1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 /* 32 * SPA: Storage Pool Allocator 33 * 34 * This file contains all the routines used when modifying on-disk SPA state. 35 * This includes opening, importing, destroying, exporting a pool, and syncing a 36 * pool. 37 */ 38 39 #include <sys/zfs_context.h> 40 #include <sys/fm/fs/zfs.h> 41 #include <sys/spa_impl.h> 42 #include <sys/zio.h> 43 #include <sys/zio_checksum.h> 44 #include <sys/dmu.h> 45 #include <sys/dmu_tx.h> 46 #include <sys/zap.h> 47 #include <sys/zil.h> 48 #include <sys/ddt.h> 49 #include <sys/vdev_impl.h> 50 #include <sys/metaslab.h> 51 #include <sys/metaslab_impl.h> 52 #include <sys/uberblock_impl.h> 53 #include <sys/txg.h> 54 #include <sys/avl.h> 55 #include <sys/dmu_traverse.h> 56 #include <sys/dmu_objset.h> 57 #include <sys/unique.h> 58 #include <sys/dsl_pool.h> 59 #include <sys/dsl_dataset.h> 60 #include <sys/dsl_dir.h> 61 #include <sys/dsl_prop.h> 62 #include <sys/dsl_synctask.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/arc.h> 65 #include <sys/callb.h> 66 #include <sys/systeminfo.h> 67 #include <sys/spa_boot.h> 68 #include <sys/zfs_ioctl.h> 69 #include <sys/dsl_scan.h> 70 #include <sys/zfeature.h> 71 #include <sys/dsl_destroy.h> 72 73 #ifdef _KERNEL 74 #include <sys/bootprops.h> 75 #include <sys/callb.h> 76 #include <sys/cpupart.h> 77 #include <sys/pool.h> 78 #include <sys/sysdc.h> 79 #include <sys/zone.h> 80 #endif /* _KERNEL */ 81 82 #include "zfs_prop.h" 83 #include "zfs_comutil.h" 84 85 /* 86 * The interval, in seconds, at which failed configuration cache file writes 87 * should be retried. 88 */ 89 static int zfs_ccw_retry_interval = 300; 90 91 typedef enum zti_modes { 92 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 93 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 94 ZTI_MODE_NULL, /* don't create a taskq */ 95 ZTI_NMODES 96 } zti_modes_t; 97 98 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 99 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 100 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 101 102 #define ZTI_N(n) ZTI_P(n, 1) 103 #define ZTI_ONE ZTI_N(1) 104 105 typedef struct zio_taskq_info { 106 zti_modes_t zti_mode; 107 uint_t zti_value; 108 uint_t zti_count; 109 } zio_taskq_info_t; 110 111 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 112 "issue", "issue_high", "intr", "intr_high" 113 }; 114 115 /* 116 * This table defines the taskq settings for each ZFS I/O type. When 117 * initializing a pool, we use this table to create an appropriately sized 118 * taskq. Some operations are low volume and therefore have a small, static 119 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 120 * macros. Other operations process a large amount of data; the ZTI_BATCH 121 * macro causes us to create a taskq oriented for throughput. Some operations 122 * are so high frequency and short-lived that the taskq itself can become a a 123 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 124 * additional degree of parallelism specified by the number of threads per- 125 * taskq and the number of taskqs; when dispatching an event in this case, the 126 * particular taskq is chosen at random. 127 * 128 * The different taskq priorities are to handle the different contexts (issue 129 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 130 * need to be handled with minimum delay. 131 */ 132 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 133 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 134 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 135 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 136 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 137 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 138 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 139 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 140 }; 141 142 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, const char *name); 143 static void spa_event_post(sysevent_t *ev); 144 static void spa_sync_version(void *arg, dmu_tx_t *tx); 145 static void spa_sync_props(void *arg, dmu_tx_t *tx); 146 static boolean_t spa_has_active_shared_spare(spa_t *spa); 147 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 148 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 149 char **ereport); 150 static void spa_vdev_resilver_done(spa_t *spa); 151 152 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 153 id_t zio_taskq_psrset_bind = PS_NONE; 154 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 155 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 156 157 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 158 extern int zfs_sync_pass_deferred_free; 159 160 /* 161 * This (illegal) pool name is used when temporarily importing a spa_t in order 162 * to get the vdev stats associated with the imported devices. 163 */ 164 #define TRYIMPORT_NAME "$import" 165 166 /* 167 * ========================================================================== 168 * SPA properties routines 169 * ========================================================================== 170 */ 171 172 /* 173 * Add a (source=src, propname=propval) list to an nvlist. 174 */ 175 static void 176 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 177 uint64_t intval, zprop_source_t src) 178 { 179 const char *propname = zpool_prop_to_name(prop); 180 nvlist_t *propval; 181 182 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 183 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 184 185 if (strval != NULL) 186 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 187 else 188 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 189 190 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 191 nvlist_free(propval); 192 } 193 194 /* 195 * Get property values from the spa configuration. 196 */ 197 static void 198 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 199 { 200 vdev_t *rvd = spa->spa_root_vdev; 201 dsl_pool_t *pool = spa->spa_dsl_pool; 202 uint64_t size, alloc, cap, version; 203 zprop_source_t src = ZPROP_SRC_NONE; 204 spa_config_dirent_t *dp; 205 metaslab_class_t *mc = spa_normal_class(spa); 206 207 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 208 209 if (rvd != NULL) { 210 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 211 size = metaslab_class_get_space(spa_normal_class(spa)); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 213 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 214 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 215 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 216 size - alloc, src); 217 218 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 219 metaslab_class_fragmentation(mc), src); 220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 221 metaslab_class_expandable_space(mc), src); 222 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 223 (spa_mode(spa) == FREAD), src); 224 225 cap = (size == 0) ? 0 : (alloc * 100 / size); 226 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 227 228 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 229 ddt_get_pool_dedup_ratio(spa), src); 230 231 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 232 rvd->vdev_state, src); 233 234 version = spa_version(spa); 235 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 236 src = ZPROP_SRC_DEFAULT; 237 else 238 src = ZPROP_SRC_LOCAL; 239 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 240 } 241 242 if (pool != NULL) { 243 /* 244 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 245 * when opening pools before this version freedir will be NULL. 246 */ 247 if (pool->dp_free_dir != NULL) { 248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 249 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 250 src); 251 } else { 252 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 253 NULL, 0, src); 254 } 255 256 if (pool->dp_leak_dir != NULL) { 257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 258 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 259 src); 260 } else { 261 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 262 NULL, 0, src); 263 } 264 } 265 266 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 267 268 if (spa->spa_comment != NULL) { 269 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 270 0, ZPROP_SRC_LOCAL); 271 } 272 273 if (spa->spa_root != NULL) 274 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 275 0, ZPROP_SRC_LOCAL); 276 277 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 278 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 279 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 280 } else { 281 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 282 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 283 } 284 285 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 286 if (dp->scd_path == NULL) { 287 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 288 "none", 0, ZPROP_SRC_LOCAL); 289 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 290 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 291 dp->scd_path, 0, ZPROP_SRC_LOCAL); 292 } 293 } 294 } 295 296 /* 297 * Get zpool property values. 298 */ 299 int 300 spa_prop_get(spa_t *spa, nvlist_t **nvp) 301 { 302 objset_t *mos = spa->spa_meta_objset; 303 zap_cursor_t zc; 304 zap_attribute_t za; 305 int err; 306 307 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 308 309 mutex_enter(&spa->spa_props_lock); 310 311 /* 312 * Get properties from the spa config. 313 */ 314 spa_prop_get_config(spa, nvp); 315 316 /* If no pool property object, no more prop to get. */ 317 if (mos == NULL || spa->spa_pool_props_object == 0) { 318 mutex_exit(&spa->spa_props_lock); 319 return (0); 320 } 321 322 /* 323 * Get properties from the MOS pool property object. 324 */ 325 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 326 (err = zap_cursor_retrieve(&zc, &za)) == 0; 327 zap_cursor_advance(&zc)) { 328 uint64_t intval = 0; 329 char *strval = NULL; 330 zprop_source_t src = ZPROP_SRC_DEFAULT; 331 zpool_prop_t prop; 332 333 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 334 continue; 335 336 switch (za.za_integer_length) { 337 case 8: 338 /* integer property */ 339 if (za.za_first_integer != 340 zpool_prop_default_numeric(prop)) 341 src = ZPROP_SRC_LOCAL; 342 343 if (prop == ZPOOL_PROP_BOOTFS) { 344 dsl_pool_t *dp; 345 dsl_dataset_t *ds = NULL; 346 347 dp = spa_get_dsl(spa); 348 dsl_pool_config_enter(dp, FTAG); 349 if (err = dsl_dataset_hold_obj(dp, 350 za.za_first_integer, FTAG, &ds)) { 351 dsl_pool_config_exit(dp, FTAG); 352 break; 353 } 354 355 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 356 KM_SLEEP); 357 dsl_dataset_name(ds, strval); 358 dsl_dataset_rele(ds, FTAG); 359 dsl_pool_config_exit(dp, FTAG); 360 } else { 361 strval = NULL; 362 intval = za.za_first_integer; 363 } 364 365 spa_prop_add_list(*nvp, prop, strval, intval, src); 366 367 if (strval != NULL) 368 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 369 370 break; 371 372 case 1: 373 /* string property */ 374 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 375 err = zap_lookup(mos, spa->spa_pool_props_object, 376 za.za_name, 1, za.za_num_integers, strval); 377 if (err) { 378 kmem_free(strval, za.za_num_integers); 379 break; 380 } 381 spa_prop_add_list(*nvp, prop, strval, 0, src); 382 kmem_free(strval, za.za_num_integers); 383 break; 384 385 default: 386 break; 387 } 388 } 389 zap_cursor_fini(&zc); 390 mutex_exit(&spa->spa_props_lock); 391 out: 392 if (err && err != ENOENT) { 393 nvlist_free(*nvp); 394 *nvp = NULL; 395 return (err); 396 } 397 398 return (0); 399 } 400 401 /* 402 * Validate the given pool properties nvlist and modify the list 403 * for the property values to be set. 404 */ 405 static int 406 spa_prop_validate(spa_t *spa, nvlist_t *props) 407 { 408 nvpair_t *elem; 409 int error = 0, reset_bootfs = 0; 410 uint64_t objnum = 0; 411 boolean_t has_feature = B_FALSE; 412 413 elem = NULL; 414 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 415 uint64_t intval; 416 char *strval, *slash, *check, *fname; 417 const char *propname = nvpair_name(elem); 418 zpool_prop_t prop = zpool_name_to_prop(propname); 419 420 switch (prop) { 421 case ZPROP_INVAL: 422 if (!zpool_prop_feature(propname)) { 423 error = SET_ERROR(EINVAL); 424 break; 425 } 426 427 /* 428 * Sanitize the input. 