LOAD_OPEN;
2414 	int error;
2415 	int locked = B_FALSE;
2416 
2417 	*spapp = NULL;
2418 
2419 	/*
2420 	 * As disgusting as this is, we need to support recursive calls to this
2421 	 * function because dsl_dir_open() is called during spa_load(), and ends
2422 	 * up calling spa_open() again.  The real fix is to figure out how to
2423 	 * avoid dsl_dir_open() calling this in the first place.
2424 	 */
2425 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2426 		mutex_enter(&spa_namespace_lock);
2427 		locked = B_TRUE;
2428 	}
2429 
2430 	if ((spa = spa_lookup(pool)) == NULL) {
2431 		if (locked)
2432 			mutex_exit(&spa_namespace_lock);
2433 		return (ENOENT);
2434 	}
2435 
2436 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2437 		zpool_rewind_policy_t policy;
2438 
2439 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2440 		    &policy);
2441 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2442 			state = SPA_LOAD_RECOVER;
2443 
2444 		spa_activate(spa, spa_mode_global);
2445 
2446 		if (state != SPA_LOAD_RECOVER)
2447 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2448 
2449 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2450 		    policy.zrp_request);
2451 
2452 		if (error == EBADF) {
2453 			/*
2454 			 * If vdev_validate() returns failure (indicated by
2455 			 * EBADF), it indicates that one of the vdevs indicates
2456 			 * that the pool has been exported or destroyed.  If
2457 			 * this is the case, the config cache is out of sync and
2458 			 * we should remove the pool from the namespace.
2459 			 */
2460 			spa_unload(spa);
2461 			spa_deactivate(spa);
2462 			spa_config_sync(spa, B_TRUE, B_TRUE);
2463 			spa_remove(spa);
2464 			if (locked)
2465 				mutex_exit(&spa_namespace_lock);
2466 			return (ENOENT);
2467 		}
2468 
2469 		if (error) {
2470 			/*
2471 			 * We can't open the pool, but we still have useful
2472 			 * information: the state of each vdev after the
2473 			 * attempted vdev_open().  Return this to the user.
2474 			 */
2475 			if (config != NULL && spa->spa_config) {
2476 				VERIFY(nvlist_dup(spa->spa_config, config,
2477 				    KM_SLEEP) == 0);
2478 				VERIFY(nvlist_add_nvlist(*config,
2479 				    ZPOOL_CONFIG_LOAD_INFO,
2480 				    spa->spa_load_info) == 0);
2481 			}
2482 			spa_unload(spa);
2483 			spa_deactivate(spa);
2484 			spa->spa_last_open_failed = error;
2485 			if (locked)
2486 				mutex_exit(&spa_namespace_lock);
2487 			*spapp = NULL;
2488 			return (error);
2489 		}
2490 	}
2491 
2492 	spa_open_ref(spa, tag);
2493 
2494 	if (config != NULL)
2495 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2496 
2497 	/*
2498 	 * If we've recovered the pool, pass back any information we
2499 	 * gathered while doing the load.
2500 	 */
2501 	if (state == SPA_LOAD_RECOVER) {
2502 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2503 		    spa->spa_load_info) == 0);
2504 	}
2505 
2506 	if (locked) {
2507 		spa->spa_last_open_failed = 0;
2508 		spa->spa_last_ubsync_txg = 0;
2509 		spa->spa_load_txg = 0;
2510 		mutex_exit(&spa_namespace_lock);
2511 	}
2512 
2513 	*spapp = spa;
2514 
2515 	return (0);
2516 }
2517 
2518 int
2519 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2520     nvlist_t **config)
2521 {
2522 	return (spa_open_common(name, spapp, tag, policy, config));
2523 }
2524 
2525 int
2526 spa_open(const char *name, spa_t **spapp, void *tag)
2527 {
2528 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2529 }
2530 
2531 /*
2532  * Lookup the given spa_t, incrementing the inject count in the process,
2533  * preventing it from being exported or destroyed.
2534  */
2535 spa_t *
2536 spa_inject_addref(char *name)
2537 {
2538 	spa_t *spa;
2539 
2540 	mutex_enter(&spa_namespace_lock);
2541 	if ((spa = spa_lookup(name)) == NULL) {
2542 		mutex_exit(&spa_namespace_lock);
2543 		return (NULL);
2544 	}
2545 	spa->spa_inject_ref++;
2546 	mutex_exit(&spa_namespace_lock);
2547 
2548 	return (spa);
2549 }
2550 
2551 void
2552 spa_inject_delref(spa_t *spa)
2553 {
2554 	mutex_enter(&spa_namespace_lock);
2555 	spa->spa_inject_ref--;
2556 	mutex_exit(&spa_namespace_lock);
2557 }
2558 
2559 /*
2560  * Add spares device information to the nvlist.
2561  */
2562 static void
2563 spa_add_spares(spa_t *spa, nvlist_t *config)
2564 {
2565 	nvlist_t **spares;
2566 	uint_t i, nspares;
2567 	nvlist_t *nvroot;
2568 	uint64_t guid;
2569 	vdev_stat_t *vs;
2570 	uint_t vsc;
2571 	uint64_t pool;
2572 
2573 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2574 
2575 	if (spa->spa_spares.sav_count == 0)
2576 		return;
2577 
2578 	VERIFY(nvlist_lookup_nvlist(config,
2579 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2580 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2581 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2582 	if (nspares != 0) {
2583 		VERIFY(nvlist_add_nvlist_array(nvroot,
2584 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2585 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2586 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2587 
2588 		/*
2589 		 * Go through and find any spares which have since been
2590 		 * repurposed as an active spare.  If this is the case, update
2591 		 * their status appropriately.
2592 		 */
2593 		for (i = 0; i < nspares; i++) {
2594 			VERIFY(nvlist_lookup_uint64(spares[i],
2595 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2596 			if (spa_spare_exists(guid, &pool, NULL) &&
2597 			    pool != 0ULL) {
2598 				VERIFY(nvlist_lookup_uint64_array(
2599 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2600 				    (uint64_t **)&vs, &vsc) == 0);
2601 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2602 				vs->vs_aux = VDEV_AUX_SPARED;
2603 			}
2604 		}
2605 	}
2606 }
2607 
2608 /*
2609  * Add l2cache device information to the nvlist, including vdev stats.
2610  */
2611 static void
2612 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2613 {
2614 	nvlist_t **l2cache;
2615 	uint_t i, j, nl2cache;
2616 	nvlist_t *nvroot;
2617 	uint64_t guid;
2618 	vdev_t *vd;
2619 	vdev_stat_t *vs;
2620 	uint_t vsc;
2621 
2622 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2623 
2624 	if (spa->spa_l2cache.sav_count == 0)
2625 		return;
2626 
2627 	VERIFY(nvlist_lookup_nvlist(config,
2628 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2629 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2630 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2631 	if (nl2cache != 0) {
2632 		VERIFY(nvlist_add_nvlist_array(nvroot,
2633 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2634 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2635 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2636 
2637 		/*
2638 		 * Update level 2 cache device stats.
2639 		 */
2640 
2641 		for (i = 0; i < nl2cache; i++) {
2642 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2643 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2644 
2645 			vd = NULL;
2646 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2647 				if (guid ==
2648 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2649 					vd = spa->spa_l2cache.sav_vdevs[j];
2650 					break;
2651 				}
2652 			}
2653 			ASSERT(vd != NULL);
2654 
2655 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2656 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2657 			    == 0);
2658 			vdev_get_stats(vd, vs);
2659 		}
2660 	}
2661 }
2662 
2663 int
2664 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2665 {
2666 	int error;
2667 	spa_t *spa;
2668 
2669 	*config = NULL;
2670 	error = spa_open_common(name, &spa, FTAG, NULL, config);
2671 
2672 	if (spa != NULL) {
2673 		/*
2674 		 * This still leaves a window of inconsistency where the spares
2675 		 * or l2cache devices could change and the config would be
2676 		 * self-inconsistent.
2677 		 */
2678 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2679 
2680 		if (*config != NULL) {
2681 			uint64_t loadtimes[2];
2682 
2683 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2684 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
2685 			VERIFY(nvlist_add_uint64_array(*config,
2686 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
2687 
2688 			VERIFY(nvlist_add_uint64(*config,
2689 			    ZPOOL_CONFIG_ERRCOUNT,
2690 			    spa_get_errlog_size(spa)) == 0);
2691 
2692 			if (spa_suspended(spa))
2693 				VERIFY(nvlist_add_uint64(*config,
2694 				    ZPOOL_CONFIG_SUSPENDED,
2695 				    spa->spa_failmode) == 0);
2696 
2697 			spa_add_spares(spa, *config);
2698 			spa_add_l2cache(spa, *config);
2699 		}
2700 	}
2701 
2702 	/*
2703 	 * We want to get the alternate root even for faulted pools, so we cheat
2704 	 * and call spa_lookup() directly.
2705 	 */
2706 	if (altroot) {
2707 		if (spa == NULL) {
2708 			mutex_enter(&spa_namespace_lock);
2709 			spa = spa_lookup(name);
2710 			if (spa)
2711 				spa_altroot(spa, altroot, buflen);
2712 			else
2713 				altroot[0] = '\0';
2714 			spa = NULL;
2715 			mutex_exit(&spa_namespace_lock);
2716 		} else {
2717 			spa_altroot(spa, altroot, buflen);
2718 		}
2719 	}
2720 
2721 	if (spa != NULL) {
2722 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2723 		spa_close(spa, FTAG);
2724 	}
2725 
2726 	return (error);
2727 }
2728 
2729 /*
2730  * Validate that the auxiliary device array is well formed.  We must have an
2731  * array of nvlists, each which describes a valid leaf vdev.  If this is an
2732  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2733  * specified, as long as they are well-formed.
2734  */
2735 static int
2736 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2737     spa_aux_vdev_t *sav, const char *config, uint64_t version,
2738     vdev_labeltype_t label)
2739 {
2740 	nvlist_t **dev;
2741 	uint_t i, ndev;
2742 	vdev_t *vd;
2743 	int error;
2744 
2745 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2746 
2747 	/*
2748 	 * It's acceptable to have no devs specified.
2749 	 */
2750 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2751 		return (0);
2752 
2753 	if (ndev == 0)
2754 		return (EINVAL);
2755 
2756 	/*
2757 	 * Make sure the pool is formatted with a version that supports this
2758 	 * device type.
2759 	 */
2760 	if (spa_version(spa) < version)
2761 		return (ENOTSUP);
2762 
2763 	/*
2764 	 * Set the pending device list so we correctly handle device in-use
2765 	 * checking.
2766 	 */
2767 	sav->sav_pending = dev;
2768 	sav->sav_npending = ndev;
2769 
2770 	for (i = 0; i < ndev; i++) {
2771 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2772 		    mode)) != 0)
2773 			goto out;
2774 
2775 		if (!vd->vdev_ops->vdev_op_leaf) {
2776 			vdev_free(vd);
2777 			error = EINVAL;
2778 			goto out;
2779 		}
2780 
2781 		/*
2782 		 * The L2ARC currently only supports disk devices in
2783 		 * kernel context.  For user-level testing, we allow it.
2784 		 */
2785 #ifdef _KERNEL
2786 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2787 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2788 			error = ENOTBLK;
2789 			goto out;
2790 		}
2791 #endif
2792 		vd->vdev_top = vd;
2793 
2794 		if ((error = vdev_open(vd)) == 0 &&
2795 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2796 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2797 			    vd->vdev_guid) == 0);
2798 		}
2799 
2800 		vdev_free(vd);
2801 
2802 		if (error &&
2803 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2804 			goto out;
2805 		else
2806 			error = 0;
2807 	}
2808 
2809 out:
2810 	sav->sav_pending = NULL;
2811 	sav->sav_npending = 0;
2812 	return (error);
2813 }
2814 
2815 static int
2816 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2817 {
2818 	int error;
2819 
2820 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2821 
2822 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2823 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2824 	    VDEV_LABEL_SPARE)) != 0) {
2825 		return (error);
2826 	}
2827 
2828 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2829 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2830 	    VDEV_LABEL_L2CACHE));
2831 }
2832 
2833 static void
2834 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2835     const char *config)
2836 {
2837 	int i;
2838 
2839 	if (sav->sav_config != NULL) {
2840 		nvlist_t **olddevs;
2841 		uint_t oldndevs;
2842 		nvlist_t **newdevs;
2843 
2844 		/*
2845 		 * Generate new dev list by concatentating with the
2846 		 * current dev list.
2847 		 */
2848 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2849 		    &olddevs, &oldndevs) == 0);
2850 
2851 		newdevs = kmem_alloc(sizeof (void *) *
2852 		    (ndevs + oldndevs), KM_SLEEP);
2853 		for (i = 0; i < oldndevs; i++)
2854 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2855 			    KM_SLEEP) == 0);
2856 		for (i = 0; i < ndevs; i++)
2857 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2858 			    KM_SLEEP) == 0);
2859 
2860 		VERIFY(nvlist_remove(sav->sav_config, config,
2861 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2862 
2863 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2864 		    config, newdevs, ndevs + oldndevs) == 0);
2865 		for (i = 0; i < oldndevs + ndevs; i++)
2866 			nvlist_free(newdevs[i]);
2867 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2868 	} else {
2869 		/*
2870 		 * Generate a new dev list.
