xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 47842382d52f28aa3173aa6b511781c322ccb6a2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/sunddi.h>
61 #include <sys/spa_boot.h>
62 
63 #ifdef	_KERNEL
64 #include <sys/zone.h>
65 #endif	/* _KERNEL */
66 
67 #include "zfs_prop.h"
68 #include "zfs_comutil.h"
69 
70 int zio_taskq_threads[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
71 	/*	ISSUE	INTR					*/
72 	{	1,	1	},	/* ZIO_TYPE_NULL	*/
73 	{	1,	8	},	/* ZIO_TYPE_READ	*/
74 	{	8,	1	},	/* ZIO_TYPE_WRITE	*/
75 	{	1,	1	},	/* ZIO_TYPE_FREE	*/
76 	{	1,	1	},	/* ZIO_TYPE_CLAIM	*/
77 	{	1,	1	},	/* ZIO_TYPE_IOCTL	*/
78 };
79 
80 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
81 static boolean_t spa_has_active_shared_spare(spa_t *spa);
82 
83 /*
84  * ==========================================================================
85  * SPA properties routines
86  * ==========================================================================
87  */
88 
89 /*
90  * Add a (source=src, propname=propval) list to an nvlist.
91  */
92 static void
93 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
94     uint64_t intval, zprop_source_t src)
95 {
96 	const char *propname = zpool_prop_to_name(prop);
97 	nvlist_t *propval;
98 
99 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
100 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
101 
102 	if (strval != NULL)
103 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
104 	else
105 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
106 
107 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
108 	nvlist_free(propval);
109 }
110 
111 /*
112  * Get property values from the spa configuration.
113  */
114 static void
115 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
116 {
117 	uint64_t size;
118 	uint64_t used;
119 	uint64_t cap, version;
120 	zprop_source_t src = ZPROP_SRC_NONE;
121 	spa_config_dirent_t *dp;
122 
123 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
124 
125 	if (spa->spa_root_vdev != NULL) {
126 		size = spa_get_space(spa);
127 		used = spa_get_alloc(spa);
128 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
129 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
130 		spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
131 		spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
132 		    size - used, src);
133 
134 		cap = (size == 0) ? 0 : (used * 100 / size);
135 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
136 
137 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
138 		    spa->spa_root_vdev->vdev_state, src);
139 
140 		version = spa_version(spa);
141 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
142 			src = ZPROP_SRC_DEFAULT;
143 		else
144 			src = ZPROP_SRC_LOCAL;
145 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
146 	}
147 
148 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
149 
150 	if (spa->spa_root != NULL)
151 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
152 		    0, ZPROP_SRC_LOCAL);
153 
154 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
155 		if (dp->scd_path == NULL) {
156 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
157 			    "none", 0, ZPROP_SRC_LOCAL);
158 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
159 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
160 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
161 		}
162 	}
163 }
164 
165 /*
166  * Get zpool property values.
167  */
168 int
169 spa_prop_get(spa_t *spa, nvlist_t **nvp)
170 {
171 	zap_cursor_t zc;
172 	zap_attribute_t za;
173 	objset_t *mos = spa->spa_meta_objset;
174 	int err;
175 
176 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
177 
178 	mutex_enter(&spa->spa_props_lock);
179 
180 	/*
181 	 * Get properties from the spa config.
182 	 */
183 	spa_prop_get_config(spa, nvp);
184 
185 	/* If no pool property object, no more prop to get. */
186 	if (spa->spa_pool_props_object == 0) {
187 		mutex_exit(&spa->spa_props_lock);
188 		return (0);
189 	}
190 
191 	/*
192 	 * Get properties from the MOS pool property object.
193 	 */
194 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
195 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
196 	    zap_cursor_advance(&zc)) {
197 		uint64_t intval = 0;
198 		char *strval = NULL;
199 		zprop_source_t src = ZPROP_SRC_DEFAULT;
200 		zpool_prop_t prop;
201 
202 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
203 			continue;
204 
205 		switch (za.za_integer_length) {
206 		case 8:
207 			/* integer property */
208 			if (za.za_first_integer !=
209 			    zpool_prop_default_numeric(prop))
210 				src = ZPROP_SRC_LOCAL;
211 
212 			if (prop == ZPOOL_PROP_BOOTFS) {
213 				dsl_pool_t *dp;
214 				dsl_dataset_t *ds = NULL;
215 
216 				dp = spa_get_dsl(spa);
217 				rw_enter(&dp->dp_config_rwlock, RW_READER);
218 				if (err = dsl_dataset_hold_obj(dp,
219 				    za.za_first_integer, FTAG, &ds)) {
220 					rw_exit(&dp->dp_config_rwlock);
221 					break;
222 				}
223 
224 				strval = kmem_alloc(
225 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
226 				    KM_SLEEP);
227 				dsl_dataset_name(ds, strval);
228 				dsl_dataset_rele(ds, FTAG);
229 				rw_exit(&dp->dp_config_rwlock);
230 			} else {
231 				strval = NULL;
232 				intval = za.za_first_integer;
233 			}
234 
235 			spa_prop_add_list(*nvp, prop, strval, intval, src);
236 
237 			if (strval != NULL)
238 				kmem_free(strval,
239 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
240 
241 			break;
242 
243 		case 1:
244 			/* string property */
245 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
246 			err = zap_lookup(mos, spa->spa_pool_props_object,
247 			    za.za_name, 1, za.za_num_integers, strval);
248 			if (err) {
249 				kmem_free(strval, za.za_num_integers);
250 				break;
251 			}
252 			spa_prop_add_list(*nvp, prop, strval, 0, src);
253 			kmem_free(strval, za.za_num_integers);
254 			break;
255 
256 		default:
257 			break;
258 		}
259 	}
260 	zap_cursor_fini(&zc);
261 	mutex_exit(&spa->spa_props_lock);
262 out:
263 	if (err && err != ENOENT) {
264 		nvlist_free(*nvp);
265 		*nvp = NULL;
266 		return (err);
267 	}
268 
269 	return (0);
270 }
271 
272 /*
273  * Validate the given pool properties nvlist and modify the list
274  * for the property values to be set.
275  */
276 static int
277 spa_prop_validate(spa_t *spa, nvlist_t *props)
278 {
279 	nvpair_t *elem;
280 	int error = 0, reset_bootfs = 0;
281 	uint64_t objnum;
282 
283 	elem = NULL;
284 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
285 		zpool_prop_t prop;
286 		char *propname, *strval;
287 		uint64_t intval;
288 		objset_t *os;
289 		char *slash;
290 
291 		propname = nvpair_name(elem);
292 
293 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
294 			return (EINVAL);
295 
296 		switch (prop) {
297 		case ZPOOL_PROP_VERSION:
298 			error = nvpair_value_uint64(elem, &intval);
299 			if (!error &&
300 			    (intval < spa_version(spa) || intval > SPA_VERSION))
301 				error = EINVAL;
302 			break;
303 
304 		case ZPOOL_PROP_DELEGATION:
305 		case ZPOOL_PROP_AUTOREPLACE:
306 		case ZPOOL_PROP_LISTSNAPS:
307 			error = nvpair_value_uint64(elem, &intval);
308 			if (!error && intval > 1)
309 				error = EINVAL;
310 			break;
311 
312 		case ZPOOL_PROP_BOOTFS:
313 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
314 				error = ENOTSUP;
315 				break;
316 			}
317 
318 			/*
319 			 * Make sure the vdev config is bootable
320 			 */
321 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
322 				error = ENOTSUP;
323 				break;
324 			}
325 
326 			reset_bootfs = 1;
327 
328 			error = nvpair_value_string(elem, &strval);
329 
330 			if (!error) {
331 				uint64_t compress;
332 
333 				if (strval == NULL || strval[0] == '\0') {
334 					objnum = zpool_prop_default_numeric(
335 					    ZPOOL_PROP_BOOTFS);
336 					break;
337 				}
338 
339 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
340 				    DS_MODE_USER | DS_MODE_READONLY, &os))
341 					break;
342 
343 				/* We don't support gzip bootable datasets */
344 				if ((error = dsl_prop_get_integer(strval,
345 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
346 				    &compress, NULL)) == 0 &&
347 				    !BOOTFS_COMPRESS_VALID(compress)) {
348 					error = ENOTSUP;
349 				} else {
350 					objnum = dmu_objset_id(os);
351 				}
352 				dmu_objset_close(os);
353 			}
354 			break;
355 
356 		case ZPOOL_PROP_FAILUREMODE:
357 			error = nvpair_value_uint64(elem, &intval);
358 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
359 			    intval > ZIO_FAILURE_MODE_PANIC))
360 				error = EINVAL;
361 
362 			/*
363 			 * This is a special case which only occurs when
364 			 * the pool has completely failed. This allows
365 			 * the user to change the in-core failmode property
366 			 * without syncing it out to disk (I/Os might
367 			 * currently be blocked). We do this by returning
368 			 * EIO to the caller (spa_prop_set) to trick it
369 			 * into thinking we encountered a property validation
370 			 * error.
371 			 */
372 			if (!error && spa_suspended(spa)) {
373 				spa->spa_failmode = intval;
374 				error = EIO;
375 			}
376 			break;
377 
378 		case ZPOOL_PROP_CACHEFILE:
379 			if ((error = nvpair_value_string(elem, &strval)) != 0)
380 				break;
381 
382 			if (strval[0] == '\0')
383 				break;
384 
385 			if (strcmp(strval, "none") == 0)
386 				break;
387 
388 			if (strval[0] != '/') {
389 				error = EINVAL;
390 				break;
391 			}
392 
393 			slash = strrchr(strval, '/');
394 			ASSERT(slash != NULL);
395 
396 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
397 			    strcmp(slash, "/..") == 0)
398 				error = EINVAL;
399 			break;
400 		}
401 
402 		if (error)
403 			break;
404 	}
405 
406 	if (!error && reset_bootfs) {
407 		error = nvlist_remove(props,
408 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
409 
410 		if (!error) {
411 			error = nvlist_add_uint64(props,
412 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
413 		}
414 	}
415 
416 	return (error);
417 }
418 
419 void
420 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
421 {
422 	char *cachefile;
423 	spa_config_dirent_t *dp;
424 
425 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
426 	    &cachefile) != 0)
427 		return;
428 
429 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
430 	    KM_SLEEP);
431 
432 	if (cachefile[0] == '\0')
433 		dp->scd_path = spa_strdup(spa_config_path);
434 	else if (strcmp(cachefile, "none") == 0)
435 		dp->scd_path = NULL;
436 	else
437 		dp->scd_path = spa_strdup(cachefile);
438 
439 	list_insert_head(&spa->spa_config_list, dp);
440 	if (need_sync)
441 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
442 }
443 
444 int
445 spa_prop_set(spa_t *spa, nvlist_t *nvp)
446 {
447 	int error;
448 	nvpair_t *elem;
449 	boolean_t need_sync = B_FALSE;
450 	zpool_prop_t prop;
451 
452 	if ((error = spa_prop_validate(spa, nvp)) != 0)
453 		return (error);
454 
455 	elem = NULL;
456 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
457 		if ((prop = zpool_name_to_prop(
458 		    nvpair_name(elem))) == ZPROP_INVAL)
459 			return (EINVAL);
460 
461 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
462 			continue;
463 
464 		need_sync = B_TRUE;
465 		break;
466 	}
467 
468 	if (need_sync)
469 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
470 		    spa, nvp, 3));
471 	else
472 		return (0);
473 }
474 
475 /*
476  * If the bootfs property value is dsobj, clear it.
477  */
478 void
479 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
480 {
481 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
482 		VERIFY(zap_remove(spa->spa_meta_objset,
483 		    spa->spa_pool_props_object,
484 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
485 		spa->spa_bootfs = 0;
486 	}
487 }
488 
489 /*
490  * ==========================================================================
491  * SPA state manipulation (open/create/destroy/import/export)
492  * ==========================================================================
493  */
494 
495 static int
496 spa_error_entry_compare(const void *a, const void *b)
497 {
498 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
499 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
500 	int ret;
501 
502 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
503 	    sizeof (zbookmark_t));
504 
505 	if (ret < 0)
506 		return (-1);
507 	else if (ret > 0)
508 		return (1);
509 	else
510 		return (0);
511 }
512 
513 /*
514  * Utility function which retrieves copies of the current logs and
515  * re-initializes them in the process.
516  */
517 void
518 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
519 {
520 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
521 
522 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
523 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
524 
525 	avl_create(&spa->spa_errlist_scrub,
526 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
527 	    offsetof(spa_error_entry_t, se_avl));
528 	avl_create(&spa->spa_errlist_last,
529 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
530 	    offsetof(spa_error_entry_t, se_avl));
531 }
532 
533 /*
534  * Activate an uninitialized pool.
535  */
536 static void
537 spa_activate(spa_t *spa, int mode)
538 {
539 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
540 
541 	spa->spa_state = POOL_STATE_ACTIVE;
542 	spa->spa_mode = mode;
543 
544 	spa->spa_normal_class = metaslab_class_create();
545 	spa->spa_log_class = metaslab_class_create();
546 
547 	for (int t = 0; t < ZIO_TYPES; t++) {
548 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
549 			spa->spa_zio_taskq[t][q] = taskq_create("spa_zio",
550 			    zio_taskq_threads[t][q], maxclsyspri, 50,
551 			    INT_MAX, TASKQ_PREPOPULATE);
552 		}
553 	}
554 
555 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
556 	    offsetof(vdev_t, vdev_config_dirty_node));
557 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
558 	    offsetof(vdev_t, vdev_state_dirty_node));
559 
560 	txg_list_create(&spa->spa_vdev_txg_list,
561 	    offsetof(struct vdev, vdev_txg_node));
562 
563 	avl_create(&spa->spa_errlist_scrub,
564 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
565 	    offsetof(spa_error_entry_t, se_avl));
566 	avl_create(&spa->spa_errlist_last,
567 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
568 	    offsetof(spa_error_entry_t, se_avl));
569 }
570 
571 /*
572  * Opposite of spa_activate().
573  */
574 static void
575 spa_deactivate(spa_t *spa)
576 {
577 	ASSERT(spa->spa_sync_on == B_FALSE);
578 	ASSERT(spa->spa_dsl_pool == NULL);
579 	ASSERT(spa->spa_root_vdev == NULL);
580 
581 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
582 
583 	txg_list_destroy(&spa->spa_vdev_txg_list);
584 
585 	list_destroy(&spa->spa_config_dirty_list);
586 	list_destroy(&spa->spa_state_dirty_list);
587 
588 	for (int t = 0; t < ZIO_TYPES; t++) {
589 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
590 			taskq_destroy(spa->spa_zio_taskq[t][q]);
591 			spa->spa_zio_taskq[t][q] = NULL;
592 		}
593 	}
594 
595 	metaslab_class_destroy(spa->spa_normal_class);
596 	spa->spa_normal_class = NULL;
597 
598 	metaslab_class_destroy(spa->spa_log_class);
599 	spa->spa_log_class = NULL;
600 
601 	/*
602 	 * If this was part of an import or the open otherwise failed, we may
603 	 * still have errors left in the queues.  Empty them just in case.
604 	 */
605 	spa_errlog_drain(spa);
606 
607 	avl_destroy(&spa->spa_errlist_scrub);
608 	avl_destroy(&spa->spa_errlist_last);
609 
610 	spa->spa_state = POOL_STATE_UNINITIALIZED;
611 }
612 
613 /*
614  * Verify a pool configuration, and construct the vdev tree appropriately.  This
615  * will create all the necessary vdevs in the appropriate layout, with each vdev
616  * in the CLOSED state.  This will prep the pool before open/creation/import.
617  * All vdev validation is done by the vdev_alloc() routine.
618  */
619 static int
620 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
621     uint_t id, int atype)
622 {
623 	nvlist_t **child;
624 	uint_t c, children;
625 	int error;
626 
627 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
628 		return (error);
629 
630 	if ((*vdp)->vdev_ops->vdev_op_leaf)
631 		return (0);
632 
633 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
634 	    &child, &children);
635 
636 	if (error == ENOENT)
637 		return (0);
638 
639 	if (error) {
640 		vdev_free(*vdp);
641 		*vdp = NULL;
642 		return (EINVAL);
643 	}
644 
645 	for (c = 0; c < children; c++) {
646 		vdev_t *vd;
647 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
648 		    atype)) != 0) {
649 			vdev_free(*vdp);
650 			*vdp = NULL;
651 			return (error);
652 		}
653 	}
654 
655 	ASSERT(*vdp != NULL);
656 
657 	return (0);
658 }
659 
660 /*
661  * Opposite of spa_load().
