xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 48edc7cf07b5dccc3ad84bf2dafe4150bd666d60)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  */
31 
32 /*
33  * SPA: Storage Pool Allocator
34  *
35  * This file contains all the routines used when modifying on-disk SPA state.
36  * This includes opening, importing, destroying, exporting a pool, and syncing a
37  * pool.
38  */
39 
40 #include <sys/zfs_context.h>
41 #include <sys/fm/fs/zfs.h>
42 #include <sys/spa_impl.h>
43 #include <sys/zio.h>
44 #include <sys/zio_checksum.h>
45 #include <sys/dmu.h>
46 #include <sys/dmu_tx.h>
47 #include <sys/zap.h>
48 #include <sys/zil.h>
49 #include <sys/ddt.h>
50 #include <sys/vdev_impl.h>
51 #include <sys/metaslab.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/uberblock_impl.h>
54 #include <sys/txg.h>
55 #include <sys/avl.h>
56 #include <sys/dmu_traverse.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/unique.h>
59 #include <sys/dsl_pool.h>
60 #include <sys/dsl_dataset.h>
61 #include <sys/dsl_dir.h>
62 #include <sys/dsl_prop.h>
63 #include <sys/dsl_synctask.h>
64 #include <sys/fs/zfs.h>
65 #include <sys/arc.h>
66 #include <sys/callb.h>
67 #include <sys/systeminfo.h>
68 #include <sys/spa_boot.h>
69 #include <sys/zfs_ioctl.h>
70 #include <sys/dsl_scan.h>
71 #include <sys/zfeature.h>
72 #include <sys/dsl_destroy.h>
73 
74 #ifdef	_KERNEL
75 #include <sys/bootprops.h>
76 #include <sys/callb.h>
77 #include <sys/cpupart.h>
78 #include <sys/pool.h>
79 #include <sys/sysdc.h>
80 #include <sys/zone.h>
81 #endif	/* _KERNEL */
82 
83 #include "zfs_prop.h"
84 #include "zfs_comutil.h"
85 
86 /*
87  * The interval, in seconds, at which failed configuration cache file writes
88  * should be retried.
89  */
90 static int zfs_ccw_retry_interval = 300;
91 
92 typedef enum zti_modes {
93 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
94 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
95 	ZTI_MODE_NULL,			/* don't create a taskq */
96 	ZTI_NMODES
97 } zti_modes_t;
98 
99 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
100 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
101 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
102 
103 #define	ZTI_N(n)	ZTI_P(n, 1)
104 #define	ZTI_ONE		ZTI_N(1)
105 
106 typedef struct zio_taskq_info {
107 	zti_modes_t zti_mode;
108 	uint_t zti_value;
109 	uint_t zti_count;
110 } zio_taskq_info_t;
111 
112 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
113 	"issue", "issue_high", "intr", "intr_high"
114 };
115 
116 /*
117  * This table defines the taskq settings for each ZFS I/O type. When
118  * initializing a pool, we use this table to create an appropriately sized
119  * taskq. Some operations are low volume and therefore have a small, static
120  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
121  * macros. Other operations process a large amount of data; the ZTI_BATCH
122  * macro causes us to create a taskq oriented for throughput. Some operations
123  * are so high frequency and short-lived that the taskq itself can become a a
124  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
125  * additional degree of parallelism specified by the number of threads per-
126  * taskq and the number of taskqs; when dispatching an event in this case, the
127  * particular taskq is chosen at random.
128  *
129  * The different taskq priorities are to handle the different contexts (issue
130  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
131  * need to be handled with minimum delay.
132  */
133 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
134 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
135 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
136 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
137 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
138 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
139 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
140 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
141 };
142 
143 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, const char *name);
144 static void spa_event_post(sysevent_t *ev);
145 static void spa_sync_version(void *arg, dmu_tx_t *tx);
146 static void spa_sync_props(void *arg, dmu_tx_t *tx);
147 static boolean_t spa_has_active_shared_spare(spa_t *spa);
148 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
149     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
150     char **ereport);
151 static void spa_vdev_resilver_done(spa_t *spa);
152 
153 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
154 id_t		zio_taskq_psrset_bind = PS_NONE;
155 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
156 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
157 
158 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
159 extern int	zfs_sync_pass_deferred_free;
160 
161 /*
162  * This (illegal) pool name is used when temporarily importing a spa_t in order
163  * to get the vdev stats associated with the imported devices.
164  */
165 #define	TRYIMPORT_NAME	"$import"
166 
167 /*
168  * ==========================================================================
169  * SPA properties routines
170  * ==========================================================================
171  */
172 
173 /*
174  * Add a (source=src, propname=propval) list to an nvlist.
175  */
176 static void
177 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
178     uint64_t intval, zprop_source_t src)
179 {
180 	const char *propname = zpool_prop_to_name(prop);
181 	nvlist_t *propval;
182 
183 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
184 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
185 
186 	if (strval != NULL)
187 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
188 	else
189 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
190 
191 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
192 	nvlist_free(propval);
193 }
194 
195 /*
196  * Get property values from the spa configuration.
197  */
198 static void
199 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
200 {
201 	vdev_t *rvd = spa->spa_root_vdev;
202 	dsl_pool_t *pool = spa->spa_dsl_pool;
203 	uint64_t size, alloc, cap, version;
204 	zprop_source_t src = ZPROP_SRC_NONE;
205 	spa_config_dirent_t *dp;
206 	metaslab_class_t *mc = spa_normal_class(spa);
207 
208 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
209 
210 	if (rvd != NULL) {
211 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
212 		size = metaslab_class_get_space(spa_normal_class(spa));
213 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
214 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
215 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
216 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
217 		    size - alloc, src);
218 
219 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
220 		    metaslab_class_fragmentation(mc), src);
221 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
222 		    metaslab_class_expandable_space(mc), src);
223 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 		    (spa_mode(spa) == FREAD), src);
225 
226 		cap = (size == 0) ? 0 : (alloc * 100 / size);
227 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228 
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 		    ddt_get_pool_dedup_ratio(spa), src);
231 
232 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 		    rvd->vdev_state, src);
234 
235 		version = spa_version(spa);
236 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 			src = ZPROP_SRC_DEFAULT;
238 		else
239 			src = ZPROP_SRC_LOCAL;
240 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 	}
242 
243 	if (pool != NULL) {
244 		/*
245 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
246 		 * when opening pools before this version freedir will be NULL.
247 		 */
248 		if (pool->dp_free_dir != NULL) {
249 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
250 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
251 			    src);
252 		} else {
253 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
254 			    NULL, 0, src);
255 		}
256 
257 		if (pool->dp_leak_dir != NULL) {
258 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
259 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
260 			    src);
261 		} else {
262 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
263 			    NULL, 0, src);
264 		}
265 	}
266 
267 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
268 
269 	if (spa->spa_comment != NULL) {
270 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
271 		    0, ZPROP_SRC_LOCAL);
272 	}
273 
274 	if (spa->spa_root != NULL)
275 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
276 		    0, ZPROP_SRC_LOCAL);
277 
278 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
279 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
280 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
281 	} else {
282 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
283 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
284 	}
285 
286 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
287 		if (dp->scd_path == NULL) {
288 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
289 			    "none", 0, ZPROP_SRC_LOCAL);
290 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
291 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
292 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
293 		}
294 	}
295 }
296 
297 /*
298  * Get zpool property values.
299  */
300 int
301 spa_prop_get(spa_t *spa, nvlist_t **nvp)
302 {
303 	objset_t *mos = spa->spa_meta_objset;
304 	zap_cursor_t zc;
305 	zap_attribute_t za;
306 	int err;
307 
308 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
309 
310 	mutex_enter(&spa->spa_props_lock);
311 
312 	/*
313 	 * Get properties from the spa config.
314 	 */
315 	spa_prop_get_config(spa, nvp);
316 
317 	/* If no pool property object, no more prop to get. */
318 	if (mos == NULL || spa->spa_pool_props_object == 0) {
319 		mutex_exit(&spa->spa_props_lock);
320 		return (0);
321 	}
322 
323 	/*
324 	 * Get properties from the MOS pool property object.
325 	 */
326 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
327 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
328 	    zap_cursor_advance(&zc)) {
329 		uint64_t intval = 0;
330 		char *strval = NULL;
331 		zprop_source_t src = ZPROP_SRC_DEFAULT;
332 		zpool_prop_t prop;
333 
334 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
335 			continue;
336 
337 		switch (za.za_integer_length) {
338 		case 8:
339 			/* integer property */
340 			if (za.za_first_integer !=
341 			    zpool_prop_default_numeric(prop))
342 				src = ZPROP_SRC_LOCAL;
343 
344 			if (prop == ZPOOL_PROP_BOOTFS) {
345 				dsl_pool_t *dp;
346 				dsl_dataset_t *ds = NULL;
347 
348 				dp = spa_get_dsl(spa);
349 				dsl_pool_config_enter(dp, FTAG);
350 				if (err = dsl_dataset_hold_obj(dp,
351 				    za.za_first_integer, FTAG, &ds)) {
352 					dsl_pool_config_exit(dp, FTAG);
353 					break;
354 				}
355 
356 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
357 				    KM_SLEEP);
358 				dsl_dataset_name(ds, strval);
359 				dsl_dataset_rele(ds, FTAG);
360 				dsl_pool_config_exit(dp, FTAG);
361 			} else {
362 				strval = NULL;
363 				intval = za.za_first_integer;
364 			}
365 
366 			spa_prop_add_list(*nvp, prop, strval, intval, src);
367 
368 			if (strval != NULL)
369 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
370 
371 			break;
372 
373 		case 1:
374 			/* string property */
375 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
376 			err = zap_lookup(mos, spa->spa_pool_props_object,
377 			    za.za_name, 1, za.za_num_integers, strval);
378 			if (err) {
379 				kmem_free(strval, za.za_num_integers);
380 				break;
381 			}
382 			spa_prop_add_list(*nvp, prop, strval, 0, src);
383 			kmem_free(strval, za.za_num_integers);
384 			break;
385 
386 		default:
387 			break;
388 		}
389 	}
390 	zap_cursor_fini(&zc);
391 	mutex_exit(&spa->spa_props_lock);
392 out:
393 	if (err && err != ENOENT) {
394 		nvlist_free(*nvp);
395 		*nvp = NULL;
396 		return (err);
397 	}
398 
399 	return (0);
400 }
401 
402 /*
403  * Validate the given pool properties nvlist and modify the list
404  * for the property values to be set.
405  */
406 static int
407 spa_prop_validate(spa_t *spa, nvlist_t *props)
408 {
409 	nvpair_t *elem;
410 	int error = 0, reset_bootfs = 0;
411 	uint64_t objnum = 0;
412 	boolean_t has_feature = B_FALSE;
413 
414 	elem = NULL;
415 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
416 		uint64_t intval;
417 		char *strval, *slash, *check, *fname;
418 		const char *propname = nvpair_name(elem);
419 		zpool_prop_t prop = zpool_name_to_prop(propname);
420 
421 		switch (prop) {
422 		case ZPROP_INVAL:
423 			if (!zpool_prop_feature(propname)) {
424 				error = SET_ERROR(EINVAL);
425 				break;
426 			}
427 
428 			/*
429 			 * Sanitize the input.
430 			 */
431 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
432 				error = SET_ERROR(EINVAL);
433 				break;
434 			}
435 
436 			if (nvpair_value_uint64(elem, &intval) != 0) {
437 				error = SET_ERROR(EINVAL);
438 				break;
439 			}
440 
441 			if (intval != 0) {
442 				error = SET_ERROR(EINVAL);
443 				break;
444 			}
445 
446 			fname = strchr(propname, '@') + 1;
447 			if (zfeature_lookup_name(fname, NULL) != 0) {
448 				error = SET_ERROR(EINVAL);
449 				break;
450 			}
451 
452 			has_feature = B_TRUE;
453 			break;
454 
455 		case ZPOOL_PROP_VERSION:
456 			error = nvpair_value_uint64(elem, &intval);
457 			if (!error &&
458 			    (intval < spa_version(spa) ||
459 			    intval > SPA_VERSION_BEFORE_FEATURES ||
460 			    has_feature))
461 				error = SET_ERROR(EINVAL);
462 			break;
463 
464 		case ZPOOL_PROP_DELEGATION:
465 		case ZPOOL_PROP_AUTOREPLACE:
466 		case ZPOOL_PROP_LISTSNAPS:
467 		case ZPOOL_PROP_AUTOEXPAND:
468 			error = nvpair_value_uint64(elem, &intval);
469 			if (!error && intval > 1)
470 				error = SET_ERROR(EINVAL);
471 			break;
472 
473 		case ZPOOL_PROP_BOOTFS:
474 			/*
475 			 * If the pool version is less than SPA_VERSION_BOOTFS,
476 			 * or the pool is still being created (version == 0),
477 			 * the bootfs property cannot be set.
478 			 */
479 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
480 				error = SET_ERROR(ENOTSUP);
481 				break;
482 			}
483 
484 			/*
485 			 * Make sure the vdev config is bootable
486 			 */
487 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
488 				error = SET_ERROR(ENOTSUP);
489 				break;
490 			}
491 
492 			reset_bootfs = 1;
493 
494 			error = nvpair_value_string(elem, &strval);
495 
496 			if (!error) {
497 				objset_t *os;
498 				uint64_t propval;
499 
500 				if (strval == NULL || strval[0] == '\0') {
501 					objnum = zpool_prop_default_numeric(
502 					    ZPOOL_PROP_BOOTFS);
503 					break;
504 				}
505 
506 				if (error = dmu_objset_hold(strval, FTAG, &os))
507 					break;
508 
509 				/*
510 				 * Must be ZPL, and its property settings
511 				 * must be supported by GRUB (compression
512 				 * is not gzip, and large blocks are not used).
513 				 */
514 
515 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
516 					error = SET_ERROR(ENOTSUP);
517 				} else if ((error =
518 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
519 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
520 				    &propval)) == 0 &&
521 				    !BOOTFS_COMPRESS_VALID(propval)) {
522 					error = SET_ERROR(ENOTSUP);
523 				} else {
524 					objnum = dmu_objset_id(os);
525 				}
526 				dmu_objset_rele(os, FTAG);
527 			}
528 			break;
529 
530 		case ZPOOL_PROP_FAILUREMODE:
531 			error = nvpair_value_uint64(elem, &intval);
532 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
533 			    intval > ZIO_FAILURE_MODE_PANIC))
534 				error = SET_ERROR(EINVAL);
535 
536 			/*
537 			 * This is a special case which only occurs when
538 			 * the pool has completely failed. This allows
539 			 * the user to change the in-core failmode property
540 			 * without syncing it out to disk (I/Os might
541 			 * currently be blocked). We do this by returning
542 			 * EIO to the caller (spa_prop_set) to trick it
543 			 * into thinking we encountered a property validation
544 			 * error.
545 			 */
546 			if (!error && spa_suspended(spa)) {
547 				spa->spa_failmode = intval;
548 				error = SET_ERROR(EIO);
549 			}
550 			break;
551 
552 		case ZPOOL_PROP_CACHEFILE:
553 			if ((error = nvpair_value_string(elem, &strval)) != 0)
554 				break;
555 
556 			if (strval[0] == '\0')
557 				break;
558 
559 			if (strcmp(strval, "none") == 0)
560 				break;
561 
562 			if (strval[0] != '/') {
563 				error = SET_ERROR(EINVAL);
564 				break;
565 			}
566 
567 			slash = strrchr(strval, '/');
568 			ASSERT(slash != NULL);
569 
570 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
571 			    strcmp(slash, "/..") == 0)
572 				error = SET_ERROR(EINVAL);
573 			break;
574 
575 		case ZPOOL_PROP_COMMENT:
576 			if ((error = nvpair_value_string(elem, &strval)) != 0)
577 				break;
578 			for (check = strval; *check != '\0'; check++) {
579 				/*
580 				 * The kernel doesn't have an easy isprint()
581 				 * check.  For this kernel check, we merely
582 				 * check ASCII apart from DEL.  Fix this if
583 				 * there is an easy-to-use kernel isprint().
584 				 */
585 				if (*check >= 0x7f) {
586 					error = SET_ERROR(EINVAL);
587 					break;
588 				}
589 			}
590 			if (strlen(strval) > ZPROP_MAX_COMMENT)
591 				error = E2BIG;
592 			break;
593 
594 		case ZPOOL_PROP_DEDUPDITTO:
595 			if (spa_version(spa) < SPA_VERSION_DEDUP)
596 				error = SET_ERROR(ENOTSUP);
597 			else
598 				error = nvpair_value_uint64(elem, &intval);
599 			if (error == 0 &&
600 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
601 				error = SET_ERROR(EINVAL);
602 			break;
603 		}
604 
605 		if (error)
606 			break;
607 	}
608 
609 	if (!error && reset_bootfs) {
610 		error = nvlist_remove(props,
611 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
612 
613 		if (!error) {
614 			error = nvlist_add_uint64(props,
615 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
616 		}
617 	}
618 
619 	return (error);
620 }
621 
622 void
623 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
624 {
625 	char *cachefile;
626 	spa_config_dirent_t *dp;
627 
628 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
629 	    &cachefile) != 0)
630 		return;
631 
632 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
633 	    KM_SLEEP);
634 
635 	if (cachefile[0] == '\0')
636 		dp->scd_path = spa_strdup(spa_config_path);
637 	else if (strcmp(cachefile, "none") == 0)
638 		dp->scd_path = NULL;
639 	else
640 		dp->scd_path = spa_strdup(cachefile);
641 
642 	list_insert_head(&spa->spa_config_list, dp);
643 	if (need_sync)
644 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
645 }
646 
647 int
648 spa_prop_set(spa_t *spa, nvlist_t *nvp)
649 {
650 	int error;
651 	nvpair_t *elem = NULL;
652 	boolean_t need_sync = B_FALSE;
653 
654 	if ((error = spa_prop_validate(spa, nvp)) != 0)
655 		return (error);
656 
657 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
658 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
659 
660 		if (prop == ZPOOL_PROP_CACHEFILE ||
661 		    prop == ZPOOL_PROP_ALTROOT ||
662 		    prop == ZPOOL_PROP_READONLY)
663 			continue;
664 
665 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
666 			uint64_t ver;
667 
668 			if (prop == ZPOOL_PROP_VERSION) {
669 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
670 			} else {
671 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
672 				ver = SPA_VERSION_FEATURES;
673 				need_sync = B_TRUE;
674 			}
675 
676 			/* Save time if the version is already set. */
677 			if (ver == spa_version(spa))
678 				continue;
679 
680 			/*
681 			 * In addition to the pool directory object, we might
682 			 * create the pool properties object, the features for
683 			 * read object, the features for write object, or the
684 			 * feature descriptions object.
685 			 */
686 			error = dsl_sync_task(spa->spa_name, NULL,
687 			    spa_sync_version, &ver,
688 			    6, ZFS_SPACE_CHECK_RESERVED);
689 			if (error)
690 				return (error);
691 			continue;
692 		}
693 
694 		need_sync = B_TRUE;
695 		break;
696 	}
697 
698 	if (need_sync) {
699 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
700 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
701 	}
702 
703 	return (0);
704 }
705 
706 /*
707  * If the bootfs property value is dsobj, clear it.
708  */
709 void
710 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
711 {
712 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
713 		VERIFY(zap_remove(spa->spa_meta_objset,
714 		    spa->spa_pool_props_object,
715 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
716 		spa->spa_bootfs = 0;
717 	}
718 }
719 
720 /*ARGSUSED*/
721 static int
722 spa_change_guid_check(void *arg, dmu_tx_t *tx)
723 {
724 	uint64_t *newguid = arg;
725 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
726 	vdev_t *rvd = spa->spa_root_vdev;
727 	uint64_t vdev_state;
728 
729 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
730 	vdev_state = rvd->vdev_state;
731 	spa_config_exit(spa, SCL_STATE, FTAG);
732 
733 	if (vdev_state != VDEV_STATE_HEALTHY)
734 		return (SET_ERROR(ENXIO));
735 
736 	ASSERT3U(spa_guid(spa), !=, *newguid);
737 
738 	return (0);
739 }
740 
741 static void
742 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
743 {
744 	uint64_t *newguid = arg;
745 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
746 	uint64_t oldguid;
747 	vdev_t *rvd = spa->spa_root_vdev;
748 
749 	oldguid = spa_guid(spa);
750 
751 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
752 	rvd->vdev_guid = *newguid;
753 	rvd->vdev_guid_sum += (*newguid - oldguid);
754 	vdev_config_dirty(rvd);
755 	spa_config_exit(spa, SCL_STATE, FTAG);
756 
757 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
758 	    oldguid, *newguid);
759 }
760 
761 /*
762  * Change the GUID for the pool.  This is done so that we can later
763  * re-import a pool built from a clone of our own vdevs.  We will modify
764  * the root vdev's guid, our own pool guid, and then mark all of our
765  * vdevs dirty.  Note that we must make sure that all our vdevs are
766  * online when we do this, or else any vdevs that weren't present
767  * would be orphaned from our pool.  We are also going to issue a
768  * sysevent to update any watchers.
769  */
770 int
771 spa_change_guid(spa_t *spa)
772 {
773 	int error;
774 	uint64_t guid;
775 
776 	mutex_enter(&spa->spa_vdev_top_lock);
777 	mutex_enter(&spa_namespace_lock);
778 	guid = spa_generate_guid(NULL);
779 
780 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
781 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
782 
783 	if (error == 0) {
784 		spa_config_sync(spa, B_FALSE, B_TRUE);
785 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
786 	}
787 
788 	mutex_exit(&spa_namespace_lock);
789 	mutex_exit(&spa->spa_vdev_top_lock);
790 
791 	return (error);
792 }
793 
794 /*
795  * ==========================================================================
796  * SPA state manipulation (open/create/destroy/import/export)
797  * ==========================================================================
798  */
799 
800 static int
801 spa_error_entry_compare(const void *a, const void *b)
802 {
803 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
804 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
805 	int ret;
806 
807 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
808 	    sizeof (zbookmark_phys_t));
809 
810 	if (ret < 0)
811 		return (-1);
812 	else if (ret > 0)
813 		return (1);
814 	else
815 		return (0);
816 }
817 
818 /*
819  * Utility function which retrieves copies of the current logs and
820  * re-initializes them in the process.
821  */
822 void
823 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
824 {
825 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
826 
827 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
828 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
829 
830 	avl_create(&spa->spa_errlist_scrub,
831 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
832 	    offsetof(spa_error_entry_t, se_avl));
833 	avl_create(&spa->spa_errlist_last,
834 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
835 	    offsetof(spa_error_entry_t, se_avl));
836 }
837 
838 static void
839 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
840 {
841 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
842 	enum zti_modes mode = ztip->zti_mode;
843 	uint_t value = ztip->zti_value;
844 	uint_t count = ztip->zti_count;
845 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
846 	char name[32];
847 	uint_t flags = 0;
848 	boolean_t batch = B_FALSE;
849 
850 	if (mode == ZTI_MODE_NULL) {
851 		tqs->stqs_count = 0;
852 		tqs->stqs_taskq = NULL;
853 		return;
854 	}
855 
856 	ASSERT3U(count, >, 0);
857 
858 	tqs->stqs_count = count;
859 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
860 
861 	switch (mode) {
862 	case ZTI_MODE_FIXED:
863 		ASSERT3U(value, >=, 1);
864 		value = MAX(value, 1);
865 		break;
866 
867 	case ZTI_MODE_BATCH:
868 		batch = B_TRUE;
869 		flags |= TASKQ_THREADS_CPU_PCT;
870 		value = zio_taskq_batch_pct;
871 		break;
872 
873 	default:
874 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
875 		    "spa_activate()",
876 		    zio_type_name[t], zio_taskq_types[q], mode, value);
877 		break;
878 	}
879 
880 	for (uint_t i = 0; i < count; i++) {
881 		taskq_t *tq;
882 
883 		if (count > 1) {
884 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
885 			    zio_type_name[t], zio_taskq_types[q], i);
886 		} else {
887 			(void) snprintf(name, sizeof (name), "%s_%s",
888 			    zio_type_name[t], zio_taskq_types[q]);
889 		}
890 
891 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
892 			if (batch)
893 				flags |= TASKQ_DC_BATCH;
894 
895 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
896 			    spa->spa_proc, zio_taskq_basedc, flags);
897 		} else {
898 			pri_t pri = maxclsyspri;
899 			/*
900 			 * The write issue taskq can be extremely CPU
901 			 * intensive.  Run it at slightly lower priority
902 			 * than the other taskqs.
903 			 */
904 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
905 				pri--;
906 
907 			tq = taskq_create_proc(name, value, pri, 50,
908 			    INT_MAX, spa->spa_proc, flags);
909 		}
910 
911 		tqs->stqs_taskq[i] = tq;
912 	}
913 }
914 
915 static void
916 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
917 {
918 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
919 
920 	if (tqs->stqs_taskq == NULL) {
921 		ASSERT0(tqs->stqs_count);
922 		return;
923 	}
924 
925 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
926 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
927 		taskq_destroy(tqs->stqs_taskq[i]);
928 	}
929 
930 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
931 	tqs->stqs_taskq = NULL;
932 }
933 
934 /*
935  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
936  * Note that a type may have multiple discrete taskqs to avoid lock contention
937  * on the taskq itself. In that case we choose which taskq at random by using
938  * the low bits of gethrtime().
