1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 */ 31 32 /* 33 * SPA: Storage Pool Allocator 34 * 35 * This file contains all the routines used when modifying on-disk SPA state. 36 * This includes opening, importing, destroying, exporting a pool, and syncing a 37 * pool. 38 */ 39 40 #include <sys/zfs_context.h> 41 #include <sys/fm/fs/zfs.h> 42 #include <sys/spa_impl.h> 43 #include <sys/zio.h> 44 #include <sys/zio_checksum.h> 45 #include <sys/dmu.h> 46 #include <sys/dmu_tx.h> 47 #include <sys/zap.h> 48 #include <sys/zil.h> 49 #include <sys/ddt.h> 50 #include <sys/vdev_impl.h> 51 #include <sys/metaslab.h> 52 #include <sys/metaslab_impl.h> 53 #include <sys/uberblock_impl.h> 54 #include <sys/txg.h> 55 #include <sys/avl.h> 56 #include <sys/dmu_traverse.h> 57 #include <sys/dmu_objset.h> 58 #include <sys/unique.h> 59 #include <sys/dsl_pool.h> 60 #include <sys/dsl_dataset.h> 61 #include <sys/dsl_dir.h> 62 #include <sys/dsl_prop.h> 63 #include <sys/dsl_synctask.h> 64 #include <sys/fs/zfs.h> 65 #include <sys/arc.h> 66 #include <sys/callb.h> 67 #include <sys/systeminfo.h> 68 #include <sys/spa_boot.h> 69 #include <sys/zfs_ioctl.h> 70 #include <sys/dsl_scan.h> 71 #include <sys/zfeature.h> 72 #include <sys/dsl_destroy.h> 73 #include <sys/abd.h> 74 75 #ifdef _KERNEL 76 #include <sys/bootprops.h> 77 #include <sys/callb.h> 78 #include <sys/cpupart.h> 79 #include <sys/pool.h> 80 #include <sys/sysdc.h> 81 #include <sys/zone.h> 82 #endif /* _KERNEL */ 83 84 #include "zfs_prop.h" 85 #include "zfs_comutil.h" 86 87 /* 88 * The interval, in seconds, at which failed configuration cache file writes 89 * should be retried. 90 */ 91 static int zfs_ccw_retry_interval = 300; 92 93 typedef enum zti_modes { 94 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 95 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 96 ZTI_MODE_NULL, /* don't create a taskq */ 97 ZTI_NMODES 98 } zti_modes_t; 99 100 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 101 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 102 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 103 104 #define ZTI_N(n) ZTI_P(n, 1) 105 #define ZTI_ONE ZTI_N(1) 106 107 typedef struct zio_taskq_info { 108 zti_modes_t zti_mode; 109 uint_t zti_value; 110 uint_t zti_count; 111 } zio_taskq_info_t; 112 113 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 114 "issue", "issue_high", "intr", "intr_high" 115 }; 116 117 /* 118 * This table defines the taskq settings for each ZFS I/O type. When 119 * initializing a pool, we use this table to create an appropriately sized 120 * taskq. Some operations are low volume and therefore have a small, static 121 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 122 * macros. Other operations process a large amount of data; the ZTI_BATCH 123 * macro causes us to create a taskq oriented for throughput. Some operations 124 * are so high frequency and short-lived that the taskq itself can become a a 125 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 126 * additional degree of parallelism specified by the number of threads per- 127 * taskq and the number of taskqs; when dispatching an event in this case, the 128 * particular taskq is chosen at random. 129 * 130 * The different taskq priorities are to handle the different contexts (issue 131 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 132 * need to be handled with minimum delay. 133 */ 134 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 135 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 137 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 138 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 139 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 140 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 141 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 142 }; 143 144 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, const char *name); 145 static void spa_event_post(sysevent_t *ev); 146 static void spa_sync_version(void *arg, dmu_tx_t *tx); 147 static void spa_sync_props(void *arg, dmu_tx_t *tx); 148 static boolean_t spa_has_active_shared_spare(spa_t *spa); 149 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 150 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 151 char **ereport); 152 static void spa_vdev_resilver_done(spa_t *spa); 153 154 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 155 id_t zio_taskq_psrset_bind = PS_NONE; 156 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 157 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 158 159 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 160 extern int zfs_sync_pass_deferred_free; 161 162 /* 163 * This (illegal) pool name is used when temporarily importing a spa_t in order 164 * to get the vdev stats associated with the imported devices. 165 */ 166 #define TRYIMPORT_NAME "$import" 167 168 /* 169 * ========================================================================== 170 * SPA properties routines 171 * ========================================================================== 172 */ 173 174 /* 175 * Add a (source=src, propname=propval) list to an nvlist. 176 */ 177 static void 178 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 179 uint64_t intval, zprop_source_t src) 180 { 181 const char *propname = zpool_prop_to_name(prop); 182 nvlist_t *propval; 183 184 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 185 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 186 187 if (strval != NULL) 188 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 189 else 190 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 191 192 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 193 nvlist_free(propval); 194 } 195 196 /* 197 * Get property values from the spa configuration. 198 */ 199 static void 200 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 201 { 202 vdev_t *rvd = spa->spa_root_vdev; 203 dsl_pool_t *pool = spa->spa_dsl_pool; 204 uint64_t size, alloc, cap, version; 205 zprop_source_t src = ZPROP_SRC_NONE; 206 spa_config_dirent_t *dp; 207 metaslab_class_t *mc = spa_normal_class(spa); 208 209 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 210 211 if (rvd != NULL) { 212 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 213 size = metaslab_class_get_space(spa_normal_class(spa)); 214 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 215 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 216 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 217 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 218 size - alloc, src); 219 220 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 221 metaslab_class_fragmentation(mc), src); 222 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 223 metaslab_class_expandable_space(mc), src); 224 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 225 (spa_mode(spa) == FREAD), src); 226 227 cap = (size == 0) ? 0 : (alloc * 100 / size); 228 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 229 230 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 231 ddt_get_pool_dedup_ratio(spa), src); 232 233 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 234 rvd->vdev_state, src); 235 236 version = spa_version(spa); 237 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 238 src = ZPROP_SRC_DEFAULT; 239 else 240 src = ZPROP_SRC_LOCAL; 241 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 242 } 243 244 if (pool != NULL) { 245 /* 246 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 247 * when opening pools before this version freedir will be NULL. 248 */ 249 if (pool->dp_free_dir != NULL) { 250 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 251 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 252 src); 253 } else { 254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 255 NULL, 0, src); 256 } 257 258 if (pool->dp_leak_dir != NULL) { 259 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 260 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 261 src); 262 } else { 263 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 264 NULL, 0, src); 265 } 266 } 267 268 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 269 270 if (spa->spa_comment != NULL) { 271 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 272 0, ZPROP_SRC_LOCAL); 273 } 274 275 if (spa->spa_root != NULL) 276 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 277 0, ZPROP_SRC_LOCAL); 278 279 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 280 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 281 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 282 } else { 283 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 284 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 285 } 286 287 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 288 if (dp->scd_path == NULL) { 289 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 290 "none", 0, ZPROP_SRC_LOCAL); 291 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 292 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 293 dp->scd_path, 0, ZPROP_SRC_LOCAL); 294 } 295 } 296 } 297 298 /* 299 * Get zpool property values. 300 */ 301 int 302 spa_prop_get(spa_t *spa, nvlist_t **nvp) 303 { 304 objset_t *mos = spa->spa_meta_objset; 305 zap_cursor_t zc; 306 zap_attribute_t za; 307 int err; 308 309 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 310 311 mutex_enter(&spa->spa_props_lock); 312 313 /* 314 * Get properties from the spa config. 315 */ 316 spa_prop_get_config(spa, nvp); 317 318 /* If no pool property object, no more prop to get. */ 319 if (mos == NULL || spa->spa_pool_props_object == 0) { 320 mutex_exit(&spa->spa_props_lock); 321 return (0); 322 } 323 324 /* 325 * Get properties from the MOS pool property object. 326 */ 327 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 328 (err = zap_cursor_retrieve(&zc, &za)) == 0; 329 zap_cursor_advance(&zc)) { 330 uint64_t intval = 0; 331 char *strval = NULL; 332 zprop_source_t src = ZPROP_SRC_DEFAULT; 333 zpool_prop_t prop; 334 335 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 336 continue; 337 338 switch (za.za_integer_length) { 339 case 8: 340 /* integer property */ 341 if (za.za_first_integer != 342 zpool_prop_default_numeric(prop)) 343 src = ZPROP_SRC_LOCAL; 344 345 if (prop == ZPOOL_PROP_BOOTFS) { 346 dsl_pool_t *dp; 347 dsl_dataset_t *ds = NULL; 348 349 dp = spa_get_dsl(spa); 350 dsl_pool_config_enter(dp, FTAG); 351 if (err = dsl_dataset_hold_obj(dp, 352 za.za_first_integer, FTAG, &ds)) { 353 dsl_pool_config_exit(dp, FTAG); 354 break; 355 } 356 357 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 358 KM_SLEEP); 359 dsl_dataset_name(ds, strval); 360 dsl_dataset_rele(ds, FTAG); 361 dsl_pool_config_exit(dp, FTAG); 362 } else { 363 strval = NULL; 364 intval = za.za_first_integer; 365 } 366 367 spa_prop_add_list(*nvp, prop, strval, intval, src); 368 369 if (strval != NULL) 370 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 371 372 break; 373 374 case 1: 375 /* string property */ 376 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 377 err = zap_lookup(mos, spa->spa_pool_props_object, 378 za.za_name, 1, za.za_num_integers, strval); 379 if (err) { 380 kmem_free(strval, za.za_num_integers); 381 break; 382 } 383 spa_prop_add_list(*nvp, prop, strval, 0, src); 384 kmem_free(strval, za.za_num_integers); 385 break; 386 387 default: 388 break; 389 } 390 } 391 zap_cursor_fini(&zc); 392 mutex_exit(&spa->spa_props_lock); 393 out: 394 if (err && err != ENOENT) { 395 nvlist_free(*nvp); 396 *nvp = NULL; 397 return (err); 398 } 399 400 return (0); 401 } 402 403 /* 404 * Validate the given pool properties nvlist and modify the list 405 * for the property values to be set. 406 */ 407 static int 408 spa_prop_validate(spa_t *spa, nvlist_t *props) 409 { 410 nvpair_t *elem; 411 int error = 0, reset_bootfs = 0; 412 uint64_t objnum = 0; 413 boolean_t has_feature = B_FALSE; 414 415 elem = NULL; 416 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 417 uint64_t intval; 418 char *strval, *slash, *check, *fname; 419 const char *propname = nvpair_name(elem); 420 zpool_prop_t prop = zpool_name_to_prop(propname); 421 422 switch (prop) { 423 case ZPROP_INVAL: 424 if (!zpool_prop_feature(propname)) { 425 error = SET_ERROR(EINVAL); 426 break; 427 } 428 429 /* 430 * Sanitize the input. 431 */ 432 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 433 error = SET_ERROR(EINVAL); 434 break; 435 } 436 437 if (nvpair_value_uint64(elem, &intval) != 0) { 438 error = SET_ERROR(EINVAL); 439 break; 440 } 441 442 if (intval != 0) { 443 error = SET_ERROR(EINVAL); 444 break; 445 } 446 447 fname = strchr(propname, '@') + 1; 448 if (zfeature_lookup_name(fname, NULL) != 0) { 449 error = SET_ERROR(EINVAL); 450 break; 451 } 452 453 has_feature = B_TRUE; 454 break; 455 456 case ZPOOL_PROP_VERSION: 457 error = nvpair_value_uint64(elem, &intval); 458 if (!error && 459 (intval < spa_version(spa) || 460 intval > SPA_VERSION_BEFORE_FEATURES || 461 has_feature)) 462 error = SET_ERROR(EINVAL); 463 break; 464 465 case ZPOOL_PROP_DELEGATION: 466 case ZPOOL_PROP_AUTOREPLACE: 467 case ZPOOL_PROP_LISTSNAPS: 468 case ZPOOL_PROP_AUTOEXPAND: 469 error = nvpair_value_uint64(elem, &intval); 470 if (!error && intval > 1) 471 error = SET_ERROR(EINVAL); 472 break; 473 474 case ZPOOL_PROP_BOOTFS: 475 /* 476 * If the pool version is less than SPA_VERSION_BOOTFS, 477 * or the pool is still being created (version == 0), 478 * the bootfs property cannot be set. 479 */ 480 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 481 error = SET_ERROR(ENOTSUP); 482 break; 483 } 484 485 /* 486 * Make sure the vdev config is bootable 487 */ 488 if (!vdev_is_bootable(spa->spa_root_vdev)) { 489 error = SET_ERROR(ENOTSUP); 490 break; 491 } 492 493 reset_bootfs = 1; 494 495 error = nvpair_value_string(elem, &strval); 496 497 if (!error) { 498 objset_t *os; 499 uint64_t propval; 500 501 if (strval == NULL || strval[0] == '\0') { 502 objnum = zpool_prop_default_numeric( 503 ZPOOL_PROP_BOOTFS); 504 break; 505 } 506 507 if (error = dmu_objset_hold(strval, FTAG, &os)) 508 break; 509 510 /* 511 * Must be ZPL, and its property settings 512 * must be supported by GRUB (compression 513 * is not gzip, and large blocks are not used). 514 */ 515 516 if (dmu_objset_type(os) != DMU_OST_ZFS) { 517 error = SET_ERROR(ENOTSUP); 518 } else if ((error = 519 dsl_prop_get_int_ds(dmu_objset_ds(os), 520 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 521 &propval)) == 0 && 522 !BOOTFS_COMPRESS_VALID(propval)) { 523 error = SET_ERROR(ENOTSUP); 524 } else { 525 objnum = dmu_objset_id(os); 526 } 527 dmu_objset_rele(os, FTAG); 528 } 529 break; 530 531 case ZPOOL_PROP_FAILUREMODE: 532 error = nvpair_value_uint64(elem, &intval); 533 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 534 intval > ZIO_FAILURE_MODE_PANIC)) 535 error = SET_ERROR(EINVAL); 536 537 /* 538 * This is a special case which only occurs when 539 * the pool has completely failed. This allows 540 * the user to change the in-core failmode property 541 * without syncing it out to disk (I/Os might 542 * currently be blocked). We do this by returning 543 * EIO to the caller (spa_prop_set) to trick it 544 * into thinking we encountered a property validation 545 * error. 546 */ 547 if (!error && spa_suspended(spa)) { 548 spa->spa_failmode = intval; 549 error = SET_ERROR(EIO); 550 } 551 break; 552 553 case ZPOOL_PROP_CACHEFILE: 554 if ((error = nvpair_value_string(elem, &strval)) != 0) 555 break; 556 557 if (strval[0] == '\0') 558 break; 559 560 if (strcmp(strval, "none") == 0) 561 break; 562 563 if (strval[0] != '/') { 564 error = SET_ERROR(EINVAL); 565 break; 566 } 567 568 slash = strrchr(strval, '/'); 569 ASSERT(slash != NULL); 570 571 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 572 strcmp(slash, "/..") == 0) 573 error = SET_ERROR(EINVAL); 574 break; 575 576 case ZPOOL_PROP_COMMENT: 577 if ((error = nvpair_value_string(elem, &strval)) != 0) 578 break; 579 for (check = strval; *check != '\0'; check++) { 580 /* 581 * The kernel doesn't have an easy isprint() 582 * check. For this kernel check, we merely 583 * check ASCII apart from DEL. Fix this if 584 * there is an easy-to-use kernel isprint(). 585 */ 586 if (*check >= 0x7f) { 587 error = SET_ERROR(EINVAL); 588 break; 589 } 590 } 591 if (strlen(strval) > ZPROP_MAX_COMMENT) 592 error = E2BIG; 593 break; 594 595 case ZPOOL_PROP_DEDUPDITTO: 596 if (spa_version(spa) < SPA_VERSION_DEDUP) 597 error = SET_ERROR(ENOTSUP); 598 else 599 error = nvpair_value_uint64(elem, &intval); 600 if (error == 0 && 601 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 602 error = SET_ERROR(EINVAL); 603 break; 604 } 605 606 if (error) 607 break; 608 } 609 610 if (!error && reset_bootfs) { 611 error = nvlist_remove(props, 612 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 613 614 if (!error) { 615 error = nvlist_add_uint64(props, 616 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 617 } 618 } 619 620 return (error); 621 } 622 623 void 624 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 625 { 626 char *cachefile; 627 spa_config_dirent_t *dp; 628 629 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 630 &cachefile) != 0) 631 return; 632 633 dp = kmem_alloc(sizeof (spa_config_dirent_t), 634 KM_SLEEP); 635 636 if (cachefile[0] == '\0') 637 dp->scd_path = spa_strdup(spa_config_path); 638 else if (strcmp(cachefile, "none") == 0) 639 dp->scd_path = NULL; 640 else 641 dp->scd_path = spa_strdup(cachefile); 642 643 list_insert_head(&spa->spa_config_list, dp); 644 if (need_sync) 645 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 646 } 647 648 int 649 spa_prop_set(spa_t *spa, nvlist_t *nvp) 650 { 651 int error; 652 nvpair_t *elem = NULL; 653 boolean_t need_sync = B_FALSE; 654 655 if ((error = spa_prop_validate(spa, nvp)) != 0) 656 return (error); 657 658 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 659 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 660 661 if (prop == ZPOOL_PROP_CACHEFILE || 662 prop == ZPOOL_PROP_ALTROOT || 663 prop == ZPOOL_PROP_READONLY) 664 continue; 665 666 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 667 uint64_t ver; 668 669 if (prop == ZPOOL_PROP_VERSION) { 670 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 671 } else { 672 ASSERT(zpool_prop_feature(nvpair_name(elem))); 673 ver = SPA_VERSION_FEATURES; 674 need_sync = B_TRUE; 675 } 676 677 /* Save time if the version is already set. */ 678 if (ver == spa_version(spa)) 679 continue; 680 681 /* 682 * In addition to the pool directory object, we might 683 * create the pool properties object, the features for 684 * read object, the features for write object, or the 685 * feature descriptions object. 686 */ 687 error = dsl_sync_task(spa->spa_name, NULL, 688 spa_sync_version, &ver, 689 6, ZFS_SPACE_CHECK_RESERVED); 690 if (error) 691 return (error); 692 continue; 693 } 694 695 need_sync = B_TRUE; 696 break; 697 } 698 699 if (need_sync) { 700 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 701 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 702 } 703 704 return (0); 705 } 706 707 /* 708 * If the bootfs property value is dsobj, clear it. 709 */ 710 void 711 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 712 { 713 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 714 VERIFY(zap_remove(spa->spa_meta_objset, 715 spa->spa_pool_props_object, 716 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 717 spa->spa_bootfs = 0; 718 } 719 } 720 721 /*ARGSUSED*/ 722 static int 723 spa_change_guid_check(void *arg, dmu_tx_t *tx) 724 { 725 uint64_t *newguid = arg; 726 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 727 vdev_t *rvd = spa->spa_root_vdev; 728 uint64_t vdev_state; 729 730 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 731 vdev_state = rvd->vdev_state; 732 spa_config_exit(spa, SCL_STATE, FTAG); 733 734 if (vdev_state != VDEV_STATE_HEALTHY) 735 return (SET_ERROR(ENXIO)); 736 737 ASSERT3U(spa_guid(spa), !=, *newguid); 738 739 return (0); 740 } 741 742 static void 743 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 744 { 745 uint64_t *newguid = arg; 746 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 747 uint64_t oldguid; 748 vdev_t *rvd = spa->spa_root_vdev; 749 750 oldguid = spa_guid(spa); 751 752 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 753 rvd->vdev_guid = *newguid; 754 rvd->vdev_guid_sum += (*newguid - oldguid); 755 vdev_config_dirty(rvd); 756 spa_config_exit(spa, SCL_STATE, FTAG); 757 758 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 759 oldguid, *newguid); 760 } 761 762 /* 763 * Change the GUID for the pool. This is done so that we can later 764 * re-import a pool built from a clone of our own vdevs. We will modify 765 * the root vdev's guid, our own pool guid, and then mark all of our 766 * vdevs dirty. Note that we must make sure that all our vdevs are 767 * online when we do this, or else any vdevs that weren't present 768 * would be orphaned from our pool. We are also going to issue a 769 * sysevent to update any watchers. 770 */ 771 int 772 spa_change_guid(spa_t *spa) 773 { 774 int error; 775 uint64_t guid; 776 777 mutex_enter(&spa->spa_vdev_top_lock); 778 mutex_enter(&spa_namespace_lock); 779 guid = spa_generate_guid(NULL); 780 781 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 782 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 783 784 if (error == 0) { 785 spa_config_sync(spa, B_FALSE, B_TRUE); 786 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 787 } 788 789 mutex_exit(&spa_namespace_lock); 790 mutex_exit(&spa->spa_vdev_top_lock); 791 792 return (error); 793 } 794 795 /* 796 * ========================================================================== 797 * SPA state manipulation (open/create/destroy/import/export) 798 * ========================================================================== 799 */ 800 801 static int 802 spa_error_entry_compare(const void *a, const void *b) 803 { 804 spa_error_entry_t *sa = (spa_error_entry_t *)a; 805 spa_error_entry_t *sb = (spa_error_entry_t *)b; 806 int ret; 807 808 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 809 sizeof (zbookmark_phys_t)); 810 811 if (ret < 0) 812 return (-1); 813 else if (ret > 0) 814 return (1); 815 else 816 return (0); 817 } 818 819 /* 820 * Utility function which retrieves copies of the current logs and 821 * re-initializes them in the process. 822 */ 823 void 824 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 825 { 826 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 827 828 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 829 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 830 831 avl_create(&spa->spa_errlist_scrub, 832 spa_error_entry_compare, sizeof (spa_error_entry_t), 833 offsetof(spa_error_entry_t, se_avl)); 834 avl_create(&spa->spa_errlist_last, 835 spa_error_entry_compare, sizeof (spa_error_entry_t), 836 offsetof(spa_error_entry_t, se_avl)); 837 } 838 839 static void 840 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 841 { 842 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 843 enum zti_modes mode = ztip->zti_mode; 844 uint_t value = ztip->zti_value; 845 uint_t count = ztip->zti_count; 846 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 847 char name[32]; 848 uint_t flags = 0; 849 boolean_t batch = B_FALSE; 850 851 if (mode == ZTI_MODE_NULL) { 852 tqs->stqs_count = 0; 853 tqs->stqs_taskq = NULL; 854 return; 855 } 856 857 ASSERT3U(count, >, 0); 858 859 tqs->stqs_count = count; 860 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 861 862 switch (mode) { 863 case ZTI_MODE_FIXED: 864 ASSERT3U(value, >=, 1); 865 value = MAX(value, 1); 866 break; 867 868 case ZTI_MODE_BATCH: 869 batch = B_TRUE; 870 flags |= TASKQ_THREADS_CPU_PCT; 871 value = zio_taskq_batch_pct; 872 break; 873 874 default: 875 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 876 "spa_activate()", 877 zio_type_name[t], zio_taskq_types[q], mode, value); 878 break; 879 } 880 881 for (uint_t i = 0; i < count; i++) { 882 taskq_t *tq; 883 884 if (count > 1) { 885 (void) snprintf(name, sizeof (name), "%s_%s_%u", 886 zio_type_name[t], zio_taskq_types[q], i); 887 } else { 888 (void) snprintf(name, sizeof (name), "%s_%s", 889 zio_type_name[t], zio_taskq_types[q]); 890 } 891 892 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 893 if (batch) 894 flags |= TASKQ_DC_BATCH; 895 896 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 897 spa->spa_proc, zio_taskq_basedc, flags); 898 } else { 899 pri_t pri = maxclsyspri; 900 /* 901 * The write issue taskq can be extremely CPU 902 * intensive. Run it at slightly lower priority 903 * than the other taskqs. 904 */ 905 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 906 pri--; 907 908 tq = taskq_create_proc(name, value, pri, 50, 909 INT_MAX, spa->spa_proc, flags); 910 } 911 912 tqs->stqs_taskq[i] = tq; 913 } 914 } 915 916 static void 917 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 918 { 919 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 920 921 if (tqs->stqs_taskq == NULL) { 922 ASSERT0(tqs->stqs_count); 923 return; 924 } 925 926 for (uint_t i = 0; i < tqs->stqs_count; i++) { 927 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 928 taskq_destroy(tqs->stqs_taskq[i]); 929 } 930 931 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 932 tqs->stqs_taskq = NULL; 933 } 934 935 /* 936 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 937 * Note that a type may have multiple discrete taskqs to avoid lock contention 938 * on the taskq itself. In that case we choose which taskq at random by using 939 * the low bits of gethrtime(). 940 */ 941 void 942 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 943 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 944 { 945 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 946 taskq_t *tq; 947 948 ASSERT3P(tqs->stqs_taskq, !=, NULL); 949 ASSERT3U(tqs->stqs_count, !