429 */ 430 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 431 error = SET_ERROR(EINVAL); 432 break; 433 } 434 435 if (nvpair_value_uint64(elem, &intval) != 0) { 436 error = SET_ERROR(EINVAL); 437 break; 438 } 439 440 if (intval != 0) { 441 error = SET_ERROR(EINVAL); 442 break; 443 } 444 445 fname = strchr(propname, '@') + 1; 446 if (zfeature_lookup_name(fname, NULL) != 0) { 447 error = SET_ERROR(EINVAL); 448 break; 449 } 450 451 has_feature = B_TRUE; 452 break; 453 454 case ZPOOL_PROP_VERSION: 455 error = nvpair_value_uint64(elem, &intval); 456 if (!error && 457 (intval < spa_version(spa) || 458 intval > SPA_VERSION_BEFORE_FEATURES || 459 has_feature)) 460 error = SET_ERROR(EINVAL); 461 break; 462 463 case ZPOOL_PROP_DELEGATION: 464 case ZPOOL_PROP_AUTOREPLACE: 465 case ZPOOL_PROP_LISTSNAPS: 466 case ZPOOL_PROP_AUTOEXPAND: 467 error = nvpair_value_uint64(elem, &intval); 468 if (!error && intval > 1) 469 error = SET_ERROR(EINVAL); 470 break; 471 472 case ZPOOL_PROP_BOOTFS: 473 /* 474 * If the pool version is less than SPA_VERSION_BOOTFS, 475 * or the pool is still being created (version == 0), 476 * the bootfs property cannot be set. 477 */ 478 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 479 error = SET_ERROR(ENOTSUP); 480 break; 481 } 482 483 /* 484 * Make sure the vdev config is bootable 485 */ 486 if (!vdev_is_bootable(spa->spa_root_vdev)) { 487 error = SET_ERROR(ENOTSUP); 488 break; 489 } 490 491 reset_bootfs = 1; 492 493 error = nvpair_value_string(elem, &strval); 494 495 if (!error) { 496 objset_t *os; 497 uint64_t propval; 498 499 if (strval == NULL || strval[0] == '\0') { 500 objnum = zpool_prop_default_numeric( 501 ZPOOL_PROP_BOOTFS); 502 break; 503 } 504 505 if (error = dmu_objset_hold(strval, FTAG, &os)) 506 break; 507 508 /* 509 * Must be ZPL, and its property settings 510 * must be supported by GRUB (compression 511 * is not gzip, and large blocks are not used). 512 */ 513 514 if (dmu_objset_type(os) != DMU_OST_ZFS) { 515 error = SET_ERROR(ENOTSUP); 516 } else if ((error = 517 dsl_prop_get_int_ds(dmu_objset_ds(os), 518 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 519 &propval)) == 0 && 520 !BOOTFS_COMPRESS_VALID(propval)) { 521 error = SET_ERROR(ENOTSUP); 522 } else if ((error = 523 dsl_prop_get_int_ds(dmu_objset_ds(os), 524 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), 525 &propval)) == 0 && 526 propval > SPA_OLD_MAXBLOCKSIZE) { 527 error = SET_ERROR(ENOTSUP); 528 } else { 529 objnum = dmu_objset_id(os); 530 } 531 dmu_objset_rele(os, FTAG); 532 } 533 break; 534 535 case ZPOOL_PROP_FAILUREMODE: 536 error = nvpair_value_uint64(elem, &intval); 537 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 538 intval > ZIO_FAILURE_MODE_PANIC)) 539 error = SET_ERROR(EINVAL); 540 541 /* 542 * This is a special case which only occurs when 543 * the pool has completely failed. This allows 544 * the user to change the in-core failmode property 545 * without syncing it out to disk (I/Os might 546 * currently be blocked). We do this by returning 547 * EIO to the caller (spa_prop_set) to trick it 548 * into thinking we encountered a property validation 549 * error. 550 */ 551 if (!error && spa_suspended(spa)) { 552 spa->spa_failmode = intval; 553 error = SET_ERROR(EIO); 554 } 555 break; 556 557 case ZPOOL_PROP_CACHEFILE: 558 if ((error = nvpair_value_string(elem, &strval)) != 0) 559 break; 560 561 if (strval[0] == '\0') 562 break; 563 564 if (strcmp(strval, "none") == 0) 565 break; 566 567 if (strval[0] != '/') { 568 error = SET_ERROR(EINVAL); 569 break; 570 } 571 572 slash = strrchr(strval, '/'); 573 ASSERT(slash != NULL); 574 575 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 576 strcmp(slash, "/..") == 0) 577 error = SET_ERROR(EINVAL); 578 break; 579 580 case ZPOOL_PROP_COMMENT: 581 if ((error = nvpair_value_string(elem, &strval)) != 0) 582 break; 583 for (check = strval; *check != '\0'; check++) { 584 /* 585 * The kernel doesn't have an easy isprint() 586 * check. For this kernel check, we merely 587 * check ASCII apart from DEL. Fix this if 588 * there is an easy-to-use kernel isprint(). 589 */ 590 if (*check >= 0x7f) { 591 error = SET_ERROR(EINVAL); 592 break; 593 } 594 } 595 if (strlen(strval) > ZPROP_MAX_COMMENT) 596 error = E2BIG; 597 break; 598 599 case ZPOOL_PROP_DEDUPDITTO: 600 if (spa_version(spa) < SPA_VERSION_DEDUP) 601 error = SET_ERROR(ENOTSUP); 602 else 603 error = nvpair_value_uint64(elem, &intval); 604 if (error == 0 && 605 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 606 error = SET_ERROR(EINVAL); 607 break; 608 } 609 610 if (error) 611 break; 612 } 613 614 if (!error && reset_bootfs) { 615 error = nvlist_remove(props, 616 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 617 618 if (!error) { 619 error = nvlist_add_uint64(props, 620 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 621 } 622 } 623 624 return (error); 625 } 626 627 void 628 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 629 { 630 char *cachefile; 631 spa_config_dirent_t *dp; 632 633 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 634 &cachefile) != 0) 635 return; 636 637 dp = kmem_alloc(sizeof (spa_config_dirent_t), 638 KM_SLEEP); 639 640 if (cachefile[0] == '\0') 641 dp->scd_path = spa_strdup(spa_config_path); 642 else if (strcmp(cachefile, "none") == 0) 643 dp->scd_path = NULL; 644 else 645 dp->scd_path = spa_strdup(cachefile); 646 647 list_insert_head(&spa->spa_config_list, dp); 648 if (need_sync) 649 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 650 } 651 652 int 653 spa_prop_set(spa_t *spa, nvlist_t *nvp) 654 { 655 int error; 656 nvpair_t *elem = NULL; 657 boolean_t need_sync = B_FALSE; 658 659 if ((error = spa_prop_validate(spa, nvp)) != 0) 660 return (error); 661 662 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 663 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 664 665 if (prop == ZPOOL_PROP_CACHEFILE || 666 prop == ZPOOL_PROP_ALTROOT || 667 prop == ZPOOL_PROP_READONLY) 668 continue; 669 670 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 671 uint64_t ver; 672 673 if (prop == ZPOOL_PROP_VERSION) { 674 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 675 } else { 676 ASSERT(zpool_prop_feature(nvpair_name(elem))); 677 ver = SPA_VERSION_FEATURES; 678 need_sync = B_TRUE; 679 } 680 681 /* Save time if the version is already set. */ 682 if (ver == spa_version(spa)) 683 continue; 684 685 /* 686 * In addition to the pool directory object, we might 687 * create the pool properties object, the features for 688 * read object, the features for write object, or the 689 * feature descriptions object. 690 */ 691 error = dsl_sync_task(spa->spa_name, NULL, 692 spa_sync_version, &ver, 693 6, ZFS_SPACE_CHECK_RESERVED); 694 if (error) 695 return (error); 696 continue; 697 } 698 699 need_sync = B_TRUE; 700 break; 701 } 702 703 if (need_sync) { 704 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 705 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 706 } 707 708 return (0); 709 } 710 711 /* 712 * If the bootfs property value is dsobj, clear it. 713 */ 714 void 715 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 716 { 717 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 718 VERIFY(zap_remove(spa->spa_meta_objset, 719 spa->spa_pool_props_object, 720 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 721 spa->spa_bootfs = 0; 722 } 723 } 724 725 /*ARGSUSED*/ 726 static int 727 spa_change_guid_check(void *arg, dmu_tx_t *tx) 728 { 729 uint64_t *newguid = arg; 730 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 731 vdev_t *rvd = spa->spa_root_vdev; 732 uint64_t vdev_state; 733 734 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 735 vdev_state = rvd->vdev_state; 736 spa_config_exit(spa, SCL_STATE, FTAG); 737 738 if (vdev_state != VDEV_STATE_HEALTHY) 739 return (SET_ERROR(ENXIO)); 740 741 ASSERT3U(spa_guid(spa), !=, *newguid); 742 743 return (0); 744 } 745 746 static void 747 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 748 { 749 uint64_t *newguid = arg; 750 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 751 uint64_t oldguid; 752 vdev_t *rvd = spa->spa_root_vdev; 753 754 oldguid = spa_guid(spa); 755 756 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 757 rvd->vdev_guid = *newguid; 758 rvd->vdev_guid_sum += (*newguid - oldguid); 759 vdev_config_dirty(rvd); 760 spa_config_exit(spa, SCL_STATE, FTAG); 761 762 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 763 oldguid, *newguid); 764 } 765 766 /* 767 * Change the GUID for the pool. This is done so that we can later 768 * re-import a pool built from a clone of our own vdevs. We will modify 769 * the root vdev's guid, our own pool guid, and then mark all of our 770 * vdevs dirty. Note that we must make sure that all our vdevs are 771 * online when we do this, or else any vdevs that weren't present 772 * would be orphaned from our pool. We are also going to issue a 773 * sysevent to update any watchers. 774 */ 775 int 776 spa_change_guid(spa_t *spa) 777 { 778 int error; 779 uint64_t guid; 780 781 mutex_enter(&spa->spa_vdev_top_lock); 782 mutex_enter(&spa_namespace_lock); 783 guid = spa_generate_guid(NULL); 784 785 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 786 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 787 788 if (error == 0) { 789 spa_config_sync(spa, B_FALSE, B_TRUE); 790 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 791 } 792 793 mutex_exit(&spa_namespace_lock); 794 mutex_exit(&spa->spa_vdev_top_lock); 795 796 return (error); 797 } 798 799 /* 800 * ========================================================================== 801 * SPA state manipulation (open/create/destroy/import/export) 802 * ========================================================================== 803 */ 804 805 static int 806 spa_error_entry_compare(const void *a, const void *b) 807 { 808 spa_error_entry_t *sa = (spa_error_entry_t *)a; 809 spa_error_entry_t *sb = (spa_error_entry_t *)b; 810 int ret; 811 812 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 813 sizeof (zbookmark_phys_t)); 814 815 if (ret < 0) 816 return (-1); 817 else if (ret > 0) 818 return (1); 819 else 820 return (0); 821 } 822 823 /* 824 * Utility function which retrieves copies of the current logs and 825 * re-initializes them in the process. 