939  */
940 void
941 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
942     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
943 {
944 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
945 	taskq_t *tq;
946 
947 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
948 	ASSERT3U(tqs->stqs_count, !=, 0);
949 
950 	if (tqs->stqs_count == 1) {
951 		tq = tqs->stqs_taskq[0];
952 	} else {
953 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
954 	}
955 
956 	taskq_dispatch_ent(tq, func, arg, flags, ent);
957 }
958 
959 static void
960 spa_create_zio_taskqs(spa_t *spa)
961 {
962 	for (int t = 0; t < ZIO_TYPES; t++) {
963 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
964 			spa_taskqs_init(spa, t, q);
965 		}
966 	}
967 }
968 
969 #ifdef _KERNEL
970 static void
971 spa_thread(void *arg)
972 {
973 	callb_cpr_t cprinfo;
974 
975 	spa_t *spa = arg;
976 	user_t *pu = PTOU(curproc);
977 
978 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
979 	    spa->spa_name);
980 
981 	ASSERT(curproc != &p0);
982 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
983 	    "zpool-%s", spa->spa_name);
984 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
985 
986 	/* bind this thread to the requested psrset */
987 	if (zio_taskq_psrset_bind != PS_NONE) {
988 		pool_lock();
989 		mutex_enter(&cpu_lock);
990 		mutex_enter(&pidlock);
991 		mutex_enter(&curproc->p_lock);
992 
993 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
994 		    0, NULL, NULL) == 0)  {
995 			curthread->t_bind_pset = zio_taskq_psrset_bind;
996 		} else {
997 			cmn_err(CE_WARN,
998 			    "Couldn't bind process for zfs pool \"%s\" to "
999 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1000 		}
1001 
1002 		mutex_exit(&curproc->p_lock);
1003 		mutex_exit(&pidlock);
1004 		mutex_exit(&cpu_lock);
1005 		pool_unlock();
1006 	}
1007 
1008 	if (zio_taskq_sysdc) {
1009 		sysdc_thread_enter(curthread, 100, 0);
1010 	}
1011 
1012 	spa->spa_proc = curproc;
1013 	spa->spa_did = curthread->t_did;
1014 
1015 	spa_create_zio_taskqs(spa);
1016 
1017 	mutex_enter(&spa->spa_proc_lock);
1018 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1019 
1020 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1021 	cv_broadcast(&spa->spa_proc_cv);
1022 
1023 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1024 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1025 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1026 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1027 
1028 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1029 	spa->spa_proc_state = SPA_PROC_GONE;
1030 	spa->spa_proc = &p0;
1031 	cv_broadcast(&spa->spa_proc_cv);
1032 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1033 
1034 	mutex_enter(&curproc->p_lock);
1035 	lwp_exit();
1036 }
1037 #endif
1038 
1039 /*
1040  * Activate an uninitialized pool.
1041  */
1042 static void
1043 spa_activate(spa_t *spa, int mode)
1044 {
1045 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1046 
1047 	spa->spa_state = POOL_STATE_ACTIVE;
1048 	spa->spa_mode = mode;
1049 
1050 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1051 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1052 
1053 	/* Try to create a covering process */
1054 	mutex_enter(&spa->spa_proc_lock);
1055 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1056 	ASSERT(spa->spa_proc == &p0);
1057 	spa->spa_did = 0;
1058 
1059 	/* Only create a process if we're going to be around a while. */
1060 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1061 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1062 		    NULL, 0) == 0) {
1063 			spa->spa_proc_state = SPA_PROC_CREATED;
1064 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1065 				cv_wait(&spa->spa_proc_cv,
1066 				    &spa->spa_proc_lock);
1067 			}
1068 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1069 			ASSERT(spa->spa_proc != &p0);
1070 			ASSERT(spa->spa_did != 0);
1071 		} else {
1072 #ifdef _KERNEL
1073 			cmn_err(CE_WARN,
1074 			    "Couldn't create process for zfs pool \"%s\"\n",
1075 			    spa->spa_name);
1076 #endif
1077 		}
1078 	}
1079 	mutex_exit(&spa->spa_proc_lock);
1080 
1081 	/* If we didn't create a process, we need to create our taskqs. */
1082 	if (spa->spa_proc == &p0) {
1083 		spa_create_zio_taskqs(spa);
1084 	}
1085 
1086 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1087 	    offsetof(vdev_t, vdev_config_dirty_node));
1088 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1089 	    offsetof(objset_t, os_evicting_node));
1090 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1091 	    offsetof(vdev_t, vdev_state_dirty_node));
1092 
1093 	txg_list_create(&spa->spa_vdev_txg_list,
1094 	    offsetof(struct vdev, vdev_txg_node));
1095 
1096 	avl_create(&spa->spa_errlist_scrub,
1097 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1098 	    offsetof(spa_error_entry_t, se_avl));
1099 	avl_create(&spa->spa_errlist_last,
1100 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1101 	    offsetof(spa_error_entry_t, se_avl));
1102 }
1103 
1104 /*
1105  * Opposite of spa_activate().
1106  */
1107 static void
1108 spa_deactivate(spa_t *spa)
1109 {
1110 	ASSERT(spa->spa_sync_on == B_FALSE);
1111 	ASSERT(spa->spa_dsl_pool == NULL);
1112 	ASSERT(spa->spa_root_vdev == NULL);
1113 	ASSERT(spa->spa_async_zio_root == NULL);
1114 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1115 
1116 	spa_evicting_os_wait(spa);
1117 
1118 	txg_list_destroy(&spa->spa_vdev_txg_list);
1119 
1120 	list_destroy(&spa->spa_config_dirty_list);
1121 	list_destroy(&spa->spa_evicting_os_list);
1122 	list_destroy(&spa->spa_state_dirty_list);
1123 
1124 	for (int t = 0; t < ZIO_TYPES; t++) {
1125 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1126 			spa_taskqs_fini(spa, t, q);
1127 		}
1128 	}
1129 
1130 	metaslab_class_destroy(spa->spa_normal_class);
1131 	spa->spa_normal_class = NULL;
1132 
1133 	metaslab_class_destroy(spa->spa_log_class);
1134 	spa->spa_log_class = NULL;
1135 
1136 	/*
1137 	 * If this was part of an import or the open otherwise failed, we may
1138 	 * still have errors left in the queues.  Empty them just in case.
1139 	 */
1140 	spa_errlog_drain(spa);
1141 
1142 	avl_destroy(&spa->spa_errlist_scrub);
1143 	avl_destroy(&spa->spa_errlist_last);
1144 
1145 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1146 
1147 	mutex_enter(&spa->spa_proc_lock);
1148 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1149 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1150 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1151 		cv_broadcast(&spa->spa_proc_cv);
1152 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1153 			ASSERT(spa->spa_proc != &p0);
1154 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1155 		}
1156 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1157 		spa->spa_proc_state = SPA_PROC_NONE;
1158 	}
1159 	ASSERT(spa->spa_proc == &p0);
1160 	mutex_exit(&spa->spa_proc_lock);
1161 
1162 	/*
1163 	 * We want to make sure spa_thread() has actually exited the ZFS
1164 	 * module, so that the module can't be unloaded out from underneath
1165 	 * it.
1166 	 */
1167 	if (spa->spa_did != 0) {
1168 		thread_join(spa->spa_did);
1169 		spa->spa_did = 0;
1170 	}
1171 }
1172 
1173 /*
1174  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1175  * will create all the necessary vdevs in the appropriate layout, with each vdev
1176  * in the CLOSED state.  This will prep the pool before open/creation/import.
1177  * All vdev validation is done by the vdev_alloc() routine.
1178  */
1179 static int
1180 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1181     uint_t id, int atype)
1182 {
1183 	nvlist_t **child;
1184 	uint_t children;
1185 	int error;
1186 
1187 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1188 		return (error);
1189 
1190 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1191 		return (0);
1192 
1193 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1194 	    &child, &children);
1195 
1196 	if (error == ENOENT)
1197 		return (0);
1198 
1199 	if (error) {
1200 		vdev_free(*vdp);
1201 		*vdp = NULL;
1202 		return (SET_ERROR(EINVAL));
1203 	}
1204 
1205 	for (int c = 0; c < children; c++) {
1206 		vdev_t *vd;
1207 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1208 		    atype)) != 0) {
1209 			vdev_free(*vdp);
1210 			*vdp = NULL;
1211 			return (error);
1212 		}
1213 	}
1214 
1215 	ASSERT(*vdp != NULL);
1216 
1217 	return (0);
1218 }
1219 
1220 /*
1221  * Opposite of spa_load().
1222  */
1223 static void
1224 spa_unload(spa_t *spa)
1225 {
1226 	int i;
1227 
1228 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1229 
1230 	/*
1231 	 * Stop async tasks.
1232 	 */
1233 	spa_async_suspend(spa);
1234 
1235 	/*
1236 	 * Stop syncing.
1237 	 */
1238 	if (spa->spa_sync_on) {
1239 		txg_sync_stop(spa->spa_dsl_pool);
1240 		spa->spa_sync_on = B_FALSE;
1241 	}
1242 
1243 	/*
1244 	 * Wait for any outstanding async I/O to complete.
1245 	 */
1246 	if (spa->spa_async_zio_root != NULL) {
1247 		for (int i = 0; i < max_ncpus; i++)
1248 			(void) zio_wait(spa->spa_async_zio_root[i]);
1249 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1250 		spa->spa_async_zio_root = NULL;
1251 	}
1252 
1253 	bpobj_close(&spa->spa_deferred_bpobj);
1254 
1255 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1256 
1257 	/*
1258 	 * Close all vdevs.
1259 	 */
1260 	if (spa->spa_root_vdev)
1261 		vdev_free(spa->spa_root_vdev);
1262 	ASSERT(spa->spa_root_vdev == NULL);
1263 
1264 	/*
1265 	 * Close the dsl pool.
1266 	 */
1267 	if (spa->spa_dsl_pool) {
1268 		dsl_pool_close(spa->spa_dsl_pool);
1269 		spa->spa_dsl_pool = NULL;
1270 		spa->spa_meta_objset = NULL;
1271 	}
1272 
1273 	ddt_unload(spa);
1274 
1275 	/*
1276 	 * Drop and purge level 2 cache
1277 	 */
1278 	spa_l2cache_drop(spa);
1279 
1280 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1281 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1282 	if (spa->spa_spares.sav_vdevs) {
1283 		kmem_free(spa->spa_spares.sav_vdevs,
1284 		    spa->spa_spares.sav_count * sizeof (void *));
1285 		spa->spa_spares.sav_vdevs = NULL;
1286 	}
1287 	if (spa->spa_spares.sav_config) {
1288 		nvlist_free(spa->spa_spares.sav_config);
1289 		spa->spa_spares.sav_config = NULL;
1290 	}
1291 	spa->spa_spares.sav_count = 0;
1292 
1293 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1294 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1295 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1296 	}
1297 	if (spa->spa_l2cache.sav_vdevs) {
1298 		kmem_free(spa->spa_l2cache.sav_vdevs,
1299 		    spa->spa_l2cache.sav_count * sizeof (void *));
1300 		spa->spa_l2cache.sav_vdevs = NULL;
1301 	}
1302 	if (spa->spa_l2cache.sav_config) {
1303 		nvlist_free(spa->spa_l2cache.sav_config);
1304 		spa->spa_l2cache.sav_config = NULL;
1305 	}
1306 	spa->spa_l2cache.sav_count = 0;
1307 
1308 	spa->spa_async_suspended = 0;
1309 
1310 	if (spa->spa_comment != NULL) {
1311 		spa_strfree(spa->spa_comment);
1312 		spa->spa_comment = NULL;
1313 	}
1314 
1315 	spa_config_exit(spa, SCL_ALL, FTAG);
1316 }
1317 
1318 /*
1319  * Load (or re-load) the current list of vdevs describing the active spares for
1320  * this pool.  When this is called, we have some form of basic information in
1321  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1322  * then re-generate a more complete list including status information.
1323  */
1324 static void
1325 spa_load_spares(spa_t *spa)
1326 {
1327 	nvlist_t **spares;
1328 	uint_t nspares;
1329 	int i;
1330 	vdev_t *vd, *tvd;
1331 
1332 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1333 
1334 	/*
1335 	 * First, close and free any existing spare vdevs.
1336 	 */
1337 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1338 		vd = spa->spa_spares.sav_vdevs[i];
1339 
1340 		/* Undo the call to spa_activate() below */
1341 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1342 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1343 			spa_spare_remove(tvd);
1344 		vdev_close(vd);
1345 		vdev_free(vd);
1346 	}
1347 
1348 	if (spa->spa_spares.sav_vdevs)
1349 		kmem_free(spa->spa_spares.sav_vdevs,
1350 		    spa->spa_spares.sav_count * sizeof (void *));
1351 
1352 	if (spa->spa_spares.sav_config == NULL)
1353 		nspares = 0;
1354 	else
1355 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1356 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1357 
1358 	spa->spa_spares.sav_count = (int)nspares;
1359 	spa->spa_spares.sav_vdevs = NULL;
1360 
1361 	if (nspares == 0)
1362 		return;
1363 
1364 	/*
1365 	 * Construct the array of vdevs, opening them to get status in the
1366 	 * process.   For each spare, there is potentially two different vdev_t
1367 	 * structures associated with it: one in the list of spares (used only
1368 	 * for basic validation purposes) and one in the active vdev
1369 	 * configuration (if it's spared in).  During this phase we open and
1370 	 * validate each vdev on the spare list.  If the vdev also exists in the
1371 	 * active configuration, then we also mark this vdev as an active spare.
1372 	 */
1373 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1374 	    KM_SLEEP);
1375 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1376 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1377 		    VDEV_ALLOC_SPARE) == 0);
1378 		ASSERT(vd != NULL);
1379 
1380 		spa->spa_spares.sav_vdevs[i] = vd;
1381 
1382 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1383 		    B_FALSE)) != NULL) {
1384 			if (!tvd->vdev_isspare)
1385 				spa_spare_add(tvd);
1386 
1387 			/*
1388 			 * We only mark the spare active if we were successfully
1389 			 * able to load the vdev.  Otherwise, importing a pool
1390 			 * with a bad active spare would result in strange
1391 			 * behavior, because multiple pool would think the spare
1392 			 * is actively in use.
1393 			 *
1394 			 * There is a vulnerability here to an equally bizarre
1395 			 * circumstance, where a dead active spare is later
1396 			 * brought back to life (onlined or otherwise).  Given
1397 			 * the rarity of this scenario, and the extra complexity
1398 			 * it adds, we ignore the possibility.
1399 			 */
1400 			if (!vdev_is_dead(tvd))
1401 				spa_spare_activate(tvd);
1402 		}
1403 
1404 		vd->vdev_top = vd;
1405 		vd->vdev_aux = &spa->spa_spares;
1406 
1407 		if (vdev_open(vd) != 0)
1408 			continue;
1409 
1410 		if (vdev_validate_aux(vd) == 0)
1411 			spa_spare_add(vd);
1412 	}
1413 
1414 	/*
1415 	 * Recompute the stashed list of spares, with status information
1416 	 * this time.
1417 	 */
1418 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1419 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1420 
1421 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1422 	    KM_SLEEP);
1423 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1424 		spares[i] = vdev_config_generate(spa,
1425 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1426 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1427 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1428 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1429 		nvlist_free(spares[i]);
1430 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1431 }
1432 
1433 /*
1434  * Load (or re-load) the current list of vdevs describing the active l2cache for
1435  * this pool.  When this is called, we have some form of basic information in
1436  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1437  * then re-generate a more complete list including status information.
1438  * Devices which are already active have their details maintained, and are
1439  * not re-opened.
1440  */
1441 static void
1442 spa_load_l2cache(spa_t *spa)
1443 {
1444 	nvlist_t **l2cache;
1445 	uint_t nl2cache;
1446 	int i, j, oldnvdevs;
1447 	uint64_t guid;
1448 	vdev_t *vd, **oldvdevs, **newvdevs;
1449 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1450 
1451 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1452 
1453 	if (sav->sav_config != NULL) {
1454 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1455 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1456 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1457 	} else {
1458 		nl2cache = 0;
1459 		newvdevs = NULL;
1460 	}
1461 
1462 	oldvdevs = sav->sav_vdevs;
1463 	oldnvdevs = sav->sav_count;
1464 	sav->sav_vdevs = NULL;
1465 	sav->sav_count = 0;
1466 
1467 	/*
1468 	 * Process new nvlist of vdevs.
1469 	 */
1470 	for (i = 0; i < nl2cache; i++) {
1471 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1472 		    &guid) == 0);
1473 
1474 		newvdevs[i] = NULL;
1475 		for (j = 0; j < oldnvdevs; j++) {
1476 			vd = oldvdevs[j];
1477 			if (vd != NULL && guid == vd->vdev_guid) {
1478 				/*
1479 				 * Retain previous vdev for add/remove ops.
1480 				 */
1481 				newvdevs[i] = vd;
1482 				oldvdevs[j] = NULL;
1483 				break;
1484 			}
1485 		}
1486 
1487 		if (newvdevs[i] == NULL) {
1488 			/*
1489 			 * Create new vdev
1490 			 */
1491 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1492 			    VDEV_ALLOC_L2CACHE) == 0);
1493 			ASSERT(vd != NULL);
1494 			newvdevs[i] = vd;
1495 
1496 			/*
1497 			 * Commit this vdev as an l2cache device,
1498 			 * even if it fails to open.
1499 			 */
1500 			spa_l2cache_add(vd);
1501 
1502 			vd->vdev_top = vd;
1503 			vd->vdev_aux = sav;
1504 
1505 			spa_l2cache_activate(vd);
1506 
1507 			if (vdev_open(vd) != 0)
1508 				continue;
1509 
1510 			(void) vdev_validate_aux(vd);
1511 
1512 			if (!vdev_is_dead(vd))
1513 				l2arc_add_vdev(spa, vd);
1514 		}
1515 	}
1516 
1517 	/*
1518 	 * Purge vdevs that were dropped
1519 	 */
1520 	for (i = 0; i < oldnvdevs; i++) {
1521 		uint64_t pool;
1522 
1523 		vd = oldvdevs[i];
1524 		if (vd != NULL) {
1525 			ASSERT(vd->vdev_isl2cache);
1526 
1527 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1528 			    pool != 0ULL && l2arc_vdev_present(vd))
1529 				l2arc_remove_vdev(vd);
1530 			vdev_clear_stats(vd);
1531 			vdev_free(vd);
1532 		}
1533 	}
1534 
1535 	if (oldvdevs)
1536 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1537 
1538 	if (sav->sav_config == NULL)
1539 		goto out;
1540 
1541 	sav->sav_vdevs = newvdevs;
1542 	sav->sav_count = (int)nl2cache;
1543 
1544 	/*
1545 	 * Recompute the stashed list of l2cache devices, with status
1546 	 * information this time.
1547 	 */
1548 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1549 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1550 
1551 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1552 	for (i = 0; i < sav->sav_count; i++)
1553 		l2cache[i] = vdev_config_generate(spa,
1554 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1555 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1556 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1557 out:
1558 	for (i = 0; i < sav->sav_count; i++)
1559 		nvlist_free(l2cache[i]);
1560 	if (sav->sav_count)
1561 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1562 }
1563 
1564 static int
1565 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1566 {
1567 	dmu_buf_t *db;
1568 	char *packed = NULL;
1569 	size_t nvsize = 0;
1570 	int error;
1571 	*value = NULL;
1572 
1573 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1574 	if (error != 0)
1575 		return (error);
1576 
1577 	nvsize = *(uint64_t *)db->db_data;
1578 	dmu_buf_rele(db, FTAG);
1579 
1580 	packed = kmem_alloc(nvsize, KM_SLEEP);
1581 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1582 	    DMU_READ_PREFETCH);
1583 	if (error == 0)
1584 		error = nvlist_unpack(packed, nvsize, value, 0);
1585 	kmem_free(packed, nvsize);
1586 
1587 	return (error);
1588 }
1589 
1590 /*
1591  * Checks to see if the given vdev could not be opened, in which case we post a
1592  * sysevent to notify the autoreplace code that the device has been removed.
1593  */
1594 static void
1595 spa_check_removed(vdev_t *vd)
1596 {
1597 	for (int c = 0; c < vd->vdev_children; c++)
1598 		spa_check_removed(vd->vdev_child[c]);
1599 
1600 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1601 	    !vd->vdev_ishole) {
1602 		zfs_post_autoreplace(vd->vdev_spa, vd);
1603 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1604 	}
1605 }
1606 
1607 static void
1608 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1609 {
1610 	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1611 
1612 	vd->vdev_top_zap = mvd->vdev_top_zap;
1613 	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1614 
1615 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1616 		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1617 	}
1618 }
1619 
1620 /*
1621  * Validate the current config against the MOS config
1622  */
1623 static boolean_t
1624 spa_config_valid(spa_t *spa, nvlist_t *config)
1625 {
1626 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1627 	nvlist_t *nv;
1628 
1629 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1630 
1631 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1632 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1633 
1634 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1635 
1636 	/*
1637 	 * If we're doing a normal import, then build up any additional
1638 	 * diagnostic information about missing devices in this config.
1639 	 * We'll pass this up to the user for further processing.
1640 	 */
1641 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1642 		nvlist_t **child, *nv;
1643 		uint64_t idx = 0;
1644 
1645 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1646 		    KM_SLEEP);
1647 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1648 
1649 		for (int c = 0; c < rvd->vdev_children; c++) {
1650 			vdev_t *tvd = rvd->vdev_child[c];
1651 			vdev_t *mtvd  = mrvd->vdev_child[c];
1652 
1653 			if (tvd->vdev_ops == &vdev_missing_ops &&
1654 			    mtvd->vdev_ops != &vdev_missing_ops &&
1655 			    mtvd->vdev_islog)
1656 				child[idx++] = vdev_config_generate(spa, mtvd,
1657 				    B_FALSE, 0);
1658 		}
1659 
1660 		if (idx) {
1661 			VERIFY(nvlist_add_nvlist_array(nv,
1662 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1663 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1664 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1665 
1666 			for (int i = 0; i < idx; i++)
1667 				nvlist_free(child[i]);
1668 		}
1669 		nvlist_free(nv);
1670 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1671 	}
1672 
1673 	/*
1674 	 * Compare the root vdev tree with the information we have
1675 	 * from the MOS config (mrvd). Check each top-level vdev
1676 	 * with the corresponding MOS config top-level (mtvd).
1677 	 */
1678 	for (int c = 0; c < rvd->vdev_children; c++) {
1679 		vdev_t *tvd = rvd->vdev_child[c];
1680 		vdev_t *mtvd  = mrvd->vdev_child[c];
1681 
1682 		/*
1683 		 * Resolve any "missing" vdevs in the current configuration.
1684 		 * If we find that the MOS config has more accurate information
1685 		 * about the top-level vdev then use that vdev instead.
1686 		 */
1687 		if (tvd->vdev_ops == &vdev_missing_ops &&
1688 		    mtvd->vdev_ops != &vdev_missing_ops) {
1689 
1690 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1691 				continue;
1692 
1693 			/*
1694 			 * Device specific actions.
1695 			 */
1696 			if (mtvd->vdev_islog) {
1697 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1698 			} else {
1699 				/*
1700 				 * XXX - once we have 'readonly' pool
1701 				 * support we should be able to handle
1702 				 * missing data devices by transitioning
1703 				 * the pool to readonly.
1704 				 */
1705 				continue;
1706 			}
1707 
1708 			/*
1709 			 * Swap the missing vdev with the data we were
1710 			 * able to obtain from the MOS config.
1711 			 */
1712 			vdev_remove_child(rvd, tvd);
1713 			vdev_remove_child(mrvd, mtvd);
1714 
1715 			vdev_add_child(rvd, mtvd);
1716 			vdev_add_child(mrvd, tvd);
1717 
1718 			spa_config_exit(spa, SCL_ALL, FTAG);
1719 			vdev_load(mtvd);
1720 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1721 
1722 			vdev_reopen(rvd);
1723 		} else {
1724 			if (mtvd->vdev_islog) {
1725 				/*
1726 				 * Load the slog device's state from the MOS
1727 				 * config since it's possible that the label
1728 				 * does not contain the most up-to-date
1729 				 * information.
1730 				 */
1731 				vdev_load_log_state(tvd, mtvd);
1732 				vdev_reopen(tvd);
1733 			}
1734 
1735 			/*
1736 			 * Per-vdev ZAP info is stored exclusively in the MOS.
1737 			 */
1738 			spa_config_valid_zaps(tvd, mtvd);
1739 		}
1740 	}
1741 
1742 	vdev_free(mrvd);
1743 	spa_config_exit(spa, SCL_ALL, FTAG);
1744 
1745 	/*
1746 	 * Ensure we were able to validate the config.
1747 	 */
1748 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1749 }
1750 
1751 /*
1752  * Check for missing log devices
1753  */
1754 static boolean_t
1755 spa_check_logs(spa_t *spa)
1756 {
1757 	boolean_t rv = B_FALSE;
1758 	dsl_pool_t *dp = spa_get_dsl(spa);
1759 
1760 	switch (spa->spa_log_state) {
1761 	case SPA_LOG_MISSING:
1762 		/* need to recheck in case slog has been restored */
1763 	case SPA_LOG_UNKNOWN:
1764 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1765 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1766 		if (rv)
1767 			spa_set_log_state(spa, SPA_LOG_MISSING);
1768 		break;
1769 	}
1770 	return (rv);
1771 }
1772 
1773 static boolean_t
1774 spa_passivate_log(spa_t *spa)
1775 {
1776 	vdev_t *rvd = spa->spa_root_vdev;
1777 	boolean_t slog_found = B_FALSE;
1778 
1779 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1780 
1781 	if (!spa_has_slogs(spa))
1782 		return (B_FALSE);
1783 
1784 	for (int c = 0; c < rvd->vdev_children; c++) {
1785 		vdev_t *tvd = rvd->vdev_child[c];
1786 		metaslab_group_t *mg = tvd->vdev_mg;
1787 
1788 		if (tvd->vdev_islog) {
1789 			metaslab_group_passivate(mg);
1790 			slog_found = B_TRUE;
1791 		}
1792 	}
1793 
1794 	return (slog_found);
1795 }
1796 
1797 static void
1798 spa_activate_log(spa_t *spa)
1799 {
1800 	vdev_t *rvd = spa->spa_root_vdev;
1801 
1802 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1803 
1804 	for (int c = 0; c < rvd->vdev_children; c++) {
1805 		vdev_t *tvd = rvd->vdev_child[c];
1806 		metaslab_group_t *mg = tvd->vdev_mg;
1807 
1808 		if (tvd->vdev_islog)
1809 			metaslab_group_activate(mg);
1810 	}
1811 }
1812 
1813 int
1814 spa_offline_log(spa_t *spa)
1815 {
1816 	int error;
1817 
1818 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1819 	    NULL, DS_FIND_CHILDREN);
1820 	if (error == 0) {
1821 		/*
1822 		 * We successfully offlined the log device, sync out the
1823 		 * current txg so that the "stubby" block can be removed
1824 		 * by zil_sync().