=, 0); 950 951 if (tqs->stqs_count == 1) { 952 tq = tqs->stqs_taskq[0]; 953 } else { 954 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 955 } 956 957 taskq_dispatch_ent(tq, func, arg, flags, ent); 958 } 959 960 static void 961 spa_create_zio_taskqs(spa_t *spa) 962 { 963 for (int t = 0; t < ZIO_TYPES; t++) { 964 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 965 spa_taskqs_init(spa, t, q); 966 } 967 } 968 } 969 970 #ifdef _KERNEL 971 static void 972 spa_thread(void *arg) 973 { 974 callb_cpr_t cprinfo; 975 976 spa_t *spa = arg; 977 user_t *pu = PTOU(curproc); 978 979 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 980 spa->spa_name); 981 982 ASSERT(curproc != &p0); 983 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 984 "zpool-%s", spa->spa_name); 985 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 986 987 /* bind this thread to the requested psrset */ 988 if (zio_taskq_psrset_bind != PS_NONE) { 989 pool_lock(); 990 mutex_enter(&cpu_lock); 991 mutex_enter(&pidlock); 992 mutex_enter(&curproc->p_lock); 993 994 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 995 0, NULL, NULL) == 0) { 996 curthread->t_bind_pset = zio_taskq_psrset_bind; 997 } else { 998 cmn_err(CE_WARN, 999 "Couldn't bind process for zfs pool \"%s\" to " 1000 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1001 } 1002 1003 mutex_exit(&curproc->p_lock); 1004 mutex_exit(&pidlock); 1005 mutex_exit(&cpu_lock); 1006 pool_unlock(); 1007 } 1008 1009 if (zio_taskq_sysdc) { 1010 sysdc_thread_enter(curthread, 100, 0); 1011 } 1012 1013 spa->spa_proc = curproc; 1014 spa->spa_did = curthread->t_did; 1015 1016 spa_create_zio_taskqs(spa); 1017 1018 mutex_enter(&spa->spa_proc_lock); 1019 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1020 1021 spa->spa_proc_state = SPA_PROC_ACTIVE; 1022 cv_broadcast(&spa->spa_proc_cv); 1023 1024 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1025 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1026 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1027 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1028 1029 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1030 spa->spa_proc_state = SPA_PROC_GONE; 1031 spa->spa_proc = &p0; 1032 cv_broadcast(&spa->spa_proc_cv); 1033 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1034 1035 mutex_enter(&curproc->p_lock); 1036 lwp_exit(); 1037 } 1038 #endif 1039 1040 /* 1041 * Activate an uninitialized pool. 1042 */ 1043 static void 1044 spa_activate(spa_t *spa, int mode) 1045 { 1046 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1047 1048 spa->spa_state = POOL_STATE_ACTIVE; 1049 spa->spa_mode = mode; 1050 1051 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1052 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1053 1054 /* Try to create a covering process */ 1055 mutex_enter(&spa->spa_proc_lock); 1056 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1057 ASSERT(spa->spa_proc == &p0); 1058 spa->spa_did = 0; 1059 1060 /* Only create a process if we're going to be around a while. */ 1061 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1062 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1063 NULL, 0) == 0) { 1064 spa->spa_proc_state = SPA_PROC_CREATED; 1065 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1066 cv_wait(&spa->spa_proc_cv, 1067 &spa->spa_proc_lock); 1068 } 1069 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1070 ASSERT(spa->spa_proc != &p0); 1071 ASSERT(spa->spa_did != 0); 1072 } else { 1073 #ifdef _KERNEL 1074 cmn_err(CE_WARN, 1075 "Couldn't create process for zfs pool \"%s\"\n", 1076 spa->spa_name); 1077 #endif 1078 } 1079 } 1080 mutex_exit(&spa->spa_proc_lock); 1081 1082 /* If we didn't create a process, we need to create our taskqs. */ 1083 if (spa->spa_proc == &p0) { 1084 spa_create_zio_taskqs(spa); 1085 } 1086 1087 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1088 offsetof(vdev_t, vdev_config_dirty_node)); 1089 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1090 offsetof(objset_t, os_evicting_node)); 1091 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1092 offsetof(vdev_t, vdev_state_dirty_node)); 1093 1094 txg_list_create(&spa->spa_vdev_txg_list, spa, 1095 offsetof(struct vdev, vdev_txg_node)); 1096 1097 avl_create(&spa->spa_errlist_scrub, 1098 spa_error_entry_compare, sizeof (spa_error_entry_t), 1099 offsetof(spa_error_entry_t, se_avl)); 1100 avl_create(&spa->spa_errlist_last, 1101 spa_error_entry_compare, sizeof (spa_error_entry_t), 1102 offsetof(spa_error_entry_t, se_avl)); 1103 } 1104 1105 /* 1106 * Opposite of spa_activate(). 1107 */ 1108 static void 1109 spa_deactivate(spa_t *spa) 1110 { 1111 ASSERT(spa->spa_sync_on == B_FALSE); 1112 ASSERT(spa->spa_dsl_pool == NULL); 1113 ASSERT(spa->spa_root_vdev == NULL); 1114 ASSERT(spa->spa_async_zio_root == NULL); 1115 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1116 1117 spa_evicting_os_wait(spa); 1118 1119 txg_list_destroy(&spa->spa_vdev_txg_list); 1120 1121 list_destroy(&spa->spa_config_dirty_list); 1122 list_destroy(&spa->spa_evicting_os_list); 1123 list_destroy(&spa->spa_state_dirty_list); 1124 1125 for (int t = 0; t < ZIO_TYPES; t++) { 1126 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1127 spa_taskqs_fini(spa, t, q); 1128 } 1129 } 1130 1131 metaslab_class_destroy(spa->spa_normal_class); 1132 spa->spa_normal_class = NULL; 1133 1134 metaslab_class_destroy(spa->spa_log_class); 1135 spa->spa_log_class = NULL; 1136 1137 /* 1138 * If this was part of an import or the open otherwise failed, we may 1139 * still have errors left in the queues. Empty them just in case. 1140 */ 1141 spa_errlog_drain(spa); 1142 1143 avl_destroy(&spa->spa_errlist_scrub); 1144 avl_destroy(&spa->spa_errlist_last); 1145 1146 spa->spa_state = POOL_STATE_UNINITIALIZED; 1147 1148 mutex_enter(&spa->spa_proc_lock); 1149 if (spa->spa_proc_state != SPA_PROC_NONE) { 1150 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1151 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1152 cv_broadcast(&spa->spa_proc_cv); 1153 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1154 ASSERT(spa->spa_proc != &p0); 1155 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1156 } 1157 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1158 spa->spa_proc_state = SPA_PROC_NONE; 1159 } 1160 ASSERT(spa->spa_proc == &p0); 1161 mutex_exit(&spa->spa_proc_lock); 1162 1163 /* 1164 * We want to make sure spa_thread() has actually exited the ZFS 1165 * module, so that the module can't be unloaded out from underneath 1166 * it. 1167 */ 1168 if (spa->spa_did != 0) { 1169 thread_join(spa->spa_did); 1170 spa->spa_did = 0; 1171 } 1172 } 1173 1174 /* 1175 * Verify a pool configuration, and construct the vdev tree appropriately. This 1176 * will create all the necessary vdevs in the appropriate layout, with each vdev 1177 * in the CLOSED state. This will prep the pool before open/creation/import. 1178 * All vdev validation is done by the vdev_alloc() routine. 1179 */ 1180 static int 1181 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1182 uint_t id, int atype) 1183 { 1184 nvlist_t **child; 1185 uint_t children; 1186 int error; 1187 1188 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1189 return (error); 1190 1191 if ((*vdp)->vdev_ops->vdev_op_leaf) 1192 return (0); 1193 1194 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1195 &child, &children); 1196 1197 if (error == ENOENT) 1198 return (0); 1199 1200 if (error) { 1201 vdev_free(*vdp); 1202 *vdp = NULL; 1203 return (SET_ERROR(EINVAL)); 1204 } 1205 1206 for (int c = 0; c < children; c++) { 1207 vdev_t *vd; 1208 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1209 atype)) != 0) { 1210 vdev_free(*vdp); 1211 *vdp = NULL; 1212 return (error); 1213 } 1214 } 1215 1216 ASSERT(*vdp != NULL); 1217 1218 return (0); 1219 } 1220 1221 /* 1222 * Opposite of spa_load(). 1223 */ 1224 static void 1225 spa_unload(spa_t *spa) 1226 { 1227 int i; 1228 1229 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1230 1231 /* 1232 * Stop async tasks. 1233 */ 1234 spa_async_suspend(spa); 1235 1236 /* 1237 * Stop syncing. 1238 */ 1239 if (spa->spa_sync_on) { 1240 txg_sync_stop(spa->spa_dsl_pool); 1241 spa->spa_sync_on = B_FALSE; 1242 } 1243 1244 /* 1245 * Even though vdev_free() also calls vdev_metaslab_fini, we need 1246 * to call it earlier, before we wait for async i/o to complete. 1247 * This ensures that there is no async metaslab prefetching, by 1248 * calling taskq_wait(mg_taskq). 1249 */ 1250 if (spa->spa_root_vdev != NULL) { 1251 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1252 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) 1253 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]); 1254 spa_config_exit(spa, SCL_ALL, FTAG); 1255 } 1256 1257 /* 1258 * Wait for any outstanding async I/O to complete. 1259 */ 1260 if (spa->spa_async_zio_root != NULL) { 1261 for (int i = 0; i < max_ncpus; i++) 1262 (void) zio_wait(spa->spa_async_zio_root[i]); 1263 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1264 spa->spa_async_zio_root = NULL; 1265 } 1266 1267 bpobj_close(&spa->spa_deferred_bpobj); 1268 1269 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1270 1271 /* 1272 * Close all vdevs. 1273 */ 1274 if (spa->spa_root_vdev) 1275 vdev_free(spa->spa_root_vdev); 1276 ASSERT(spa->spa_root_vdev == NULL); 1277 1278 /* 1279 * Close the dsl pool. 1280 */ 1281 if (spa->spa_dsl_pool) { 1282 dsl_pool_close(spa->spa_dsl_pool); 1283 spa->spa_dsl_pool = NULL; 1284 spa->spa_meta_objset = NULL; 1285 } 1286 1287 ddt_unload(spa); 1288 1289 /* 1290 * Drop and purge level 2 cache 1291 */ 1292 spa_l2cache_drop(spa); 1293 1294 for (i = 0; i < spa->spa_spares.sav_count; i++) 1295 vdev_free(spa->spa_spares.sav_vdevs[i]); 1296 if (spa->spa_spares.sav_vdevs) { 1297 kmem_free(spa->spa_spares.sav_vdevs, 1298 spa->spa_spares.sav_count * sizeof (void *)); 1299 spa->spa_spares.sav_vdevs = NULL; 1300 } 1301 if (spa->spa_spares.sav_config) { 1302 nvlist_free(spa->spa_spares.sav_config); 1303 spa->spa_spares.sav_config = NULL; 1304 } 1305 spa->spa_spares.sav_count = 0; 1306 1307 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1308 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1309 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1310 } 1311 if (spa->spa_l2cache.sav_vdevs) { 1312 kmem_free(spa->spa_l2cache.sav_vdevs, 1313 spa->spa_l2cache.sav_count * sizeof (void *)); 1314 spa->spa_l2cache.sav_vdevs = NULL; 1315 } 1316 if (spa->spa_l2cache.sav_config) { 1317 nvlist_free(spa->spa_l2cache.sav_config); 1318 spa->spa_l2cache.sav_config = NULL; 1319 } 1320 spa->spa_l2cache.sav_count = 0; 1321 1322 spa->spa_async_suspended = 0; 1323 1324 if (spa->spa_comment != NULL) { 1325 spa_strfree(spa->spa_comment); 1326 spa->spa_comment = NULL; 1327 } 1328 1329 spa_config_exit(spa, SCL_ALL, FTAG); 1330 } 1331 1332 /* 1333 * Load (or re-load) the current list of vdevs describing the active spares for 1334 * this pool. When this is called, we have some form of basic information in 1335 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1336 * then re-generate a more complete list including status information. 1337 */ 1338 static void 1339 spa_load_spares(spa_t *spa) 1340 { 1341 nvlist_t **spares; 1342 uint_t nspares; 1343 int i; 1344 vdev_t *vd, *tvd; 1345 1346 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1347 1348 /* 1349 * First, close and free any existing spare vdevs. 1350 */ 1351 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1352 vd = spa->spa_spares.sav_vdevs[i]; 1353 1354 /* Undo the call to spa_activate() below */ 1355 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1356 B_FALSE)) != NULL && tvd->vdev_isspare) 1357 spa_spare_remove(tvd); 1358 vdev_close(vd); 1359 vdev_free(vd); 1360 } 1361 1362 if (spa->spa_spares.sav_vdevs) 1363 kmem_free(spa->spa_spares.sav_vdevs, 1364 spa->spa_spares.sav_count * sizeof (void *)); 1365 1366 if (spa->spa_spares.sav_config == NULL) 1367 nspares = 0; 1368 else 1369 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1370 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1371 1372 spa->spa_spares.sav_count = (int)nspares; 1373 spa->spa_spares.sav_vdevs = NULL; 1374 1375 if (nspares == 0) 1376 return; 1377 1378 /* 1379 * Construct the array of vdevs, opening them to get status in the 1380 * process. For each spare, there is potentially two different vdev_t 1381 * structures associated with it: one in the list of spares (used only 1382 * for basic validation purposes) and one in the active vdev 1383 * configuration (if it's spared in). During this phase we open and 1384 * validate each vdev on the spare list. If the vdev also exists in the 1385 * active configuration, then we also mark this vdev as an active spare. 1386 */ 1387 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1388 KM_SLEEP); 1389 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1390 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1391 VDEV_ALLOC_SPARE) == 0); 1392 ASSERT(vd != NULL); 1393 1394 spa->spa_spares.sav_vdevs[i] = vd; 1395 1396 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1397 B_FALSE)) != NULL) { 1398 if (!tvd->vdev_isspare) 1399 spa_spare_add(tvd); 1400 1401 /* 1402 * We only mark the spare active if we were successfully 1403 * able to load the vdev. Otherwise, importing a pool 1404 * with a bad active spare would result in strange 1405 * behavior, because multiple pool would think the spare 1406 * is actively in use. 1407 * 1408 * There is a vulnerability here to an equally bizarre 1409 * circumstance, where a dead active spare is later 1410 * brought back to life (onlined or otherwise). Given 1411 * the rarity of this scenario, and the extra complexity 1412 * it adds, we ignore the possibility. 1413 */ 1414 if (!vdev_is_dead(tvd)) 1415 spa_spare_activate(tvd); 1416 } 1417 1418 vd->vdev_top = vd; 1419 vd->vdev_aux = &spa->spa_spares; 1420 1421 if (vdev_open(vd) != 0) 1422 continue; 1423 1424 if (vdev_validate_aux(vd) == 0) 1425 spa_spare_add(vd); 1426 } 1427 1428 /* 1429 * Recompute the stashed list of spares, with status information 1430 * this time. 1431 */ 1432 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1433 DATA_TYPE_NVLIST_ARRAY) == 0); 1434 1435 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1436 KM_SLEEP); 1437 for (i = 0; i < spa->spa_spares.sav_count; i++) 1438 spares[i] = vdev_config_generate(spa, 1439 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1440 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1441 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1442 for (i = 0; i < spa->spa_spares.sav_count; i++) 1443 nvlist_free(spares[i]); 1444 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1445 } 1446 1447 /* 1448 * Load (or re-load) the current list of vdevs describing the active l2cache for 1449 * this pool. When this is called, we have some form of basic information in 1450 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1451 * then re-generate a more complete list including status information. 1452 * Devices which are already active have their details maintained, and are 1453 * not re-opened. 1454 */ 1455 static void 1456 spa_load_l2cache(spa_t *spa) 1457 { 1458 nvlist_t **l2cache; 1459 uint_t nl2cache; 1460 int i, j, oldnvdevs; 1461 uint64_t guid; 1462 vdev_t *vd, **oldvdevs, **newvdevs; 1463 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1464 1465 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1466 1467 if (sav->sav_config != NULL) { 1468 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1469 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1470 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1471 } else { 1472 nl2cache = 0; 1473 newvdevs = NULL; 1474 } 1475 1476 oldvdevs = sav->sav_vdevs; 1477 oldnvdevs = sav->sav_count; 1478 sav->sav_vdevs = NULL; 1479 sav->sav_count = 0; 1480 1481 /* 1482 * Process new nvlist of vdevs. 1483 */ 1484 for (i = 0; i < nl2cache; i++) { 1485 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1486 &guid) == 0); 1487 1488 newvdevs[i] = NULL; 1489 for (j = 0; j < oldnvdevs; j++) { 1490 vd = oldvdevs[j]; 1491 if (vd != NULL && guid == vd->vdev_guid) { 1492 /* 1493 * Retain previous vdev for add/remove ops. 1494 */ 1495 newvdevs[i] = vd; 1496 oldvdevs[j] = NULL; 1497 break; 1498 } 1499 } 1500 1501 if (newvdevs[i] == NULL) { 1502 /* 1503 * Create new vdev 1504 */ 1505 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1506 VDEV_ALLOC_L2CACHE) == 0); 1507 ASSERT(vd != NULL); 1508 newvdevs[i] = vd; 1509 1510 /* 1511 * Commit this vdev as an l2cache device, 1512 * even if it fails to open. 1513 */ 1514 spa_l2cache_add(vd); 1515 1516 vd->vdev_top = vd; 1517 vd->vdev_aux = sav; 1518 1519 spa_l2cache_activate(vd); 1520 1521 if (vdev_open(vd) != 0) 1522 continue; 1523 1524 (void) vdev_validate_aux(vd); 1525 1526 if (!vdev_is_dead(vd)) 1527 l2arc_add_vdev(spa, vd); 1528 } 1529 } 1530 1531 /* 1532 * Purge vdevs that were dropped 1533 */ 1534 for (i = 0; i < oldnvdevs; i++) { 1535 uint64_t pool; 1536 1537 vd = oldvdevs[i]; 1538 if (vd != NULL) { 1539 ASSERT(vd->vdev_isl2cache); 1540 1541 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1542 pool != 0ULL && l2arc_vdev_present(vd)) 1543 l2arc_remove_vdev(vd); 1544 vdev_clear_stats(vd); 1545 vdev_free(vd); 1546 } 1547 } 1548 1549 if (oldvdevs) 1550 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1551 1552 if (sav->sav_config == NULL) 1553 goto out; 1554 1555 sav->sav_vdevs = newvdevs; 1556 sav->sav_count = (int)nl2cache; 1557 1558 /* 1559 * Recompute the stashed list of l2cache devices, with status 1560 * information this time. 1561 */ 1562 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1563 DATA_TYPE_NVLIST_ARRAY) == 0); 1564 1565 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1566 for (i = 0; i < sav->sav_count; i++) 1567 l2cache[i] = vdev_config_generate(spa, 1568 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1569 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1570 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1571 out: 1572 for (i = 0; i < sav->sav_count; i++) 1573 nvlist_free(l2cache[i]); 1574 if (sav->sav_count) 1575 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1576 } 1577 1578 static int 1579 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1580 { 1581 dmu_buf_t *db; 1582 char *packed = NULL; 1583 size_t nvsize = 0; 1584 int error; 1585 *value = NULL; 1586 1587 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1588 if (error != 0) 1589 return (error); 1590 1591 nvsize = *(uint64_t *)db->db_data; 1592 dmu_buf_rele(db, FTAG); 1593 1594 packed = kmem_alloc(nvsize, KM_SLEEP); 1595 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1596 DMU_READ_PREFETCH); 1597 if (error == 0) 1598 error = nvlist_unpack(packed, nvsize, value, 0); 1599 kmem_free(packed, nvsize); 1600 1601 return (error); 1602 } 1603 1604 /* 1605 * Checks to see if the given vdev could not be opened, in which case we post a 1606 * sysevent to notify the autoreplace code that the device has been removed. 1607 */ 1608 static void 1609 spa_check_removed(vdev_t *vd) 1610 { 1611 for (int c = 0; c < vd->vdev_children; c++) 1612 spa_check_removed(vd->vdev_child[c]); 1613 1614 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1615 !vd->vdev_ishole) { 1616 zfs_post_autoreplace(vd->vdev_spa, vd); 1617 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1618 } 1619 } 1620 1621 static void 1622 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd) 1623 { 1624 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children); 1625 1626 vd->vdev_top_zap = mvd->vdev_top_zap; 1627 vd->vdev_leaf_zap = mvd->vdev_leaf_zap; 1628 1629 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1630 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]); 1631 } 1632 } 1633 1634 /* 1635 * Validate the current config against the MOS config 1636 */ 1637 static boolean_t 1638 spa_config_valid(spa_t *spa, nvlist_t *config) 1639 { 1640 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1641 nvlist_t *nv; 1642 1643 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1644 1645 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1646 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1647 1648 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1649 1650 /* 1651 * If we're doing a normal import, then build up any additional 1652 * diagnostic information about missing devices in this config. 1653 * We'll pass this up to the user for further processing. 1654 */ 1655 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1656 nvlist_t **child, *nv; 1657 uint64_t idx = 0; 1658 1659 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1660 KM_SLEEP); 1661 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1662 1663 for (int c = 0; c < rvd->vdev_children; c++) { 1664 vdev_t *tvd = rvd->vdev_child[c]; 1665 vdev_t *mtvd = mrvd->vdev_child[c]; 1666 1667 if (tvd->vdev_ops == &vdev_missing_ops && 1668 mtvd->vdev_ops != &vdev_missing_ops && 1669 mtvd->vdev_islog) 1670 child[idx++] = vdev_config_generate(spa, mtvd, 1671 B_FALSE, 0); 1672 } 1673 1674 if (idx) { 1675 VERIFY(nvlist_add_nvlist_array(nv, 1676 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1677 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1678 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1679 1680 for (int i = 0; i < idx; i++) 1681 nvlist_free(child[i]); 1682 } 1683 nvlist_free(nv); 1684 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1685 } 1686 1687 /* 1688 * Compare the root vdev tree with the information we have 1689 * from the MOS config (mrvd). Check each top-level vdev 1690 * with the corresponding MOS config top-level (mtvd). 1691 */ 1692 for (int c = 0; c < rvd->vdev_children; c++) { 1693 vdev_t *tvd = rvd->vdev_child[c]; 1694 vdev_t *mtvd = mrvd->vdev_child[c]; 1695 1696 /* 1697 * Resolve any "missing" vdevs in the current configuration. 1698 * If we find that the MOS config has more accurate information 1699 * about the top-level vdev then use that vdev instead. 1700 */ 1701 if (tvd->vdev_ops == &vdev_missing_ops && 1702 mtvd->vdev_ops != &vdev_missing_ops) { 1703 1704 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1705 continue; 1706 1707 /* 1708 * Device specific actions. 1709 */ 1710 if (mtvd->vdev_islog) { 1711 spa_set_log_state(spa, SPA_LOG_CLEAR); 1712 } else { 1713 /* 1714 * XXX - once we have 'readonly' pool 1715 * support we should be able to handle 1716 * missing data devices by transitioning 1717 * the pool to readonly. 1718 */ 1719 continue; 1720 } 1721 1722 /* 1723 * Swap the missing vdev with the data we were 1724 * able to obtain from the MOS config. 1725 */ 1726 vdev_remove_child(rvd, tvd); 1727 vdev_remove_child(mrvd, mtvd); 1728 1729 vdev_add_child(rvd, mtvd); 1730 vdev_add_child(mrvd, tvd); 1731 1732 spa_config_exit(spa, SCL_ALL, FTAG); 1733 vdev_load(mtvd); 1734 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1735 1736 vdev_reopen(rvd); 1737 } else { 1738 if (mtvd->vdev_islog) { 1739 /* 1740 * Load the slog device's state from the MOS 1741 * config since it's possible that the label 1742 * does not contain the most up-to-date 1743 * information. 1744 */ 1745 vdev_load_log_state(tvd, mtvd); 1746 vdev_reopen(tvd); 1747 } 1748 1749 /* 1750 * Per-vdev ZAP info is stored exclusively in the MOS. 1751 */ 1752 spa_config_valid_zaps(tvd, mtvd); 1753 } 1754 } 1755 1756 vdev_free(mrvd); 1757 spa_config_exit(spa, SCL_ALL, FTAG); 1758 1759 /* 1760 * Ensure we were able to validate the config. 1761 */ 1762 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1763 } 1764 1765 /* 1766 * Check for missing log devices 1767 */ 1768 static boolean_t 1769 spa_check_logs(spa_t *spa) 1770 { 1771 boolean_t rv = B_FALSE; 1772 dsl_pool_t *dp = spa_get_dsl(spa); 1773 1774 switch (spa->spa_log_state) { 1775 case SPA_LOG_MISSING: 1776 /* need to recheck in case slog has been restored */ 1777 case SPA_LOG_UNKNOWN: 1778 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1779 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1780 if (rv) 1781 spa_set_log_state(spa, SPA_LOG_MISSING); 1782 break; 1783 } 1784 return (rv); 1785 } 1786 1787 static boolean_t 1788 spa_passivate_log(spa_t *spa) 1789 { 1790 vdev_t *rvd = spa->spa_root_vdev; 1791 boolean_t slog_found = B_FALSE; 1792 1793 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1794 1795 if (!spa_has_slogs(spa)) 1796 return (B_FALSE); 1797 1798 for (int c = 0; c < rvd->vdev_children; c++) { 1799 vdev_t *tvd = rvd->vdev_child[c]; 1800 metaslab_group_t *mg = tvd->vdev_mg; 1801 1802 if (tvd->vdev_islog) { 1803 metaslab_group_passivate(mg); 1804 slog_found = B_TRUE; 1805 } 1806 } 1807 1808 return (slog_found); 1809 } 1810 1811 static void 1812 spa_activate_log(spa_t *spa) 1813 { 1814 vdev_t *rvd = spa->spa_root_vdev; 1815 1816 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1817 1818 for (int c = 0; c < rvd->vdev_children; c++) { 1819 vdev_t *tvd = rvd->vdev_child[c]; 1820 metaslab_group_t *mg = tvd->vdev_mg; 1821 1822 if (tvd->vdev_islog) 1823 metaslab_group_activate(mg); 1824 } 1825 } 1826 1827 int 1828 spa_offline_log(spa_t *spa) 1829 { 1830 int error; 1831 1832 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1833 NULL, DS_FIND_CHILDREN); 1834 if (error == 0) { 1835 /* 1836 * We successfully offlined the log device, sync out the 1837 * current txg so that the "stubby" block can be removed 1838 * by zil_sync(). 1839 */ 1840 txg_wait_synced(spa->spa_dsl_pool, 0); 1841 } 1842 return (error); 1843 } 1844 1845 static void 1846 spa_aux_check_removed(spa_aux_vdev_t *sav) 1847 { 1848 for (int i = 0; i < sav->sav_count; i++) 1849 spa_check_removed(sav->sav_vdevs[i]); 1850 } 1851 1852 void 1853 spa_claim_notify(zio_t *zio) 1854 { 1855 spa_t *spa = zio->io_spa; 1856 1857 if (zio->io_error) 1858 return; 1859 1860 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1861 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1862 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1863 mutex_exit(&spa->spa_props_lock); 1864 } 1865 1866 typedef struct spa_load_error { 1867 uint64_t sle_meta_count; 1868 uint64_t sle_data_count; 1869 } spa_load_error_t; 1870 1871 static void 1872 spa_load_verify_done(zio_t *zio) 1873 { 1874 blkptr_t *bp = zio->io_bp; 1875 spa_load_error_t *sle = zio->io_private; 1876 dmu_object_type_t type = BP_GET_TYPE(bp); 1877 int error = zio->io_error; 1878 spa_t *spa = zio->io_spa; 1879 1880 abd_free(zio->io_abd); 1881 if (error) { 1882 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1883 type != DMU_OT_INTENT_LOG) 1884 atomic_inc_64(&sle->sle_meta_count); 1885 else 1886 atomic_inc_64(&sle->sle_data_count); 1887 } 1888 1889 mutex_enter(&spa->spa_scrub_lock); 1890 spa->spa_scrub_inflight--; 1891 cv_broadcast(&spa->spa_scrub_io_cv); 1892 mutex_exit(&spa->spa_scrub_lock); 1893 } 1894 1895 /* 1896 * Maximum number of concurrent scrub i/os to create while verifying 1897 * a pool while importing it. 1898 */ 1899 int spa_load_verify_maxinflight = 10000; 1900 boolean_t spa_load_verify_metadata = B_TRUE; 1901 boolean_t spa_load_verify_data = B_TRUE; 1902 1903 /*ARGSUSED*/ 1904 static int 1905 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1906 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1907 { 1908 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1909 return (0); 1910 /* 1911 * Note: normally this routine will not be called if 1912 * spa_load_verify_metadata is not set. However, it may be useful 1913 * to manually set the flag after the traversal has begun. 