826 */ 827 void 828 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 829 { 830 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 831 832 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 833 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 834 835 avl_create(&spa->spa_errlist_scrub, 836 spa_error_entry_compare, sizeof (spa_error_entry_t), 837 offsetof(spa_error_entry_t, se_avl)); 838 avl_create(&spa->spa_errlist_last, 839 spa_error_entry_compare, sizeof (spa_error_entry_t), 840 offsetof(spa_error_entry_t, se_avl)); 841 } 842 843 static void 844 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 845 { 846 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 847 enum zti_modes mode = ztip->zti_mode; 848 uint_t value = ztip->zti_value; 849 uint_t count = ztip->zti_count; 850 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 851 char name[32]; 852 uint_t flags = 0; 853 boolean_t batch = B_FALSE; 854 855 if (mode == ZTI_MODE_NULL) { 856 tqs->stqs_count = 0; 857 tqs->stqs_taskq = NULL; 858 return; 859 } 860 861 ASSERT3U(count, >, 0); 862 863 tqs->stqs_count = count; 864 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 865 866 switch (mode) { 867 case ZTI_MODE_FIXED: 868 ASSERT3U(value, >=, 1); 869 value = MAX(value, 1); 870 break; 871 872 case ZTI_MODE_BATCH: 873 batch = B_TRUE; 874 flags |= TASKQ_THREADS_CPU_PCT; 875 value = zio_taskq_batch_pct; 876 break; 877 878 default: 879 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 880 "spa_activate()", 881 zio_type_name[t], zio_taskq_types[q], mode, value); 882 break; 883 } 884 885 for (uint_t i = 0; i < count; i++) { 886 taskq_t *tq; 887 888 if (count > 1) { 889 (void) snprintf(name, sizeof (name), "%s_%s_%u", 890 zio_type_name[t], zio_taskq_types[q], i); 891 } else { 892 (void) snprintf(name, sizeof (name), "%s_%s", 893 zio_type_name[t], zio_taskq_types[q]); 894 } 895 896 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 897 if (batch) 898 flags |= TASKQ_DC_BATCH; 899 900 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 901 spa->spa_proc, zio_taskq_basedc, flags); 902 } else { 903 pri_t pri = maxclsyspri; 904 /* 905 * The write issue taskq can be extremely CPU 906 * intensive. Run it at slightly lower priority 907 * than the other taskqs. 908 */ 909 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 910 pri--; 911 912 tq = taskq_create_proc(name, value, pri, 50, 913 INT_MAX, spa->spa_proc, flags); 914 } 915 916 tqs->stqs_taskq[i] = tq; 917 } 918 } 919 920 static void 921 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 922 { 923 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 924 925 if (tqs->stqs_taskq == NULL) { 926 ASSERT0(tqs->stqs_count); 927 return; 928 } 929 930 for (uint_t i = 0; i < tqs->stqs_count; i++) { 931 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 932 taskq_destroy(tqs->stqs_taskq[i]); 933 } 934 935 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 936 tqs->stqs_taskq = NULL; 937 } 938 939 /* 940 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 941 * Note that a type may have multiple discrete taskqs to avoid lock contention 942 * on the taskq itself. In that case we choose which taskq at random by using 943 * the low bits of gethrtime(). 944 */ 945 void 946 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 947 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 948 { 949 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 950 taskq_t *tq; 951 952 ASSERT3P(tqs->stqs_taskq, !=, NULL); 953 ASSERT3U(tqs->stqs_count, !=, 0); 954 955 if (tqs->stqs_count == 1) { 956 tq = tqs->stqs_taskq[0]; 957 } else { 958 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 959 } 960 961 taskq_dispatch_ent(tq, func, arg, flags, ent); 962 } 963 964 static void 965 spa_create_zio_taskqs(spa_t *spa) 966 { 967 for (int t = 0; t < ZIO_TYPES; t++) { 968 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 969 spa_taskqs_init(spa, t, q); 970 } 971 } 972 } 973 974 #ifdef _KERNEL 975 static void 976 spa_thread(void *arg) 977 { 978 callb_cpr_t cprinfo; 979 980 spa_t *spa = arg; 981 user_t *pu = PTOU(curproc); 982 983 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 984 spa->spa_name); 985 986 ASSERT(curproc != &p0); 987 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 988 "zpool-%s", spa->spa_name); 989 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 990 991 /* bind this thread to the requested psrset */ 992 if (zio_taskq_psrset_bind != PS_NONE) { 993 pool_lock(); 994 mutex_enter(&cpu_lock); 995 mutex_enter(&pidlock); 996 mutex_enter(&curproc->p_lock); 997 998 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 999 0, NULL, NULL) == 0) { 1000 curthread->t_bind_pset = zio_taskq_psrset_bind; 1001 } else { 1002 cmn_err(CE_WARN, 1003 "Couldn't bind process for zfs pool \"%s\" to " 1004 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1005 } 1006 1007 mutex_exit(&curproc->p_lock); 1008 mutex_exit(&pidlock); 1009 mutex_exit(&cpu_lock); 1010 pool_unlock(); 1011 } 1012 1013 if (zio_taskq_sysdc) { 1014 sysdc_thread_enter(curthread, 100, 0); 1015 } 1016 1017 spa->spa_proc = curproc; 1018 spa->spa_did = curthread->t_did; 1019 1020 spa_create_zio_taskqs(spa); 1021 1022 mutex_enter(&spa->spa_proc_lock); 1023 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1024 1025 spa->spa_proc_state = SPA_PROC_ACTIVE; 1026 cv_broadcast(&spa->spa_proc_cv); 1027 1028 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1029 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1030 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1031 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1032 1033 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1034 spa->spa_proc_state = SPA_PROC_GONE; 1035 spa->spa_proc = &p0; 1036 cv_broadcast(&spa->spa_proc_cv); 1037 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1038 1039 mutex_enter(&curproc->p_lock); 1040 lwp_exit(); 1041 } 1042 #endif 1043 1044 /* 1045 * Activate an uninitialized pool. 1046 */ 1047 static void 1048 spa_activate(spa_t *spa, int mode) 1049 { 1050 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1051 1052 spa->spa_state = POOL_STATE_ACTIVE; 1053 spa->spa_mode = mode; 1054 1055 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1056 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1057 1058 /* Try to create a covering process */ 1059 mutex_enter(&spa->spa_proc_lock); 1060 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1061 ASSERT(spa->spa_proc == &p0); 1062 spa->spa_did = 0; 1063 1064 /* Only create a process if we're going to be around a while. */ 1065 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1066 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1067 NULL, 0) == 0) { 1068 spa->spa_proc_state = SPA_PROC_CREATED; 1069 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1070 cv_wait(&spa->spa_proc_cv, 1071 &spa->spa_proc_lock); 1072 } 1073 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1074 ASSERT(spa->spa_proc != &p0); 1075 ASSERT(spa->spa_did != 0); 1076 } else { 1077 #ifdef _KERNEL 1078 cmn_err(CE_WARN, 1079 "Couldn't create process for zfs pool \"%s\"\n", 1080 spa->spa_name); 1081 #endif 1082 } 1083 } 1084 mutex_exit(&spa->spa_proc_lock); 1085 1086 /* If we didn't create a process, we need to create our taskqs. */ 1087 if (spa->spa_proc == &p0) { 1088 spa_create_zio_taskqs(spa); 1089 } 1090 1091 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1092 offsetof(vdev_t, vdev_config_dirty_node)); 1093 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1094 offsetof(objset_t, os_evicting_node)); 1095 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1096 offsetof(vdev_t, vdev_state_dirty_node)); 1097 1098 txg_list_create(&spa->spa_vdev_txg_list, 1099 offsetof(struct vdev, vdev_txg_node)); 1100 1101 avl_create(&spa->spa_errlist_scrub, 1102 spa_error_entry_compare, sizeof (spa_error_entry_t), 1103 offsetof(spa_error_entry_t, se_avl)); 1104 avl_create(&spa->spa_errlist_last, 1105 spa_error_entry_compare, sizeof (spa_error_entry_t), 1106 offsetof(spa_error_entry_t, se_avl)); 1107 } 1108 1109 /* 1110 * Opposite of spa_activate(). 1111 */ 1112 static void 1113 spa_deactivate(spa_t *spa) 1114 { 1115 ASSERT(spa->spa_sync_on == B_FALSE); 1116 ASSERT(spa->spa_dsl_pool == NULL); 1117 ASSERT(spa->spa_root_vdev == NULL); 1118 ASSERT(spa->spa_async_zio_root == NULL); 1119 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1120 1121 spa_evicting_os_wait(spa); 1122 1123 txg_list_destroy(&spa->spa_vdev_txg_list); 1124 1125 list_destroy(&spa->spa_config_dirty_list); 1126 list_destroy(&spa->spa_evicting_os_list); 1127 list_destroy(&spa->spa_state_dirty_list); 1128 1129 for (int t = 0; t < ZIO_TYPES; t++) { 1130 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1131 spa_taskqs_fini(spa, t, q); 1132 } 1133 } 1134 1135 metaslab_class_destroy(spa->spa_normal_class); 1136 spa->spa_normal_class = NULL; 1137 1138 metaslab_class_destroy(spa->spa_log_class); 1139 spa->spa_log_class = NULL; 1140 1141 /* 1142 * If this was part of an import or the open otherwise failed, we may 1143 * still have errors left in the queues. Empty them just in case. 1144 */ 1145 spa_errlog_drain(spa); 1146 1147 avl_destroy(&spa->spa_errlist_scrub); 1148 avl_destroy(&spa->spa_errlist_last); 1149 1150 spa->spa_state = POOL_STATE_UNINITIALIZED; 1151 1152 mutex_enter(&spa->spa_proc_lock); 1153 if (spa->spa_proc_state != SPA_PROC_NONE) { 1154 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1155 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1156 cv_broadcast(&spa->spa_proc_cv); 1157 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1158 ASSERT(spa->spa_proc != &p0); 1159 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1160 } 1161 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1162 spa->spa_proc_state = SPA_PROC_NONE; 1163 } 1164 ASSERT(spa->spa_proc == &p0); 1165 mutex_exit(&spa->spa_proc_lock); 1166 1167 /* 1168 * We want to make sure spa_thread() has actually exited the ZFS 1169 * module, so that the module can't be unloaded out from underneath 1170 * it. 1171 */ 1172 if (spa->spa_did != 0) { 1173 thread_join(spa->spa_did); 1174 spa->spa_did = 0; 1175 } 1176 } 1177 1178 /* 1179 * Verify a pool configuration, and construct the vdev tree appropriately. This 1180 * will create all the necessary vdevs in the appropriate layout, with each vdev 1181 * in the CLOSED state. This will prep the pool before open/creation/import. 1182 * All vdev validation is done by the vdev_alloc() routine. 1183 */ 1184 static int 1185 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1186 uint_t id, int atype) 1187 { 1188 nvlist_t **child; 1189 uint_t children; 1190 int error; 1191 1192 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1193 return (error); 1194 1195 if ((*vdp)->vdev_ops->vdev_op_leaf) 1196 return (0); 1197 1198 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1199 &child, &children); 1200 1201 if (error == ENOENT) 1202 return (0); 1203 1204 if (error) { 1205 vdev_free(*vdp); 1206 *vdp = NULL; 1207 return (SET_ERROR(EINVAL)); 1208 } 1209 1210 for (int c = 0; c < children; c++) { 1211 vdev_t *vd; 1212 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1213 atype)) != 0) { 1214 vdev_free(*vdp); 1215 *vdp = NULL; 1216 return (error); 1217 } 1218 } 1219 1220 ASSERT(*vdp != NULL); 1221 1222 return (0); 1223 } 1224 1225 /* 1226 * Opposite of spa_load(). 1227 */ 1228 static void 1229 spa_unload(spa_t *spa) 1230 { 1231 int i; 1232 1233 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1234 1235 /* 1236 * Stop async tasks. 1237 */ 1238 spa_async_suspend(spa); 1239 1240 /* 1241 * Stop syncing. 1242 */ 1243 if (spa->spa_sync_on) { 1244 txg_sync_stop(spa->spa_dsl_pool); 1245 spa->spa_sync_on = B_FALSE; 1246 } 1247 1248 /* 1249 * Wait for any outstanding async I/O to complete. 1250 */ 1251 if (spa->spa_async_zio_root != NULL) { 1252 for (int i = 0; i < max_ncpus; i++) 1253 (void) zio_wait(spa->spa_async_zio_root[i]); 1254 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1255 spa->spa_async_zio_root = NULL; 1256 } 1257 1258 bpobj_close(&spa->spa_deferred_bpobj); 1259 1260 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1261 1262 /* 1263 * Close all vdevs. 