1825 		 */
1826 		txg_wait_synced(spa->spa_dsl_pool, 0);
1827 	}
1828 	return (error);
1829 }
1830 
1831 static void
1832 spa_aux_check_removed(spa_aux_vdev_t *sav)
1833 {
1834 	for (int i = 0; i < sav->sav_count; i++)
1835 		spa_check_removed(sav->sav_vdevs[i]);
1836 }
1837 
1838 void
1839 spa_claim_notify(zio_t *zio)
1840 {
1841 	spa_t *spa = zio->io_spa;
1842 
1843 	if (zio->io_error)
1844 		return;
1845 
1846 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1847 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1848 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1849 	mutex_exit(&spa->spa_props_lock);
1850 }
1851 
1852 typedef struct spa_load_error {
1853 	uint64_t	sle_meta_count;
1854 	uint64_t	sle_data_count;
1855 } spa_load_error_t;
1856 
1857 static void
1858 spa_load_verify_done(zio_t *zio)
1859 {
1860 	blkptr_t *bp = zio->io_bp;
1861 	spa_load_error_t *sle = zio->io_private;
1862 	dmu_object_type_t type = BP_GET_TYPE(bp);
1863 	int error = zio->io_error;
1864 	spa_t *spa = zio->io_spa;
1865 
1866 	if (error) {
1867 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1868 		    type != DMU_OT_INTENT_LOG)
1869 			atomic_inc_64(&sle->sle_meta_count);
1870 		else
1871 			atomic_inc_64(&sle->sle_data_count);
1872 	}
1873 	zio_data_buf_free(zio->io_data, zio->io_size);
1874 
1875 	mutex_enter(&spa->spa_scrub_lock);
1876 	spa->spa_scrub_inflight--;
1877 	cv_broadcast(&spa->spa_scrub_io_cv);
1878 	mutex_exit(&spa->spa_scrub_lock);
1879 }
1880 
1881 /*
1882  * Maximum number of concurrent scrub i/os to create while verifying
1883  * a pool while importing it.
1884  */
1885 int spa_load_verify_maxinflight = 10000;
1886 boolean_t spa_load_verify_metadata = B_TRUE;
1887 boolean_t spa_load_verify_data = B_TRUE;
1888 
1889 /*ARGSUSED*/
1890 static int
1891 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1892     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1893 {
1894 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1895 		return (0);
1896 	/*
1897 	 * Note: normally this routine will not be called if
1898 	 * spa_load_verify_metadata is not set.  However, it may be useful
1899 	 * to manually set the flag after the traversal has begun.
1900 	 */
1901 	if (!spa_load_verify_metadata)
1902 		return (0);
1903 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1904 		return (0);
1905 
1906 	zio_t *rio = arg;
1907 	size_t size = BP_GET_PSIZE(bp);
1908 	void *data = zio_data_buf_alloc(size);
1909 
1910 	mutex_enter(&spa->spa_scrub_lock);
1911 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1912 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1913 	spa->spa_scrub_inflight++;
1914 	mutex_exit(&spa->spa_scrub_lock);
1915 
1916 	zio_nowait(zio_read(rio, spa, bp, data, size,
1917 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1918 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1919 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1920 	return (0);
1921 }
1922 
1923 /* ARGSUSED */
1924 int
1925 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1926 {
1927 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1928 		return (SET_ERROR(ENAMETOOLONG));
1929 
1930 	return (0);
1931 }
1932 
1933 static int
1934 spa_load_verify(spa_t *spa)
1935 {
1936 	zio_t *rio;
1937 	spa_load_error_t sle = { 0 };
1938 	zpool_rewind_policy_t policy;
1939 	boolean_t verify_ok = B_FALSE;
1940 	int error = 0;
1941 
1942 	zpool_get_rewind_policy(spa->spa_config, &policy);
1943 
1944 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1945 		return (0);
1946 
1947 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
1948 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
1949 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
1950 	    DS_FIND_CHILDREN);
1951 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
1952 	if (error != 0)
1953 		return (error);
1954 
1955 	rio = zio_root(spa, NULL, &sle,
1956 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1957 
1958 	if (spa_load_verify_metadata) {
1959 		error = traverse_pool(spa, spa->spa_verify_min_txg,
1960 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1961 		    spa_load_verify_cb, rio);
1962 	}
1963 
1964 	(void) zio_wait(rio);
1965 
1966 	spa->spa_load_meta_errors = sle.sle_meta_count;
1967 	spa->spa_load_data_errors = sle.sle_data_count;
1968 
1969 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1970 	    sle.sle_data_count <= policy.zrp_maxdata) {
1971 		int64_t loss = 0;
1972 
1973 		verify_ok = B_TRUE;
1974 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1975 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1976 
1977 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1978 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1979 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1980 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1981 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1982 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1983 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1984 	} else {
1985 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1986 	}
1987 
1988 	if (error) {
1989 		if (error != ENXIO && error != EIO)
1990 			error = SET_ERROR(EIO);
1991 		return (error);
1992 	}
1993 
1994 	return (verify_ok ? 0 : EIO);
1995 }
1996 
1997 /*
1998  * Find a value in the pool props object.
1999  */
2000 static void
2001 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2002 {
2003 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2004 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2005 }
2006 
2007 /*
2008  * Find a value in the pool directory object.
2009  */
2010 static int
2011 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2012 {
2013 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2014 	    name, sizeof (uint64_t), 1, val));
2015 }
2016 
2017 static int
2018 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2019 {
2020 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2021 	return (err);
2022 }
2023 
2024 /*
2025  * Fix up config after a partly-completed split.  This is done with the
2026  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2027  * pool have that entry in their config, but only the splitting one contains
2028  * a list of all the guids of the vdevs that are being split off.
2029  *
2030  * This function determines what to do with that list: either rejoin
2031  * all the disks to the pool, or complete the splitting process.  To attempt
2032  * the rejoin, each disk that is offlined is marked online again, and
2033  * we do a reopen() call.  If the vdev label for every disk that was
2034  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2035  * then we call vdev_split() on each disk, and complete the split.
2036  *
2037  * Otherwise we leave the config alone, with all the vdevs in place in
2038  * the original pool.
2039  */
2040 static void
2041 spa_try_repair(spa_t *spa, nvlist_t *config)
2042 {
2043 	uint_t extracted;
2044 	uint64_t *glist;
2045 	uint_t i, gcount;
2046 	nvlist_t *nvl;
2047 	vdev_t **vd;
2048 	boolean_t attempt_reopen;
2049 
2050 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2051 		return;
2052 
2053 	/* check that the config is complete */
2054 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2055 	    &glist, &gcount) != 0)
2056 		return;
2057 
2058 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2059 
2060 	/* attempt to online all the vdevs & validate */
2061 	attempt_reopen = B_TRUE;
2062 	for (i = 0; i < gcount; i++) {
2063 		if (glist[i] == 0)	/* vdev is hole */
2064 			continue;
2065 
2066 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2067 		if (vd[i] == NULL) {
2068 			/*
2069 			 * Don't bother attempting to reopen the disks;
2070 			 * just do the split.
2071 			 */
2072 			attempt_reopen = B_FALSE;
2073 		} else {
2074 			/* attempt to re-online it */
2075 			vd[i]->vdev_offline = B_FALSE;
2076 		}
2077 	}
2078 
2079 	if (attempt_reopen) {
2080 		vdev_reopen(spa->spa_root_vdev);
2081 
2082 		/* check each device to see what state it's in */
2083 		for (extracted = 0, i = 0; i < gcount; i++) {
2084 			if (vd[i] != NULL &&
2085 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2086 				break;
2087 			++extracted;
2088 		}
2089 	}
2090 
2091 	/*
2092 	 * If every disk has been moved to the new pool, or if we never
2093 	 * even attempted to look at them, then we split them off for
2094 	 * good.
2095 	 */
2096 	if (!attempt_reopen || gcount == extracted) {
2097 		for (i = 0; i < gcount; i++)
2098 			if (vd[i] != NULL)
2099 				vdev_split(vd[i]);
2100 		vdev_reopen(spa->spa_root_vdev);
2101 	}
2102 
2103 	kmem_free(vd, gcount * sizeof (vdev_t *));
2104 }
2105 
2106 static int
2107 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2108     boolean_t mosconfig)
2109 {
2110 	nvlist_t *config = spa->spa_config;
2111 	char *ereport = FM_EREPORT_ZFS_POOL;
2112 	char *comment;
2113 	int error;
2114 	uint64_t pool_guid;
2115 	nvlist_t *nvl;
2116 
2117 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2118 		return (SET_ERROR(EINVAL));
2119 
2120 	ASSERT(spa->spa_comment == NULL);
2121 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2122 		spa->spa_comment = spa_strdup(comment);
2123 
2124 	/*
2125 	 * Versioning wasn't explicitly added to the label until later, so if
2126 	 * it's not present treat it as the initial version.
2127 	 */
2128 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2129 	    &spa->spa_ubsync.ub_version) != 0)
2130 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2131 
2132 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2133 	    &spa->spa_config_txg);
2134 
2135 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2136 	    spa_guid_exists(pool_guid, 0)) {
2137 		error = SET_ERROR(EEXIST);
2138 	} else {
2139 		spa->spa_config_guid = pool_guid;
2140 
2141 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2142 		    &nvl) == 0) {
2143 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2144 			    KM_SLEEP) == 0);
2145 		}
2146 
2147 		nvlist_free(spa->spa_load_info);
2148 		spa->spa_load_info = fnvlist_alloc();
2149 
2150 		gethrestime(&spa->spa_loaded_ts);
2151 		error = spa_load_impl(spa, pool_guid, config, state, type,
2152 		    mosconfig, &ereport);
2153 	}
2154 
2155 	/*
2156 	 * Don't count references from objsets that are already closed
2157 	 * and are making their way through the eviction process.
2158 	 */
2159 	spa_evicting_os_wait(spa);
2160 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2161 	if (error) {
2162 		if (error != EEXIST) {
2163 			spa->spa_loaded_ts.tv_sec = 0;
2164 			spa->spa_loaded_ts.tv_nsec = 0;
2165 		}
2166 		if (error != EBADF) {
2167 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2168 		}
2169 	}
2170 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2171 	spa->spa_ena = 0;
2172 
2173 	return (error);
2174 }
2175 
2176 /*
2177  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2178  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2179  * spa's per-vdev ZAP list.
2180  */
2181 static uint64_t
2182 vdev_count_verify_zaps(vdev_t *vd)
2183 {
2184 	spa_t *spa = vd->vdev_spa;
2185 	uint64_t total = 0;
2186 	if (vd->vdev_top_zap != 0) {
2187 		total++;
2188 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2189 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2190 	}
2191 	if (vd->vdev_leaf_zap != 0) {
2192 		total++;
2193 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2194 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2195 	}
2196 
2197 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2198 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2199 	}
2200 
2201 	return (total);
2202 }
2203 
2204 /*
2205  * Load an existing storage pool, using the pool's builtin spa_config as a
2206  * source of configuration information.
2207  */
2208 static int
2209 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2210     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2211     char **ereport)
2212 {
2213 	int error = 0;
2214 	nvlist_t *nvroot = NULL;
2215 	nvlist_t *label;
2216 	vdev_t *rvd;
2217 	uberblock_t *ub = &spa->spa_uberblock;
2218 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2219 	int orig_mode = spa->spa_mode;
2220 	int parse;
2221 	uint64_t obj;
2222 	boolean_t missing_feat_write = B_FALSE;
2223 
2224 	/*
2225 	 * If this is an untrusted config, access the pool in read-only mode.
2226 	 * This prevents things like resilvering recently removed devices.
2227 	 */
2228 	if (!mosconfig)
2229 		spa->spa_mode = FREAD;
2230 
2231 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2232 
2233 	spa->spa_load_state = state;
2234 
2235 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2236 		return (SET_ERROR(EINVAL));
2237 
2238 	parse = (type == SPA_IMPORT_EXISTING ?
2239 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2240 
2241 	/*
2242 	 * Create "The Godfather" zio to hold all async IOs
2243 	 */
2244 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2245 	    KM_SLEEP);
2246 	for (int i = 0; i < max_ncpus; i++) {
2247 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2248 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2249 		    ZIO_FLAG_GODFATHER);
2250 	}
2251 
2252 	/*
2253 	 * Parse the configuration into a vdev tree.  We explicitly set the
2254 	 * value that will be returned by spa_version() since parsing the
2255 	 * configuration requires knowing the version number.
2256 	 */
2257 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2258 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2259 	spa_config_exit(spa, SCL_ALL, FTAG);
2260 
2261 	if (error != 0)
2262 		return (error);
2263 
2264 	ASSERT(spa->spa_root_vdev == rvd);
2265 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2266 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2267 
2268 	if (type != SPA_IMPORT_ASSEMBLE) {
2269 		ASSERT(spa_guid(spa) == pool_guid);
2270 	}
2271 
2272 	/*
2273 	 * Try to open all vdevs, loading each label in the process.
2274 	 */
2275 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2276 	error = vdev_open(rvd);
2277 	spa_config_exit(spa, SCL_ALL, FTAG);
2278 	if (error != 0)
2279 		return (error);
2280 
2281 	/*
2282 	 * We need to validate the vdev labels against the configuration that
2283 	 * we have in hand, which is dependent on the setting of mosconfig. If
2284 	 * mosconfig is true then we're validating the vdev labels based on
2285 	 * that config.  Otherwise, we're validating against the cached config
2286 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2287 	 * later we will recursively call spa_load() and validate against
2288 	 * the vdev config.
2289 	 *
2290 	 * If we're assembling a new pool that's been split off from an
2291 	 * existing pool, the labels haven't yet been updated so we skip
2292 	 * validation for now.
2293 	 */
2294 	if (type != SPA_IMPORT_ASSEMBLE) {
2295 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2296 		error = vdev_validate(rvd, mosconfig);
2297 		spa_config_exit(spa, SCL_ALL, FTAG);
2298 
2299 		if (error != 0)
2300 			return (error);
2301 
2302 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2303 			return (SET_ERROR(ENXIO));
2304 	}
2305 
2306 	/*
2307 	 * Find the best uberblock.
2308 	 */
2309 	vdev_uberblock_load(rvd, ub, &label);
2310 
2311 	/*
2312 	 * If we weren't able to find a single valid uberblock, return failure.
2313 	 */
2314 	if (ub->ub_txg == 0) {
2315 		nvlist_free(label);
2316 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2317 	}
2318 
2319 	/*
2320 	 * If the pool has an unsupported version we can't open it.
2321 	 */
2322 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2323 		nvlist_free(label);
2324 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2325 	}
2326 
2327 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2328 		nvlist_t *features;
2329 
2330 		/*
2331 		 * If we weren't able to find what's necessary for reading the
2332 		 * MOS in the label, return failure.
2333 		 */
2334 		if (label == NULL || nvlist_lookup_nvlist(label,
2335 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2336 			nvlist_free(label);
2337 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2338 			    ENXIO));
2339 		}
2340 
2341 		/*
2342 		 * Update our in-core representation with the definitive values
2343 		 * from the label.
2344 		 */
2345 		nvlist_free(spa->spa_label_features);
2346 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2347 	}
2348 
2349 	nvlist_free(label);
2350 
2351 	/*
2352 	 * Look through entries in the label nvlist's features_for_read. If
2353 	 * there is a feature listed there which we don't understand then we
2354 	 * cannot open a pool.
2355 	 */
2356 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2357 		nvlist_t *unsup_feat;
2358 
2359 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2360 		    0);
2361 
2362 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2363 		    NULL); nvp != NULL;
2364 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2365 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2366 				VERIFY(nvlist_add_string(unsup_feat,
2367 				    nvpair_name(nvp), "") == 0);
2368 			}
2369 		}
2370 
2371 		if (!nvlist_empty(unsup_feat)) {
2372 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2373 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2374 			nvlist_free(unsup_feat);
2375 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2376 			    ENOTSUP));
2377 		}
2378 
2379 		nvlist_free(unsup_feat);
2380 	}
2381 
2382 	/*
2383 	 * If the vdev guid sum doesn't match the uberblock, we have an
2384 	 * incomplete configuration.  We first check to see if the pool
2385 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2386 	 * If it is, defer the vdev_guid_sum check till later so we
2387 	 * can handle missing vdevs.
2388 	 */
2389 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2390 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2391 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2392 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2393 
2394 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2395 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2396 		spa_try_repair(spa, config);
2397 		spa_config_exit(spa, SCL_ALL, FTAG);
2398 		nvlist_free(spa->spa_config_splitting);
2399 		spa->spa_config_splitting = NULL;
2400 	}
2401 
2402 	/*
2403 	 * Initialize internal SPA structures.
2404 	 */
2405 	spa->spa_state = POOL_STATE_ACTIVE;
2406 	spa->spa_ubsync = spa->spa_uberblock;
2407 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2408 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2409 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2410 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2411 	spa->spa_claim_max_txg = spa->spa_first_txg;
2412 	spa->spa_prev_software_version = ub->ub_software_version;
2413 
2414 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2415 	if (error)
2416 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2417 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2418 
2419 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2420 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421 
2422 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2423 		boolean_t missing_feat_read = B_FALSE;
2424 		nvlist_t *unsup_feat, *enabled_feat;
2425 
2426 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2427 		    &spa->spa_feat_for_read_obj) != 0) {
2428 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2429 		}
2430 
2431 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2432 		    &spa->spa_feat_for_write_obj) != 0) {
2433 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2434 		}
2435 
2436 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2437 		    &spa->spa_feat_desc_obj) != 0) {
2438 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2439 		}
2440 
2441 		enabled_feat = fnvlist_alloc();
2442 		unsup_feat = fnvlist_alloc();
2443 
2444 		if (!spa_features_check(spa, B_FALSE,
2445 		    unsup_feat, enabled_feat))
2446 			missing_feat_read = B_TRUE;
2447 
2448 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2449 			if (!spa_features_check(spa, B_TRUE,
2450 			    unsup_feat, enabled_feat)) {
2451 				missing_feat_write = B_TRUE;
2452 			}
2453 		}
2454 
2455 		fnvlist_add_nvlist(spa->spa_load_info,
2456 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2457 
2458 		if (!nvlist_empty(unsup_feat)) {
2459 			fnvlist_add_nvlist(spa->spa_load_info,
2460 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2461 		}
2462 
2463 		fnvlist_free(enabled_feat);
2464 		fnvlist_free(unsup_feat);
2465 
2466 		if (!missing_feat_read) {
2467 			fnvlist_add_boolean(spa->spa_load_info,
2468 			    ZPOOL_CONFIG_CAN_RDONLY);
2469 		}
2470 
2471 		/*
2472 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2473 		 * twofold: to determine whether the pool is available for
2474 		 * import in read-write mode and (if it is not) whether the
2475 		 * pool is available for import in read-only mode. If the pool
2476 		 * is available for import in read-write mode, it is displayed
2477 		 * as available in userland; if it is not available for import
2478 		 * in read-only mode, it is displayed as unavailable in
2479 		 * userland. If the pool is available for import in read-only
2480 		 * mode but not read-write mode, it is displayed as unavailable
2481 		 * in userland with a special note that the pool is actually
2482 		 * available for open in read-only mode.
2483 		 *
2484 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2485 		 * missing a feature for write, we must first determine whether
2486 		 * the pool can be opened read-only before returning to
2487 		 * userland in order to know whether to display the
2488 		 * abovementioned note.
2489 		 */
2490 		if (missing_feat_read || (missing_feat_write &&
2491 		    spa_writeable(spa))) {
2492 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2493 			    ENOTSUP));
2494 		}
2495 
2496 		/*
2497 		 * Load refcounts for ZFS features from disk into an in-memory
2498 		 * cache during SPA initialization.
2499 		 */
2500 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2501 			uint64_t refcount;
2502 
2503 			error = feature_get_refcount_from_disk(spa,
2504 			    &spa_feature_table[i], &refcount);
2505 			if (error == 0) {
2506 				spa->spa_feat_refcount_cache[i] = refcount;
2507 			} else if (error == ENOTSUP) {
2508 				spa->spa_feat_refcount_cache[i] =
2509 				    SPA_FEATURE_DISABLED;
2510 			} else {
2511 				return (spa_vdev_err(rvd,
2512 				    VDEV_AUX_CORRUPT_DATA, EIO));
2513 			}
2514 		}
2515 	}
2516 
2517 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2518 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2519 		    &spa->spa_feat_enabled_txg_obj) != 0)
2520 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2521 	}
2522 
2523 	spa->spa_is_initializing = B_TRUE;
2524 	error = dsl_pool_open(spa->spa_dsl_pool);
2525 	spa->spa_is_initializing = B_FALSE;
2526 	if (error != 0)
2527 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2528 
2529 	if (!mosconfig) {
2530 		uint64_t hostid;
2531 		nvlist_t *policy = NULL, *nvconfig;
2532 
2533 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2534 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2535 
2536 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2537 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2538 			char *hostname;
2539 			unsigned long myhostid = 0;
2540 
2541 			VERIFY(nvlist_lookup_string(nvconfig,
2542 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2543 
2544 #ifdef	_KERNEL
2545 			myhostid = zone_get_hostid(NULL);
2546 #else	/* _KERNEL */
2547 			/*
2548 			 * We're emulating the system's hostid in userland, so
2549 			 * we can't use zone_get_hostid().
2550 			 */
2551 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2552 #endif	/* _KERNEL */
2553 			if (hostid != 0 && myhostid != 0 &&
2554 			    hostid != myhostid) {
2555 				nvlist_free(nvconfig);
2556 				cmn_err(CE_WARN, "pool '%s' could not be "
2557 				    "loaded as it was last accessed by "
2558 				    "another system (host: %s hostid: 0x%lx). "
2559 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2560 				    spa_name(spa), hostname,
2561 				    (unsigned long)hostid);
2562 				return (SET_ERROR(EBADF));
2563 			}
2564 		}
2565 		if (nvlist_lookup_nvlist(spa->spa_config,
2566 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2567 			VERIFY(nvlist_add_nvlist(nvconfig,
2568 			    ZPOOL_REWIND_POLICY, policy) == 0);
2569 
2570 		spa_config_set(spa, nvconfig);
2571 		spa_unload(spa);
2572 		spa_deactivate(spa);
2573 		spa_activate(spa, orig_mode);
2574 
2575 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2576 	}
2577 
2578 	/* Grab the secret checksum salt from the MOS. */
2579 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2580 	    DMU_POOL_CHECKSUM_SALT, 1,
2581 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2582 	    spa->spa_cksum_salt.zcs_bytes);
2583 	if (error == ENOENT) {
2584 		/* Generate a new salt for subsequent use */
2585 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2586 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2587 	} else if (error != 0) {
2588 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2589 	}
2590 
2591 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2592 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2593 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2594 	if (error != 0)
2595 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2596 
2597 	/*
2598 	 * Load the bit that tells us to use the new accounting function
2599 	 * (raid-z deflation).  If we have an older pool, this will not
2600 	 * be present.
2601 	 */
2602 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2603 	if (error != 0 && error != ENOENT)
2604 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2605 
2606 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2607 	    &spa->spa_creation_version);
2608 	if (error != 0 && error != ENOENT)
2609 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2610 
2611 	/*
2612 	 * Load the persistent error log.  If we have an older pool, this will
2613 	 * not be present.
2614 	 */
2615 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2616 	if (error != 0 && error != ENOENT)
2617 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2618 
2619 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2620 	    &spa->spa_errlog_scrub);
2621 	if (error != 0 && error != ENOENT)
2622 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2623 
2624 	/*
2625 	 * Load the history object.  If we have an older pool, this
2626 	 * will not be present.
2627 	 */
2628 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2629 	if (error != 0 && error != ENOENT)
2630 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2631 
2632 	/*
2633 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2634 	 * be present; in this case, defer its creation to a later time to
2635 	 * avoid dirtying the MOS this early / out of sync context. See
2636 	 * spa_sync_config_object.
2637 	 */
2638 
2639 	/* The sentinel is only available in the MOS config. */
2640 	nvlist_t *mos_config;
2641 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2642 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2643 
2644 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2645 	    &spa->spa_all_vdev_zaps);
2646 
2647 	if (error != ENOENT && error != 0) {
2648 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2649 	} else if (error == 0 && !nvlist_exists(mos_config,
2650 	    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2651 		/*
2652 		 * An older version of ZFS overwrote the sentinel value, so
2653 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2654 		 * destruction to later; see spa_sync_config_object.
2655 		 */
2656 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2657 		/*
2658 		 * We're assuming that no vdevs have had their ZAPs created
2659 		 * before this. Better be sure of it.
2660 		 */
2661 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2662 	}
2663 	nvlist_free(mos_config);
2664 
2665 	/*
2666 	 * If we're assembling the pool from the split-off vdevs of
2667 	 * an existing pool, we don't want to attach the spares & cache
2668 	 * devices.
2669 	 */
2670 
2671 	/*
2672 	 * Load any hot spares for this pool.
2673 	 */
2674 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2675 	if (error != 0 && error != ENOENT)
2676 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2677 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2678 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2679 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2680 		    &spa->spa_spares.sav_config) != 0)
2681 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2682 
2683 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2684 		spa_load_spares(spa);
2685 		spa_config_exit(spa, SCL_ALL, FTAG);
2686 	} else if (error == 0) {
2687 		spa->spa_spares.sav_sync = B_TRUE;
2688 	}
2689 
2690 	/*
2691 	 * Load any level 2 ARC devices for this pool.