662  */
663 static void
664 spa_unload(spa_t *spa)
665 {
666 	int i;
667 
668 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
669 
670 	/*
671 	 * Stop async tasks.
672 	 */
673 	spa_async_suspend(spa);
674 
675 	/*
676 	 * Stop syncing.
677 	 */
678 	if (spa->spa_sync_on) {
679 		txg_sync_stop(spa->spa_dsl_pool);
680 		spa->spa_sync_on = B_FALSE;
681 	}
682 
683 	/*
684 	 * Wait for any outstanding async I/O to complete.
685 	 */
686 	mutex_enter(&spa->spa_async_root_lock);
687 	while (spa->spa_async_root_count != 0)
688 		cv_wait(&spa->spa_async_root_cv, &spa->spa_async_root_lock);
689 	mutex_exit(&spa->spa_async_root_lock);
690 
691 	/*
692 	 * Close the dsl pool.
693 	 */
694 	if (spa->spa_dsl_pool) {
695 		dsl_pool_close(spa->spa_dsl_pool);
696 		spa->spa_dsl_pool = NULL;
697 	}
698 
699 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
700 
701 	/*
702 	 * Drop and purge level 2 cache
703 	 */
704 	spa_l2cache_drop(spa);
705 
706 	/*
707 	 * Close all vdevs.
708 	 */
709 	if (spa->spa_root_vdev)
710 		vdev_free(spa->spa_root_vdev);
711 	ASSERT(spa->spa_root_vdev == NULL);
712 
713 	for (i = 0; i < spa->spa_spares.sav_count; i++)
714 		vdev_free(spa->spa_spares.sav_vdevs[i]);
715 	if (spa->spa_spares.sav_vdevs) {
716 		kmem_free(spa->spa_spares.sav_vdevs,
717 		    spa->spa_spares.sav_count * sizeof (void *));
718 		spa->spa_spares.sav_vdevs = NULL;
719 	}
720 	if (spa->spa_spares.sav_config) {
721 		nvlist_free(spa->spa_spares.sav_config);
722 		spa->spa_spares.sav_config = NULL;
723 	}
724 	spa->spa_spares.sav_count = 0;
725 
726 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
727 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
728 	if (spa->spa_l2cache.sav_vdevs) {
729 		kmem_free(spa->spa_l2cache.sav_vdevs,
730 		    spa->spa_l2cache.sav_count * sizeof (void *));
731 		spa->spa_l2cache.sav_vdevs = NULL;
732 	}
733 	if (spa->spa_l2cache.sav_config) {
734 		nvlist_free(spa->spa_l2cache.sav_config);
735 		spa->spa_l2cache.sav_config = NULL;
736 	}
737 	spa->spa_l2cache.sav_count = 0;
738 
739 	spa->spa_async_suspended = 0;
740 
741 	spa_config_exit(spa, SCL_ALL, FTAG);
742 }
743 
744 /*
745  * Load (or re-load) the current list of vdevs describing the active spares for
746  * this pool.  When this is called, we have some form of basic information in
747  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
748  * then re-generate a more complete list including status information.
749  */
750 static void
751 spa_load_spares(spa_t *spa)
752 {
753 	nvlist_t **spares;
754 	uint_t nspares;
755 	int i;
756 	vdev_t *vd, *tvd;
757 
758 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
759 
760 	/*
761 	 * First, close and free any existing spare vdevs.
762 	 */
763 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
764 		vd = spa->spa_spares.sav_vdevs[i];
765 
766 		/* Undo the call to spa_activate() below */
767 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
768 		    B_FALSE)) != NULL && tvd->vdev_isspare)
769 			spa_spare_remove(tvd);
770 		vdev_close(vd);
771 		vdev_free(vd);
772 	}
773 
774 	if (spa->spa_spares.sav_vdevs)
775 		kmem_free(spa->spa_spares.sav_vdevs,
776 		    spa->spa_spares.sav_count * sizeof (void *));
777 
778 	if (spa->spa_spares.sav_config == NULL)
779 		nspares = 0;
780 	else
781 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
782 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
783 
784 	spa->spa_spares.sav_count = (int)nspares;
785 	spa->spa_spares.sav_vdevs = NULL;
786 
787 	if (nspares == 0)
788 		return;
789 
790 	/*
791 	 * Construct the array of vdevs, opening them to get status in the
792 	 * process.   For each spare, there is potentially two different vdev_t
793 	 * structures associated with it: one in the list of spares (used only
794 	 * for basic validation purposes) and one in the active vdev
795 	 * configuration (if it's spared in).  During this phase we open and
796 	 * validate each vdev on the spare list.  If the vdev also exists in the
797 	 * active configuration, then we also mark this vdev as an active spare.
798 	 */
799 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
800 	    KM_SLEEP);
801 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
802 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
803 		    VDEV_ALLOC_SPARE) == 0);
804 		ASSERT(vd != NULL);
805 
806 		spa->spa_spares.sav_vdevs[i] = vd;
807 
808 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
809 		    B_FALSE)) != NULL) {
810 			if (!tvd->vdev_isspare)
811 				spa_spare_add(tvd);
812 
813 			/*
814 			 * We only mark the spare active if we were successfully
815 			 * able to load the vdev.  Otherwise, importing a pool
816 			 * with a bad active spare would result in strange
817 			 * behavior, because multiple pool would think the spare
818 			 * is actively in use.
819 			 *
820 			 * There is a vulnerability here to an equally bizarre
821 			 * circumstance, where a dead active spare is later
822 			 * brought back to life (onlined or otherwise).  Given
823 			 * the rarity of this scenario, and the extra complexity
824 			 * it adds, we ignore the possibility.
825 			 */
826 			if (!vdev_is_dead(tvd))
827 				spa_spare_activate(tvd);
828 		}
829 
830 		vd->vdev_top = vd;
831 
832 		if (vdev_open(vd) != 0)
833 			continue;
834 
835 		if (vdev_validate_aux(vd) == 0)
836 			spa_spare_add(vd);
837 	}
838 
839 	/*
840 	 * Recompute the stashed list of spares, with status information
841 	 * this time.
842 	 */
843 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
844 	    DATA_TYPE_NVLIST_ARRAY) == 0);
845 
846 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
847 	    KM_SLEEP);
848 	for (i = 0; i < spa->spa_spares.sav_count; i++)
849 		spares[i] = vdev_config_generate(spa,
850 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
851 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
852 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
853 	for (i = 0; i < spa->spa_spares.sav_count; i++)
854 		nvlist_free(spares[i]);
855 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
856 }
857 
858 /*
859  * Load (or re-load) the current list of vdevs describing the active l2cache for
860  * this pool.  When this is called, we have some form of basic information in
861  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
862  * then re-generate a more complete list including status information.
863  * Devices which are already active have their details maintained, and are
864  * not re-opened.
865  */
866 static void
867 spa_load_l2cache(spa_t *spa)
868 {
869 	nvlist_t **l2cache;
870 	uint_t nl2cache;
871 	int i, j, oldnvdevs;
872 	uint64_t guid, size;
873 	vdev_t *vd, **oldvdevs, **newvdevs;
874 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
875 
876 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
877 
878 	if (sav->sav_config != NULL) {
879 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
880 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
881 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
882 	} else {
883 		nl2cache = 0;
884 	}
885 
886 	oldvdevs = sav->sav_vdevs;
887 	oldnvdevs = sav->sav_count;
888 	sav->sav_vdevs = NULL;
889 	sav->sav_count = 0;
890 
891 	/*
892 	 * Process new nvlist of vdevs.
893 	 */
894 	for (i = 0; i < nl2cache; i++) {
895 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
896 		    &guid) == 0);
897 
898 		newvdevs[i] = NULL;
899 		for (j = 0; j < oldnvdevs; j++) {
900 			vd = oldvdevs[j];
901 			if (vd != NULL && guid == vd->vdev_guid) {
902 				/*
903 				 * Retain previous vdev for add/remove ops.
904 				 */
905 				newvdevs[i] = vd;
906 				oldvdevs[j] = NULL;
907 				break;
908 			}
909 		}
910 
911 		if (newvdevs[i] == NULL) {
912 			/*
913 			 * Create new vdev
914 			 */
915 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
916 			    VDEV_ALLOC_L2CACHE) == 0);
917 			ASSERT(vd != NULL);
918 			newvdevs[i] = vd;
919 
920 			/*
921 			 * Commit this vdev as an l2cache device,
922 			 * even if it fails to open.
923 			 */
924 			spa_l2cache_add(vd);
925 
926 			vd->vdev_top = vd;
927 			vd->vdev_aux = sav;
928 
929 			spa_l2cache_activate(vd);
930 
931 			if (vdev_open(vd) != 0)
932 				continue;
933 
934 			(void) vdev_validate_aux(vd);
935 
936 			if (!vdev_is_dead(vd)) {
937 				size = vdev_get_rsize(vd);
938 				l2arc_add_vdev(spa, vd,
939 				    VDEV_LABEL_START_SIZE,
940 				    size - VDEV_LABEL_START_SIZE);
941 			}
942 		}
943 	}
944 
945 	/*
946 	 * Purge vdevs that were dropped
947 	 */
948 	for (i = 0; i < oldnvdevs; i++) {
949 		uint64_t pool;
950 
951 		vd = oldvdevs[i];
952 		if (vd != NULL) {
953 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
954 			    pool != 0ULL && l2arc_vdev_present(vd))
955 				l2arc_remove_vdev(vd);
956 			(void) vdev_close(vd);
957 			spa_l2cache_remove(vd);
958 		}
959 	}
960 
961 	if (oldvdevs)
962 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
963 
964 	if (sav->sav_config == NULL)
965 		goto out;
966 
967 	sav->sav_vdevs = newvdevs;
968 	sav->sav_count = (int)nl2cache;
969 
970 	/*
971 	 * Recompute the stashed list of l2cache devices, with status
972 	 * information this time.
973 	 */
974 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
975 	    DATA_TYPE_NVLIST_ARRAY) == 0);
976 
977 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
978 	for (i = 0; i < sav->sav_count; i++)
979 		l2cache[i] = vdev_config_generate(spa,
980 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
981 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
982 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
983 out:
984 	for (i = 0; i < sav->sav_count; i++)
985 		nvlist_free(l2cache[i]);
986 	if (sav->sav_count)
987 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
988 }
989 
990 static int
991 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
992 {
993 	dmu_buf_t *db;
994 	char *packed = NULL;
995 	size_t nvsize = 0;
996 	int error;
997 	*value = NULL;
998 
999 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1000 	nvsize = *(uint64_t *)db->db_data;
1001 	dmu_buf_rele(db, FTAG);
1002 
1003 	packed = kmem_alloc(nvsize, KM_SLEEP);
1004 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
1005 	if (error == 0)
1006 		error = nvlist_unpack(packed, nvsize, value, 0);
1007 	kmem_free(packed, nvsize);
1008 
1009 	return (error);
1010 }
1011 
1012 /*
1013  * Checks to see if the given vdev could not be opened, in which case we post a
1014  * sysevent to notify the autoreplace code that the device has been removed.
1015  */
1016 static void
1017 spa_check_removed(vdev_t *vd)
1018 {
1019 	int c;
1020 
1021 	for (c = 0; c < vd->vdev_children; c++)
1022 		spa_check_removed(vd->vdev_child[c]);
1023 
1024 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1025 		zfs_post_autoreplace(vd->vdev_spa, vd);
1026 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1027 	}
1028 }
1029 
1030 /*
1031  * Check for missing log devices
1032  */
1033 int
1034 spa_check_logs(spa_t *spa)
1035 {
1036 	switch (spa->spa_log_state) {
1037 	case SPA_LOG_MISSING:
1038 		/* need to recheck in case slog has been restored */
1039 	case SPA_LOG_UNKNOWN:
1040 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1041 		    DS_FIND_CHILDREN)) {
1042 			spa->spa_log_state = SPA_LOG_MISSING;
1043 			return (1);
1044 		}
1045 		break;
1046 
1047 	case SPA_LOG_CLEAR:
1048 		(void) dmu_objset_find(spa->spa_name, zil_clear_log_chain, NULL,
1049 		    DS_FIND_CHILDREN);
1050 		break;
1051 	}
1052 	spa->spa_log_state = SPA_LOG_GOOD;
1053 	return (0);
1054 }
1055 
1056 /*
1057  * Load an existing storage pool, using the pool's builtin spa_config as a
1058  * source of configuration information.
1059  */
1060 static int
1061 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1062 {
1063 	int error = 0;
1064 	nvlist_t *nvroot = NULL;
1065 	vdev_t *rvd;
1066 	uberblock_t *ub = &spa->spa_uberblock;
1067 	uint64_t config_cache_txg = spa->spa_config_txg;
1068 	uint64_t pool_guid;
1069 	uint64_t version;
1070 	uint64_t autoreplace = 0;
1071 	int orig_mode = spa->spa_mode;
1072 	char *ereport = FM_EREPORT_ZFS_POOL;
1073 
1074 	/*
1075 	 * If this is an untrusted config, access the pool in read-only mode.
1076 	 * This prevents things like resilvering recently removed devices.
1077 	 */
1078 	if (!mosconfig)
1079 		spa->spa_mode = FREAD;
1080 
1081 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1082 
1083 	spa->spa_load_state = state;
1084 
1085 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1086 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1087 		error = EINVAL;
1088 		goto out;
1089 	}
1090 
1091 	/*
1092 	 * Versioning wasn't explicitly added to the label until later, so if
1093 	 * it's not present treat it as the initial version.
1094 	 */
1095 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1096 		version = SPA_VERSION_INITIAL;
1097 
1098 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1099 	    &spa->spa_config_txg);
1100 
1101 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1102 	    spa_guid_exists(pool_guid, 0)) {
1103 		error = EEXIST;
1104 		goto out;
1105 	}
1106 
1107 	spa->spa_load_guid = pool_guid;
1108 
1109 	/*
1110 	 * Parse the configuration into a vdev tree.  We explicitly set the
1111 	 * value that will be returned by spa_version() since parsing the
1112 	 * configuration requires knowing the version number.
1113 	 */
1114 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1115 	spa->spa_ubsync.ub_version = version;
1116 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1117 	spa_config_exit(spa, SCL_ALL, FTAG);
1118 
1119 	if (error != 0)
1120 		goto out;
1121 
1122 	ASSERT(spa->spa_root_vdev == rvd);
1123 	ASSERT(spa_guid(spa) == pool_guid);
1124 
1125 	/*
1126 	 * Try to open all vdevs, loading each label in the process.
1127 	 */
1128 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1129 	error = vdev_open(rvd);
1130 	spa_config_exit(spa, SCL_ALL, FTAG);
1131 	if (error != 0)
1132 		goto out;
1133 
1134 	/*
1135 	 * Validate the labels for all leaf vdevs.  We need to grab the config
1136 	 * lock because all label I/O is done with ZIO_FLAG_CONFIG_WRITER.
1137 	 */
1138 	if (mosconfig) {
1139 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1140 		error = vdev_validate(rvd);
1141 		spa_config_exit(spa, SCL_ALL, FTAG);
1142 		if (error != 0)
1143 			goto out;
1144 	}
1145 
1146 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1147 		error = ENXIO;
1148 		goto out;
1149 	}
1150 
1151 	/*
1152 	 * Find the best uberblock.
1153 	 */
1154 	vdev_uberblock_load(NULL, rvd, ub);
1155 
1156 	/*
1157 	 * If we weren't able to find a single valid uberblock, return failure.
1158 	 */
1159 	if (ub->ub_txg == 0) {
1160 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1161 		    VDEV_AUX_CORRUPT_DATA);
1162 		error = ENXIO;
1163 		goto out;
1164 	}
1165 
1166 	/*
1167 	 * If the pool is newer than the code, we can't open it.
1168 	 */
1169 	if (ub->ub_version > SPA_VERSION) {
1170 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1171 		    VDEV_AUX_VERSION_NEWER);
1172 		error = ENOTSUP;
1173 		goto out;
1174 	}
1175 
1176 	/*
1177 	 * If the vdev guid sum doesn't match the uberblock, we have an
1178 	 * incomplete configuration.
1179 	 */
1180 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1181 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1182 		    VDEV_AUX_BAD_GUID_SUM);
1183 		error = ENXIO;
1184 		goto out;
1185 	}
1186 
1187 	/*
1188 	 * Initialize internal SPA structures.