1264 */ 1265 if (spa->spa_root_vdev) 1266 vdev_free(spa->spa_root_vdev); 1267 ASSERT(spa->spa_root_vdev == NULL); 1268 1269 /* 1270 * Close the dsl pool. 1271 */ 1272 if (spa->spa_dsl_pool) { 1273 dsl_pool_close(spa->spa_dsl_pool); 1274 spa->spa_dsl_pool = NULL; 1275 spa->spa_meta_objset = NULL; 1276 } 1277 1278 ddt_unload(spa); 1279 1280 /* 1281 * Drop and purge level 2 cache 1282 */ 1283 spa_l2cache_drop(spa); 1284 1285 for (i = 0; i < spa->spa_spares.sav_count; i++) 1286 vdev_free(spa->spa_spares.sav_vdevs[i]); 1287 if (spa->spa_spares.sav_vdevs) { 1288 kmem_free(spa->spa_spares.sav_vdevs, 1289 spa->spa_spares.sav_count * sizeof (void *)); 1290 spa->spa_spares.sav_vdevs = NULL; 1291 } 1292 if (spa->spa_spares.sav_config) { 1293 nvlist_free(spa->spa_spares.sav_config); 1294 spa->spa_spares.sav_config = NULL; 1295 } 1296 spa->spa_spares.sav_count = 0; 1297 1298 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1299 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1300 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1301 } 1302 if (spa->spa_l2cache.sav_vdevs) { 1303 kmem_free(spa->spa_l2cache.sav_vdevs, 1304 spa->spa_l2cache.sav_count * sizeof (void *)); 1305 spa->spa_l2cache.sav_vdevs = NULL; 1306 } 1307 if (spa->spa_l2cache.sav_config) { 1308 nvlist_free(spa->spa_l2cache.sav_config); 1309 spa->spa_l2cache.sav_config = NULL; 1310 } 1311 spa->spa_l2cache.sav_count = 0; 1312 1313 spa->spa_async_suspended = 0; 1314 1315 if (spa->spa_comment != NULL) { 1316 spa_strfree(spa->spa_comment); 1317 spa->spa_comment = NULL; 1318 } 1319 1320 spa_config_exit(spa, SCL_ALL, FTAG); 1321 } 1322 1323 /* 1324 * Load (or re-load) the current list of vdevs describing the active spares for 1325 * this pool. When this is called, we have some form of basic information in 1326 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1327 * then re-generate a more complete list including status information. 1328 */ 1329 static void 1330 spa_load_spares(spa_t *spa) 1331 { 1332 nvlist_t **spares; 1333 uint_t nspares; 1334 int i; 1335 vdev_t *vd, *tvd; 1336 1337 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1338 1339 /* 1340 * First, close and free any existing spare vdevs. 1341 */ 1342 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1343 vd = spa->spa_spares.sav_vdevs[i]; 1344 1345 /* Undo the call to spa_activate() below */ 1346 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1347 B_FALSE)) != NULL && tvd->vdev_isspare) 1348 spa_spare_remove(tvd); 1349 vdev_close(vd); 1350 vdev_free(vd); 1351 } 1352 1353 if (spa->spa_spares.sav_vdevs) 1354 kmem_free(spa->spa_spares.sav_vdevs, 1355 spa->spa_spares.sav_count * sizeof (void *)); 1356 1357 if (spa->spa_spares.sav_config == NULL) 1358 nspares = 0; 1359 else 1360 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1361 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1362 1363 spa->spa_spares.sav_count = (int)nspares; 1364 spa->spa_spares.sav_vdevs = NULL; 1365 1366 if (nspares == 0) 1367 return; 1368 1369 /* 1370 * Construct the array of vdevs, opening them to get status in the 1371 * process. For each spare, there is potentially two different vdev_t 1372 * structures associated with it: one in the list of spares (used only 1373 * for basic validation purposes) and one in the active vdev 1374 * configuration (if it's spared in). During this phase we open and 1375 * validate each vdev on the spare list. If the vdev also exists in the 1376 * active configuration, then we also mark this vdev as an active spare. 1377 */ 1378 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1379 KM_SLEEP); 1380 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1381 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1382 VDEV_ALLOC_SPARE) == 0); 1383 ASSERT(vd != NULL); 1384 1385 spa->spa_spares.sav_vdevs[i] = vd; 1386 1387 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1388 B_FALSE)) != NULL) { 1389 if (!tvd->vdev_isspare) 1390 spa_spare_add(tvd); 1391 1392 /* 1393 * We only mark the spare active if we were successfully 1394 * able to load the vdev. Otherwise, importing a pool 1395 * with a bad active spare would result in strange 1396 * behavior, because multiple pool would think the spare 1397 * is actively in use. 1398 * 1399 * There is a vulnerability here to an equally bizarre 1400 * circumstance, where a dead active spare is later 1401 * brought back to life (onlined or otherwise). Given 1402 * the rarity of this scenario, and the extra complexity 1403 * it adds, we ignore the possibility. 1404 */ 1405 if (!vdev_is_dead(tvd)) 1406 spa_spare_activate(tvd); 1407 } 1408 1409 vd->vdev_top = vd; 1410 vd->vdev_aux = &spa->spa_spares; 1411 1412 if (vdev_open(vd) != 0) 1413 continue; 1414 1415 if (vdev_validate_aux(vd) == 0) 1416 spa_spare_add(vd); 1417 } 1418 1419 /* 1420 * Recompute the stashed list of spares, with status information 1421 * this time. 1422 */ 1423 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1424 DATA_TYPE_NVLIST_ARRAY) == 0); 1425 1426 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1427 KM_SLEEP); 1428 for (i = 0; i < spa->spa_spares.sav_count; i++) 1429 spares[i] = vdev_config_generate(spa, 1430 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1431 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1432 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1433 for (i = 0; i < spa->spa_spares.sav_count; i++) 1434 nvlist_free(spares[i]); 1435 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1436 } 1437 1438 /* 1439 * Load (or re-load) the current list of vdevs describing the active l2cache for 1440 * this pool. When this is called, we have some form of basic information in 1441 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1442 * then re-generate a more complete list including status information. 1443 * Devices which are already active have their details maintained, and are 1444 * not re-opened. 1445 */ 1446 static void 1447 spa_load_l2cache(spa_t *spa) 1448 { 1449 nvlist_t **l2cache; 1450 uint_t nl2cache; 1451 int i, j, oldnvdevs; 1452 uint64_t guid; 1453 vdev_t *vd, **oldvdevs, **newvdevs; 1454 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1455 1456 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1457 1458 if (sav->sav_config != NULL) { 1459 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1460 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1461 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1462 } else { 1463 nl2cache = 0; 1464 newvdevs = NULL; 1465 } 1466 1467 oldvdevs = sav->sav_vdevs; 1468 oldnvdevs = sav->sav_count; 1469 sav->sav_vdevs = NULL; 1470 sav->sav_count = 0; 1471 1472 /* 1473 * Process new nvlist of vdevs. 1474 */ 1475 for (i = 0; i < nl2cache; i++) { 1476 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1477 &guid) == 0); 1478 1479 newvdevs[i] = NULL; 1480 for (j = 0; j < oldnvdevs; j++) { 1481 vd = oldvdevs[j]; 1482 if (vd != NULL && guid == vd->vdev_guid) { 1483 /* 1484 * Retain previous vdev for add/remove ops. 1485 */ 1486 newvdevs[i] = vd; 1487 oldvdevs[j] = NULL; 1488 break; 1489 } 1490 } 1491 1492 if (newvdevs[i] == NULL) { 1493 /* 1494 * Create new vdev 1495 */ 1496 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1497 VDEV_ALLOC_L2CACHE) == 0); 1498 ASSERT(vd != NULL); 1499 newvdevs[i] = vd; 1500 1501 /* 1502 * Commit this vdev as an l2cache device, 1503 * even if it fails to open. 1504 */ 1505 spa_l2cache_add(vd); 1506 1507 vd->vdev_top = vd; 1508 vd->vdev_aux = sav; 1509 1510 spa_l2cache_activate(vd); 1511 1512 if (vdev_open(vd) != 0) 1513 continue; 1514 1515 (void) vdev_validate_aux(vd); 1516 1517 if (!vdev_is_dead(vd)) 1518 l2arc_add_vdev(spa, vd); 1519 } 1520 } 1521 1522 /* 1523 * Purge vdevs that were dropped 1524 */ 1525 for (i = 0; i < oldnvdevs; i++) { 1526 uint64_t pool; 1527 1528 vd = oldvdevs[i]; 1529 if (vd != NULL) { 1530 ASSERT(vd->vdev_isl2cache); 1531 1532 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1533 pool != 0ULL && l2arc_vdev_present(vd)) 1534 l2arc_remove_vdev(vd); 1535 vdev_clear_stats(vd); 1536 vdev_free(vd); 1537 } 1538 } 1539 1540 if (oldvdevs) 1541 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1542 1543 if (sav->sav_config == NULL) 1544 goto out; 1545 1546 sav->sav_vdevs = newvdevs; 1547 sav->sav_count = (int)nl2cache; 1548 1549 /* 1550 * Recompute the stashed list of l2cache devices, with status 1551 * information this time. 1552 */ 1553 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1554 DATA_TYPE_NVLIST_ARRAY) == 0); 1555 1556 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1557 for (i = 0; i < sav->sav_count; i++) 1558 l2cache[i] = vdev_config_generate(spa, 1559 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1560 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1561 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1562 out: 1563 for (i = 0; i < sav->sav_count; i++) 1564 nvlist_free(l2cache[i]); 1565 if (sav->sav_count) 1566 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1567 } 1568 1569 static int 1570 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1571 { 1572 dmu_buf_t *db; 1573 char *packed = NULL; 1574 size_t nvsize = 0; 1575 int error; 1576 *value = NULL; 1577 1578 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1579 if (error != 0) 1580 return (error); 1581 1582 nvsize = *(uint64_t *)db->db_data; 1583 dmu_buf_rele(db, FTAG); 1584 1585 packed = kmem_alloc(nvsize, KM_SLEEP); 1586 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1587 DMU_READ_PREFETCH); 1588 if (error == 0) 1589 error = nvlist_unpack(packed, nvsize, value, 0); 1590 kmem_free(packed, nvsize); 1591 1592 return (error); 1593 } 1594 1595 /* 1596 * Checks to see if the given vdev could not be opened, in which case we post a 1597 * sysevent to notify the autoreplace code that the device has been removed. 1598 */ 1599 static void 1600 spa_check_removed(vdev_t *vd) 1601 { 1602 for (int c = 0; c < vd->vdev_children; c++) 1603 spa_check_removed(vd->vdev_child[c]); 1604 1605 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1606 !vd->vdev_ishole) { 1607 zfs_post_autoreplace(vd->vdev_spa, vd); 1608 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1609 } 1610 } 1611 1612 static void 1613 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd) 1614 { 1615 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children); 1616 1617 vd->vdev_top_zap = mvd->vdev_top_zap; 1618 vd->vdev_leaf_zap = mvd->vdev_leaf_zap; 1619 1620 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1621 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]); 1622 } 1623 } 1624 1625 /* 1626 * Validate the current config against the MOS config 1627 */ 1628 static boolean_t 1629 spa_config_valid(spa_t *spa, nvlist_t *config) 1630 { 1631 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1632 nvlist_t *nv; 1633 1634 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1635 1636 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1637 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1638 1639 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1640 1641 /* 1642 * If we're doing a normal import, then build up any additional 1643 * diagnostic information about missing devices in this config. 1644 * We'll pass this up to the user for further processing. 1645 */ 1646 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1647 nvlist_t **child, *nv; 1648 uint64_t idx = 0; 1649 1650 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1651 KM_SLEEP); 1652 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1653 1654 for (int c = 0; c < rvd->vdev_children; c++) { 1655 vdev_t *tvd = rvd->vdev_child[c]; 1656 vdev_t *mtvd = mrvd->vdev_child[c]; 1657 1658 if (tvd->vdev_ops == &vdev_missing_ops && 1659 mtvd->vdev_ops != &vdev_missing_ops && 1660 mtvd->vdev_islog) 1661 child[idx++] = vdev_config_generate(spa, mtvd, 1662 B_FALSE, 0); 1663 } 1664 1665 if (idx) { 1666 VERIFY(nvlist_add_nvlist_array(nv, 1667 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1668 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1669 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1670 1671 for (int i = 0; i < idx; i++) 1672 nvlist_free(child[i]); 1673 } 1674 nvlist_free(nv); 1675 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1676 } 1677 1678 /* 1679 * Compare the root vdev tree with the information we have 1680 * from the MOS config (mrvd). Check each top-level vdev 1681 * with the corresponding MOS config top-level (mtvd). 