2692 	 */
2693 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2694 	    &spa->spa_l2cache.sav_object);
2695 	if (error != 0 && error != ENOENT)
2696 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2697 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2698 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2699 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2700 		    &spa->spa_l2cache.sav_config) != 0)
2701 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2702 
2703 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2704 		spa_load_l2cache(spa);
2705 		spa_config_exit(spa, SCL_ALL, FTAG);
2706 	} else if (error == 0) {
2707 		spa->spa_l2cache.sav_sync = B_TRUE;
2708 	}
2709 
2710 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2711 
2712 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2713 	if (error && error != ENOENT)
2714 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2715 
2716 	if (error == 0) {
2717 		uint64_t autoreplace;
2718 
2719 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2720 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2721 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2722 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2723 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2724 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2725 		    &spa->spa_dedup_ditto);
2726 
2727 		spa->spa_autoreplace = (autoreplace != 0);
2728 	}
2729 
2730 	/*
2731 	 * If the 'autoreplace' property is set, then post a resource notifying
2732 	 * the ZFS DE that it should not issue any faults for unopenable
2733 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2734 	 * unopenable vdevs so that the normal autoreplace handler can take
2735 	 * over.
2736 	 */
2737 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2738 		spa_check_removed(spa->spa_root_vdev);
2739 		/*
2740 		 * For the import case, this is done in spa_import(), because
2741 		 * at this point we're using the spare definitions from
2742 		 * the MOS config, not necessarily from the userland config.
2743 		 */
2744 		if (state != SPA_LOAD_IMPORT) {
2745 			spa_aux_check_removed(&spa->spa_spares);
2746 			spa_aux_check_removed(&spa->spa_l2cache);
2747 		}
2748 	}
2749 
2750 	/*
2751 	 * Load the vdev state for all toplevel vdevs.
2752 	 */
2753 	vdev_load(rvd);
2754 
2755 	/*
2756 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2757 	 */
2758 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2759 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2760 	spa_config_exit(spa, SCL_ALL, FTAG);
2761 
2762 	/*
2763 	 * Load the DDTs (dedup tables).
2764 	 */
2765 	error = ddt_load(spa);
2766 	if (error != 0)
2767 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2768 
2769 	spa_update_dspace(spa);
2770 
2771 	/*
2772 	 * Validate the config, using the MOS config to fill in any
2773 	 * information which might be missing.  If we fail to validate
2774 	 * the config then declare the pool unfit for use. If we're
2775 	 * assembling a pool from a split, the log is not transferred
2776 	 * over.
2777 	 */
2778 	if (type != SPA_IMPORT_ASSEMBLE) {
2779 		nvlist_t *nvconfig;
2780 
2781 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2782 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2783 
2784 		if (!spa_config_valid(spa, nvconfig)) {
2785 			nvlist_free(nvconfig);
2786 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2787 			    ENXIO));
2788 		}
2789 		nvlist_free(nvconfig);
2790 
2791 		/*
2792 		 * Now that we've validated the config, check the state of the
2793 		 * root vdev.  If it can't be opened, it indicates one or
2794 		 * more toplevel vdevs are faulted.
2795 		 */
2796 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2797 			return (SET_ERROR(ENXIO));
2798 
2799 		if (spa_writeable(spa) && spa_check_logs(spa)) {
2800 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2801 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2802 		}
2803 	}
2804 
2805 	if (missing_feat_write) {
2806 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2807 
2808 		/*
2809 		 * At this point, we know that we can open the pool in
2810 		 * read-only mode but not read-write mode. We now have enough
2811 		 * information and can return to userland.
2812 		 */
2813 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2814 	}
2815 
2816 	/*
2817 	 * We've successfully opened the pool, verify that we're ready
2818 	 * to start pushing transactions.
2819 	 */
2820 	if (state != SPA_LOAD_TRYIMPORT) {
2821 		if (error = spa_load_verify(spa))
2822 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2823 			    error));
2824 	}
2825 
2826 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2827 	    spa->spa_load_max_txg == UINT64_MAX)) {
2828 		dmu_tx_t *tx;
2829 		int need_update = B_FALSE;
2830 		dsl_pool_t *dp = spa_get_dsl(spa);
2831 
2832 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2833 
2834 		/*
2835 		 * Claim log blocks that haven't been committed yet.
2836 		 * This must all happen in a single txg.
2837 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2838 		 * invoked from zil_claim_log_block()'s i/o done callback.
2839 		 * Price of rollback is that we abandon the log.
2840 		 */
2841 		spa->spa_claiming = B_TRUE;
2842 
2843 		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2844 		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2845 		    zil_claim, tx, DS_FIND_CHILDREN);
2846 		dmu_tx_commit(tx);
2847 
2848 		spa->spa_claiming = B_FALSE;
2849 
2850 		spa_set_log_state(spa, SPA_LOG_GOOD);
2851 		spa->spa_sync_on = B_TRUE;
2852 		txg_sync_start(spa->spa_dsl_pool);
2853 
2854 		/*
2855 		 * Wait for all claims to sync.  We sync up to the highest
2856 		 * claimed log block birth time so that claimed log blocks
2857 		 * don't appear to be from the future.  spa_claim_max_txg
2858 		 * will have been set for us by either zil_check_log_chain()
2859 		 * (invoked from spa_check_logs()) or zil_claim() above.
2860 		 */
2861 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2862 
2863 		/*
2864 		 * If the config cache is stale, or we have uninitialized
2865 		 * metaslabs (see spa_vdev_add()), then update the config.
2866 		 *
2867 		 * If this is a verbatim import, trust the current
2868 		 * in-core spa_config and update the disk labels.
2869 		 */
2870 		if (config_cache_txg != spa->spa_config_txg ||
2871 		    state == SPA_LOAD_IMPORT ||
2872 		    state == SPA_LOAD_RECOVER ||
2873 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2874 			need_update = B_TRUE;
2875 
2876 		for (int c = 0; c < rvd->vdev_children; c++)
2877 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2878 				need_update = B_TRUE;
2879 
2880 		/*
2881 		 * Update the config cache asychronously in case we're the
2882 		 * root pool, in which case the config cache isn't writable yet.
2883 		 */
2884 		if (need_update)
2885 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2886 
2887 		/*
2888 		 * Check all DTLs to see if anything needs resilvering.
2889 		 */
2890 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2891 		    vdev_resilver_needed(rvd, NULL, NULL))
2892 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2893 
2894 		/*
2895 		 * Log the fact that we booted up (so that we can detect if
2896 		 * we rebooted in the middle of an operation).
2897 		 */
2898 		spa_history_log_version(spa, "open");
2899 
2900 		/*
2901 		 * Delete any inconsistent datasets.
2902 		 */
2903 		(void) dmu_objset_find(spa_name(spa),
2904 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2905 
2906 		/*
2907 		 * Clean up any stale temporary dataset userrefs.
2908 		 */
2909 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2910 	}
2911 
2912 	return (0);
2913 }
2914 
2915 static int
2916 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2917 {
2918 	int mode = spa->spa_mode;
2919 
2920 	spa_unload(spa);
2921 	spa_deactivate(spa);
2922 
2923 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2924 
2925 	spa_activate(spa, mode);
2926 	spa_async_suspend(spa);
2927 
2928 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2929 }
2930 
2931 /*
2932  * If spa_load() fails this function will try loading prior txg's. If
2933  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2934  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2935  * function will not rewind the pool and will return the same error as
2936  * spa_load().
2937  */
2938 static int
2939 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2940     uint64_t max_request, int rewind_flags)
2941 {
2942 	nvlist_t *loadinfo = NULL;
2943 	nvlist_t *config = NULL;
2944 	int load_error, rewind_error;
2945 	uint64_t safe_rewind_txg;
2946 	uint64_t min_txg;
2947 
2948 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2949 		spa->spa_load_max_txg = spa->spa_load_txg;
2950 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2951 	} else {
2952 		spa->spa_load_max_txg = max_request;
2953 		if (max_request != UINT64_MAX)
2954 			spa->spa_extreme_rewind = B_TRUE;
2955 	}
2956 
2957 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2958 	    mosconfig);
2959 	if (load_error == 0)
2960 		return (0);
2961 
2962 	if (spa->spa_root_vdev != NULL)
2963 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2964 
2965 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2966 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2967 
2968 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2969 		nvlist_free(config);
2970 		return (load_error);
2971 	}
2972 
2973 	if (state == SPA_LOAD_RECOVER) {
2974 		/* Price of rolling back is discarding txgs, including log */
2975 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2976 	} else {
2977 		/*
2978 		 * If we aren't rolling back save the load info from our first
2979 		 * import attempt so that we can restore it after attempting
2980 		 * to rewind.
2981 		 */
2982 		loadinfo = spa->spa_load_info;
2983 		spa->spa_load_info = fnvlist_alloc();
2984 	}
2985 
2986 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2987 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2988 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2989 	    TXG_INITIAL : safe_rewind_txg;
2990 
2991 	/*
2992 	 * Continue as long as we're finding errors, we're still within
2993 	 * the acceptable rewind range, and we're still finding uberblocks
2994 	 */
2995 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2996 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2997 		if (spa->spa_load_max_txg < safe_rewind_txg)
2998 			spa->spa_extreme_rewind = B_TRUE;
2999 		rewind_error = spa_load_retry(spa, state, mosconfig);
3000 	}
3001 
3002 	spa->spa_extreme_rewind = B_FALSE;
3003 	spa->spa_load_max_txg = UINT64_MAX;
3004 
3005 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3006 		spa_config_set(spa, config);
3007 
3008 	if (state == SPA_LOAD_RECOVER) {
3009 		ASSERT3P(loadinfo, ==, NULL);
3010 		return (rewind_error);
3011 	} else {
3012 		/* Store the rewind info as part of the initial load info */
3013 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3014 		    spa->spa_load_info);
3015 
3016 		/* Restore the initial load info */
3017 		fnvlist_free(spa->spa_load_info);
3018 		spa->spa_load_info = loadinfo;
3019 
3020 		return (load_error);
3021 	}
3022 }
3023 
3024 /*
3025  * Pool Open/Import
3026  *
3027  * The import case is identical to an open except that the configuration is sent
3028  * down from userland, instead of grabbed from the configuration cache.  For the
3029  * case of an open, the pool configuration will exist in the
3030  * POOL_STATE_UNINITIALIZED state.
3031  *
3032  * The stats information (gen/count/ustats) is used to gather vdev statistics at
3033  * the same time open the pool, without having to keep around the spa_t in some
3034  * ambiguous state.
3035  */
3036 static int
3037 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3038     nvlist_t **config)
3039 {
3040 	spa_t *spa;
3041 	spa_load_state_t state = SPA_LOAD_OPEN;
3042 	int error;
3043 	int locked = B_FALSE;
3044 
3045 	*spapp = NULL;
3046 
3047 	/*
3048 	 * As disgusting as this is, we need to support recursive calls to this
3049 	 * function because dsl_dir_open() is called during spa_load(), and ends
3050 	 * up calling spa_open() again.  The real fix is to figure out how to
3051 	 * avoid dsl_dir_open() calling this in the first place.
3052 	 */
3053 	if (mutex_owner(&spa_namespace_lock) != curthread) {
3054 		mutex_enter(&spa_namespace_lock);
3055 		locked = B_TRUE;
3056 	}
3057 
3058 	if ((spa = spa_lookup(pool)) == NULL) {
3059 		if (locked)
3060 			mutex_exit(&spa_namespace_lock);
3061 		return (SET_ERROR(ENOENT));
3062 	}
3063 
3064 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3065 		zpool_rewind_policy_t policy;
3066 
3067 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3068 		    &policy);
3069 		if (policy.zrp_request & ZPOOL_DO_REWIND)
3070 			state = SPA_LOAD_RECOVER;
3071 
3072 		spa_activate(spa, spa_mode_global);
3073 
3074 		if (state != SPA_LOAD_RECOVER)
3075 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3076 
3077 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3078 		    policy.zrp_request);
3079 
3080 		if (error == EBADF) {
3081 			/*
3082 			 * If vdev_validate() returns failure (indicated by
3083 			 * EBADF), it indicates that one of the vdevs indicates
3084 			 * that the pool has been exported or destroyed.  If
3085 			 * this is the case, the config cache is out of sync and
3086 			 * we should remove the pool from the namespace.
3087 			 */
3088 			spa_unload(spa);
3089 			spa_deactivate(spa);
3090 			spa_config_sync(spa, B_TRUE, B_TRUE);
3091 			spa_remove(spa);
3092 			if (locked)
3093 				mutex_exit(&spa_namespace_lock);
3094 			return (SET_ERROR(ENOENT));
3095 		}
3096 
3097 		if (error) {
3098 			/*
3099 			 * We can't open the pool, but we still have useful
3100 			 * information: the state of each vdev after the
3101 			 * attempted vdev_open().  Return this to the user.
3102 			 */
3103 			if (config != NULL && spa->spa_config) {
3104 				VERIFY(nvlist_dup(spa->spa_config, config,
3105 				    KM_SLEEP) == 0);
3106 				VERIFY(nvlist_add_nvlist(*config,
3107 				    ZPOOL_CONFIG_LOAD_INFO,
3108 				    spa->spa_load_info) == 0);
3109 			}
3110 			spa_unload(spa);
3111 			spa_deactivate(spa);
3112 			spa->spa_last_open_failed = error;
3113 			if (locked)
3114 				mutex_exit(&spa_namespace_lock);
3115 			*spapp = NULL;
3116 			return (error);
3117 		}
3118 	}
3119 
3120 	spa_open_ref(spa, tag);
3121 
3122 	if (config != NULL)
3123 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3124 
3125 	/*
3126 	 * If we've recovered the pool, pass back any information we
3127 	 * gathered while doing the load.
3128 	 */
3129 	if (state == SPA_LOAD_RECOVER) {
3130 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3131 		    spa->spa_load_info) == 0);
3132 	}
3133 
3134 	if (locked) {
3135 		spa->spa_last_open_failed = 0;
3136 		spa->spa_last_ubsync_txg = 0;
3137 		spa->spa_load_txg = 0;
3138 		mutex_exit(&spa_namespace_lock);
3139 	}
3140 
3141 	*spapp = spa;
3142 
3143 	return (0);
3144 }
3145 
3146 int
3147 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3148     nvlist_t **config)
3149 {
3150 	return (spa_open_common(name, spapp, tag, policy, config));
3151 }
3152 
3153 int
3154 spa_open(const char *name, spa_t **spapp, void *tag)
3155 {
3156 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3157 }
3158 
3159 /*
3160  * Lookup the given spa_t, incrementing the inject count in the process,
3161  * preventing it from being exported or destroyed.
3162  */
3163 spa_t *
3164 spa_inject_addref(char *name)
3165 {
3166 	spa_t *spa;
3167 
3168 	mutex_enter(&spa_namespace_lock);
3169 	if ((spa = spa_lookup(name)) == NULL) {
3170 		mutex_exit(&spa_namespace_lock);
3171 		return (NULL);
3172 	}
3173 	spa->spa_inject_ref++;
3174 	mutex_exit(&spa_namespace_lock);
3175 
3176 	return (spa);
3177 }
3178 
3179 void
3180 spa_inject_delref(spa_t *spa)
3181 {
3182 	mutex_enter(&spa_namespace_lock);
3183 	spa->spa_inject_ref--;
3184 	mutex_exit(&spa_namespace_lock);
3185 }
3186 
3187 /*
3188  * Add spares device information to the nvlist.
3189  */
3190 static void
3191 spa_add_spares(spa_t *spa, nvlist_t *config)
3192 {
3193 	nvlist_t **spares;
3194 	uint_t i, nspares;
3195 	nvlist_t *nvroot;
3196 	uint64_t guid;
3197 	vdev_stat_t *vs;
3198 	uint_t vsc;
3199 	uint64_t pool;
3200 
3201 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3202 
3203 	if (spa->spa_spares.sav_count == 0)
3204 		return;
3205 
3206 	VERIFY(nvlist_lookup_nvlist(config,
3207 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3208 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3209 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3210 	if (nspares != 0) {
3211 		VERIFY(nvlist_add_nvlist_array(nvroot,
3212 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3213 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3214 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3215 
3216 		/*
3217 		 * Go through and find any spares which have since been
3218 		 * repurposed as an active spare.  If this is the case, update
3219 		 * their status appropriately.
3220 		 */
3221 		for (i = 0; i < nspares; i++) {
3222 			VERIFY(nvlist_lookup_uint64(spares[i],
3223 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3224 			if (spa_spare_exists(guid, &pool, NULL) &&
3225 			    pool != 0ULL) {
3226 				VERIFY(nvlist_lookup_uint64_array(
3227 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3228 				    (uint64_t **)&vs, &vsc) == 0);
3229 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3230 				vs->vs_aux = VDEV_AUX_SPARED;
3231 			}
3232 		}
3233 	}
3234 }
3235 
3236 /*
3237  * Add l2cache device information to the nvlist, including vdev stats.
3238  */
3239 static void
3240 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3241 {
3242 	nvlist_t **l2cache;
3243 	uint_t i, j, nl2cache;
3244 	nvlist_t *nvroot;
3245 	uint64_t guid;
3246 	vdev_t *vd;
3247 	vdev_stat_t *vs;
3248 	uint_t vsc;
3249 
3250 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3251 
3252 	if (spa->spa_l2cache.sav_count == 0)
3253 		return;
3254 
3255 	VERIFY(nvlist_lookup_nvlist(config,
3256 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3257 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3258 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3259 	if (nl2cache != 0) {
3260 		VERIFY(nvlist_add_nvlist_array(nvroot,
3261 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3262 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3263 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3264 
3265 		/*
3266 		 * Update level 2 cache device stats.
3267 		 */
3268 
3269 		for (i = 0; i < nl2cache; i++) {
3270 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3271 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3272 
3273 			vd = NULL;
3274 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3275 				if (guid ==
3276 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3277 					vd = spa->spa_l2cache.sav_vdevs[j];
3278 					break;
3279 				}
3280 			}
3281 			ASSERT(vd != NULL);
3282 
3283 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3284 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3285 			    == 0);
3286 			vdev_get_stats(vd, vs);
3287 		}
3288 	}
3289 }
3290 
3291 static void
3292 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3293 {
3294 	nvlist_t *features;
3295 	zap_cursor_t zc;
3296 	zap_attribute_t za;
3297 
3298 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3299 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3300 
3301 	if (spa->spa_feat_for_read_obj != 0) {
3302 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3303 		    spa->spa_feat_for_read_obj);
3304 		    zap_cursor_retrieve(&zc, &za) == 0;
3305 		    zap_cursor_advance(&zc)) {
3306 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3307 			    za.za_num_integers == 1);
3308 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3309 			    za.za_first_integer));
3310 		}
3311 		zap_cursor_fini(&zc);
3312 	}
3313 
3314 	if (spa->spa_feat_for_write_obj != 0) {
3315 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3316 		    spa->spa_feat_for_write_obj);
3317 		    zap_cursor_retrieve(&zc, &za) == 0;
3318 		    zap_cursor_advance(&zc)) {
3319 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3320 			    za.za_num_integers == 1);
3321 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3322 			    za.za_first_integer));
3323 		}
3324 		zap_cursor_fini(&zc);
3325 	}
3326 
3327 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3328 	    features) == 0);
3329 	nvlist_free(features);
3330 }
3331 
3332 int
3333 spa_get_stats(const char *name, nvlist_t **config,
3334     char *altroot, size_t buflen)
3335 {
3336 	int error;
3337 	spa_t *spa;
3338 
3339 	*config = NULL;
3340 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3341 
3342 	if (spa != NULL) {
3343 		/*
3344 		 * This still leaves a window of inconsistency where the spares
3345 		 * or l2cache devices could change and the config would be
3346 		 * self-inconsistent.
3347 		 */
3348 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3349 
3350 		if (*config != NULL) {
3351 			uint64_t loadtimes[2];
3352 
3353 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3354 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3355 			VERIFY(nvlist_add_uint64_array(*config,
3356 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3357 
3358 			VERIFY(nvlist_add_uint64(*config,
3359 			    ZPOOL_CONFIG_ERRCOUNT,
3360 			    spa_get_errlog_size(spa)) == 0);
3361 
3362 			if (spa_suspended(spa))
3363 				VERIFY(nvlist_add_uint64(*config,
3364 				    ZPOOL_CONFIG_SUSPENDED,
3365 				    spa->spa_failmode) == 0);
3366 
3367 			spa_add_spares(spa, *config);
3368 			spa_add_l2cache(spa, *config);
3369 			spa_add_feature_stats(spa, *config);
3370 		}
3371 	}
3372 
3373 	/*
3374 	 * We want to get the alternate root even for faulted pools, so we cheat
3375 	 * and call spa_lookup() directly.
3376 	 */
3377 	if (altroot) {
3378 		if (spa == NULL) {
3379 			mutex_enter(&spa_namespace_lock);
3380 			spa = spa_lookup(name);
3381 			if (spa)
3382 				spa_altroot(spa, altroot, buflen);
3383 			else
3384 				altroot[0] = '\0';
3385 			spa = NULL;
3386 			mutex_exit(&spa_namespace_lock);
3387 		} else {
3388 			spa_altroot(spa, altroot, buflen);
3389 		}
3390 	}
3391 
3392 	if (spa != NULL) {
3393 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3394 		spa_close(spa, FTAG);
3395 	}
3396 
3397 	return (error);
3398 }
3399 
3400 /*
3401  * Validate that the auxiliary device array is well formed.  We must have an
3402  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3403  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3404  * specified, as long as they are well-formed.
3405  */
3406 static int
3407 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3408     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3409     vdev_labeltype_t label)
3410 {
3411 	nvlist_t **dev;
3412 	uint_t i, ndev;
3413 	vdev_t *vd;
3414 	int error;
3415 
3416 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3417 
3418 	/*
3419 	 * It's acceptable to have no devs specified.
3420 	 */
3421 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3422 		return (0);
3423 
3424 	if (ndev == 0)
3425 		return (SET_ERROR(EINVAL));
3426 
3427 	/*
3428 	 * Make sure the pool is formatted with a version that supports this
3429 	 * device type.
3430 	 */
3431 	if (spa_version(spa) < version)
3432 		return (SET_ERROR(ENOTSUP));
3433 
3434 	/*
3435 	 * Set the pending device list so we correctly handle device in-use
3436 	 * checking.
3437 	 */
3438 	sav->sav_pending = dev;
3439 	sav->sav_npending = ndev;
3440 
3441 	for (i = 0; i < ndev; i++) {
3442 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3443 		    mode)) != 0)
3444 			goto out;
3445 
3446 		if (!vd->vdev_ops->vdev_op_leaf) {
3447 			vdev_free(vd);
3448 			error = SET_ERROR(EINVAL);
3449 			goto out;
3450 		}
3451 
3452 		/*
3453 		 * The L2ARC currently only supports disk devices in
3454 		 * kernel context.  For user-level testing, we allow it.
3455 		 */
3456 #ifdef _KERNEL
3457 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3458 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3459 			error = SET_ERROR(ENOTBLK);
3460 			vdev_free(vd);
3461 			goto out;
3462 		}
3463 #endif
3464 		vd->vdev_top = vd;
3465 
3466 		if ((error = vdev_open(vd)) == 0 &&
3467 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3468 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3469 			    vd->vdev_guid) == 0);
3470 		}
3471 
3472 		vdev_free(vd);
3473 
3474 		if (error &&
3475 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3476 			goto out;
3477 		else
3478 			error = 0;
3479 	}
3480 
3481 out:
3482 	sav->sav_pending = NULL;
3483 	sav->sav_npending = 0;
3484 	return (error);
3485 }
3486 
3487 static int
3488 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3489 {
3490 	int error;
3491 
3492 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3493 
3494 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3495 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3496 	    VDEV_LABEL_SPARE)) != 0) {
3497 		return (error);
3498 	}
3499 
3500 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3501 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3502 	    VDEV_LABEL_L2CACHE));
3503 }
3504 
3505 static void
3506 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3507     const char *config)
3508 {
3509 	int i;
3510 
3511 	if (sav->sav_config != NULL) {
3512 		nvlist_t **olddevs;
3513 		uint_t oldndevs;
3514 		nvlist_t **newdevs;
3515 
3516 		/*
3517 		 * Generate new dev list by concatentating with the
3518 		 * current dev list.
3519 		 */
3520 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3521 		    &olddevs, &oldndevs) == 0);
3522 
3523 		newdevs = kmem_alloc(sizeof (void *) *
3524 		    (ndevs + oldndevs), KM_SLEEP);
3525 		for (i = 0; i < oldndevs; i++)
3526 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3527 			    KM_SLEEP) == 0);
3528 		for (i = 0; i < ndevs; i++)
3529 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3530 			    KM_SLEEP) == 0);
3531 
3532 		VERIFY(nvlist_remove(sav->sav_config, config,
3533 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3534 
3535 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3536 		    config, newdevs, ndevs + oldndevs) == 0);
3537 		for (i = 0; i < oldndevs + ndevs; i++)
3538 			nvlist_free(newdevs[i]);
3539 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3540 	} else {
3541 		/*
3542 		 * Generate a new dev list.
3543 		 */
3544 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3545 		    KM_SLEEP) == 0);
3546 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3547 		    devs, ndevs) == 0);
3548 	}
3549 }
3550 
3551 /*
3552  * Stop and drop level 2 ARC devices
3553  */
3554 void
3555 spa_l2cache_drop(spa_t *spa)
3556 {
3557 	vdev_t *vd;
3558 	int i;
3559 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3560 
3561 	for (i = 0; i < sav->sav_count; i++) {
3562 		uint64_t pool;
3563 
3564 		vd = sav->sav_vdevs[i];
3565 		ASSERT(vd != NULL);
3566 
3567 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3568 		    pool != 0ULL && l2arc_vdev_present(vd))
3569 			l2arc_remove_vdev(vd);
3570 	}
3571 }
3572 
3573 /*
3574  * Pool Creation
3575  */
3576 int
3577 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3578     nvlist_t *zplprops)
3579 {
3580 	spa_t *spa;
3581 	char *altroot = NULL;
3582 	vdev_t *rvd;
3583 	dsl_pool_t *dp;
3584 	dmu_tx_t *tx;
3585 	int error = 0;
3586 	uint64_t txg = TXG_INITIAL;
3587 	nvlist_t **spares, **l2cache;
3588 	uint_t nspares, nl2cache;
3589 	uint64_t version, obj;
3590 	boolean_t has_features;
3591 
3592 	/*
3593 	 * If this pool already exists, return failure.