1189 	 */
1190 	spa->spa_state = POOL_STATE_ACTIVE;
1191 	spa->spa_ubsync = spa->spa_uberblock;
1192 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1193 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1194 	if (error) {
1195 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1196 		    VDEV_AUX_CORRUPT_DATA);
1197 		goto out;
1198 	}
1199 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1200 
1201 	if (zap_lookup(spa->spa_meta_objset,
1202 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1203 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1204 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1205 		    VDEV_AUX_CORRUPT_DATA);
1206 		error = EIO;
1207 		goto out;
1208 	}
1209 
1210 	if (!mosconfig) {
1211 		nvlist_t *newconfig;
1212 		uint64_t hostid;
1213 
1214 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1215 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1216 			    VDEV_AUX_CORRUPT_DATA);
1217 			error = EIO;
1218 			goto out;
1219 		}
1220 
1221 		if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1222 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1223 			char *hostname;
1224 			unsigned long myhostid = 0;
1225 
1226 			VERIFY(nvlist_lookup_string(newconfig,
1227 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1228 
1229 #ifdef	_KERNEL
1230 			myhostid = zone_get_hostid(NULL);
1231 #else	/* _KERNEL */
1232 			/*
1233 			 * We're emulating the system's hostid in userland, so
1234 			 * we can't use zone_get_hostid().
1235 			 */
1236 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1237 #endif	/* _KERNEL */
1238 			if (hostid != 0 && myhostid != 0 &&
1239 			    hostid != myhostid) {
1240 				cmn_err(CE_WARN, "pool '%s' could not be "
1241 				    "loaded as it was last accessed by "
1242 				    "another system (host: %s hostid: 0x%lx). "
1243 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1244 				    spa_name(spa), hostname,
1245 				    (unsigned long)hostid);
1246 				error = EBADF;
1247 				goto out;
1248 			}
1249 		}
1250 
1251 		spa_config_set(spa, newconfig);
1252 		spa_unload(spa);
1253 		spa_deactivate(spa);
1254 		spa_activate(spa, orig_mode);
1255 
1256 		return (spa_load(spa, newconfig, state, B_TRUE));
1257 	}
1258 
1259 	if (zap_lookup(spa->spa_meta_objset,
1260 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1261 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1262 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1263 		    VDEV_AUX_CORRUPT_DATA);
1264 		error = EIO;
1265 		goto out;
1266 	}
1267 
1268 	/*
1269 	 * Load the bit that tells us to use the new accounting function
1270 	 * (raid-z deflation).  If we have an older pool, this will not
1271 	 * be present.
1272 	 */
1273 	error = zap_lookup(spa->spa_meta_objset,
1274 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1275 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1276 	if (error != 0 && error != ENOENT) {
1277 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1278 		    VDEV_AUX_CORRUPT_DATA);
1279 		error = EIO;
1280 		goto out;
1281 	}
1282 
1283 	/*
1284 	 * Load the persistent error log.  If we have an older pool, this will
1285 	 * not be present.
1286 	 */
1287 	error = zap_lookup(spa->spa_meta_objset,
1288 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1289 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1290 	if (error != 0 && error != ENOENT) {
1291 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1292 		    VDEV_AUX_CORRUPT_DATA);
1293 		error = EIO;
1294 		goto out;
1295 	}
1296 
1297 	error = zap_lookup(spa->spa_meta_objset,
1298 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1299 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1300 	if (error != 0 && error != ENOENT) {
1301 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1302 		    VDEV_AUX_CORRUPT_DATA);
1303 		error = EIO;
1304 		goto out;
1305 	}
1306 
1307 	/*
1308 	 * Load the history object.  If we have an older pool, this
1309 	 * will not be present.
1310 	 */
1311 	error = zap_lookup(spa->spa_meta_objset,
1312 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1313 	    sizeof (uint64_t), 1, &spa->spa_history);
1314 	if (error != 0 && error != ENOENT) {
1315 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1316 		    VDEV_AUX_CORRUPT_DATA);
1317 		error = EIO;
1318 		goto out;
1319 	}
1320 
1321 	/*
1322 	 * Load any hot spares for this pool.
1323 	 */
1324 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1325 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1326 	if (error != 0 && error != ENOENT) {
1327 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1328 		    VDEV_AUX_CORRUPT_DATA);
1329 		error = EIO;
1330 		goto out;
1331 	}
1332 	if (error == 0) {
1333 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1334 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1335 		    &spa->spa_spares.sav_config) != 0) {
1336 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1337 			    VDEV_AUX_CORRUPT_DATA);
1338 			error = EIO;
1339 			goto out;
1340 		}
1341 
1342 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1343 		spa_load_spares(spa);
1344 		spa_config_exit(spa, SCL_ALL, FTAG);
1345 	}
1346 
1347 	/*
1348 	 * Load any level 2 ARC devices for this pool.
1349 	 */
1350 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1351 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1352 	    &spa->spa_l2cache.sav_object);
1353 	if (error != 0 && error != ENOENT) {
1354 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1355 		    VDEV_AUX_CORRUPT_DATA);
1356 		error = EIO;
1357 		goto out;
1358 	}
1359 	if (error == 0) {
1360 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1361 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1362 		    &spa->spa_l2cache.sav_config) != 0) {
1363 			vdev_set_state(rvd, B_TRUE,
1364 			    VDEV_STATE_CANT_OPEN,
1365 			    VDEV_AUX_CORRUPT_DATA);
1366 			error = EIO;
1367 			goto out;
1368 		}
1369 
1370 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1371 		spa_load_l2cache(spa);
1372 		spa_config_exit(spa, SCL_ALL, FTAG);
1373 	}
1374 
1375 	if (spa_check_logs(spa)) {
1376 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1377 		    VDEV_AUX_BAD_LOG);
1378 		error = ENXIO;
1379 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1380 		goto out;
1381 	}
1382 
1383 
1384 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1385 
1386 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1387 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1388 
1389 	if (error && error != ENOENT) {
1390 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1391 		    VDEV_AUX_CORRUPT_DATA);
1392 		error = EIO;
1393 		goto out;
1394 	}
1395 
1396 	if (error == 0) {
1397 		(void) zap_lookup(spa->spa_meta_objset,
1398 		    spa->spa_pool_props_object,
1399 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1400 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1401 		(void) zap_lookup(spa->spa_meta_objset,
1402 		    spa->spa_pool_props_object,
1403 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1404 		    sizeof (uint64_t), 1, &autoreplace);
1405 		(void) zap_lookup(spa->spa_meta_objset,
1406 		    spa->spa_pool_props_object,
1407 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1408 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1409 		(void) zap_lookup(spa->spa_meta_objset,
1410 		    spa->spa_pool_props_object,
1411 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1412 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1413 	}
1414 
1415 	/*
1416 	 * If the 'autoreplace' property is set, then post a resource notifying
1417 	 * the ZFS DE that it should not issue any faults for unopenable
1418 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1419 	 * unopenable vdevs so that the normal autoreplace handler can take
1420 	 * over.
1421 	 */
1422 	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1423 		spa_check_removed(spa->spa_root_vdev);
1424 
1425 	/*
1426 	 * Load the vdev state for all toplevel vdevs.
1427 	 */
1428 	vdev_load(rvd);
1429 
1430 	/*
1431 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1432 	 */
1433 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1434 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1435 	spa_config_exit(spa, SCL_ALL, FTAG);
1436 
1437 	/*
1438 	 * Check the state of the root vdev.  If it can't be opened, it
1439 	 * indicates one or more toplevel vdevs are faulted.
1440 	 */
1441 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1442 		error = ENXIO;
1443 		goto out;
1444 	}
1445 
1446 	if (spa_writeable(spa)) {
1447 		dmu_tx_t *tx;
1448 		int need_update = B_FALSE;
1449 
1450 		ASSERT(state != SPA_LOAD_TRYIMPORT);
1451 
1452 		/*
1453 		 * Claim log blocks that haven't been committed yet.
1454 		 * This must all happen in a single txg.
1455 		 */
1456 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1457 		    spa_first_txg(spa));
1458 		(void) dmu_objset_find(spa_name(spa),
1459 		    zil_claim, tx, DS_FIND_CHILDREN);
1460 		dmu_tx_commit(tx);
1461 
1462 		spa->spa_sync_on = B_TRUE;
1463 		txg_sync_start(spa->spa_dsl_pool);
1464 
1465 		/*
1466 		 * Wait for all claims to sync.
1467 		 */
1468 		txg_wait_synced(spa->spa_dsl_pool, 0);
1469 
1470 		/*
1471 		 * If the config cache is stale, or we have uninitialized
1472 		 * metaslabs (see spa_vdev_add()), then update the config.
1473 		 */
1474 		if (config_cache_txg != spa->spa_config_txg ||
1475 		    state == SPA_LOAD_IMPORT)
1476 			need_update = B_TRUE;
1477 
1478 		for (int c = 0; c < rvd->vdev_children; c++)
1479 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1480 				need_update = B_TRUE;
1481 
1482 		/*
1483 		 * Update the config cache asychronously in case we're the
1484 		 * root pool, in which case the config cache isn't writable yet.
1485 		 */
1486 		if (need_update)
1487 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1488 
1489 		/*
1490 		 * Check all DTLs to see if anything needs resilvering.
1491 		 */
1492 		if (vdev_resilver_needed(rvd, NULL, NULL))
1493 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1494 	}
1495 
1496 	error = 0;
1497 out:
1498 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1499 	if (error && error != EBADF)
1500 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1501 	spa->spa_load_state = SPA_LOAD_NONE;
1502 	spa->spa_ena = 0;
1503 
1504 	return (error);
1505 }
1506 
1507 /*
1508  * Pool Open/Import
1509  *
1510  * The import case is identical to an open except that the configuration is sent
1511  * down from userland, instead of grabbed from the configuration cache.  For the
1512  * case of an open, the pool configuration will exist in the
1513  * POOL_STATE_UNINITIALIZED state.
1514  *
1515  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1516  * the same time open the pool, without having to keep around the spa_t in some
1517  * ambiguous state.
1518  */
1519 static int
1520 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1521 {
1522 	spa_t *spa;
1523 	int error;
1524 	int locked = B_FALSE;
1525 
1526 	*spapp = NULL;
1527 
1528 	/*
1529 	 * As disgusting as this is, we need to support recursive calls to this
1530 	 * function because dsl_dir_open() is called during spa_load(), and ends
1531 	 * up calling spa_open() again.  The real fix is to figure out how to
1532 	 * avoid dsl_dir_open() calling this in the first place.
1533 	 */
1534 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1535 		mutex_enter(&spa_namespace_lock);
1536 		locked = B_TRUE;
1537 	}
1538 
1539 	if ((spa = spa_lookup(pool)) == NULL) {
1540 		if (locked)
1541 			mutex_exit(&spa_namespace_lock);
1542 		return (ENOENT);
1543 	}
1544 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1545 
1546 		spa_activate(spa, spa_mode_global);
1547 
1548 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1549 
1550 		if (error == EBADF) {
1551 			/*
1552 			 * If vdev_validate() returns failure (indicated by
1553 			 * EBADF), it indicates that one of the vdevs indicates
1554 			 * that the pool has been exported or destroyed.  If
1555 			 * this is the case, the config cache is out of sync and
1556 			 * we should remove the pool from the namespace.
1557 			 */
1558 			spa_unload(spa);
1559 			spa_deactivate(spa);
1560 			spa_config_sync(spa, B_TRUE, B_TRUE);
1561 			spa_remove(spa);
1562 			if (locked)
1563 				mutex_exit(&spa_namespace_lock);
1564 			return (ENOENT);
1565 		}
1566 
1567 		if (error) {
1568 			/*
1569 			 * We can't open the pool, but we still have useful
1570 			 * information: the state of each vdev after the
1571 			 * attempted vdev_open().  Return this to the user.
1572 			 */
1573 			if (config != NULL && spa->spa_root_vdev != NULL)
1574 				*config = spa_config_generate(spa, NULL, -1ULL,
1575 				    B_TRUE);
1576 			spa_unload(spa);
1577 			spa_deactivate(spa);
1578 			spa->spa_last_open_failed = B_TRUE;
1579 			if (locked)
1580 				mutex_exit(&spa_namespace_lock);
1581 			*spapp = NULL;
1582 			return (error);
1583 		} else {
1584 			spa->spa_last_open_failed = B_FALSE;
1585 		}
1586 	}
1587 
1588 	spa_open_ref(spa, tag);
1589 
1590 	if (locked)
1591 		mutex_exit(&spa_namespace_lock);
1592 
1593 	*spapp = spa;
1594 
1595 	if (config != NULL)
1596 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1597 
1598 	return (0);
1599 }
1600 
1601 int
1602 spa_open(const char *name, spa_t **spapp, void *tag)
1603 {
1604 	return (spa_open_common(name, spapp, tag, NULL));
1605 }
1606 
1607 /*
1608  * Lookup the given spa_t, incrementing the inject count in the process,
1609  * preventing it from being exported or destroyed.
1610  */
1611 spa_t *
1612 spa_inject_addref(char *name)
1613 {
1614 	spa_t *spa;
1615 
1616 	mutex_enter(&spa_namespace_lock);
1617 	if ((spa = spa_lookup(name)) == NULL) {
1618 		mutex_exit(&spa_namespace_lock);
1619 		return (NULL);
1620 	}
1621 	spa->spa_inject_ref++;
1622 	mutex_exit(&spa_namespace_lock);
1623 
1624 	return (spa);
1625 }
1626 
1627 void
1628 spa_inject_delref(spa_t *spa)
1629 {
1630 	mutex_enter(&spa_namespace_lock);
1631 	spa->spa_inject_ref--;
1632 	mutex_exit(&spa_namespace_lock);
1633 }
1634 
1635 /*
1636  * Add spares device information to the nvlist.
1637  */
1638 static void
1639 spa_add_spares(spa_t *spa, nvlist_t *config)
1640 {
1641 	nvlist_t **spares;
1642 	uint_t i, nspares;
1643 	nvlist_t *nvroot;
1644 	uint64_t guid;
1645 	vdev_stat_t *vs;
1646 	uint_t vsc;
1647 	uint64_t pool;
1648 
1649 	if (spa->spa_spares.sav_count == 0)
1650 		return;
1651 
1652 	VERIFY(nvlist_lookup_nvlist(config,
1653 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1654 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1655 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1656 	if (nspares != 0) {
1657 		VERIFY(nvlist_add_nvlist_array(nvroot,
1658 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1659 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1660 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1661 
1662 		/*
1663 		 * Go through and find any spares which have since been
1664 		 * repurposed as an active spare.  If this is the case, update
1665 		 * their status appropriately.
1666 		 */
1667 		for (i = 0; i < nspares; i++) {
1668 			VERIFY(nvlist_lookup_uint64(spares[i],
1669 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1670 			if (spa_spare_exists(guid, &pool, NULL) &&
1671 			    pool != 0ULL) {
1672 				VERIFY(nvlist_lookup_uint64_array(
1673 				    spares[i], ZPOOL_CONFIG_STATS,
1674 				    (uint64_t **)&vs, &vsc) == 0);
1675 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1676 				vs->vs_aux = VDEV_AUX_SPARED;
1677 			}
1678 		}
1679 	}
1680 }
1681 
1682 /*
1683  * Add l2cache device information to the nvlist, including vdev stats.
1684  */
1685 static void
1686 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1687 {
1688 	nvlist_t **l2cache;
1689 	uint_t i, j, nl2cache;
1690 	nvlist_t *nvroot;
1691 	uint64_t guid;
1692 	vdev_t *vd;
1693 	vdev_stat_t *vs;
1694 	uint_t vsc;
1695 
1696 	if (spa->spa_l2cache.sav_count == 0)
1697 		return;
1698 
1699 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1700 
1701 	VERIFY(nvlist_lookup_nvlist(config,
1702 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1703 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1704 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1705 	if (nl2cache != 0) {
1706 		VERIFY(nvlist_add_nvlist_array(nvroot,
1707 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1708 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1709 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1710 
1711 		/*
1712 		 * Update level 2 cache device stats.