1914 */ 1915 if (!spa_load_verify_metadata) 1916 return (0); 1917 if (!BP_IS_METADATA(bp) && !spa_load_verify_data) 1918 return (0); 1919 1920 zio_t *rio = arg; 1921 size_t size = BP_GET_PSIZE(bp); 1922 1923 mutex_enter(&spa->spa_scrub_lock); 1924 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1925 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1926 spa->spa_scrub_inflight++; 1927 mutex_exit(&spa->spa_scrub_lock); 1928 1929 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 1930 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1931 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1932 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1933 return (0); 1934 } 1935 1936 /* ARGSUSED */ 1937 int 1938 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1939 { 1940 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 1941 return (SET_ERROR(ENAMETOOLONG)); 1942 1943 return (0); 1944 } 1945 1946 static int 1947 spa_load_verify(spa_t *spa) 1948 { 1949 zio_t *rio; 1950 spa_load_error_t sle = { 0 }; 1951 zpool_rewind_policy_t policy; 1952 boolean_t verify_ok = B_FALSE; 1953 int error = 0; 1954 1955 zpool_get_rewind_policy(spa->spa_config, &policy); 1956 1957 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1958 return (0); 1959 1960 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 1961 error = dmu_objset_find_dp(spa->spa_dsl_pool, 1962 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 1963 DS_FIND_CHILDREN); 1964 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 1965 if (error != 0) 1966 return (error); 1967 1968 rio = zio_root(spa, NULL, &sle, 1969 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1970 1971 if (spa_load_verify_metadata) { 1972 error = traverse_pool(spa, spa->spa_verify_min_txg, 1973 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1974 spa_load_verify_cb, rio); 1975 } 1976 1977 (void) zio_wait(rio); 1978 1979 spa->spa_load_meta_errors = sle.sle_meta_count; 1980 spa->spa_load_data_errors = sle.sle_data_count; 1981 1982 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1983 sle.sle_data_count <= policy.zrp_maxdata) { 1984 int64_t loss = 0; 1985 1986 verify_ok = B_TRUE; 1987 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1988 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1989 1990 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1991 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1992 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1993 VERIFY(nvlist_add_int64(spa->spa_load_info, 1994 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1995 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1996 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1997 } else { 1998 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1999 } 2000 2001 if (error) { 2002 if (error != ENXIO && error != EIO) 2003 error = SET_ERROR(EIO); 2004 return (error); 2005 } 2006 2007 return (verify_ok ? 0 : EIO); 2008 } 2009 2010 /* 2011 * Find a value in the pool props object. 2012 */ 2013 static void 2014 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2015 { 2016 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2017 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2018 } 2019 2020 /* 2021 * Find a value in the pool directory object. 2022 */ 2023 static int 2024 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 2025 { 2026 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2027 name, sizeof (uint64_t), 1, val)); 2028 } 2029 2030 static int 2031 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2032 { 2033 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2034 return (err); 2035 } 2036 2037 /* 2038 * Fix up config after a partly-completed split. This is done with the 2039 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2040 * pool have that entry in their config, but only the splitting one contains 2041 * a list of all the guids of the vdevs that are being split off. 2042 * 2043 * This function determines what to do with that list: either rejoin 2044 * all the disks to the pool, or complete the splitting process. To attempt 2045 * the rejoin, each disk that is offlined is marked online again, and 2046 * we do a reopen() call. If the vdev label for every disk that was 2047 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2048 * then we call vdev_split() on each disk, and complete the split. 2049 * 2050 * Otherwise we leave the config alone, with all the vdevs in place in 2051 * the original pool. 2052 */ 2053 static void 2054 spa_try_repair(spa_t *spa, nvlist_t *config) 2055 { 2056 uint_t extracted; 2057 uint64_t *glist; 2058 uint_t i, gcount; 2059 nvlist_t *nvl; 2060 vdev_t **vd; 2061 boolean_t attempt_reopen; 2062 2063 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2064 return; 2065 2066 /* check that the config is complete */ 2067 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2068 &glist, &gcount) != 0) 2069 return; 2070 2071 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2072 2073 /* attempt to online all the vdevs & validate */ 2074 attempt_reopen = B_TRUE; 2075 for (i = 0; i < gcount; i++) { 2076 if (glist[i] == 0) /* vdev is hole */ 2077 continue; 2078 2079 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2080 if (vd[i] == NULL) { 2081 /* 2082 * Don't bother attempting to reopen the disks; 2083 * just do the split. 2084 */ 2085 attempt_reopen = B_FALSE; 2086 } else { 2087 /* attempt to re-online it */ 2088 vd[i]->vdev_offline = B_FALSE; 2089 } 2090 } 2091 2092 if (attempt_reopen) { 2093 vdev_reopen(spa->spa_root_vdev); 2094 2095 /* check each device to see what state it's in */ 2096 for (extracted = 0, i = 0; i < gcount; i++) { 2097 if (vd[i] != NULL && 2098 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2099 break; 2100 ++extracted; 2101 } 2102 } 2103 2104 /* 2105 * If every disk has been moved to the new pool, or if we never 2106 * even attempted to look at them, then we split them off for 2107 * good. 2108 */ 2109 if (!attempt_reopen || gcount == extracted) { 2110 for (i = 0; i < gcount; i++) 2111 if (vd[i] != NULL) 2112 vdev_split(vd[i]); 2113 vdev_reopen(spa->spa_root_vdev); 2114 } 2115 2116 kmem_free(vd, gcount * sizeof (vdev_t *)); 2117 } 2118 2119 static int 2120 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2121 boolean_t mosconfig) 2122 { 2123 nvlist_t *config = spa->spa_config; 2124 char *ereport = FM_EREPORT_ZFS_POOL; 2125 char *comment; 2126 int error; 2127 uint64_t pool_guid; 2128 nvlist_t *nvl; 2129 2130 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2131 return (SET_ERROR(EINVAL)); 2132 2133 ASSERT(spa->spa_comment == NULL); 2134 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2135 spa->spa_comment = spa_strdup(comment); 2136 2137 /* 2138 * Versioning wasn't explicitly added to the label until later, so if 2139 * it's not present treat it as the initial version. 2140 */ 2141 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2142 &spa->spa_ubsync.ub_version) != 0) 2143 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2144 2145 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2146 &spa->spa_config_txg); 2147 2148 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2149 spa_guid_exists(pool_guid, 0)) { 2150 error = SET_ERROR(EEXIST); 2151 } else { 2152 spa->spa_config_guid = pool_guid; 2153 2154 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2155 &nvl) == 0) { 2156 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2157 KM_SLEEP) == 0); 2158 } 2159 2160 nvlist_free(spa->spa_load_info); 2161 spa->spa_load_info = fnvlist_alloc(); 2162 2163 gethrestime(&spa->spa_loaded_ts); 2164 error = spa_load_impl(spa, pool_guid, config, state, type, 2165 mosconfig, &ereport); 2166 } 2167 2168 /* 2169 * Don't count references from objsets that are already closed 2170 * and are making their way through the eviction process. 2171 */ 2172 spa_evicting_os_wait(spa); 2173 spa->spa_minref = refcount_count(&spa->spa_refcount); 2174 if (error) { 2175 if (error != EEXIST) { 2176 spa->spa_loaded_ts.tv_sec = 0; 2177 spa->spa_loaded_ts.tv_nsec = 0; 2178 } 2179 if (error != EBADF) { 2180 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2181 } 2182 } 2183 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2184 spa->spa_ena = 0; 2185 2186 return (error); 2187 } 2188 2189 /* 2190 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2191 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2192 * spa's per-vdev ZAP list. 2193 */ 2194 static uint64_t 2195 vdev_count_verify_zaps(vdev_t *vd) 2196 { 2197 spa_t *spa = vd->vdev_spa; 2198 uint64_t total = 0; 2199 if (vd->vdev_top_zap != 0) { 2200 total++; 2201 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2202 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2203 } 2204 if (vd->vdev_leaf_zap != 0) { 2205 total++; 2206 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2207 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2208 } 2209 2210 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2211 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2212 } 2213 2214 return (total); 2215 } 2216 2217 /* 2218 * Load an existing storage pool, using the pool's builtin spa_config as a 2219 * source of configuration information. 2220 */ 2221 static int 2222 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2223 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2224 char **ereport) 2225 { 2226 int error = 0; 2227 nvlist_t *nvroot = NULL; 2228 nvlist_t *label; 2229 vdev_t *rvd; 2230 uberblock_t *ub = &spa->spa_uberblock; 2231 uint64_t children, config_cache_txg = spa->spa_config_txg; 2232 int orig_mode = spa->spa_mode; 2233 int parse; 2234 uint64_t obj; 2235 boolean_t missing_feat_write = B_FALSE; 2236 2237 /* 2238 * If this is an untrusted config, access the pool in read-only mode. 2239 * This prevents things like resilvering recently removed devices. 2240 */ 2241 if (!mosconfig) 2242 spa->spa_mode = FREAD; 2243 2244 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2245 2246 spa->spa_load_state = state; 2247 2248 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2249 return (SET_ERROR(EINVAL)); 2250 2251 parse = (type == SPA_IMPORT_EXISTING ? 2252 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2253 2254 /* 2255 * Create "The Godfather" zio to hold all async IOs 2256 */ 2257 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2258 KM_SLEEP); 2259 for (int i = 0; i < max_ncpus; i++) { 2260 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2261 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2262 ZIO_FLAG_GODFATHER); 2263 } 2264 2265 /* 2266 * Parse the configuration into a vdev tree. We explicitly set the 2267 * value that will be returned by spa_version() since parsing the 2268 * configuration requires knowing the version number. 2269 */ 2270 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2271 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2272 spa_config_exit(spa, SCL_ALL, FTAG); 2273 2274 if (error != 0) 2275 return (error); 2276 2277 ASSERT(spa->spa_root_vdev == rvd); 2278 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2279 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2280 2281 if (type != SPA_IMPORT_ASSEMBLE) { 2282 ASSERT(spa_guid(spa) == pool_guid); 2283 } 2284 2285 /* 2286 * Try to open all vdevs, loading each label in the process. 2287 */ 2288 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2289 error = vdev_open(rvd); 2290 spa_config_exit(spa, SCL_ALL, FTAG); 2291 if (error != 0) 2292 return (error); 2293 2294 /* 2295 * We need to validate the vdev labels against the configuration that 2296 * we have in hand, which is dependent on the setting of mosconfig. If 2297 * mosconfig is true then we're validating the vdev labels based on 2298 * that config. Otherwise, we're validating against the cached config 2299 * (zpool.cache) that was read when we loaded the zfs module, and then 2300 * later we will recursively call spa_load() and validate against 2301 * the vdev config. 2302 * 2303 * If we're assembling a new pool that's been split off from an 2304 * existing pool, the labels haven't yet been updated so we skip 2305 * validation for now. 2306 */ 2307 if (type != SPA_IMPORT_ASSEMBLE) { 2308 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2309 error = vdev_validate(rvd, mosconfig); 2310 spa_config_exit(spa, SCL_ALL, FTAG); 2311 2312 if (error != 0) 2313 return (error); 2314 2315 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2316 return (SET_ERROR(ENXIO)); 2317 } 2318 2319 /* 2320 * Find the best uberblock. 2321 */ 2322 vdev_uberblock_load(rvd, ub, &label); 2323 2324 /* 2325 * If we weren't able to find a single valid uberblock, return failure. 2326 */ 2327 if (ub->ub_txg == 0) { 2328 nvlist_free(label); 2329 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2330 } 2331 2332 /* 2333 * If the pool has an unsupported version we can't open it. 2334 */ 2335 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2336 nvlist_free(label); 2337 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2338 } 2339 2340 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2341 nvlist_t *features; 2342 2343 /* 2344 * If we weren't able to find what's necessary for reading the 2345 * MOS in the label, return failure. 2346 */ 2347 if (label == NULL || nvlist_lookup_nvlist(label, 2348 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2349 nvlist_free(label); 2350 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2351 ENXIO)); 2352 } 2353 2354 /* 2355 * Update our in-core representation with the definitive values 2356 * from the label. 2357 */ 2358 nvlist_free(spa->spa_label_features); 2359 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2360 } 2361 2362 nvlist_free(label); 2363 2364 /* 2365 * Look through entries in the label nvlist's features_for_read. If 2366 * there is a feature listed there which we don't understand then we 2367 * cannot open a pool. 2368 */ 2369 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2370 nvlist_t *unsup_feat; 2371 2372 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2373 0); 2374 2375 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2376 NULL); nvp != NULL; 2377 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2378 if (!zfeature_is_supported(nvpair_name(nvp))) { 2379 VERIFY(nvlist_add_string(unsup_feat, 2380 nvpair_name(nvp), "") == 0); 2381 } 2382 } 2383 2384 if (!nvlist_empty(unsup_feat)) { 2385 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2386 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2387 nvlist_free(unsup_feat); 2388 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2389 ENOTSUP)); 2390 } 2391 2392 nvlist_free(unsup_feat); 2393 } 2394 2395 /* 2396 * If the vdev guid sum doesn't match the uberblock, we have an 2397 * incomplete configuration. We first check to see if the pool 2398 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2399 * If it is, defer the vdev_guid_sum check till later so we 2400 * can handle missing vdevs. 2401 */ 2402 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2403 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2404 rvd->vdev_guid_sum != ub->ub_guid_sum) 2405 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2406 2407 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2408 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2409 spa_try_repair(spa, config); 2410 spa_config_exit(spa, SCL_ALL, FTAG); 2411 nvlist_free(spa->spa_config_splitting); 2412 spa->spa_config_splitting = NULL; 2413 } 2414 2415 /* 2416 * Initialize internal SPA structures. 2417 */ 2418 spa->spa_state = POOL_STATE_ACTIVE; 2419 spa->spa_ubsync = spa->spa_uberblock; 2420 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2421 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2422 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2423 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2424 spa->spa_claim_max_txg = spa->spa_first_txg; 2425 spa->spa_prev_software_version = ub->ub_software_version; 2426 2427 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2428 if (error) 2429 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2430 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2431 2432 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2433 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2434 2435 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2436 boolean_t missing_feat_read = B_FALSE; 2437 nvlist_t *unsup_feat, *enabled_feat; 2438 2439 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2440 &spa->spa_feat_for_read_obj) != 0) { 2441 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2442 } 2443 2444 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2445 &spa->spa_feat_for_write_obj) != 0) { 2446 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2447 } 2448 2449 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2450 &spa->spa_feat_desc_obj) != 0) { 2451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2452 } 2453 2454 enabled_feat = fnvlist_alloc(); 2455 unsup_feat = fnvlist_alloc(); 2456 2457 if (!spa_features_check(spa, B_FALSE, 2458 unsup_feat, enabled_feat)) 2459 missing_feat_read = B_TRUE; 2460 2461 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2462 if (!spa_features_check(spa, B_TRUE, 2463 unsup_feat, enabled_feat)) { 2464 missing_feat_write = B_TRUE; 2465 } 2466 } 2467 2468 fnvlist_add_nvlist(spa->spa_load_info, 2469 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2470 2471 if (!nvlist_empty(unsup_feat)) { 2472 fnvlist_add_nvlist(spa->spa_load_info, 2473 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2474 } 2475 2476 fnvlist_free(enabled_feat); 2477 fnvlist_free(unsup_feat); 2478 2479 if (!missing_feat_read) { 2480 fnvlist_add_boolean(spa->spa_load_info, 2481 ZPOOL_CONFIG_CAN_RDONLY); 2482 } 2483 2484 /* 2485 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2486 * twofold: to determine whether the pool is available for 2487 * import in read-write mode and (if it is not) whether the 2488 * pool is available for import in read-only mode. If the pool 2489 * is available for import in read-write mode, it is displayed 2490 * as available in userland; if it is not available for import 2491 * in read-only mode, it is displayed as unavailable in 2492 * userland. If the pool is available for import in read-only 2493 * mode but not read-write mode, it is displayed as unavailable 2494 * in userland with a special note that the pool is actually 2495 * available for open in read-only mode. 2496 * 2497 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2498 * missing a feature for write, we must first determine whether 2499 * the pool can be opened read-only before returning to 2500 * userland in order to know whether to display the 2501 * abovementioned note. 2502 */ 2503 if (missing_feat_read || (missing_feat_write && 2504 spa_writeable(spa))) { 2505 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2506 ENOTSUP)); 2507 } 2508 2509 /* 2510 * Load refcounts for ZFS features from disk into an in-memory 2511 * cache during SPA initialization. 2512 */ 2513 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2514 uint64_t refcount; 2515 2516 error = feature_get_refcount_from_disk(spa, 2517 &spa_feature_table[i], &refcount); 2518 if (error == 0) { 2519 spa->spa_feat_refcount_cache[i] = refcount; 2520 } else if (error == ENOTSUP) { 2521 spa->spa_feat_refcount_cache[i] = 2522 SPA_FEATURE_DISABLED; 2523 } else { 2524 return (spa_vdev_err(rvd, 2525 VDEV_AUX_CORRUPT_DATA, EIO)); 2526 } 2527 } 2528 } 2529 2530 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2531 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2532 &spa->spa_feat_enabled_txg_obj) != 0) 2533 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2534 } 2535 2536 spa->spa_is_initializing = B_TRUE; 2537 error = dsl_pool_open(spa->spa_dsl_pool); 2538 spa->spa_is_initializing = B_FALSE; 2539 if (error != 0) 2540 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2541 2542 if (!mosconfig) { 2543 uint64_t hostid; 2544 nvlist_t *policy = NULL, *nvconfig; 2545 2546 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2547 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2548 2549 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2550 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2551 char *hostname; 2552 unsigned long myhostid = 0; 2553 2554 VERIFY(nvlist_lookup_string(nvconfig, 2555 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2556 2557 #ifdef _KERNEL 2558 myhostid = zone_get_hostid(NULL); 2559 #else /* _KERNEL */ 2560 /* 2561 * We're emulating the system's hostid in userland, so 2562 * we can't use zone_get_hostid(). 2563 */ 2564 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2565 #endif /* _KERNEL */ 2566 if (hostid != 0 && myhostid != 0 && 2567 hostid != myhostid) { 2568 nvlist_free(nvconfig); 2569 cmn_err(CE_WARN, "pool '%s' could not be " 2570 "loaded as it was last accessed by " 2571 "another system (host: %s hostid: 0x%lx). " 2572 "See: http://illumos.org/msg/ZFS-8000-EY", 2573 spa_name(spa), hostname, 2574 (unsigned long)hostid); 2575 return (SET_ERROR(EBADF)); 2576 } 2577 } 2578 if (nvlist_lookup_nvlist(spa->spa_config, 2579 ZPOOL_REWIND_POLICY, &policy) == 0) 2580 VERIFY(nvlist_add_nvlist(nvconfig, 2581 ZPOOL_REWIND_POLICY, policy) == 0); 2582 2583 spa_config_set(spa, nvconfig); 2584 spa_unload(spa); 2585 spa_deactivate(spa); 2586 spa_activate(spa, orig_mode); 2587 2588 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2589 } 2590 2591 /* Grab the secret checksum salt from the MOS. */ 2592 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2593 DMU_POOL_CHECKSUM_SALT, 1, 2594 sizeof (spa->spa_cksum_salt.zcs_bytes), 2595 spa->spa_cksum_salt.zcs_bytes); 2596 if (error == ENOENT) { 2597 /* Generate a new salt for subsequent use */ 2598 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 2599 sizeof (spa->spa_cksum_salt.zcs_bytes)); 2600 } else if (error != 0) { 2601 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2602 } 2603 2604 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2605 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2606 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2607 if (error != 0) 2608 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2609 2610 /* 2611 * Load the bit that tells us to use the new accounting function 2612 * (raid-z deflation). If we have an older pool, this will not 2613 * be present. 2614 */ 2615 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2616 if (error != 0 && error != ENOENT) 2617 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2618 2619 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2620 &spa->spa_creation_version); 2621 if (error != 0 && error != ENOENT) 2622 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2623 2624 /* 2625 * Load the persistent error log. If we have an older pool, this will 2626 * not be present. 2627 */ 2628 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2629 if (error != 0 && error != ENOENT) 2630 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2631 2632 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2633 &spa->spa_errlog_scrub); 2634 if (error != 0 && error != ENOENT) 2635 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2636 2637 /* 2638 * Load the history object. If we have an older pool, this 2639 * will not be present. 2640 */ 2641 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2642 if (error != 0 && error != ENOENT) 2643 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2644 2645 /* 2646 * Load the per-vdev ZAP map. If we have an older pool, this will not 2647 * be present; in this case, defer its creation to a later time to 2648 * avoid dirtying the MOS this early / out of sync context. See 2649 * spa_sync_config_object. 2650 */ 2651 2652 /* The sentinel is only available in the MOS config. */ 2653 nvlist_t *mos_config; 2654 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) 2655 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2656 2657 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 2658 &spa->spa_all_vdev_zaps); 2659 2660 if (error == ENOENT) { 2661 VERIFY(!nvlist_exists(mos_config, 2662 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 2663 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 2664 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 2665 } else if (error != 0) { 2666 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2667 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 2668 /* 2669 * An older version of ZFS overwrote the sentinel value, so 2670 * we have orphaned per-vdev ZAPs in the MOS. Defer their 2671 * destruction to later; see spa_sync_config_object. 2672 */ 2673 spa->spa_avz_action = AVZ_ACTION_DESTROY; 2674 /* 2675 * We're assuming that no vdevs have had their ZAPs created 2676 * before this. Better be sure of it. 2677 */ 2678 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 2679 } 2680 nvlist_free(mos_config); 2681 2682 /* 2683 * If we're assembling the pool from the split-off vdevs of 2684 * an existing pool, we don't want to attach the spares & cache 2685 * devices. 