3594 	 */
3595 	mutex_enter(&spa_namespace_lock);
3596 	if (spa_lookup(pool) != NULL) {
3597 		mutex_exit(&spa_namespace_lock);
3598 		return (SET_ERROR(EEXIST));
3599 	}
3600 
3601 	/*
3602 	 * Allocate a new spa_t structure.
3603 	 */
3604 	(void) nvlist_lookup_string(props,
3605 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3606 	spa = spa_add(pool, NULL, altroot);
3607 	spa_activate(spa, spa_mode_global);
3608 
3609 	if (props && (error = spa_prop_validate(spa, props))) {
3610 		spa_deactivate(spa);
3611 		spa_remove(spa);
3612 		mutex_exit(&spa_namespace_lock);
3613 		return (error);
3614 	}
3615 
3616 	has_features = B_FALSE;
3617 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3618 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3619 		if (zpool_prop_feature(nvpair_name(elem)))
3620 			has_features = B_TRUE;
3621 	}
3622 
3623 	if (has_features || nvlist_lookup_uint64(props,
3624 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3625 		version = SPA_VERSION;
3626 	}
3627 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3628 
3629 	spa->spa_first_txg = txg;
3630 	spa->spa_uberblock.ub_txg = txg - 1;
3631 	spa->spa_uberblock.ub_version = version;
3632 	spa->spa_ubsync = spa->spa_uberblock;
3633 	spa->spa_load_state = SPA_LOAD_CREATE;
3634 
3635 	/*
3636 	 * Create "The Godfather" zio to hold all async IOs
3637 	 */
3638 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3639 	    KM_SLEEP);
3640 	for (int i = 0; i < max_ncpus; i++) {
3641 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3642 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3643 		    ZIO_FLAG_GODFATHER);
3644 	}
3645 
3646 	/*
3647 	 * Create the root vdev.
3648 	 */
3649 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3650 
3651 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3652 
3653 	ASSERT(error != 0 || rvd != NULL);
3654 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3655 
3656 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3657 		error = SET_ERROR(EINVAL);
3658 
3659 	if (error == 0 &&
3660 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3661 	    (error = spa_validate_aux(spa, nvroot, txg,
3662 	    VDEV_ALLOC_ADD)) == 0) {
3663 		for (int c = 0; c < rvd->vdev_children; c++) {
3664 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3665 			vdev_expand(rvd->vdev_child[c], txg);
3666 		}
3667 	}
3668 
3669 	spa_config_exit(spa, SCL_ALL, FTAG);
3670 
3671 	if (error != 0) {
3672 		spa_unload(spa);
3673 		spa_deactivate(spa);
3674 		spa_remove(spa);
3675 		mutex_exit(&spa_namespace_lock);
3676 		return (error);
3677 	}
3678 
3679 	/*
3680 	 * Get the list of spares, if specified.
3681 	 */
3682 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3683 	    &spares, &nspares) == 0) {
3684 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3685 		    KM_SLEEP) == 0);
3686 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3687 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3688 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3689 		spa_load_spares(spa);
3690 		spa_config_exit(spa, SCL_ALL, FTAG);
3691 		spa->spa_spares.sav_sync = B_TRUE;
3692 	}
3693 
3694 	/*
3695 	 * Get the list of level 2 cache devices, if specified.
3696 	 */
3697 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3698 	    &l2cache, &nl2cache) == 0) {
3699 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3700 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3701 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3702 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3703 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3704 		spa_load_l2cache(spa);
3705 		spa_config_exit(spa, SCL_ALL, FTAG);
3706 		spa->spa_l2cache.sav_sync = B_TRUE;
3707 	}
3708 
3709 	spa->spa_is_initializing = B_TRUE;
3710 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3711 	spa->spa_meta_objset = dp->dp_meta_objset;
3712 	spa->spa_is_initializing = B_FALSE;
3713 
3714 	/*
3715 	 * Create DDTs (dedup tables).
3716 	 */
3717 	ddt_create(spa);
3718 
3719 	spa_update_dspace(spa);
3720 
3721 	tx = dmu_tx_create_assigned(dp, txg);
3722 
3723 	/*
3724 	 * Create the pool config object.
3725 	 */
3726 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3727 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3728 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3729 
3730 	if (zap_add(spa->spa_meta_objset,
3731 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3732 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3733 		cmn_err(CE_PANIC, "failed to add pool config");
3734 	}
3735 
3736 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3737 		spa_feature_create_zap_objects(spa, tx);
3738 
3739 	if (zap_add(spa->spa_meta_objset,
3740 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3741 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3742 		cmn_err(CE_PANIC, "failed to add pool version");
3743 	}
3744 
3745 	/* Newly created pools with the right version are always deflated. */
3746 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3747 		spa->spa_deflate = TRUE;
3748 		if (zap_add(spa->spa_meta_objset,
3749 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3750 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3751 			cmn_err(CE_PANIC, "failed to add deflate");
3752 		}
3753 	}
3754 
3755 	/*
3756 	 * Create the deferred-free bpobj.  Turn off compression
3757 	 * because sync-to-convergence takes longer if the blocksize
3758 	 * keeps changing.
3759 	 */
3760 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3761 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3762 	    ZIO_COMPRESS_OFF, tx);
3763 	if (zap_add(spa->spa_meta_objset,
3764 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3765 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3766 		cmn_err(CE_PANIC, "failed to add bpobj");
3767 	}
3768 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3769 	    spa->spa_meta_objset, obj));
3770 
3771 	/*
3772 	 * Create the pool's history object.
3773 	 */
3774 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3775 		spa_history_create_obj(spa, tx);
3776 
3777 	/*
3778 	 * Generate some random noise for salted checksums to operate on.
3779 	 */
3780 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3781 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3782 
3783 	/*
3784 	 * Set pool properties.
3785 	 */
3786 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3787 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3788 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3789 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3790 
3791 	if (props != NULL) {
3792 		spa_configfile_set(spa, props, B_FALSE);
3793 		spa_sync_props(props, tx);
3794 	}
3795 
3796 	dmu_tx_commit(tx);
3797 
3798 	spa->spa_sync_on = B_TRUE;
3799 	txg_sync_start(spa->spa_dsl_pool);
3800 
3801 	/*
3802 	 * We explicitly wait for the first transaction to complete so that our
3803 	 * bean counters are appropriately updated.
3804 	 */
3805 	txg_wait_synced(spa->spa_dsl_pool, txg);
3806 
3807 	spa_config_sync(spa, B_FALSE, B_TRUE);
3808 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3809 
3810 	spa_history_log_version(spa, "create");
3811 
3812 	/*
3813 	 * Don't count references from objsets that are already closed
3814 	 * and are making their way through the eviction process.
3815 	 */
3816 	spa_evicting_os_wait(spa);
3817 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3818 	spa->spa_load_state = SPA_LOAD_NONE;
3819 
3820 	mutex_exit(&spa_namespace_lock);
3821 
3822 	return (0);
3823 }
3824 
3825 #ifdef _KERNEL
3826 /*
3827  * Get the root pool information from the root disk, then import the root pool
3828  * during the system boot up time.
3829  */
3830 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3831 
3832 static nvlist_t *
3833 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3834 {
3835 	nvlist_t *config;
3836 	nvlist_t *nvtop, *nvroot;
3837 	uint64_t pgid;
3838 
3839 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3840 		return (NULL);
3841 
3842 	/*
3843 	 * Add this top-level vdev to the child array.
3844 	 */
3845 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3846 	    &nvtop) == 0);
3847 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3848 	    &pgid) == 0);
3849 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3850 
3851 	/*
3852 	 * Put this pool's top-level vdevs into a root vdev.
3853 	 */
3854 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3855 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3856 	    VDEV_TYPE_ROOT) == 0);
3857 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3858 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3859 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3860 	    &nvtop, 1) == 0);
3861 
3862 	/*
3863 	 * Replace the existing vdev_tree with the new root vdev in
3864 	 * this pool's configuration (remove the old, add the new).
3865 	 */
3866 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3867 	nvlist_free(nvroot);
3868 	return (config);
3869 }
3870 
3871 /*
3872  * Walk the vdev tree and see if we can find a device with "better"
3873  * configuration. A configuration is "better" if the label on that
3874  * device has a more recent txg.
3875  */
3876 static void
3877 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3878 {
3879 	for (int c = 0; c < vd->vdev_children; c++)
3880 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3881 
3882 	if (vd->vdev_ops->vdev_op_leaf) {
3883 		nvlist_t *label;
3884 		uint64_t label_txg;
3885 
3886 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3887 		    &label) != 0)
3888 			return;
3889 
3890 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3891 		    &label_txg) == 0);
3892 
3893 		/*
3894 		 * Do we have a better boot device?
3895 		 */
3896 		if (label_txg > *txg) {
3897 			*txg = label_txg;
3898 			*avd = vd;
3899 		}
3900 		nvlist_free(label);
3901 	}
3902 }
3903 
3904 /*
3905  * Import a root pool.
3906  *
3907  * For x86. devpath_list will consist of devid and/or physpath name of
3908  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3909  * The GRUB "findroot" command will return the vdev we should boot.
3910  *
3911  * For Sparc, devpath_list consists the physpath name of the booting device
3912  * no matter the rootpool is a single device pool or a mirrored pool.
3913  * e.g.
3914  *	"/pci@1f,0/ide@d/disk@0,0:a"
3915  */
3916 int
3917 spa_import_rootpool(char *devpath, char *devid)
3918 {
3919 	spa_t *spa;
3920 	vdev_t *rvd, *bvd, *avd = NULL;
3921 	nvlist_t *config, *nvtop;
3922 	uint64_t guid, txg;
3923 	char *pname;
3924 	int error;
3925 
3926 	/*
3927 	 * Read the label from the boot device and generate a configuration.
3928 	 */
3929 	config = spa_generate_rootconf(devpath, devid, &guid);
3930 #if defined(_OBP) && defined(_KERNEL)
3931 	if (config == NULL) {
3932 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3933 			/* iscsi boot */
3934 			get_iscsi_bootpath_phy(devpath);
3935 			config = spa_generate_rootconf(devpath, devid, &guid);
3936 		}
3937 	}
3938 #endif
3939 	if (config == NULL) {
3940 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3941 		    devpath);
3942 		return (SET_ERROR(EIO));
3943 	}
3944 
3945 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3946 	    &pname) == 0);
3947 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3948 
3949 	mutex_enter(&spa_namespace_lock);
3950 	if ((spa = spa_lookup(pname)) != NULL) {
3951 		/*
3952 		 * Remove the existing root pool from the namespace so that we
3953 		 * can replace it with the correct config we just read in.
3954 		 */
3955 		spa_remove(spa);
3956 	}
3957 
3958 	spa = spa_add(pname, config, NULL);
3959 	spa->spa_is_root = B_TRUE;
3960 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3961 
3962 	/*
3963 	 * Build up a vdev tree based on the boot device's label config.
3964 	 */
3965 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3966 	    &nvtop) == 0);
3967 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3968 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3969 	    VDEV_ALLOC_ROOTPOOL);
3970 	spa_config_exit(spa, SCL_ALL, FTAG);
3971 	if (error) {
3972 		mutex_exit(&spa_namespace_lock);
3973 		nvlist_free(config);
3974 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3975 		    pname);
3976 		return (error);
3977 	}
3978 
3979 	/*
3980 	 * Get the boot vdev.
3981 	 */
3982 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3983 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3984 		    (u_longlong_t)guid);
3985 		error = SET_ERROR(ENOENT);
3986 		goto out;
3987 	}
3988 
3989 	/*
3990 	 * Determine if there is a better boot device.
3991 	 */
3992 	avd = bvd;
3993 	spa_alt_rootvdev(rvd, &avd, &txg);
3994 	if (avd != bvd) {
3995 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3996 		    "try booting from '%s'", avd->vdev_path);
3997 		error = SET_ERROR(EINVAL);
3998 		goto out;
3999 	}
4000 
4001 	/*
4002 	 * If the boot device is part of a spare vdev then ensure that
4003 	 * we're booting off the active spare.
4004 	 */
4005 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4006 	    !bvd->vdev_isspare) {
4007 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4008 		    "try booting from '%s'",
4009 		    bvd->vdev_parent->
4010 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4011 		error = SET_ERROR(EINVAL);
4012 		goto out;
4013 	}
4014 
4015 	error = 0;
4016 out:
4017 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4018 	vdev_free(rvd);
4019 	spa_config_exit(spa, SCL_ALL, FTAG);
4020 	mutex_exit(&spa_namespace_lock);
4021 
4022 	nvlist_free(config);
4023 	return (error);
4024 }
4025 
4026 #endif
4027 
4028 /*
4029  * Import a non-root pool into the system.
4030  */
4031 int
4032 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4033 {
4034 	spa_t *spa;
4035 	char *altroot = NULL;
4036 	spa_load_state_t state = SPA_LOAD_IMPORT;
4037 	zpool_rewind_policy_t policy;
4038 	uint64_t mode = spa_mode_global;
4039 	uint64_t readonly = B_FALSE;
4040 	int error;
4041 	nvlist_t *nvroot;
4042 	nvlist_t **spares, **l2cache;
4043 	uint_t nspares, nl2cache;
4044 
4045 	/*
4046 	 * If a pool with this name exists, return failure.
4047 	 */
4048 	mutex_enter(&spa_namespace_lock);
4049 	if (spa_lookup(pool) != NULL) {
4050 		mutex_exit(&spa_namespace_lock);
4051 		return (SET_ERROR(EEXIST));
4052 	}
4053 
4054 	/*
4055 	 * Create and initialize the spa structure.
4056 	 */
4057 	(void) nvlist_lookup_string(props,
4058 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4059 	(void) nvlist_lookup_uint64(props,
4060 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4061 	if (readonly)
4062 		mode = FREAD;
4063 	spa = spa_add(pool, config, altroot);
4064 	spa->spa_import_flags = flags;
4065 
4066 	/*
4067 	 * Verbatim import - Take a pool and insert it into the namespace
4068 	 * as if it had been loaded at boot.
4069 	 */
4070 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4071 		if (props != NULL)
4072 			spa_configfile_set(spa, props, B_FALSE);
4073 
4074 		spa_config_sync(spa, B_FALSE, B_TRUE);
4075 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4076 
4077 		mutex_exit(&spa_namespace_lock);
4078 		return (0);
4079 	}
4080 
4081 	spa_activate(spa, mode);
4082 
4083 	/*
4084 	 * Don't start async tasks until we know everything is healthy.
4085 	 */
4086 	spa_async_suspend(spa);
4087 
4088 	zpool_get_rewind_policy(config, &policy);
4089 	if (policy.zrp_request & ZPOOL_DO_REWIND)
4090 		state = SPA_LOAD_RECOVER;
4091 
4092 	/*
4093 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4094 	 * because the user-supplied config is actually the one to trust when
4095 	 * doing an import.
4096 	 */
4097 	if (state != SPA_LOAD_RECOVER)
4098 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4099 
4100 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4101 	    policy.zrp_request);
4102 
4103 	/*
4104 	 * Propagate anything learned while loading the pool and pass it
4105 	 * back to caller (i.e. rewind info, missing devices, etc).
4106 	 */
4107 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4108 	    spa->spa_load_info) == 0);
4109 
4110 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4111 	/*
4112 	 * Toss any existing sparelist, as it doesn't have any validity
4113 	 * anymore, and conflicts with spa_has_spare().
4114 	 */
4115 	if (spa->spa_spares.sav_config) {
4116 		nvlist_free(spa->spa_spares.sav_config);
4117 		spa->spa_spares.sav_config = NULL;
4118 		spa_load_spares(spa);
4119 	}
4120 	if (spa->spa_l2cache.sav_config) {
4121 		nvlist_free(spa->spa_l2cache.sav_config);
4122 		spa->spa_l2cache.sav_config = NULL;
4123 		spa_load_l2cache(spa);
4124 	}
4125 
4126 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4127 	    &nvroot) == 0);
4128 	if (error == 0)
4129 		error = spa_validate_aux(spa, nvroot, -1ULL,
4130 		    VDEV_ALLOC_SPARE);
4131 	if (error == 0)
4132 		error = spa_validate_aux(spa, nvroot, -1ULL,
4133 		    VDEV_ALLOC_L2CACHE);
4134 	spa_config_exit(spa, SCL_ALL, FTAG);
4135 
4136 	if (props != NULL)
4137 		spa_configfile_set(spa, props, B_FALSE);
4138 
4139 	if (error != 0 || (props && spa_writeable(spa) &&
4140 	    (error = spa_prop_set(spa, props)))) {
4141 		spa_unload(spa);
4142 		spa_deactivate(spa);
4143 		spa_remove(spa);
4144 		mutex_exit(&spa_namespace_lock);
4145 		return (error);
4146 	}
4147 
4148 	spa_async_resume(spa);
4149 
4150 	/*
4151 	 * Override any spares and level 2 cache devices as specified by
4152 	 * the user, as these may have correct device names/devids, etc.
4153 	 */
4154 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4155 	    &spares, &nspares) == 0) {
4156 		if (spa->spa_spares.sav_config)
4157 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4158 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4159 		else
4160 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4161 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4162 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4163 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4164 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4165 		spa_load_spares(spa);
4166 		spa_config_exit(spa, SCL_ALL, FTAG);
4167 		spa->spa_spares.sav_sync = B_TRUE;
4168 	}
4169 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4170 	    &l2cache, &nl2cache) == 0) {
4171 		if (spa->spa_l2cache.sav_config)
4172 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4173 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4174 		else
4175 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4176 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4177 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4178 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4179 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4180 		spa_load_l2cache(spa);
4181 		spa_config_exit(spa, SCL_ALL, FTAG);
4182 		spa->spa_l2cache.sav_sync = B_TRUE;
4183 	}
4184 
4185 	/*
4186 	 * Check for any removed devices.
4187 	 */
4188 	if (spa->spa_autoreplace) {
4189 		spa_aux_check_removed(&spa->spa_spares);
4190 		spa_aux_check_removed(&spa->spa_l2cache);
4191 	}
4192 
4193 	if (spa_writeable(spa)) {
4194 		/*
4195 		 * Update the config cache to include the newly-imported pool.
4196 		 */
4197 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4198 	}
4199 
4200 	/*
4201 	 * It's possible that the pool was expanded while it was exported.
4202 	 * We kick off an async task to handle this for us.
4203 	 */
4204 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4205 
4206 	spa_history_log_version(spa, "import");
4207 
4208 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4209 
4210 	mutex_exit(&spa_namespace_lock);
4211 
4212 	return (0);
4213 }
4214 
4215 nvlist_t *
4216 spa_tryimport(nvlist_t *tryconfig)
4217 {
4218 	nvlist_t *config = NULL;
4219 	char *poolname;
4220 	spa_t *spa;
4221 	uint64_t state;
4222 	int error;
4223 
4224 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4225 		return (NULL);
4226 
4227 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4228 		return (NULL);
4229 
4230 	/*
4231 	 * Create and initialize the spa structure.
4232 	 */
4233 	mutex_enter(&spa_namespace_lock);
4234 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4235 	spa_activate(spa, FREAD);
4236 
4237 	/*
4238 	 * Pass off the heavy lifting to spa_load().
4239 	 * Pass TRUE for mosconfig because the user-supplied config
4240 	 * is actually the one to trust when doing an import.
4241 	 */
4242 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4243 
4244 	/*
4245 	 * If 'tryconfig' was at least parsable, return the current config.
4246 	 */
4247 	if (spa->spa_root_vdev != NULL) {
4248 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4249 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4250 		    poolname) == 0);
4251 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4252 		    state) == 0);
4253 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4254 		    spa->spa_uberblock.ub_timestamp) == 0);
4255 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4256 		    spa->spa_load_info) == 0);
4257 
4258 		/*
4259 		 * If the bootfs property exists on this pool then we
4260 		 * copy it out so that external consumers can tell which
4261 		 * pools are bootable.
4262 		 */
4263 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4264 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4265 
4266 			/*
4267 			 * We have to play games with the name since the
4268 			 * pool was opened as TRYIMPORT_NAME.
4269 			 */
4270 			if (dsl_dsobj_to_dsname(spa_name(spa),
4271 			    spa->spa_bootfs, tmpname) == 0) {
4272 				char *cp;
4273 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4274 
4275 				cp = strchr(tmpname, '/');
4276 				if (cp == NULL) {
4277 					(void) strlcpy(dsname, tmpname,
4278 					    MAXPATHLEN);
4279 				} else {
4280 					(void) snprintf(dsname, MAXPATHLEN,
4281 					    "%s/%s", poolname, ++cp);
4282 				}
4283 				VERIFY(nvlist_add_string(config,
4284 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4285 				kmem_free(dsname, MAXPATHLEN);
4286 			}
4287 			kmem_free(tmpname, MAXPATHLEN);
4288 		}
4289 
4290 		/*
4291 		 * Add the list of hot spares and level 2 cache devices.
4292 		 */
4293 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4294 		spa_add_spares(spa, config);
4295 		spa_add_l2cache(spa, config);
4296 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4297 	}
4298 
4299 	spa_unload(spa);
4300 	spa_deactivate(spa);
4301 	spa_remove(spa);
4302 	mutex_exit(&spa_namespace_lock);
4303 
4304 	return (config);
4305 }
4306 
4307 /*
4308  * Pool export/destroy
4309  *
4310  * The act of destroying or exporting a pool is very simple.  We make sure there
4311  * is no more pending I/O and any references to the pool are gone.  Then, we
4312  * update the pool state and sync all the labels to disk, removing the
4313  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4314  * we don't sync the labels or remove the configuration cache.
4315  */
4316 static int
4317 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4318     boolean_t force, boolean_t hardforce)
4319 {
4320 	spa_t *spa;
4321 
4322 	if (oldconfig)
4323 		*oldconfig = NULL;
4324 
4325 	if (!(spa_mode_global & FWRITE))
4326 		return (SET_ERROR(EROFS));
4327 
4328 	mutex_enter(&spa_namespace_lock);
4329 	if ((spa = spa_lookup(pool)) == NULL) {
4330 		mutex_exit(&spa_namespace_lock);
4331 		return (SET_ERROR(ENOENT));
4332 	}
4333 
4334 	/*
4335 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4336 	 * reacquire the namespace lock, and see if we can export.
4337 	 */
4338 	spa_open_ref(spa, FTAG);
4339 	mutex_exit(&spa_namespace_lock);
4340 	spa_async_suspend(spa);
4341 	mutex_enter(&spa_namespace_lock);
4342 	spa_close(spa, FTAG);
4343 
4344 	/*
4345 	 * The pool will be in core if it's openable,
4346 	 * in which case we can modify its state.
4347 	 */
4348 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4349 		/*
4350 		 * Objsets may be open only because they're dirty, so we
4351 		 * have to force it to sync before checking spa_refcnt.
4352 		 */
4353 		txg_wait_synced(spa->spa_dsl_pool, 0);
4354 		spa_evicting_os_wait(spa);
4355 
4356 		/*
4357 		 * A pool cannot be exported or destroyed if there are active
4358 		 * references.  If we are resetting a pool, allow references by
4359 		 * fault injection handlers.
4360 		 */
4361 		if (!spa_refcount_zero(spa) ||
4362 		    (spa->spa_inject_ref != 0 &&
4363 		    new_state != POOL_STATE_UNINITIALIZED)) {
4364 			spa_async_resume(spa);
4365 			mutex_exit(&spa_namespace_lock);
4366 			return (SET_ERROR(EBUSY));
4367 		}
4368 
4369 		/*
4370 		 * A pool cannot be exported if it has an active shared spare.
4371 		 * This is to prevent other pools stealing the active spare
4372 		 * from an exported pool. At user's own will, such pool can
4373 		 * be forcedly exported.
4374 		 */
4375 		if (!force && new_state == POOL_STATE_EXPORTED &&
4376 		    spa_has_active_shared_spare(spa)) {
4377 			spa_async_resume(spa);
4378 			mutex_exit(&spa_namespace_lock);
4379 			return (SET_ERROR(EXDEV));
4380 		}
4381 
4382 		/*
4383 		 * We want this to be reflected on every label,
4384 		 * so mark them all dirty.  spa_unload() will do the
4385 		 * final sync that pushes these changes out.
4386 		 */
4387 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4388 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4389 			spa->spa_state = new_state;
4390 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4391 			    TXG_DEFER_SIZE + 1;
4392 			vdev_config_dirty(spa->spa_root_vdev);
4393 			spa_config_exit(spa, SCL_ALL, FTAG);
4394 		}
4395 	}
4396 
4397 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4398 
4399 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4400 		spa_unload(spa);
4401 		spa_deactivate(spa);
4402 	}
4403 
4404 	if (oldconfig && spa->spa_config)
4405 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4406 
4407 	if (new_state != POOL_STATE_UNINITIALIZED) {
4408 		if (!hardforce)
4409 			spa_config_sync(spa, B_TRUE, B_TRUE);
4410 		spa_remove(spa);
4411 	}
4412 	mutex_exit(&spa_namespace_lock);
4413 
4414 	return (0);
4415 }
4416 
4417 /*
4418  * Destroy a storage pool.
4419  */
4420 int
4421 spa_destroy(char *pool)
4422 {
4423 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4424 	    B_FALSE, B_FALSE));
4425 }
4426 
4427 /*
4428  * Export a storage pool.
4429  */
4430 int
4431 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4432     boolean_t hardforce)
4433 {
4434 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4435 	    force, hardforce));
4436 }
4437 
4438 /*
4439  * Similar to spa_export(), this unloads the spa_t without actually removing it
4440  * from the namespace in any way.
4441  */
4442 int
4443 spa_reset(char *pool)
4444 {
4445 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4446 	    B_FALSE, B_FALSE));
4447 }
4448 
4449 /*
4450  * ==========================================================================
4451  * Device manipulation
4452  * ==========================================================================
4453  */
4454 
4455 /*
4456  * Add a device to a storage pool.