1713 		 */
1714 
1715 		for (i = 0; i < nl2cache; i++) {
1716 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1717 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1718 
1719 			vd = NULL;
1720 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1721 				if (guid ==
1722 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1723 					vd = spa->spa_l2cache.sav_vdevs[j];
1724 					break;
1725 				}
1726 			}
1727 			ASSERT(vd != NULL);
1728 
1729 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1730 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1731 			vdev_get_stats(vd, vs);
1732 		}
1733 	}
1734 
1735 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1736 }
1737 
1738 int
1739 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1740 {
1741 	int error;
1742 	spa_t *spa;
1743 
1744 	*config = NULL;
1745 	error = spa_open_common(name, &spa, FTAG, config);
1746 
1747 	if (spa && *config != NULL) {
1748 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1749 		    spa_get_errlog_size(spa)) == 0);
1750 
1751 		if (spa_suspended(spa))
1752 			VERIFY(nvlist_add_uint64(*config,
1753 			    ZPOOL_CONFIG_SUSPENDED, spa->spa_failmode) == 0);
1754 
1755 		spa_add_spares(spa, *config);
1756 		spa_add_l2cache(spa, *config);
1757 	}
1758 
1759 	/*
1760 	 * We want to get the alternate root even for faulted pools, so we cheat
1761 	 * and call spa_lookup() directly.
1762 	 */
1763 	if (altroot) {
1764 		if (spa == NULL) {
1765 			mutex_enter(&spa_namespace_lock);
1766 			spa = spa_lookup(name);
1767 			if (spa)
1768 				spa_altroot(spa, altroot, buflen);
1769 			else
1770 				altroot[0] = '\0';
1771 			spa = NULL;
1772 			mutex_exit(&spa_namespace_lock);
1773 		} else {
1774 			spa_altroot(spa, altroot, buflen);
1775 		}
1776 	}
1777 
1778 	if (spa != NULL)
1779 		spa_close(spa, FTAG);
1780 
1781 	return (error);
1782 }
1783 
1784 /*
1785  * Validate that the auxiliary device array is well formed.  We must have an
1786  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1787  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1788  * specified, as long as they are well-formed.
1789  */
1790 static int
1791 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1792     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1793     vdev_labeltype_t label)
1794 {
1795 	nvlist_t **dev;
1796 	uint_t i, ndev;
1797 	vdev_t *vd;
1798 	int error;
1799 
1800 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1801 
1802 	/*
1803 	 * It's acceptable to have no devs specified.
1804 	 */
1805 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1806 		return (0);
1807 
1808 	if (ndev == 0)
1809 		return (EINVAL);
1810 
1811 	/*
1812 	 * Make sure the pool is formatted with a version that supports this
1813 	 * device type.
1814 	 */
1815 	if (spa_version(spa) < version)
1816 		return (ENOTSUP);
1817 
1818 	/*
1819 	 * Set the pending device list so we correctly handle device in-use
1820 	 * checking.
1821 	 */
1822 	sav->sav_pending = dev;
1823 	sav->sav_npending = ndev;
1824 
1825 	for (i = 0; i < ndev; i++) {
1826 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1827 		    mode)) != 0)
1828 			goto out;
1829 
1830 		if (!vd->vdev_ops->vdev_op_leaf) {
1831 			vdev_free(vd);
1832 			error = EINVAL;
1833 			goto out;
1834 		}
1835 
1836 		/*
1837 		 * The L2ARC currently only supports disk devices in
1838 		 * kernel context.  For user-level testing, we allow it.
1839 		 */
1840 #ifdef _KERNEL
1841 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1842 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1843 			error = ENOTBLK;
1844 			goto out;
1845 		}
1846 #endif
1847 		vd->vdev_top = vd;
1848 
1849 		if ((error = vdev_open(vd)) == 0 &&
1850 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1851 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1852 			    vd->vdev_guid) == 0);
1853 		}
1854 
1855 		vdev_free(vd);
1856 
1857 		if (error &&
1858 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1859 			goto out;
1860 		else
1861 			error = 0;
1862 	}
1863 
1864 out:
1865 	sav->sav_pending = NULL;
1866 	sav->sav_npending = 0;
1867 	return (error);
1868 }
1869 
1870 static int
1871 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1872 {
1873 	int error;
1874 
1875 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1876 
1877 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1878 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1879 	    VDEV_LABEL_SPARE)) != 0) {
1880 		return (error);
1881 	}
1882 
1883 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1884 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
1885 	    VDEV_LABEL_L2CACHE));
1886 }
1887 
1888 static void
1889 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
1890     const char *config)
1891 {
1892 	int i;
1893 
1894 	if (sav->sav_config != NULL) {
1895 		nvlist_t **olddevs;
1896 		uint_t oldndevs;
1897 		nvlist_t **newdevs;
1898 
1899 		/*
1900 		 * Generate new dev list by concatentating with the
1901 		 * current dev list.
1902 		 */
1903 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
1904 		    &olddevs, &oldndevs) == 0);
1905 
1906 		newdevs = kmem_alloc(sizeof (void *) *
1907 		    (ndevs + oldndevs), KM_SLEEP);
1908 		for (i = 0; i < oldndevs; i++)
1909 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
1910 			    KM_SLEEP) == 0);
1911 		for (i = 0; i < ndevs; i++)
1912 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
1913 			    KM_SLEEP) == 0);
1914 
1915 		VERIFY(nvlist_remove(sav->sav_config, config,
1916 		    DATA_TYPE_NVLIST_ARRAY) == 0);
1917 
1918 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1919 		    config, newdevs, ndevs + oldndevs) == 0);
1920 		for (i = 0; i < oldndevs + ndevs; i++)
1921 			nvlist_free(newdevs[i]);
1922 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
1923 	} else {
1924 		/*
1925 		 * Generate a new dev list.
1926 		 */
1927 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
1928 		    KM_SLEEP) == 0);
1929 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
1930 		    devs, ndevs) == 0);
1931 	}
1932 }
1933 
1934 /*
1935  * Stop and drop level 2 ARC devices
1936  */
1937 void
1938 spa_l2cache_drop(spa_t *spa)
1939 {
1940 	vdev_t *vd;
1941 	int i;
1942 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1943 
1944 	for (i = 0; i < sav->sav_count; i++) {
1945 		uint64_t pool;
1946 
1947 		vd = sav->sav_vdevs[i];
1948 		ASSERT(vd != NULL);
1949 
1950 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1951 		    pool != 0ULL && l2arc_vdev_present(vd))
1952 			l2arc_remove_vdev(vd);
1953 		if (vd->vdev_isl2cache)
1954 			spa_l2cache_remove(vd);
1955 		vdev_clear_stats(vd);
1956 		(void) vdev_close(vd);
1957 	}
1958 }
1959 
1960 /*
1961  * Pool Creation
1962  */
1963 int
1964 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1965     const char *history_str, nvlist_t *zplprops)
1966 {
1967 	spa_t *spa;
1968 	char *altroot = NULL;
1969 	vdev_t *rvd;
1970 	dsl_pool_t *dp;
1971 	dmu_tx_t *tx;
1972 	int c, error = 0;
1973 	uint64_t txg = TXG_INITIAL;
1974 	nvlist_t **spares, **l2cache;
1975 	uint_t nspares, nl2cache;
1976 	uint64_t version;
1977 
1978 	/*
1979 	 * If this pool already exists, return failure.
1980 	 */
1981 	mutex_enter(&spa_namespace_lock);
1982 	if (spa_lookup(pool) != NULL) {
1983 		mutex_exit(&spa_namespace_lock);
1984 		return (EEXIST);
1985 	}
1986 
1987 	/*
1988 	 * Allocate a new spa_t structure.
1989 	 */
1990 	(void) nvlist_lookup_string(props,
1991 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1992 	spa = spa_add(pool, altroot);
1993 	spa_activate(spa, spa_mode_global);
1994 
1995 	spa->spa_uberblock.ub_txg = txg - 1;
1996 
1997 	if (props && (error = spa_prop_validate(spa, props))) {
1998 		spa_unload(spa);
1999 		spa_deactivate(spa);
2000 		spa_remove(spa);
2001 		mutex_exit(&spa_namespace_lock);
2002 		return (error);
2003 	}
2004 
2005 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2006 	    &version) != 0)
2007 		version = SPA_VERSION;
2008 	ASSERT(version <= SPA_VERSION);
2009 	spa->spa_uberblock.ub_version = version;
2010 	spa->spa_ubsync = spa->spa_uberblock;
2011 
2012 	/*
2013 	 * Create the root vdev.
2014 	 */
2015 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2016 
2017 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2018 
2019 	ASSERT(error != 0 || rvd != NULL);
2020 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2021 
2022 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2023 		error = EINVAL;
2024 
2025 	if (error == 0 &&
2026 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2027 	    (error = spa_validate_aux(spa, nvroot, txg,
2028 	    VDEV_ALLOC_ADD)) == 0) {
2029 		for (c = 0; c < rvd->vdev_children; c++)
2030 			vdev_init(rvd->vdev_child[c], txg);
2031 		vdev_config_dirty(rvd);
2032 	}
2033 
2034 	spa_config_exit(spa, SCL_ALL, FTAG);
2035 
2036 	if (error != 0) {
2037 		spa_unload(spa);
2038 		spa_deactivate(spa);
2039 		spa_remove(spa);
2040 		mutex_exit(&spa_namespace_lock);
2041 		return (error);
2042 	}
2043 
2044 	/*
2045 	 * Get the list of spares, if specified.
2046 	 */
2047 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2048 	    &spares, &nspares) == 0) {
2049 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2050 		    KM_SLEEP) == 0);
2051 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2052 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2053 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2054 		spa_load_spares(spa);
2055 		spa_config_exit(spa, SCL_ALL, FTAG);
2056 		spa->spa_spares.sav_sync = B_TRUE;
2057 	}
2058 
2059 	/*
2060 	 * Get the list of level 2 cache devices, if specified.
2061 	 */
2062 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2063 	    &l2cache, &nl2cache) == 0) {
2064 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2065 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2066 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2067 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2068 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2069 		spa_load_l2cache(spa);
2070 		spa_config_exit(spa, SCL_ALL, FTAG);
2071 		spa->spa_l2cache.sav_sync = B_TRUE;
2072 	}
2073 
2074 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2075 	spa->spa_meta_objset = dp->dp_meta_objset;
2076 
2077 	tx = dmu_tx_create_assigned(dp, txg);
2078 
2079 	/*
2080 	 * Create the pool config object.
2081 	 */
2082 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2083 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2084 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2085 
2086 	if (zap_add(spa->spa_meta_objset,
2087 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2088 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2089 		cmn_err(CE_PANIC, "failed to add pool config");
2090 	}
2091 
2092 	/* Newly created pools with the right version are always deflated. */
2093 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2094 		spa->spa_deflate = TRUE;
2095 		if (zap_add(spa->spa_meta_objset,
2096 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2097 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2098 			cmn_err(CE_PANIC, "failed to add deflate");
2099 		}
2100 	}
2101 
2102 	/*
2103 	 * Create the deferred-free bplist object.  Turn off compression
2104 	 * because sync-to-convergence takes longer if the blocksize
2105 	 * keeps changing.
2106 	 */
2107 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2108 	    1 << 14, tx);
2109 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2110 	    ZIO_COMPRESS_OFF, tx);
2111 
2112 	if (zap_add(spa->spa_meta_objset,
2113 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2114 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2115 		cmn_err(CE_PANIC, "failed to add bplist");
2116 	}
2117 
2118 	/*
2119 	 * Create the pool's history object.
2120 	 */
2121 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2122 		spa_history_create_obj(spa, tx);
2123 
2124 	/*
2125 	 * Set pool properties.
2126 	 */
2127 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2128 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2129 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2130 	if (props != NULL) {
2131 		spa_configfile_set(spa, props, B_FALSE);
2132 		spa_sync_props(spa, props, CRED(), tx);
2133 	}
2134 
2135 	dmu_tx_commit(tx);
2136 
2137 	spa->spa_sync_on = B_TRUE;
2138 	txg_sync_start(spa->spa_dsl_pool);
2139 
2140 	/*
2141 	 * We explicitly wait for the first transaction to complete so that our
2142 	 * bean counters are appropriately updated.
2143 	 */
2144 	txg_wait_synced(spa->spa_dsl_pool, txg);
2145 
2146 	spa_config_sync(spa, B_FALSE, B_TRUE);
2147 
2148 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2149 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2150 
2151 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2152 
2153 	mutex_exit(&spa_namespace_lock);
2154 
2155 	return (0);
2156 }
2157 
2158 /*
2159  * Import the given pool into the system.  We set up the necessary spa_t and
2160  * then call spa_load() to do the dirty work.
2161  */
2162 static int
2163 spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props,
2164     boolean_t isroot, boolean_t allowfaulted)
2165 {
2166 	spa_t *spa;
2167 	char *altroot = NULL;
2168 	int error, loaderr;
2169 	nvlist_t *nvroot;
2170 	nvlist_t **spares, **l2cache;
2171 	uint_t nspares, nl2cache;
2172 
2173 	/*
2174 	 * If a pool with this name exists, return failure.
2175 	 */
2176 	mutex_enter(&spa_namespace_lock);
2177 	if ((spa = spa_lookup(pool)) != NULL) {
2178 		if (isroot) {
2179 			/*
2180 			 * Remove the existing root pool from the
2181 			 * namespace so that we can replace it with
2182 			 * the correct config we just read in.
2183 			 */
2184 			ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
2185 			spa_remove(spa);
2186 		} else {
2187 			mutex_exit(&spa_namespace_lock);
2188 			return (EEXIST);
2189 		}
2190 	}
2191 
2192 	/*
2193 	 * Create and initialize the spa structure.
2194 	 */
2195 	(void) nvlist_lookup_string(props,
2196 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2197 	spa = spa_add(pool, altroot);
2198 	spa_activate(spa, spa_mode_global);
2199 
2200 	if (allowfaulted)
2201 		spa->spa_import_faulted = B_TRUE;
2202 	spa->spa_is_root = isroot;
2203 
2204 	/*
2205 	 * Pass off the heavy lifting to spa_load().
2206 	 * Pass TRUE for mosconfig (unless this is a root pool) because
2207 	 * the user-supplied config is actually the one to trust when
2208 	 * doing an import.
2209 	 */
2210 	loaderr = error = spa_load(spa, config, SPA_LOAD_IMPORT, !isroot);
2211 
2212 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2213 	/*
2214 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
2215 	 * and conflicts with spa_has_spare().
2216 	 */
2217 	if (!isroot && spa->spa_spares.sav_config) {
2218 		nvlist_free(spa->spa_spares.sav_config);
2219 		spa->spa_spares.sav_config = NULL;
2220 		spa_load_spares(spa);
2221 	}
2222 	if (!isroot && spa->spa_l2cache.sav_config) {
2223 		nvlist_free(spa->spa_l2cache.sav_config);
2224 		spa->spa_l2cache.sav_config = NULL;
2225 		spa_load_l2cache(spa);
2226 	}
2227 
2228 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2229 	    &nvroot) == 0);
2230 	if (error == 0)
2231 		error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE);
2232 	if (error == 0)
2233 		error = spa_validate_aux(spa, nvroot, -1ULL,
2234 		    VDEV_ALLOC_L2CACHE);
2235 	spa_config_exit(spa, SCL_ALL, FTAG);
2236 
2237 	if (props != NULL)
2238 		spa_configfile_set(spa, props, B_FALSE);
2239 
2240 	if (error != 0 || (props && spa_writeable(spa) &&
2241 	    (error = spa_prop_set(spa, props)))) {
2242 		if (loaderr != 0 && loaderr != EINVAL && allowfaulted) {
2243 			/*
2244 			 * If we failed to load the pool, but 'allowfaulted' is
2245 			 * set, then manually set the config as if the config
2246 			 * passed in was specified in the cache file.
2247 			 */
2248 			error = 0;
2249 			spa->spa_import_faulted = B_FALSE;
2250 			if (spa->spa_config == NULL)
2251 				spa->spa_config = spa_config_generate(spa,
2252 				    NULL, -1ULL, B_TRUE);
2253 			spa_unload(spa);
2254 			spa_deactivate(spa);
2255 			spa_config_sync(spa, B_FALSE, B_TRUE);
2256 		} else {
2257 			spa_unload(spa);
2258 			spa_deactivate(spa);
2259 			spa_remove(spa);
2260 		}
2261 		mutex_exit(&spa_namespace_lock);
2262 		return (error);
2263 	}
2264 
2265 	/*
2266 	 * Override any spares and level 2 cache devices as specified by
2267 	 * the user, as these may have correct device names/devids, etc.