2686 */ 2687 2688 /* 2689 * Load any hot spares for this pool. 2690 */ 2691 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2692 if (error != 0 && error != ENOENT) 2693 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2694 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2695 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2696 if (load_nvlist(spa, spa->spa_spares.sav_object, 2697 &spa->spa_spares.sav_config) != 0) 2698 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2699 2700 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2701 spa_load_spares(spa); 2702 spa_config_exit(spa, SCL_ALL, FTAG); 2703 } else if (error == 0) { 2704 spa->spa_spares.sav_sync = B_TRUE; 2705 } 2706 2707 /* 2708 * Load any level 2 ARC devices for this pool. 2709 */ 2710 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2711 &spa->spa_l2cache.sav_object); 2712 if (error != 0 && error != ENOENT) 2713 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2714 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2715 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2716 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2717 &spa->spa_l2cache.sav_config) != 0) 2718 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2719 2720 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2721 spa_load_l2cache(spa); 2722 spa_config_exit(spa, SCL_ALL, FTAG); 2723 } else if (error == 0) { 2724 spa->spa_l2cache.sav_sync = B_TRUE; 2725 } 2726 2727 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2728 2729 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2730 if (error && error != ENOENT) 2731 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2732 2733 if (error == 0) { 2734 uint64_t autoreplace; 2735 2736 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2737 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2738 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2739 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2740 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2741 spa_prop_find(spa, ZPOOL_PROP_BOOTSIZE, &spa->spa_bootsize); 2742 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2743 &spa->spa_dedup_ditto); 2744 2745 spa->spa_autoreplace = (autoreplace != 0); 2746 } 2747 2748 /* 2749 * If the 'autoreplace' property is set, then post a resource notifying 2750 * the ZFS DE that it should not issue any faults for unopenable 2751 * devices. We also iterate over the vdevs, and post a sysevent for any 2752 * unopenable vdevs so that the normal autoreplace handler can take 2753 * over. 2754 */ 2755 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2756 spa_check_removed(spa->spa_root_vdev); 2757 /* 2758 * For the import case, this is done in spa_import(), because 2759 * at this point we're using the spare definitions from 2760 * the MOS config, not necessarily from the userland config. 2761 */ 2762 if (state != SPA_LOAD_IMPORT) { 2763 spa_aux_check_removed(&spa->spa_spares); 2764 spa_aux_check_removed(&spa->spa_l2cache); 2765 } 2766 } 2767 2768 /* 2769 * Load the vdev state for all toplevel vdevs. 2770 */ 2771 vdev_load(rvd); 2772 2773 /* 2774 * Propagate the leaf DTLs we just loaded all the way up the tree. 2775 */ 2776 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2777 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2778 spa_config_exit(spa, SCL_ALL, FTAG); 2779 2780 /* 2781 * Load the DDTs (dedup tables). 2782 */ 2783 error = ddt_load(spa); 2784 if (error != 0) 2785 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2786 2787 spa_update_dspace(spa); 2788 2789 /* 2790 * Validate the config, using the MOS config to fill in any 2791 * information which might be missing. If we fail to validate 2792 * the config then declare the pool unfit for use. If we're 2793 * assembling a pool from a split, the log is not transferred 2794 * over. 2795 */ 2796 if (type != SPA_IMPORT_ASSEMBLE) { 2797 nvlist_t *nvconfig; 2798 2799 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2800 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2801 2802 if (!spa_config_valid(spa, nvconfig)) { 2803 nvlist_free(nvconfig); 2804 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2805 ENXIO)); 2806 } 2807 nvlist_free(nvconfig); 2808 2809 /* 2810 * Now that we've validated the config, check the state of the 2811 * root vdev. If it can't be opened, it indicates one or 2812 * more toplevel vdevs are faulted. 2813 */ 2814 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2815 return (SET_ERROR(ENXIO)); 2816 2817 if (spa_writeable(spa) && spa_check_logs(spa)) { 2818 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2819 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2820 } 2821 } 2822 2823 if (missing_feat_write) { 2824 ASSERT(state == SPA_LOAD_TRYIMPORT); 2825 2826 /* 2827 * At this point, we know that we can open the pool in 2828 * read-only mode but not read-write mode. We now have enough 2829 * information and can return to userland. 2830 */ 2831 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2832 } 2833 2834 /* 2835 * We've successfully opened the pool, verify that we're ready 2836 * to start pushing transactions. 2837 */ 2838 if (state != SPA_LOAD_TRYIMPORT) { 2839 if (error = spa_load_verify(spa)) 2840 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2841 error)); 2842 } 2843 2844 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2845 spa->spa_load_max_txg == UINT64_MAX)) { 2846 dmu_tx_t *tx; 2847 int need_update = B_FALSE; 2848 dsl_pool_t *dp = spa_get_dsl(spa); 2849 2850 ASSERT(state != SPA_LOAD_TRYIMPORT); 2851 2852 /* 2853 * Claim log blocks that haven't been committed yet. 2854 * This must all happen in a single txg. 2855 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2856 * invoked from zil_claim_log_block()'s i/o done callback. 2857 * Price of rollback is that we abandon the log. 2858 */ 2859 spa->spa_claiming = B_TRUE; 2860 2861 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 2862 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2863 zil_claim, tx, DS_FIND_CHILDREN); 2864 dmu_tx_commit(tx); 2865 2866 spa->spa_claiming = B_FALSE; 2867 2868 spa_set_log_state(spa, SPA_LOG_GOOD); 2869 spa->spa_sync_on = B_TRUE; 2870 txg_sync_start(spa->spa_dsl_pool); 2871 2872 /* 2873 * Wait for all claims to sync. We sync up to the highest 2874 * claimed log block birth time so that claimed log blocks 2875 * don't appear to be from the future. spa_claim_max_txg 2876 * will have been set for us by either zil_check_log_chain() 2877 * (invoked from spa_check_logs()) or zil_claim() above. 2878 */ 2879 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2880 2881 /* 2882 * If the config cache is stale, or we have uninitialized 2883 * metaslabs (see spa_vdev_add()), then update the config. 2884 * 2885 * If this is a verbatim import, trust the current 2886 * in-core spa_config and update the disk labels. 2887 */ 2888 if (config_cache_txg != spa->spa_config_txg || 2889 state == SPA_LOAD_IMPORT || 2890 state == SPA_LOAD_RECOVER || 2891 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2892 need_update = B_TRUE; 2893 2894 for (int c = 0; c < rvd->vdev_children; c++) 2895 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2896 need_update = B_TRUE; 2897 2898 /* 2899 * Update the config cache asychronously in case we're the 2900 * root pool, in which case the config cache isn't writable yet. 2901 */ 2902 if (need_update) 2903 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2904 2905 /* 2906 * Check all DTLs to see if anything needs resilvering. 2907 */ 2908 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2909 vdev_resilver_needed(rvd, NULL, NULL)) 2910 spa_async_request(spa, SPA_ASYNC_RESILVER); 2911 2912 /* 2913 * Log the fact that we booted up (so that we can detect if 2914 * we rebooted in the middle of an operation). 2915 */ 2916 spa_history_log_version(spa, "open"); 2917 2918 /* 2919 * Delete any inconsistent datasets. 2920 */ 2921 (void) dmu_objset_find(spa_name(spa), 2922 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2923 2924 /* 2925 * Clean up any stale temporary dataset userrefs. 2926 */ 2927 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2928 } 2929 2930 return (0); 2931 } 2932 2933 static int 2934 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2935 { 2936 int mode = spa->spa_mode; 2937 2938 spa_unload(spa); 2939 spa_deactivate(spa); 2940 2941 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2942 2943 spa_activate(spa, mode); 2944 spa_async_suspend(spa); 2945 2946 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2947 } 2948 2949 /* 2950 * If spa_load() fails this function will try loading prior txg's. If 2951 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2952 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2953 * function will not rewind the pool and will return the same error as 2954 * spa_load(). 2955 */ 2956 static int 2957 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2958 uint64_t max_request, int rewind_flags) 2959 { 2960 nvlist_t *loadinfo = NULL; 2961 nvlist_t *config = NULL; 2962 int load_error, rewind_error; 2963 uint64_t safe_rewind_txg; 2964 uint64_t min_txg; 2965 2966 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2967 spa->spa_load_max_txg = spa->spa_load_txg; 2968 spa_set_log_state(spa, SPA_LOG_CLEAR); 2969 } else { 2970 spa->spa_load_max_txg = max_request; 2971 if (max_request != UINT64_MAX) 2972 spa->spa_extreme_rewind = B_TRUE; 2973 } 2974 2975 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2976 mosconfig); 2977 if (load_error == 0) 2978 return (0); 2979 2980 if (spa->spa_root_vdev != NULL) 2981 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2982 2983 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2984 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2985 2986 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2987 nvlist_free(config); 2988 return (load_error); 2989 } 2990 2991 if (state == SPA_LOAD_RECOVER) { 2992 /* Price of rolling back is discarding txgs, including log */ 2993 spa_set_log_state(spa, SPA_LOG_CLEAR); 2994 } else { 2995 /* 2996 * If we aren't rolling back save the load info from our first 2997 * import attempt so that we can restore it after attempting 2998 * to rewind. 2999 */ 3000 loadinfo = spa->spa_load_info; 3001 spa->spa_load_info = fnvlist_alloc(); 3002 } 3003 3004 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 3005 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 3006 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 3007 TXG_INITIAL : safe_rewind_txg; 3008 3009 /* 3010 * Continue as long as we're finding errors, we're still within 3011 * the acceptable rewind range, and we're still finding uberblocks 3012 */ 3013 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 3014 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 3015 if (spa->spa_load_max_txg < safe_rewind_txg) 3016 spa->spa_extreme_rewind = B_TRUE; 3017 rewind_error = spa_load_retry(spa, state, mosconfig); 3018 } 3019 3020 spa->spa_extreme_rewind = B_FALSE; 3021 spa->spa_load_max_txg = UINT64_MAX; 3022 3023 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 3024 spa_config_set(spa, config); 3025 3026 if (state == SPA_LOAD_RECOVER) { 3027 ASSERT3P(loadinfo, ==, NULL); 3028 return (rewind_error); 3029 } else { 3030 /* Store the rewind info as part of the initial load info */ 3031 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 3032 spa->spa_load_info); 3033 3034 /* Restore the initial load info */ 3035 fnvlist_free(spa->spa_load_info); 3036 spa->spa_load_info = loadinfo; 3037 3038 return (load_error); 3039 } 3040 } 3041 3042 /* 3043 * Pool Open/Import 3044 * 3045 * The import case is identical to an open except that the configuration is sent 3046 * down from userland, instead of grabbed from the configuration cache. For the 3047 * case of an open, the pool configuration will exist in the 3048 * POOL_STATE_UNINITIALIZED state. 3049 * 3050 * The stats information (gen/count/ustats) is used to gather vdev statistics at 3051 * the same time open the pool, without having to keep around the spa_t in some 3052 * ambiguous state. 3053 */ 3054 static int 3055 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 3056 nvlist_t **config) 3057 { 3058 spa_t *spa; 3059 spa_load_state_t state = SPA_LOAD_OPEN; 3060 int error; 3061 int locked = B_FALSE; 3062 3063 *spapp = NULL; 3064 3065 /* 3066 * As disgusting as this is, we need to support recursive calls to this 3067 * function because dsl_dir_open() is called during spa_load(), and ends 3068 * up calling spa_open() again. The real fix is to figure out how to 3069 * avoid dsl_dir_open() calling this in the first place. 3070 */ 3071 if (mutex_owner(&spa_namespace_lock) != curthread) { 3072 mutex_enter(&spa_namespace_lock); 3073 locked = B_TRUE; 3074 } 3075 3076 if ((spa = spa_lookup(pool)) == NULL) { 3077 if (locked) 3078 mutex_exit(&spa_namespace_lock); 3079 return (SET_ERROR(ENOENT)); 3080 } 3081 3082 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 3083 zpool_rewind_policy_t policy; 3084 3085 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 3086 &policy); 3087 if (policy.zrp_request & ZPOOL_DO_REWIND) 3088 state = SPA_LOAD_RECOVER; 3089 3090 spa_activate(spa, spa_mode_global); 3091 3092 if (state != SPA_LOAD_RECOVER) 3093 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3094 3095 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 3096 policy.zrp_request); 3097 3098 if (error == EBADF) { 3099 /* 3100 * If vdev_validate() returns failure (indicated by 3101 * EBADF), it indicates that one of the vdevs indicates 3102 * that the pool has been exported or destroyed. If 3103 * this is the case, the config cache is out of sync and 3104 * we should remove the pool from the namespace. 3105 */ 3106 spa_unload(spa); 3107 spa_deactivate(spa); 3108 spa_config_sync(spa, B_TRUE, B_TRUE); 3109 spa_remove(spa); 3110 if (locked) 3111 mutex_exit(&spa_namespace_lock); 3112 return (SET_ERROR(ENOENT)); 3113 } 3114 3115 if (error) { 3116 /* 3117 * We can't open the pool, but we still have useful 3118 * information: the state of each vdev after the 3119 * attempted vdev_open(). Return this to the user. 3120 */ 3121 if (config != NULL && spa->spa_config) { 3122 VERIFY(nvlist_dup(spa->spa_config, config, 3123 KM_SLEEP) == 0); 3124 VERIFY(nvlist_add_nvlist(*config, 3125 ZPOOL_CONFIG_LOAD_INFO, 3126 spa->spa_load_info) == 0); 3127 } 3128 spa_unload(spa); 3129 spa_deactivate(spa); 3130 spa->spa_last_open_failed = error; 3131 if (locked) 3132 mutex_exit(&spa_namespace_lock); 3133 *spapp = NULL; 3134 return (error); 3135 } 3136 } 3137 3138 spa_open_ref(spa, tag); 3139 3140 if (config != NULL) 3141 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3142 3143 /* 3144 * If we've recovered the pool, pass back any information we 3145 * gathered while doing the load. 3146 */ 3147 if (state == SPA_LOAD_RECOVER) { 3148 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3149 spa->spa_load_info) == 0); 3150 } 3151 3152 if (locked) { 3153 spa->spa_last_open_failed = 0; 3154 spa->spa_last_ubsync_txg = 0; 3155 spa->spa_load_txg = 0; 3156 mutex_exit(&spa_namespace_lock); 3157 } 3158 3159 *spapp = spa; 3160 3161 return (0); 3162 } 3163 3164 int 3165 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3166 nvlist_t **config) 3167 { 3168 return (spa_open_common(name, spapp, tag, policy, config)); 3169 } 3170 3171 int 3172 spa_open(const char *name, spa_t **spapp, void *tag) 3173 { 3174 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3175 } 3176 3177 /* 3178 * Lookup the given spa_t, incrementing the inject count in the process, 3179 * preventing it from being exported or destroyed. 3180 */ 3181 spa_t * 3182 spa_inject_addref(char *name) 3183 { 3184 spa_t *spa; 3185 3186 mutex_enter(&spa_namespace_lock); 3187 if ((spa = spa_lookup(name)) == NULL) { 3188 mutex_exit(&spa_namespace_lock); 3189 return (NULL); 3190 } 3191 spa->spa_inject_ref++; 3192 mutex_exit(&spa_namespace_lock); 3193 3194 return (spa); 3195 } 3196 3197 void 3198 spa_inject_delref(spa_t *spa) 3199 { 3200 mutex_enter(&spa_namespace_lock); 3201 spa->spa_inject_ref--; 3202 mutex_exit(&spa_namespace_lock); 3203 } 3204 3205 /* 3206 * Add spares device information to the nvlist. 3207 */ 3208 static void 3209 spa_add_spares(spa_t *spa, nvlist_t *config) 3210 { 3211 nvlist_t **spares; 3212 uint_t i, nspares; 3213 nvlist_t *nvroot; 3214 uint64_t guid; 3215 vdev_stat_t *vs; 3216 uint_t vsc; 3217 uint64_t pool; 3218 3219 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3220 3221 if (spa->spa_spares.sav_count == 0) 3222 return; 3223 3224 VERIFY(nvlist_lookup_nvlist(config, 3225 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3226 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3227 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3228 if (nspares != 0) { 3229 VERIFY(nvlist_add_nvlist_array(nvroot, 3230 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3231 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3232 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3233 3234 /* 3235 * Go through and find any spares which have since been 3236 * repurposed as an active spare. If this is the case, update 3237 * their status appropriately. 3238 */ 3239 for (i = 0; i < nspares; i++) { 3240 VERIFY(nvlist_lookup_uint64(spares[i], 3241 ZPOOL_CONFIG_GUID, &guid) == 0); 3242 if (spa_spare_exists(guid, &pool, NULL) && 3243 pool != 0ULL) { 3244 VERIFY(nvlist_lookup_uint64_array( 3245 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3246 (uint64_t **)&vs, &vsc) == 0); 3247 vs->vs_state = VDEV_STATE_CANT_OPEN; 3248 vs->vs_aux = VDEV_AUX_SPARED; 3249 } 3250 } 3251 } 3252 } 3253 3254 /* 3255 * Add l2cache device information to the nvlist, including vdev stats. 3256 */ 3257 static void 3258 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3259 { 3260 nvlist_t **l2cache; 3261 uint_t i, j, nl2cache; 3262 nvlist_t *nvroot; 3263 uint64_t guid; 3264 vdev_t *vd; 3265 vdev_stat_t *vs; 3266 uint_t vsc; 3267 3268 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3269 3270 if (spa->spa_l2cache.sav_count == 0) 3271 return; 3272 3273 VERIFY(nvlist_lookup_nvlist(config, 3274 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3275 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3276 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3277 if (nl2cache != 0) { 3278 VERIFY(nvlist_add_nvlist_array(nvroot, 3279 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3280 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3281 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3282 3283 /* 3284 * Update level 2 cache device stats. 3285 */ 3286 3287 for (i = 0; i < nl2cache; i++) { 3288 VERIFY(nvlist_lookup_uint64(l2cache[i], 3289 ZPOOL_CONFIG_GUID, &guid) == 0); 3290 3291 vd = NULL; 3292 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3293 if (guid == 3294 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3295 vd = spa->spa_l2cache.sav_vdevs[j]; 3296 break; 3297 } 3298 } 3299 ASSERT(vd != NULL); 3300 3301 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3302 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3303 == 0); 3304 vdev_get_stats(vd, vs); 3305 } 3306 } 3307 } 3308 3309 static void 3310 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3311 { 3312 nvlist_t *features; 3313 zap_cursor_t zc; 3314 zap_attribute_t za; 3315 3316 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3317 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3318 3319 if (spa->spa_feat_for_read_obj != 0) { 3320 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3321 spa->spa_feat_for_read_obj); 3322 zap_cursor_retrieve(&zc, &za) == 0; 3323 zap_cursor_advance(&zc)) { 3324 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3325 za.za_num_integers == 1); 3326 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3327 za.za_first_integer)); 3328 } 3329 zap_cursor_fini(&zc); 3330 } 3331 3332 if (spa->spa_feat_for_write_obj != 0) { 3333 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3334 spa->spa_feat_for_write_obj); 3335 zap_cursor_retrieve(&zc, &za) == 0; 3336 zap_cursor_advance(&zc)) { 3337 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3338 za.za_num_integers == 1); 3339 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3340 za.za_first_integer)); 3341 } 3342 zap_cursor_fini(&zc); 3343 } 3344 3345 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3346 features) == 0); 3347 nvlist_free(features); 3348 } 3349 3350 int 3351 spa_get_stats(const char *name, nvlist_t **config, 3352 char *altroot, size_t buflen) 3353 { 3354 int error; 3355 spa_t *spa; 3356 3357 *config = NULL; 3358 error = spa_open_common(name, &spa, FTAG, NULL, config); 3359 3360 if (spa != NULL) { 3361 /* 3362 * This still leaves a window of inconsistency where the spares 3363 * or l2cache devices could change and the config would be 3364 * self-inconsistent. 3365 */ 3366 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3367 3368 if (*config != NULL) { 3369 uint64_t loadtimes[2]; 3370 3371 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3372 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3373 VERIFY(nvlist_add_uint64_array(*config, 3374 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3375 3376 VERIFY(nvlist_add_uint64(*config, 3377 ZPOOL_CONFIG_ERRCOUNT, 3378 spa_get_errlog_size(spa)) == 0); 3379 3380 if (spa_suspended(spa)) 3381 VERIFY(nvlist_add_uint64(*config, 3382 ZPOOL_CONFIG_SUSPENDED, 3383 spa->spa_failmode) == 0); 3384 3385 spa_add_spares(spa, *config); 3386 spa_add_l2cache(spa, *config); 3387 spa_add_feature_stats(spa, *config); 3388 } 3389 } 3390 3391 /* 3392 * We want to get the alternate root even for faulted pools, so we cheat 3393 * and call spa_lookup() directly. 3394 */ 3395 if (altroot) { 3396 if (spa == NULL) { 3397 mutex_enter(&spa_namespace_lock); 3398 spa = spa_lookup(name); 3399 if (spa) 3400 spa_altroot(spa, altroot, buflen); 3401 else 3402 altroot[0] = '\0'; 3403 spa = NULL; 3404 mutex_exit(&spa_namespace_lock); 3405 } else { 3406 spa_altroot(spa, altroot, buflen); 3407 } 3408 } 3409 3410 if (spa != NULL) { 3411 spa_config_exit(spa, SCL_CONFIG, FTAG); 3412 spa_close(spa, FTAG); 3413 } 3414 3415 return (error); 3416 } 3417 3418 /* 3419 * Validate that the auxiliary device array is well formed. We must have an 3420 * array of nvlists, each which describes a valid leaf vdev. If this is an 3421 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3422 * specified, as long as they are well-formed. 3423 */ 3424 static int 3425 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3426 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3427 vdev_labeltype_t label) 3428 { 3429 nvlist_t **dev; 3430 uint_t i, ndev; 3431 vdev_t *vd; 3432 int error; 3433 3434 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3435 3436 /* 3437 * It's acceptable to have no devs specified. 3438 */ 3439 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3440 return (0); 3441 3442 if (ndev == 0) 3443 return (SET_ERROR(EINVAL)); 3444 3445 /* 3446 * Make sure the pool is formatted with a version that supports this 3447 * device type. 3448 */ 3449 if (spa_version(spa) < version) 3450 return (SET_ERROR(ENOTSUP)); 3451 3452 /* 3453 * Set the pending device list so we correctly handle device in-use 3454 * checking. 3455 */ 3456 sav->sav_pending = dev; 3457 sav->sav_npending = ndev; 3458 3459 for (i = 0; i < ndev; i++) { 3460 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3461 mode)) != 0) 3462 goto out; 3463 3464 if (!vd->vdev_ops->vdev_op_leaf) { 3465 vdev_free(vd); 3466 error = SET_ERROR(EINVAL); 3467 goto out; 3468 } 3469 3470 /* 3471 * The L2ARC currently only supports disk devices in 3472 * kernel context. For user-level testing, we allow it. 3473 */ 3474 #ifdef _KERNEL 3475 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3476 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3477 error = SET_ERROR(ENOTBLK); 3478 vdev_free(vd); 3479 goto out; 3480 } 3481 #endif 3482 vd->vdev_top = vd; 3483 3484 if ((error = vdev_open(vd)) == 0 && 3485 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3486 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3487 vd->vdev_guid) == 0); 3488 } 3489 3490 vdev_free(vd); 3491 3492 if (error && 3493 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3494 goto out; 3495 else 3496 error = 0; 3497 } 3498 3499 out: 3500 sav->sav_pending = NULL; 3501 sav->sav_npending = 0; 3502 return (error); 3503 } 3504 3505 static int 3506 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3507 { 3508 int error; 3509 3510 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3511 3512 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3513 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3514 VDEV_LABEL_SPARE)) != 0) { 3515 return (error); 3516 } 3517 3518 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3519 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3520 VDEV_LABEL_L2CACHE)); 3521 } 3522 3523 static void 3524 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3525 const char *config) 3526 { 3527 int i; 3528 3529 if (sav->sav_config != NULL) { 3530 nvlist_t **olddevs; 3531 uint_t oldndevs; 3532 nvlist_t **newdevs; 3533 3534 /* 3535 * Generate new dev list by concatentating with the 3536 * current dev list. 3537 */ 3538 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3539 &olddevs, &oldndevs) == 0); 3540 3541 newdevs = kmem_alloc(sizeof (void *) * 3542 (ndevs + oldndevs), KM_SLEEP); 3543 for (i = 0; i < oldndevs; i++) 3544 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3545 KM_SLEEP) == 0); 3546 for (i = 0; i < ndevs; i++) 3547 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3548 KM_SLEEP) == 0); 3549 3550 VERIFY(nvlist_remove(sav->sav_config, config, 3551 DATA_TYPE_NVLIST_ARRAY) == 0); 3552 3553 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3554 config, newdevs, ndevs + oldndevs) == 0); 3555 for (i = 0; i < oldndevs + ndevs; i++) 3556 nvlist_free(newdevs[i]); 3557 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3558 } else { 3559 /* 3560 * Generate a new dev list. 3561 */ 3562 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3563 KM_SLEEP) == 0); 3564 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3565 devs, ndevs) == 0); 3566 } 3567 } 3568 3569 /* 3570 * Stop and drop level 2 ARC devices 3571 */ 3572 void 3573 spa_l2cache_drop(spa_t *spa) 3574 { 3575 vdev_t *vd; 3576 int i; 3577 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3578 3579 for (i = 0; i < sav->sav_count; i++) { 3580 uint64_t pool; 3581 3582 vd = sav->sav_vdevs[i]; 3583 ASSERT(vd != NULL); 3584 3585 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3586 pool != 0ULL && l2arc_vdev_present(vd)) 3587 l2arc_remove_vdev(vd); 3588 } 3589 } 3590 3591 /* 3592 * Pool Creation 3593 */ 3594 int 3595 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3596 nvlist_t *zplprops) 3597 { 3598 spa_t *spa; 3599 char *altroot = NULL; 3600 vdev_t *rvd; 3601 dsl_pool_t *dp; 3602 dmu_tx_t *tx; 3603 int error = 0; 3604 uint64_t txg = TXG_INITIAL; 3605 nvlist_t **spares, **l2cache; 3606 uint_t nspares, nl2cache; 3607 uint64_t version, obj; 3608 boolean_t has_features; 3609 3610 /* 3611 * If this pool already exists, return failure. 