2871 		 */
2872 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2873 		    KM_SLEEP) == 0);
2874 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2875 		    devs, ndevs) == 0);
2876 	}
2877 }
2878 
2879 /*
2880  * Stop and drop level 2 ARC devices
2881  */
2882 void
2883 spa_l2cache_drop(spa_t *spa)
2884 {
2885 	vdev_t *vd;
2886 	int i;
2887 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2888 
2889 	for (i = 0; i < sav->sav_count; i++) {
2890 		uint64_t pool;
2891 
2892 		vd = sav->sav_vdevs[i];
2893 		ASSERT(vd != NULL);
2894 
2895 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2896 		    pool != 0ULL && l2arc_vdev_present(vd))
2897 			l2arc_remove_vdev(vd);
2898 		if (vd->vdev_isl2cache)
2899 			spa_l2cache_remove(vd);
2900 		vdev_clear_stats(vd);
2901 		(void) vdev_close(vd);
2902 	}
2903 }
2904 
2905 /*
2906  * Pool Creation
2907  */
2908 int
2909 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2910     const char *history_str, nvlist_t *zplprops)
2911 {
2912 	spa_t *spa;
2913 	char *altroot = NULL;
2914 	vdev_t *rvd;
2915 	dsl_pool_t *dp;
2916 	dmu_tx_t *tx;
2917 	int error = 0;
2918 	uint64_t txg = TXG_INITIAL;
2919 	nvlist_t **spares, **l2cache;
2920 	uint_t nspares, nl2cache;
2921 	uint64_t version, obj;
2922 
2923 	/*
2924 	 * If this pool already exists, return failure.
2925 	 */
2926 	mutex_enter(&spa_namespace_lock);
2927 	if (spa_lookup(pool) != NULL) {
2928 		mutex_exit(&spa_namespace_lock);
2929 		return (EEXIST);
2930 	}
2931 
2932 	/*
2933 	 * Allocate a new spa_t structure.
2934 	 */
2935 	(void) nvlist_lookup_string(props,
2936 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2937 	spa = spa_add(pool, NULL, altroot);
2938 	spa_activate(spa, spa_mode_global);
2939 
2940 	if (props && (error = spa_prop_validate(spa, props))) {
2941 		spa_deactivate(spa);
2942 		spa_remove(spa);
2943 		mutex_exit(&spa_namespace_lock);
2944 		return (error);
2945 	}
2946 
2947 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2948 	    &version) != 0)
2949 		version = SPA_VERSION;
2950 	ASSERT(version <= SPA_VERSION);
2951 
2952 	spa->spa_first_txg = txg;
2953 	spa->spa_uberblock.ub_txg = txg - 1;
2954 	spa->spa_uberblock.ub_version = version;
2955 	spa->spa_ubsync = spa->spa_uberblock;
2956 
2957 	/*
2958 	 * Create "The Godfather" zio to hold all async IOs
2959 	 */
2960 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2961 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2962 
2963 	/*
2964 	 * Create the root vdev.
2965 	 */
2966 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2967 
2968 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2969 
2970 	ASSERT(error != 0 || rvd != NULL);
2971 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2972 
2973 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2974 		error = EINVAL;
2975 
2976 	if (error == 0 &&
2977 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2978 	    (error = spa_validate_aux(spa, nvroot, txg,
2979 	    VDEV_ALLOC_ADD)) == 0) {
2980 		for (int c = 0; c < rvd->vdev_children; c++) {
2981 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2982 			vdev_expand(rvd->vdev_child[c], txg);
2983 		}
2984 	}
2985 
2986 	spa_config_exit(spa, SCL_ALL, FTAG);
2987 
2988 	if (error != 0) {
2989 		spa_unload(spa);
2990 		spa_deactivate(spa);
2991 		spa_remove(spa);
2992 		mutex_exit(&spa_namespace_lock);
2993 		return (error);
2994 	}
2995 
2996 	/*
2997 	 * Get the list of spares, if specified.
2998 	 */
2999 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3000 	    &spares, &nspares) == 0) {
3001 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3002 		    KM_SLEEP) == 0);
3003 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3004 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3005 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3006 		spa_load_spares(spa);
3007 		spa_config_exit(spa, SCL_ALL, FTAG);
3008 		spa->spa_spares.sav_sync = B_TRUE;
3009 	}
3010 
3011 	/*
3012 	 * Get the list of level 2 cache devices, if specified.
3013 	 */
3014 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3015 	    &l2cache, &nl2cache) == 0) {
3016 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3017 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3018 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3019 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3020 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3021 		spa_load_l2cache(spa);
3022 		spa_config_exit(spa, SCL_ALL, FTAG);
3023 		spa->spa_l2cache.sav_sync = B_TRUE;
3024 	}
3025 
3026 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3027 	spa->spa_meta_objset = dp->dp_meta_objset;
3028 
3029 	/*
3030 	 * Create DDTs (dedup tables).
3031 	 */
3032 	ddt_create(spa);
3033 
3034 	spa_update_dspace(spa);
3035 
3036 	tx = dmu_tx_create_assigned(dp, txg);
3037 
3038 	/*
3039 	 * Create the pool config object.
3040 	 */
3041 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3042 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3043 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3044 
3045 	if (zap_add(spa->spa_meta_objset,
3046 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3047 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3048 		cmn_err(CE_PANIC, "failed to add pool config");
3049 	}
3050 
3051 	if (zap_add(spa->spa_meta_objset,
3052 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3053 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3054 		cmn_err(CE_PANIC, "failed to add pool version");
3055 	}
3056 
3057 	/* Newly created pools with the right version are always deflated. */
3058 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3059 		spa->spa_deflate = TRUE;
3060 		if (zap_add(spa->spa_meta_objset,
3061 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3062 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3063 			cmn_err(CE_PANIC, "failed to add deflate");
3064 		}
3065 	}
3066 
3067 	/*
3068 	 * Create the deferred-free bpobj.  Turn off compression
3069 	 * because sync-to-convergence takes longer if the blocksize
3070 	 * keeps changing.
3071 	 */
3072 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3073 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3074 	    ZIO_COMPRESS_OFF, tx);
3075 	if (zap_add(spa->spa_meta_objset,
3076 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3077 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3078 		cmn_err(CE_PANIC, "failed to add bpobj");
3079 	}
3080 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3081 	    spa->spa_meta_objset, obj));
3082 
3083 	/*
3084 	 * Create the pool's history object.
3085 	 */
3086 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3087 		spa_history_create_obj(spa, tx);
3088 
3089 	/*
3090 	 * Set pool properties.
3091 	 */
3092 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3093 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3094 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3095 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3096 
3097 	if (props != NULL) {
3098 		spa_configfile_set(spa, props, B_FALSE);
3099 		spa_sync_props(spa, props, tx);
3100 	}
3101 
3102 	dmu_tx_commit(tx);
3103 
3104 	spa->spa_sync_on = B_TRUE;
3105 	txg_sync_start(spa->spa_dsl_pool);
3106 
3107 	/*
3108 	 * We explicitly wait for the first transaction to complete so that our
3109 	 * bean counters are appropriately updated.
3110 	 */
3111 	txg_wait_synced(spa->spa_dsl_pool, txg);
3112 
3113 	spa_config_sync(spa, B_FALSE, B_TRUE);
3114 
3115 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3116 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3117 	spa_history_log_version(spa, LOG_POOL_CREATE);
3118 
3119 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3120 
3121 	mutex_exit(&spa_namespace_lock);
3122 
3123 	return (0);
3124 }
3125 
3126 #ifdef _KERNEL
3127 /*
3128  * Get the root pool information from the root disk, then import the root pool
3129  * during the system boot up time.
3130  */
3131 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3132 
3133 static nvlist_t *
3134 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3135 {
3136 	nvlist_t *config;
3137 	nvlist_t *nvtop, *nvroot;
3138 	uint64_t pgid;
3139 
3140 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3141 		return (NULL);
3142 
3143 	/*
3144 	 * Add this top-level vdev to the child array.
3145 	 */
3146 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3147 	    &nvtop) == 0);
3148 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3149 	    &pgid) == 0);
3150 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3151 
3152 	/*
3153 	 * Put this pool's top-level vdevs into a root vdev.
3154 	 */
3155 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3156 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3157 	    VDEV_TYPE_ROOT) == 0);
3158 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3159 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3160 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3161 	    &nvtop, 1) == 0);
3162 
3163 	/*
3164 	 * Replace the existing vdev_tree with the new root vdev in
3165 	 * this pool's configuration (remove the old, add the new).
3166 	 */
3167 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3168 	nvlist_free(nvroot);
3169 	return (config);
3170 }
3171 
3172 /*
3173  * Walk the vdev tree and see if we can find a device with "better"
3174  * configuration. A configuration is "better" if the label on that
3175  * device has a more recent txg.
3176  */
3177 static void
3178 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3179 {
3180 	for (int c = 0; c < vd->vdev_children; c++)
3181 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3182 
3183 	if (vd->vdev_ops->vdev_op_leaf) {
3184 		nvlist_t *label;
3185 		uint64_t label_txg;
3186 
3187 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3188 		    &label) != 0)
3189 			return;
3190 
3191 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3192 		    &label_txg) == 0);
3193 
3194 		/*
3195 		 * Do we have a better boot device?
3196 		 */
3197 		if (label_txg > *txg) {
3198 			*txg = label_txg;
3199 			*avd = vd;
3200 		}
3201 		nvlist_free(label);
3202 	}
3203 }
3204 
3205 /*
3206  * Import a root pool.
3207  *
3208  * For x86. devpath_list will consist of devid and/or physpath name of
3209  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3210  * The GRUB "findroot" command will return the vdev we should boot.
3211  *
3212  * For Sparc, devpath_list consists the physpath name of the booting device
3213  * no matter the rootpool is a single device pool or a mirrored pool.
3214  * e.g.
3215  *	"/pci@1f,0/ide@d/disk@0,0:a"
3216  */
3217 int
3218 spa_import_rootpool(char *devpath, char *devid)
3219 {
3220 	spa_t *spa;
3221 	vdev_t *rvd, *bvd, *avd = NULL;
3222 	nvlist_t *config, *nvtop;
3223 	uint64_t guid, txg;
3224 	char *pname;
3225 	int error;
3226 
3227 	/*
3228 	 * Read the label from the boot device and generate a configuration.
3229 	 */
3230 	config = spa_generate_rootconf(devpath, devid, &guid);
3231 #if defined(_OBP) && defined(_KERNEL)
3232 	if (config == NULL) {
3233 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3234 			/* iscsi boot */
3235 			get_iscsi_bootpath_phy(devpath);
3236 			config = spa_generate_rootconf(devpath, devid, &guid);
3237 		}
3238 	}
3239 #endif
3240 	if (config == NULL) {
3241 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3242 		    devpath);
3243 		return (EIO);
3244 	}
3245 
3246 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3247 	    &pname) == 0);
3248 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3249 
3250 	mutex_enter(&spa_namespace_lock);
3251 	if ((spa = spa_lookup(pname)) != NULL) {
3252 		/*
3253 		 * Remove the existing root pool from the namespace so that we
3254 		 * can replace it with the correct config we just read in.
3255 		 */
3256 		spa_remove(spa);
3257 	}
3258 
3259 	spa = spa_add(pname, config, NULL);
3260 	spa->spa_is_root = B_TRUE;
3261 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3262 
3263 	/*
3264 	 * Build up a vdev tree based on the boot device's label config.
3265 	 */
3266 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3267 	    &nvtop) == 0);
3268 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3269 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3270 	    VDEV_ALLOC_ROOTPOOL);
3271 	spa_config_exit(spa, SCL_ALL, FTAG);
3272 	if (error) {
3273 		mutex_exit(&spa_namespace_lock);
3274 		nvlist_free(config);
3275 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3276 		    pname);
3277 		return (error);
3278 	}
3279 
3280 	/*
3281 	 * Get the boot vdev.
3282 	 */
3283 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3284 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3285 		    (u_longlong_t)guid);
3286 		error = ENOENT;
3287 		goto out;
3288 	}
3289 
3290 	/*
3291 	 * Determine if there is a better boot device.
3292 	 */
3293 	avd = bvd;
3294 	spa_alt_rootvdev(rvd, &avd, &txg);
3295 	if (avd != bvd) {
3296 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3297 		    "try booting from '%s'", avd->vdev_path);
3298 		error = EINVAL;
3299 		goto out;
3300 	}
3301 
3302 	/*
3303 	 * If the boot device is part of a spare vdev then ensure that
3304 	 * we're booting off the active spare.
3305 	 */
3306 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3307 	    !bvd->vdev_isspare) {
3308 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3309 		    "try booting from '%s'",
3310 		    bvd->vdev_parent->
3311 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3312 		error = EINVAL;
3313 		goto out;
3314 	}
3315 
3316 	error = 0;
3317 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3318 out:
3319 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3320 	vdev_free(rvd);
3321 	spa_config_exit(spa, SCL_ALL, FTAG);
3322 	mutex_exit(&spa_namespace_lock);
3323 
3324 	nvlist_free(config);
3325 	return (error);
3326 }
3327 
3328 #endif
3329 
3330 /*
3331  * Import a non-root pool into the system.
3332  */
3333 int
3334 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3335 {
3336 	spa_t *spa;
3337 	char *altroot = NULL;
3338 	spa_load_state_t state = SPA_LOAD_IMPORT;
3339 	zpool_rewind_policy_t policy;
3340 	uint64_t mode = spa_mode_global;
3341 	uint64_t readonly = B_FALSE;
3342 	int error;
3343 	nvlist_t *nvroot;
3344 	nvlist_t **spares, **l2cache;
3345 	uint_t nspares, nl2cache;
3346 
3347 	/*
3348 	 * If a pool with this name exists, return failure.
3349 	 */
3350 	mutex_enter(&spa_namespace_lock);
3351 	if (spa_lookup(pool) != NULL) {
3352 		mutex_exit(&spa_namespace_lock);
3353 		return (EEXIST);
3354 	}
3355 
3356 	/*
3357 	 * Create and initialize the spa structure.