2268 	 */
2269 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2270 	    &spares, &nspares) == 0) {
2271 		if (spa->spa_spares.sav_config)
2272 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2273 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2274 		else
2275 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2276 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2277 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2278 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2279 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2280 		spa_load_spares(spa);
2281 		spa_config_exit(spa, SCL_ALL, FTAG);
2282 		spa->spa_spares.sav_sync = B_TRUE;
2283 	}
2284 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2285 	    &l2cache, &nl2cache) == 0) {
2286 		if (spa->spa_l2cache.sav_config)
2287 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2288 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2289 		else
2290 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2291 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2292 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2293 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2294 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2295 		spa_load_l2cache(spa);
2296 		spa_config_exit(spa, SCL_ALL, FTAG);
2297 		spa->spa_l2cache.sav_sync = B_TRUE;
2298 	}
2299 
2300 	if (spa_writeable(spa)) {
2301 		/*
2302 		 * Update the config cache to include the newly-imported pool.
2303 		 */
2304 		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot);
2305 	}
2306 
2307 	spa->spa_import_faulted = B_FALSE;
2308 	mutex_exit(&spa_namespace_lock);
2309 
2310 	return (0);
2311 }
2312 
2313 #ifdef _KERNEL
2314 /*
2315  * Build a "root" vdev for a top level vdev read in from a rootpool
2316  * device label.
2317  */
2318 static void
2319 spa_build_rootpool_config(nvlist_t *config)
2320 {
2321 	nvlist_t *nvtop, *nvroot;
2322 	uint64_t pgid;
2323 
2324 	/*
2325 	 * Add this top-level vdev to the child array.
2326 	 */
2327 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop)
2328 	    == 0);
2329 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid)
2330 	    == 0);
2331 
2332 	/*
2333 	 * Put this pool's top-level vdevs into a root vdev.
2334 	 */
2335 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2336 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT)
2337 	    == 0);
2338 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2339 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2340 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2341 	    &nvtop, 1) == 0);
2342 
2343 	/*
2344 	 * Replace the existing vdev_tree with the new root vdev in
2345 	 * this pool's configuration (remove the old, add the new).
2346 	 */
2347 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2348 	nvlist_free(nvroot);
2349 }
2350 
2351 /*
2352  * Get the root pool information from the root disk, then import the root pool
2353  * during the system boot up time.
2354  */
2355 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2356 
2357 int
2358 spa_check_rootconf(char *devpath, char *devid, nvlist_t **bestconf,
2359     uint64_t *besttxg)
2360 {
2361 	nvlist_t *config;
2362 	uint64_t txg;
2363 	int error;
2364 
2365 	if (error = vdev_disk_read_rootlabel(devpath, devid, &config))
2366 		return (error);
2367 
2368 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2369 
2370 	if (bestconf != NULL)
2371 		*bestconf = config;
2372 	else
2373 		nvlist_free(config);
2374 	*besttxg = txg;
2375 	return (0);
2376 }
2377 
2378 boolean_t
2379 spa_rootdev_validate(nvlist_t *nv)
2380 {
2381 	uint64_t ival;
2382 
2383 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 ||
2384 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 ||
2385 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0)
2386 		return (B_FALSE);
2387 
2388 	return (B_TRUE);
2389 }
2390 
2391 
2392 /*
2393  * Given the boot device's physical path or devid, check if the device
2394  * is in a valid state.  If so, return the configuration from the vdev
2395  * label.
2396  */
2397 int
2398 spa_get_rootconf(char *devpath, char *devid, nvlist_t **bestconf)
2399 {
2400 	nvlist_t *conf = NULL;
2401 	uint64_t txg = 0;
2402 	nvlist_t *nvtop, **child;
2403 	char *type;
2404 	char *bootpath = NULL;
2405 	uint_t children, c;
2406 	char *tmp;
2407 	int error;
2408 
2409 	if (devpath && ((tmp = strchr(devpath, ' ')) != NULL))
2410 		*tmp = '\0';
2411 	if (error = spa_check_rootconf(devpath, devid, &conf, &txg)) {
2412 		cmn_err(CE_NOTE, "error reading device label");
2413 		return (error);
2414 	}
2415 	if (txg == 0) {
2416 		cmn_err(CE_NOTE, "this device is detached");
2417 		nvlist_free(conf);
2418 		return (EINVAL);
2419 	}
2420 
2421 	VERIFY(nvlist_lookup_nvlist(conf, ZPOOL_CONFIG_VDEV_TREE,
2422 	    &nvtop) == 0);
2423 	VERIFY(nvlist_lookup_string(nvtop, ZPOOL_CONFIG_TYPE, &type) == 0);
2424 
2425 	if (strcmp(type, VDEV_TYPE_DISK) == 0) {
2426 		if (spa_rootdev_validate(nvtop)) {
2427 			goto out;
2428 		} else {
2429 			nvlist_free(conf);
2430 			return (EINVAL);
2431 		}
2432 	}
2433 
2434 	ASSERT(strcmp(type, VDEV_TYPE_MIRROR) == 0);
2435 
2436 	VERIFY(nvlist_lookup_nvlist_array(nvtop, ZPOOL_CONFIG_CHILDREN,
2437 	    &child, &children) == 0);
2438 
2439 	/*
2440 	 * Go thru vdevs in the mirror to see if the given device
2441 	 * has the most recent txg. Only the device with the most
2442 	 * recent txg has valid information and should be booted.
2443 	 */
2444 	for (c = 0; c < children; c++) {
2445 		char *cdevid, *cpath;
2446 		uint64_t tmptxg;
2447 
2448 		cpath = NULL;
2449 		cdevid = NULL;
2450 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_PHYS_PATH,
2451 		    &cpath) != 0 && nvlist_lookup_string(child[c],
2452 		    ZPOOL_CONFIG_DEVID, &cdevid) != 0)
2453 			return (EINVAL);
2454 		if ((spa_check_rootconf(cpath, cdevid, NULL,
2455 		    &tmptxg) == 0) && (tmptxg > txg)) {
2456 			txg = tmptxg;
2457 			VERIFY(nvlist_lookup_string(child[c],
2458 			    ZPOOL_CONFIG_PATH, &bootpath) == 0);
2459 		}
2460 	}
2461 
2462 	/* Does the best device match the one we've booted from? */
2463 	if (bootpath) {
2464 		cmn_err(CE_NOTE, "try booting from '%s'", bootpath);
2465 		return (EINVAL);
2466 	}
2467 out:
2468 	*bestconf = conf;
2469 	return (0);
2470 }
2471 
2472 /*
2473  * Import a root pool.
2474  *
2475  * For x86. devpath_list will consist of devid and/or physpath name of
2476  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2477  * The GRUB "findroot" command will return the vdev we should boot.
2478  *
2479  * For Sparc, devpath_list consists the physpath name of the booting device
2480  * no matter the rootpool is a single device pool or a mirrored pool.
2481  * e.g.
2482  *	"/pci@1f,0/ide@d/disk@0,0:a"
2483  */
2484 int
2485 spa_import_rootpool(char *devpath, char *devid)
2486 {
2487 	nvlist_t *conf = NULL;
2488 	char *pname;
2489 	int error;
2490 
2491 	/*
2492 	 * Get the vdev pathname and configuation from the most
2493 	 * recently updated vdev (highest txg).
2494 	 */
2495 	if (error = spa_get_rootconf(devpath, devid, &conf))
2496 		goto msg_out;
2497 
2498 	/*
2499 	 * Add type "root" vdev to the config.
2500 	 */
2501 	spa_build_rootpool_config(conf);
2502 
2503 	VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0);
2504 
2505 	/*
2506 	 * We specify 'allowfaulted' for this to be treated like spa_open()
2507 	 * instead of spa_import().  This prevents us from marking vdevs as
2508 	 * persistently unavailable, and generates FMA ereports as if it were a
2509 	 * pool open, not import.
2510 	 */
2511 	error = spa_import_common(pname, conf, NULL, B_TRUE, B_TRUE);
2512 	ASSERT(error != EEXIST);
2513 
2514 	nvlist_free(conf);
2515 	return (error);
2516 
2517 msg_out:
2518 	cmn_err(CE_NOTE, "\n"
2519 	    "  ***************************************************  \n"
2520 	    "  *  This device is not bootable!                   *  \n"
2521 	    "  *  It is either offlined or detached or faulted.  *  \n"
2522 	    "  *  Please try to boot from a different device.    *  \n"
2523 	    "  ***************************************************  ");
2524 
2525 	return (error);
2526 }
2527 #endif
2528 
2529 /*
2530  * Import a non-root pool into the system.
2531  */
2532 int
2533 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2534 {
2535 	return (spa_import_common(pool, config, props, B_FALSE, B_FALSE));
2536 }
2537 
2538 int
2539 spa_import_faulted(const char *pool, nvlist_t *config, nvlist_t *props)
2540 {
2541 	return (spa_import_common(pool, config, props, B_FALSE, B_TRUE));
2542 }
2543 
2544 
2545 /*
2546  * This (illegal) pool name is used when temporarily importing a spa_t in order
2547  * to get the vdev stats associated with the imported devices.
2548  */
2549 #define	TRYIMPORT_NAME	"$import"
2550 
2551 nvlist_t *
2552 spa_tryimport(nvlist_t *tryconfig)
2553 {
2554 	nvlist_t *config = NULL;
2555 	char *poolname;
2556 	spa_t *spa;
2557 	uint64_t state;
2558 	int error;
2559 
2560 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2561 		return (NULL);
2562 
2563 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2564 		return (NULL);
2565 
2566 	/*
2567 	 * Create and initialize the spa structure.
2568 	 */
2569 	mutex_enter(&spa_namespace_lock);
2570 	spa = spa_add(TRYIMPORT_NAME, NULL);
2571 	spa_activate(spa, FREAD);
2572 
2573 	/*
2574 	 * Pass off the heavy lifting to spa_load().
2575 	 * Pass TRUE for mosconfig because the user-supplied config
2576 	 * is actually the one to trust when doing an import.
2577 	 */
2578 	error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2579 
2580 	/*
2581 	 * If 'tryconfig' was at least parsable, return the current config.
2582 	 */
2583 	if (spa->spa_root_vdev != NULL) {
2584 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2585 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2586 		    poolname) == 0);
2587 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2588 		    state) == 0);
2589 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2590 		    spa->spa_uberblock.ub_timestamp) == 0);
2591 
2592 		/*
2593 		 * If the bootfs property exists on this pool then we
2594 		 * copy it out so that external consumers can tell which
2595 		 * pools are bootable.
2596 		 */
2597 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
2598 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2599 
2600 			/*
2601 			 * We have to play games with the name since the
2602 			 * pool was opened as TRYIMPORT_NAME.
2603 			 */
2604 			if (dsl_dsobj_to_dsname(spa_name(spa),
2605 			    spa->spa_bootfs, tmpname) == 0) {
2606 				char *cp;
2607 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2608 
2609 				cp = strchr(tmpname, '/');
2610 				if (cp == NULL) {
2611 					(void) strlcpy(dsname, tmpname,
2612 					    MAXPATHLEN);
2613 				} else {
2614 					(void) snprintf(dsname, MAXPATHLEN,
2615 					    "%s/%s", poolname, ++cp);
2616 				}
2617 				VERIFY(nvlist_add_string(config,
2618 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2619 				kmem_free(dsname, MAXPATHLEN);
2620 			}
2621 			kmem_free(tmpname, MAXPATHLEN);
2622 		}
2623 
2624 		/*
2625 		 * Add the list of hot spares and level 2 cache devices.
2626 		 */
2627 		spa_add_spares(spa, config);
2628 		spa_add_l2cache(spa, config);
2629 	}
2630 
2631 	spa_unload(spa);
2632 	spa_deactivate(spa);
2633 	spa_remove(spa);
2634 	mutex_exit(&spa_namespace_lock);
2635 
2636 	return (config);
2637 }
2638 
2639 /*
2640  * Pool export/destroy
2641  *
2642  * The act of destroying or exporting a pool is very simple.  We make sure there
2643  * is no more pending I/O and any references to the pool are gone.  Then, we
2644  * update the pool state and sync all the labels to disk, removing the
2645  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
2646  * we don't sync the labels or remove the configuration cache.
2647  */
2648 static int
2649 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2650     boolean_t force, boolean_t hardforce)
2651 {
2652 	spa_t *spa;
2653 
2654 	if (oldconfig)
2655 		*oldconfig = NULL;
2656 
2657 	if (!(spa_mode_global & FWRITE))
2658 		return (EROFS);
2659 
2660 	mutex_enter(&spa_namespace_lock);
2661 	if ((spa = spa_lookup(pool)) == NULL) {
2662 		mutex_exit(&spa_namespace_lock);
2663 		return (ENOENT);
2664 	}
2665 
2666 	/*
2667 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2668 	 * reacquire the namespace lock, and see if we can export.
2669 	 */
2670 	spa_open_ref(spa, FTAG);
2671 	mutex_exit(&spa_namespace_lock);
2672 	spa_async_suspend(spa);
2673 	mutex_enter(&spa_namespace_lock);
2674 	spa_close(spa, FTAG);
2675 
2676 	/*
2677 	 * The pool will be in core if it's openable,
2678 	 * in which case we can modify its state.
2679 	 */
2680 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2681 		/*
2682 		 * Objsets may be open only because they're dirty, so we
2683 		 * have to force it to sync before checking spa_refcnt.
2684 		 */
2685 		txg_wait_synced(spa->spa_dsl_pool, 0);
2686 
2687 		/*
2688 		 * A pool cannot be exported or destroyed if there are active
2689 		 * references.  If we are resetting a pool, allow references by
2690 		 * fault injection handlers.
2691 		 */
2692 		if (!spa_refcount_zero(spa) ||
2693 		    (spa->spa_inject_ref != 0 &&
2694 		    new_state != POOL_STATE_UNINITIALIZED)) {
2695 			spa_async_resume(spa);
2696 			mutex_exit(&spa_namespace_lock);
2697 			return (EBUSY);
2698 		}
2699 
2700 		/*
2701 		 * A pool cannot be exported if it has an active shared spare.
2702 		 * This is to prevent other pools stealing the active spare
2703 		 * from an exported pool. At user's own will, such pool can
2704 		 * be forcedly exported.
2705 		 */
2706 		if (!force && new_state == POOL_STATE_EXPORTED &&
2707 		    spa_has_active_shared_spare(spa)) {
2708 			spa_async_resume(spa);
2709 			mutex_exit(&spa_namespace_lock);
2710 			return (EXDEV);
2711 		}
2712 
2713 		/*
2714 		 * We want this to be reflected on every label,
2715 		 * so mark them all dirty.  spa_unload() will do the
2716 		 * final sync that pushes these changes out.
2717 		 */
2718 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
2719 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2720 			spa->spa_state = new_state;
2721 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2722 			vdev_config_dirty(spa->spa_root_vdev);
2723 			spa_config_exit(spa, SCL_ALL, FTAG);
2724 		}
2725 	}
2726 
2727 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2728 
2729 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2730 		spa_unload(spa);
2731 		spa_deactivate(spa);
2732 	}
2733 
2734 	if (oldconfig && spa->spa_config)
2735 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2736 
2737 	if (new_state != POOL_STATE_UNINITIALIZED) {
2738 		if (!hardforce)
2739 			spa_config_sync(spa, B_TRUE, B_TRUE);
2740 		spa_remove(spa);
2741 	}
2742 	mutex_exit(&spa_namespace_lock);
2743 
2744 	return (0);
2745 }
2746 
2747 /*
2748  * Destroy a storage pool.
2749  */
2750 int
2751 spa_destroy(char *pool)
2752 {
2753 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
2754 	    B_FALSE, B_FALSE));
2755 }
2756 
2757 /*
2758  * Export a storage pool.
2759  */
2760 int
2761 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
2762     boolean_t hardforce)
2763 {
2764 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
2765 	    force, hardforce));
2766 }
2767 
2768 /*
2769  * Similar to spa_export(), this unloads the spa_t without actually removing it
2770  * from the namespace in any way.
2771  */
2772 int
2773 spa_reset(char *pool)
2774 {
2775 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2776 	    B_FALSE, B_FALSE));
2777 }
2778 
2779 /*
2780  * ==========================================================================
2781  * Device manipulation
2782  * ==========================================================================
2783  */
2784 
2785 /*
2786  * Add a device to a storage pool.