3612 */ 3613 mutex_enter(&spa_namespace_lock); 3614 if (spa_lookup(pool) != NULL) { 3615 mutex_exit(&spa_namespace_lock); 3616 return (SET_ERROR(EEXIST)); 3617 } 3618 3619 /* 3620 * Allocate a new spa_t structure. 3621 */ 3622 (void) nvlist_lookup_string(props, 3623 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3624 spa = spa_add(pool, NULL, altroot); 3625 spa_activate(spa, spa_mode_global); 3626 3627 if (props && (error = spa_prop_validate(spa, props))) { 3628 spa_deactivate(spa); 3629 spa_remove(spa); 3630 mutex_exit(&spa_namespace_lock); 3631 return (error); 3632 } 3633 3634 has_features = B_FALSE; 3635 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3636 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3637 if (zpool_prop_feature(nvpair_name(elem))) 3638 has_features = B_TRUE; 3639 } 3640 3641 if (has_features || nvlist_lookup_uint64(props, 3642 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3643 version = SPA_VERSION; 3644 } 3645 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3646 3647 spa->spa_first_txg = txg; 3648 spa->spa_uberblock.ub_txg = txg - 1; 3649 spa->spa_uberblock.ub_version = version; 3650 spa->spa_ubsync = spa->spa_uberblock; 3651 spa->spa_load_state = SPA_LOAD_CREATE; 3652 3653 /* 3654 * Create "The Godfather" zio to hold all async IOs 3655 */ 3656 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3657 KM_SLEEP); 3658 for (int i = 0; i < max_ncpus; i++) { 3659 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3660 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3661 ZIO_FLAG_GODFATHER); 3662 } 3663 3664 /* 3665 * Create the root vdev. 3666 */ 3667 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3668 3669 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3670 3671 ASSERT(error != 0 || rvd != NULL); 3672 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3673 3674 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3675 error = SET_ERROR(EINVAL); 3676 3677 if (error == 0 && 3678 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3679 (error = spa_validate_aux(spa, nvroot, txg, 3680 VDEV_ALLOC_ADD)) == 0) { 3681 for (int c = 0; c < rvd->vdev_children; c++) { 3682 vdev_metaslab_set_size(rvd->vdev_child[c]); 3683 vdev_expand(rvd->vdev_child[c], txg); 3684 } 3685 } 3686 3687 spa_config_exit(spa, SCL_ALL, FTAG); 3688 3689 if (error != 0) { 3690 spa_unload(spa); 3691 spa_deactivate(spa); 3692 spa_remove(spa); 3693 mutex_exit(&spa_namespace_lock); 3694 return (error); 3695 } 3696 3697 /* 3698 * Get the list of spares, if specified. 3699 */ 3700 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3701 &spares, &nspares) == 0) { 3702 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3703 KM_SLEEP) == 0); 3704 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3705 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3706 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3707 spa_load_spares(spa); 3708 spa_config_exit(spa, SCL_ALL, FTAG); 3709 spa->spa_spares.sav_sync = B_TRUE; 3710 } 3711 3712 /* 3713 * Get the list of level 2 cache devices, if specified. 3714 */ 3715 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3716 &l2cache, &nl2cache) == 0) { 3717 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3718 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3719 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3720 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3721 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3722 spa_load_l2cache(spa); 3723 spa_config_exit(spa, SCL_ALL, FTAG); 3724 spa->spa_l2cache.sav_sync = B_TRUE; 3725 } 3726 3727 spa->spa_is_initializing = B_TRUE; 3728 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3729 spa->spa_meta_objset = dp->dp_meta_objset; 3730 spa->spa_is_initializing = B_FALSE; 3731 3732 /* 3733 * Create DDTs (dedup tables). 3734 */ 3735 ddt_create(spa); 3736 3737 spa_update_dspace(spa); 3738 3739 tx = dmu_tx_create_assigned(dp, txg); 3740 3741 /* 3742 * Create the pool config object. 3743 */ 3744 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3745 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3746 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3747 3748 if (zap_add(spa->spa_meta_objset, 3749 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3750 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3751 cmn_err(CE_PANIC, "failed to add pool config"); 3752 } 3753 3754 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3755 spa_feature_create_zap_objects(spa, tx); 3756 3757 if (zap_add(spa->spa_meta_objset, 3758 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3759 sizeof (uint64_t), 1, &version, tx) != 0) { 3760 cmn_err(CE_PANIC, "failed to add pool version"); 3761 } 3762 3763 /* Newly created pools with the right version are always deflated. */ 3764 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3765 spa->spa_deflate = TRUE; 3766 if (zap_add(spa->spa_meta_objset, 3767 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3768 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3769 cmn_err(CE_PANIC, "failed to add deflate"); 3770 } 3771 } 3772 3773 /* 3774 * Create the deferred-free bpobj. Turn off compression 3775 * because sync-to-convergence takes longer if the blocksize 3776 * keeps changing. 3777 */ 3778 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3779 dmu_object_set_compress(spa->spa_meta_objset, obj, 3780 ZIO_COMPRESS_OFF, tx); 3781 if (zap_add(spa->spa_meta_objset, 3782 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3783 sizeof (uint64_t), 1, &obj, tx) != 0) { 3784 cmn_err(CE_PANIC, "failed to add bpobj"); 3785 } 3786 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3787 spa->spa_meta_objset, obj)); 3788 3789 /* 3790 * Create the pool's history object. 3791 */ 3792 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3793 spa_history_create_obj(spa, tx); 3794 3795 /* 3796 * Generate some random noise for salted checksums to operate on. 3797 */ 3798 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3799 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3800 3801 /* 3802 * Set pool properties. 3803 */ 3804 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3805 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3806 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3807 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3808 3809 if (props != NULL) { 3810 spa_configfile_set(spa, props, B_FALSE); 3811 spa_sync_props(props, tx); 3812 } 3813 3814 dmu_tx_commit(tx); 3815 3816 spa->spa_sync_on = B_TRUE; 3817 txg_sync_start(spa->spa_dsl_pool); 3818 3819 /* 3820 * We explicitly wait for the first transaction to complete so that our 3821 * bean counters are appropriately updated. 3822 */ 3823 txg_wait_synced(spa->spa_dsl_pool, txg); 3824 3825 spa_config_sync(spa, B_FALSE, B_TRUE); 3826 spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE); 3827 3828 spa_history_log_version(spa, "create"); 3829 3830 /* 3831 * Don't count references from objsets that are already closed 3832 * and are making their way through the eviction process. 3833 */ 3834 spa_evicting_os_wait(spa); 3835 spa->spa_minref = refcount_count(&spa->spa_refcount); 3836 spa->spa_load_state = SPA_LOAD_NONE; 3837 3838 mutex_exit(&spa_namespace_lock); 3839 3840 return (0); 3841 } 3842 3843 #ifdef _KERNEL 3844 /* 3845 * Get the root pool information from the root disk, then import the root pool 3846 * during the system boot up time. 3847 */ 3848 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3849 3850 static nvlist_t * 3851 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3852 { 3853 nvlist_t *config; 3854 nvlist_t *nvtop, *nvroot; 3855 uint64_t pgid; 3856 3857 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3858 return (NULL); 3859 3860 /* 3861 * Add this top-level vdev to the child array. 3862 */ 3863 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3864 &nvtop) == 0); 3865 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3866 &pgid) == 0); 3867 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3868 3869 /* 3870 * Put this pool's top-level vdevs into a root vdev. 3871 */ 3872 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3873 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3874 VDEV_TYPE_ROOT) == 0); 3875 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3876 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3877 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3878 &nvtop, 1) == 0); 3879 3880 /* 3881 * Replace the existing vdev_tree with the new root vdev in 3882 * this pool's configuration (remove the old, add the new). 3883 */ 3884 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3885 nvlist_free(nvroot); 3886 return (config); 3887 } 3888 3889 /* 3890 * Walk the vdev tree and see if we can find a device with "better" 3891 * configuration. A configuration is "better" if the label on that 3892 * device has a more recent txg. 3893 */ 3894 static void 3895 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3896 { 3897 for (int c = 0; c < vd->vdev_children; c++) 3898 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3899 3900 if (vd->vdev_ops->vdev_op_leaf) { 3901 nvlist_t *label; 3902 uint64_t label_txg; 3903 3904 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3905 &label) != 0) 3906 return; 3907 3908 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3909 &label_txg) == 0); 3910 3911 /* 3912 * Do we have a better boot device? 3913 */ 3914 if (label_txg > *txg) { 3915 *txg = label_txg; 3916 *avd = vd; 3917 } 3918 nvlist_free(label); 3919 } 3920 } 3921 3922 /* 3923 * Import a root pool. 3924 * 3925 * For x86. devpath_list will consist of devid and/or physpath name of 3926 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3927 * The GRUB "findroot" command will return the vdev we should boot. 3928 * 3929 * For Sparc, devpath_list consists the physpath name of the booting device 3930 * no matter the rootpool is a single device pool or a mirrored pool. 3931 * e.g. 3932 * "/pci@1f,0/ide@d/disk@0,0:a" 3933 */ 3934 int 3935 spa_import_rootpool(char *devpath, char *devid) 3936 { 3937 spa_t *spa; 3938 vdev_t *rvd, *bvd, *avd = NULL; 3939 nvlist_t *config, *nvtop; 3940 uint64_t guid, txg; 3941 char *pname; 3942 int error; 3943 3944 /* 3945 * Read the label from the boot device and generate a configuration. 3946 */ 3947 config = spa_generate_rootconf(devpath, devid, &guid); 3948 #if defined(_OBP) && defined(_KERNEL) 3949 if (config == NULL) { 3950 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3951 /* iscsi boot */ 3952 get_iscsi_bootpath_phy(devpath); 3953 config = spa_generate_rootconf(devpath, devid, &guid); 3954 } 3955 } 3956 #endif 3957 if (config == NULL) { 3958 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3959 devpath); 3960 return (SET_ERROR(EIO)); 3961 } 3962 3963 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3964 &pname) == 0); 3965 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3966 3967 mutex_enter(&spa_namespace_lock); 3968 if ((spa = spa_lookup(pname)) != NULL) { 3969 /* 3970 * Remove the existing root pool from the namespace so that we 3971 * can replace it with the correct config we just read in. 3972 */ 3973 spa_remove(spa); 3974 } 3975 3976 spa = spa_add(pname, config, NULL); 3977 spa->spa_is_root = B_TRUE; 3978 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3979 3980 /* 3981 * Build up a vdev tree based on the boot device's label config. 3982 */ 3983 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3984 &nvtop) == 0); 3985 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3986 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3987 VDEV_ALLOC_ROOTPOOL); 3988 spa_config_exit(spa, SCL_ALL, FTAG); 3989 if (error) { 3990 mutex_exit(&spa_namespace_lock); 3991 nvlist_free(config); 3992 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3993 pname); 3994 return (error); 3995 } 3996 3997 /* 3998 * Get the boot vdev. 3999 */ 4000 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 4001 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 4002 (u_longlong_t)guid); 4003 error = SET_ERROR(ENOENT); 4004 goto out; 4005 } 4006 4007 /* 4008 * Determine if there is a better boot device. 4009 */ 4010 avd = bvd; 4011 spa_alt_rootvdev(rvd, &avd, &txg); 4012 if (avd != bvd) { 4013 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 4014 "try booting from '%s'", avd->vdev_path); 4015 error = SET_ERROR(EINVAL); 4016 goto out; 4017 } 4018 4019 /* 4020 * If the boot device is part of a spare vdev then ensure that 4021 * we're booting off the active spare. 4022 */ 4023 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 4024 !bvd->vdev_isspare) { 4025 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 4026 "try booting from '%s'", 4027 bvd->vdev_parent-> 4028 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 4029 error = SET_ERROR(EINVAL); 4030 goto out; 4031 } 4032 4033 error = 0; 4034 out: 4035 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4036 vdev_free(rvd); 4037 spa_config_exit(spa, SCL_ALL, FTAG); 4038 mutex_exit(&spa_namespace_lock); 4039 4040 nvlist_free(config); 4041 return (error); 4042 } 4043 4044 #endif 4045 4046 /* 4047 * Import a non-root pool into the system. 4048 */ 4049 int 4050 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 4051 { 4052 spa_t *spa; 4053 char *altroot = NULL; 4054 spa_load_state_t state = SPA_LOAD_IMPORT; 4055 zpool_rewind_policy_t policy; 4056 uint64_t mode = spa_mode_global; 4057 uint64_t readonly = B_FALSE; 4058 int error; 4059 nvlist_t *nvroot; 4060 nvlist_t **spares, **l2cache; 4061 uint_t nspares, nl2cache; 4062 4063 /* 4064 * If a pool with this name exists, return failure. 4065 */ 4066 mutex_enter(&spa_namespace_lock); 4067 if (spa_lookup(pool) != NULL) { 4068 mutex_exit(&spa_namespace_lock); 4069 return (SET_ERROR(EEXIST)); 4070 } 4071 4072 /* 4073 * Create and initialize the spa structure. 4074 */ 4075 (void) nvlist_lookup_string(props, 4076 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4077 (void) nvlist_lookup_uint64(props, 4078 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 4079 if (readonly) 4080 mode = FREAD; 4081 spa = spa_add(pool, config, altroot); 4082 spa->spa_import_flags = flags; 4083 4084 /* 4085 * Verbatim import - Take a pool and insert it into the namespace 4086 * as if it had been loaded at boot. 4087 */ 4088 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 4089 if (props != NULL) 4090 spa_configfile_set(spa, props, B_FALSE); 4091 4092 spa_config_sync(spa, B_FALSE, B_TRUE); 4093 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 4094 4095 mutex_exit(&spa_namespace_lock); 4096 return (0); 4097 } 4098 4099 spa_activate(spa, mode); 4100 4101 /* 4102 * Don't start async tasks until we know everything is healthy. 4103 */ 4104 spa_async_suspend(spa); 4105 4106 zpool_get_rewind_policy(config, &policy); 4107 if (policy.zrp_request & ZPOOL_DO_REWIND) 4108 state = SPA_LOAD_RECOVER; 4109 4110 /* 4111 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 4112 * because the user-supplied config is actually the one to trust when 4113 * doing an import. 4114 */ 4115 if (state != SPA_LOAD_RECOVER) 4116 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4117 4118 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 4119 policy.zrp_request); 4120 4121 /* 4122 * Propagate anything learned while loading the pool and pass it 4123 * back to caller (i.e. rewind info, missing devices, etc). 4124 */ 4125 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4126 spa->spa_load_info) == 0); 4127 4128 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4129 /* 4130 * Toss any existing sparelist, as it doesn't have any validity 4131 * anymore, and conflicts with spa_has_spare(). 4132 */ 4133 if (spa->spa_spares.sav_config) { 4134 nvlist_free(spa->spa_spares.sav_config); 4135 spa->spa_spares.sav_config = NULL; 4136 spa_load_spares(spa); 4137 } 4138 if (spa->spa_l2cache.sav_config) { 4139 nvlist_free(spa->spa_l2cache.sav_config); 4140 spa->spa_l2cache.sav_config = NULL; 4141 spa_load_l2cache(spa); 4142 } 4143 4144 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4145 &nvroot) == 0); 4146 if (error == 0) 4147 error = spa_validate_aux(spa, nvroot, -1ULL, 4148 VDEV_ALLOC_SPARE); 4149 if (error == 0) 4150 error = spa_validate_aux(spa, nvroot, -1ULL, 4151 VDEV_ALLOC_L2CACHE); 4152 spa_config_exit(spa, SCL_ALL, FTAG); 4153 4154 if (props != NULL) 4155 spa_configfile_set(spa, props, B_FALSE); 4156 4157 if (error != 0 || (props && spa_writeable(spa) && 4158 (error = spa_prop_set(spa, props)))) { 4159 spa_unload(spa); 4160 spa_deactivate(spa); 4161 spa_remove(spa); 4162 mutex_exit(&spa_namespace_lock); 4163 return (error); 4164 } 4165 4166 spa_async_resume(spa); 4167 4168 /* 4169 * Override any spares and level 2 cache devices as specified by 4170 * the user, as these may have correct device names/devids, etc. 4171 */ 4172 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4173 &spares, &nspares) == 0) { 4174 if (spa->spa_spares.sav_config) 4175 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4176 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4177 else 4178 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4179 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4180 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4181 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4182 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4183 spa_load_spares(spa); 4184 spa_config_exit(spa, SCL_ALL, FTAG); 4185 spa->spa_spares.sav_sync = B_TRUE; 4186 } 4187 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4188 &l2cache, &nl2cache) == 0) { 4189 if (spa->spa_l2cache.sav_config) 4190 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4191 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4192 else 4193 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4194 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4195 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4196 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4197 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4198 spa_load_l2cache(spa); 4199 spa_config_exit(spa, SCL_ALL, FTAG); 4200 spa->spa_l2cache.sav_sync = B_TRUE; 4201 } 4202 4203 /* 4204 * Check for any removed devices. 4205 */ 4206 if (spa->spa_autoreplace) { 4207 spa_aux_check_removed(&spa->spa_spares); 4208 spa_aux_check_removed(&spa->spa_l2cache); 4209 } 4210 4211 if (spa_writeable(spa)) { 4212 /* 4213 * Update the config cache to include the newly-imported pool. 4214 */ 4215 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4216 } 4217 4218 /* 4219 * It's possible that the pool was expanded while it was exported. 4220 * We kick off an async task to handle this for us. 4221 */ 4222 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4223 4224 spa_history_log_version(spa, "import"); 4225 4226 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 4227 4228 mutex_exit(&spa_namespace_lock); 4229 4230 return (0); 4231 } 4232 4233 nvlist_t * 4234 spa_tryimport(nvlist_t *tryconfig) 4235 { 4236 nvlist_t *config = NULL; 4237 char *poolname; 4238 spa_t *spa; 4239 uint64_t state; 4240 int error; 4241 4242 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4243 return (NULL); 4244 4245 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4246 return (NULL); 4247 4248 /* 4249 * Create and initialize the spa structure. 4250 */ 4251 mutex_enter(&spa_namespace_lock); 4252 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4253 spa_activate(spa, FREAD); 4254 4255 /* 4256 * Pass off the heavy lifting to spa_load(). 4257 * Pass TRUE for mosconfig because the user-supplied config 4258 * is actually the one to trust when doing an import. 4259 */ 4260 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4261 4262 /* 4263 * If 'tryconfig' was at least parsable, return the current config. 4264 */ 4265 if (spa->spa_root_vdev != NULL) { 4266 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4267 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4268 poolname) == 0); 4269 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4270 state) == 0); 4271 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4272 spa->spa_uberblock.ub_timestamp) == 0); 4273 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4274 spa->spa_load_info) == 0); 4275 4276 /* 4277 * If the bootfs property exists on this pool then we 4278 * copy it out so that external consumers can tell which 4279 * pools are bootable. 4280 */ 4281 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4282 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4283 4284 /* 4285 * We have to play games with the name since the 4286 * pool was opened as TRYIMPORT_NAME. 4287 */ 4288 if (dsl_dsobj_to_dsname(spa_name(spa), 4289 spa->spa_bootfs, tmpname) == 0) { 4290 char *cp; 4291 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4292 4293 cp = strchr(tmpname, '/'); 4294 if (cp == NULL) { 4295 (void) strlcpy(dsname, tmpname, 4296 MAXPATHLEN); 4297 } else { 4298 (void) snprintf(dsname, MAXPATHLEN, 4299 "%s/%s", poolname, ++cp); 4300 } 4301 VERIFY(nvlist_add_string(config, 4302 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4303 kmem_free(dsname, MAXPATHLEN); 4304 } 4305 kmem_free(tmpname, MAXPATHLEN); 4306 } 4307 4308 /* 4309 * Add the list of hot spares and level 2 cache devices. 4310 */ 4311 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4312 spa_add_spares(spa, config); 4313 spa_add_l2cache(spa, config); 4314 spa_config_exit(spa, SCL_CONFIG, FTAG); 4315 } 4316 4317 spa_unload(spa); 4318 spa_deactivate(spa); 4319 spa_remove(spa); 4320 mutex_exit(&spa_namespace_lock); 4321 4322 return (config); 4323 } 4324 4325 /* 4326 * Pool export/destroy 4327 * 4328 * The act of destroying or exporting a pool is very simple. We make sure there 4329 * is no more pending I/O and any references to the pool are gone. Then, we 4330 * update the pool state and sync all the labels to disk, removing the 4331 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4332 * we don't sync the labels or remove the configuration cache. 4333 */ 4334 static int 4335 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4336 boolean_t force, boolean_t hardforce) 4337 { 4338 spa_t *spa; 4339 4340 if (oldconfig) 4341 *oldconfig = NULL; 4342 4343 if (!(spa_mode_global & FWRITE)) 4344 return (SET_ERROR(EROFS)); 4345 4346 mutex_enter(&spa_namespace_lock); 4347 if ((spa = spa_lookup(pool)) == NULL) { 4348 mutex_exit(&spa_namespace_lock); 4349 return (SET_ERROR(ENOENT)); 4350 } 4351 4352 /* 4353 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4354 * reacquire the namespace lock, and see if we can export. 4355 */ 4356 spa_open_ref(spa, FTAG); 4357 mutex_exit(&spa_namespace_lock); 4358 spa_async_suspend(spa); 4359 mutex_enter(&spa_namespace_lock); 4360 spa_close(spa, FTAG); 4361 4362 /* 4363 * The pool will be in core if it's openable, 4364 * in which case we can modify its state. 4365 */ 4366 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4367 /* 4368 * Objsets may be open only because they're dirty, so we 4369 * have to force it to sync before checking spa_refcnt. 4370 */ 4371 txg_wait_synced(spa->spa_dsl_pool, 0); 4372 spa_evicting_os_wait(spa); 4373 4374 /* 4375 * A pool cannot be exported or destroyed if there are active 4376 * references. If we are resetting a pool, allow references by 4377 * fault injection handlers. 4378 */ 4379 if (!spa_refcount_zero(spa) || 4380 (spa->spa_inject_ref != 0 && 4381 new_state != POOL_STATE_UNINITIALIZED)) { 4382 spa_async_resume(spa); 4383 mutex_exit(&spa_namespace_lock); 4384 return (SET_ERROR(EBUSY)); 4385 } 4386 4387 /* 4388 * A pool cannot be exported if it has an active shared spare. 4389 * This is to prevent other pools stealing the active spare 4390 * from an exported pool. At user's own will, such pool can 4391 * be forcedly exported. 