3358 	 */
3359 	(void) nvlist_lookup_string(props,
3360 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3361 	(void) nvlist_lookup_uint64(props,
3362 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3363 	if (readonly)
3364 		mode = FREAD;
3365 	spa = spa_add(pool, config, altroot);
3366 	spa->spa_import_flags = flags;
3367 
3368 	/*
3369 	 * Verbatim import - Take a pool and insert it into the namespace
3370 	 * as if it had been loaded at boot.
3371 	 */
3372 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3373 		if (props != NULL)
3374 			spa_configfile_set(spa, props, B_FALSE);
3375 
3376 		spa_config_sync(spa, B_FALSE, B_TRUE);
3377 
3378 		mutex_exit(&spa_namespace_lock);
3379 		spa_history_log_version(spa, LOG_POOL_IMPORT);
3380 
3381 		return (0);
3382 	}
3383 
3384 	spa_activate(spa, mode);
3385 
3386 	/*
3387 	 * Don't start async tasks until we know everything is healthy.
3388 	 */
3389 	spa_async_suspend(spa);
3390 
3391 	zpool_get_rewind_policy(config, &policy);
3392 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3393 		state = SPA_LOAD_RECOVER;
3394 
3395 	/*
3396 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3397 	 * because the user-supplied config is actually the one to trust when
3398 	 * doing an import.
3399 	 */
3400 	if (state != SPA_LOAD_RECOVER)
3401 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3402 
3403 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3404 	    policy.zrp_request);
3405 
3406 	/*
3407 	 * Propagate anything learned while loading the pool and pass it
3408 	 * back to caller (i.e. rewind info, missing devices, etc).
3409 	 */
3410 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3411 	    spa->spa_load_info) == 0);
3412 
3413 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3414 	/*
3415 	 * Toss any existing sparelist, as it doesn't have any validity
3416 	 * anymore, and conflicts with spa_has_spare().
3417 	 */
3418 	if (spa->spa_spares.sav_config) {
3419 		nvlist_free(spa->spa_spares.sav_config);
3420 		spa->spa_spares.sav_config = NULL;
3421 		spa_load_spares(spa);
3422 	}
3423 	if (spa->spa_l2cache.sav_config) {
3424 		nvlist_free(spa->spa_l2cache.sav_config);
3425 		spa->spa_l2cache.sav_config = NULL;
3426 		spa_load_l2cache(spa);
3427 	}
3428 
3429 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3430 	    &nvroot) == 0);
3431 	if (error == 0)
3432 		error = spa_validate_aux(spa, nvroot, -1ULL,
3433 		    VDEV_ALLOC_SPARE);
3434 	if (error == 0)
3435 		error = spa_validate_aux(spa, nvroot, -1ULL,
3436 		    VDEV_ALLOC_L2CACHE);
3437 	spa_config_exit(spa, SCL_ALL, FTAG);
3438 
3439 	if (props != NULL)
3440 		spa_configfile_set(spa, props, B_FALSE);
3441 
3442 	if (error != 0 || (props && spa_writeable(spa) &&
3443 	    (error = spa_prop_set(spa, props)))) {
3444 		spa_unload(spa);
3445 		spa_deactivate(spa);
3446 		spa_remove(spa);
3447 		mutex_exit(&spa_namespace_lock);
3448 		return (error);
3449 	}
3450 
3451 	spa_async_resume(spa);
3452 
3453 	/*
3454 	 * Override any spares and level 2 cache devices as specified by
3455 	 * the user, as these may have correct device names/devids, etc.
3456 	 */
3457 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3458 	    &spares, &nspares) == 0) {
3459 		if (spa->spa_spares.sav_config)
3460 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3461 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3462 		else
3463 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3464 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3465 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3466 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3467 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3468 		spa_load_spares(spa);
3469 		spa_config_exit(spa, SCL_ALL, FTAG);
3470 		spa->spa_spares.sav_sync = B_TRUE;
3471 	}
3472 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3473 	    &l2cache, &nl2cache) == 0) {
3474 		if (spa->spa_l2cache.sav_config)
3475 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3476 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3477 		else
3478 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3479 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3480 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3481 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3482 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3483 		spa_load_l2cache(spa);
3484 		spa_config_exit(spa, SCL_ALL, FTAG);
3485 		spa->spa_l2cache.sav_sync = B_TRUE;
3486 	}
3487 
3488 	/*
3489 	 * Check for any removed devices.
3490 	 */
3491 	if (spa->spa_autoreplace) {
3492 		spa_aux_check_removed(&spa->spa_spares);
3493 		spa_aux_check_removed(&spa->spa_l2cache);
3494 	}
3495 
3496 	if (spa_writeable(spa)) {
3497 		/*
3498 		 * Update the config cache to include the newly-imported pool.
3499 		 */
3500 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3501 	}
3502 
3503 	/*
3504 	 * It's possible that the pool was expanded while it was exported.
3505 	 * We kick off an async task to handle this for us.
3506 	 */
3507 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3508 
3509 	mutex_exit(&spa_namespace_lock);
3510 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3511 
3512 	return (0);
3513 }
3514 
3515 nvlist_t *
3516 spa_tryimport(nvlist_t *tryconfig)
3517 {
3518 	nvlist_t *config = NULL;
3519 	char *poolname;
3520 	spa_t *spa;
3521 	uint64_t state;
3522 	int error;
3523 
3524 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3525 		return (NULL);
3526 
3527 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3528 		return (NULL);
3529 
3530 	/*
3531 	 * Create and initialize the spa structure.
3532 	 */
3533 	mutex_enter(&spa_namespace_lock);
3534 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3535 	spa_activate(spa, FREAD);
3536 
3537 	/*
3538 	 * Pass off the heavy lifting to spa_load().
3539 	 * Pass TRUE for mosconfig because the user-supplied config
3540 	 * is actually the one to trust when doing an import.
3541 	 */
3542 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3543 
3544 	/*
3545 	 * If 'tryconfig' was at least parsable, return the current config.
3546 	 */
3547 	if (spa->spa_root_vdev != NULL) {
3548 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3549 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3550 		    poolname) == 0);
3551 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3552 		    state) == 0);
3553 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3554 		    spa->spa_uberblock.ub_timestamp) == 0);
3555 
3556 		/*
3557 		 * If the bootfs property exists on this pool then we
3558 		 * copy it out so that external consumers can tell which
3559 		 * pools are bootable.
3560 		 */
3561 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3562 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3563 
3564 			/*
3565 			 * We have to play games with the name since the
3566 			 * pool was opened as TRYIMPORT_NAME.
3567 			 */
3568 			if (dsl_dsobj_to_dsname(spa_name(spa),
3569 			    spa->spa_bootfs, tmpname) == 0) {
3570 				char *cp;
3571 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3572 
3573 				cp = strchr(tmpname, '/');
3574 				if (cp == NULL) {
3575 					(void) strlcpy(dsname, tmpname,
3576 					    MAXPATHLEN);
3577 				} else {
3578 					(void) snprintf(dsname, MAXPATHLEN,
3579 					    "%s/%s", poolname, ++cp);
3580 				}
3581 				VERIFY(nvlist_add_string(config,
3582 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3583 				kmem_free(dsname, MAXPATHLEN);
3584 			}
3585 			kmem_free(tmpname, MAXPATHLEN);
3586 		}
3587 
3588 		/*
3589 		 * Add the list of hot spares and level 2 cache devices.
3590 		 */
3591 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3592 		spa_add_spares(spa, config);
3593 		spa_add_l2cache(spa, config);
3594 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3595 	}
3596 
3597 	spa_unload(spa);
3598 	spa_deactivate(spa);
3599 	spa_remove(spa);
3600 	mutex_exit(&spa_namespace_lock);
3601 
3602 	return (config);
3603 }
3604 
3605 /*
3606  * Pool export/destroy
3607  *
3608  * The act of destroying or exporting a pool is very simple.  We make sure there
3609  * is no more pending I/O and any references to the pool are gone.  Then, we
3610  * update the pool state and sync all the labels to disk, removing the
3611  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3612  * we don't sync the labels or remove the configuration cache.
3613  */
3614 static int
3615 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3616     boolean_t force, boolean_t hardforce)
3617 {
3618 	spa_t *spa;
3619 
3620 	if (oldconfig)
3621 		*oldconfig = NULL;
3622 
3623 	if (!(spa_mode_global & FWRITE))
3624 		return (EROFS);
3625 
3626 	mutex_enter(&spa_namespace_lock);
3627 	if ((spa = spa_lookup(pool)) == NULL) {
3628 		mutex_exit(&spa_namespace_lock);
3629 		return (ENOENT);
3630 	}
3631 
3632 	/*
3633 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3634 	 * reacquire the namespace lock, and see if we can export.
3635 	 */
3636 	spa_open_ref(spa, FTAG);
3637 	mutex_exit(&spa_namespace_lock);
3638 	spa_async_suspend(spa);
3639 	mutex_enter(&spa_namespace_lock);
3640 	spa_close(spa, FTAG);
3641 
3642 	/*
3643 	 * The pool will be in core if it's openable,
3644 	 * in which case we can modify its state.
3645 	 */
3646 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3647 		/*
3648 		 * Objsets may be open only because they're dirty, so we
3649 		 * have to force it to sync before checking spa_refcnt.
3650 		 */
3651 		txg_wait_synced(spa->spa_dsl_pool, 0);
3652 
3653 		/*
3654 		 * A pool cannot be exported or destroyed if there are active
3655 		 * references.  If we are resetting a pool, allow references by
3656 		 * fault injection handlers.
3657 		 */
3658 		if (!spa_refcount_zero(spa) ||
3659 		    (spa->spa_inject_ref != 0 &&
3660 		    new_state != POOL_STATE_UNINITIALIZED)) {
3661 			spa_async_resume(spa);
3662 			mutex_exit(&spa_namespace_lock);
3663 			return (EBUSY);
3664 		}
3665 
3666 		/*
3667 		 * A pool cannot be exported if it has an active shared spare.
3668 		 * This is to prevent other pools stealing the active spare
3669 		 * from an exported pool. At user's own will, such pool can
3670 		 * be forcedly exported.
3671 		 */
3672 		if (!force && new_state == POOL_STATE_EXPORTED &&
3673 		    spa_has_active_shared_spare(spa)) {
3674 			spa_async_resume(spa);
3675 			mutex_exit(&spa_namespace_lock);
3676 			return (EXDEV);
3677 		}
3678 
3679 		/*
3680 		 * We want this to be reflected on every label,
3681 		 * so mark them all dirty.  spa_unload() will do the
3682 		 * final sync that pushes these changes out.
3683 		 */
3684 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3685 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3686 			spa->spa_state = new_state;
3687 			spa->spa_final_txg = spa_last_synced_txg(spa) +
3688 			    TXG_DEFER_SIZE + 1;
3689 			vdev_config_dirty(spa->spa_root_vdev);
3690 			spa_config_exit(spa, SCL_ALL, FTAG);
3691 		}
3692 	}
3693 
3694 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3695 
3696 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3697 		spa_unload(spa);
3698 		spa_deactivate(spa);
3699 	}
3700 
3701 	if (oldconfig && spa->spa_config)
3702 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3703 
3704 	if (new_state != POOL_STATE_UNINITIALIZED) {
3705 		if (!hardforce)
3706 			spa_config_sync(spa, B_TRUE, B_TRUE);
3707 		spa_remove(spa);
3708 	}
3709 	mutex_exit(&spa_namespace_lock);
3710 
3711 	return (0);
3712 }
3713 
3714 /*
3715  * Destroy a storage pool.
3716  */
3717 int
3718 spa_destroy(char *pool)
3719 {
3720 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3721 	    B_FALSE, B_FALSE));
3722 }
3723 
3724 /*
3725  * Export a storage pool.
3726  */
3727 int
3728 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3729     boolean_t hardforce)
3730 {
3731 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3732 	    force, hardforce));
3733 }
3734 
3735 /*
3736  * Similar to spa_export(), this unloads the spa_t without actually removing it
3737  * from the namespace in any way.
3738  */
3739 int
3740 spa_reset(char *pool)
3741 {
3742 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3743 	    B_FALSE, B_FALSE));
3744 }
3745 
3746 /*
3747  * ==========================================================================
3748  * Device manipulation
3749  * ==========================================================================
3750  */
3751 
3752 /*
3753  * Add a device to a storage pool.
3754  */
3755 int
3756 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3757 {
3758 	uint64_t txg, id;
3759 	int error;
3760 	vdev_t *rvd = spa->spa_root_vdev;
3761 	vdev_t *vd, *tvd;
3762 	nvlist_t **spares, **l2cache;
3763 	uint_t nspares, nl2cache;
3764 
3765 	ASSERT(spa_writeable(spa));
3766 
3767 	txg = spa_vdev_enter(spa);
3768 
3769 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3770 	    VDEV_ALLOC_ADD)) != 0)
3771 		return (spa_vdev_exit(spa, NULL, txg, error));
3772 
3773 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3774 
3775 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3776 	    &nspares) != 0)
3777 		nspares = 0;
3778 
3779 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3780 	    &nl2cache) != 0)
3781 		nl2cache = 0;
3782 
3783 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3784 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3785 
3786 	if (vd->vdev_children != 0 &&
3787 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3788 		return (spa_vdev_exit(spa, vd, txg, error));
3789 
3790 	/*
3791 	 * We must validate the spares and l2cache devices after checking the
3792 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3793 	 */
3794 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3795 		return (spa_vdev_exit(spa, vd, txg, error));
3796 
3797 	/*
3798 	 * Transfer each new top-level vdev from vd to rvd.