2787  */
2788 int
2789 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2790 {
2791 	uint64_t txg;
2792 	int error;
2793 	vdev_t *rvd = spa->spa_root_vdev;
2794 	vdev_t *vd, *tvd;
2795 	nvlist_t **spares, **l2cache;
2796 	uint_t nspares, nl2cache;
2797 
2798 	txg = spa_vdev_enter(spa);
2799 
2800 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2801 	    VDEV_ALLOC_ADD)) != 0)
2802 		return (spa_vdev_exit(spa, NULL, txg, error));
2803 
2804 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
2805 
2806 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2807 	    &nspares) != 0)
2808 		nspares = 0;
2809 
2810 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2811 	    &nl2cache) != 0)
2812 		nl2cache = 0;
2813 
2814 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2815 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2816 
2817 	if (vd->vdev_children != 0 &&
2818 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
2819 		return (spa_vdev_exit(spa, vd, txg, error));
2820 
2821 	/*
2822 	 * We must validate the spares and l2cache devices after checking the
2823 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2824 	 */
2825 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2826 		return (spa_vdev_exit(spa, vd, txg, error));
2827 
2828 	/*
2829 	 * Transfer each new top-level vdev from vd to rvd.
2830 	 */
2831 	for (int c = 0; c < vd->vdev_children; c++) {
2832 		tvd = vd->vdev_child[c];
2833 		vdev_remove_child(vd, tvd);
2834 		tvd->vdev_id = rvd->vdev_children;
2835 		vdev_add_child(rvd, tvd);
2836 		vdev_config_dirty(tvd);
2837 	}
2838 
2839 	if (nspares != 0) {
2840 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2841 		    ZPOOL_CONFIG_SPARES);
2842 		spa_load_spares(spa);
2843 		spa->spa_spares.sav_sync = B_TRUE;
2844 	}
2845 
2846 	if (nl2cache != 0) {
2847 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2848 		    ZPOOL_CONFIG_L2CACHE);
2849 		spa_load_l2cache(spa);
2850 		spa->spa_l2cache.sav_sync = B_TRUE;
2851 	}
2852 
2853 	/*
2854 	 * We have to be careful when adding new vdevs to an existing pool.
2855 	 * If other threads start allocating from these vdevs before we
2856 	 * sync the config cache, and we lose power, then upon reboot we may
2857 	 * fail to open the pool because there are DVAs that the config cache
2858 	 * can't translate.  Therefore, we first add the vdevs without
2859 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2860 	 * and then let spa_config_update() initialize the new metaslabs.
2861 	 *
2862 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2863 	 * if we lose power at any point in this sequence, the remaining
2864 	 * steps will be completed the next time we load the pool.
2865 	 */
2866 	(void) spa_vdev_exit(spa, vd, txg, 0);
2867 
2868 	mutex_enter(&spa_namespace_lock);
2869 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2870 	mutex_exit(&spa_namespace_lock);
2871 
2872 	return (0);
2873 }
2874 
2875 /*
2876  * Attach a device to a mirror.  The arguments are the path to any device
2877  * in the mirror, and the nvroot for the new device.  If the path specifies
2878  * a device that is not mirrored, we automatically insert the mirror vdev.
2879  *
2880  * If 'replacing' is specified, the new device is intended to replace the
2881  * existing device; in this case the two devices are made into their own
2882  * mirror using the 'replacing' vdev, which is functionally identical to
2883  * the mirror vdev (it actually reuses all the same ops) but has a few
2884  * extra rules: you can't attach to it after it's been created, and upon
2885  * completion of resilvering, the first disk (the one being replaced)
2886  * is automatically detached.
2887  */
2888 int
2889 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2890 {
2891 	uint64_t txg, open_txg;
2892 	vdev_t *rvd = spa->spa_root_vdev;
2893 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2894 	vdev_ops_t *pvops;
2895 	dmu_tx_t *tx;
2896 	char *oldvdpath, *newvdpath;
2897 	int newvd_isspare;
2898 	int error;
2899 
2900 	txg = spa_vdev_enter(spa);
2901 
2902 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
2903 
2904 	if (oldvd == NULL)
2905 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2906 
2907 	if (!oldvd->vdev_ops->vdev_op_leaf)
2908 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2909 
2910 	pvd = oldvd->vdev_parent;
2911 
2912 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2913 	    VDEV_ALLOC_ADD)) != 0)
2914 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2915 
2916 	if (newrootvd->vdev_children != 1)
2917 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2918 
2919 	newvd = newrootvd->vdev_child[0];
2920 
2921 	if (!newvd->vdev_ops->vdev_op_leaf)
2922 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2923 
2924 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2925 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2926 
2927 	/*
2928 	 * Spares can't replace logs
2929 	 */
2930 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
2931 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2932 
2933 	if (!replacing) {
2934 		/*
2935 		 * For attach, the only allowable parent is a mirror or the root
2936 		 * vdev.
2937 		 */
2938 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2939 		    pvd->vdev_ops != &vdev_root_ops)
2940 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2941 
2942 		pvops = &vdev_mirror_ops;
2943 	} else {
2944 		/*
2945 		 * Active hot spares can only be replaced by inactive hot
2946 		 * spares.
2947 		 */
2948 		if (pvd->vdev_ops == &vdev_spare_ops &&
2949 		    pvd->vdev_child[1] == oldvd &&
2950 		    !spa_has_spare(spa, newvd->vdev_guid))
2951 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2952 
2953 		/*
2954 		 * If the source is a hot spare, and the parent isn't already a
2955 		 * spare, then we want to create a new hot spare.  Otherwise, we
2956 		 * want to create a replacing vdev.  The user is not allowed to
2957 		 * attach to a spared vdev child unless the 'isspare' state is
2958 		 * the same (spare replaces spare, non-spare replaces
2959 		 * non-spare).
2960 		 */
2961 		if (pvd->vdev_ops == &vdev_replacing_ops)
2962 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2963 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2964 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2965 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2966 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2967 		    newvd->vdev_isspare)
2968 			pvops = &vdev_spare_ops;
2969 		else
2970 			pvops = &vdev_replacing_ops;
2971 	}
2972 
2973 	/*
2974 	 * Compare the new device size with the replaceable/attachable
2975 	 * device size.
2976 	 */
2977 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2978 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2979 
2980 	/*
2981 	 * The new device cannot have a higher alignment requirement
2982 	 * than the top-level vdev.
2983 	 */
2984 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
2985 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
2986 
2987 	/*
2988 	 * If this is an in-place replacement, update oldvd's path and devid
2989 	 * to make it distinguishable from newvd, and unopenable from now on.
2990 	 */
2991 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
2992 		spa_strfree(oldvd->vdev_path);
2993 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
2994 		    KM_SLEEP);
2995 		(void) sprintf(oldvd->vdev_path, "%s/%s",
2996 		    newvd->vdev_path, "old");
2997 		if (oldvd->vdev_devid != NULL) {
2998 			spa_strfree(oldvd->vdev_devid);
2999 			oldvd->vdev_devid = NULL;
3000 		}
3001 	}
3002 
3003 	/*
3004 	 * If the parent is not a mirror, or if we're replacing, insert the new
3005 	 * mirror/replacing/spare vdev above oldvd.
3006 	 */
3007 	if (pvd->vdev_ops != pvops)
3008 		pvd = vdev_add_parent(oldvd, pvops);
3009 
3010 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3011 	ASSERT(pvd->vdev_ops == pvops);
3012 	ASSERT(oldvd->vdev_parent == pvd);
3013 
3014 	/*
3015 	 * Extract the new device from its root and add it to pvd.
3016 	 */
3017 	vdev_remove_child(newrootvd, newvd);
3018 	newvd->vdev_id = pvd->vdev_children;
3019 	vdev_add_child(pvd, newvd);
3020 
3021 	/*
3022 	 * If newvd is smaller than oldvd, but larger than its rsize,
3023 	 * the addition of newvd may have decreased our parent's asize.
3024 	 */
3025 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
3026 
3027 	tvd = newvd->vdev_top;
3028 	ASSERT(pvd->vdev_top == tvd);
3029 	ASSERT(tvd->vdev_parent == rvd);
3030 
3031 	vdev_config_dirty(tvd);
3032 
3033 	/*
3034 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3035 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3036 	 */
3037 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3038 
3039 	vdev_dtl_dirty(newvd, DTL_MISSING,
3040 	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3041 
3042 	if (newvd->vdev_isspare)
3043 		spa_spare_activate(newvd);
3044 	oldvdpath = spa_strdup(oldvd->vdev_path);
3045 	newvdpath = spa_strdup(newvd->vdev_path);
3046 	newvd_isspare = newvd->vdev_isspare;
3047 
3048 	/*
3049 	 * Mark newvd's DTL dirty in this txg.
3050 	 */
3051 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3052 
3053 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3054 
3055 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3056 	if (dmu_tx_assign(tx, TXG_WAIT) == 0) {
3057 		spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, tx,
3058 		    CRED(),  "%s vdev=%s %s vdev=%s",
3059 		    replacing && newvd_isspare ? "spare in" :
3060 		    replacing ? "replace" : "attach", newvdpath,
3061 		    replacing ? "for" : "to", oldvdpath);
3062 		dmu_tx_commit(tx);
3063 	} else {
3064 		dmu_tx_abort(tx);
3065 	}
3066 
3067 	spa_strfree(oldvdpath);
3068 	spa_strfree(newvdpath);
3069 
3070 	/*
3071 	 * Kick off a resilver to update newvd.
3072 	 */
3073 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3074 
3075 	return (0);
3076 }
3077 
3078 /*
3079  * Detach a device from a mirror or replacing vdev.
3080  * If 'replace_done' is specified, only detach if the parent
3081  * is a replacing vdev.
3082  */
3083 int
3084 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3085 {
3086 	uint64_t txg;
3087 	int error;
3088 	vdev_t *rvd = spa->spa_root_vdev;
3089 	vdev_t *vd, *pvd, *cvd, *tvd;
3090 	boolean_t unspare = B_FALSE;
3091 	uint64_t unspare_guid;
3092 	size_t len;
3093 
3094 	txg = spa_vdev_enter(spa);
3095 
3096 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3097 
3098 	if (vd == NULL)
3099 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3100 
3101 	if (!vd->vdev_ops->vdev_op_leaf)
3102 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3103 
3104 	pvd = vd->vdev_parent;
3105 
3106 	/*
3107 	 * If the parent/child relationship is not as expected, don't do it.
3108 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3109 	 * vdev that's replacing B with C.  The user's intent in replacing
3110 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3111 	 * the replace by detaching C, the expected behavior is to end up
3112 	 * M(A,B).  But suppose that right after deciding to detach C,
3113 	 * the replacement of B completes.  We would have M(A,C), and then
3114 	 * ask to detach C, which would leave us with just A -- not what
3115 	 * the user wanted.  To prevent this, we make sure that the
3116 	 * parent/child relationship hasn't changed -- in this example,
3117 	 * that C's parent is still the replacing vdev R.
3118 	 */
3119 	if (pvd->vdev_guid != pguid && pguid != 0)
3120 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3121 
3122 	/*
3123 	 * If replace_done is specified, only remove this device if it's
3124 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3125 	 * disk can be removed.
3126 	 */
3127 	if (replace_done) {
3128 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3129 			if (vd->vdev_id != 0)
3130 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3131 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3132 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3133 		}
3134 	}
3135 
3136 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3137 	    spa_version(spa) >= SPA_VERSION_SPARES);
3138 
3139 	/*
3140 	 * Only mirror, replacing, and spare vdevs support detach.
3141 	 */
3142 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3143 	    pvd->vdev_ops != &vdev_mirror_ops &&
3144 	    pvd->vdev_ops != &vdev_spare_ops)
3145 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3146 
3147 	/*
3148 	 * If this device has the only valid copy of some data,
3149 	 * we cannot safely detach it.
3150 	 */
3151 	if (vdev_dtl_required(vd))
3152 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3153 
3154 	ASSERT(pvd->vdev_children >= 2);
3155 
3156 	/*
3157 	 * If we are detaching the second disk from a replacing vdev, then
3158 	 * check to see if we changed the original vdev's path to have "/old"
3159 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3160 	 */
3161 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3162 	    pvd->vdev_child[0]->vdev_path != NULL &&
3163 	    pvd->vdev_child[1]->vdev_path != NULL) {
3164 		ASSERT(pvd->vdev_child[1] == vd);
3165 		cvd = pvd->vdev_child[0];
3166 		len = strlen(vd->vdev_path);
3167 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3168 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3169 			spa_strfree(cvd->vdev_path);
3170 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3171 		}
3172 	}
3173 
3174 	/*
3175 	 * If we are detaching the original disk from a spare, then it implies
3176 	 * that the spare should become a real disk, and be removed from the
3177 	 * active spare list for the pool.
3178 	 */
3179 	if (pvd->vdev_ops == &vdev_spare_ops &&
3180 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3181 		unspare = B_TRUE;
3182 
3183 	/*
3184 	 * Erase the disk labels so the disk can be used for other things.
3185 	 * This must be done after all other error cases are handled,
3186 	 * but before we disembowel vd (so we can still do I/O to it).
3187 	 * But if we can't do it, don't treat the error as fatal --
3188 	 * it may be that the unwritability of the disk is the reason
3189 	 * it's being detached!
3190 	 */
3191 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3192 
3193 	/*
3194 	 * Remove vd from its parent and compact the parent's children.
3195 	 */
3196 	vdev_remove_child(pvd, vd);
3197 	vdev_compact_children(pvd);
3198 
3199 	/*
3200 	 * Remember one of the remaining children so we can get tvd below.
3201 	 */
3202 	cvd = pvd->vdev_child[0];
3203 
3204 	/*
3205 	 * If we need to remove the remaining child from the list of hot spares,
3206 	 * do it now, marking the vdev as no longer a spare in the process.
3207 	 * We must do this before vdev_remove_parent(), because that can
3208 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3209 	 * reason, we must remove the spare now, in the same txg as the detach;
3210 	 * otherwise someone could attach a new sibling, change the GUID, and
3211 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3212 	 */
3213 	if (unspare) {
3214 		ASSERT(cvd->vdev_isspare);
3215 		spa_spare_remove(cvd);
3216 		unspare_guid = cvd->vdev_guid;
3217 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3218 	}
3219 
3220 	/*
3221 	 * If the parent mirror/replacing vdev only has one child,
3222 	 * the parent is no longer needed.  Remove it from the tree.
3223 	 */
3224 	if (pvd->vdev_children == 1)
3225 		vdev_remove_parent(cvd);
3226 
3227 	/*
3228 	 * We don't set tvd until now because the parent we just removed
3229 	 * may have been the previous top-level vdev.
3230 	 */
3231 	tvd = cvd->vdev_top;
3232 	ASSERT(tvd->vdev_parent == rvd);
3233 
3234 	/*
3235 	 * Reevaluate the parent vdev state.
3236 	 */
3237 	vdev_propagate_state(cvd);
3238 
3239 	/*
3240 	 * If the device we just detached was smaller than the others, it may be
3241 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
3242 	 * can't fail because the existing metaslabs are already in core, so
3243 	 * there's nothing to read from disk.
3244 	 */
3245 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
3246 
3247 	vdev_config_dirty(tvd);
3248 
3249 	/*
3250 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3251 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3252 	 * But first make sure we're not on any *other* txg's DTL list, to
3253 	 * prevent vd from being accessed after it's freed.
3254 	 */
3255 	for (int t = 0; t < TXG_SIZE; t++)
3256 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3257 	vd->vdev_detached = B_TRUE;
3258 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3259 
3260 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3261 
3262 	error = spa_vdev_exit(spa, vd, txg, 0);
3263 
3264 	/*
3265 	 * If this was the removal of the original device in a hot spare vdev,
3266 	 * then we want to go through and remove the device from the hot spare
3267 	 * list of every other pool.