4392 */ 4393 if (!force && new_state == POOL_STATE_EXPORTED && 4394 spa_has_active_shared_spare(spa)) { 4395 spa_async_resume(spa); 4396 mutex_exit(&spa_namespace_lock); 4397 return (SET_ERROR(EXDEV)); 4398 } 4399 4400 /* 4401 * We want this to be reflected on every label, 4402 * so mark them all dirty. spa_unload() will do the 4403 * final sync that pushes these changes out. 4404 */ 4405 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4406 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4407 spa->spa_state = new_state; 4408 spa->spa_final_txg = spa_last_synced_txg(spa) + 4409 TXG_DEFER_SIZE + 1; 4410 vdev_config_dirty(spa->spa_root_vdev); 4411 spa_config_exit(spa, SCL_ALL, FTAG); 4412 } 4413 } 4414 4415 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4416 4417 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4418 spa_unload(spa); 4419 spa_deactivate(spa); 4420 } 4421 4422 if (oldconfig && spa->spa_config) 4423 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4424 4425 if (new_state != POOL_STATE_UNINITIALIZED) { 4426 if (!hardforce) 4427 spa_config_sync(spa, B_TRUE, B_TRUE); 4428 spa_remove(spa); 4429 } 4430 mutex_exit(&spa_namespace_lock); 4431 4432 return (0); 4433 } 4434 4435 /* 4436 * Destroy a storage pool. 4437 */ 4438 int 4439 spa_destroy(char *pool) 4440 { 4441 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4442 B_FALSE, B_FALSE)); 4443 } 4444 4445 /* 4446 * Export a storage pool. 4447 */ 4448 int 4449 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4450 boolean_t hardforce) 4451 { 4452 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4453 force, hardforce)); 4454 } 4455 4456 /* 4457 * Similar to spa_export(), this unloads the spa_t without actually removing it 4458 * from the namespace in any way. 4459 */ 4460 int 4461 spa_reset(char *pool) 4462 { 4463 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4464 B_FALSE, B_FALSE)); 4465 } 4466 4467 /* 4468 * ========================================================================== 4469 * Device manipulation 4470 * ========================================================================== 4471 */ 4472 4473 /* 4474 * Add a device to a storage pool. 4475 */ 4476 int 4477 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4478 { 4479 uint64_t txg, id; 4480 int error; 4481 vdev_t *rvd = spa->spa_root_vdev; 4482 vdev_t *vd, *tvd; 4483 nvlist_t **spares, **l2cache; 4484 uint_t nspares, nl2cache; 4485 4486 ASSERT(spa_writeable(spa)); 4487 4488 txg = spa_vdev_enter(spa); 4489 4490 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4491 VDEV_ALLOC_ADD)) != 0) 4492 return (spa_vdev_exit(spa, NULL, txg, error)); 4493 4494 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4495 4496 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4497 &nspares) != 0) 4498 nspares = 0; 4499 4500 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4501 &nl2cache) != 0) 4502 nl2cache = 0; 4503 4504 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4505 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4506 4507 if (vd->vdev_children != 0 && 4508 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4509 return (spa_vdev_exit(spa, vd, txg, error)); 4510 4511 /* 4512 * We must validate the spares and l2cache devices after checking the 4513 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4514 */ 4515 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4516 return (spa_vdev_exit(spa, vd, txg, error)); 4517 4518 /* 4519 * Transfer each new top-level vdev from vd to rvd. 4520 */ 4521 for (int c = 0; c < vd->vdev_children; c++) { 4522 4523 /* 4524 * Set the vdev id to the first hole, if one exists. 4525 */ 4526 for (id = 0; id < rvd->vdev_children; id++) { 4527 if (rvd->vdev_child[id]->vdev_ishole) { 4528 vdev_free(rvd->vdev_child[id]); 4529 break; 4530 } 4531 } 4532 tvd = vd->vdev_child[c]; 4533 vdev_remove_child(vd, tvd); 4534 tvd->vdev_id = id; 4535 vdev_add_child(rvd, tvd); 4536 vdev_config_dirty(tvd); 4537 } 4538 4539 if (nspares != 0) { 4540 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4541 ZPOOL_CONFIG_SPARES); 4542 spa_load_spares(spa); 4543 spa->spa_spares.sav_sync = B_TRUE; 4544 } 4545 4546 if (nl2cache != 0) { 4547 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4548 ZPOOL_CONFIG_L2CACHE); 4549 spa_load_l2cache(spa); 4550 spa->spa_l2cache.sav_sync = B_TRUE; 4551 } 4552 4553 /* 4554 * We have to be careful when adding new vdevs to an existing pool. 4555 * If other threads start allocating from these vdevs before we 4556 * sync the config cache, and we lose power, then upon reboot we may 4557 * fail to open the pool because there are DVAs that the config cache 4558 * can't translate. Therefore, we first add the vdevs without 4559 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4560 * and then let spa_config_update() initialize the new metaslabs. 4561 * 4562 * spa_load() checks for added-but-not-initialized vdevs, so that 4563 * if we lose power at any point in this sequence, the remaining 4564 * steps will be completed the next time we load the pool. 4565 */ 4566 (void) spa_vdev_exit(spa, vd, txg, 0); 4567 4568 mutex_enter(&spa_namespace_lock); 4569 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4570 spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD); 4571 mutex_exit(&spa_namespace_lock); 4572 4573 return (0); 4574 } 4575 4576 /* 4577 * Attach a device to a mirror. The arguments are the path to any device 4578 * in the mirror, and the nvroot for the new device. If the path specifies 4579 * a device that is not mirrored, we automatically insert the mirror vdev. 4580 * 4581 * If 'replacing' is specified, the new device is intended to replace the 4582 * existing device; in this case the two devices are made into their own 4583 * mirror using the 'replacing' vdev, which is functionally identical to 4584 * the mirror vdev (it actually reuses all the same ops) but has a few 4585 * extra rules: you can't attach to it after it's been created, and upon 4586 * completion of resilvering, the first disk (the one being replaced) 4587 * is automatically detached. 4588 */ 4589 int 4590 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4591 { 4592 uint64_t txg, dtl_max_txg; 4593 vdev_t *rvd = spa->spa_root_vdev; 4594 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4595 vdev_ops_t *pvops; 4596 char *oldvdpath, *newvdpath; 4597 int newvd_isspare; 4598 int error; 4599 4600 ASSERT(spa_writeable(spa)); 4601 4602 txg = spa_vdev_enter(spa); 4603 4604 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4605 4606 if (oldvd == NULL) 4607 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4608 4609 if (!oldvd->vdev_ops->vdev_op_leaf) 4610 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4611 4612 pvd = oldvd->vdev_parent; 4613 4614 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4615 VDEV_ALLOC_ATTACH)) != 0) 4616 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4617 4618 if (newrootvd->vdev_children != 1) 4619 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4620 4621 newvd = newrootvd->vdev_child[0]; 4622 4623 if (!newvd->vdev_ops->vdev_op_leaf) 4624 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4625 4626 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4627 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4628 4629 /* 4630 * Spares can't replace logs 4631 */ 4632 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4633 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4634 4635 if (!replacing) { 4636 /* 4637 * For attach, the only allowable parent is a mirror or the root 4638 * vdev. 4639 */ 4640 if (pvd->vdev_ops != &vdev_mirror_ops && 4641 pvd->vdev_ops != &vdev_root_ops) 4642 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4643 4644 pvops = &vdev_mirror_ops; 4645 } else { 4646 /* 4647 * Active hot spares can only be replaced by inactive hot 4648 * spares. 4649 */ 4650 if (pvd->vdev_ops == &vdev_spare_ops && 4651 oldvd->vdev_isspare && 4652 !spa_has_spare(spa, newvd->vdev_guid)) 4653 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4654 4655 /* 4656 * If the source is a hot spare, and the parent isn't already a 4657 * spare, then we want to create a new hot spare. Otherwise, we 4658 * want to create a replacing vdev. The user is not allowed to 4659 * attach to a spared vdev child unless the 'isspare' state is 4660 * the same (spare replaces spare, non-spare replaces 4661 * non-spare). 4662 */ 4663 if (pvd->vdev_ops == &vdev_replacing_ops && 4664 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4665 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4666 } else if (pvd->vdev_ops == &vdev_spare_ops && 4667 newvd->vdev_isspare != oldvd->vdev_isspare) { 4668 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4669 } 4670 4671 if (newvd->vdev_isspare) 4672 pvops = &vdev_spare_ops; 4673 else 4674 pvops = &vdev_replacing_ops; 4675 } 4676 4677 /* 4678 * Make sure the new device is big enough. 4679 */ 4680 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4681 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4682 4683 /* 4684 * The new device cannot have a higher alignment requirement 4685 * than the top-level vdev. 4686 */ 4687 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4688 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4689 4690 /* 4691 * If this is an in-place replacement, update oldvd's path and devid 4692 * to make it distinguishable from newvd, and unopenable from now on. 4693 */ 4694 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4695 spa_strfree(oldvd->vdev_path); 4696 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4697 KM_SLEEP); 4698 (void) sprintf(oldvd->vdev_path, "%s/%s", 4699 newvd->vdev_path, "old"); 4700 if (oldvd->vdev_devid != NULL) { 4701 spa_strfree(oldvd->vdev_devid); 4702 oldvd->vdev_devid = NULL; 4703 } 4704 } 4705 4706 /* mark the device being resilvered */ 4707 newvd->vdev_resilver_txg = txg; 4708 4709 /* 4710 * If the parent is not a mirror, or if we're replacing, insert the new 4711 * mirror/replacing/spare vdev above oldvd. 4712 */ 4713 if (pvd->vdev_ops != pvops) 4714 pvd = vdev_add_parent(oldvd, pvops); 4715 4716 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4717 ASSERT(pvd->vdev_ops == pvops); 4718 ASSERT(oldvd->vdev_parent == pvd); 4719 4720 /* 4721 * Extract the new device from its root and add it to pvd. 4722 */ 4723 vdev_remove_child(newrootvd, newvd); 4724 newvd->vdev_id = pvd->vdev_children; 4725 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4726 vdev_add_child(pvd, newvd); 4727 4728 tvd = newvd->vdev_top; 4729 ASSERT(pvd->vdev_top == tvd); 4730 ASSERT(tvd->vdev_parent == rvd); 4731 4732 vdev_config_dirty(tvd); 4733 4734 /* 4735 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4736 * for any dmu_sync-ed blocks. It will propagate upward when 4737 * spa_vdev_exit() calls vdev_dtl_reassess(). 4738 */ 4739 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4740 4741 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4742 dtl_max_txg - TXG_INITIAL); 4743 4744 if (newvd->vdev_isspare) { 4745 spa_spare_activate(newvd); 4746 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4747 } 4748 4749 oldvdpath = spa_strdup(oldvd->vdev_path); 4750 newvdpath = spa_strdup(newvd->vdev_path); 4751 newvd_isspare = newvd->vdev_isspare; 4752 4753 /* 4754 * Mark newvd's DTL dirty in this txg. 4755 */ 4756 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4757 4758 /* 4759 * Schedule the resilver to restart in the future. We do this to 4760 * ensure that dmu_sync-ed blocks have been stitched into the 4761 * respective datasets. 4762 */ 4763 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4764 4765 if (spa->spa_bootfs) 4766 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4767 4768 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH); 4769 4770 /* 4771 * Commit the config 4772 */ 4773 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4774 4775 spa_history_log_internal(spa, "vdev attach", NULL, 4776 "%s vdev=%s %s vdev=%s", 4777 replacing && newvd_isspare ? "spare in" : 4778 replacing ? "replace" : "attach", newvdpath, 4779 replacing ? "for" : "to", oldvdpath); 4780 4781 spa_strfree(oldvdpath); 4782 spa_strfree(newvdpath); 4783 4784 return (0); 4785 } 4786 4787 /* 4788 * Detach a device from a mirror or replacing vdev. 4789 * 4790 * If 'replace_done' is specified, only detach if the parent 4791 * is a replacing vdev. 4792 */ 4793 int 4794 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4795 { 4796 uint64_t txg; 4797 int error; 4798 vdev_t *rvd = spa->spa_root_vdev; 4799 vdev_t *vd, *pvd, *cvd, *tvd; 4800 boolean_t unspare = B_FALSE; 4801 uint64_t unspare_guid = 0; 4802 char *vdpath; 4803 4804 ASSERT(spa_writeable(spa)); 4805 4806 txg = spa_vdev_enter(spa); 4807 4808 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4809 4810 if (vd == NULL) 4811 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4812 4813 if (!vd->vdev_ops->vdev_op_leaf) 4814 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4815 4816 pvd = vd->vdev_parent; 4817 4818 /* 4819 * If the parent/child relationship is not as expected, don't do it. 4820 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4821 * vdev that's replacing B with C. The user's intent in replacing 4822 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4823 * the replace by detaching C, the expected behavior is to end up 4824 * M(A,B). But suppose that right after deciding to detach C, 4825 * the replacement of B completes. We would have M(A,C), and then 4826 * ask to detach C, which would leave us with just A -- not what 4827 * the user wanted. To prevent this, we make sure that the 4828 * parent/child relationship hasn't changed -- in this example, 4829 * that C's parent is still the replacing vdev R. 4830 */ 4831 if (pvd->vdev_guid != pguid && pguid != 0) 4832 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4833 4834 /* 4835 * Only 'replacing' or 'spare' vdevs can be replaced. 4836 */ 4837 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4838 pvd->vdev_ops != &vdev_spare_ops) 4839 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4840 4841 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4842 spa_version(spa) >= SPA_VERSION_SPARES); 4843 4844 /* 4845 * Only mirror, replacing, and spare vdevs support detach. 4846 */ 4847 if (pvd->vdev_ops != &vdev_replacing_ops && 4848 pvd->vdev_ops != &vdev_mirror_ops && 4849 pvd->vdev_ops != &vdev_spare_ops) 4850 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4851 4852 /* 4853 * If this device has the only valid copy of some data, 4854 * we cannot safely detach it. 4855 */ 4856 if (vdev_dtl_required(vd)) 4857 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4858 4859 ASSERT(pvd->vdev_children >= 2); 4860 4861 /* 4862 * If we are detaching the second disk from a replacing vdev, then 4863 * check to see if we changed the original vdev's path to have "/old" 4864 * at the end in spa_vdev_attach(). If so, undo that change now. 4865 */ 4866 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4867 vd->vdev_path != NULL) { 4868 size_t len = strlen(vd->vdev_path); 4869 4870 for (int c = 0; c < pvd->vdev_children; c++) { 4871 cvd = pvd->vdev_child[c]; 4872 4873 if (cvd == vd || cvd->vdev_path == NULL) 4874 continue; 4875 4876 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4877 strcmp(cvd->vdev_path + len, "/old") == 0) { 4878 spa_strfree(cvd->vdev_path); 4879 cvd->vdev_path = spa_strdup(vd->vdev_path); 4880 break; 4881 } 4882 } 4883 } 4884 4885 /* 4886 * If we are detaching the original disk from a spare, then it implies 4887 * that the spare should become a real disk, and be removed from the 4888 * active spare list for the pool. 4889 */ 4890 if (pvd->vdev_ops == &vdev_spare_ops && 4891 vd->vdev_id == 0 && 4892 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4893 unspare = B_TRUE; 4894 4895 /* 4896 * Erase the disk labels so the disk can be used for other things. 4897 * This must be done after all other error cases are handled, 4898 * but before we disembowel vd (so we can still do I/O to it). 4899 * But if we can't do it, don't treat the error as fatal -- 4900 * it may be that the unwritability of the disk is the reason 4901 * it's being detached! 4902 */ 4903 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4904 4905 /* 4906 * Remove vd from its parent and compact the parent's children. 4907 */ 4908 vdev_remove_child(pvd, vd); 4909 vdev_compact_children(pvd); 4910 4911 /* 4912 * Remember one of the remaining children so we can get tvd below. 4913 */ 4914 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4915 4916 /* 4917 * If we need to remove the remaining child from the list of hot spares, 4918 * do it now, marking the vdev as no longer a spare in the process. 4919 * We must do this before vdev_remove_parent(), because that can 4920 * change the GUID if it creates a new toplevel GUID. For a similar 4921 * reason, we must remove the spare now, in the same txg as the detach; 4922 * otherwise someone could attach a new sibling, change the GUID, and 4923 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4924 */ 4925 if (unspare) { 4926 ASSERT(cvd->vdev_isspare); 4927 spa_spare_remove(cvd); 4928 unspare_guid = cvd->vdev_guid; 4929 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4930 cvd->vdev_unspare = B_TRUE; 4931 } 4932 4933 /* 4934 * If the parent mirror/replacing vdev only has one child, 4935 * the parent is no longer needed. Remove it from the tree. 4936 */ 4937 if (pvd->vdev_children == 1) { 4938 if (pvd->vdev_ops == &vdev_spare_ops) 4939 cvd->vdev_unspare = B_FALSE; 4940 vdev_remove_parent(cvd); 4941 } 4942 4943 4944 /* 4945 * We don't set tvd until now because the parent we just removed 4946 * may have been the previous top-level vdev. 4947 */ 4948 tvd = cvd->vdev_top; 4949 ASSERT(tvd->vdev_parent == rvd); 4950 4951 /* 4952 * Reevaluate the parent vdev state. 4953 */ 4954 vdev_propagate_state(cvd); 4955 4956 /* 4957 * If the 'autoexpand' property is set on the pool then automatically 4958 * try to expand the size of the pool. For example if the device we 4959 * just detached was smaller than the others, it may be possible to 4960 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4961 * first so that we can obtain the updated sizes of the leaf vdevs. 4962 */ 4963 if (spa->spa_autoexpand) { 4964 vdev_reopen(tvd); 4965 vdev_expand(tvd, txg); 4966 } 4967 4968 vdev_config_dirty(tvd); 4969 4970 /* 4971 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4972 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4973 * But first make sure we're not on any *other* txg's DTL list, to 4974 * prevent vd from being accessed after it's freed. 4975 */ 4976 vdpath = spa_strdup(vd->vdev_path); 4977 for (int t = 0; t < TXG_SIZE; t++) 4978 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4979 vd->vdev_detached = B_TRUE; 4980 vdev_dirty(tvd, VDD_DTL, vd, txg); 4981 4982 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4983 4984 /* hang on to the spa before we release the lock */ 4985 spa_open_ref(spa, FTAG); 4986 4987 error = spa_vdev_exit(spa, vd, txg, 0); 4988 4989 spa_history_log_internal(spa, "detach", NULL, 4990 "vdev=%s", vdpath); 4991 spa_strfree(vdpath); 4992 4993 /* 4994 * If this was the removal of the original device in a hot spare vdev, 4995 * then we want to go through and remove the device from the hot spare 4996 * list of every other pool. 4997 */ 4998 if (unspare) { 4999 spa_t *altspa = NULL; 5000 5001 mutex_enter(&spa_namespace_lock); 5002 while ((altspa = spa_next(altspa)) != NULL) { 5003 if (altspa->spa_state != POOL_STATE_ACTIVE || 5004 altspa == spa) 5005 continue; 5006 5007 spa_open_ref(altspa, FTAG); 5008 mutex_exit(&spa_namespace_lock); 5009 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 5010 mutex_enter(&spa_namespace_lock); 5011 spa_close(altspa, FTAG); 5012 } 5013 mutex_exit(&spa_namespace_lock); 5014 5015 /* search the rest of the vdevs for spares to remove */ 5016 spa_vdev_resilver_done(spa); 5017 } 5018 5019 /* all done with the spa; OK to release */ 5020 mutex_enter(&spa_namespace_lock); 5021 spa_close(spa, FTAG); 5022 mutex_exit(&spa_namespace_lock); 5023 5024 return (error); 5025 } 5026 5027 /* 5028 * Split a set of devices from their mirrors, and create a new pool from them. 5029 */ 5030 int 5031 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 5032 nvlist_t *props, boolean_t exp) 5033 { 5034 int error = 0; 5035 uint64_t txg, *glist; 5036 spa_t *newspa; 5037 uint_t c, children, lastlog; 5038 nvlist_t **child, *nvl, *tmp; 5039 dmu_tx_t *tx; 5040 char *altroot = NULL; 5041 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 5042 boolean_t activate_slog; 5043 5044 ASSERT(spa_writeable(spa)); 5045 5046 txg = spa_vdev_enter(spa); 5047 5048 /* clear the log and flush everything up to now */ 5049 activate_slog = spa_passivate_log(spa); 5050 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5051 error = spa_offline_log(spa); 5052 txg = spa_vdev_config_enter(spa); 5053 5054 if (activate_slog) 5055 spa_activate_log(spa); 5056 5057 if (error != 0) 5058 return (spa_vdev_exit(spa, NULL, txg, error)); 5059 5060 /* check new spa name before going any further */ 5061 if (spa_lookup(newname) != NULL) 5062 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 5063 5064 /* 5065 * scan through all the children to ensure they're all mirrors 5066 */ 5067 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 5068 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 5069 &children) != 0) 5070 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5071 5072 /* first, check to ensure we've got the right child count */ 5073 rvd = spa->spa_root_vdev; 5074 lastlog = 0; 5075 for (c = 0; c < rvd->vdev_children; c++) { 5076 vdev_t *vd = rvd->vdev_child[c]; 5077 5078 /* don't count the holes & logs as children */ 5079 if (vd->vdev_islog || vd->vdev_ishole) { 5080 if (lastlog == 0) 5081 lastlog = c; 5082 continue; 5083 } 5084 5085 lastlog = 0; 5086 } 5087 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 5088 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5089 5090 /* next, ensure no spare or cache devices are part of the split */ 5091 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 5092 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 5093 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5094 5095 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 5096 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 5097 5098 /* then, loop over each vdev and validate it */ 5099 for (c = 0; c < children; c++) { 5100 uint64_t is_hole = 0; 5101 5102 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 5103 &is_hole); 5104 5105 if (is_hole != 0) { 5106 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 5107 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 5108 continue; 5109 } else { 5110 error = SET_ERROR(EINVAL); 5111 break; 5112 } 5113 } 5114 5115 /* which disk is going to be split? */ 5116 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 5117 &glist[c]) != 0) { 5118 error = SET_ERROR(EINVAL); 5119 break; 5120 } 5121 5122 /* look it up in the spa */ 5123 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 5124 if (vml[c] == NULL) { 5125 error = SET_ERROR(ENODEV); 5126 break; 5127 } 5128 5129 /* make sure there's nothing stopping the split */ 5130 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 5131 vml[c]->vdev_islog || 5132 vml[c]->vdev_ishole || 5133 vml[c]->vdev_isspare || 5134 vml[c]->vdev_isl2cache || 5135 !vdev_writeable(vml[c]) || 5136 vml[c]->vdev_children != 0 || 5137 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 5138 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 5139 error = SET_ERROR(EINVAL); 5140 break; 5141 } 5142 5143 if (vdev_dtl_required(vml[c])) { 5144 error = SET_ERROR(EBUSY); 5145 break; 5146 } 5147 5148 /* we need certain info from the top level */ 5149 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5150 vml[c]->vdev_top->vdev_ms_array) == 0); 5151 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5152 vml[c]->vdev_top->vdev_ms_shift) == 0); 5153 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5154 vml[c]->vdev_top->vdev_asize) == 0); 5155 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5156 vml[c]->vdev_top->vdev_ashift) == 0); 5157 5158 /* transfer per-vdev ZAPs */ 5159 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 5160 VERIFY0(nvlist_add_uint64(child[c], 5161 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 5162 5163 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 5164 VERIFY0(nvlist_add_uint64(child[c], 5165 ZPOOL_CONFIG_VDEV_TOP_ZAP, 5166 vml[c]->vdev_parent->vdev_top_zap)); 5167 } 5168 5169 if (error != 0) { 5170 kmem_free(vml, children * sizeof (vdev_t *)); 5171 kmem_free(glist, children * sizeof (uint64_t)); 5172 return (spa_vdev_exit(spa, NULL, txg, error)); 5173 } 5174 5175 /* stop writers from using the disks */ 5176 for (c = 0; c < children; c++) { 5177 if (vml[c] != NULL) 5178 vml[c]->vdev_offline = B_TRUE; 5179 } 5180 vdev_reopen(spa->spa_root_vdev); 5181 5182 /* 5183 * Temporarily record the splitting vdevs in the spa config. This 5184 * will disappear once the config is regenerated. 