3799 	 */
3800 	for (int c = 0; c < vd->vdev_children; c++) {
3801 
3802 		/*
3803 		 * Set the vdev id to the first hole, if one exists.
3804 		 */
3805 		for (id = 0; id < rvd->vdev_children; id++) {
3806 			if (rvd->vdev_child[id]->vdev_ishole) {
3807 				vdev_free(rvd->vdev_child[id]);
3808 				break;
3809 			}
3810 		}
3811 		tvd = vd->vdev_child[c];
3812 		vdev_remove_child(vd, tvd);
3813 		tvd->vdev_id = id;
3814 		vdev_add_child(rvd, tvd);
3815 		vdev_config_dirty(tvd);
3816 	}
3817 
3818 	if (nspares != 0) {
3819 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3820 		    ZPOOL_CONFIG_SPARES);
3821 		spa_load_spares(spa);
3822 		spa->spa_spares.sav_sync = B_TRUE;
3823 	}
3824 
3825 	if (nl2cache != 0) {
3826 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3827 		    ZPOOL_CONFIG_L2CACHE);
3828 		spa_load_l2cache(spa);
3829 		spa->spa_l2cache.sav_sync = B_TRUE;
3830 	}
3831 
3832 	/*
3833 	 * We have to be careful when adding new vdevs to an existing pool.
3834 	 * If other threads start allocating from these vdevs before we
3835 	 * sync the config cache, and we lose power, then upon reboot we may
3836 	 * fail to open the pool because there are DVAs that the config cache
3837 	 * can't translate.  Therefore, we first add the vdevs without
3838 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3839 	 * and then let spa_config_update() initialize the new metaslabs.
3840 	 *
3841 	 * spa_load() checks for added-but-not-initialized vdevs, so that
3842 	 * if we lose power at any point in this sequence, the remaining
3843 	 * steps will be completed the next time we load the pool.
3844 	 */
3845 	(void) spa_vdev_exit(spa, vd, txg, 0);
3846 
3847 	mutex_enter(&spa_namespace_lock);
3848 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3849 	mutex_exit(&spa_namespace_lock);
3850 
3851 	return (0);
3852 }
3853 
3854 /*
3855  * Attach a device to a mirror.  The arguments are the path to any device
3856  * in the mirror, and the nvroot for the new device.  If the path specifies
3857  * a device that is not mirrored, we automatically insert the mirror vdev.
3858  *
3859  * If 'replacing' is specified, the new device is intended to replace the
3860  * existing device; in this case the two devices are made into their own
3861  * mirror using the 'replacing' vdev, which is functionally identical to
3862  * the mirror vdev (it actually reuses all the same ops) but has a few
3863  * extra rules: you can't attach to it after it's been created, and upon
3864  * completion of resilvering, the first disk (the one being replaced)
3865  * is automatically detached.
3866  */
3867 int
3868 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3869 {
3870 	uint64_t txg, dtl_max_txg;
3871 	vdev_t *rvd = spa->spa_root_vdev;
3872 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3873 	vdev_ops_t *pvops;
3874 	char *oldvdpath, *newvdpath;
3875 	int newvd_isspare;
3876 	int error;
3877 
3878 	ASSERT(spa_writeable(spa));
3879 
3880 	txg = spa_vdev_enter(spa);
3881 
3882 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3883 
3884 	if (oldvd == NULL)
3885 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3886 
3887 	if (!oldvd->vdev_ops->vdev_op_leaf)
3888 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3889 
3890 	pvd = oldvd->vdev_parent;
3891 
3892 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3893 	    VDEV_ALLOC_ADD)) != 0)
3894 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3895 
3896 	if (newrootvd->vdev_children != 1)
3897 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3898 
3899 	newvd = newrootvd->vdev_child[0];
3900 
3901 	if (!newvd->vdev_ops->vdev_op_leaf)
3902 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3903 
3904 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3905 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3906 
3907 	/*
3908 	 * Spares can't replace logs
3909 	 */
3910 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3911 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3912 
3913 	if (!replacing) {
3914 		/*
3915 		 * For attach, the only allowable parent is a mirror or the root
3916 		 * vdev.
3917 		 */
3918 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3919 		    pvd->vdev_ops != &vdev_root_ops)
3920 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3921 
3922 		pvops = &vdev_mirror_ops;
3923 	} else {
3924 		/*
3925 		 * Active hot spares can only be replaced by inactive hot
3926 		 * spares.
3927 		 */
3928 		if (pvd->vdev_ops == &vdev_spare_ops &&
3929 		    oldvd->vdev_isspare &&
3930 		    !spa_has_spare(spa, newvd->vdev_guid))
3931 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3932 
3933 		/*
3934 		 * If the source is a hot spare, and the parent isn't already a
3935 		 * spare, then we want to create a new hot spare.  Otherwise, we
3936 		 * want to create a replacing vdev.  The user is not allowed to
3937 		 * attach to a spared vdev child unless the 'isspare' state is
3938 		 * the same (spare replaces spare, non-spare replaces
3939 		 * non-spare).
3940 		 */
3941 		if (pvd->vdev_ops == &vdev_replacing_ops &&
3942 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
3943 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3944 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
3945 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
3946 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3947 		}
3948 
3949 		if (newvd->vdev_isspare)
3950 			pvops = &vdev_spare_ops;
3951 		else
3952 			pvops = &vdev_replacing_ops;
3953 	}
3954 
3955 	/*
3956 	 * Make sure the new device is big enough.
3957 	 */
3958 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3959 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3960 
3961 	/*
3962 	 * The new device cannot have a higher alignment requirement
3963 	 * than the top-level vdev.
3964 	 */
3965 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3966 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3967 
3968 	/*
3969 	 * If this is an in-place replacement, update oldvd's path and devid
3970 	 * to make it distinguishable from newvd, and unopenable from now on.
3971 	 */
3972 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3973 		spa_strfree(oldvd->vdev_path);
3974 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3975 		    KM_SLEEP);
3976 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3977 		    newvd->vdev_path, "old");
3978 		if (oldvd->vdev_devid != NULL) {
3979 			spa_strfree(oldvd->vdev_devid);
3980 			oldvd->vdev_devid = NULL;
3981 		}
3982 	}
3983 
3984 	/* mark the device being resilvered */
3985 	newvd->vdev_resilvering = B_TRUE;
3986 
3987 	/*
3988 	 * If the parent is not a mirror, or if we're replacing, insert the new
3989 	 * mirror/replacing/spare vdev above oldvd.
3990 	 */
3991 	if (pvd->vdev_ops != pvops)
3992 		pvd = vdev_add_parent(oldvd, pvops);
3993 
3994 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3995 	ASSERT(pvd->vdev_ops == pvops);
3996 	ASSERT(oldvd->vdev_parent == pvd);
3997 
3998 	/*
3999 	 * Extract the new device from its root and add it to pvd.
4000 	 */
4001 	vdev_remove_child(newrootvd, newvd);
4002 	newvd->vdev_id = pvd->vdev_children;
4003 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4004 	vdev_add_child(pvd, newvd);
4005 
4006 	tvd = newvd->vdev_top;
4007 	ASSERT(pvd->vdev_top == tvd);
4008 	ASSERT(tvd->vdev_parent == rvd);
4009 
4010 	vdev_config_dirty(tvd);
4011 
4012 	/*
4013 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4014 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4015 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4016 	 */
4017 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4018 
4019 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4020 	    dtl_max_txg - TXG_INITIAL);
4021 
4022 	if (newvd->vdev_isspare) {
4023 		spa_spare_activate(newvd);
4024 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4025 	}
4026 
4027 	oldvdpath = spa_strdup(oldvd->vdev_path);
4028 	newvdpath = spa_strdup(newvd->vdev_path);
4029 	newvd_isspare = newvd->vdev_isspare;
4030 
4031 	/*
4032 	 * Mark newvd's DTL dirty in this txg.
4033 	 */
4034 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4035 
4036 	/*
4037 	 * Restart the resilver
4038 	 */
4039 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4040 
4041 	/*
4042 	 * Commit the config
4043 	 */
4044 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4045 
4046 	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4047 	    "%s vdev=%s %s vdev=%s",
4048 	    replacing && newvd_isspare ? "spare in" :
4049 	    replacing ? "replace" : "attach", newvdpath,
4050 	    replacing ? "for" : "to", oldvdpath);
4051 
4052 	spa_strfree(oldvdpath);
4053 	spa_strfree(newvdpath);
4054 
4055 	if (spa->spa_bootfs)
4056 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4057 
4058 	return (0);
4059 }
4060 
4061 /*
4062  * Detach a device from a mirror or replacing vdev.
4063  * If 'replace_done' is specified, only detach if the parent
4064  * is a replacing vdev.
4065  */
4066 int
4067 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4068 {
4069 	uint64_t txg;
4070 	int error;
4071 	vdev_t *rvd = spa->spa_root_vdev;
4072 	vdev_t *vd, *pvd, *cvd, *tvd;
4073 	boolean_t unspare = B_FALSE;
4074 	uint64_t unspare_guid;
4075 	char *vdpath;
4076 
4077 	ASSERT(spa_writeable(spa));
4078 
4079 	txg = spa_vdev_enter(spa);
4080 
4081 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4082 
4083 	if (vd == NULL)
4084 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4085 
4086 	if (!vd->vdev_ops->vdev_op_leaf)
4087 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4088 
4089 	pvd = vd->vdev_parent;
4090 
4091 	/*
4092 	 * If the parent/child relationship is not as expected, don't do it.
4093 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4094 	 * vdev that's replacing B with C.  The user's intent in replacing
4095 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4096 	 * the replace by detaching C, the expected behavior is to end up
4097 	 * M(A,B).  But suppose that right after deciding to detach C,
4098 	 * the replacement of B completes.  We would have M(A,C), and then
4099 	 * ask to detach C, which would leave us with just A -- not what
4100 	 * the user wanted.  To prevent this, we make sure that the
4101 	 * parent/child relationship hasn't changed -- in this example,
4102 	 * that C's parent is still the replacing vdev R.
4103 	 */
4104 	if (pvd->vdev_guid != pguid && pguid != 0)
4105 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4106 
4107 	/*
4108 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4109 	 */
4110 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4111 	    pvd->vdev_ops != &vdev_spare_ops)
4112 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4113 
4114 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4115 	    spa_version(spa) >= SPA_VERSION_SPARES);
4116 
4117 	/*
4118 	 * Only mirror, replacing, and spare vdevs support detach.
4119 	 */
4120 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4121 	    pvd->vdev_ops != &vdev_mirror_ops &&
4122 	    pvd->vdev_ops != &vdev_spare_ops)
4123 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4124 
4125 	/*
4126 	 * If this device has the only valid copy of some data,
4127 	 * we cannot safely detach it.
4128 	 */
4129 	if (vdev_dtl_required(vd))
4130 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4131 
4132 	ASSERT(pvd->vdev_children >= 2);
4133 
4134 	/*
4135 	 * If we are detaching the second disk from a replacing vdev, then
4136 	 * check to see if we changed the original vdev's path to have "/old"
4137 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4138 	 */
4139 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4140 	    vd->vdev_path != NULL) {
4141 		size_t len = strlen(vd->vdev_path);
4142 
4143 		for (int c = 0; c < pvd->vdev_children; c++) {
4144 			cvd = pvd->vdev_child[c];
4145 
4146 			if (cvd == vd || cvd->vdev_path == NULL)
4147 				continue;
4148 
4149 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4150 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4151 				spa_strfree(cvd->vdev_path);
4152 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4153 				break;
4154 			}
4155 		}
4156 	}
4157 
4158 	/*
4159 	 * If we are detaching the original disk from a spare, then it implies
4160 	 * that the spare should become a real disk, and be removed from the
4161 	 * active spare list for the pool.
4162 	 */
4163 	if (pvd->vdev_ops == &vdev_spare_ops &&
4164 	    vd->vdev_id == 0 &&
4165 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4166 		unspare = B_TRUE;
4167 
4168 	/*
4169 	 * Erase the disk labels so the disk can be used for other things.
4170 	 * This must be done after all other error cases are handled,
4171 	 * but before we disembowel vd (so we can still do I/O to it).
4172 	 * But if we can't do it, don't treat the error as fatal --
4173 	 * it may be that the unwritability of the disk is the reason
4174 	 * it's being detached!
4175 	 */
4176 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4177 
4178 	/*
4179 	 * Remove vd from its parent and compact the parent's children.
4180 	 */
4181 	vdev_remove_child(pvd, vd);
4182 	vdev_compact_children(pvd);
4183 
4184 	/*
4185 	 * Remember one of the remaining children so we can get tvd below.
4186 	 */
4187 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4188 
4189 	/*
4190 	 * If we need to remove the remaining child from the list of hot spares,
4191 	 * do it now, marking the vdev as no longer a spare in the process.
4192 	 * We must do this before vdev_remove_parent(), because that can
4193 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4194 	 * reason, we must remove the spare now, in the same txg as the detach;
4195 	 * otherwise someone could attach a new sibling, change the GUID, and
4196 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4197 	 */
4198 	if (unspare) {
4199 		ASSERT(cvd->vdev_isspare);
4200 		spa_spare_remove(cvd);
4201 		unspare_guid = cvd->vdev_guid;
4202 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4203 		cvd->vdev_unspare = B_TRUE;
4204 	}
4205 
4206 	/*
4207 	 * If the parent mirror/replacing vdev only has one child,
4208 	 * the parent is no longer needed.  Remove it from the tree.