3268 	 */
3269 	if (unspare) {
3270 		spa_t *myspa = spa;
3271 		spa = NULL;
3272 		mutex_enter(&spa_namespace_lock);
3273 		while ((spa = spa_next(spa)) != NULL) {
3274 			if (spa->spa_state != POOL_STATE_ACTIVE)
3275 				continue;
3276 			if (spa == myspa)
3277 				continue;
3278 			spa_open_ref(spa, FTAG);
3279 			mutex_exit(&spa_namespace_lock);
3280 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3281 			mutex_enter(&spa_namespace_lock);
3282 			spa_close(spa, FTAG);
3283 		}
3284 		mutex_exit(&spa_namespace_lock);
3285 	}
3286 
3287 	return (error);
3288 }
3289 
3290 static nvlist_t *
3291 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3292 {
3293 	for (int i = 0; i < count; i++) {
3294 		uint64_t guid;
3295 
3296 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3297 		    &guid) == 0);
3298 
3299 		if (guid == target_guid)
3300 			return (nvpp[i]);
3301 	}
3302 
3303 	return (NULL);
3304 }
3305 
3306 static void
3307 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3308 	nvlist_t *dev_to_remove)
3309 {
3310 	nvlist_t **newdev = NULL;
3311 
3312 	if (count > 1)
3313 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3314 
3315 	for (int i = 0, j = 0; i < count; i++) {
3316 		if (dev[i] == dev_to_remove)
3317 			continue;
3318 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3319 	}
3320 
3321 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3322 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3323 
3324 	for (int i = 0; i < count - 1; i++)
3325 		nvlist_free(newdev[i]);
3326 
3327 	if (count > 1)
3328 		kmem_free(newdev, (count - 1) * sizeof (void *));
3329 }
3330 
3331 /*
3332  * Remove a device from the pool.  Currently, this supports removing only hot
3333  * spares and level 2 ARC devices.
3334  */
3335 int
3336 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3337 {
3338 	vdev_t *vd;
3339 	nvlist_t **spares, **l2cache, *nv;
3340 	uint_t nspares, nl2cache;
3341 	uint64_t txg = 0;
3342 	int error = 0;
3343 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3344 
3345 	if (!locked)
3346 		txg = spa_vdev_enter(spa);
3347 
3348 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3349 
3350 	if (spa->spa_spares.sav_vdevs != NULL &&
3351 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3352 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3353 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3354 		/*
3355 		 * Only remove the hot spare if it's not currently in use
3356 		 * in this pool.
3357 		 */
3358 		if (vd == NULL || unspare) {
3359 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3360 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3361 			spa_load_spares(spa);
3362 			spa->spa_spares.sav_sync = B_TRUE;
3363 		} else {
3364 			error = EBUSY;
3365 		}
3366 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3367 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3368 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3369 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3370 		/*
3371 		 * Cache devices can always be removed.
3372 		 */
3373 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3374 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3375 		spa_load_l2cache(spa);
3376 		spa->spa_l2cache.sav_sync = B_TRUE;
3377 	} else if (vd != NULL) {
3378 		/*
3379 		 * Normal vdevs cannot be removed (yet).
3380 		 */
3381 		error = ENOTSUP;
3382 	} else {
3383 		/*
3384 		 * There is no vdev of any kind with the specified guid.
3385 		 */
3386 		error = ENOENT;
3387 	}
3388 
3389 	if (!locked)
3390 		return (spa_vdev_exit(spa, NULL, txg, error));
3391 
3392 	return (error);
3393 }
3394 
3395 /*
3396  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3397  * current spared, so we can detach it.
3398  */
3399 static vdev_t *
3400 spa_vdev_resilver_done_hunt(vdev_t *vd)
3401 {
3402 	vdev_t *newvd, *oldvd;
3403 	int c;
3404 
3405 	for (c = 0; c < vd->vdev_children; c++) {
3406 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3407 		if (oldvd != NULL)
3408 			return (oldvd);
3409 	}
3410 
3411 	/*
3412 	 * Check for a completed replacement.
3413 	 */
3414 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3415 		oldvd = vd->vdev_child[0];
3416 		newvd = vd->vdev_child[1];
3417 
3418 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
3419 		    !vdev_dtl_required(oldvd))
3420 			return (oldvd);
3421 	}
3422 
3423 	/*
3424 	 * Check for a completed resilver with the 'unspare' flag set.
3425 	 */
3426 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3427 		newvd = vd->vdev_child[0];
3428 		oldvd = vd->vdev_child[1];
3429 
3430 		if (newvd->vdev_unspare &&
3431 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
3432 		    !vdev_dtl_required(oldvd)) {
3433 			newvd->vdev_unspare = 0;
3434 			return (oldvd);
3435 		}
3436 	}
3437 
3438 	return (NULL);
3439 }
3440 
3441 static void
3442 spa_vdev_resilver_done(spa_t *spa)
3443 {
3444 	vdev_t *vd, *pvd, *ppvd;
3445 	uint64_t guid, sguid, pguid, ppguid;
3446 
3447 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3448 
3449 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3450 		pvd = vd->vdev_parent;
3451 		ppvd = pvd->vdev_parent;
3452 		guid = vd->vdev_guid;
3453 		pguid = pvd->vdev_guid;
3454 		ppguid = ppvd->vdev_guid;
3455 		sguid = 0;
3456 		/*
3457 		 * If we have just finished replacing a hot spared device, then
3458 		 * we need to detach the parent's first child (the original hot
3459 		 * spare) as well.
3460 		 */
3461 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
3462 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3463 			ASSERT(ppvd->vdev_children == 2);
3464 			sguid = ppvd->vdev_child[1]->vdev_guid;
3465 		}
3466 		spa_config_exit(spa, SCL_ALL, FTAG);
3467 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
3468 			return;
3469 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
3470 			return;
3471 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3472 	}
3473 
3474 	spa_config_exit(spa, SCL_ALL, FTAG);
3475 }
3476 
3477 /*
3478  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
3479  * on spa_vdev_enter/exit() to synchronize the labels and cache.
3480  */
3481 int
3482 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3483 {
3484 	vdev_t *vd;
3485 	uint64_t txg;
3486 
3487 	txg = spa_vdev_enter(spa);
3488 
3489 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) {
3490 		/*
3491 		 * Determine if this is a reference to a hot spare device.  If
3492 		 * it is, update the path manually as there is no associated
3493 		 * vdev_t that can be synced to disk.
3494 		 */
3495 		nvlist_t **spares;
3496 		uint_t i, nspares;
3497 
3498 		if (spa->spa_spares.sav_config != NULL) {
3499 			VERIFY(nvlist_lookup_nvlist_array(
3500 			    spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
3501 			    &spares, &nspares) == 0);
3502 			for (i = 0; i < nspares; i++) {
3503 				uint64_t theguid;
3504 				VERIFY(nvlist_lookup_uint64(spares[i],
3505 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
3506 				if (theguid == guid) {
3507 					VERIFY(nvlist_add_string(spares[i],
3508 					    ZPOOL_CONFIG_PATH, newpath) == 0);
3509 					spa_load_spares(spa);
3510 					spa->spa_spares.sav_sync = B_TRUE;
3511 					return (spa_vdev_exit(spa, NULL, txg,
3512 					    0));
3513 				}
3514 			}
3515 		}
3516 
3517 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3518 	}
3519 
3520 	if (!vd->vdev_ops->vdev_op_leaf)
3521 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3522 
3523 	spa_strfree(vd->vdev_path);
3524 	vd->vdev_path = spa_strdup(newpath);
3525 
3526 	vdev_config_dirty(vd->vdev_top);
3527 
3528 	return (spa_vdev_exit(spa, NULL, txg, 0));
3529 }
3530 
3531 /*
3532  * ==========================================================================
3533  * SPA Scrubbing
3534  * ==========================================================================
3535  */
3536 
3537 int
3538 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3539 {
3540 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3541 
3542 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3543 		return (ENOTSUP);
3544 
3545 	/*
3546 	 * If a resilver was requested, but there is no DTL on a
3547 	 * writeable leaf device, we have nothing to do.
3548 	 */
3549 	if (type == POOL_SCRUB_RESILVER &&
3550 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3551 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3552 		return (0);
3553 	}
3554 
3555 	if (type == POOL_SCRUB_EVERYTHING &&
3556 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3557 	    spa->spa_dsl_pool->dp_scrub_isresilver)
3558 		return (EBUSY);
3559 
3560 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3561 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3562 	} else if (type == POOL_SCRUB_NONE) {
3563 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3564 	} else {
3565 		return (EINVAL);
3566 	}
3567 }
3568 
3569 /*
3570  * ==========================================================================
3571  * SPA async task processing
3572  * ==========================================================================
3573  */
3574 
3575 static void
3576 spa_async_remove(spa_t *spa, vdev_t *vd)
3577 {
3578 	if (vd->vdev_remove_wanted) {
3579 		vd->vdev_remove_wanted = 0;
3580 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3581 		vdev_clear(spa, vd);
3582 		vdev_state_dirty(vd->vdev_top);
3583 	}
3584 
3585 	for (int c = 0; c < vd->vdev_children; c++)
3586 		spa_async_remove(spa, vd->vdev_child[c]);
3587 }
3588 
3589 static void
3590 spa_async_probe(spa_t *spa, vdev_t *vd)
3591 {
3592 	if (vd->vdev_probe_wanted) {
3593 		vd->vdev_probe_wanted = 0;
3594 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
3595 	}
3596 
3597 	for (int c = 0; c < vd->vdev_children; c++)
3598 		spa_async_probe(spa, vd->vdev_child[c]);
3599 }
3600 
3601 static void
3602 spa_async_thread(spa_t *spa)
3603 {
3604 	int tasks;
3605 
3606 	ASSERT(spa->spa_sync_on);
3607 
3608 	mutex_enter(&spa->spa_async_lock);
3609 	tasks = spa->spa_async_tasks;
3610 	spa->spa_async_tasks = 0;
3611 	mutex_exit(&spa->spa_async_lock);
3612 
3613 	/*
3614 	 * See if the config needs to be updated.
3615 	 */
3616 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3617 		mutex_enter(&spa_namespace_lock);
3618 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3619 		mutex_exit(&spa_namespace_lock);
3620 	}
3621 
3622 	/*
3623 	 * See if any devices need to be marked REMOVED.
3624 	 */
3625 	if (tasks & SPA_ASYNC_REMOVE) {
3626 		spa_vdev_state_enter(spa);
3627 		spa_async_remove(spa, spa->spa_root_vdev);
3628 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3629 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3630 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
3631 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3632 		(void) spa_vdev_state_exit(spa, NULL, 0);
3633 	}
3634 
3635 	/*
3636 	 * See if any devices need to be probed.
3637 	 */
3638 	if (tasks & SPA_ASYNC_PROBE) {
3639 		spa_vdev_state_enter(spa);
3640 		spa_async_probe(spa, spa->spa_root_vdev);
3641 		(void) spa_vdev_state_exit(spa, NULL, 0);
3642 	}
3643 
3644 	/*
3645 	 * If any devices are done replacing, detach them.
3646 	 */
3647 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3648 		spa_vdev_resilver_done(spa);
3649 
3650 	/*
3651 	 * Kick off a resilver.
3652 	 */
3653 	if (tasks & SPA_ASYNC_RESILVER)
3654 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3655 
3656 	/*
3657 	 * Let the world know that we're done.
3658 	 */
3659 	mutex_enter(&spa->spa_async_lock);
3660 	spa->spa_async_thread = NULL;
3661 	cv_broadcast(&spa->spa_async_cv);
3662 	mutex_exit(&spa->spa_async_lock);
3663 	thread_exit();
3664 }
3665 
3666 void
3667 spa_async_suspend(spa_t *spa)
3668 {
3669 	mutex_enter(&spa->spa_async_lock);
3670 	spa->spa_async_suspended++;
3671 	while (spa->spa_async_thread != NULL)
3672 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3673 	mutex_exit(&spa->spa_async_lock);
3674 }
3675 
3676 void
3677 spa_async_resume(spa_t *spa)
3678 {
3679 	mutex_enter(&spa->spa_async_lock);
3680 	ASSERT(spa->spa_async_suspended != 0);
3681 	spa->spa_async_suspended--;
3682 	mutex_exit(&spa->spa_async_lock);
3683 }
3684 
3685 static void
3686 spa_async_dispatch(spa_t *spa)
3687 {
3688 	mutex_enter(&spa->spa_async_lock);
3689 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3690 	    spa->spa_async_thread == NULL &&
3691 	    rootdir != NULL && !vn_is_readonly(rootdir))
3692 		spa->spa_async_thread = thread_create(NULL, 0,
3693 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3694 	mutex_exit(&spa->spa_async_lock);
3695 }
3696 
3697 void
3698 spa_async_request(spa_t *spa, int task)
3699 {
3700 	mutex_enter(&spa->spa_async_lock);
3701 	spa->spa_async_tasks |= task;
3702 	mutex_exit(&spa->spa_async_lock);
3703 }
3704 
3705 /*
3706  * ==========================================================================
3707  * SPA syncing routines
3708  * ==========================================================================
3709  */
3710 
3711 static void
3712 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3713 {
3714 	bplist_t *bpl = &spa->spa_sync_bplist;
3715 	dmu_tx_t *tx;
3716 	blkptr_t blk;
3717 	uint64_t itor = 0;
3718 	zio_t *zio;
3719 	int error;
3720 	uint8_t c = 1;
3721 
3722 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
3723 
3724 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
3725 		ASSERT(blk.blk_birth < txg);
3726 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
3727 		    ZIO_FLAG_MUSTSUCCEED));
3728 	}
3729 
3730 	error = zio_wait(zio);
3731 	ASSERT3U(error, ==, 0);
3732 
3733 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3734 	bplist_vacate(bpl, tx);
3735 
3736 	/*
3737 	 * Pre-dirty the first block so we sync to convergence faster.
3738 	 * (Usually only the first block is needed.)
3739 	 */
3740 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3741 	dmu_tx_commit(tx);
3742 }
3743 
3744 static void
3745 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3746 {
3747 	char *packed = NULL;
3748 	size_t bufsize;
3749 	size_t nvsize = 0;
3750 	dmu_buf_t *db;
3751 
3752 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3753 
3754 	/*
3755 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3756 	 * information.  This avoids the dbuf_will_dirty() path and
3757 	 * saves us a pre-read to get data we don't actually care about.
3758 	 */
3759 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3760 	packed = kmem_alloc(bufsize, KM_SLEEP);
3761 
3762 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3763 	    KM_SLEEP) == 0);
3764 	bzero(packed + nvsize, bufsize - nvsize);
3765 
3766 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3767 
3768 	kmem_free(packed, bufsize);
3769 
3770 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3771 	dmu_buf_will_dirty(db, tx);
3772 	*(uint64_t *)db->db_data = nvsize;
3773 	dmu_buf_rele(db, FTAG);
3774 }
3775 
3776 static void
3777 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3778     const char *config, const char *entry)
3779 {
3780 	nvlist_t *nvroot;
3781 	nvlist_t **list;
3782 	int i;
3783 
3784 	if (!sav->sav_sync)
3785 		return;
3786 
3787 	/*
3788 	 * Update the MOS nvlist describing the list of available devices.
3789 	 * spa_validate_aux() will have already made sure this nvlist is
3790 	 * valid and the vdevs are labeled appropriately.
3791 	 */
3792 	if (sav->sav_object == 0) {
3793 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3794 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3795 		    sizeof (uint64_t), tx);
3796 		VERIFY(zap_update(spa->spa_meta_objset,
3797 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3798 		    &sav->sav_object, tx) == 0);
3799 	}
3800 
3801 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3802 	if (sav->sav_count == 0) {
3803 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3804 	} else {
3805 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3806 		for (i = 0; i < sav->sav_count; i++)
3807 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3808 			    B_FALSE, B_FALSE, B_TRUE);
3809 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3810 		    sav->sav_count) == 0);
3811 		for (i = 0; i < sav->sav_count; i++)
3812 			nvlist_free(list[i]);
3813 		kmem_free(list, sav->sav_count * sizeof (void *));
3814 	}
3815 
3816 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3817 	nvlist_free(nvroot);
3818 
3819 	sav->sav_sync = B_FALSE;
3820 }
3821 
3822 static void
3823 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3824 {
3825 	nvlist_t *config;
3826 
3827 	if (list_is_empty(&spa->spa_config_dirty_list))
3828 		return;
3829 
3830 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3831 
3832 	config = spa_config_generate(spa, spa->spa_root_vdev,
3833 	    dmu_tx_get_txg(tx), B_FALSE);
3834 
3835 	spa_config_exit(spa, SCL_STATE, FTAG);
3836 
3837 	if (spa->spa_config_syncing)
3838 		nvlist_free(spa->spa_config_syncing);
3839 	spa->spa_config_syncing = config;
3840 
3841 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3842 }
3843 
3844 /*
3845  * Set zpool properties.