1682 */ 1683 for (int c = 0; c < rvd->vdev_children; c++) { 1684 vdev_t *tvd = rvd->vdev_child[c]; 1685 vdev_t *mtvd = mrvd->vdev_child[c]; 1686 1687 /* 1688 * Resolve any "missing" vdevs in the current configuration. 1689 * If we find that the MOS config has more accurate information 1690 * about the top-level vdev then use that vdev instead. 1691 */ 1692 if (tvd->vdev_ops == &vdev_missing_ops && 1693 mtvd->vdev_ops != &vdev_missing_ops) { 1694 1695 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1696 continue; 1697 1698 /* 1699 * Device specific actions. 1700 */ 1701 if (mtvd->vdev_islog) { 1702 spa_set_log_state(spa, SPA_LOG_CLEAR); 1703 } else { 1704 /* 1705 * XXX - once we have 'readonly' pool 1706 * support we should be able to handle 1707 * missing data devices by transitioning 1708 * the pool to readonly. 1709 */ 1710 continue; 1711 } 1712 1713 /* 1714 * Swap the missing vdev with the data we were 1715 * able to obtain from the MOS config. 1716 */ 1717 vdev_remove_child(rvd, tvd); 1718 vdev_remove_child(mrvd, mtvd); 1719 1720 vdev_add_child(rvd, mtvd); 1721 vdev_add_child(mrvd, tvd); 1722 1723 spa_config_exit(spa, SCL_ALL, FTAG); 1724 vdev_load(mtvd); 1725 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1726 1727 vdev_reopen(rvd); 1728 } else { 1729 if (mtvd->vdev_islog) { 1730 /* 1731 * Load the slog device's state from the MOS 1732 * config since it's possible that the label 1733 * does not contain the most up-to-date 1734 * information. 1735 */ 1736 vdev_load_log_state(tvd, mtvd); 1737 vdev_reopen(tvd); 1738 } 1739 1740 /* 1741 * Per-vdev ZAP info is stored exclusively in the MOS. 1742 */ 1743 spa_config_valid_zaps(tvd, mtvd); 1744 } 1745 } 1746 1747 vdev_free(mrvd); 1748 spa_config_exit(spa, SCL_ALL, FTAG); 1749 1750 /* 1751 * Ensure we were able to validate the config. 1752 */ 1753 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1754 } 1755 1756 /* 1757 * Check for missing log devices 1758 */ 1759 static boolean_t 1760 spa_check_logs(spa_t *spa) 1761 { 1762 boolean_t rv = B_FALSE; 1763 dsl_pool_t *dp = spa_get_dsl(spa); 1764 1765 switch (spa->spa_log_state) { 1766 case SPA_LOG_MISSING: 1767 /* need to recheck in case slog has been restored */ 1768 case SPA_LOG_UNKNOWN: 1769 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1770 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1771 if (rv) 1772 spa_set_log_state(spa, SPA_LOG_MISSING); 1773 break; 1774 } 1775 return (rv); 1776 } 1777 1778 static boolean_t 1779 spa_passivate_log(spa_t *spa) 1780 { 1781 vdev_t *rvd = spa->spa_root_vdev; 1782 boolean_t slog_found = B_FALSE; 1783 1784 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1785 1786 if (!spa_has_slogs(spa)) 1787 return (B_FALSE); 1788 1789 for (int c = 0; c < rvd->vdev_children; c++) { 1790 vdev_t *tvd = rvd->vdev_child[c]; 1791 metaslab_group_t *mg = tvd->vdev_mg; 1792 1793 if (tvd->vdev_islog) { 1794 metaslab_group_passivate(mg); 1795 slog_found = B_TRUE; 1796 } 1797 } 1798 1799 return (slog_found); 1800 } 1801 1802 static void 1803 spa_activate_log(spa_t *spa) 1804 { 1805 vdev_t *rvd = spa->spa_root_vdev; 1806 1807 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1808 1809 for (int c = 0; c < rvd->vdev_children; c++) { 1810 vdev_t *tvd = rvd->vdev_child[c]; 1811 metaslab_group_t *mg = tvd->vdev_mg; 1812 1813 if (tvd->vdev_islog) 1814 metaslab_group_activate(mg); 1815 } 1816 } 1817 1818 int 1819 spa_offline_log(spa_t *spa) 1820 { 1821 int error; 1822 1823 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1824 NULL, DS_FIND_CHILDREN); 1825 if (error == 0) { 1826 /* 1827 * We successfully offlined the log device, sync out the 1828 * current txg so that the "stubby" block can be removed 1829 * by zil_sync(). 1830 */ 1831 txg_wait_synced(spa->spa_dsl_pool, 0); 1832 } 1833 return (error); 1834 } 1835 1836 static void 1837 spa_aux_check_removed(spa_aux_vdev_t *sav) 1838 { 1839 for (int i = 0; i < sav->sav_count; i++) 1840 spa_check_removed(sav->sav_vdevs[i]); 1841 } 1842 1843 void 1844 spa_claim_notify(zio_t *zio) 1845 { 1846 spa_t *spa = zio->io_spa; 1847 1848 if (zio->io_error) 1849 return; 1850 1851 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1852 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1853 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1854 mutex_exit(&spa->spa_props_lock); 1855 } 1856 1857 typedef struct spa_load_error { 1858 uint64_t sle_meta_count; 1859 uint64_t sle_data_count; 1860 } spa_load_error_t; 1861 1862 static void 1863 spa_load_verify_done(zio_t *zio) 1864 { 1865 blkptr_t *bp = zio->io_bp; 1866 spa_load_error_t *sle = zio->io_private; 1867 dmu_object_type_t type = BP_GET_TYPE(bp); 1868 int error = zio->io_error; 1869 spa_t *spa = zio->io_spa; 1870 1871 if (error) { 1872 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1873 type != DMU_OT_INTENT_LOG) 1874 atomic_inc_64(&sle->sle_meta_count); 1875 else 1876 atomic_inc_64(&sle->sle_data_count); 1877 } 1878 zio_data_buf_free(zio->io_data, zio->io_size); 1879 1880 mutex_enter(&spa->spa_scrub_lock); 1881 spa->spa_scrub_inflight--; 1882 cv_broadcast(&spa->spa_scrub_io_cv); 1883 mutex_exit(&spa->spa_scrub_lock); 1884 } 1885 1886 /* 1887 * Maximum number of concurrent scrub i/os to create while verifying 1888 * a pool while importing it. 1889 */ 1890 int spa_load_verify_maxinflight = 10000; 1891 boolean_t spa_load_verify_metadata = B_TRUE; 1892 boolean_t spa_load_verify_data = B_TRUE; 1893 1894 /*ARGSUSED*/ 1895 static int 1896 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1897 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1898 { 1899 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1900 return (0); 1901 /* 1902 * Note: normally this routine will not be called if 1903 * spa_load_verify_metadata is not set. However, it may be useful 1904 * to manually set the flag after the traversal has begun. 1905 */ 1906 if (!spa_load_verify_metadata) 1907 return (0); 1908 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1909 return (0); 1910 1911 zio_t *rio = arg; 1912 size_t size = BP_GET_PSIZE(bp); 1913 void *data = zio_data_buf_alloc(size); 1914 1915 mutex_enter(&spa->spa_scrub_lock); 1916 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1917 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1918 spa->spa_scrub_inflight++; 1919 mutex_exit(&spa->spa_scrub_lock); 1920 1921 zio_nowait(zio_read(rio, spa, bp, data, size, 1922 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1923 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1924 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1925 return (0); 1926 } 1927 1928 /* ARGSUSED */ 1929 int 1930 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1931 { 1932 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 1933 return (SET_ERROR(ENAMETOOLONG)); 1934 1935 return (0); 1936 } 1937 1938 static int 1939 spa_load_verify(spa_t *spa) 1940 { 1941 zio_t *rio; 1942 spa_load_error_t sle = { 0 }; 1943 zpool_rewind_policy_t policy; 1944 boolean_t verify_ok = B_FALSE; 1945 int error = 0; 1946 1947 zpool_get_rewind_policy(spa->spa_config, &policy); 1948 1949 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1950 return (0); 1951 1952 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 1953 error = dmu_objset_find_dp(spa->spa_dsl_pool, 1954 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 1955 DS_FIND_CHILDREN); 1956 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 1957 if (error != 0) 1958 return (error); 1959 1960 rio = zio_root(spa, NULL, &sle, 1961 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1962 1963 if (spa_load_verify_metadata) { 1964 error = traverse_pool(spa, spa->spa_verify_min_txg, 1965 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1966 spa_load_verify_cb, rio); 1967 } 1968 1969 (void) zio_wait(rio); 1970 1971 spa->spa_load_meta_errors = sle.sle_meta_count; 1972 spa->spa_load_data_errors = sle.sle_data_count; 1973 1974 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1975 sle.sle_data_count <= policy.zrp_maxdata) { 1976 int64_t loss = 0; 1977 1978 verify_ok = B_TRUE; 1979 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1980 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1981 1982 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1983 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1984 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1985 VERIFY(nvlist_add_int64(spa->spa_load_info, 1986 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1987 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1988 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1989 } else { 1990 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1991 } 1992 1993 if (error) { 1994 if (error != ENXIO && error != EIO) 1995 error = SET_ERROR(EIO); 1996 return (error); 1997 } 1998 1999 return (verify_ok ? 0 : EIO); 2000 } 2001 2002 /* 2003 * Find a value in the pool props object. 2004 */ 2005 static void 2006 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2007 { 2008 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2009 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2010 } 2011 2012 /* 2013 * Find a value in the pool directory object. 2014 */ 2015 static int 2016 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 2017 { 2018 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2019 name, sizeof (uint64_t), 1, val)); 2020 } 2021 2022 static int 2023 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2024 { 2025 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2026 return (err); 2027 } 2028 2029 /* 2030 * Fix up config after a partly-completed split. This is done with the 2031 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2032 * pool have that entry in their config, but only the splitting one contains 2033 * a list of all the guids of the vdevs that are being split off. 2034 * 2035 * This function determines what to do with that list: either rejoin 2036 * all the disks to the pool, or complete the splitting process. To attempt 2037 * the rejoin, each disk that is offlined is marked online again, and 2038 * we do a reopen() call. If the vdev label for every disk that was 2039 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2040 * then we call vdev_split() on each disk, and complete the split. 2041 * 2042 * Otherwise we leave the config alone, with all the vdevs in place in 2043 * the original pool. 2044 */ 2045 static void 2046 spa_try_repair(spa_t *spa, nvlist_t *config) 2047 { 2048 uint_t extracted; 2049 uint64_t *glist; 2050 uint_t i, gcount; 2051 nvlist_t *nvl; 2052 vdev_t **vd; 2053 boolean_t attempt_reopen; 2054 2055 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2056 return; 2057 2058 /* check that the config is complete */ 2059 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2060 &glist, &gcount) != 0) 2061 return; 2062 2063 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2064 2065 /* attempt to online all the vdevs & validate */ 2066 attempt_reopen = B_TRUE; 2067 for (i = 0; i < gcount; i++) { 2068 if (glist[i] == 0) /* vdev is hole */ 2069 continue; 2070 2071 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2072 if (vd[i] == NULL) { 2073 /* 2074 * Don't bother attempting to reopen the disks; 2075 * just do the split. 