4209 	 */
4210 	if (pvd->vdev_children == 1) {
4211 		if (pvd->vdev_ops == &vdev_spare_ops)
4212 			cvd->vdev_unspare = B_FALSE;
4213 		vdev_remove_parent(cvd);
4214 		cvd->vdev_resilvering = B_FALSE;
4215 	}
4216 
4217 
4218 	/*
4219 	 * We don't set tvd until now because the parent we just removed
4220 	 * may have been the previous top-level vdev.
4221 	 */
4222 	tvd = cvd->vdev_top;
4223 	ASSERT(tvd->vdev_parent == rvd);
4224 
4225 	/*
4226 	 * Reevaluate the parent vdev state.
4227 	 */
4228 	vdev_propagate_state(cvd);
4229 
4230 	/*
4231 	 * If the 'autoexpand' property is set on the pool then automatically
4232 	 * try to expand the size of the pool. For example if the device we
4233 	 * just detached was smaller than the others, it may be possible to
4234 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4235 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4236 	 */
4237 	if (spa->spa_autoexpand) {
4238 		vdev_reopen(tvd);
4239 		vdev_expand(tvd, txg);
4240 	}
4241 
4242 	vdev_config_dirty(tvd);
4243 
4244 	/*
4245 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4246 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4247 	 * But first make sure we're not on any *other* txg's DTL list, to
4248 	 * prevent vd from being accessed after it's freed.
4249 	 */
4250 	vdpath = spa_strdup(vd->vdev_path);
4251 	for (int t = 0; t < TXG_SIZE; t++)
4252 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4253 	vd->vdev_detached = B_TRUE;
4254 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4255 
4256 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4257 
4258 	/* hang on to the spa before we release the lock */
4259 	spa_open_ref(spa, FTAG);
4260 
4261 	error = spa_vdev_exit(spa, vd, txg, 0);
4262 
4263 	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4264 	    "vdev=%s", vdpath);
4265 	spa_strfree(vdpath);
4266 
4267 	/*
4268 	 * If this was the removal of the original device in a hot spare vdev,
4269 	 * then we want to go through and remove the device from the hot spare
4270 	 * list of every other pool.
4271 	 */
4272 	if (unspare) {
4273 		spa_t *altspa = NULL;
4274 
4275 		mutex_enter(&spa_namespace_lock);
4276 		while ((altspa = spa_next(altspa)) != NULL) {
4277 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4278 			    altspa == spa)
4279 				continue;
4280 
4281 			spa_open_ref(altspa, FTAG);
4282 			mutex_exit(&spa_namespace_lock);
4283 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4284 			mutex_enter(&spa_namespace_lock);
4285 			spa_close(altspa, FTAG);
4286 		}
4287 		mutex_exit(&spa_namespace_lock);
4288 
4289 		/* search the rest of the vdevs for spares to remove */
4290 		spa_vdev_resilver_done(spa);
4291 	}
4292 
4293 	/* all done with the spa; OK to release */
4294 	mutex_enter(&spa_namespace_lock);
4295 	spa_close(spa, FTAG);
4296 	mutex_exit(&spa_namespace_lock);
4297 
4298 	return (error);
4299 }
4300 
4301 /*
4302  * Split a set of devices from their mirrors, and create a new pool from them.
4303  */
4304 int
4305 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4306     nvlist_t *props, boolean_t exp)
4307 {
4308 	int error = 0;
4309 	uint64_t txg, *glist;
4310 	spa_t *newspa;
4311 	uint_t c, children, lastlog;
4312 	nvlist_t **child, *nvl, *tmp;
4313 	dmu_tx_t *tx;
4314 	char *altroot = NULL;
4315 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4316 	boolean_t activate_slog;
4317 
4318 	ASSERT(spa_writeable(spa));
4319 
4320 	txg = spa_vdev_enter(spa);
4321 
4322 	/* clear the log and flush everything up to now */
4323 	activate_slog = spa_passivate_log(spa);
4324 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4325 	error = spa_offline_log(spa);
4326 	txg = spa_vdev_config_enter(spa);
4327 
4328 	if (activate_slog)
4329 		spa_activate_log(spa);
4330 
4331 	if (error != 0)
4332 		return (spa_vdev_exit(spa, NULL, txg, error));
4333 
4334 	/* check new spa name before going any further */
4335 	if (spa_lookup(newname) != NULL)
4336 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4337 
4338 	/*
4339 	 * scan through all the children to ensure they're all mirrors
4340 	 */
4341 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4342 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4343 	    &children) != 0)
4344 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4345 
4346 	/* first, check to ensure we've got the right child count */
4347 	rvd = spa->spa_root_vdev;
4348 	lastlog = 0;
4349 	for (c = 0; c < rvd->vdev_children; c++) {
4350 		vdev_t *vd = rvd->vdev_child[c];
4351 
4352 		/* don't count the holes & logs as children */
4353 		if (vd->vdev_islog || vd->vdev_ishole) {
4354 			if (lastlog == 0)
4355 				lastlog = c;
4356 			continue;
4357 		}
4358 
4359 		lastlog = 0;
4360 	}
4361 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4362 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4363 
4364 	/* next, ensure no spare or cache devices are part of the split */
4365 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4366 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4367 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4368 
4369 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4370 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4371 
4372 	/* then, loop over each vdev and validate it */
4373 	for (c = 0; c < children; c++) {
4374 		uint64_t is_hole = 0;
4375 
4376 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4377 		    &is_hole);
4378 
4379 		if (is_hole != 0) {
4380 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4381 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4382 				continue;
4383 			} else {
4384 				error = EINVAL;
4385 				break;
4386 			}
4387 		}
4388 
4389 		/* which disk is going to be split? */
4390 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4391 		    &glist[c]) != 0) {
4392 			error = EINVAL;
4393 			break;
4394 		}
4395 
4396 		/* look it up in the spa */
4397 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4398 		if (vml[c] == NULL) {
4399 			error = ENODEV;
4400 			break;
4401 		}
4402 
4403 		/* make sure there's nothing stopping the split */
4404 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4405 		    vml[c]->vdev_islog ||
4406 		    vml[c]->vdev_ishole ||
4407 		    vml[c]->vdev_isspare ||
4408 		    vml[c]->vdev_isl2cache ||
4409 		    !vdev_writeable(vml[c]) ||
4410 		    vml[c]->vdev_children != 0 ||
4411 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4412 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4413 			error = EINVAL;
4414 			break;
4415 		}
4416 
4417 		if (vdev_dtl_required(vml[c])) {
4418 			error = EBUSY;
4419 			break;
4420 		}
4421 
4422 		/* we need certain info from the top level */
4423 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4424 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4425 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4426 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4427 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4428 		    vml[c]->vdev_top->vdev_asize) == 0);
4429 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4430 		    vml[c]->vdev_top->vdev_ashift) == 0);
4431 	}
4432 
4433 	if (error != 0) {
4434 		kmem_free(vml, children * sizeof (vdev_t *));
4435 		kmem_free(glist, children * sizeof (uint64_t));
4436 		return (spa_vdev_exit(spa, NULL, txg, error));
4437 	}
4438 
4439 	/* stop writers from using the disks */
4440 	for (c = 0; c < children; c++) {
4441 		if (vml[c] != NULL)
4442 			vml[c]->vdev_offline = B_TRUE;
4443 	}
4444 	vdev_reopen(spa->spa_root_vdev);
4445 
4446 	/*
4447 	 * Temporarily record the splitting vdevs in the spa config.  This
4448 	 * will disappear once the config is regenerated.
4449 	 */
4450 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4451 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4452 	    glist, children) == 0);
4453 	kmem_free(glist, children * sizeof (uint64_t));
4454 
4455 	mutex_enter(&spa->spa_props_lock);
4456 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4457 	    nvl) == 0);
4458 	mutex_exit(&spa->spa_props_lock);
4459 	spa->spa_config_splitting = nvl;
4460 	vdev_config_dirty(spa->spa_root_vdev);
4461 
4462 	/* configure and create the new pool */
4463 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4464 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4465 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4466 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4467 	    spa_version(spa)) == 0);
4468 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4469 	    spa->spa_config_txg) == 0);
4470 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4471 	    spa_generate_guid(NULL)) == 0);
4472 	(void) nvlist_lookup_string(props,
4473 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4474 
4475 	/* add the new pool to the namespace */
4476 	newspa = spa_add(newname, config, altroot);
4477 	newspa->spa_config_txg = spa->spa_config_txg;
4478 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4479 
4480 	/* release the spa config lock, retaining the namespace lock */
4481 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4482 
4483 	if (zio_injection_enabled)
4484 		zio_handle_panic_injection(spa, FTAG, 1);
4485 
4486 	spa_activate(newspa, spa_mode_global);
4487 	spa_async_suspend(newspa);
4488 
4489 	/* create the new pool from the disks of the original pool */
4490 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4491 	if (error)
4492 		goto out;
4493 
4494 	/* if that worked, generate a real config for the new pool */
4495 	if (newspa->spa_root_vdev != NULL) {
4496 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4497 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4498 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4499 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4500 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4501 		    B_TRUE));
4502 	}
4503 
4504 	/* set the props */
4505 	if (props != NULL) {
4506 		spa_configfile_set(newspa, props, B_FALSE);
4507 		error = spa_prop_set(newspa, props);
4508 		if (error)
4509 			goto out;
4510 	}
4511 
4512 	/* flush everything */
4513 	txg = spa_vdev_config_enter(newspa);
4514 	vdev_config_dirty(newspa->spa_root_vdev);
4515 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4516 
4517 	if (zio_injection_enabled)
4518 		zio_handle_panic_injection(spa, FTAG, 2);
4519 
4520 	spa_async_resume(newspa);
4521 
4522 	/* finally, update the original pool's config */
4523 	txg = spa_vdev_config_enter(spa);
4524 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4525 	error = dmu_tx_assign(tx, TXG_WAIT);
4526 	if (error != 0)
4527 		dmu_tx_abort(tx);
4528 	for (c = 0; c < children; c++) {
4529 		if (vml[c] != NULL) {
4530 			vdev_split(vml[c]);
4531 			if (error == 0)
4532 				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4533 				    spa, tx, "vdev=%s",
4534 				    vml[c]->vdev_path);
4535 			vdev_free(vml[c]);
4536 		}
4537 	}
4538 	vdev_config_dirty(spa->spa_root_vdev);
4539 	spa->spa_config_splitting = NULL;
4540 	nvlist_free(nvl);
4541 	if (error == 0)
4542 		dmu_tx_commit(tx);
4543 	(void) spa_vdev_exit(spa, NULL, txg, 0);
4544 
4545 	if (zio_injection_enabled)
4546 		zio_handle_panic_injection(spa, FTAG, 3);
4547 
4548 	/* split is complete; log a history record */
4549 	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4550 	    "split new pool %s from pool %s", newname, spa_name(spa));
4551 
4552 	kmem_free(vml, children * sizeof (vdev_t *));
4553 
4554 	/* if we're not going to mount the filesystems in userland, export */
4555 	if (exp)
4556 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4557 		    B_FALSE, B_FALSE);
4558 
4559 	return (error);
4560 
4561 out:
4562 	spa_unload(newspa);
4563 	spa_deactivate(newspa);
4564 	spa_remove(newspa);
4565 
4566 	txg = spa_vdev_config_enter(spa);
4567 
4568 	/* re-online all offlined disks */
4569 	for (c = 0; c < children; c++) {
4570 		if (vml[c] != NULL)
4571 			vml[c]->vdev_offline = B_FALSE;
4572 	}
4573 	vdev_reopen(spa->spa_root_vdev);
4574 
4575 	nvlist_free(spa->spa_config_splitting);
4576 	spa->spa_config_splitting = NULL;
4577 	(void) spa_vdev_exit(spa, NULL, txg, error);
4578 
4579 	kmem_free(vml, children * sizeof (vdev_t *));
4580 	return (error);
4581 }
4582 
4583 static nvlist_t *
4584 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4585 {
4586 	for (int i = 0; i < count; i++) {
4587 		uint64_t guid;
4588 
4589 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4590 		    &guid) == 0);
4591 
4592 		if (guid == target_guid)
4593 			return (nvpp[i]);
4594 	}
4595 
4596 	return (NULL);
4597 }
4598 
4599 static void
4600 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4601 	nvlist_t *dev_to_remove)
4602 {
4603 	nvlist_t **newdev = NULL;
4604 
4605 	if (count > 1)
4606 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4607 
4608 	for (int i = 0, j = 0; i < count; i++) {
4609 		if (dev[i] == dev_to_remove)
4610 			continue;
4611 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4612 	}
4613 
4614 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4615 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4616 
4617 	for (int i = 0; i < count - 1; i++)
4618 		nvlist_free(newdev[i]);
4619 
4620 	if (count > 1)
4621 		kmem_free(newdev, (count - 1) * sizeof (void *));
4622 }
4623 
4624 /*
4625  * Evacuate the device.
4626  */
4627 static int
4628 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4629 {
4630 	uint64_t txg;
4631 	int error = 0;
4632 
4633 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4634 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4635 	ASSERT(vd == vd->vdev_top);
4636 
4637 	/*
4638 	 * Evacuate the device.  We don't hold the config lock as writer
4639 	 * since we need to do I/O but we do keep the
4640 	 * spa_namespace_lock held.  Once this completes the device
4641 	 * should no longer have any blocks allocated on it.
4642 	 */
4643 	if (vd->vdev_islog) {
4644 		if (vd->vdev_stat.vs_alloc != 0)
4645 			error = spa_offline_log(spa);
4646 	} else {
4647 		error = ENOTSUP;
4648 	}
4649 
4650 	if (error)
4651 		return (error);
4652 
4653 	/*
4654 	 * The evacuation succeeded.  Remove any remaining MOS metadata
4655 	 * associated with this vdev, and wait for these changes to sync.