4457  */
4458 int
4459 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4460 {
4461 	uint64_t txg, id;
4462 	int error;
4463 	vdev_t *rvd = spa->spa_root_vdev;
4464 	vdev_t *vd, *tvd;
4465 	nvlist_t **spares, **l2cache;
4466 	uint_t nspares, nl2cache;
4467 
4468 	ASSERT(spa_writeable(spa));
4469 
4470 	txg = spa_vdev_enter(spa);
4471 
4472 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4473 	    VDEV_ALLOC_ADD)) != 0)
4474 		return (spa_vdev_exit(spa, NULL, txg, error));
4475 
4476 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4477 
4478 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4479 	    &nspares) != 0)
4480 		nspares = 0;
4481 
4482 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4483 	    &nl2cache) != 0)
4484 		nl2cache = 0;
4485 
4486 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4487 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4488 
4489 	if (vd->vdev_children != 0 &&
4490 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4491 		return (spa_vdev_exit(spa, vd, txg, error));
4492 
4493 	/*
4494 	 * We must validate the spares and l2cache devices after checking the
4495 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4496 	 */
4497 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4498 		return (spa_vdev_exit(spa, vd, txg, error));
4499 
4500 	/*
4501 	 * Transfer each new top-level vdev from vd to rvd.
4502 	 */
4503 	for (int c = 0; c < vd->vdev_children; c++) {
4504 
4505 		/*
4506 		 * Set the vdev id to the first hole, if one exists.
4507 		 */
4508 		for (id = 0; id < rvd->vdev_children; id++) {
4509 			if (rvd->vdev_child[id]->vdev_ishole) {
4510 				vdev_free(rvd->vdev_child[id]);
4511 				break;
4512 			}
4513 		}
4514 		tvd = vd->vdev_child[c];
4515 		vdev_remove_child(vd, tvd);
4516 		tvd->vdev_id = id;
4517 		vdev_add_child(rvd, tvd);
4518 		vdev_config_dirty(tvd);
4519 	}
4520 
4521 	if (nspares != 0) {
4522 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4523 		    ZPOOL_CONFIG_SPARES);
4524 		spa_load_spares(spa);
4525 		spa->spa_spares.sav_sync = B_TRUE;
4526 	}
4527 
4528 	if (nl2cache != 0) {
4529 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4530 		    ZPOOL_CONFIG_L2CACHE);
4531 		spa_load_l2cache(spa);
4532 		spa->spa_l2cache.sav_sync = B_TRUE;
4533 	}
4534 
4535 	/*
4536 	 * We have to be careful when adding new vdevs to an existing pool.
4537 	 * If other threads start allocating from these vdevs before we
4538 	 * sync the config cache, and we lose power, then upon reboot we may
4539 	 * fail to open the pool because there are DVAs that the config cache
4540 	 * can't translate.  Therefore, we first add the vdevs without
4541 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4542 	 * and then let spa_config_update() initialize the new metaslabs.
4543 	 *
4544 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4545 	 * if we lose power at any point in this sequence, the remaining
4546 	 * steps will be completed the next time we load the pool.
4547 	 */
4548 	(void) spa_vdev_exit(spa, vd, txg, 0);
4549 
4550 	mutex_enter(&spa_namespace_lock);
4551 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4552 	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4553 	mutex_exit(&spa_namespace_lock);
4554 
4555 	return (0);
4556 }
4557 
4558 /*
4559  * Attach a device to a mirror.  The arguments are the path to any device
4560  * in the mirror, and the nvroot for the new device.  If the path specifies
4561  * a device that is not mirrored, we automatically insert the mirror vdev.
4562  *
4563  * If 'replacing' is specified, the new device is intended to replace the
4564  * existing device; in this case the two devices are made into their own
4565  * mirror using the 'replacing' vdev, which is functionally identical to
4566  * the mirror vdev (it actually reuses all the same ops) but has a few
4567  * extra rules: you can't attach to it after it's been created, and upon
4568  * completion of resilvering, the first disk (the one being replaced)
4569  * is automatically detached.
4570  */
4571 int
4572 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4573 {
4574 	uint64_t txg, dtl_max_txg;
4575 	vdev_t *rvd = spa->spa_root_vdev;
4576 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4577 	vdev_ops_t *pvops;
4578 	char *oldvdpath, *newvdpath;
4579 	int newvd_isspare;
4580 	int error;
4581 
4582 	ASSERT(spa_writeable(spa));
4583 
4584 	txg = spa_vdev_enter(spa);
4585 
4586 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4587 
4588 	if (oldvd == NULL)
4589 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4590 
4591 	if (!oldvd->vdev_ops->vdev_op_leaf)
4592 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4593 
4594 	pvd = oldvd->vdev_parent;
4595 
4596 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4597 	    VDEV_ALLOC_ATTACH)) != 0)
4598 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4599 
4600 	if (newrootvd->vdev_children != 1)
4601 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4602 
4603 	newvd = newrootvd->vdev_child[0];
4604 
4605 	if (!newvd->vdev_ops->vdev_op_leaf)
4606 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4607 
4608 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4609 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4610 
4611 	/*
4612 	 * Spares can't replace logs
4613 	 */
4614 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4615 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4616 
4617 	if (!replacing) {
4618 		/*
4619 		 * For attach, the only allowable parent is a mirror or the root
4620 		 * vdev.
4621 		 */
4622 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4623 		    pvd->vdev_ops != &vdev_root_ops)
4624 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4625 
4626 		pvops = &vdev_mirror_ops;
4627 	} else {
4628 		/*
4629 		 * Active hot spares can only be replaced by inactive hot
4630 		 * spares.
4631 		 */
4632 		if (pvd->vdev_ops == &vdev_spare_ops &&
4633 		    oldvd->vdev_isspare &&
4634 		    !spa_has_spare(spa, newvd->vdev_guid))
4635 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4636 
4637 		/*
4638 		 * If the source is a hot spare, and the parent isn't already a
4639 		 * spare, then we want to create a new hot spare.  Otherwise, we
4640 		 * want to create a replacing vdev.  The user is not allowed to
4641 		 * attach to a spared vdev child unless the 'isspare' state is
4642 		 * the same (spare replaces spare, non-spare replaces
4643 		 * non-spare).
4644 		 */
4645 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4646 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4647 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4648 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4649 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4650 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4651 		}
4652 
4653 		if (newvd->vdev_isspare)
4654 			pvops = &vdev_spare_ops;
4655 		else
4656 			pvops = &vdev_replacing_ops;
4657 	}
4658 
4659 	/*
4660 	 * Make sure the new device is big enough.
4661 	 */
4662 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4663 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4664 
4665 	/*
4666 	 * The new device cannot have a higher alignment requirement
4667 	 * than the top-level vdev.
4668 	 */
4669 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4670 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4671 
4672 	/*
4673 	 * If this is an in-place replacement, update oldvd's path and devid
4674 	 * to make it distinguishable from newvd, and unopenable from now on.
4675 	 */
4676 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4677 		spa_strfree(oldvd->vdev_path);
4678 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4679 		    KM_SLEEP);
4680 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4681 		    newvd->vdev_path, "old");
4682 		if (oldvd->vdev_devid != NULL) {
4683 			spa_strfree(oldvd->vdev_devid);
4684 			oldvd->vdev_devid = NULL;
4685 		}
4686 	}
4687 
4688 	/* mark the device being resilvered */
4689 	newvd->vdev_resilver_txg = txg;
4690 
4691 	/*
4692 	 * If the parent is not a mirror, or if we're replacing, insert the new
4693 	 * mirror/replacing/spare vdev above oldvd.
4694 	 */
4695 	if (pvd->vdev_ops != pvops)
4696 		pvd = vdev_add_parent(oldvd, pvops);
4697 
4698 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4699 	ASSERT(pvd->vdev_ops == pvops);
4700 	ASSERT(oldvd->vdev_parent == pvd);
4701 
4702 	/*
4703 	 * Extract the new device from its root and add it to pvd.
4704 	 */
4705 	vdev_remove_child(newrootvd, newvd);
4706 	newvd->vdev_id = pvd->vdev_children;
4707 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4708 	vdev_add_child(pvd, newvd);
4709 
4710 	tvd = newvd->vdev_top;
4711 	ASSERT(pvd->vdev_top == tvd);
4712 	ASSERT(tvd->vdev_parent == rvd);
4713 
4714 	vdev_config_dirty(tvd);
4715 
4716 	/*
4717 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4718 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4719 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4720 	 */
4721 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4722 
4723 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4724 	    dtl_max_txg - TXG_INITIAL);
4725 
4726 	if (newvd->vdev_isspare) {
4727 		spa_spare_activate(newvd);
4728 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4729 	}
4730 
4731 	oldvdpath = spa_strdup(oldvd->vdev_path);
4732 	newvdpath = spa_strdup(newvd->vdev_path);
4733 	newvd_isspare = newvd->vdev_isspare;
4734 
4735 	/*
4736 	 * Mark newvd's DTL dirty in this txg.
4737 	 */
4738 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4739 
4740 	/*
4741 	 * Schedule the resilver to restart in the future. We do this to
4742 	 * ensure that dmu_sync-ed blocks have been stitched into the
4743 	 * respective datasets.
4744 	 */
4745 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4746 
4747 	if (spa->spa_bootfs)
4748 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4749 
4750 	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4751 
4752 	/*
4753 	 * Commit the config
4754 	 */
4755 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4756 
4757 	spa_history_log_internal(spa, "vdev attach", NULL,
4758 	    "%s vdev=%s %s vdev=%s",
4759 	    replacing && newvd_isspare ? "spare in" :
4760 	    replacing ? "replace" : "attach", newvdpath,
4761 	    replacing ? "for" : "to", oldvdpath);
4762 
4763 	spa_strfree(oldvdpath);
4764 	spa_strfree(newvdpath);
4765 
4766 	return (0);
4767 }
4768 
4769 /*
4770  * Detach a device from a mirror or replacing vdev.
4771  *
4772  * If 'replace_done' is specified, only detach if the parent
4773  * is a replacing vdev.
4774  */
4775 int
4776 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4777 {
4778 	uint64_t txg;
4779 	int error;
4780 	vdev_t *rvd = spa->spa_root_vdev;
4781 	vdev_t *vd, *pvd, *cvd, *tvd;
4782 	boolean_t unspare = B_FALSE;
4783 	uint64_t unspare_guid = 0;
4784 	char *vdpath;
4785 
4786 	ASSERT(spa_writeable(spa));
4787 
4788 	txg = spa_vdev_enter(spa);
4789 
4790 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4791 
4792 	if (vd == NULL)
4793 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4794 
4795 	if (!vd->vdev_ops->vdev_op_leaf)
4796 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4797 
4798 	pvd = vd->vdev_parent;
4799 
4800 	/*
4801 	 * If the parent/child relationship is not as expected, don't do it.
4802 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4803 	 * vdev that's replacing B with C.  The user's intent in replacing
4804 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4805 	 * the replace by detaching C, the expected behavior is to end up
4806 	 * M(A,B).  But suppose that right after deciding to detach C,
4807 	 * the replacement of B completes.  We would have M(A,C), and then
4808 	 * ask to detach C, which would leave us with just A -- not what
4809 	 * the user wanted.  To prevent this, we make sure that the
4810 	 * parent/child relationship hasn't changed -- in this example,
4811 	 * that C's parent is still the replacing vdev R.
4812 	 */
4813 	if (pvd->vdev_guid != pguid && pguid != 0)
4814 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4815 
4816 	/*
4817 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4818 	 */
4819 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4820 	    pvd->vdev_ops != &vdev_spare_ops)
4821 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4822 
4823 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4824 	    spa_version(spa) >= SPA_VERSION_SPARES);
4825 
4826 	/*
4827 	 * Only mirror, replacing, and spare vdevs support detach.
4828 	 */
4829 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4830 	    pvd->vdev_ops != &vdev_mirror_ops &&
4831 	    pvd->vdev_ops != &vdev_spare_ops)
4832 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4833 
4834 	/*
4835 	 * If this device has the only valid copy of some data,
4836 	 * we cannot safely detach it.
4837 	 */
4838 	if (vdev_dtl_required(vd))
4839 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4840 
4841 	ASSERT(pvd->vdev_children >= 2);
4842 
4843 	/*
4844 	 * If we are detaching the second disk from a replacing vdev, then
4845 	 * check to see if we changed the original vdev's path to have "/old"
4846 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4847 	 */
4848 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4849 	    vd->vdev_path != NULL) {
4850 		size_t len = strlen(vd->vdev_path);
4851 
4852 		for (int c = 0; c < pvd->vdev_children; c++) {
4853 			cvd = pvd->vdev_child[c];
4854 
4855 			if (cvd == vd || cvd->vdev_path == NULL)
4856 				continue;
4857 
4858 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4859 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4860 				spa_strfree(cvd->vdev_path);
4861 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4862 				break;
4863 			}
4864 		}
4865 	}
4866 
4867 	/*
4868 	 * If we are detaching the original disk from a spare, then it implies
4869 	 * that the spare should become a real disk, and be removed from the
4870 	 * active spare list for the pool.
4871 	 */
4872 	if (pvd->vdev_ops == &vdev_spare_ops &&
4873 	    vd->vdev_id == 0 &&
4874 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4875 		unspare = B_TRUE;
4876 
4877 	/*
4878 	 * Erase the disk labels so the disk can be used for other things.
4879 	 * This must be done after all other error cases are handled,
4880 	 * but before we disembowel vd (so we can still do I/O to it).
4881 	 * But if we can't do it, don't treat the error as fatal --
4882 	 * it may be that the unwritability of the disk is the reason
4883 	 * it's being detached!
4884 	 */
4885 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4886 
4887 	/*
4888 	 * Remove vd from its parent and compact the parent's children.
4889 	 */
4890 	vdev_remove_child(pvd, vd);
4891 	vdev_compact_children(pvd);
4892 
4893 	/*
4894 	 * Remember one of the remaining children so we can get tvd below.
4895 	 */
4896 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4897 
4898 	/*
4899 	 * If we need to remove the remaining child from the list of hot spares,
4900 	 * do it now, marking the vdev as no longer a spare in the process.
4901 	 * We must do this before vdev_remove_parent(), because that can
4902 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4903 	 * reason, we must remove the spare now, in the same txg as the detach;
4904 	 * otherwise someone could attach a new sibling, change the GUID, and
4905 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4906 	 */
4907 	if (unspare) {
4908 		ASSERT(cvd->vdev_isspare);
4909 		spa_spare_remove(cvd);
4910 		unspare_guid = cvd->vdev_guid;
4911 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4912 		cvd->vdev_unspare = B_TRUE;
4913 	}
4914 
4915 	/*
4916 	 * If the parent mirror/replacing vdev only has one child,
4917 	 * the parent is no longer needed.  Remove it from the tree.
4918 	 */
4919 	if (pvd->vdev_children == 1) {
4920 		if (pvd->vdev_ops == &vdev_spare_ops)
4921 			cvd->vdev_unspare = B_FALSE;
4922 		vdev_remove_parent(cvd);
4923 	}
4924 
4925 
4926 	/*
4927 	 * We don't set tvd until now because the parent we just removed
4928 	 * may have been the previous top-level vdev.
4929 	 */
4930 	tvd = cvd->vdev_top;
4931 	ASSERT(tvd->vdev_parent == rvd);
4932 
4933 	/*
4934 	 * Reevaluate the parent vdev state.
4935 	 */
4936 	vdev_propagate_state(cvd);
4937 
4938 	/*
4939 	 * If the 'autoexpand' property is set on the pool then automatically
4940 	 * try to expand the size of the pool. For example if the device we
4941 	 * just detached was smaller than the others, it may be possible to
4942 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4943 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4944 	 */
4945 	if (spa->spa_autoexpand) {
4946 		vdev_reopen(tvd);
4947 		vdev_expand(tvd, txg);
4948 	}
4949 
4950 	vdev_config_dirty(tvd);
4951 
4952 	/*
4953 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4954 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4955 	 * But first make sure we're not on any *other* txg's DTL list, to
4956 	 * prevent vd from being accessed after it's freed.
4957 	 */
4958 	vdpath = spa_strdup(vd->vdev_path);
4959 	for (int t = 0; t < TXG_SIZE; t++)
4960 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4961 	vd->vdev_detached = B_TRUE;
4962 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4963 
4964 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4965 
4966 	/* hang on to the spa before we release the lock */
4967 	spa_open_ref(spa, FTAG);
4968 
4969 	error = spa_vdev_exit(spa, vd, txg, 0);
4970 
4971 	spa_history_log_internal(spa, "detach", NULL,
4972 	    "vdev=%s", vdpath);
4973 	spa_strfree(vdpath);
4974 
4975 	/*
4976 	 * If this was the removal of the original device in a hot spare vdev,
4977 	 * then we want to go through and remove the device from the hot spare
4978 	 * list of every other pool.
4979 	 */
4980 	if (unspare) {
4981 		spa_t *altspa = NULL;
4982 
4983 		mutex_enter(&spa_namespace_lock);
4984 		while ((altspa = spa_next(altspa)) != NULL) {
4985 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4986 			    altspa == spa)
4987 				continue;
4988 
4989 			spa_open_ref(altspa, FTAG);
4990 			mutex_exit(&spa_namespace_lock);
4991 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4992 			mutex_enter(&spa_namespace_lock);
4993 			spa_close(altspa, FTAG);
4994 		}
4995 		mutex_exit(&spa_namespace_lock);
4996 
4997 		/* search the rest of the vdevs for spares to remove */
4998 		spa_vdev_resilver_done(spa);
4999 	}
5000 
5001 	/* all done with the spa; OK to release */
5002 	mutex_enter(&spa_namespace_lock);
5003 	spa_close(spa, FTAG);
5004 	mutex_exit(&spa_namespace_lock);
5005 
5006 	return (error);
5007 }
5008 
5009 /*
5010  * Split a set of devices from their mirrors, and create a new pool from them.
5011  */
5012 int
5013 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5014     nvlist_t *props, boolean_t exp)
5015 {
5016 	int error = 0;
5017 	uint64_t txg, *glist;
5018 	spa_t *newspa;
5019 	uint_t c, children, lastlog;
5020 	nvlist_t **child, *nvl, *tmp;
5021 	dmu_tx_t *tx;
5022 	char *altroot = NULL;
5023 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5024 	boolean_t activate_slog;
5025 
5026 	ASSERT(spa_writeable(spa));
5027 
5028 	txg = spa_vdev_enter(spa);
5029 
5030 	/* clear the log and flush everything up to now */
5031 	activate_slog = spa_passivate_log(spa);
5032 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5033 	error = spa_offline_log(spa);
5034 	txg = spa_vdev_config_enter(spa);
5035 
5036 	if (activate_slog)
5037 		spa_activate_log(spa);
5038 
5039 	if (error != 0)
5040 		return (spa_vdev_exit(spa, NULL, txg, error));
5041 
5042 	/* check new spa name before going any further */
5043 	if (spa_lookup(newname) != NULL)
5044 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5045 
5046 	/*
5047 	 * scan through all the children to ensure they're all mirrors
5048 	 */
5049 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5050 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5051 	    &children) != 0)
5052 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5053 
5054 	/* first, check to ensure we've got the right child count */
5055 	rvd = spa->spa_root_vdev;
5056 	lastlog = 0;
5057 	for (c = 0; c < rvd->vdev_children; c++) {
5058 		vdev_t *vd = rvd->vdev_child[c];
5059 
5060 		/* don't count the holes & logs as children */
5061 		if (vd->vdev_islog || vd->vdev_ishole) {
5062 			if (lastlog == 0)
5063 				lastlog = c;
5064 			continue;
5065 		}
5066 
5067 		lastlog = 0;
5068 	}
5069 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5070 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5071 
5072 	/* next, ensure no spare or cache devices are part of the split */
5073 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5074 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5075 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5076 
5077 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5078 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5079 
5080 	/* then, loop over each vdev and validate it */
5081 	for (c = 0; c < children; c++) {
5082 		uint64_t is_hole = 0;
5083 
5084 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5085 		    &is_hole);
5086 
5087 		if (is_hole != 0) {
5088 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5089 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5090 				continue;
5091 			} else {
5092 				error = SET_ERROR(EINVAL);
5093 				break;
5094 			}
5095 		}
5096 
5097 		/* which disk is going to be split? */
5098 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5099 		    &glist[c]) != 0) {
5100 			error = SET_ERROR(EINVAL);
5101 			break;
5102 		}
5103 
5104 		/* look it up in the spa */
5105 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5106 		if (vml[c] == NULL) {
5107 			error = SET_ERROR(ENODEV);
5108 			break;
5109 		}
5110 
5111 		/* make sure there's nothing stopping the split */
5112 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5113 		    vml[c]->vdev_islog ||
5114 		    vml[c]->vdev_ishole ||
5115 		    vml[c]->vdev_isspare ||
5116 		    vml[c]->vdev_isl2cache ||
5117 		    !vdev_writeable(vml[c]) ||
5118 		    vml[c]->vdev_children != 0 ||
5119 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5120 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5121 			error = SET_ERROR(EINVAL);
5122 			break;
5123 		}
5124 
5125 		if (vdev_dtl_required(vml[c])) {
5126 			error = SET_ERROR(EBUSY);
5127 			break;
5128 		}
5129 
5130 		/* we need certain info from the top level */
5131 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5132 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5133 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5134 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5135 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5136 		    vml[c]->vdev_top->vdev_asize) == 0);
5137 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5138 		    vml[c]->vdev_top->vdev_ashift) == 0);
5139 
5140 		/* transfer per-vdev ZAPs */
5141 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5142 		VERIFY0(nvlist_add_uint64(child[c],
5143 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5144 
5145 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5146 		VERIFY0(nvlist_add_uint64(child[c],
5147 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5148 		    vml[c]->vdev_parent->vdev_top_zap));
5149 	}
5150 
5151 	if (error != 0) {
5152 		kmem_free(vml, children * sizeof (vdev_t *));
5153 		kmem_free(glist, children * sizeof (uint64_t));
5154 		return (spa_vdev_exit(spa, NULL, txg, error));
5155 	}
5156 
5157 	/* stop writers from using the disks */
5158 	for (c = 0; c < children; c++) {
5159 		if (vml[c] != NULL)
5160 			vml[c]->vdev_offline = B_TRUE;
5161 	}
5162 	vdev_reopen(spa->spa_root_vdev);
5163 
5164 	/*
5165 	 * Temporarily record the splitting vdevs in the spa config.  This
5166 	 * will disappear once the config is regenerated.
5167 	 */
5168 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5169 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5170 	    glist, children) == 0);
5171 	kmem_free(glist, children * sizeof (uint64_t));
5172 
5173 	mutex_enter(&spa->spa_props_lock);
5174 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5175 	    nvl) == 0);
5176 	mutex_exit(&spa->spa_props_lock);
5177 	spa->spa_config_splitting = nvl;
5178 	vdev_config_dirty(spa->spa_root_vdev);
5179 
5180 	/* configure and create the new pool */
5181 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5182 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5183 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5184 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5185 	    spa_version(spa)) == 0);
5186 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5187 	    spa->spa_config_txg) == 0);
5188 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5189 	    spa_generate_guid(NULL)) == 0);
5190 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5191 	(void) nvlist_lookup_string(props,
5192 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5193 
5194 	/* add the new pool to the namespace */
5195 	newspa = spa_add(newname, config, altroot);
5196 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5197 	newspa->spa_config_txg = spa->spa_config_txg;
5198 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5199 
5200 	/* release the spa config lock, retaining the namespace lock */
5201 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5202 
5203 	if (zio_injection_enabled)
5204 		zio_handle_panic_injection(spa, FTAG, 1);
5205 
5206 	spa_activate(newspa, spa_mode_global);
5207 	spa_async_suspend(newspa);
5208 
5209 	/* create the new pool from the disks of the original pool */
5210 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5211 	if (error)
5212 		goto out;
5213 
5214 	/* if that worked, generate a real config for the new pool */
5215 	if (newspa->spa_root_vdev != NULL) {
5216 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5217 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5218 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5219 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5220 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5221 		    B_TRUE));
5222 	}
5223 
5224 	/* set the props */
5225 	if (props != NULL) {
5226 		spa_configfile_set(newspa, props, B_FALSE);
5227 		error = spa_prop_set(newspa, props);
5228 		if (error)
5229 			goto out;
5230 	}
5231 
5232 	/* flush everything */
5233 	txg = spa_vdev_config_enter(newspa);
5234 	vdev_config_dirty(newspa->spa_root_vdev);
5235 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5236 
5237 	if (zio_injection_enabled)
5238 		zio_handle_panic_injection(spa, FTAG, 2);
5239 
5240 	spa_async_resume(newspa);
5241 
5242 	/* finally, update the original pool's config */
5243 	txg = spa_vdev_config_enter(spa);
5244 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5245 	error = dmu_tx_assign(tx, TXG_WAIT);
5246 	if (error != 0)
5247 		dmu_tx_abort(tx);
5248 	for (c = 0; c < children; c++) {
5249 		if (vml[c] != NULL) {
5250 			vdev_split(vml[c]);
5251 			if (error == 0)
5252 				spa_history_log_internal(spa, "detach", tx,
5253 				    "vdev=%s", vml[c]->vdev_path);
5254 
5255 			vdev_free(vml[c]);
5256 		}
5257 	}
5258 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5259 	vdev_config_dirty(spa->spa_root_vdev);
5260 	spa->spa_config_splitting = NULL;
5261 	nvlist_free(nvl);
5262 	if (error == 0)
5263 		dmu_tx_commit(tx);
5264 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5265 
5266 	if (zio_injection_enabled)
5267 		zio_handle_panic_injection(spa, FTAG, 3);
5268 
5269 	/* split is complete; log a history record */
5270 	spa_history_log_internal(newspa, "split", NULL,
5271 	    "from pool %s", spa_name(spa));
5272 
5273 	kmem_free(vml, children * sizeof (vdev_t *));
5274 
5275 	/* if we're not going to mount the filesystems in userland, export */
5276 	if (exp)
5277 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5278 		    B_FALSE, B_FALSE);
5279 
5280 	return (error);
5281 
5282 out:
5283 	spa_unload(newspa);
5284 	spa_deactivate(newspa);
5285 	spa_remove(newspa);
5286 
5287 	txg = spa_vdev_config_enter(spa);
5288 
5289 	/* re-online all offlined disks */
5290 	for (c = 0; c < children; c++) {
5291 		if (vml[c] != NULL)
5292 			vml[c]->vdev_offline = B_FALSE;
5293 	}
5294 	vdev_reopen(spa->spa_root_vdev);
5295 
5296 	nvlist_free(spa->spa_config_splitting);
5297 	spa->spa_config_splitting = NULL;
5298 	(void) spa_vdev_exit(spa, NULL, txg, error);
5299 
5300 	kmem_free(vml, children * sizeof (vdev_t *));
5301 	return (error);
5302 }
5303 
5304 static nvlist_t *
5305 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5306 {
5307 	for (int i = 0; i < count; i++) {
5308 		uint64_t guid;
5309 
5310 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5311 		    &guid) == 0);
5312 
5313 		if (guid == target_guid)
5314 			return (nvpp[i]);
5315 	}
5316 
5317 	return (NULL);
5318 }
5319 
5320 static void
5321 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5322     nvlist_t *dev_to_remove)
5323 {
5324 	nvlist_t **newdev = NULL;
5325 
5326 	if (count > 1)
5327 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5328 
5329 	for (int i = 0, j = 0; i < count; i++) {
5330 		if (dev[i] == dev_to_remove)
5331 			continue;
5332 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5333 	}
5334 
5335 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5336 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5337 
5338 	for (int i = 0; i < count - 1; i++)
5339 		nvlist_free(newdev[i]);
5340 
5341 	if (count > 1)
5342 		kmem_free(newdev, (count - 1) * sizeof (void *));
5343 }
5344 
5345 /*
5346  * Evacuate the device.