2076 */ 2077 attempt_reopen = B_FALSE; 2078 } else { 2079 /* attempt to re-online it */ 2080 vd[i]->vdev_offline = B_FALSE; 2081 } 2082 } 2083 2084 if (attempt_reopen) { 2085 vdev_reopen(spa->spa_root_vdev); 2086 2087 /* check each device to see what state it's in */ 2088 for (extracted = 0, i = 0; i < gcount; i++) { 2089 if (vd[i] != NULL && 2090 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2091 break; 2092 ++extracted; 2093 } 2094 } 2095 2096 /* 2097 * If every disk has been moved to the new pool, or if we never 2098 * even attempted to look at them, then we split them off for 2099 * good. 2100 */ 2101 if (!attempt_reopen || gcount == extracted) { 2102 for (i = 0; i < gcount; i++) 2103 if (vd[i] != NULL) 2104 vdev_split(vd[i]); 2105 vdev_reopen(spa->spa_root_vdev); 2106 } 2107 2108 kmem_free(vd, gcount * sizeof (vdev_t *)); 2109 } 2110 2111 static int 2112 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2113 boolean_t mosconfig) 2114 { 2115 nvlist_t *config = spa->spa_config; 2116 char *ereport = FM_EREPORT_ZFS_POOL; 2117 char *comment; 2118 int error; 2119 uint64_t pool_guid; 2120 nvlist_t *nvl; 2121 2122 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2123 return (SET_ERROR(EINVAL)); 2124 2125 ASSERT(spa->spa_comment == NULL); 2126 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2127 spa->spa_comment = spa_strdup(comment); 2128 2129 /* 2130 * Versioning wasn't explicitly added to the label until later, so if 2131 * it's not present treat it as the initial version. 2132 */ 2133 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2134 &spa->spa_ubsync.ub_version) != 0) 2135 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2136 2137 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2138 &spa->spa_config_txg); 2139 2140 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2141 spa_guid_exists(pool_guid, 0)) { 2142 error = SET_ERROR(EEXIST); 2143 } else { 2144 spa->spa_config_guid = pool_guid; 2145 2146 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2147 &nvl) == 0) { 2148 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2149 KM_SLEEP) == 0); 2150 } 2151 2152 nvlist_free(spa->spa_load_info); 2153 spa->spa_load_info = fnvlist_alloc(); 2154 2155 gethrestime(&spa->spa_loaded_ts); 2156 error = spa_load_impl(spa, pool_guid, config, state, type, 2157 mosconfig, &ereport); 2158 } 2159 2160 /* 2161 * Don't count references from objsets that are already closed 2162 * and are making their way through the eviction process. 2163 */ 2164 spa_evicting_os_wait(spa); 2165 spa->spa_minref = refcount_count(&spa->spa_refcount); 2166 if (error) { 2167 if (error != EEXIST) { 2168 spa->spa_loaded_ts.tv_sec = 0; 2169 spa->spa_loaded_ts.tv_nsec = 0; 2170 } 2171 if (error != EBADF) { 2172 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2173 } 2174 } 2175 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2176 spa->spa_ena = 0; 2177 2178 return (error); 2179 } 2180 2181 /* 2182 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2183 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2184 * spa's per-vdev ZAP list. 2185 */ 2186 static uint64_t 2187 vdev_count_verify_zaps(vdev_t *vd) 2188 { 2189 spa_t *spa = vd->vdev_spa; 2190 uint64_t total = 0; 2191 if (vd->vdev_top_zap != 0) { 2192 total++; 2193 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2194 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2195 } 2196 if (vd->vdev_leaf_zap != 0) { 2197 total++; 2198 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2199 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2200 } 2201 2202 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2203 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2204 } 2205 2206 return (total); 2207 } 2208 2209 /* 2210 * Load an existing storage pool, using the pool's builtin spa_config as a 2211 * source of configuration information. 2212 */ 2213 static int 2214 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2215 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2216 char **ereport) 2217 { 2218 int error = 0; 2219 nvlist_t *nvroot = NULL; 2220 nvlist_t *label; 2221 vdev_t *rvd; 2222 uberblock_t *ub = &spa->spa_uberblock; 2223 uint64_t children, config_cache_txg = spa->spa_config_txg; 2224 int orig_mode = spa->spa_mode; 2225 int parse; 2226 uint64_t obj; 2227 boolean_t missing_feat_write = B_FALSE; 2228 2229 /* 2230 * If this is an untrusted config, access the pool in read-only mode. 2231 * This prevents things like resilvering recently removed devices. 2232 */ 2233 if (!mosconfig) 2234 spa->spa_mode = FREAD; 2235 2236 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2237 2238 spa->spa_load_state = state; 2239 2240 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2241 return (SET_ERROR(EINVAL)); 2242 2243 parse = (type == SPA_IMPORT_EXISTING ? 2244 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2245 2246 /* 2247 * Create "The Godfather" zio to hold all async IOs 2248 */ 2249 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2250 KM_SLEEP); 2251 for (int i = 0; i < max_ncpus; i++) { 2252 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2253 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2254 ZIO_FLAG_GODFATHER); 2255 } 2256 2257 /* 2258 * Parse the configuration into a vdev tree. We explicitly set the 2259 * value that will be returned by spa_version() since parsing the 2260 * configuration requires knowing the version number. 2261 */ 2262 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2263 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2264 spa_config_exit(spa, SCL_ALL, FTAG); 2265 2266 if (error != 0) 2267 return (error); 2268 2269 ASSERT(spa->spa_root_vdev == rvd); 2270 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2271 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2272 2273 if (type != SPA_IMPORT_ASSEMBLE) { 2274 ASSERT(spa_guid(spa) == pool_guid); 2275 } 2276 2277 /* 2278 * Try to open all vdevs, loading each label in the process. 2279 */ 2280 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2281 error = vdev_open(rvd); 2282 spa_config_exit(spa, SCL_ALL, FTAG); 2283 if (error != 0) 2284 return (error); 2285 2286 /* 2287 * We need to validate the vdev labels against the configuration that 2288 * we have in hand, which is dependent on the setting of mosconfig. If 2289 * mosconfig is true then we're validating the vdev labels based on 2290 * that config. Otherwise, we're validating against the cached config 2291 * (zpool.cache) that was read when we loaded the zfs module, and then 2292 * later we will recursively call spa_load() and validate against 2293 * the vdev config. 2294 * 2295 * If we're assembling a new pool that's been split off from an 2296 * existing pool, the labels haven't yet been updated so we skip 2297 * validation for now. 2298 */ 2299 if (type != SPA_IMPORT_ASSEMBLE) { 2300 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2301 error = vdev_validate(rvd, mosconfig); 2302 spa_config_exit(spa, SCL_ALL, FTAG); 2303 2304 if (error != 0) 2305 return (error); 2306 2307 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2308 return (SET_ERROR(ENXIO)); 2309 } 2310 2311 /* 2312 * Find the best uberblock. 2313 */ 2314 vdev_uberblock_load(rvd, ub, &label); 2315 2316 /* 2317 * If we weren't able to find a single valid uberblock, return failure. 2318 */ 2319 if (ub->ub_txg == 0) { 2320 nvlist_free(label); 2321 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2322 } 2323 2324 /* 2325 * If the pool has an unsupported version we can't open it. 2326 */ 2327 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2328 nvlist_free(label); 2329 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2330 } 2331 2332 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2333 nvlist_t *features; 2334 2335 /* 2336 * If we weren't able to find what's necessary for reading the 2337 * MOS in the label, return failure. 2338 */ 2339 if (label == NULL || nvlist_lookup_nvlist(label, 2340 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2341 nvlist_free(label); 2342 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2343 ENXIO)); 2344 } 2345 2346 /* 2347 * Update our in-core representation with the definitive values 2348 * from the label. 2349 */ 2350 nvlist_free(spa->spa_label_features); 2351 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2352 } 2353 2354 nvlist_free(label); 2355 2356 /* 2357 * Look through entries in the label nvlist's features_for_read. If 2358 * there is a feature listed there which we don't understand then we 2359 * cannot open a pool. 2360 */ 2361 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2362 nvlist_t *unsup_feat; 2363 2364 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2365 0); 2366 2367 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2368 NULL); nvp != NULL; 2369 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2370 if (!zfeature_is_supported(nvpair_name(nvp))) { 2371 VERIFY(nvlist_add_string(unsup_feat, 2372 nvpair_name(nvp), "") == 0); 2373 } 2374 } 2375 2376 if (!nvlist_empty(unsup_feat)) { 2377 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2378 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2379 nvlist_free(unsup_feat); 2380 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2381 ENOTSUP)); 2382 } 2383 2384 nvlist_free(unsup_feat); 2385 } 2386 2387 /* 2388 * If the vdev guid sum doesn't match the uberblock, we have an 2389 * incomplete configuration. We first check to see if the pool 2390 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2391 * If it is, defer the vdev_guid_sum check till later so we 2392 * can handle missing vdevs. 2393 */ 2394 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2395 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2396 rvd->vdev_guid_sum != ub->ub_guid_sum) 2397 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2398 2399 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2400 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2401 spa_try_repair(spa, config); 2402 spa_config_exit(spa, SCL_ALL, FTAG); 2403 nvlist_free(spa->spa_config_splitting); 2404 spa->spa_config_splitting = NULL; 2405 } 2406 2407 /* 2408 * Initialize internal SPA structures. 2409 */ 2410 spa->spa_state = POOL_STATE_ACTIVE; 2411 spa->spa_ubsync = spa->spa_uberblock; 2412 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2413 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2414 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2415 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2416 spa->spa_claim_max_txg = spa->spa_first_txg; 2417 spa->spa_prev_software_version = ub->ub_software_version; 2418 2419 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2420 if (error) 2421 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2422 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2423 2424 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2425 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2426 2427 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2428 boolean_t missing_feat_read = B_FALSE; 2429 nvlist_t *unsup_feat, *enabled_feat; 2430 2431 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2432 &spa->spa_feat_for_read_obj) != 0) { 2433 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2434 } 2435 2436 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2437 &spa->spa_feat_for_write_obj) != 0) { 2438 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2439 } 2440 2441 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2442 &spa->spa_feat_desc_obj) != 0) { 2443 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2444 } 2445 2446 enabled_feat = fnvlist_alloc(); 2447 unsup_feat = fnvlist_alloc(); 2448 2449 if (!spa_features_check(spa, B_FALSE, 2450 unsup_feat, enabled_feat)) 2451 missing_feat_read = B_TRUE; 2452 2453 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2454 if (!spa_features_check(spa, B_TRUE, 2455 unsup_feat, enabled_feat)) { 2456 missing_feat_write = B_TRUE; 2457 } 2458 } 2459 2460 fnvlist_add_nvlist(spa->spa_load_info, 2461 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2462 2463 if (!nvlist_empty(unsup_feat)) { 2464 fnvlist_add_nvlist(spa->spa_load_info, 2465 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2466 } 2467 2468 fnvlist_free(enabled_feat); 2469 fnvlist_free(unsup_feat); 2470 2471 if (!missing_feat_read) { 2472 fnvlist_add_boolean(spa->spa_load_info, 2473 ZPOOL_CONFIG_CAN_RDONLY); 2474 } 2475 2476 /* 2477 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2478 * twofold: to determine whether the pool is available for 2479 * import in read-write mode and (if it is not) whether the 2480 * pool is available for import in read-only mode. If the pool 2481 * is available for import in read-write mode, it is displayed 2482 * as available in userland; if it is not available for import 2483 * in read-only mode, it is displayed as unavailable in 2484 * userland. If the pool is available for import in read-only 2485 * mode but not read-write mode, it is displayed as unavailable 2486 * in userland with a special note that the pool is actually 2487 * available for open in read-only mode. 2488 * 2489 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2490 * missing a feature for write, we must first determine whether 2491 * the pool can be opened read-only before returning to 2492 * userland in order to know whether to display the 2493 * abovementioned note. 2494 */ 2495 if (missing_feat_read || (missing_feat_write && 2496 spa_writeable(spa))) { 2497 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2498 ENOTSUP)); 2499 } 2500 2501 /* 2502 * Load refcounts for ZFS features from disk into an in-memory 2503 * cache during SPA initialization. 