5185 */ 5186 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5187 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5188 glist, children) == 0); 5189 kmem_free(glist, children * sizeof (uint64_t)); 5190 5191 mutex_enter(&spa->spa_props_lock); 5192 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5193 nvl) == 0); 5194 mutex_exit(&spa->spa_props_lock); 5195 spa->spa_config_splitting = nvl; 5196 vdev_config_dirty(spa->spa_root_vdev); 5197 5198 /* configure and create the new pool */ 5199 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5200 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5201 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5202 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5203 spa_version(spa)) == 0); 5204 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5205 spa->spa_config_txg) == 0); 5206 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5207 spa_generate_guid(NULL)) == 0); 5208 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 5209 (void) nvlist_lookup_string(props, 5210 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5211 5212 /* add the new pool to the namespace */ 5213 newspa = spa_add(newname, config, altroot); 5214 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 5215 newspa->spa_config_txg = spa->spa_config_txg; 5216 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5217 5218 /* release the spa config lock, retaining the namespace lock */ 5219 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5220 5221 if (zio_injection_enabled) 5222 zio_handle_panic_injection(spa, FTAG, 1); 5223 5224 spa_activate(newspa, spa_mode_global); 5225 spa_async_suspend(newspa); 5226 5227 /* create the new pool from the disks of the original pool */ 5228 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5229 if (error) 5230 goto out; 5231 5232 /* if that worked, generate a real config for the new pool */ 5233 if (newspa->spa_root_vdev != NULL) { 5234 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5235 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5236 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5237 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5238 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5239 B_TRUE)); 5240 } 5241 5242 /* set the props */ 5243 if (props != NULL) { 5244 spa_configfile_set(newspa, props, B_FALSE); 5245 error = spa_prop_set(newspa, props); 5246 if (error) 5247 goto out; 5248 } 5249 5250 /* flush everything */ 5251 txg = spa_vdev_config_enter(newspa); 5252 vdev_config_dirty(newspa->spa_root_vdev); 5253 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5254 5255 if (zio_injection_enabled) 5256 zio_handle_panic_injection(spa, FTAG, 2); 5257 5258 spa_async_resume(newspa); 5259 5260 /* finally, update the original pool's config */ 5261 txg = spa_vdev_config_enter(spa); 5262 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5263 error = dmu_tx_assign(tx, TXG_WAIT); 5264 if (error != 0) 5265 dmu_tx_abort(tx); 5266 for (c = 0; c < children; c++) { 5267 if (vml[c] != NULL) { 5268 vdev_split(vml[c]); 5269 if (error == 0) 5270 spa_history_log_internal(spa, "detach", tx, 5271 "vdev=%s", vml[c]->vdev_path); 5272 5273 vdev_free(vml[c]); 5274 } 5275 } 5276 spa->spa_avz_action = AVZ_ACTION_REBUILD; 5277 vdev_config_dirty(spa->spa_root_vdev); 5278 spa->spa_config_splitting = NULL; 5279 nvlist_free(nvl); 5280 if (error == 0) 5281 dmu_tx_commit(tx); 5282 (void) spa_vdev_exit(spa, NULL, txg, 0); 5283 5284 if (zio_injection_enabled) 5285 zio_handle_panic_injection(spa, FTAG, 3); 5286 5287 /* split is complete; log a history record */ 5288 spa_history_log_internal(newspa, "split", NULL, 5289 "from pool %s", spa_name(spa)); 5290 5291 kmem_free(vml, children * sizeof (vdev_t *)); 5292 5293 /* if we're not going to mount the filesystems in userland, export */ 5294 if (exp) 5295 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5296 B_FALSE, B_FALSE); 5297 5298 return (error); 5299 5300 out: 5301 spa_unload(newspa); 5302 spa_deactivate(newspa); 5303 spa_remove(newspa); 5304 5305 txg = spa_vdev_config_enter(spa); 5306 5307 /* re-online all offlined disks */ 5308 for (c = 0; c < children; c++) { 5309 if (vml[c] != NULL) 5310 vml[c]->vdev_offline = B_FALSE; 5311 } 5312 vdev_reopen(spa->spa_root_vdev); 5313 5314 nvlist_free(spa->spa_config_splitting); 5315 spa->spa_config_splitting = NULL; 5316 (void) spa_vdev_exit(spa, NULL, txg, error); 5317 5318 kmem_free(vml, children * sizeof (vdev_t *)); 5319 return (error); 5320 } 5321 5322 static nvlist_t * 5323 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5324 { 5325 for (int i = 0; i < count; i++) { 5326 uint64_t guid; 5327 5328 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5329 &guid) == 0); 5330 5331 if (guid == target_guid) 5332 return (nvpp[i]); 5333 } 5334 5335 return (NULL); 5336 } 5337 5338 static void 5339 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5340 nvlist_t *dev_to_remove) 5341 { 5342 nvlist_t **newdev = NULL; 5343 5344 if (count > 1) 5345 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5346 5347 for (int i = 0, j = 0; i < count; i++) { 5348 if (dev[i] == dev_to_remove) 5349 continue; 5350 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5351 } 5352 5353 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5354 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5355 5356 for (int i = 0; i < count - 1; i++) 5357 nvlist_free(newdev[i]); 5358 5359 if (count > 1) 5360 kmem_free(newdev, (count - 1) * sizeof (void *)); 5361 } 5362 5363 /* 5364 * Evacuate the device. 5365 */ 5366 static int 5367 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5368 { 5369 uint64_t txg; 5370 int error = 0; 5371 5372 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5373 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5374 ASSERT(vd == vd->vdev_top); 5375 5376 /* 5377 * Evacuate the device. We don't hold the config lock as writer 5378 * since we need to do I/O but we do keep the 5379 * spa_namespace_lock held. Once this completes the device 5380 * should no longer have any blocks allocated on it. 5381 */ 5382 if (vd->vdev_islog) { 5383 if (vd->vdev_stat.vs_alloc != 0) 5384 error = spa_offline_log(spa); 5385 } else { 5386 error = SET_ERROR(ENOTSUP); 5387 } 5388 5389 if (error) 5390 return (error); 5391 5392 /* 5393 * The evacuation succeeded. Remove any remaining MOS metadata 5394 * associated with this vdev, and wait for these changes to sync. 5395 */ 5396 ASSERT0(vd->vdev_stat.vs_alloc); 5397 txg = spa_vdev_config_enter(spa); 5398 vd->vdev_removing = B_TRUE; 5399 vdev_dirty_leaves(vd, VDD_DTL, txg); 5400 vdev_config_dirty(vd); 5401 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5402 5403 return (0); 5404 } 5405 5406 /* 5407 * Complete the removal by cleaning up the namespace. 5408 */ 5409 static void 5410 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5411 { 5412 vdev_t *rvd = spa->spa_root_vdev; 5413 uint64_t id = vd->vdev_id; 5414 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5415 5416 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5417 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5418 ASSERT(vd == vd->vdev_top); 5419 5420 /* 5421 * Only remove any devices which are empty. 5422 */ 5423 if (vd->vdev_stat.vs_alloc != 0) 5424 return; 5425 5426 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5427 5428 if (list_link_active(&vd->vdev_state_dirty_node)) 5429 vdev_state_clean(vd); 5430 if (list_link_active(&vd->vdev_config_dirty_node)) 5431 vdev_config_clean(vd); 5432 5433 vdev_free(vd); 5434 5435 if (last_vdev) { 5436 vdev_compact_children(rvd); 5437 } else { 5438 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5439 vdev_add_child(rvd, vd); 5440 } 5441 vdev_config_dirty(rvd); 5442 5443 /* 5444 * Reassess the health of our root vdev. 5445 */ 5446 vdev_reopen(rvd); 5447 } 5448 5449 /* 5450 * Remove a device from the pool - 5451 * 5452 * Removing a device from the vdev namespace requires several steps 5453 * and can take a significant amount of time. As a result we use 5454 * the spa_vdev_config_[enter/exit] functions which allow us to 5455 * grab and release the spa_config_lock while still holding the namespace 5456 * lock. During each step the configuration is synced out. 5457 * 5458 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5459 * devices. 5460 */ 5461 int 5462 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5463 { 5464 vdev_t *vd; 5465 sysevent_t *ev = NULL; 5466 metaslab_group_t *mg; 5467 nvlist_t **spares, **l2cache, *nv; 5468 uint64_t txg = 0; 5469 uint_t nspares, nl2cache; 5470 int error = 0; 5471 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5472 5473 ASSERT(spa_writeable(spa)); 5474 5475 if (!locked) 5476 txg = spa_vdev_enter(spa); 5477 5478 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5479 5480 if (spa->spa_spares.sav_vdevs != NULL && 5481 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5482 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5483 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5484 /* 5485 * Only remove the hot spare if it's not currently in use 5486 * in this pool. 5487 */ 5488 if (vd == NULL || unspare) { 5489 if (vd == NULL) 5490 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 5491 ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX); 5492 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5493 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5494 spa_load_spares(spa); 5495 spa->spa_spares.sav_sync = B_TRUE; 5496 } else { 5497 error = SET_ERROR(EBUSY); 5498 } 5499 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5500 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5501 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5502 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5503 /* 5504 * Cache devices can always be removed. 5505 */ 5506 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 5507 ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX); 5508 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5509 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5510 spa_load_l2cache(spa); 5511 spa->spa_l2cache.sav_sync = B_TRUE; 5512 } else if (vd != NULL && vd->vdev_islog) { 5513 ASSERT(!locked); 5514 ASSERT(vd == vd->vdev_top); 5515 5516 mg = vd->vdev_mg; 5517 5518 /* 5519 * Stop allocating from this vdev. 5520 */ 5521 metaslab_group_passivate(mg); 5522 5523 /* 5524 * Wait for the youngest allocations and frees to sync, 5525 * and then wait for the deferral of those frees to finish. 5526 */ 5527 spa_vdev_config_exit(spa, NULL, 5528 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5529 5530 /* 5531 * Attempt to evacuate the vdev. 5532 */ 5533 error = spa_vdev_remove_evacuate(spa, vd); 5534 5535 txg = spa_vdev_config_enter(spa); 5536 5537 /* 5538 * If we couldn't evacuate the vdev, unwind. 5539 */ 5540 if (error) { 5541 metaslab_group_activate(mg); 5542 return (spa_vdev_exit(spa, NULL, txg, error)); 5543 } 5544 5545 /* 5546 * Clean up the vdev namespace. 5547 */ 5548 ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV); 5549 spa_vdev_remove_from_namespace(spa, vd); 5550 5551 } else if (vd != NULL) { 5552 /* 5553 * Normal vdevs cannot be removed (yet). 5554 */ 5555 error = SET_ERROR(ENOTSUP); 5556 } else { 5557 /* 5558 * There is no vdev of any kind with the specified guid. 5559 */ 5560 error = SET_ERROR(ENOENT); 5561 } 5562 5563 if (!locked) 5564 error = spa_vdev_exit(spa, NULL, txg, error); 5565 5566 if (ev) 5567 spa_event_post(ev); 5568 5569 return (error); 5570 } 5571 5572 /* 5573 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5574 * currently spared, so we can detach it. 5575 */ 5576 static vdev_t * 5577 spa_vdev_resilver_done_hunt(vdev_t *vd) 5578 { 5579 vdev_t *newvd, *oldvd; 5580 5581 for (int c = 0; c < vd->vdev_children; c++) { 5582 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5583 if (oldvd != NULL) 5584 return (oldvd); 5585 } 5586 5587 /* 5588 * Check for a completed replacement. We always consider the first 5589 * vdev in the list to be the oldest vdev, and the last one to be 5590 * the newest (see spa_vdev_attach() for how that works). In 5591 * the case where the newest vdev is faulted, we will not automatically 5592 * remove it after a resilver completes. This is OK as it will require 5593 * user intervention to determine which disk the admin wishes to keep. 5594 */ 5595 if (vd->vdev_ops == &vdev_replacing_ops) { 5596 ASSERT(vd->vdev_children > 1); 5597 5598 newvd = vd->vdev_child[vd->vdev_children - 1]; 5599 oldvd = vd->vdev_child[0]; 5600 5601 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5602 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5603 !vdev_dtl_required(oldvd)) 5604 return (oldvd); 5605 } 5606 5607 /* 5608 * Check for a completed resilver with the 'unspare' flag set. 5609 */ 5610 if (vd->vdev_ops == &vdev_spare_ops) { 5611 vdev_t *first = vd->vdev_child[0]; 5612 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5613 5614 if (last->vdev_unspare) { 5615 oldvd = first; 5616 newvd = last; 5617 } else if (first->vdev_unspare) { 5618 oldvd = last; 5619 newvd = first; 5620 } else { 5621 oldvd = NULL; 5622 } 5623 5624 if (oldvd != NULL && 5625 vdev_dtl_empty(newvd, DTL_MISSING) && 5626 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5627 !vdev_dtl_required(oldvd)) 5628 return (oldvd); 5629 5630 /* 5631 * If there are more than two spares attached to a disk, 5632 * and those spares are not required, then we want to 5633 * attempt to free them up now so that they can be used 5634 * by other pools. Once we're back down to a single 5635 * disk+spare, we stop removing them. 5636 */ 5637 if (vd->vdev_children > 2) { 5638 newvd = vd->vdev_child[1]; 5639 5640 if (newvd->vdev_isspare && last->vdev_isspare && 5641 vdev_dtl_empty(last, DTL_MISSING) && 5642 vdev_dtl_empty(last, DTL_OUTAGE) && 5643 !vdev_dtl_required(newvd)) 5644 return (newvd); 5645 } 5646 } 5647 5648 return (NULL); 5649 } 5650 5651 static void 5652 spa_vdev_resilver_done(spa_t *spa) 5653 { 5654 vdev_t *vd, *pvd, *ppvd; 5655 uint64_t guid, sguid, pguid, ppguid; 5656 5657 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5658 5659 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5660 pvd = vd->vdev_parent; 5661 ppvd = pvd->vdev_parent; 5662 guid = vd->vdev_guid; 5663 pguid = pvd->vdev_guid; 5664 ppguid = ppvd->vdev_guid; 5665 sguid = 0; 5666 /* 5667 * If we have just finished replacing a hot spared device, then 5668 * we need to detach the parent's first child (the original hot 5669 * spare) as well. 5670 */ 5671 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5672 ppvd->vdev_children == 2) { 5673 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5674 sguid = ppvd->vdev_child[1]->vdev_guid; 5675 } 5676 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5677 5678 spa_config_exit(spa, SCL_ALL, FTAG); 5679 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5680 return; 5681 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5682 return; 5683 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5684 } 5685 5686 spa_config_exit(spa, SCL_ALL, FTAG); 5687 } 5688 5689 /* 5690 * Update the stored path or FRU for this vdev. 5691 */ 5692 int 5693 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5694 boolean_t ispath) 5695 { 5696 vdev_t *vd; 5697 boolean_t sync = B_FALSE; 5698 5699 ASSERT(spa_writeable(spa)); 5700 5701 spa_vdev_state_enter(spa, SCL_ALL); 5702 5703 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5704 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5705 5706 if (!vd->vdev_ops->vdev_op_leaf) 5707 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5708 5709 if (ispath) { 5710 if (strcmp(value, vd->vdev_path) != 0) { 5711 spa_strfree(vd->vdev_path); 5712 vd->vdev_path = spa_strdup(value); 5713 sync = B_TRUE; 5714 } 5715 } else { 5716 if (vd->vdev_fru == NULL) { 5717 vd->vdev_fru = spa_strdup(value); 5718 sync = B_TRUE; 5719 } else if (strcmp(value, vd->vdev_fru) != 0) { 5720 spa_strfree(vd->vdev_fru); 5721 vd->vdev_fru = spa_strdup(value); 5722 sync = B_TRUE; 5723 } 5724 } 5725 5726 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5727 } 5728 5729 int 5730 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5731 { 5732 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5733 } 5734 5735 int 5736 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5737 { 5738 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5739 } 5740 5741 /* 5742 * ========================================================================== 5743 * SPA Scanning 5744 * ========================================================================== 5745 */ 5746 5747 int 5748 spa_scan_stop(spa_t *spa) 5749 { 5750 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5751 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5752 return (SET_ERROR(EBUSY)); 5753 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5754 } 5755 5756 int 5757 spa_scan(spa_t *spa, pool_scan_func_t func) 5758 { 5759 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5760 5761 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5762 return (SET_ERROR(ENOTSUP)); 5763 5764 /* 5765 * If a resilver was requested, but there is no DTL on a 5766 * writeable leaf device, we have nothing to do. 5767 */ 5768 if (func == POOL_SCAN_RESILVER && 5769 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5770 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5771 return (0); 5772 } 5773 5774 return (dsl_scan(spa->spa_dsl_pool, func)); 5775 } 5776 5777 /* 5778 * ========================================================================== 5779 * SPA async task processing 5780 * ========================================================================== 5781 */ 5782 5783 static void 5784 spa_async_remove(spa_t *spa, vdev_t *vd) 5785 { 5786 if (vd->vdev_remove_wanted) { 5787 vd->vdev_remove_wanted = B_FALSE; 5788 vd->vdev_delayed_close = B_FALSE; 5789 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5790 5791 /* 5792 * We want to clear the stats, but we don't want to do a full 5793 * vdev_clear() as that will cause us to throw away 5794 * degraded/faulted state as well as attempt to reopen the 5795 * device, all of which is a waste. 5796 */ 5797 vd->vdev_stat.vs_read_errors = 0; 5798 vd->vdev_stat.vs_write_errors = 0; 5799 vd->vdev_stat.vs_checksum_errors = 0; 5800 5801 vdev_state_dirty(vd->vdev_top); 5802 } 5803 5804 for (int c = 0; c < vd->vdev_children; c++) 5805 spa_async_remove(spa, vd->vdev_child[c]); 5806 } 5807 5808 static void 5809 spa_async_probe(spa_t *spa, vdev_t *vd) 5810 { 5811 if (vd->vdev_probe_wanted) { 5812 vd->vdev_probe_wanted = B_FALSE; 5813 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5814 } 5815 5816 for (int c = 0; c < vd->vdev_children; c++) 5817 spa_async_probe(spa, vd->vdev_child[c]); 5818 } 5819 5820 static void 5821 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5822 { 5823 sysevent_id_t eid; 5824 nvlist_t *attr; 5825 char *physpath; 5826 5827 if (!spa->spa_autoexpand) 5828 return; 5829 5830 for (int c = 0; c < vd->vdev_children; c++) { 5831 vdev_t *cvd = vd->vdev_child[c]; 5832 spa_async_autoexpand(spa, cvd); 5833 } 5834 5835 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5836 return; 5837 5838 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5839 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5840 5841 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5842 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5843 5844 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5845 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5846 5847 nvlist_free(attr); 5848 kmem_free(physpath, MAXPATHLEN); 5849 } 5850 5851 static void 5852 spa_async_thread(spa_t *spa) 5853 { 5854 int tasks; 5855 5856 ASSERT(spa->spa_sync_on); 5857 5858 mutex_enter(&spa->spa_async_lock); 5859 tasks = spa->spa_async_tasks; 5860 spa->spa_async_tasks = 0; 5861 mutex_exit(&spa->spa_async_lock); 5862 5863 /* 5864 * See if the config needs to be updated. 5865 */ 5866 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5867 uint64_t old_space, new_space; 5868 5869 mutex_enter(&spa_namespace_lock); 5870 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5871 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5872 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5873 mutex_exit(&spa_namespace_lock); 5874 5875 /* 5876 * If the pool grew as a result of the config update, 5877 * then log an internal history event. 5878 */ 5879 if (new_space != old_space) { 5880 spa_history_log_internal(spa, "vdev online", NULL, 5881 "pool '%s' size: %llu(+%llu)", 5882 spa_name(spa), new_space, new_space - old_space); 5883 } 5884 } 5885 5886 /* 5887 * See if any devices need to be marked REMOVED. 5888 */ 5889 if (tasks & SPA_ASYNC_REMOVE) { 5890 spa_vdev_state_enter(spa, SCL_NONE); 5891 spa_async_remove(spa, spa->spa_root_vdev); 5892 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5893 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5894 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5895 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5896 (void) spa_vdev_state_exit(spa, NULL, 0); 5897 } 5898 5899 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5900 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5901 spa_async_autoexpand(spa, spa->spa_root_vdev); 5902 spa_config_exit(spa, SCL_CONFIG, FTAG); 5903 } 5904 5905 /* 5906 * See if any devices need to be probed. 5907 */ 5908 if (tasks & SPA_ASYNC_PROBE) { 5909 spa_vdev_state_enter(spa, SCL_NONE); 5910 spa_async_probe(spa, spa->spa_root_vdev); 5911 (void) spa_vdev_state_exit(spa, NULL, 0); 5912 } 5913 5914 /* 5915 * If any devices are done replacing, detach them. 5916 */ 5917 if (tasks & SPA_ASYNC_RESILVER_DONE) 5918 spa_vdev_resilver_done(spa); 5919 5920 /* 5921 * Kick off a resilver. 5922 */ 5923 if (tasks & SPA_ASYNC_RESILVER) 5924 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5925 5926 /* 5927 * Let the world know that we're done. 5928 */ 5929 mutex_enter(&spa->spa_async_lock); 5930 spa->spa_async_thread = NULL; 5931 cv_broadcast(&spa->spa_async_cv); 5932 mutex_exit(&spa->spa_async_lock); 5933 thread_exit(); 5934 } 5935 5936 void 5937 spa_async_suspend(spa_t *spa) 5938 { 5939 mutex_enter(&spa->spa_async_lock); 5940 spa->spa_async_suspended++; 5941 while (spa->spa_async_thread != NULL) 5942 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5943 mutex_exit(&spa->spa_async_lock); 5944 } 5945 5946 void 5947 spa_async_resume(spa_t *spa) 5948 { 5949 mutex_enter(&spa->spa_async_lock); 5950 ASSERT(spa->spa_async_suspended != 0); 5951 spa->spa_async_suspended--; 5952 mutex_exit(&spa->spa_async_lock); 5953 } 5954 5955 static boolean_t 5956 spa_async_tasks_pending(spa_t *spa) 5957 { 5958 uint_t non_config_tasks; 5959 uint_t config_task; 5960 boolean_t config_task_suspended; 5961 5962 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5963 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5964 if (spa->spa_ccw_fail_time == 0) { 5965 config_task_suspended = B_FALSE; 5966 } else { 5967 config_task_suspended = 5968 (gethrtime() - spa->spa_ccw_fail_time) < 5969 (zfs_ccw_retry_interval * NANOSEC); 5970 } 5971 5972 return (non_config_tasks || (config_task && !config_task_suspended)); 5973 } 5974 5975 static void 5976 spa_async_dispatch(spa_t *spa) 5977 { 5978 mutex_enter(&spa->spa_async_lock); 5979 if (spa_async_tasks_pending(spa) && 5980 !spa->spa_async_suspended && 5981 spa->spa_async_thread == NULL && 5982 rootdir != NULL) 5983 spa->spa_async_thread = thread_create(NULL, 0, 5984 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5985 mutex_exit(&spa->spa_async_lock); 5986 } 5987 5988 void 5989 spa_async_request(spa_t *spa, int task) 5990 { 5991 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5992 mutex_enter(&spa->spa_async_lock); 5993 spa->spa_async_tasks |= task; 5994 mutex_exit(&spa->spa_async_lock); 5995 } 5996 5997 /* 5998 * ========================================================================== 5999 * SPA syncing routines 6000 * ========================================================================== 6001 */ 6002 6003 static int 6004 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6005 { 6006 bpobj_t *bpo = arg; 6007 bpobj_enqueue(bpo, bp, tx); 6008 return (0); 6009 } 6010 6011 static int 6012 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6013 { 6014 zio_t *zio = arg; 6015 6016 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 6017 zio->io_flags)); 6018 return (0); 6019 } 6020 6021 /* 6022 * Note: this simple function is not inlined to make it easier to dtrace the 6023 * amount of time spent syncing frees. 6024 */ 6025 static void 6026 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 6027 { 6028 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6029 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 6030 VERIFY(zio_wait(zio) == 0); 6031 } 6032 6033 /* 6034 * Note: this simple function is not inlined to make it easier to dtrace the 6035 * amount of time spent syncing deferred frees. 6036 */ 6037 static void 6038 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 6039 { 6040 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6041 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 6042 spa_free_sync_cb, zio, tx), ==, 0); 6043 VERIFY0(zio_wait(zio)); 6044 } 6045 6046 6047 static void 6048 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 6049 { 6050 char *packed = NULL; 6051 size_t bufsize; 6052 size_t nvsize = 0; 6053 dmu_buf_t *db; 6054 6055 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 6056 6057 /* 6058 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 6059 * information. This avoids the dmu_buf_will_dirty() path and 6060 * saves us a pre-read to get data we don't actually care about. 6061 */ 6062 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 6063 packed = kmem_alloc(bufsize, KM_SLEEP); 6064 6065 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 6066 KM_SLEEP) == 0); 6067 bzero(packed + nvsize, bufsize - nvsize); 6068 6069 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 6070 6071 kmem_free(packed, bufsize); 6072 6073 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 6074 dmu_buf_will_dirty(db, tx); 6075 *(uint64_t *)db->db_data = nvsize; 6076 dmu_buf_rele(db, FTAG); 6077 } 6078 6079 static void 6080 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 6081 const char *config, const char *entry) 6082 { 6083 nvlist_t *nvroot; 6084 nvlist_t **list; 6085 int i; 6086 6087 if (!sav->sav_sync) 6088 return; 6089 6090 /* 6091 * Update the MOS nvlist describing the list of available devices. 6092 * spa_validate_aux() will have already made sure this nvlist is 6093 * valid and the vdevs are labeled appropriately. 6094 */ 6095 if (sav->sav_object == 0) { 6096 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 6097 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 6098 sizeof (uint64_t), tx); 6099 VERIFY(zap_update(spa->spa_meta_objset, 6100 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 6101 &sav->sav_object, tx) == 0); 6102 } 6103 6104 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6105 if (sav->sav_count == 0) { 6106 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 6107 } else { 6108 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 6109 for (i = 0; i < sav->sav_count; i++) 6110 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 6111 B_FALSE, VDEV_CONFIG_L2CACHE); 6112 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 6113 sav->sav_count) == 0); 6114 for (i = 0; i < sav->sav_count; i++) 6115 nvlist_free(list[i]); 6116 kmem_free(list, sav->sav_count * sizeof (void *)); 6117 } 6118 6119 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 6120 nvlist_free(nvroot); 6121 6122 sav->sav_sync = B_FALSE; 6123 } 6124 6125 /* 6126 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 6127 * The all-vdev ZAP must be empty. 6128 */ 6129 static void 6130 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 6131 { 6132 spa_t *spa = vd->vdev_spa; 6133 if (vd->vdev_top_zap != 0) { 6134 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6135 vd->vdev_top_zap, tx)); 6136 } 6137 if (vd->vdev_leaf_zap != 0) { 6138 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6139 vd->vdev_leaf_zap, tx)); 6140 } 6141 for (uint64_t i = 0; i < vd->vdev_children; i++) { 6142 spa_avz_build(vd->vdev_child[i], avz, tx); 6143 } 6144 } 6145 6146 static void 6147 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 6148 { 6149 nvlist_t *config; 6150 6151 /* 6152 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 6153 * its config may not be dirty but we still need to build per-vdev ZAPs. 6154 * Similarly, if the pool is being assembled (e.g. after a split), we 6155 * need to rebuild the AVZ although the config may not be dirty. 