5347  */
5348 static int
5349 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5350 {
5351 	uint64_t txg;
5352 	int error = 0;
5353 
5354 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5355 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5356 	ASSERT(vd == vd->vdev_top);
5357 
5358 	/*
5359 	 * Evacuate the device.  We don't hold the config lock as writer
5360 	 * since we need to do I/O but we do keep the
5361 	 * spa_namespace_lock held.  Once this completes the device
5362 	 * should no longer have any blocks allocated on it.
5363 	 */
5364 	if (vd->vdev_islog) {
5365 		if (vd->vdev_stat.vs_alloc != 0)
5366 			error = spa_offline_log(spa);
5367 	} else {
5368 		error = SET_ERROR(ENOTSUP);
5369 	}
5370 
5371 	if (error)
5372 		return (error);
5373 
5374 	/*
5375 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5376 	 * associated with this vdev, and wait for these changes to sync.
5377 	 */
5378 	ASSERT0(vd->vdev_stat.vs_alloc);
5379 	txg = spa_vdev_config_enter(spa);
5380 	vd->vdev_removing = B_TRUE;
5381 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5382 	vdev_config_dirty(vd);
5383 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5384 
5385 	return (0);
5386 }
5387 
5388 /*
5389  * Complete the removal by cleaning up the namespace.
5390  */
5391 static void
5392 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5393 {
5394 	vdev_t *rvd = spa->spa_root_vdev;
5395 	uint64_t id = vd->vdev_id;
5396 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5397 
5398 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5399 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5400 	ASSERT(vd == vd->vdev_top);
5401 
5402 	/*
5403 	 * Only remove any devices which are empty.
5404 	 */
5405 	if (vd->vdev_stat.vs_alloc != 0)
5406 		return;
5407 
5408 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5409 
5410 	if (list_link_active(&vd->vdev_state_dirty_node))
5411 		vdev_state_clean(vd);
5412 	if (list_link_active(&vd->vdev_config_dirty_node))
5413 		vdev_config_clean(vd);
5414 
5415 	vdev_free(vd);
5416 
5417 	if (last_vdev) {
5418 		vdev_compact_children(rvd);
5419 	} else {
5420 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5421 		vdev_add_child(rvd, vd);
5422 	}
5423 	vdev_config_dirty(rvd);
5424 
5425 	/*
5426 	 * Reassess the health of our root vdev.
5427 	 */
5428 	vdev_reopen(rvd);
5429 }
5430 
5431 /*
5432  * Remove a device from the pool -
5433  *
5434  * Removing a device from the vdev namespace requires several steps
5435  * and can take a significant amount of time.  As a result we use
5436  * the spa_vdev_config_[enter/exit] functions which allow us to
5437  * grab and release the spa_config_lock while still holding the namespace
5438  * lock.  During each step the configuration is synced out.
5439  *
5440  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5441  * devices.
5442  */
5443 int
5444 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5445 {
5446 	vdev_t *vd;
5447 	sysevent_t *ev = NULL;
5448 	metaslab_group_t *mg;
5449 	nvlist_t **spares, **l2cache, *nv;
5450 	uint64_t txg = 0;
5451 	uint_t nspares, nl2cache;
5452 	int error = 0;
5453 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5454 
5455 	ASSERT(spa_writeable(spa));
5456 
5457 	if (!locked)
5458 		txg = spa_vdev_enter(spa);
5459 
5460 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5461 
5462 	if (spa->spa_spares.sav_vdevs != NULL &&
5463 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5464 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5465 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5466 		/*
5467 		 * Only remove the hot spare if it's not currently in use
5468 		 * in this pool.
5469 		 */
5470 		if (vd == NULL || unspare) {
5471 			if (vd == NULL)
5472 				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5473 			ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5474 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5475 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5476 			spa_load_spares(spa);
5477 			spa->spa_spares.sav_sync = B_TRUE;
5478 		} else {
5479 			error = SET_ERROR(EBUSY);
5480 		}
5481 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5482 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5483 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5484 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5485 		/*
5486 		 * Cache devices can always be removed.
5487 		 */
5488 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5489 		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5490 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5491 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5492 		spa_load_l2cache(spa);
5493 		spa->spa_l2cache.sav_sync = B_TRUE;
5494 	} else if (vd != NULL && vd->vdev_islog) {
5495 		ASSERT(!locked);
5496 		ASSERT(vd == vd->vdev_top);
5497 
5498 		mg = vd->vdev_mg;
5499 
5500 		/*
5501 		 * Stop allocating from this vdev.
5502 		 */
5503 		metaslab_group_passivate(mg);
5504 
5505 		/*
5506 		 * Wait for the youngest allocations and frees to sync,
5507 		 * and then wait for the deferral of those frees to finish.
5508 		 */
5509 		spa_vdev_config_exit(spa, NULL,
5510 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5511 
5512 		/*
5513 		 * Attempt to evacuate the vdev.
5514 		 */
5515 		error = spa_vdev_remove_evacuate(spa, vd);
5516 
5517 		txg = spa_vdev_config_enter(spa);
5518 
5519 		/*
5520 		 * If we couldn't evacuate the vdev, unwind.
5521 		 */
5522 		if (error) {
5523 			metaslab_group_activate(mg);
5524 			return (spa_vdev_exit(spa, NULL, txg, error));
5525 		}
5526 
5527 		/*
5528 		 * Clean up the vdev namespace.
5529 		 */
5530 		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV);
5531 		spa_vdev_remove_from_namespace(spa, vd);
5532 
5533 	} else if (vd != NULL) {
5534 		/*
5535 		 * Normal vdevs cannot be removed (yet).
5536 		 */
5537 		error = SET_ERROR(ENOTSUP);
5538 	} else {
5539 		/*
5540 		 * There is no vdev of any kind with the specified guid.
5541 		 */
5542 		error = SET_ERROR(ENOENT);
5543 	}
5544 
5545 	if (!locked)
5546 		error = spa_vdev_exit(spa, NULL, txg, error);
5547 
5548 	if (ev)
5549 		spa_event_post(ev);
5550 
5551 	return (error);
5552 }
5553 
5554 /*
5555  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5556  * currently spared, so we can detach it.
5557  */
5558 static vdev_t *
5559 spa_vdev_resilver_done_hunt(vdev_t *vd)
5560 {
5561 	vdev_t *newvd, *oldvd;
5562 
5563 	for (int c = 0; c < vd->vdev_children; c++) {
5564 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5565 		if (oldvd != NULL)
5566 			return (oldvd);
5567 	}
5568 
5569 	/*
5570 	 * Check for a completed replacement.  We always consider the first
5571 	 * vdev in the list to be the oldest vdev, and the last one to be
5572 	 * the newest (see spa_vdev_attach() for how that works).  In
5573 	 * the case where the newest vdev is faulted, we will not automatically
5574 	 * remove it after a resilver completes.  This is OK as it will require
5575 	 * user intervention to determine which disk the admin wishes to keep.
5576 	 */
5577 	if (vd->vdev_ops == &vdev_replacing_ops) {
5578 		ASSERT(vd->vdev_children > 1);
5579 
5580 		newvd = vd->vdev_child[vd->vdev_children - 1];
5581 		oldvd = vd->vdev_child[0];
5582 
5583 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5584 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5585 		    !vdev_dtl_required(oldvd))
5586 			return (oldvd);
5587 	}
5588 
5589 	/*
5590 	 * Check for a completed resilver with the 'unspare' flag set.
5591 	 */
5592 	if (vd->vdev_ops == &vdev_spare_ops) {
5593 		vdev_t *first = vd->vdev_child[0];
5594 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5595 
5596 		if (last->vdev_unspare) {
5597 			oldvd = first;
5598 			newvd = last;
5599 		} else if (first->vdev_unspare) {
5600 			oldvd = last;
5601 			newvd = first;
5602 		} else {
5603 			oldvd = NULL;
5604 		}
5605 
5606 		if (oldvd != NULL &&
5607 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5608 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5609 		    !vdev_dtl_required(oldvd))
5610 			return (oldvd);
5611 
5612 		/*
5613 		 * If there are more than two spares attached to a disk,
5614 		 * and those spares are not required, then we want to
5615 		 * attempt to free them up now so that they can be used
5616 		 * by other pools.  Once we're back down to a single
5617 		 * disk+spare, we stop removing them.
5618 		 */
5619 		if (vd->vdev_children > 2) {
5620 			newvd = vd->vdev_child[1];
5621 
5622 			if (newvd->vdev_isspare && last->vdev_isspare &&
5623 			    vdev_dtl_empty(last, DTL_MISSING) &&
5624 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5625 			    !vdev_dtl_required(newvd))
5626 				return (newvd);
5627 		}
5628 	}
5629 
5630 	return (NULL);
5631 }
5632 
5633 static void
5634 spa_vdev_resilver_done(spa_t *spa)
5635 {
5636 	vdev_t *vd, *pvd, *ppvd;
5637 	uint64_t guid, sguid, pguid, ppguid;
5638 
5639 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5640 
5641 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5642 		pvd = vd->vdev_parent;
5643 		ppvd = pvd->vdev_parent;
5644 		guid = vd->vdev_guid;
5645 		pguid = pvd->vdev_guid;
5646 		ppguid = ppvd->vdev_guid;
5647 		sguid = 0;
5648 		/*
5649 		 * If we have just finished replacing a hot spared device, then
5650 		 * we need to detach the parent's first child (the original hot
5651 		 * spare) as well.
5652 		 */
5653 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5654 		    ppvd->vdev_children == 2) {
5655 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5656 			sguid = ppvd->vdev_child[1]->vdev_guid;
5657 		}
5658 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5659 
5660 		spa_config_exit(spa, SCL_ALL, FTAG);
5661 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5662 			return;
5663 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5664 			return;
5665 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5666 	}
5667 
5668 	spa_config_exit(spa, SCL_ALL, FTAG);
5669 }
5670 
5671 /*
5672  * Update the stored path or FRU for this vdev.
5673  */
5674 int
5675 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5676     boolean_t ispath)
5677 {
5678 	vdev_t *vd;
5679 	boolean_t sync = B_FALSE;
5680 
5681 	ASSERT(spa_writeable(spa));
5682 
5683 	spa_vdev_state_enter(spa, SCL_ALL);
5684 
5685 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5686 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5687 
5688 	if (!vd->vdev_ops->vdev_op_leaf)
5689 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5690 
5691 	if (ispath) {
5692 		if (strcmp(value, vd->vdev_path) != 0) {
5693 			spa_strfree(vd->vdev_path);
5694 			vd->vdev_path = spa_strdup(value);
5695 			sync = B_TRUE;
5696 		}
5697 	} else {
5698 		if (vd->vdev_fru == NULL) {
5699 			vd->vdev_fru = spa_strdup(value);
5700 			sync = B_TRUE;
5701 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5702 			spa_strfree(vd->vdev_fru);
5703 			vd->vdev_fru = spa_strdup(value);
5704 			sync = B_TRUE;
5705 		}
5706 	}
5707 
5708 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5709 }
5710 
5711 int
5712 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5713 {
5714 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5715 }
5716 
5717 int
5718 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5719 {
5720 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5721 }
5722 
5723 /*
5724  * ==========================================================================
5725  * SPA Scanning
5726  * ==========================================================================
5727  */
5728 
5729 int
5730 spa_scan_stop(spa_t *spa)
5731 {
5732 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5733 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5734 		return (SET_ERROR(EBUSY));
5735 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5736 }
5737 
5738 int
5739 spa_scan(spa_t *spa, pool_scan_func_t func)
5740 {
5741 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5742 
5743 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5744 		return (SET_ERROR(ENOTSUP));
5745 
5746 	/*
5747 	 * If a resilver was requested, but there is no DTL on a
5748 	 * writeable leaf device, we have nothing to do.
5749 	 */
5750 	if (func == POOL_SCAN_RESILVER &&
5751 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5752 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5753 		return (0);
5754 	}
5755 
5756 	return (dsl_scan(spa->spa_dsl_pool, func));
5757 }
5758 
5759 /*
5760  * ==========================================================================
5761  * SPA async task processing
5762  * ==========================================================================
5763  */
5764 
5765 static void
5766 spa_async_remove(spa_t *spa, vdev_t *vd)
5767 {
5768 	if (vd->vdev_remove_wanted) {
5769 		vd->vdev_remove_wanted = B_FALSE;
5770 		vd->vdev_delayed_close = B_FALSE;
5771 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5772 
5773 		/*
5774 		 * We want to clear the stats, but we don't want to do a full
5775 		 * vdev_clear() as that will cause us to throw away
5776 		 * degraded/faulted state as well as attempt to reopen the
5777 		 * device, all of which is a waste.
5778 		 */
5779 		vd->vdev_stat.vs_read_errors = 0;
5780 		vd->vdev_stat.vs_write_errors = 0;
5781 		vd->vdev_stat.vs_checksum_errors = 0;
5782 
5783 		vdev_state_dirty(vd->vdev_top);
5784 	}
5785 
5786 	for (int c = 0; c < vd->vdev_children; c++)
5787 		spa_async_remove(spa, vd->vdev_child[c]);
5788 }
5789 
5790 static void
5791 spa_async_probe(spa_t *spa, vdev_t *vd)
5792 {
5793 	if (vd->vdev_probe_wanted) {
5794 		vd->vdev_probe_wanted = B_FALSE;
5795 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5796 	}
5797 
5798 	for (int c = 0; c < vd->vdev_children; c++)
5799 		spa_async_probe(spa, vd->vdev_child[c]);
5800 }
5801 
5802 static void
5803 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5804 {
5805 	sysevent_id_t eid;
5806 	nvlist_t *attr;
5807 	char *physpath;
5808 
5809 	if (!spa->spa_autoexpand)
5810 		return;
5811 
5812 	for (int c = 0; c < vd->vdev_children; c++) {
5813 		vdev_t *cvd = vd->vdev_child[c];
5814 		spa_async_autoexpand(spa, cvd);
5815 	}
5816 
5817 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5818 		return;
5819 
5820 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5821 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5822 
5823 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5824 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5825 
5826 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5827 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5828 
5829 	nvlist_free(attr);
5830 	kmem_free(physpath, MAXPATHLEN);
5831 }
5832 
5833 static void
5834 spa_async_thread(spa_t *spa)
5835 {
5836 	int tasks;
5837 
5838 	ASSERT(spa->spa_sync_on);
5839 
5840 	mutex_enter(&spa->spa_async_lock);
5841 	tasks = spa->spa_async_tasks;
5842 	spa->spa_async_tasks = 0;
5843 	mutex_exit(&spa->spa_async_lock);
5844 
5845 	/*
5846 	 * See if the config needs to be updated.
5847 	 */
5848 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5849 		uint64_t old_space, new_space;
5850 
5851 		mutex_enter(&spa_namespace_lock);
5852 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5853 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5854 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5855 		mutex_exit(&spa_namespace_lock);
5856 
5857 		/*
5858 		 * If the pool grew as a result of the config update,
5859 		 * then log an internal history event.
5860 		 */
5861 		if (new_space != old_space) {
5862 			spa_history_log_internal(spa, "vdev online", NULL,
5863 			    "pool '%s' size: %llu(+%llu)",
5864 			    spa_name(spa), new_space, new_space - old_space);
5865 		}
5866 	}
5867 
5868 	/*
5869 	 * See if any devices need to be marked REMOVED.
5870 	 */
5871 	if (tasks & SPA_ASYNC_REMOVE) {
5872 		spa_vdev_state_enter(spa, SCL_NONE);
5873 		spa_async_remove(spa, spa->spa_root_vdev);
5874 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5875 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5876 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5877 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5878 		(void) spa_vdev_state_exit(spa, NULL, 0);
5879 	}
5880 
5881 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5882 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5883 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5884 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5885 	}
5886 
5887 	/*
5888 	 * See if any devices need to be probed.
5889 	 */
5890 	if (tasks & SPA_ASYNC_PROBE) {
5891 		spa_vdev_state_enter(spa, SCL_NONE);
5892 		spa_async_probe(spa, spa->spa_root_vdev);
5893 		(void) spa_vdev_state_exit(spa, NULL, 0);
5894 	}
5895 
5896 	/*
5897 	 * If any devices are done replacing, detach them.
5898 	 */
5899 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5900 		spa_vdev_resilver_done(spa);
5901 
5902 	/*
5903 	 * Kick off a resilver.
5904 	 */
5905 	if (tasks & SPA_ASYNC_RESILVER)
5906 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5907 
5908 	/*
5909 	 * Let the world know that we're done.
5910 	 */
5911 	mutex_enter(&spa->spa_async_lock);
5912 	spa->spa_async_thread = NULL;
5913 	cv_broadcast(&spa->spa_async_cv);
5914 	mutex_exit(&spa->spa_async_lock);
5915 	thread_exit();
5916 }
5917 
5918 void
5919 spa_async_suspend(spa_t *spa)
5920 {
5921 	mutex_enter(&spa->spa_async_lock);
5922 	spa->spa_async_suspended++;
5923 	while (spa->spa_async_thread != NULL)
5924 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5925 	mutex_exit(&spa->spa_async_lock);
5926 }
5927 
5928 void
5929 spa_async_resume(spa_t *spa)
5930 {
5931 	mutex_enter(&spa->spa_async_lock);
5932 	ASSERT(spa->spa_async_suspended != 0);
5933 	spa->spa_async_suspended--;
5934 	mutex_exit(&spa->spa_async_lock);
5935 }
5936 
5937 static boolean_t
5938 spa_async_tasks_pending(spa_t *spa)
5939 {
5940 	uint_t non_config_tasks;
5941 	uint_t config_task;
5942 	boolean_t config_task_suspended;
5943 
5944 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5945 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5946 	if (spa->spa_ccw_fail_time == 0) {
5947 		config_task_suspended = B_FALSE;
5948 	} else {
5949 		config_task_suspended =
5950 		    (gethrtime() - spa->spa_ccw_fail_time) <
5951 		    (zfs_ccw_retry_interval * NANOSEC);
5952 	}
5953 
5954 	return (non_config_tasks || (config_task && !config_task_suspended));
5955 }
5956 
5957 static void
5958 spa_async_dispatch(spa_t *spa)
5959 {
5960 	mutex_enter(&spa->spa_async_lock);
5961 	if (spa_async_tasks_pending(spa) &&
5962 	    !spa->spa_async_suspended &&
5963 	    spa->spa_async_thread == NULL &&
5964 	    rootdir != NULL)
5965 		spa->spa_async_thread = thread_create(NULL, 0,
5966 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5967 	mutex_exit(&spa->spa_async_lock);
5968 }
5969 
5970 void
5971 spa_async_request(spa_t *spa, int task)
5972 {
5973 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5974 	mutex_enter(&spa->spa_async_lock);
5975 	spa->spa_async_tasks |= task;
5976 	mutex_exit(&spa->spa_async_lock);
5977 }
5978 
5979 /*
5980  * ==========================================================================
5981  * SPA syncing routines
5982  * ==========================================================================
5983  */
5984 
5985 static int
5986 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5987 {
5988 	bpobj_t *bpo = arg;
5989 	bpobj_enqueue(bpo, bp, tx);
5990 	return (0);
5991 }
5992 
5993 static int
5994 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5995 {
5996 	zio_t *zio = arg;
5997 
5998 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5999 	    zio->io_flags));
6000 	return (0);
6001 }
6002 
6003 /*
6004  * Note: this simple function is not inlined to make it easier to dtrace the
6005  * amount of time spent syncing frees.
6006  */
6007 static void
6008 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6009 {
6010 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6011 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6012 	VERIFY(zio_wait(zio) == 0);
6013 }
6014 
6015 /*
6016  * Note: this simple function is not inlined to make it easier to dtrace the
6017  * amount of time spent syncing deferred frees.
6018  */
6019 static void
6020 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6021 {
6022 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6023 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6024 	    spa_free_sync_cb, zio, tx), ==, 0);
6025 	VERIFY0(zio_wait(zio));
6026 }
6027 
6028 
6029 static void
6030 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6031 {
6032 	char *packed = NULL;
6033 	size_t bufsize;
6034 	size_t nvsize = 0;
6035 	dmu_buf_t *db;
6036 
6037 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6038 
6039 	/*
6040 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6041 	 * information.  This avoids the dmu_buf_will_dirty() path and
6042 	 * saves us a pre-read to get data we don't actually care about.
6043 	 */
6044 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6045 	packed = kmem_alloc(bufsize, KM_SLEEP);
6046 
6047 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6048 	    KM_SLEEP) == 0);
6049 	bzero(packed + nvsize, bufsize - nvsize);
6050 
6051 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6052 
6053 	kmem_free(packed, bufsize);
6054 
6055 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6056 	dmu_buf_will_dirty(db, tx);
6057 	*(uint64_t *)db->db_data = nvsize;
6058 	dmu_buf_rele(db, FTAG);
6059 }
6060 
6061 static void
6062 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6063     const char *config, const char *entry)
6064 {
6065 	nvlist_t *nvroot;
6066 	nvlist_t **list;
6067 	int i;
6068 
6069 	if (!sav->sav_sync)
6070 		return;
6071 
6072 	/*
6073 	 * Update the MOS nvlist describing the list of available devices.
6074 	 * spa_validate_aux() will have already made sure this nvlist is
6075 	 * valid and the vdevs are labeled appropriately.
6076 	 */
6077 	if (sav->sav_object == 0) {
6078 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6079 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6080 		    sizeof (uint64_t), tx);
6081 		VERIFY(zap_update(spa->spa_meta_objset,
6082 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6083 		    &sav->sav_object, tx) == 0);
6084 	}
6085 
6086 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6087 	if (sav->sav_count == 0) {
6088 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6089 	} else {
6090 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6091 		for (i = 0; i < sav->sav_count; i++)
6092 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6093 			    B_FALSE, VDEV_CONFIG_L2CACHE);
6094 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6095 		    sav->sav_count) == 0);
6096 		for (i = 0; i < sav->sav_count; i++)
6097 			nvlist_free(list[i]);
6098 		kmem_free(list, sav->sav_count * sizeof (void *));
6099 	}
6100 
6101 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6102 	nvlist_free(nvroot);
6103 
6104 	sav->sav_sync = B_FALSE;
6105 }
6106 
6107 /*
6108  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6109  * The all-vdev ZAP must be empty.
6110  */
6111 static void
6112 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6113 {
6114 	spa_t *spa = vd->vdev_spa;
6115 	if (vd->vdev_top_zap != 0) {
6116 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6117 		    vd->vdev_top_zap, tx));
6118 	}
6119 	if (vd->vdev_leaf_zap != 0) {
6120 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6121 		    vd->vdev_leaf_zap, tx));
6122 	}
6123 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6124 		spa_avz_build(vd->vdev_child[i], avz, tx);
6125 	}
6126 }
6127 
6128 static void
6129 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6130 {
6131 	nvlist_t *config;
6132 
6133 	/*
6134 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6135 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6136 	 * Similarly, if the pool is being assembled (e.g. after a split), we
6137 	 * need to rebuild the AVZ although the config may not be dirty.
6138 	 */
6139 	if (list_is_empty(&spa->spa_config_dirty_list) &&
6140 	    spa->spa_avz_action == AVZ_ACTION_NONE)
6141 		return;
6142 
6143 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6144 
6145 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6146 	    spa->spa_all_vdev_zaps != 0);
6147 
6148 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6149 		/* Make and build the new AVZ */
6150 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6151 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6152 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6153 
6154 		/* Diff old AVZ with new one */
6155 		zap_cursor_t zc;
6156 		zap_attribute_t za;
6157 
6158 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6159 		    spa->spa_all_vdev_zaps);
6160 		    zap_cursor_retrieve(&zc, &za) == 0;
6161 		    zap_cursor_advance(&zc)) {
6162 			uint64_t vdzap = za.za_first_integer;
6163 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6164 			    vdzap) == ENOENT) {
6165 				/*
6166 				 * ZAP is listed in old AVZ but not in new one;
6167 				 * destroy it
6168 				 */
6169 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6170 				    tx));
6171 			}
6172 		}
6173 
6174 		zap_cursor_fini(&zc);
6175 
6176 		/* Destroy the old AVZ */
6177 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6178 		    spa->spa_all_vdev_zaps, tx));
6179 
6180 		/* Replace the old AVZ in the dir obj with the new one */
6181 		VERIFY0(zap_update(spa->spa_meta_objset,
6182 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6183 		    sizeof (new_avz), 1, &new_avz, tx));
6184 
6185 		spa->spa_all_vdev_zaps = new_avz;
6186 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6187 		zap_cursor_t zc;
6188 		zap_attribute_t za;
6189 
6190 		/* Walk through the AVZ and destroy all listed ZAPs */
6191 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6192 		    spa->spa_all_vdev_zaps);
6193 		    zap_cursor_retrieve(&zc, &za) == 0;
6194 		    zap_cursor_advance(&zc)) {
6195 			uint64_t zap = za.za_first_integer;
6196 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6197 		}
6198 
6199 		zap_cursor_fini(&zc);
6200 
6201 		/* Destroy and unlink the AVZ itself */
6202 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6203 		    spa->spa_all_vdev_zaps, tx));
6204 		VERIFY0(zap_remove(spa->spa_meta_objset,
6205 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6206 		spa->spa_all_vdev_zaps = 0;
6207 	}
6208 
6209 	if (spa->spa_all_vdev_zaps == 0) {
6210 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6211 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6212 		    DMU_POOL_VDEV_ZAP_MAP, tx);
6213 	}
6214 	spa->spa_avz_action = AVZ_ACTION_NONE;
6215 
6216 	/* Create ZAPs for vdevs that don't have them. */
6217 	vdev_construct_zaps(spa->spa_root_vdev, tx);
6218 
6219 	config = spa_config_generate(spa, spa->spa_root_vdev,
6220 	    dmu_tx_get_txg(tx), B_FALSE);
6221 
6222 	/*
6223 	 * If we're upgrading the spa version then make sure that
6224 	 * the config object gets updated with the correct version.