2504 */ 2505 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2506 uint64_t refcount; 2507 2508 error = feature_get_refcount_from_disk(spa, 2509 &spa_feature_table[i], &refcount); 2510 if (error == 0) { 2511 spa->spa_feat_refcount_cache[i] = refcount; 2512 } else if (error == ENOTSUP) { 2513 spa->spa_feat_refcount_cache[i] = 2514 SPA_FEATURE_DISABLED; 2515 } else { 2516 return (spa_vdev_err(rvd, 2517 VDEV_AUX_CORRUPT_DATA, EIO)); 2518 } 2519 } 2520 } 2521 2522 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2523 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2524 &spa->spa_feat_enabled_txg_obj) != 0) 2525 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2526 } 2527 2528 spa->spa_is_initializing = B_TRUE; 2529 error = dsl_pool_open(spa->spa_dsl_pool); 2530 spa->spa_is_initializing = B_FALSE; 2531 if (error != 0) 2532 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2533 2534 if (!mosconfig) { 2535 uint64_t hostid; 2536 nvlist_t *policy = NULL, *nvconfig; 2537 2538 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2539 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2540 2541 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2542 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2543 char *hostname; 2544 unsigned long myhostid = 0; 2545 2546 VERIFY(nvlist_lookup_string(nvconfig, 2547 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2548 2549 #ifdef _KERNEL 2550 myhostid = zone_get_hostid(NULL); 2551 #else /* _KERNEL */ 2552 /* 2553 * We're emulating the system's hostid in userland, so 2554 * we can't use zone_get_hostid(). 2555 */ 2556 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2557 #endif /* _KERNEL */ 2558 if (hostid != 0 && myhostid != 0 && 2559 hostid != myhostid) { 2560 nvlist_free(nvconfig); 2561 cmn_err(CE_WARN, "pool '%s' could not be " 2562 "loaded as it was last accessed by " 2563 "another system (host: %s hostid: 0x%lx). " 2564 "See: http://illumos.org/msg/ZFS-8000-EY", 2565 spa_name(spa), hostname, 2566 (unsigned long)hostid); 2567 return (SET_ERROR(EBADF)); 2568 } 2569 } 2570 if (nvlist_lookup_nvlist(spa->spa_config, 2571 ZPOOL_REWIND_POLICY, &policy) == 0) 2572 VERIFY(nvlist_add_nvlist(nvconfig, 2573 ZPOOL_REWIND_POLICY, policy) == 0); 2574 2575 spa_config_set(spa, nvconfig); 2576 spa_unload(spa); 2577 spa_deactivate(spa); 2578 spa_activate(spa, orig_mode); 2579 2580 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2581 } 2582 2583 /* Grab the secret checksum salt from the MOS. */ 2584 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2585 DMU_POOL_CHECKSUM_SALT, 1, 2586 sizeof (spa->spa_cksum_salt.zcs_bytes), 2587 spa->spa_cksum_salt.zcs_bytes); 2588 if (error == ENOENT) { 2589 /* Generate a new salt for subsequent use */ 2590 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 2591 sizeof (spa->spa_cksum_salt.zcs_bytes)); 2592 } else if (error != 0) { 2593 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2594 } 2595 2596 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2597 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2598 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2599 if (error != 0) 2600 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2601 2602 /* 2603 * Load the bit that tells us to use the new accounting function 2604 * (raid-z deflation). If we have an older pool, this will not 2605 * be present. 2606 */ 2607 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2608 if (error != 0 && error != ENOENT) 2609 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2610 2611 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2612 &spa->spa_creation_version); 2613 if (error != 0 && error != ENOENT) 2614 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2615 2616 /* 2617 * Load the persistent error log. If we have an older pool, this will 2618 * not be present. 2619 */ 2620 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2621 if (error != 0 && error != ENOENT) 2622 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2623 2624 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2625 &spa->spa_errlog_scrub); 2626 if (error != 0 && error != ENOENT) 2627 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2628 2629 /* 2630 * Load the history object. If we have an older pool, this 2631 * will not be present. 2632 */ 2633 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2634 if (error != 0 && error != ENOENT) 2635 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2636 2637 /* 2638 * Load the per-vdev ZAP map. If we have an older pool, this will not 2639 * be present; in this case, defer its creation to a later time to 2640 * avoid dirtying the MOS this early / out of sync context. See 2641 * spa_sync_config_object. 2642 */ 2643 2644 /* The sentinel is only available in the MOS config. */ 2645 nvlist_t *mos_config; 2646 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) 2647 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2648 2649 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 2650 &spa->spa_all_vdev_zaps); 2651 2652 if (error != ENOENT && error != 0) { 2653 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2654 } else if (error == 0 && !nvlist_exists(mos_config, 2655 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 2656 /* 2657 * An older version of ZFS overwrote the sentinel value, so 2658 * we have orphaned per-vdev ZAPs in the MOS. Defer their 2659 * destruction to later; see spa_sync_config_object. 2660 */ 2661 spa->spa_avz_action = AVZ_ACTION_DESTROY; 2662 /* 2663 * We're assuming that no vdevs have had their ZAPs created 2664 * before this. Better be sure of it. 2665 */ 2666 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 2667 } 2668 nvlist_free(mos_config); 2669 2670 /* 2671 * If we're assembling the pool from the split-off vdevs of 2672 * an existing pool, we don't want to attach the spares & cache 2673 * devices. 2674 */ 2675 2676 /* 2677 * Load any hot spares for this pool. 2678 */ 2679 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2680 if (error != 0 && error != ENOENT) 2681 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2682 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2683 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2684 if (load_nvlist(spa, spa->spa_spares.sav_object, 2685 &spa->spa_spares.sav_config) != 0) 2686 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2687 2688 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2689 spa_load_spares(spa); 2690 spa_config_exit(spa, SCL_ALL, FTAG); 2691 } else if (error == 0) { 2692 spa->spa_spares.sav_sync = B_TRUE; 2693 } 2694 2695 /* 2696 * Load any level 2 ARC devices for this pool. 2697 */ 2698 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2699 &spa->spa_l2cache.sav_object); 2700 if (error != 0 && error != ENOENT) 2701 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2702 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2703 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2704 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2705 &spa->spa_l2cache.sav_config) != 0) 2706 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2707 2708 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2709 spa_load_l2cache(spa); 2710 spa_config_exit(spa, SCL_ALL, FTAG); 2711 } else if (error == 0) { 2712 spa->spa_l2cache.sav_sync = B_TRUE; 2713 } 2714 2715 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2716 2717 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2718 if (error && error != ENOENT) 2719 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2720 2721 if (error == 0) { 2722 uint64_t autoreplace; 2723 2724 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2725 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2726 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2727 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2728 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2729 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2730 &spa->spa_dedup_ditto); 2731 2732 spa->spa_autoreplace = (autoreplace != 0); 2733 } 2734 2735 /* 2736 * If the 'autoreplace' property is set, then post a resource notifying 2737 * the ZFS DE that it should not issue any faults for unopenable 2738 * devices. We also iterate over the vdevs, and post a sysevent for any 2739 * unopenable vdevs so that the normal autoreplace handler can take 2740 * over. 2741 */ 2742 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2743 spa_check_removed(spa->spa_root_vdev); 2744 /* 2745 * For the import case, this is done in spa_import(), because 2746 * at this point we're using the spare definitions from 2747 * the MOS config, not necessarily from the userland config. 2748 */ 2749 if (state != SPA_LOAD_IMPORT) { 2750 spa_aux_check_removed(&spa->spa_spares); 2751 spa_aux_check_removed(&spa->spa_l2cache); 2752 } 2753 } 2754 2755 /* 2756 * Load the vdev state for all toplevel vdevs. 2757 */ 2758 vdev_load(rvd); 2759 2760 /* 2761 * Propagate the leaf DTLs we just loaded all the way up the tree. 2762 */ 2763 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2764 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2765 spa_config_exit(spa, SCL_ALL, FTAG); 2766 2767 /* 2768 * Load the DDTs (dedup tables). 2769 */ 2770 error = ddt_load(spa); 2771 if (error != 0) 2772 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2773 2774 spa_update_dspace(spa); 2775 2776 /* 2777 * Validate the config, using the MOS config to fill in any 2778 * information which might be missing. If we fail to validate 2779 * the config then declare the pool unfit for use. If we're 2780 * assembling a pool from a split, the log is not transferred 2781 * over. 2782 */ 2783 if (type != SPA_IMPORT_ASSEMBLE) { 2784 nvlist_t *nvconfig; 2785 2786 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2787 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2788 2789 if (!spa_config_valid(spa, nvconfig)) { 2790 nvlist_free(nvconfig); 2791 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2792 ENXIO)); 2793 } 2794 nvlist_free(nvconfig); 2795 2796 /* 2797 * Now that we've validated the config, check the state of the 2798 * root vdev. If it can't be opened, it indicates one or 2799 * more toplevel vdevs are faulted. 