4656 	 */
4657 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4658 	txg = spa_vdev_config_enter(spa);
4659 	vd->vdev_removing = B_TRUE;
4660 	vdev_dirty(vd, 0, NULL, txg);
4661 	vdev_config_dirty(vd);
4662 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4663 
4664 	return (0);
4665 }
4666 
4667 /*
4668  * Complete the removal by cleaning up the namespace.
4669  */
4670 static void
4671 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4672 {
4673 	vdev_t *rvd = spa->spa_root_vdev;
4674 	uint64_t id = vd->vdev_id;
4675 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4676 
4677 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4678 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4679 	ASSERT(vd == vd->vdev_top);
4680 
4681 	/*
4682 	 * Only remove any devices which are empty.
4683 	 */
4684 	if (vd->vdev_stat.vs_alloc != 0)
4685 		return;
4686 
4687 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4688 
4689 	if (list_link_active(&vd->vdev_state_dirty_node))
4690 		vdev_state_clean(vd);
4691 	if (list_link_active(&vd->vdev_config_dirty_node))
4692 		vdev_config_clean(vd);
4693 
4694 	vdev_free(vd);
4695 
4696 	if (last_vdev) {
4697 		vdev_compact_children(rvd);
4698 	} else {
4699 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4700 		vdev_add_child(rvd, vd);
4701 	}
4702 	vdev_config_dirty(rvd);
4703 
4704 	/*
4705 	 * Reassess the health of our root vdev.
4706 	 */
4707 	vdev_reopen(rvd);
4708 }
4709 
4710 /*
4711  * Remove a device from the pool -
4712  *
4713  * Removing a device from the vdev namespace requires several steps
4714  * and can take a significant amount of time.  As a result we use
4715  * the spa_vdev_config_[enter/exit] functions which allow us to
4716  * grab and release the spa_config_lock while still holding the namespace
4717  * lock.  During each step the configuration is synced out.
4718  */
4719 
4720 /*
4721  * Remove a device from the pool.  Currently, this supports removing only hot
4722  * spares, slogs, and level 2 ARC devices.
4723  */
4724 int
4725 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4726 {
4727 	vdev_t *vd;
4728 	metaslab_group_t *mg;
4729 	nvlist_t **spares, **l2cache, *nv;
4730 	uint64_t txg = 0;
4731 	uint_t nspares, nl2cache;
4732 	int error = 0;
4733 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4734 
4735 	ASSERT(spa_writeable(spa));
4736 
4737 	if (!locked)
4738 		txg = spa_vdev_enter(spa);
4739 
4740 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4741 
4742 	if (spa->spa_spares.sav_vdevs != NULL &&
4743 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4744 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4745 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4746 		/*
4747 		 * Only remove the hot spare if it's not currently in use
4748 		 * in this pool.
4749 		 */
4750 		if (vd == NULL || unspare) {
4751 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
4752 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4753 			spa_load_spares(spa);
4754 			spa->spa_spares.sav_sync = B_TRUE;
4755 		} else {
4756 			error = EBUSY;
4757 		}
4758 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
4759 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4760 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4761 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4762 		/*
4763 		 * Cache devices can always be removed.
4764 		 */
4765 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4766 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4767 		spa_load_l2cache(spa);
4768 		spa->spa_l2cache.sav_sync = B_TRUE;
4769 	} else if (vd != NULL && vd->vdev_islog) {
4770 		ASSERT(!locked);
4771 		ASSERT(vd == vd->vdev_top);
4772 
4773 		/*
4774 		 * XXX - Once we have bp-rewrite this should
4775 		 * become the common case.
4776 		 */
4777 
4778 		mg = vd->vdev_mg;
4779 
4780 		/*
4781 		 * Stop allocating from this vdev.
4782 		 */
4783 		metaslab_group_passivate(mg);
4784 
4785 		/*
4786 		 * Wait for the youngest allocations and frees to sync,
4787 		 * and then wait for the deferral of those frees to finish.
4788 		 */
4789 		spa_vdev_config_exit(spa, NULL,
4790 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4791 
4792 		/*
4793 		 * Attempt to evacuate the vdev.
4794 		 */
4795 		error = spa_vdev_remove_evacuate(spa, vd);
4796 
4797 		txg = spa_vdev_config_enter(spa);
4798 
4799 		/*
4800 		 * If we couldn't evacuate the vdev, unwind.
4801 		 */
4802 		if (error) {
4803 			metaslab_group_activate(mg);
4804 			return (spa_vdev_exit(spa, NULL, txg, error));
4805 		}
4806 
4807 		/*
4808 		 * Clean up the vdev namespace.
4809 		 */
4810 		spa_vdev_remove_from_namespace(spa, vd);
4811 
4812 	} else if (vd != NULL) {
4813 		/*
4814 		 * Normal vdevs cannot be removed (yet).
4815 		 */
4816 		error = ENOTSUP;
4817 	} else {
4818 		/*
4819 		 * There is no vdev of any kind with the specified guid.
4820 		 */
4821 		error = ENOENT;
4822 	}
4823 
4824 	if (!locked)
4825 		return (spa_vdev_exit(spa, NULL, txg, error));
4826 
4827 	return (error);
4828 }
4829 
4830 /*
4831  * Find any device that's done replacing, or a vdev marked 'unspare' that's
4832  * current spared, so we can detach it.
4833  */
4834 static vdev_t *
4835 spa_vdev_resilver_done_hunt(vdev_t *vd)
4836 {
4837 	vdev_t *newvd, *oldvd;
4838 
4839 	for (int c = 0; c < vd->vdev_children; c++) {
4840 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4841 		if (oldvd != NULL)
4842 			return (oldvd);
4843 	}
4844 
4845 	/*
4846 	 * Check for a completed replacement.  We always consider the first
4847 	 * vdev in the list to be the oldest vdev, and the last one to be
4848 	 * the newest (see spa_vdev_attach() for how that works).  In
4849 	 * the case where the newest vdev is faulted, we will not automatically
4850 	 * remove it after a resilver completes.  This is OK as it will require
4851 	 * user intervention to determine which disk the admin wishes to keep.
4852 	 */
4853 	if (vd->vdev_ops == &vdev_replacing_ops) {
4854 		ASSERT(vd->vdev_children > 1);
4855 
4856 		newvd = vd->vdev_child[vd->vdev_children - 1];
4857 		oldvd = vd->vdev_child[0];
4858 
4859 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4860 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4861 		    !vdev_dtl_required(oldvd))
4862 			return (oldvd);
4863 	}
4864 
4865 	/*
4866 	 * Check for a completed resilver with the 'unspare' flag set.
4867 	 */
4868 	if (vd->vdev_ops == &vdev_spare_ops) {
4869 		vdev_t *first = vd->vdev_child[0];
4870 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
4871 
4872 		if (last->vdev_unspare) {
4873 			oldvd = first;
4874 			newvd = last;
4875 		} else if (first->vdev_unspare) {
4876 			oldvd = last;
4877 			newvd = first;
4878 		} else {
4879 			oldvd = NULL;
4880 		}
4881 
4882 		if (oldvd != NULL &&
4883 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4884 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4885 		    !vdev_dtl_required(oldvd))
4886 			return (oldvd);
4887 
4888 		/*
4889 		 * If there are more than two spares attached to a disk,
4890 		 * and those spares are not required, then we want to
4891 		 * attempt to free them up now so that they can be used
4892 		 * by other pools.  Once we're back down to a single
4893 		 * disk+spare, we stop removing them.
4894 		 */
4895 		if (vd->vdev_children > 2) {
4896 			newvd = vd->vdev_child[1];
4897 
4898 			if (newvd->vdev_isspare && last->vdev_isspare &&
4899 			    vdev_dtl_empty(last, DTL_MISSING) &&
4900 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
4901 			    !vdev_dtl_required(newvd))
4902 				return (newvd);
4903 		}
4904 	}
4905 
4906 	return (NULL);
4907 }
4908 
4909 static void
4910 spa_vdev_resilver_done(spa_t *spa)
4911 {
4912 	vdev_t *vd, *pvd, *ppvd;
4913 	uint64_t guid, sguid, pguid, ppguid;
4914 
4915 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4916 
4917 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4918 		pvd = vd->vdev_parent;
4919 		ppvd = pvd->vdev_parent;
4920 		guid = vd->vdev_guid;
4921 		pguid = pvd->vdev_guid;
4922 		ppguid = ppvd->vdev_guid;
4923 		sguid = 0;
4924 		/*
4925 		 * If we have just finished replacing a hot spared device, then
4926 		 * we need to detach the parent's first child (the original hot
4927 		 * spare) as well.
4928 		 */
4929 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
4930 		    ppvd->vdev_children == 2) {
4931 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4932 			sguid = ppvd->vdev_child[1]->vdev_guid;
4933 		}
4934 		spa_config_exit(spa, SCL_ALL, FTAG);
4935 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4936 			return;
4937 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4938 			return;
4939 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4940 	}
4941 
4942 	spa_config_exit(spa, SCL_ALL, FTAG);
4943 }
4944 
4945 /*
4946  * Update the stored path or FRU for this vdev.
4947  */
4948 int
4949 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4950     boolean_t ispath)
4951 {
4952 	vdev_t *vd;
4953 	boolean_t sync = B_FALSE;
4954 
4955 	ASSERT(spa_writeable(spa));
4956 
4957 	spa_vdev_state_enter(spa, SCL_ALL);
4958 
4959 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4960 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
4961 
4962 	if (!vd->vdev_ops->vdev_op_leaf)
4963 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4964 
4965 	if (ispath) {
4966 		if (strcmp(value, vd->vdev_path) != 0) {
4967 			spa_strfree(vd->vdev_path);
4968 			vd->vdev_path = spa_strdup(value);
4969 			sync = B_TRUE;
4970 		}
4971 	} else {
4972 		if (vd->vdev_fru == NULL) {
4973 			vd->vdev_fru = spa_strdup(value);
4974 			sync = B_TRUE;
4975 		} else if (strcmp(value, vd->vdev_fru) != 0) {
4976 			spa_strfree(vd->vdev_fru);
4977 			vd->vdev_fru = spa_strdup(value);
4978 			sync = B_TRUE;
4979 		}
4980 	}
4981 
4982 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4983 }
4984 
4985 int
4986 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4987 {
4988 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4989 }
4990 
4991 int
4992 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4993 {
4994 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4995 }
4996 
4997 /*
4998  * ==========================================================================
4999  * SPA Scanning
5000  * ==========================================================================
5001  */
5002 
5003 int
5004 spa_scan_stop(spa_t *spa)
5005 {
5006 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5007 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5008 		return (EBUSY);
5009 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5010 }
5011 
5012 int
5013 spa_scan(spa_t *spa, pool_scan_func_t func)
5014 {
5015 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5016 
5017 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5018 		return (ENOTSUP);
5019 
5020 	/*
5021 	 * If a resilver was requested, but there is no DTL on a
5022 	 * writeable leaf device, we have nothing to do.
5023 	 */
5024 	if (func == POOL_SCAN_RESILVER &&
5025 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5026 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5027 		return (0);
5028 	}
5029 
5030 	return (dsl_scan(spa->spa_dsl_pool, func));
5031 }
5032 
5033 /*
5034  * ==========================================================================
5035  * SPA async task processing
5036  * ==========================================================================
5037  */
5038 
5039 static void
5040 spa_async_remove(spa_t *spa, vdev_t *vd)
5041 {
5042 	if (vd->vdev_remove_wanted) {
5043 		vd->vdev_remove_wanted = B_FALSE;
5044 		vd->vdev_delayed_close = B_FALSE;
5045 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5046 
5047 		/*
5048 		 * We want to clear the stats, but we don't want to do a full
5049 		 * vdev_clear() as that will cause us to throw away
5050 		 * degraded/faulted state as well as attempt to reopen the
5051 		 * device, all of which is a waste.
5052 		 */
5053 		vd->vdev_stat.vs_read_errors = 0;
5054 		vd->vdev_stat.vs_write_errors = 0;
5055 		vd->vdev_stat.vs_checksum_errors = 0;
5056 
5057 		vdev_state_dirty(vd->vdev_top);
5058 	}
5059 
5060 	for (int c = 0; c < vd->vdev_children; c++)
5061 		spa_async_remove(spa, vd->vdev_child[c]);
5062 }
5063 
5064 static void
5065 spa_async_probe(spa_t *spa, vdev_t *vd)
5066 {
5067 	if (vd->vdev_probe_wanted) {
5068 		vd->vdev_probe_wanted = B_FALSE;
5069 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5070 	}
5071 
5072 	for (int c = 0; c < vd->vdev_children; c++)
5073 		spa_async_probe(spa, vd->vdev_child[c]);
5074 }
5075 
5076 static void
5077 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5078 {
5079 	sysevent_id_t eid;
5080 	nvlist_t *attr;
5081 	char *physpath;
5082 
5083 	if (!spa->spa_autoexpand)
5084 		return;
5085 
5086 	for (int c = 0; c < vd->vdev_children; c++) {
5087 		vdev_t *cvd = vd->vdev_child[c];
5088 		spa_async_autoexpand(spa, cvd);
5089 	}
5090 
5091 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5092 		return;
5093 
5094 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5095 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5096 
5097 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5098 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5099 
5100 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5101 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5102 
5103 	nvlist_free(attr);
5104 	kmem_free(physpath, MAXPATHLEN);
5105 }
5106 
5107 static void
5108 spa_async_thread(spa_t *spa)
5109 {
5110 	int tasks;
5111 
5112 	ASSERT(spa->spa_sync_on);
5113 
5114 	mutex_enter(&spa->spa_async_lock);
5115 	tasks = spa->spa_async_tasks;
5116 	spa->spa_async_tasks = 0;
5117 	mutex_exit(&spa->spa_async_lock);
5118 
5119 	/*
5120 	 * See if the config needs to be updated.