3846  */
3847 static void
3848 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3849 {
3850 	spa_t *spa = arg1;
3851 	objset_t *mos = spa->spa_meta_objset;
3852 	nvlist_t *nvp = arg2;
3853 	nvpair_t *elem;
3854 	uint64_t intval;
3855 	char *strval;
3856 	zpool_prop_t prop;
3857 	const char *propname;
3858 	zprop_type_t proptype;
3859 
3860 	mutex_enter(&spa->spa_props_lock);
3861 
3862 	elem = NULL;
3863 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
3864 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3865 		case ZPOOL_PROP_VERSION:
3866 			/*
3867 			 * Only set version for non-zpool-creation cases
3868 			 * (set/import). spa_create() needs special care
3869 			 * for version setting.
3870 			 */
3871 			if (tx->tx_txg != TXG_INITIAL) {
3872 				VERIFY(nvpair_value_uint64(elem,
3873 				    &intval) == 0);
3874 				ASSERT(intval <= SPA_VERSION);
3875 				ASSERT(intval >= spa_version(spa));
3876 				spa->spa_uberblock.ub_version = intval;
3877 				vdev_config_dirty(spa->spa_root_vdev);
3878 			}
3879 			break;
3880 
3881 		case ZPOOL_PROP_ALTROOT:
3882 			/*
3883 			 * 'altroot' is a non-persistent property. It should
3884 			 * have been set temporarily at creation or import time.
3885 			 */
3886 			ASSERT(spa->spa_root != NULL);
3887 			break;
3888 
3889 		case ZPOOL_PROP_CACHEFILE:
3890 			/*
3891 			 * 'cachefile' is also a non-persisitent property.
3892 			 */
3893 			break;
3894 		default:
3895 			/*
3896 			 * Set pool property values in the poolprops mos object.
3897 			 */
3898 			if (spa->spa_pool_props_object == 0) {
3899 				objset_t *mos = spa->spa_meta_objset;
3900 
3901 				VERIFY((spa->spa_pool_props_object =
3902 				    zap_create(mos, DMU_OT_POOL_PROPS,
3903 				    DMU_OT_NONE, 0, tx)) > 0);
3904 
3905 				VERIFY(zap_update(mos,
3906 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3907 				    8, 1, &spa->spa_pool_props_object, tx)
3908 				    == 0);
3909 			}
3910 
3911 			/* normalize the property name */
3912 			propname = zpool_prop_to_name(prop);
3913 			proptype = zpool_prop_get_type(prop);
3914 
3915 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
3916 				ASSERT(proptype == PROP_TYPE_STRING);
3917 				VERIFY(nvpair_value_string(elem, &strval) == 0);
3918 				VERIFY(zap_update(mos,
3919 				    spa->spa_pool_props_object, propname,
3920 				    1, strlen(strval) + 1, strval, tx) == 0);
3921 
3922 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
3923 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3924 
3925 				if (proptype == PROP_TYPE_INDEX) {
3926 					const char *unused;
3927 					VERIFY(zpool_prop_index_to_string(
3928 					    prop, intval, &unused) == 0);
3929 				}
3930 				VERIFY(zap_update(mos,
3931 				    spa->spa_pool_props_object, propname,
3932 				    8, 1, &intval, tx) == 0);
3933 			} else {
3934 				ASSERT(0); /* not allowed */
3935 			}
3936 
3937 			switch (prop) {
3938 			case ZPOOL_PROP_DELEGATION:
3939 				spa->spa_delegation = intval;
3940 				break;
3941 			case ZPOOL_PROP_BOOTFS:
3942 				spa->spa_bootfs = intval;
3943 				break;
3944 			case ZPOOL_PROP_FAILUREMODE:
3945 				spa->spa_failmode = intval;
3946 				break;
3947 			default:
3948 				break;
3949 			}
3950 		}
3951 
3952 		/* log internal history if this is not a zpool create */
3953 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
3954 		    tx->tx_txg != TXG_INITIAL) {
3955 			spa_history_internal_log(LOG_POOL_PROPSET,
3956 			    spa, tx, cr, "%s %lld %s",
3957 			    nvpair_name(elem), intval, spa_name(spa));
3958 		}
3959 	}
3960 
3961 	mutex_exit(&spa->spa_props_lock);
3962 }
3963 
3964 /*
3965  * Sync the specified transaction group.  New blocks may be dirtied as
3966  * part of the process, so we iterate until it converges.
3967  */
3968 void
3969 spa_sync(spa_t *spa, uint64_t txg)
3970 {
3971 	dsl_pool_t *dp = spa->spa_dsl_pool;
3972 	objset_t *mos = spa->spa_meta_objset;
3973 	bplist_t *bpl = &spa->spa_sync_bplist;
3974 	vdev_t *rvd = spa->spa_root_vdev;
3975 	vdev_t *vd;
3976 	dmu_tx_t *tx;
3977 	int dirty_vdevs;
3978 	int error;
3979 
3980 	/*
3981 	 * Lock out configuration changes.
3982 	 */
3983 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3984 
3985 	spa->spa_syncing_txg = txg;
3986 	spa->spa_sync_pass = 0;
3987 
3988 	/*
3989 	 * If there are any pending vdev state changes, convert them
3990 	 * into config changes that go out with this transaction group.
3991 	 */
3992 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3993 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
3994 		/*
3995 		 * We need the write lock here because, for aux vdevs,
3996 		 * calling vdev_config_dirty() modifies sav_config.
3997 		 * This is ugly and will become unnecessary when we
3998 		 * eliminate the aux vdev wart by integrating all vdevs
3999 		 * into the root vdev tree.
4000 		 */
4001 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4002 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4003 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4004 			vdev_state_clean(vd);
4005 			vdev_config_dirty(vd);
4006 		}
4007 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4008 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4009 	}
4010 	spa_config_exit(spa, SCL_STATE, FTAG);
4011 
4012 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4013 
4014 	tx = dmu_tx_create_assigned(dp, txg);
4015 
4016 	/*
4017 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4018 	 * set spa_deflate if we have no raid-z vdevs.
4019 	 */
4020 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4021 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4022 		int i;
4023 
4024 		for (i = 0; i < rvd->vdev_children; i++) {
4025 			vd = rvd->vdev_child[i];
4026 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4027 				break;
4028 		}
4029 		if (i == rvd->vdev_children) {
4030 			spa->spa_deflate = TRUE;
4031 			VERIFY(0 == zap_add(spa->spa_meta_objset,
4032 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4033 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4034 		}
4035 	}
4036 
4037 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4038 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4039 		dsl_pool_create_origin(dp, tx);
4040 
4041 		/* Keeping the origin open increases spa_minref */
4042 		spa->spa_minref += 3;
4043 	}
4044 
4045 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4046 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4047 		dsl_pool_upgrade_clones(dp, tx);
4048 	}
4049 
4050 	/*
4051 	 * If anything has changed in this txg, push the deferred frees
4052 	 * from the previous txg.  If not, leave them alone so that we
4053 	 * don't generate work on an otherwise idle system.
4054 	 */
4055 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4056 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4057 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4058 		spa_sync_deferred_frees(spa, txg);
4059 
4060 	/*
4061 	 * Iterate to convergence.
4062 	 */
4063 	do {
4064 		spa->spa_sync_pass++;
4065 
4066 		spa_sync_config_object(spa, tx);
4067 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4068 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4069 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4070 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4071 		spa_errlog_sync(spa, txg);
4072 		dsl_pool_sync(dp, txg);
4073 
4074 		dirty_vdevs = 0;
4075 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4076 			vdev_sync(vd, txg);
4077 			dirty_vdevs++;
4078 		}
4079 
4080 		bplist_sync(bpl, tx);
4081 	} while (dirty_vdevs);
4082 
4083 	bplist_close(bpl);
4084 
4085 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4086 
4087 	/*
4088 	 * Rewrite the vdev configuration (which includes the uberblock)
4089 	 * to commit the transaction group.
4090 	 *
4091 	 * If there are no dirty vdevs, we sync the uberblock to a few
4092 	 * random top-level vdevs that are known to be visible in the
4093 	 * config cache (see spa_vdev_add() for a complete description).
4094 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4095 	 */
4096 	for (;;) {
4097 		/*
4098 		 * We hold SCL_STATE to prevent vdev open/close/etc.
4099 		 * while we're attempting to write the vdev labels.
4100 		 */
4101 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4102 
4103 		if (list_is_empty(&spa->spa_config_dirty_list)) {
4104 			vdev_t *svd[SPA_DVAS_PER_BP];
4105 			int svdcount = 0;
4106 			int children = rvd->vdev_children;
4107 			int c0 = spa_get_random(children);
4108 			int c;
4109 
4110 			for (c = 0; c < children; c++) {
4111 				vd = rvd->vdev_child[(c0 + c) % children];
4112 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4113 					continue;
4114 				svd[svdcount++] = vd;
4115 				if (svdcount == SPA_DVAS_PER_BP)
4116 					break;
4117 			}
4118 			error = vdev_config_sync(svd, svdcount, txg);
4119 		} else {
4120 			error = vdev_config_sync(rvd->vdev_child,
4121 			    rvd->vdev_children, txg);
4122 		}
4123 
4124 		spa_config_exit(spa, SCL_STATE, FTAG);
4125 
4126 		if (error == 0)
4127 			break;
4128 		zio_suspend(spa, NULL);
4129 		zio_resume_wait(spa);
4130 	}
4131 	dmu_tx_commit(tx);
4132 
4133 	/*
4134 	 * Clear the dirty config list.
4135 	 */
4136 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4137 		vdev_config_clean(vd);
4138 
4139 	/*
4140 	 * Now that the new config has synced transactionally,
4141 	 * let it become visible to the config cache.
4142 	 */
4143 	if (spa->spa_config_syncing != NULL) {
4144 		spa_config_set(spa, spa->spa_config_syncing);
4145 		spa->spa_config_txg = txg;
4146 		spa->spa_config_syncing = NULL;
4147 	}
4148 
4149 	spa->spa_ubsync = spa->spa_uberblock;
4150 
4151 	/*
4152 	 * Clean up the ZIL records for the synced txg.
4153 	 */
4154 	dsl_pool_zil_clean(dp);
4155 
4156 	/*
4157 	 * Update usable space statistics.
4158 	 */
4159 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4160 		vdev_sync_done(vd, txg);
4161 
4162 	/*
4163 	 * It had better be the case that we didn't dirty anything
4164 	 * since vdev_config_sync().
4165 	 */
4166 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4167 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4168 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4169 	ASSERT(bpl->bpl_queue == NULL);
4170 
4171 	spa_config_exit(spa, SCL_CONFIG, FTAG);
4172 
4173 	/*
4174 	 * If any async tasks have been requested, kick them off.
4175 	 */
4176 	spa_async_dispatch(spa);
4177 }
4178 
4179 /*
4180  * Sync all pools.  We don't want to hold the namespace lock across these
4181  * operations, so we take a reference on the spa_t and drop the lock during the
4182  * sync.
4183  */
4184 void
4185 spa_sync_allpools(void)
4186 {
4187 	spa_t *spa = NULL;
4188 	mutex_enter(&spa_namespace_lock);
4189 	while ((spa = spa_next(spa)) != NULL) {
4190 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4191 			continue;
4192 		spa_open_ref(spa, FTAG);
4193 		mutex_exit(&spa_namespace_lock);
4194 		txg_wait_synced(spa_get_dsl(spa), 0);
4195 		mutex_enter(&spa_namespace_lock);
4196 		spa_close(spa, FTAG);
4197 	}
4198 	mutex_exit(&spa_namespace_lock);
4199 }
4200 
4201 /*
4202  * ==========================================================================
4203  * Miscellaneous routines
4204  * ==========================================================================
4205  */
4206 
4207 /*
4208  * Remove all pools in the system.
4209  */
4210 void
4211 spa_evict_all(void)
4212 {
4213 	spa_t *spa;
4214 
4215 	/*
4216 	 * Remove all cached state.  All pools should be closed now,
4217 	 * so every spa in the AVL tree should be unreferenced.
4218 	 */
4219 	mutex_enter(&spa_namespace_lock);
4220 	while ((spa = spa_next(NULL)) != NULL) {
4221 		/*
4222 		 * Stop async tasks.  The async thread may need to detach
4223 		 * a device that's been replaced, which requires grabbing
4224 		 * spa_namespace_lock, so we must drop it here.
4225 		 */
4226 		spa_open_ref(spa, FTAG);
4227 		mutex_exit(&spa_namespace_lock);
4228 		spa_async_suspend(spa);
4229 		mutex_enter(&spa_namespace_lock);
4230 		spa_close(spa, FTAG);
4231 
4232 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4233 			spa_unload(spa);
4234 			spa_deactivate(spa);
4235 		}
4236 		spa_remove(spa);
4237 	}
4238 	mutex_exit(&spa_namespace_lock);
4239 }
4240 
4241 vdev_t *
4242 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache)
4243 {
4244 	vdev_t *vd;
4245 	int i;
4246 
4247 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4248 		return (vd);
4249 
4250 	if (l2cache) {
4251 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4252 			vd = spa->spa_l2cache.sav_vdevs[i];
4253 			if (vd->vdev_guid == guid)
4254 				return (vd);
4255 		}
4256 	}
4257 
4258 	return (NULL);
4259 }
4260 
4261 void
4262 spa_upgrade(spa_t *spa, uint64_t version)
4263 {
4264 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4265 
4266 	/*
4267 	 * This should only be called for a non-faulted pool, and since a
4268 	 * future version would result in an unopenable pool, this shouldn't be
4269 	 * possible.
4270 	 */
4271 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4272 	ASSERT(version >= spa->spa_uberblock.ub_version);
4273 
4274 	spa->spa_uberblock.ub_version = version;
4275 	vdev_config_dirty(spa->spa_root_vdev);
4276 
4277 	spa_config_exit(spa, SCL_ALL, FTAG);
4278 
4279 	txg_wait_synced(spa_get_dsl(spa), 0);
4280 }
4281 
4282 boolean_t
4283 spa_has_spare(spa_t *spa, uint64_t guid)
4284 {
4285 	int i;
4286 	uint64_t spareguid;
4287 	spa_aux_vdev_t *sav = &spa->spa_spares;
4288 
4289 	for (i = 0; i < sav->sav_count; i++)
4290 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4291 			return (B_TRUE);
4292 
4293 	for (i = 0; i < sav->sav_npending; i++) {
4294 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4295 		    &spareguid) == 0 && spareguid == guid)
4296 			return (B_TRUE);
4297 	}
4298 
4299 	return (B_FALSE);
4300 }
4301 
4302 /*
4303  * Check if a pool has an active shared spare device.
4304  * Note: reference count of an active spare is 2, as a spare and as a replace
4305  */
4306 static boolean_t
4307 spa_has_active_shared_spare(spa_t *spa)
4308 {
4309 	int i, refcnt;
4310 	uint64_t pool;
4311 	spa_aux_vdev_t *sav = &spa->spa_spares;
4312 
4313 	for (i = 0; i < sav->sav_count; i++) {
4314 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4315 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4316 		    refcnt > 2)
4317 			return (B_TRUE);
4318 	}
4319 
4320 	return (B_FALSE);
4321 }
4322 
4323 /*
4324  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4325  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4326  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4327  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4328  * or zdb as real changes.
4329  */
4330 void
4331 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4332 {
4333 #ifdef _KERNEL
4334 	sysevent_t		*ev;
4335 	sysevent_attr_list_t	*attr = NULL;
4336 	sysevent_value_t	value;
4337 	sysevent_id_t		eid;
4338 
4339 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4340 	    SE_SLEEP);
4341 
4342 	value.value_type = SE_DATA_TYPE_STRING;
4343 	value.value.sv_string = spa_name(spa);
4344 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4345 		goto done;
4346 
4347 	value.value_type = SE_DATA_TYPE_UINT64;
4348 	value.value.sv_uint64 = spa_guid(spa);
4349 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4350 		goto done;
4351 
4352 	if (vd) {
4353 		value.value_type = SE_DATA_TYPE_UINT64;
4354 		value.value.sv_uint64 = vd->vdev_guid;
4355 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4356 		    SE_SLEEP) != 0)
4357 			goto done;
4358 
4359 		if (vd->vdev_path) {
4360 			value.value_type = SE_DATA_TYPE_STRING;
4361 			value.value.sv_string = vd->vdev_path;
4362 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4363 			    &value, SE_SLEEP) != 0)
4364 				goto done;
4365 		}
4366 	}
4367 
4368 	if (sysevent_attach_attributes(ev, attr) != 0)
4369 		goto done;
4370 	attr = NULL;
4371 
4372 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4373 
4374 done:
4375 	if (attr)
4376 		sysevent_free_attr(attr);
4377 	sysevent_free(ev);
4378 #endif
4379 }
4380