6225 	 */
6226 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6227 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6228 		    spa->spa_uberblock.ub_version);
6229 
6230 	spa_config_exit(spa, SCL_STATE, FTAG);
6231 
6232 	nvlist_free(spa->spa_config_syncing);
6233 	spa->spa_config_syncing = config;
6234 
6235 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6236 }
6237 
6238 static void
6239 spa_sync_version(void *arg, dmu_tx_t *tx)
6240 {
6241 	uint64_t *versionp = arg;
6242 	uint64_t version = *versionp;
6243 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6244 
6245 	/*
6246 	 * Setting the version is special cased when first creating the pool.
6247 	 */
6248 	ASSERT(tx->tx_txg != TXG_INITIAL);
6249 
6250 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6251 	ASSERT(version >= spa_version(spa));
6252 
6253 	spa->spa_uberblock.ub_version = version;
6254 	vdev_config_dirty(spa->spa_root_vdev);
6255 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6256 }
6257 
6258 /*
6259  * Set zpool properties.
6260  */
6261 static void
6262 spa_sync_props(void *arg, dmu_tx_t *tx)
6263 {
6264 	nvlist_t *nvp = arg;
6265 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6266 	objset_t *mos = spa->spa_meta_objset;
6267 	nvpair_t *elem = NULL;
6268 
6269 	mutex_enter(&spa->spa_props_lock);
6270 
6271 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6272 		uint64_t intval;
6273 		char *strval, *fname;
6274 		zpool_prop_t prop;
6275 		const char *propname;
6276 		zprop_type_t proptype;
6277 		spa_feature_t fid;
6278 
6279 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6280 		case ZPROP_INVAL:
6281 			/*
6282 			 * We checked this earlier in spa_prop_validate().
6283 			 */
6284 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6285 
6286 			fname = strchr(nvpair_name(elem), '@') + 1;
6287 			VERIFY0(zfeature_lookup_name(fname, &fid));
6288 
6289 			spa_feature_enable(spa, fid, tx);
6290 			spa_history_log_internal(spa, "set", tx,
6291 			    "%s=enabled", nvpair_name(elem));
6292 			break;
6293 
6294 		case ZPOOL_PROP_VERSION:
6295 			intval = fnvpair_value_uint64(elem);
6296 			/*
6297 			 * The version is synced seperatly before other
6298 			 * properties and should be correct by now.
6299 			 */
6300 			ASSERT3U(spa_version(spa), >=, intval);
6301 			break;
6302 
6303 		case ZPOOL_PROP_ALTROOT:
6304 			/*
6305 			 * 'altroot' is a non-persistent property. It should
6306 			 * have been set temporarily at creation or import time.
6307 			 */
6308 			ASSERT(spa->spa_root != NULL);
6309 			break;
6310 
6311 		case ZPOOL_PROP_READONLY:
6312 		case ZPOOL_PROP_CACHEFILE:
6313 			/*
6314 			 * 'readonly' and 'cachefile' are also non-persisitent
6315 			 * properties.
6316 			 */
6317 			break;
6318 		case ZPOOL_PROP_COMMENT:
6319 			strval = fnvpair_value_string(elem);
6320 			if (spa->spa_comment != NULL)
6321 				spa_strfree(spa->spa_comment);
6322 			spa->spa_comment = spa_strdup(strval);
6323 			/*
6324 			 * We need to dirty the configuration on all the vdevs
6325 			 * so that their labels get updated.  It's unnecessary
6326 			 * to do this for pool creation since the vdev's
6327 			 * configuratoin has already been dirtied.
6328 			 */
6329 			if (tx->tx_txg != TXG_INITIAL)
6330 				vdev_config_dirty(spa->spa_root_vdev);
6331 			spa_history_log_internal(spa, "set", tx,
6332 			    "%s=%s", nvpair_name(elem), strval);
6333 			break;
6334 		default:
6335 			/*
6336 			 * Set pool property values in the poolprops mos object.
6337 			 */
6338 			if (spa->spa_pool_props_object == 0) {
6339 				spa->spa_pool_props_object =
6340 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6341 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6342 				    tx);
6343 			}
6344 
6345 			/* normalize the property name */
6346 			propname = zpool_prop_to_name(prop);
6347 			proptype = zpool_prop_get_type(prop);
6348 
6349 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6350 				ASSERT(proptype == PROP_TYPE_STRING);
6351 				strval = fnvpair_value_string(elem);
6352 				VERIFY0(zap_update(mos,
6353 				    spa->spa_pool_props_object, propname,
6354 				    1, strlen(strval) + 1, strval, tx));
6355 				spa_history_log_internal(spa, "set", tx,
6356 				    "%s=%s", nvpair_name(elem), strval);
6357 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6358 				intval = fnvpair_value_uint64(elem);
6359 
6360 				if (proptype == PROP_TYPE_INDEX) {
6361 					const char *unused;
6362 					VERIFY0(zpool_prop_index_to_string(
6363 					    prop, intval, &unused));
6364 				}
6365 				VERIFY0(zap_update(mos,
6366 				    spa->spa_pool_props_object, propname,
6367 				    8, 1, &intval, tx));
6368 				spa_history_log_internal(spa, "set", tx,
6369 				    "%s=%lld", nvpair_name(elem), intval);
6370 			} else {
6371 				ASSERT(0); /* not allowed */
6372 			}
6373 
6374 			switch (prop) {
6375 			case ZPOOL_PROP_DELEGATION:
6376 				spa->spa_delegation = intval;
6377 				break;
6378 			case ZPOOL_PROP_BOOTFS:
6379 				spa->spa_bootfs = intval;
6380 				break;
6381 			case ZPOOL_PROP_FAILUREMODE:
6382 				spa->spa_failmode = intval;
6383 				break;
6384 			case ZPOOL_PROP_AUTOEXPAND:
6385 				spa->spa_autoexpand = intval;
6386 				if (tx->tx_txg != TXG_INITIAL)
6387 					spa_async_request(spa,
6388 					    SPA_ASYNC_AUTOEXPAND);
6389 				break;
6390 			case ZPOOL_PROP_DEDUPDITTO:
6391 				spa->spa_dedup_ditto = intval;
6392 				break;
6393 			default:
6394 				break;
6395 			}
6396 		}
6397 
6398 	}
6399 
6400 	mutex_exit(&spa->spa_props_lock);
6401 }
6402 
6403 /*
6404  * Perform one-time upgrade on-disk changes.  spa_version() does not
6405  * reflect the new version this txg, so there must be no changes this
6406  * txg to anything that the upgrade code depends on after it executes.
6407  * Therefore this must be called after dsl_pool_sync() does the sync
6408  * tasks.
6409  */
6410 static void
6411 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6412 {
6413 	dsl_pool_t *dp = spa->spa_dsl_pool;
6414 
6415 	ASSERT(spa->spa_sync_pass == 1);
6416 
6417 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6418 
6419 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6420 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6421 		dsl_pool_create_origin(dp, tx);
6422 
6423 		/* Keeping the origin open increases spa_minref */
6424 		spa->spa_minref += 3;
6425 	}
6426 
6427 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6428 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6429 		dsl_pool_upgrade_clones(dp, tx);
6430 	}
6431 
6432 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6433 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6434 		dsl_pool_upgrade_dir_clones(dp, tx);
6435 
6436 		/* Keeping the freedir open increases spa_minref */
6437 		spa->spa_minref += 3;
6438 	}
6439 
6440 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6441 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6442 		spa_feature_create_zap_objects(spa, tx);
6443 	}
6444 
6445 	/*
6446 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6447 	 * when possibility to use lz4 compression for metadata was added
6448 	 * Old pools that have this feature enabled must be upgraded to have
6449 	 * this feature active
6450 	 */
6451 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6452 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6453 		    SPA_FEATURE_LZ4_COMPRESS);
6454 		boolean_t lz4_ac = spa_feature_is_active(spa,
6455 		    SPA_FEATURE_LZ4_COMPRESS);
6456 
6457 		if (lz4_en && !lz4_ac)
6458 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6459 	}
6460 
6461 	/*
6462 	 * If we haven't written the salt, do so now.  Note that the
6463 	 * feature may not be activated yet, but that's fine since
6464 	 * the presence of this ZAP entry is backwards compatible.
6465 	 */
6466 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6467 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6468 		VERIFY0(zap_add(spa->spa_meta_objset,
6469 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6470 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6471 		    spa->spa_cksum_salt.zcs_bytes, tx));
6472 	}
6473 
6474 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6475 }
6476 
6477 /*
6478  * Sync the specified transaction group.  New blocks may be dirtied as
6479  * part of the process, so we iterate until it converges.
6480  */
6481 void
6482 spa_sync(spa_t *spa, uint64_t txg)
6483 {
6484 	dsl_pool_t *dp = spa->spa_dsl_pool;
6485 	objset_t *mos = spa->spa_meta_objset;
6486 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6487 	vdev_t *rvd = spa->spa_root_vdev;
6488 	vdev_t *vd;
6489 	dmu_tx_t *tx;
6490 	int error;
6491 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6492 	    zfs_vdev_queue_depth_pct / 100;
6493 
6494 	VERIFY(spa_writeable(spa));
6495 
6496 	/*
6497 	 * Lock out configuration changes.
6498 	 */
6499 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6500 
6501 	spa->spa_syncing_txg = txg;
6502 	spa->spa_sync_pass = 0;
6503 
6504 	mutex_enter(&spa->spa_alloc_lock);
6505 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6506 	mutex_exit(&spa->spa_alloc_lock);
6507 
6508 	/*
6509 	 * If there are any pending vdev state changes, convert them
6510 	 * into config changes that go out with this transaction group.
6511 	 */
6512 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6513 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6514 		/*
6515 		 * We need the write lock here because, for aux vdevs,
6516 		 * calling vdev_config_dirty() modifies sav_config.
6517 		 * This is ugly and will become unnecessary when we
6518 		 * eliminate the aux vdev wart by integrating all vdevs
6519 		 * into the root vdev tree.
6520 		 */
6521 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6522 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6523 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6524 			vdev_state_clean(vd);
6525 			vdev_config_dirty(vd);
6526 		}
6527 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6528 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6529 	}
6530 	spa_config_exit(spa, SCL_STATE, FTAG);
6531 
6532 	tx = dmu_tx_create_assigned(dp, txg);
6533 
6534 	spa->spa_sync_starttime = gethrtime();
6535 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6536 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6537 
6538 	/*
6539 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6540 	 * set spa_deflate if we have no raid-z vdevs.
6541 	 */
6542 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6543 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6544 		int i;
6545 
6546 		for (i = 0; i < rvd->vdev_children; i++) {
6547 			vd = rvd->vdev_child[i];
6548 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6549 				break;
6550 		}
6551 		if (i == rvd->vdev_children) {
6552 			spa->spa_deflate = TRUE;
6553 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6554 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6555 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6556 		}
6557 	}
6558 
6559 	/*
6560 	 * Set the top-level vdev's max queue depth. Evaluate each
6561 	 * top-level's async write queue depth in case it changed.
6562 	 * The max queue depth will not change in the middle of syncing
6563 	 * out this txg.
6564 	 */
6565 	uint64_t queue_depth_total = 0;
6566 	for (int c = 0; c < rvd->vdev_children; c++) {
6567 		vdev_t *tvd = rvd->vdev_child[c];
6568 		metaslab_group_t *mg = tvd->vdev_mg;
6569 
6570 		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6571 		    !metaslab_group_initialized(mg))
6572 			continue;
6573 
6574 		/*
6575 		 * It is safe to do a lock-free check here because only async
6576 		 * allocations look at mg_max_alloc_queue_depth, and async
6577 		 * allocations all happen from spa_sync().
6578 		 */
6579 		ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6580 		mg->mg_max_alloc_queue_depth = max_queue_depth;
6581 		queue_depth_total += mg->mg_max_alloc_queue_depth;
6582 	}
6583 	metaslab_class_t *mc = spa_normal_class(spa);
6584 	ASSERT0(refcount_count(&mc->mc_alloc_slots));
6585 	mc->mc_alloc_max_slots = queue_depth_total;
6586 	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6587 
6588 	ASSERT3U(mc->mc_alloc_max_slots, <=,
6589 	    max_queue_depth * rvd->vdev_children);
6590 
6591 	/*
6592 	 * Iterate to convergence.
6593 	 */
6594 	do {
6595 		int pass = ++spa->spa_sync_pass;
6596 
6597 		spa_sync_config_object(spa, tx);
6598 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6599 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6600 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6601 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6602 		spa_errlog_sync(spa, txg);
6603 		dsl_pool_sync(dp, txg);
6604 
6605 		if (pass < zfs_sync_pass_deferred_free) {
6606 			spa_sync_frees(spa, free_bpl, tx);
6607 		} else {
6608 			/*
6609 			 * We can not defer frees in pass 1, because
6610 			 * we sync the deferred frees later in pass 1.
6611 			 */
6612 			ASSERT3U(pass, >, 1);
6613 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6614 			    &spa->spa_deferred_bpobj, tx);
6615 		}
6616 
6617 		ddt_sync(spa, txg);
6618 		dsl_scan_sync(dp, tx);
6619 
6620 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6621 			vdev_sync(vd, txg);
6622 
6623 		if (pass == 1) {
6624 			spa_sync_upgrades(spa, tx);
6625 			ASSERT3U(txg, >=,
6626 			    spa->spa_uberblock.ub_rootbp.blk_birth);
6627 			/*
6628 			 * Note: We need to check if the MOS is dirty
6629 			 * because we could have marked the MOS dirty
6630 			 * without updating the uberblock (e.g. if we
6631 			 * have sync tasks but no dirty user data).  We
6632 			 * need to check the uberblock's rootbp because
6633 			 * it is updated if we have synced out dirty
6634 			 * data (though in this case the MOS will most
6635 			 * likely also be dirty due to second order
6636 			 * effects, we don't want to rely on that here).
6637 			 */
6638 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6639 			    !dmu_objset_is_dirty(mos, txg)) {
6640 				/*
6641 				 * Nothing changed on the first pass,
6642 				 * therefore this TXG is a no-op.  Avoid
6643 				 * syncing deferred frees, so that we
6644 				 * can keep this TXG as a no-op.
6645 				 */
6646 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6647 				    txg));
6648 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6649 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6650 				break;
6651 			}
6652 			spa_sync_deferred_frees(spa, tx);
6653 		}
6654 
6655 	} while (dmu_objset_is_dirty(mos, txg));
6656 
6657 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
6658 		/*
6659 		 * Make sure that the number of ZAPs for all the vdevs matches
6660 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
6661 		 * called if the config is dirty; otherwise there may be
6662 		 * outstanding AVZ operations that weren't completed in
6663 		 * spa_sync_config_object.
6664 		 */
6665 		uint64_t all_vdev_zap_entry_count;
6666 		ASSERT0(zap_count(spa->spa_meta_objset,
6667 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6668 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6669 		    all_vdev_zap_entry_count);
6670 	}
6671 
6672 	/*
6673 	 * Rewrite the vdev configuration (which includes the uberblock)
6674 	 * to commit the transaction group.
6675 	 *
6676 	 * If there are no dirty vdevs, we sync the uberblock to a few
6677 	 * random top-level vdevs that are known to be visible in the
6678 	 * config cache (see spa_vdev_add() for a complete description).
6679 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6680 	 */
6681 	for (;;) {
6682 		/*
6683 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6684 		 * while we're attempting to write the vdev labels.
6685 		 */
6686 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6687 
6688 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6689 			vdev_t *svd[SPA_DVAS_PER_BP];
6690 			int svdcount = 0;
6691 			int children = rvd->vdev_children;
6692 			int c0 = spa_get_random(children);
6693 
6694 			for (int c = 0; c < children; c++) {
6695 				vd = rvd->vdev_child[(c0 + c) % children];
6696 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6697 					continue;
6698 				svd[svdcount++] = vd;
6699 				if (svdcount == SPA_DVAS_PER_BP)
6700 					break;
6701 			}
6702 			error = vdev_config_sync(svd, svdcount, txg);
6703 		} else {
6704 			error = vdev_config_sync(rvd->vdev_child,
6705 			    rvd->vdev_children, txg);
6706 		}
6707 
6708 		if (error == 0)
6709 			spa->spa_last_synced_guid = rvd->vdev_guid;
6710 
6711 		spa_config_exit(spa, SCL_STATE, FTAG);
6712 
6713 		if (error == 0)
6714 			break;
6715 		zio_suspend(spa, NULL);
6716 		zio_resume_wait(spa);
6717 	}
6718 	dmu_tx_commit(tx);
6719 
6720 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6721 
6722 	/*
6723 	 * Clear the dirty config list.
6724 	 */
6725 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6726 		vdev_config_clean(vd);
6727 
6728 	/*
6729 	 * Now that the new config has synced transactionally,
6730 	 * let it become visible to the config cache.
6731 	 */
6732 	if (spa->spa_config_syncing != NULL) {
6733 		spa_config_set(spa, spa->spa_config_syncing);
6734 		spa->spa_config_txg = txg;
6735 		spa->spa_config_syncing = NULL;
6736 	}
6737 
6738 	spa->spa_ubsync = spa->spa_uberblock;
6739 
6740 	dsl_pool_sync_done(dp, txg);
6741 
6742 	mutex_enter(&spa->spa_alloc_lock);
6743 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6744 	mutex_exit(&spa->spa_alloc_lock);
6745 
6746 	/*
6747 	 * Update usable space statistics.
6748 	 */
6749 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6750 		vdev_sync_done(vd, txg);
6751 
6752 	spa_update_dspace(spa);
6753 
6754 	/*
6755 	 * It had better be the case that we didn't dirty anything
6756 	 * since vdev_config_sync().
6757 	 */
6758 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6759 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6760 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6761 
6762 	spa->spa_sync_pass = 0;
6763 
6764 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6765 
6766 	spa_handle_ignored_writes(spa);
6767 
6768 	/*
6769 	 * If any async tasks have been requested, kick them off.
6770 	 */
6771 	spa_async_dispatch(spa);
6772 }
6773 
6774 /*
6775  * Sync all pools.  We don't want to hold the namespace lock across these
6776  * operations, so we take a reference on the spa_t and drop the lock during the
6777  * sync.
6778  */
6779 void
6780 spa_sync_allpools(void)
6781 {
6782 	spa_t *spa = NULL;
6783 	mutex_enter(&spa_namespace_lock);
6784 	while ((spa = spa_next(spa)) != NULL) {
6785 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6786 		    !spa_writeable(spa) || spa_suspended(spa))
6787 			continue;
6788 		spa_open_ref(spa, FTAG);
6789 		mutex_exit(&spa_namespace_lock);
6790 		txg_wait_synced(spa_get_dsl(spa), 0);
6791 		mutex_enter(&spa_namespace_lock);
6792 		spa_close(spa, FTAG);
6793 	}
6794 	mutex_exit(&spa_namespace_lock);
6795 }
6796 
6797 /*
6798  * ==========================================================================
6799  * Miscellaneous routines
6800  * ==========================================================================
6801  */
6802 
6803 /*
6804  * Remove all pools in the system.
6805  */
6806 void
6807 spa_evict_all(void)
6808 {
6809 	spa_t *spa;
6810 
6811 	/*
6812 	 * Remove all cached state.  All pools should be closed now,
6813 	 * so every spa in the AVL tree should be unreferenced.
6814 	 */
6815 	mutex_enter(&spa_namespace_lock);
6816 	while ((spa = spa_next(NULL)) != NULL) {
6817 		/*
6818 		 * Stop async tasks.  The async thread may need to detach
6819 		 * a device that's been replaced, which requires grabbing
6820 		 * spa_namespace_lock, so we must drop it here.
6821 		 */
6822 		spa_open_ref(spa, FTAG);
6823 		mutex_exit(&spa_namespace_lock);
6824 		spa_async_suspend(spa);
6825 		mutex_enter(&spa_namespace_lock);
6826 		spa_close(spa, FTAG);
6827 
6828 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6829 			spa_unload(spa);
6830 			spa_deactivate(spa);
6831 		}
6832 		spa_remove(spa);
6833 	}
6834 	mutex_exit(&spa_namespace_lock);
6835 }
6836 
6837 vdev_t *
6838 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6839 {
6840 	vdev_t *vd;
6841 	int i;
6842 
6843 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6844 		return (vd);
6845 
6846 	if (aux) {
6847 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6848 			vd = spa->spa_l2cache.sav_vdevs[i];
6849 			if (vd->vdev_guid == guid)
6850 				return (vd);
6851 		}
6852 
6853 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6854 			vd = spa->spa_spares.sav_vdevs[i];
6855 			if (vd->vdev_guid == guid)
6856 				return (vd);
6857 		}
6858 	}
6859 
6860 	return (NULL);
6861 }
6862 
6863 void
6864 spa_upgrade(spa_t *spa, uint64_t version)
6865 {
6866 	ASSERT(spa_writeable(spa));
6867 
6868 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6869 
6870 	/*
6871 	 * This should only be called for a non-faulted pool, and since a
6872 	 * future version would result in an unopenable pool, this shouldn't be
6873 	 * possible.
6874 	 */
6875 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6876 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6877 
6878 	spa->spa_uberblock.ub_version = version;
6879 	vdev_config_dirty(spa->spa_root_vdev);
6880 
6881 	spa_config_exit(spa, SCL_ALL, FTAG);
6882 
6883 	txg_wait_synced(spa_get_dsl(spa), 0);
6884 }
6885 
6886 boolean_t
6887 spa_has_spare(spa_t *spa, uint64_t guid)
6888 {
6889 	int i;
6890 	uint64_t spareguid;
6891 	spa_aux_vdev_t *sav = &spa->spa_spares;
6892 
6893 	for (i = 0; i < sav->sav_count; i++)
6894 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6895 			return (B_TRUE);
6896 
6897 	for (i = 0; i < sav->sav_npending; i++) {
6898 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6899 		    &spareguid) == 0 && spareguid == guid)
6900 			return (B_TRUE);
6901 	}
6902 
6903 	return (B_FALSE);
6904 }
6905 
6906 /*
6907  * Check if a pool has an active shared spare device.
6908  * Note: reference count of an active spare is 2, as a spare and as a replace
6909  */
6910 static boolean_t
6911 spa_has_active_shared_spare(spa_t *spa)
6912 {
6913 	int i, refcnt;
6914 	uint64_t pool;
6915 	spa_aux_vdev_t *sav = &spa->spa_spares;
6916 
6917 	for (i = 0; i < sav->sav_count; i++) {
6918 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6919 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6920 		    refcnt > 2)
6921 			return (B_TRUE);
6922 	}
6923 
6924 	return (B_FALSE);
6925 }
6926 
6927 static sysevent_t *
6928 spa_event_create(spa_t *spa, vdev_t *vd, const char *name)
6929 {
6930 	sysevent_t		*ev = NULL;
6931 #ifdef _KERNEL
6932 	sysevent_attr_list_t	*attr = NULL;
6933 	sysevent_value_t	value;
6934 
6935 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6936 	    SE_SLEEP);
6937 	ASSERT(ev != NULL);
6938 
6939 	value.value_type = SE_DATA_TYPE_STRING;
6940 	value.value.sv_string = spa_name(spa);
6941 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6942 		goto done;
6943 
6944 	value.value_type = SE_DATA_TYPE_UINT64;
6945 	value.value.sv_uint64 = spa_guid(spa);
6946 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6947 		goto done;
6948 
6949 	if (vd) {
6950 		value.value_type = SE_DATA_TYPE_UINT64;
6951 		value.value.sv_uint64 = vd->vdev_guid;
6952 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6953 		    SE_SLEEP) != 0)
6954 			goto done;
6955 
6956 		if (vd->vdev_path) {
6957 			value.value_type = SE_DATA_TYPE_STRING;
6958 			value.value.sv_string = vd->vdev_path;
6959 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6960 			    &value, SE_SLEEP) != 0)
6961 				goto done;
6962 		}
6963 	}
6964 
6965 	if (sysevent_attach_attributes(ev, attr) != 0)
6966 		goto done;
6967 	attr = NULL;
6968 
6969 done:
6970 	if (attr)
6971 		sysevent_free_attr(attr);
6972 
6973 #endif
6974 	return (ev);
6975 }
6976 
6977 static void
6978 spa_event_post(sysevent_t *ev)
6979 {
6980 #ifdef _KERNEL
6981 	sysevent_id_t		eid;
6982 
6983 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6984 	sysevent_free(ev);
6985 #endif
6986 }
6987 
6988 /*
6989  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6990  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6991  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6992  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6993  * or zdb as real changes.
6994  */
6995 void
6996 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6997 {
6998 	spa_event_post(spa_event_create(spa, vd, name));
6999 }
7000