5121 	 */
5122 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5123 		uint64_t old_space, new_space;
5124 
5125 		mutex_enter(&spa_namespace_lock);
5126 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5127 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5128 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5129 		mutex_exit(&spa_namespace_lock);
5130 
5131 		/*
5132 		 * If the pool grew as a result of the config update,
5133 		 * then log an internal history event.
5134 		 */
5135 		if (new_space != old_space) {
5136 			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5137 			    spa, NULL,
5138 			    "pool '%s' size: %llu(+%llu)",
5139 			    spa_name(spa), new_space, new_space - old_space);
5140 		}
5141 	}
5142 
5143 	/*
5144 	 * See if any devices need to be marked REMOVED.
5145 	 */
5146 	if (tasks & SPA_ASYNC_REMOVE) {
5147 		spa_vdev_state_enter(spa, SCL_NONE);
5148 		spa_async_remove(spa, spa->spa_root_vdev);
5149 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5150 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5151 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5152 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5153 		(void) spa_vdev_state_exit(spa, NULL, 0);
5154 	}
5155 
5156 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5157 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5158 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5159 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5160 	}
5161 
5162 	/*
5163 	 * See if any devices need to be probed.
5164 	 */
5165 	if (tasks & SPA_ASYNC_PROBE) {
5166 		spa_vdev_state_enter(spa, SCL_NONE);
5167 		spa_async_probe(spa, spa->spa_root_vdev);
5168 		(void) spa_vdev_state_exit(spa, NULL, 0);
5169 	}
5170 
5171 	/*
5172 	 * If any devices are done replacing, detach them.
5173 	 */
5174 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5175 		spa_vdev_resilver_done(spa);
5176 
5177 	/*
5178 	 * Kick off a resilver.
5179 	 */
5180 	if (tasks & SPA_ASYNC_RESILVER)
5181 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5182 
5183 	/*
5184 	 * Let the world know that we're done.
5185 	 */
5186 	mutex_enter(&spa->spa_async_lock);
5187 	spa->spa_async_thread = NULL;
5188 	cv_broadcast(&spa->spa_async_cv);
5189 	mutex_exit(&spa->spa_async_lock);
5190 	thread_exit();
5191 }
5192 
5193 void
5194 spa_async_suspend(spa_t *spa)
5195 {
5196 	mutex_enter(&spa->spa_async_lock);
5197 	spa->spa_async_suspended++;
5198 	while (spa->spa_async_thread != NULL)
5199 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5200 	mutex_exit(&spa->spa_async_lock);
5201 }
5202 
5203 void
5204 spa_async_resume(spa_t *spa)
5205 {
5206 	mutex_enter(&spa->spa_async_lock);
5207 	ASSERT(spa->spa_async_suspended != 0);
5208 	spa->spa_async_suspended--;
5209 	mutex_exit(&spa->spa_async_lock);
5210 }
5211 
5212 static void
5213 spa_async_dispatch(spa_t *spa)
5214 {
5215 	mutex_enter(&spa->spa_async_lock);
5216 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5217 	    spa->spa_async_thread == NULL &&
5218 	    rootdir != NULL && !vn_is_readonly(rootdir))
5219 		spa->spa_async_thread = thread_create(NULL, 0,
5220 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5221 	mutex_exit(&spa->spa_async_lock);
5222 }
5223 
5224 void
5225 spa_async_request(spa_t *spa, int task)
5226 {
5227 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5228 	mutex_enter(&spa->spa_async_lock);
5229 	spa->spa_async_tasks |= task;
5230 	mutex_exit(&spa->spa_async_lock);
5231 }
5232 
5233 /*
5234  * ==========================================================================
5235  * SPA syncing routines
5236  * ==========================================================================
5237  */
5238 
5239 static int
5240 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5241 {
5242 	bpobj_t *bpo = arg;
5243 	bpobj_enqueue(bpo, bp, tx);
5244 	return (0);
5245 }
5246 
5247 static int
5248 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5249 {
5250 	zio_t *zio = arg;
5251 
5252 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5253 	    zio->io_flags));
5254 	return (0);
5255 }
5256 
5257 static void
5258 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5259 {
5260 	char *packed = NULL;
5261 	size_t bufsize;
5262 	size_t nvsize = 0;
5263 	dmu_buf_t *db;
5264 
5265 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5266 
5267 	/*
5268 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5269 	 * information.  This avoids the dbuf_will_dirty() path and
5270 	 * saves us a pre-read to get data we don't actually care about.
5271 	 */
5272 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
5273 	packed = kmem_alloc(bufsize, KM_SLEEP);
5274 
5275 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5276 	    KM_SLEEP) == 0);
5277 	bzero(packed + nvsize, bufsize - nvsize);
5278 
5279 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5280 
5281 	kmem_free(packed, bufsize);
5282 
5283 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5284 	dmu_buf_will_dirty(db, tx);
5285 	*(uint64_t *)db->db_data = nvsize;
5286 	dmu_buf_rele(db, FTAG);
5287 }
5288 
5289 static void
5290 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5291     const char *config, const char *entry)
5292 {
5293 	nvlist_t *nvroot;
5294 	nvlist_t **list;
5295 	int i;
5296 
5297 	if (!sav->sav_sync)
5298 		return;
5299 
5300 	/*
5301 	 * Update the MOS nvlist describing the list of available devices.
5302 	 * spa_validate_aux() will have already made sure this nvlist is
5303 	 * valid and the vdevs are labeled appropriately.
5304 	 */
5305 	if (sav->sav_object == 0) {
5306 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5307 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5308 		    sizeof (uint64_t), tx);
5309 		VERIFY(zap_update(spa->spa_meta_objset,
5310 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5311 		    &sav->sav_object, tx) == 0);
5312 	}
5313 
5314 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5315 	if (sav->sav_count == 0) {
5316 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5317 	} else {
5318 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5319 		for (i = 0; i < sav->sav_count; i++)
5320 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5321 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5322 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5323 		    sav->sav_count) == 0);
5324 		for (i = 0; i < sav->sav_count; i++)
5325 			nvlist_free(list[i]);
5326 		kmem_free(list, sav->sav_count * sizeof (void *));
5327 	}
5328 
5329 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5330 	nvlist_free(nvroot);
5331 
5332 	sav->sav_sync = B_FALSE;
5333 }
5334 
5335 static void
5336 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5337 {
5338 	nvlist_t *config;
5339 
5340 	if (list_is_empty(&spa->spa_config_dirty_list))
5341 		return;
5342 
5343 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5344 
5345 	config = spa_config_generate(spa, spa->spa_root_vdev,
5346 	    dmu_tx_get_txg(tx), B_FALSE);
5347 
5348 	spa_config_exit(spa, SCL_STATE, FTAG);
5349 
5350 	if (spa->spa_config_syncing)
5351 		nvlist_free(spa->spa_config_syncing);
5352 	spa->spa_config_syncing = config;
5353 
5354 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5355 }
5356 
5357 /*
5358  * Set zpool properties.
5359  */
5360 static void
5361 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5362 {
5363 	spa_t *spa = arg1;
5364 	objset_t *mos = spa->spa_meta_objset;
5365 	nvlist_t *nvp = arg2;
5366 	nvpair_t *elem;
5367 	uint64_t intval;
5368 	char *strval;
5369 	zpool_prop_t prop;
5370 	const char *propname;
5371 	zprop_type_t proptype;
5372 
5373 	mutex_enter(&spa->spa_props_lock);
5374 
5375 	elem = NULL;
5376 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5377 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5378 		case ZPOOL_PROP_VERSION:
5379 			/*
5380 			 * Only set version for non-zpool-creation cases
5381 			 * (set/import). spa_create() needs special care
5382 			 * for version setting.
5383 			 */
5384 			if (tx->tx_txg != TXG_INITIAL) {
5385 				VERIFY(nvpair_value_uint64(elem,
5386 				    &intval) == 0);
5387 				ASSERT(intval <= SPA_VERSION);
5388 				ASSERT(intval >= spa_version(spa));
5389 				spa->spa_uberblock.ub_version = intval;
5390 				vdev_config_dirty(spa->spa_root_vdev);
5391 			}
5392 			break;
5393 
5394 		case ZPOOL_PROP_ALTROOT:
5395 			/*
5396 			 * 'altroot' is a non-persistent property. It should
5397 			 * have been set temporarily at creation or import time.
5398 			 */
5399 			ASSERT(spa->spa_root != NULL);
5400 			break;
5401 
5402 		case ZPOOL_PROP_READONLY:
5403 		case ZPOOL_PROP_CACHEFILE:
5404 			/*
5405 			 * 'readonly' and 'cachefile' are also non-persisitent
5406 			 * properties.
5407 			 */
5408 			break;
5409 		case ZPOOL_PROP_COMMENT:
5410 			VERIFY(nvpair_value_string(elem, &strval) == 0);
5411 			if (spa->spa_comment != NULL)
5412 				spa_strfree(spa->spa_comment);
5413 			spa->spa_comment = spa_strdup(strval);
5414 			/*
5415 			 * We need to dirty the configuration on all the vdevs
5416 			 * so that their labels get updated.  It's unnecessary
5417 			 * to do this for pool creation since the vdev's
5418 			 * configuratoin has already been dirtied.
5419 			 */
5420 			if (tx->tx_txg != TXG_INITIAL)
5421 				vdev_config_dirty(spa->spa_root_vdev);
5422 			break;
5423 		default:
5424 			/*
5425 			 * Set pool property values in the poolprops mos object.
5426 			 */
5427 			if (spa->spa_pool_props_object == 0) {
5428 				VERIFY((spa->spa_pool_props_object =
5429 				    zap_create(mos, DMU_OT_POOL_PROPS,
5430 				    DMU_OT_NONE, 0, tx)) > 0);
5431 
5432 				VERIFY(zap_update(mos,
5433 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5434 				    8, 1, &spa->spa_pool_props_object, tx)
5435 				    == 0);
5436 			}
5437 
5438 			/* normalize the property name */
5439 			propname = zpool_prop_to_name(prop);
5440 			proptype = zpool_prop_get_type(prop);
5441 
5442 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5443 				ASSERT(proptype == PROP_TYPE_STRING);
5444 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5445 				VERIFY(zap_update(mos,
5446 				    spa->spa_pool_props_object, propname,
5447 				    1, strlen(strval) + 1, strval, tx) == 0);
5448 
5449 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5450 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5451 
5452 				if (proptype == PROP_TYPE_INDEX) {
5453 					const char *unused;
5454 					VERIFY(zpool_prop_index_to_string(
5455 					    prop, intval, &unused) == 0);
5456 				}
5457 				VERIFY(zap_update(mos,
5458 				    spa->spa_pool_props_object, propname,
5459 				    8, 1, &intval, tx) == 0);
5460 			} else {
5461 				ASSERT(0); /* not allowed */
5462 			}
5463 
5464 			switch (prop) {
5465 			case ZPOOL_PROP_DELEGATION:
5466 				spa->spa_delegation = intval;
5467 				break;
5468 			case ZPOOL_PROP_BOOTFS:
5469 				spa->spa_bootfs = intval;
5470 				break;
5471 			case ZPOOL_PROP_FAILUREMODE:
5472 				spa->spa_failmode = intval;
5473 				break;
5474 			case ZPOOL_PROP_AUTOEXPAND:
5475 				spa->spa_autoexpand = intval;
5476 				if (tx->tx_txg != TXG_INITIAL)
5477 					spa_async_request(spa,
5478 					    SPA_ASYNC_AUTOEXPAND);
5479 				break;
5480 			case ZPOOL_PROP_DEDUPDITTO:
5481 				spa->spa_dedup_ditto = intval;
5482 				break;
5483 			default:
5484 				break;
5485 			}
5486 		}
5487 
5488 		/* log internal history if this is not a zpool create */
5489 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5490 		    tx->tx_txg != TXG_INITIAL) {
5491 			spa_history_log_internal(LOG_POOL_PROPSET,
5492 			    spa, tx, "%s %lld %s",
5493 			    nvpair_name(elem), intval, spa_name(spa));
5494 		}
5495 	}
5496 
5497 	mutex_exit(&spa->spa_props_lock);
5498 }
5499 
5500 /*
5501  * Perform one-time upgrade on-disk changes.  spa_version() does not
5502  * reflect the new version this txg, so there must be no changes this
5503  * txg to anything that the upgrade code depends on after it executes.
5504  * Therefore this must be called after dsl_pool_sync() does the sync
5505  * tasks.
5506  */
5507 static void
5508 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5509 {
5510 	dsl_pool_t *dp = spa->spa_dsl_pool;
5511 
5512 	ASSERT(spa->spa_sync_pass == 1);
5513 
5514 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5515 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5516 		dsl_pool_create_origin(dp, tx);
5517 
5518 		/* Keeping the origin open increases spa_minref */
5519 		spa->spa_minref += 3;
5520 	}
5521 
5522 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5523 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5524 		dsl_pool_upgrade_clones(dp, tx);
5525 	}
5526 
5527 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5528 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5529 		dsl_pool_upgrade_dir_clones(dp, tx);
5530 
5531 		/* Keeping the freedir open increases spa_minref */
5532 		spa->spa_minref += 3;
5533 	}
5534 }
5535 
5536 /*
5537  * Sync the specified transaction group.  New blocks may be dirtied as
5538  * part of the process, so we iterate until it converges.