6156 */ 6157 if (list_is_empty(&spa->spa_config_dirty_list) && 6158 spa->spa_avz_action == AVZ_ACTION_NONE) 6159 return; 6160 6161 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6162 6163 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 6164 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 6165 spa->spa_all_vdev_zaps != 0); 6166 6167 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 6168 /* Make and build the new AVZ */ 6169 uint64_t new_avz = zap_create(spa->spa_meta_objset, 6170 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 6171 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 6172 6173 /* Diff old AVZ with new one */ 6174 zap_cursor_t zc; 6175 zap_attribute_t za; 6176 6177 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6178 spa->spa_all_vdev_zaps); 6179 zap_cursor_retrieve(&zc, &za) == 0; 6180 zap_cursor_advance(&zc)) { 6181 uint64_t vdzap = za.za_first_integer; 6182 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 6183 vdzap) == ENOENT) { 6184 /* 6185 * ZAP is listed in old AVZ but not in new one; 6186 * destroy it 6187 */ 6188 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 6189 tx)); 6190 } 6191 } 6192 6193 zap_cursor_fini(&zc); 6194 6195 /* Destroy the old AVZ */ 6196 VERIFY0(zap_destroy(spa->spa_meta_objset, 6197 spa->spa_all_vdev_zaps, tx)); 6198 6199 /* Replace the old AVZ in the dir obj with the new one */ 6200 VERIFY0(zap_update(spa->spa_meta_objset, 6201 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 6202 sizeof (new_avz), 1, &new_avz, tx)); 6203 6204 spa->spa_all_vdev_zaps = new_avz; 6205 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 6206 zap_cursor_t zc; 6207 zap_attribute_t za; 6208 6209 /* Walk through the AVZ and destroy all listed ZAPs */ 6210 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6211 spa->spa_all_vdev_zaps); 6212 zap_cursor_retrieve(&zc, &za) == 0; 6213 zap_cursor_advance(&zc)) { 6214 uint64_t zap = za.za_first_integer; 6215 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 6216 } 6217 6218 zap_cursor_fini(&zc); 6219 6220 /* Destroy and unlink the AVZ itself */ 6221 VERIFY0(zap_destroy(spa->spa_meta_objset, 6222 spa->spa_all_vdev_zaps, tx)); 6223 VERIFY0(zap_remove(spa->spa_meta_objset, 6224 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 6225 spa->spa_all_vdev_zaps = 0; 6226 } 6227 6228 if (spa->spa_all_vdev_zaps == 0) { 6229 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 6230 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 6231 DMU_POOL_VDEV_ZAP_MAP, tx); 6232 } 6233 spa->spa_avz_action = AVZ_ACTION_NONE; 6234 6235 /* Create ZAPs for vdevs that don't have them. */ 6236 vdev_construct_zaps(spa->spa_root_vdev, tx); 6237 6238 config = spa_config_generate(spa, spa->spa_root_vdev, 6239 dmu_tx_get_txg(tx), B_FALSE); 6240 6241 /* 6242 * If we're upgrading the spa version then make sure that 6243 * the config object gets updated with the correct version. 6244 */ 6245 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 6246 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 6247 spa->spa_uberblock.ub_version); 6248 6249 spa_config_exit(spa, SCL_STATE, FTAG); 6250 6251 nvlist_free(spa->spa_config_syncing); 6252 spa->spa_config_syncing = config; 6253 6254 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 6255 } 6256 6257 static void 6258 spa_sync_version(void *arg, dmu_tx_t *tx) 6259 { 6260 uint64_t *versionp = arg; 6261 uint64_t version = *versionp; 6262 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6263 6264 /* 6265 * Setting the version is special cased when first creating the pool. 6266 */ 6267 ASSERT(tx->tx_txg != TXG_INITIAL); 6268 6269 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6270 ASSERT(version >= spa_version(spa)); 6271 6272 spa->spa_uberblock.ub_version = version; 6273 vdev_config_dirty(spa->spa_root_vdev); 6274 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6275 } 6276 6277 /* 6278 * Set zpool properties. 6279 */ 6280 static void 6281 spa_sync_props(void *arg, dmu_tx_t *tx) 6282 { 6283 nvlist_t *nvp = arg; 6284 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6285 objset_t *mos = spa->spa_meta_objset; 6286 nvpair_t *elem = NULL; 6287 6288 mutex_enter(&spa->spa_props_lock); 6289 6290 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6291 uint64_t intval; 6292 char *strval, *fname; 6293 zpool_prop_t prop; 6294 const char *propname; 6295 zprop_type_t proptype; 6296 spa_feature_t fid; 6297 6298 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6299 case ZPROP_INVAL: 6300 /* 6301 * We checked this earlier in spa_prop_validate(). 6302 */ 6303 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6304 6305 fname = strchr(nvpair_name(elem), '@') + 1; 6306 VERIFY0(zfeature_lookup_name(fname, &fid)); 6307 6308 spa_feature_enable(spa, fid, tx); 6309 spa_history_log_internal(spa, "set", tx, 6310 "%s=enabled", nvpair_name(elem)); 6311 break; 6312 6313 case ZPOOL_PROP_VERSION: 6314 intval = fnvpair_value_uint64(elem); 6315 /* 6316 * The version is synced seperatly before other 6317 * properties and should be correct by now. 6318 */ 6319 ASSERT3U(spa_version(spa), >=, intval); 6320 break; 6321 6322 case ZPOOL_PROP_ALTROOT: 6323 /* 6324 * 'altroot' is a non-persistent property. It should 6325 * have been set temporarily at creation or import time. 6326 */ 6327 ASSERT(spa->spa_root != NULL); 6328 break; 6329 6330 case ZPOOL_PROP_READONLY: 6331 case ZPOOL_PROP_CACHEFILE: 6332 /* 6333 * 'readonly' and 'cachefile' are also non-persisitent 6334 * properties. 6335 */ 6336 break; 6337 case ZPOOL_PROP_COMMENT: 6338 strval = fnvpair_value_string(elem); 6339 if (spa->spa_comment != NULL) 6340 spa_strfree(spa->spa_comment); 6341 spa->spa_comment = spa_strdup(strval); 6342 /* 6343 * We need to dirty the configuration on all the vdevs 6344 * so that their labels get updated. It's unnecessary 6345 * to do this for pool creation since the vdev's 6346 * configuratoin has already been dirtied. 6347 */ 6348 if (tx->tx_txg != TXG_INITIAL) 6349 vdev_config_dirty(spa->spa_root_vdev); 6350 spa_history_log_internal(spa, "set", tx, 6351 "%s=%s", nvpair_name(elem), strval); 6352 break; 6353 default: 6354 /* 6355 * Set pool property values in the poolprops mos object. 6356 */ 6357 if (spa->spa_pool_props_object == 0) { 6358 spa->spa_pool_props_object = 6359 zap_create_link(mos, DMU_OT_POOL_PROPS, 6360 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6361 tx); 6362 } 6363 6364 /* normalize the property name */ 6365 propname = zpool_prop_to_name(prop); 6366 proptype = zpool_prop_get_type(prop); 6367 6368 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6369 ASSERT(proptype == PROP_TYPE_STRING); 6370 strval = fnvpair_value_string(elem); 6371 VERIFY0(zap_update(mos, 6372 spa->spa_pool_props_object, propname, 6373 1, strlen(strval) + 1, strval, tx)); 6374 spa_history_log_internal(spa, "set", tx, 6375 "%s=%s", nvpair_name(elem), strval); 6376 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6377 intval = fnvpair_value_uint64(elem); 6378 6379 if (proptype == PROP_TYPE_INDEX) { 6380 const char *unused; 6381 VERIFY0(zpool_prop_index_to_string( 6382 prop, intval, &unused)); 6383 } 6384 VERIFY0(zap_update(mos, 6385 spa->spa_pool_props_object, propname, 6386 8, 1, &intval, tx)); 6387 spa_history_log_internal(spa, "set", tx, 6388 "%s=%lld", nvpair_name(elem), intval); 6389 } else { 6390 ASSERT(0); /* not allowed */ 6391 } 6392 6393 switch (prop) { 6394 case ZPOOL_PROP_DELEGATION: 6395 spa->spa_delegation = intval; 6396 break; 6397 case ZPOOL_PROP_BOOTFS: 6398 spa->spa_bootfs = intval; 6399 break; 6400 case ZPOOL_PROP_FAILUREMODE: 6401 spa->spa_failmode = intval; 6402 break; 6403 case ZPOOL_PROP_AUTOEXPAND: 6404 spa->spa_autoexpand = intval; 6405 if (tx->tx_txg != TXG_INITIAL) 6406 spa_async_request(spa, 6407 SPA_ASYNC_AUTOEXPAND); 6408 break; 6409 case ZPOOL_PROP_DEDUPDITTO: 6410 spa->spa_dedup_ditto = intval; 6411 break; 6412 default: 6413 break; 6414 } 6415 } 6416 6417 } 6418 6419 mutex_exit(&spa->spa_props_lock); 6420 } 6421 6422 /* 6423 * Perform one-time upgrade on-disk changes. spa_version() does not 6424 * reflect the new version this txg, so there must be no changes this 6425 * txg to anything that the upgrade code depends on after it executes. 6426 * Therefore this must be called after dsl_pool_sync() does the sync 6427 * tasks. 6428 */ 6429 static void 6430 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6431 { 6432 dsl_pool_t *dp = spa->spa_dsl_pool; 6433 6434 ASSERT(spa->spa_sync_pass == 1); 6435 6436 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6437 6438 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6439 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6440 dsl_pool_create_origin(dp, tx); 6441 6442 /* Keeping the origin open increases spa_minref */ 6443 spa->spa_minref += 3; 6444 } 6445 6446 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6447 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6448 dsl_pool_upgrade_clones(dp, tx); 6449 } 6450 6451 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6452 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6453 dsl_pool_upgrade_dir_clones(dp, tx); 6454 6455 /* Keeping the freedir open increases spa_minref */ 6456 spa->spa_minref += 3; 6457 } 6458 6459 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6460 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6461 spa_feature_create_zap_objects(spa, tx); 6462 } 6463 6464 /* 6465 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6466 * when possibility to use lz4 compression for metadata was added 6467 * Old pools that have this feature enabled must be upgraded to have 6468 * this feature active 6469 */ 6470 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6471 boolean_t lz4_en = spa_feature_is_enabled(spa, 6472 SPA_FEATURE_LZ4_COMPRESS); 6473 boolean_t lz4_ac = spa_feature_is_active(spa, 6474 SPA_FEATURE_LZ4_COMPRESS); 6475 6476 if (lz4_en && !lz4_ac) 6477 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6478 } 6479 6480 /* 6481 * If we haven't written the salt, do so now. Note that the 6482 * feature may not be activated yet, but that's fine since 6483 * the presence of this ZAP entry is backwards compatible. 6484 */ 6485 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 6486 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 6487 VERIFY0(zap_add(spa->spa_meta_objset, 6488 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 6489 sizeof (spa->spa_cksum_salt.zcs_bytes), 6490 spa->spa_cksum_salt.zcs_bytes, tx)); 6491 } 6492 6493 rrw_exit(&dp->dp_config_rwlock, FTAG); 6494 } 6495 6496 /* 6497 * Sync the specified transaction group. New blocks may be dirtied as 6498 * part of the process, so we iterate until it converges. 6499 */ 6500 void 6501 spa_sync(spa_t *spa, uint64_t txg) 6502 { 6503 dsl_pool_t *dp = spa->spa_dsl_pool; 6504 objset_t *mos = spa->spa_meta_objset; 6505 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6506 vdev_t *rvd = spa->spa_root_vdev; 6507 vdev_t *vd; 6508 dmu_tx_t *tx; 6509 int error; 6510 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 6511 zfs_vdev_queue_depth_pct / 100; 6512 6513 VERIFY(spa_writeable(spa)); 6514 6515 /* 6516 * Lock out configuration changes. 6517 */ 6518 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6519 6520 spa->spa_syncing_txg = txg; 6521 spa->spa_sync_pass = 0; 6522 6523 mutex_enter(&spa->spa_alloc_lock); 6524 VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); 6525 mutex_exit(&spa->spa_alloc_lock); 6526 6527 /* 6528 * If there are any pending vdev state changes, convert them 6529 * into config changes that go out with this transaction group. 6530 */ 6531 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6532 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6533 /* 6534 * We need the write lock here because, for aux vdevs, 6535 * calling vdev_config_dirty() modifies sav_config. 6536 * This is ugly and will become unnecessary when we 6537 * eliminate the aux vdev wart by integrating all vdevs 6538 * into the root vdev tree. 6539 */ 6540 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6541 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6542 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6543 vdev_state_clean(vd); 6544 vdev_config_dirty(vd); 6545 } 6546 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6547 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6548 } 6549 spa_config_exit(spa, SCL_STATE, FTAG); 6550 6551 tx = dmu_tx_create_assigned(dp, txg); 6552 6553 spa->spa_sync_starttime = gethrtime(); 6554 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6555 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6556 6557 /* 6558 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6559 * set spa_deflate if we have no raid-z vdevs. 6560 */ 6561 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6562 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6563 int i; 6564 6565 for (i = 0; i < rvd->vdev_children; i++) { 6566 vd = rvd->vdev_child[i]; 6567 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6568 break; 6569 } 6570 if (i == rvd->vdev_children) { 6571 spa->spa_deflate = TRUE; 6572 VERIFY(0 == zap_add(spa->spa_meta_objset, 6573 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6574 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6575 } 6576 } 6577 6578 /* 6579 * Set the top-level vdev's max queue depth. Evaluate each 6580 * top-level's async write queue depth in case it changed. 6581 * The max queue depth will not change in the middle of syncing 6582 * out this txg. 6583 */ 6584 uint64_t queue_depth_total = 0; 6585 for (int c = 0; c < rvd->vdev_children; c++) { 6586 vdev_t *tvd = rvd->vdev_child[c]; 6587 metaslab_group_t *mg = tvd->vdev_mg; 6588 6589 if (mg == NULL || mg->mg_class != spa_normal_class(spa) || 6590 !metaslab_group_initialized(mg)) 6591 continue; 6592 6593 /* 6594 * It is safe to do a lock-free check here because only async 6595 * allocations look at mg_max_alloc_queue_depth, and async 6596 * allocations all happen from spa_sync(). 6597 */ 6598 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth)); 6599 mg->mg_max_alloc_queue_depth = max_queue_depth; 6600 queue_depth_total += mg->mg_max_alloc_queue_depth; 6601 } 6602 metaslab_class_t *mc = spa_normal_class(spa); 6603 ASSERT0(refcount_count(&mc->mc_alloc_slots)); 6604 mc->mc_alloc_max_slots = queue_depth_total; 6605 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 6606 6607 ASSERT3U(mc->mc_alloc_max_slots, <=, 6608 max_queue_depth * rvd->vdev_children); 6609 6610 /* 6611 * Iterate to convergence. 6612 */ 6613 do { 6614 int pass = ++spa->spa_sync_pass; 6615 6616 spa_sync_config_object(spa, tx); 6617 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6618 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6619 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6620 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6621 spa_errlog_sync(spa, txg); 6622 dsl_pool_sync(dp, txg); 6623 6624 if (pass < zfs_sync_pass_deferred_free) { 6625 spa_sync_frees(spa, free_bpl, tx); 6626 } else { 6627 /* 6628 * We can not defer frees in pass 1, because 6629 * we sync the deferred frees later in pass 1. 6630 */ 6631 ASSERT3U(pass, >, 1); 6632 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6633 &spa->spa_deferred_bpobj, tx); 6634 } 6635 6636 ddt_sync(spa, txg); 6637 dsl_scan_sync(dp, tx); 6638 6639 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6640 vdev_sync(vd, txg); 6641 6642 if (pass == 1) { 6643 spa_sync_upgrades(spa, tx); 6644 ASSERT3U(txg, >=, 6645 spa->spa_uberblock.ub_rootbp.blk_birth); 6646 /* 6647 * Note: We need to check if the MOS is dirty 6648 * because we could have marked the MOS dirty 6649 * without updating the uberblock (e.g. if we 6650 * have sync tasks but no dirty user data). We 6651 * need to check the uberblock's rootbp because 6652 * it is updated if we have synced out dirty 6653 * data (though in this case the MOS will most 6654 * likely also be dirty due to second order 6655 * effects, we don't want to rely on that here). 6656 */ 6657 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 6658 !dmu_objset_is_dirty(mos, txg)) { 6659 /* 6660 * Nothing changed on the first pass, 6661 * therefore this TXG is a no-op. Avoid 6662 * syncing deferred frees, so that we 6663 * can keep this TXG as a no-op. 6664 */ 6665 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 6666 txg)); 6667 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6668 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 6669 break; 6670 } 6671 spa_sync_deferred_frees(spa, tx); 6672 } 6673 6674 } while (dmu_objset_is_dirty(mos, txg)); 6675 6676 if (!list_is_empty(&spa->spa_config_dirty_list)) { 6677 /* 6678 * Make sure that the number of ZAPs for all the vdevs matches 6679 * the number of ZAPs in the per-vdev ZAP list. This only gets 6680 * called if the config is dirty; otherwise there may be 6681 * outstanding AVZ operations that weren't completed in 6682 * spa_sync_config_object. 6683 */ 6684 uint64_t all_vdev_zap_entry_count; 6685 ASSERT0(zap_count(spa->spa_meta_objset, 6686 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 6687 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 6688 all_vdev_zap_entry_count); 6689 } 6690 6691 /* 6692 * Rewrite the vdev configuration (which includes the uberblock) 6693 * to commit the transaction group. 6694 * 6695 * If there are no dirty vdevs, we sync the uberblock to a few 6696 * random top-level vdevs that are known to be visible in the 6697 * config cache (see spa_vdev_add() for a complete description). 6698 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6699 */ 6700 for (;;) { 6701 /* 6702 * We hold SCL_STATE to prevent vdev open/close/etc. 6703 * while we're attempting to write the vdev labels. 6704 */ 6705 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6706 6707 if (list_is_empty(&spa->spa_config_dirty_list)) { 6708 vdev_t *svd[SPA_DVAS_PER_BP]; 6709 int svdcount = 0; 6710 int children = rvd->vdev_children; 6711 int c0 = spa_get_random(children); 6712 6713 for (int c = 0; c < children; c++) { 6714 vd = rvd->vdev_child[(c0 + c) % children]; 6715 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6716 continue; 6717 svd[svdcount++] = vd; 6718 if (svdcount == SPA_DVAS_PER_BP) 6719 break; 6720 } 6721 error = vdev_config_sync(svd, svdcount, txg); 6722 } else { 6723 error = vdev_config_sync(rvd->vdev_child, 6724 rvd->vdev_children, txg); 6725 } 6726 6727 if (error == 0) 6728 spa->spa_last_synced_guid = rvd->vdev_guid; 6729 6730 spa_config_exit(spa, SCL_STATE, FTAG); 6731 6732 if (error == 0) 6733 break; 6734 zio_suspend(spa, NULL); 6735 zio_resume_wait(spa); 6736 } 6737 dmu_tx_commit(tx); 6738 6739 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6740 6741 /* 6742 * Clear the dirty config list. 6743 */ 6744 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6745 vdev_config_clean(vd); 6746 6747 /* 6748 * Now that the new config has synced transactionally, 6749 * let it become visible to the config cache. 6750 */ 6751 if (spa->spa_config_syncing != NULL) { 6752 spa_config_set(spa, spa->spa_config_syncing); 6753 spa->spa_config_txg = txg; 6754 spa->spa_config_syncing = NULL; 6755 } 6756 6757 dsl_pool_sync_done(dp, txg); 6758 6759 mutex_enter(&spa->spa_alloc_lock); 6760 VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); 6761 mutex_exit(&spa->spa_alloc_lock); 6762 6763 /* 6764 * Update usable space statistics. 6765 */ 6766 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6767 vdev_sync_done(vd, txg); 6768 6769 spa_update_dspace(spa); 6770 6771 /* 6772 * It had better be the case that we didn't dirty anything 6773 * since vdev_config_sync(). 6774 */ 6775 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6776 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6777 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6778 6779 spa->spa_sync_pass = 0; 6780 6781 /* 6782 * Update the last synced uberblock here. We want to do this at 6783 * the end of spa_sync() so that consumers of spa_last_synced_txg() 6784 * will be guaranteed that all the processing associated with 6785 * that txg has been completed. 6786 */ 6787 spa->spa_ubsync = spa->spa_uberblock; 6788 spa_config_exit(spa, SCL_CONFIG, FTAG); 6789 6790 spa_handle_ignored_writes(spa); 6791 6792 /* 6793 * If any async tasks have been requested, kick them off. 6794 */ 6795 spa_async_dispatch(spa); 6796 } 6797 6798 /* 6799 * Sync all pools. We don't want to hold the namespace lock across these 6800 * operations, so we take a reference on the spa_t and drop the lock during the 6801 * sync. 6802 */ 6803 void 6804 spa_sync_allpools(void) 6805 { 6806 spa_t *spa = NULL; 6807 mutex_enter(&spa_namespace_lock); 6808 while ((spa = spa_next(spa)) != NULL) { 6809 if (spa_state(spa) != POOL_STATE_ACTIVE || 6810 !spa_writeable(spa) || spa_suspended(spa)) 6811 continue; 6812 spa_open_ref(spa, FTAG); 6813 mutex_exit(&spa_namespace_lock); 6814 txg_wait_synced(spa_get_dsl(spa), 0); 6815 mutex_enter(&spa_namespace_lock); 6816 spa_close(spa, FTAG); 6817 } 6818 mutex_exit(&spa_namespace_lock); 6819 } 6820 6821 /* 6822 * ========================================================================== 6823 * Miscellaneous routines 6824 * ========================================================================== 6825 */ 6826 6827 /* 6828 * Remove all pools in the system. 6829 */ 6830 void 6831 spa_evict_all(void) 6832 { 6833 spa_t *spa; 6834 6835 /* 6836 * Remove all cached state. All pools should be closed now, 6837 * so every spa in the AVL tree should be unreferenced. 6838 */ 6839 mutex_enter(&spa_namespace_lock); 6840 while ((spa = spa_next(NULL)) != NULL) { 6841 /* 6842 * Stop async tasks. The async thread may need to detach 6843 * a device that's been replaced, which requires grabbing 6844 * spa_namespace_lock, so we must drop it here. 6845 */ 6846 spa_open_ref(spa, FTAG); 6847 mutex_exit(&spa_namespace_lock); 6848 spa_async_suspend(spa); 6849 mutex_enter(&spa_namespace_lock); 6850 spa_close(spa, FTAG); 6851 6852 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6853 spa_unload(spa); 6854 spa_deactivate(spa); 6855 } 6856 spa_remove(spa); 6857 } 6858 mutex_exit(&spa_namespace_lock); 6859 } 6860 6861 vdev_t * 6862 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6863 { 6864 vdev_t *vd; 6865 int i; 6866 6867 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6868 return (vd); 6869 6870 if (aux) { 6871 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6872 vd = spa->spa_l2cache.sav_vdevs[i]; 6873 if (vd->vdev_guid == guid) 6874 return (vd); 6875 } 6876 6877 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6878 vd = spa->spa_spares.sav_vdevs[i]; 6879 if (vd->vdev_guid == guid) 6880 return (vd); 6881 } 6882 } 6883 6884 return (NULL); 6885 } 6886 6887 void 6888 spa_upgrade(spa_t *spa, uint64_t version) 6889 { 6890 ASSERT(spa_writeable(spa)); 6891 6892 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6893 6894 /* 6895 * This should only be called for a non-faulted pool, and since a 6896 * future version would result in an unopenable pool, this shouldn't be 6897 * possible. 6898 */ 6899 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6900 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6901 6902 spa->spa_uberblock.ub_version = version; 6903 vdev_config_dirty(spa->spa_root_vdev); 6904 6905 spa_config_exit(spa, SCL_ALL, FTAG); 6906 6907 txg_wait_synced(spa_get_dsl(spa), 0); 6908 } 6909 6910 boolean_t 6911 spa_has_spare(spa_t *spa, uint64_t guid) 6912 { 6913 int i; 6914 uint64_t spareguid; 6915 spa_aux_vdev_t *sav = &spa->spa_spares; 6916 6917 for (i = 0; i < sav->sav_count; i++) 6918 if (sav->sav_vdevs[i]->vdev_guid == guid) 6919 return (B_TRUE); 6920 6921 for (i = 0; i < sav->sav_npending; i++) { 6922 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6923 &spareguid) == 0 && spareguid == guid) 6924 return (B_TRUE); 6925 } 6926 6927 return (B_FALSE); 6928 } 6929 6930 /* 6931 * Check if a pool has an active shared spare device. 6932 * Note: reference count of an active spare is 2, as a spare and as a replace 6933 */ 6934 static boolean_t 6935 spa_has_active_shared_spare(spa_t *spa) 6936 { 6937 int i, refcnt; 6938 uint64_t pool; 6939 spa_aux_vdev_t *sav = &spa->spa_spares; 6940 6941 for (i = 0; i < sav->sav_count; i++) { 6942 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6943 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6944 refcnt > 2) 6945 return (B_TRUE); 6946 } 6947 6948 return (B_FALSE); 6949 } 6950 6951 static sysevent_t * 6952 spa_event_create(spa_t *spa, vdev_t *vd, const char *name) 6953 { 6954 sysevent_t *ev = NULL; 6955 #ifdef _KERNEL 6956 sysevent_attr_list_t *attr = NULL; 6957 sysevent_value_t value; 6958 6959 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6960 SE_SLEEP); 6961 ASSERT(ev != NULL); 6962 6963 value.value_type = SE_DATA_TYPE_STRING; 6964 value.value.sv_string = spa_name(spa); 6965 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6966 goto done; 6967 6968 value.value_type = SE_DATA_TYPE_UINT64; 6969 value.value.sv_uint64 = spa_guid(spa); 6970 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6971 goto done; 6972 6973 if (vd) { 6974 value.value_type = SE_DATA_TYPE_UINT64; 6975 value.value.sv_uint64 = vd->vdev_guid; 6976 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6977 SE_SLEEP) != 0) 6978 goto done; 6979 6980 if (vd->vdev_path) { 6981 value.value_type = SE_DATA_TYPE_STRING; 6982 value.value.sv_string = vd->vdev_path; 6983 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6984 &value, SE_SLEEP) != 0) 6985 goto done; 6986 } 6987 } 6988 6989 if (sysevent_attach_attributes(ev, attr) != 0) 6990 goto done; 6991 attr = NULL; 6992 6993 done: 6994 if (attr) 6995 sysevent_free_attr(attr); 6996 6997 #endif 6998 return (ev); 6999 } 7000 7001 static void 7002 spa_event_post(sysevent_t *ev) 7003 { 7004 #ifdef _KERNEL 7005 sysevent_id_t eid; 7006 7007 (void) log_sysevent(ev, SE_SLEEP, &eid); 7008 sysevent_free(ev); 7009 #endif 7010 } 7011 7012 /* 7013 * Post a sysevent corresponding to the given event. The 'name' must be one of 7014 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 7015 * filled in from the spa and (optionally) the vdev. This doesn't do anything 7016 * in the userland libzpool, as we don't want consumers to misinterpret ztest 7017 * or zdb as real changes. 7018 */ 7019 void 7020 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 7021 { 7022 spa_event_post(spa_event_create(spa, vd, name)); 7023 } 7024