5539  */
5540 void
5541 spa_sync(spa_t *spa, uint64_t txg)
5542 {
5543 	dsl_pool_t *dp = spa->spa_dsl_pool;
5544 	objset_t *mos = spa->spa_meta_objset;
5545 	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5546 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5547 	vdev_t *rvd = spa->spa_root_vdev;
5548 	vdev_t *vd;
5549 	dmu_tx_t *tx;
5550 	int error;
5551 
5552 	VERIFY(spa_writeable(spa));
5553 
5554 	/*
5555 	 * Lock out configuration changes.
5556 	 */
5557 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5558 
5559 	spa->spa_syncing_txg = txg;
5560 	spa->spa_sync_pass = 0;
5561 
5562 	/*
5563 	 * If there are any pending vdev state changes, convert them
5564 	 * into config changes that go out with this transaction group.
5565 	 */
5566 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5567 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5568 		/*
5569 		 * We need the write lock here because, for aux vdevs,
5570 		 * calling vdev_config_dirty() modifies sav_config.
5571 		 * This is ugly and will become unnecessary when we
5572 		 * eliminate the aux vdev wart by integrating all vdevs
5573 		 * into the root vdev tree.
5574 		 */
5575 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5576 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5577 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5578 			vdev_state_clean(vd);
5579 			vdev_config_dirty(vd);
5580 		}
5581 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5582 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5583 	}
5584 	spa_config_exit(spa, SCL_STATE, FTAG);
5585 
5586 	tx = dmu_tx_create_assigned(dp, txg);
5587 
5588 	/*
5589 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5590 	 * set spa_deflate if we have no raid-z vdevs.
5591 	 */
5592 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5593 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5594 		int i;
5595 
5596 		for (i = 0; i < rvd->vdev_children; i++) {
5597 			vd = rvd->vdev_child[i];
5598 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5599 				break;
5600 		}
5601 		if (i == rvd->vdev_children) {
5602 			spa->spa_deflate = TRUE;
5603 			VERIFY(0 == zap_add(spa->spa_meta_objset,
5604 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5605 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5606 		}
5607 	}
5608 
5609 	/*
5610 	 * If anything has changed in this txg, or if someone is waiting
5611 	 * for this txg to sync (eg, spa_vdev_remove()), push the
5612 	 * deferred frees from the previous txg.  If not, leave them
5613 	 * alone so that we don't generate work on an otherwise idle
5614 	 * system.
5615 	 */
5616 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5617 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5618 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5619 	    ((dsl_scan_active(dp->dp_scan) ||
5620 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5621 		zio_t *zio = zio_root(spa, NULL, NULL, 0);
5622 		VERIFY3U(bpobj_iterate(defer_bpo,
5623 		    spa_free_sync_cb, zio, tx), ==, 0);
5624 		VERIFY3U(zio_wait(zio), ==, 0);
5625 	}
5626 
5627 	/*
5628 	 * Iterate to convergence.
5629 	 */
5630 	do {
5631 		int pass = ++spa->spa_sync_pass;
5632 
5633 		spa_sync_config_object(spa, tx);
5634 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5635 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5636 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5637 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5638 		spa_errlog_sync(spa, txg);
5639 		dsl_pool_sync(dp, txg);
5640 
5641 		if (pass <= SYNC_PASS_DEFERRED_FREE) {
5642 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
5643 			bplist_iterate(free_bpl, spa_free_sync_cb,
5644 			    zio, tx);
5645 			VERIFY(zio_wait(zio) == 0);
5646 		} else {
5647 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
5648 			    defer_bpo, tx);
5649 		}
5650 
5651 		ddt_sync(spa, txg);
5652 		dsl_scan_sync(dp, tx);
5653 
5654 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5655 			vdev_sync(vd, txg);
5656 
5657 		if (pass == 1)
5658 			spa_sync_upgrades(spa, tx);
5659 
5660 	} while (dmu_objset_is_dirty(mos, txg));
5661 
5662 	/*
5663 	 * Rewrite the vdev configuration (which includes the uberblock)
5664 	 * to commit the transaction group.
5665 	 *
5666 	 * If there are no dirty vdevs, we sync the uberblock to a few
5667 	 * random top-level vdevs that are known to be visible in the
5668 	 * config cache (see spa_vdev_add() for a complete description).
5669 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5670 	 */
5671 	for (;;) {
5672 		/*
5673 		 * We hold SCL_STATE to prevent vdev open/close/etc.
5674 		 * while we're attempting to write the vdev labels.
5675 		 */
5676 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5677 
5678 		if (list_is_empty(&spa->spa_config_dirty_list)) {
5679 			vdev_t *svd[SPA_DVAS_PER_BP];
5680 			int svdcount = 0;
5681 			int children = rvd->vdev_children;
5682 			int c0 = spa_get_random(children);
5683 
5684 			for (int c = 0; c < children; c++) {
5685 				vd = rvd->vdev_child[(c0 + c) % children];
5686 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5687 					continue;
5688 				svd[svdcount++] = vd;
5689 				if (svdcount == SPA_DVAS_PER_BP)
5690 					break;
5691 			}
5692 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5693 			if (error != 0)
5694 				error = vdev_config_sync(svd, svdcount, txg,
5695 				    B_TRUE);
5696 		} else {
5697 			error = vdev_config_sync(rvd->vdev_child,
5698 			    rvd->vdev_children, txg, B_FALSE);
5699 			if (error != 0)
5700 				error = vdev_config_sync(rvd->vdev_child,
5701 				    rvd->vdev_children, txg, B_TRUE);
5702 		}
5703 
5704 		spa_config_exit(spa, SCL_STATE, FTAG);
5705 
5706 		if (error == 0)
5707 			break;
5708 		zio_suspend(spa, NULL);
5709 		zio_resume_wait(spa);
5710 	}
5711 	dmu_tx_commit(tx);
5712 
5713 	/*
5714 	 * Clear the dirty config list.
5715 	 */
5716 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5717 		vdev_config_clean(vd);
5718 
5719 	/*
5720 	 * Now that the new config has synced transactionally,
5721 	 * let it become visible to the config cache.
5722 	 */
5723 	if (spa->spa_config_syncing != NULL) {
5724 		spa_config_set(spa, spa->spa_config_syncing);
5725 		spa->spa_config_txg = txg;
5726 		spa->spa_config_syncing = NULL;
5727 	}
5728 
5729 	spa->spa_ubsync = spa->spa_uberblock;
5730 
5731 	dsl_pool_sync_done(dp, txg);
5732 
5733 	/*
5734 	 * Update usable space statistics.
5735 	 */
5736 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5737 		vdev_sync_done(vd, txg);
5738 
5739 	spa_update_dspace(spa);
5740 
5741 	/*
5742 	 * It had better be the case that we didn't dirty anything
5743 	 * since vdev_config_sync().
5744 	 */
5745 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5746 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5747 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5748 
5749 	spa->spa_sync_pass = 0;
5750 
5751 	spa_config_exit(spa, SCL_CONFIG, FTAG);
5752 
5753 	spa_handle_ignored_writes(spa);
5754 
5755 	/*
5756 	 * If any async tasks have been requested, kick them off.
5757 	 */
5758 	spa_async_dispatch(spa);
5759 }
5760 
5761 /*
5762  * Sync all pools.  We don't want to hold the namespace lock across these
5763  * operations, so we take a reference on the spa_t and drop the lock during the
5764  * sync.
5765  */
5766 void
5767 spa_sync_allpools(void)
5768 {
5769 	spa_t *spa = NULL;
5770 	mutex_enter(&spa_namespace_lock);
5771 	while ((spa = spa_next(spa)) != NULL) {
5772 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
5773 		    !spa_writeable(spa) || spa_suspended(spa))
5774 			continue;
5775 		spa_open_ref(spa, FTAG);
5776 		mutex_exit(&spa_namespace_lock);
5777 		txg_wait_synced(spa_get_dsl(spa), 0);
5778 		mutex_enter(&spa_namespace_lock);
5779 		spa_close(spa, FTAG);
5780 	}
5781 	mutex_exit(&spa_namespace_lock);
5782 }
5783 
5784 /*
5785  * ==========================================================================
5786  * Miscellaneous routines
5787  * ==========================================================================
5788  */
5789 
5790 /*
5791  * Remove all pools in the system.
5792  */
5793 void
5794 spa_evict_all(void)
5795 {
5796 	spa_t *spa;
5797 
5798 	/*
5799 	 * Remove all cached state.  All pools should be closed now,
5800 	 * so every spa in the AVL tree should be unreferenced.
5801 	 */
5802 	mutex_enter(&spa_namespace_lock);
5803 	while ((spa = spa_next(NULL)) != NULL) {
5804 		/*
5805 		 * Stop async tasks.  The async thread may need to detach
5806 		 * a device that's been replaced, which requires grabbing
5807 		 * spa_namespace_lock, so we must drop it here.
5808 		 */
5809 		spa_open_ref(spa, FTAG);
5810 		mutex_exit(&spa_namespace_lock);
5811 		spa_async_suspend(spa);
5812 		mutex_enter(&spa_namespace_lock);
5813 		spa_close(spa, FTAG);
5814 
5815 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5816 			spa_unload(spa);
5817 			spa_deactivate(spa);
5818 		}
5819 		spa_remove(spa);
5820 	}
5821 	mutex_exit(&spa_namespace_lock);
5822 }
5823 
5824 vdev_t *
5825 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5826 {
5827 	vdev_t *vd;
5828 	int i;
5829 
5830 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5831 		return (vd);
5832 
5833 	if (aux) {
5834 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5835 			vd = spa->spa_l2cache.sav_vdevs[i];
5836 			if (vd->vdev_guid == guid)
5837 				return (vd);
5838 		}
5839 
5840 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
5841 			vd = spa->spa_spares.sav_vdevs[i];
5842 			if (vd->vdev_guid == guid)
5843 				return (vd);
5844 		}
5845 	}
5846 
5847 	return (NULL);
5848 }
5849 
5850 void
5851 spa_upgrade(spa_t *spa, uint64_t version)
5852 {
5853 	ASSERT(spa_writeable(spa));
5854 
5855 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5856 
5857 	/*
5858 	 * This should only be called for a non-faulted pool, and since a
5859 	 * future version would result in an unopenable pool, this shouldn't be
5860 	 * possible.
5861 	 */
5862 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5863 	ASSERT(version >= spa->spa_uberblock.ub_version);
5864 
5865 	spa->spa_uberblock.ub_version = version;
5866 	vdev_config_dirty(spa->spa_root_vdev);
5867 
5868 	spa_config_exit(spa, SCL_ALL, FTAG);
5869 
5870 	txg_wait_synced(spa_get_dsl(spa), 0);
5871 }
5872 
5873 boolean_t
5874 spa_has_spare(spa_t *spa, uint64_t guid)
5875 {
5876 	int i;
5877 	uint64_t spareguid;
5878 	spa_aux_vdev_t *sav = &spa->spa_spares;
5879 
5880 	for (i = 0; i < sav->sav_count; i++)
5881 		if (sav->sav_vdevs[i]->vdev_guid == guid)
5882 			return (B_TRUE);
5883 
5884 	for (i = 0; i < sav->sav_npending; i++) {
5885 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5886 		    &spareguid) == 0 && spareguid == guid)
5887 			return (B_TRUE);
5888 	}
5889 
5890 	return (B_FALSE);
5891 }
5892 
5893 /*
5894  * Check if a pool has an active shared spare device.
5895  * Note: reference count of an active spare is 2, as a spare and as a replace
5896  */
5897 static boolean_t
5898 spa_has_active_shared_spare(spa_t *spa)
5899 {
5900 	int i, refcnt;
5901 	uint64_t pool;
5902 	spa_aux_vdev_t *sav = &spa->spa_spares;
5903 
5904 	for (i = 0; i < sav->sav_count; i++) {
5905 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5906 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5907 		    refcnt > 2)
5908 			return (B_TRUE);
5909 	}
5910 
5911 	return (B_FALSE);
5912 }
5913 
5914 /*
5915  * Post a sysevent corresponding to the given event.  The 'name' must be one of
5916  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5917  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5918  * in the userland libzpool, as we don't want consumers to misinterpret ztest
5919  * or zdb as real changes.
5920  */
5921 void
5922 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5923 {
5924 #ifdef _KERNEL
5925 	sysevent_t		*ev;
5926 	sysevent_attr_list_t	*attr = NULL;
5927 	sysevent_value_t	value;
5928 	sysevent_id_t		eid;
5929 
5930 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5931 	    SE_SLEEP);
5932 
5933 	value.value_type = SE_DATA_TYPE_STRING;
5934 	value.value.sv_string = spa_name(spa);
5935 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5936 		goto done;
5937 
5938 	value.value_type = SE_DATA_TYPE_UINT64;
5939 	value.value.sv_uint64 = spa_guid(spa);
5940 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5941 		goto done;
5942 
5943 	if (vd) {
5944 		value.value_type = SE_DATA_TYPE_UINT64;
5945 		value.value.sv_uint64 = vd->vdev_guid;
5946 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5947 		    SE_SLEEP) != 0)
5948 			goto done;
5949 
5950 		if (vd->vdev_path) {
5951 			value.value_type = SE_DATA_TYPE_STRING;
5952 			value.value.sv_string = vd->vdev_path;
5953 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5954 			    &value, SE_SLEEP) != 0)
5955 				goto done;
5956 		}
5957 	}
5958 
5959 	if (sysevent_attach_attributes(ev, attr) != 0)
5960 		goto done;
5961 	attr = NULL;
5962 
5963 	(void) log_sysevent(ev, SE_SLEEP, &eid);
5964 
5965 done:
5966 	if (attr)
5967 		sysevent_free_attr(attr);
5968 	sysevent_free(ev);
5969 #endif
5970 }
5971