2800 */ 2801 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2802 return (SET_ERROR(ENXIO)); 2803 2804 if (spa_writeable(spa) && spa_check_logs(spa)) { 2805 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2806 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2807 } 2808 } 2809 2810 if (missing_feat_write) { 2811 ASSERT(state == SPA_LOAD_TRYIMPORT); 2812 2813 /* 2814 * At this point, we know that we can open the pool in 2815 * read-only mode but not read-write mode. We now have enough 2816 * information and can return to userland. 2817 */ 2818 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2819 } 2820 2821 /* 2822 * We've successfully opened the pool, verify that we're ready 2823 * to start pushing transactions. 2824 */ 2825 if (state != SPA_LOAD_TRYIMPORT) { 2826 if (error = spa_load_verify(spa)) 2827 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2828 error)); 2829 } 2830 2831 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2832 spa->spa_load_max_txg == UINT64_MAX)) { 2833 dmu_tx_t *tx; 2834 int need_update = B_FALSE; 2835 dsl_pool_t *dp = spa_get_dsl(spa); 2836 2837 ASSERT(state != SPA_LOAD_TRYIMPORT); 2838 2839 /* 2840 * Claim log blocks that haven't been committed yet. 2841 * This must all happen in a single txg. 2842 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2843 * invoked from zil_claim_log_block()'s i/o done callback. 2844 * Price of rollback is that we abandon the log. 2845 */ 2846 spa->spa_claiming = B_TRUE; 2847 2848 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 2849 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2850 zil_claim, tx, DS_FIND_CHILDREN); 2851 dmu_tx_commit(tx); 2852 2853 spa->spa_claiming = B_FALSE; 2854 2855 spa_set_log_state(spa, SPA_LOG_GOOD); 2856 spa->spa_sync_on = B_TRUE; 2857 txg_sync_start(spa->spa_dsl_pool); 2858 2859 /* 2860 * Wait for all claims to sync. We sync up to the highest 2861 * claimed log block birth time so that claimed log blocks 2862 * don't appear to be from the future. spa_claim_max_txg 2863 * will have been set for us by either zil_check_log_chain() 2864 * (invoked from spa_check_logs()) or zil_claim() above. 2865 */ 2866 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2867 2868 /* 2869 * If the config cache is stale, or we have uninitialized 2870 * metaslabs (see spa_vdev_add()), then update the config. 2871 * 2872 * If this is a verbatim import, trust the current 2873 * in-core spa_config and update the disk labels. 2874 */ 2875 if (config_cache_txg != spa->spa_config_txg || 2876 state == SPA_LOAD_IMPORT || 2877 state == SPA_LOAD_RECOVER || 2878 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2879 need_update = B_TRUE; 2880 2881 for (int c = 0; c < rvd->vdev_children; c++) 2882 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2883 need_update = B_TRUE; 2884 2885 /* 2886 * Update the config cache asychronously in case we're the 2887 * root pool, in which case the config cache isn't writable yet. 2888 */ 2889 if (need_update) 2890 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2891 2892 /* 2893 * Check all DTLs to see if anything needs resilvering. 2894 */ 2895 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2896 vdev_resilver_needed(rvd, NULL, NULL)) 2897 spa_async_request(spa, SPA_ASYNC_RESILVER); 2898 2899 /* 2900 * Log the fact that we booted up (so that we can detect if 2901 * we rebooted in the middle of an operation). 2902 */ 2903 spa_history_log_version(spa, "open"); 2904 2905 /* 2906 * Delete any inconsistent datasets. 2907 */ 2908 (void) dmu_objset_find(spa_name(spa), 2909 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2910 2911 /* 2912 * Clean up any stale temporary dataset userrefs. 2913 */ 2914 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2915 } 2916 2917 return (0); 2918 } 2919 2920 static int 2921 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2922 { 2923 int mode = spa->spa_mode; 2924 2925 spa_unload(spa); 2926 spa_deactivate(spa); 2927 2928 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2929 2930 spa_activate(spa, mode); 2931 spa_async_suspend(spa); 2932 2933 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2934 } 2935 2936 /* 2937 * If spa_load() fails this function will try loading prior txg's. If 2938 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2939 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2940 * function will not rewind the pool and will return the same error as 2941 * spa_load(). 2942 */ 2943 static int 2944 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2945 uint64_t max_request, int rewind_flags) 2946 { 2947 nvlist_t *loadinfo = NULL; 2948 nvlist_t *config = NULL; 2949 int load_error, rewind_error; 2950 uint64_t safe_rewind_txg; 2951 uint64_t min_txg; 2952 2953 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2954 spa->spa_load_max_txg = spa->spa_load_txg; 2955 spa_set_log_state(spa, SPA_LOG_CLEAR); 2956 } else { 2957 spa->spa_load_max_txg = max_request; 2958 if (max_request != UINT64_MAX) 2959 spa->spa_extreme_rewind = B_TRUE; 2960 } 2961 2962 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2963 mosconfig); 2964 if (load_error == 0) 2965 return (0); 2966 2967 if (spa->spa_root_vdev != NULL) 2968 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2969 2970 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2971 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2972 2973 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2974 nvlist_free(config); 2975 return (load_error); 2976 } 2977 2978 if (state == SPA_LOAD_RECOVER) { 2979 /* Price of rolling back is discarding txgs, including log */ 2980 spa_set_log_state(spa, SPA_LOG_CLEAR); 2981 } else { 2982 /* 2983 * If we aren't rolling back save the load info from our first 2984 * import attempt so that we can restore it after attempting 2985 * to rewind. 2986 */ 2987 loadinfo = spa->spa_load_info; 2988 spa->spa_load_info = fnvlist_alloc(); 2989 } 2990 2991 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2992 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2993 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2994 TXG_INITIAL : safe_rewind_txg; 2995 2996 /* 2997 * Continue as long as we're finding errors, we're still within 2998 * the acceptable rewind range, and we're still finding uberblocks 2999 */ 3000 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 3001 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 3002 if (spa->spa_load_max_txg < safe_rewind_txg) 3003 spa->spa_extreme_rewind = B_TRUE; 3004 rewind_error = spa_load_retry(spa, state, mosconfig); 3005 } 3006 3007 spa->spa_extreme_rewind = B_FALSE; 3008 spa->spa_load_max_txg = UINT64_MAX; 3009 3010 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 3011 spa_config_set(spa, config); 3012 3013 if (state == SPA_LOAD_RECOVER) { 3014 ASSERT3P(loadinfo, ==, NULL); 3015 return (rewind_error); 3016 } else { 3017 /* Store the rewind info as part of the initial load info */ 3018 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 3019 spa->spa_load_info); 3020 3021 /* Restore the initial load info */ 3022 fnvlist_free(spa->spa_load_info); 3023 spa->spa_load_info = loadinfo; 3024 3025 return (load_error); 3026 } 3027 } 3028 3029 /* 3030 * Pool Open/Import 3031 * 3032 * The import case is identical to an open except that the configuration is sent 3033 * down from userland, instead of grabbed from the configuration cache. For the 3034 * case of an open, the pool configuration will exist in the 3035 * POOL_STATE_UNINITIALIZED state. 3036 * 3037 * The stats information (gen/count/ustats) is used to gather vdev statistics at 3038 * the same time open the pool, without having to keep around the spa_t in some 3039 * ambiguous state. 3040 */ 3041 static int 3042 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 3043 nvlist_t **config) 3044 { 3045 spa_t *spa; 3046 spa_load_state_t state = SPA_LOAD_OPEN; 3047 int error; 3048 int locked = B_FALSE; 3049 3050 *spapp = NULL; 3051 3052 /* 3053 * As disgusting as this is, we need to support recursive calls to this 3054 * function because dsl_dir_open() is called during spa_load(), and ends 3055 * up calling spa_open() again. The real fix is to figure out how to 3056 * avoid dsl_dir_open() calling this in the first place. 3057 */ 3058 if (mutex_owner(&spa_namespace_lock) != curthread) { 3059 mutex_enter(&spa_namespace_lock); 3060 locked = B_TRUE; 3061 } 3062 3063 if ((spa = spa_lookup(pool)) == NULL) { 3064 if (locked) 3065 mutex_exit(&spa_namespace_lock); 3066 return (SET_ERROR(ENOENT)); 3067 } 3068 3069 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 3070 zpool_rewind_policy_t policy; 3071 3072 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 3073 &policy); 3074 if (policy.zrp_request & ZPOOL_DO_REWIND) 3075 state = SPA_LOAD_RECOVER; 3076 3077 spa_activate(spa, spa_mode_global); 3078 3079 if (state != SPA_LOAD_RECOVER) 3080 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3081 3082 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 3083 policy.zrp_request); 3084 3085 if (error == EBADF) { 3086 /* 3087 * If vdev_validate() returns failure (indicated by 3088 * EBADF), it indicates that one of the vdevs indicates 3089 * that the pool has been exported or destroyed. If 3090 * this is the case, the config cache is out of sync and 3091 * we should remove the pool from the namespace. 3092 */ 3093 spa_unload(spa); 3094 spa_deactivate(spa); 3095 spa_config_sync(spa, B_TRUE, B_TRUE); 3096 spa_remove(spa); 3097 if (locked) 3098 mutex_exit(&spa_namespace_lock); 3099 return (SET_ERROR(ENOENT)); 3100 } 3101 3102 if (error) { 3103 /* 3104 * We can't open the pool, but we still have useful 3105 * information: the state of each vdev after the 3106 * attempted vdev_open(). Return this to the user. 3107 */ 3108 if (config != NULL && spa->spa_config) { 3109 VERIFY(nvlist_dup(spa->spa_config, config, 3110 KM_SLEEP) == 0); 3111 VERIFY(nvlist_add_nvlist(*config, 3112 ZPOOL_CONFIG_LOAD_INFO, 3113 spa->spa_load_info) == 0); 3114 } 3115 spa_unload(spa); 3116 spa_deactivate(spa); 3117 spa->spa_last_open_failed = error; 3118 if (locked) 3119 mutex_exit(&spa_namespace_lock); 3120 *spapp = NULL; 3121 return (error); 3122 } 3123 } 3124 3125 spa_open_ref(spa, tag); 3126 3127 if (config != NULL) 3128 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3129 3130 /* 3131 * If we've recovered the pool, pass back any information we 3132 * gathered while doing the load. 3133 */ 3134 if (state == SPA_LOAD_RECOVER) { 3135 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3136 spa->spa_load_info) == 0); 3137 } 3138 3139 if (locked) { 3140 spa->spa_last_open_failed = 0; 3141 spa->spa_last_ubsync_txg = 0; 3142 spa->spa_load_txg = 0; 3143 mutex_exit(&spa_namespace_lock); 3144 } 3145 3146 *spapp = spa; 3147 3148 return (0); 3149 } 3150 3151 int 3152 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3153 nvlist_t **config) 3154 { 3155 return (spa_open_common(name, spapp, tag, policy, config)); 3156 } 3157 3158 int 3159 spa_open(const char *name, spa_t **spapp, void *tag) 3160 { 3161 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3162 } 3163 3164 /* 3165 * Lookup the given spa_t, incrementing the inject count in the process, 3166 * preventing it from being exported or destroyed. 3167 */ 3168 spa_t * 3169 spa_inject_addref(char *name) 3170 { 3171 spa_t *spa; 3172 3173 mutex_enter(&spa_namespace_lock); 3174 if ((spa = spa_lookup(name)) == NULL) { 3175 mutex_exit(&spa_namespace_lock); 3176 return (NULL); 3177 } 3178 spa->spa_inject_ref++; 3179 mutex_exit(&spa_namespace_lock); 3180 3181 return (spa); 3182 } 3183 3184 void 3185 spa_inject_delref(spa_t *spa) 3186 { 3187 mutex_enter(&spa_namespace_lock); 3188 spa->spa_inject_ref--; 3189 mutex_exit(&spa_namespace_lock); 3190 } 3191 3192 /* 3193 * Add spares device information to the nvlist. 3194 */ 3195 static void 3196 spa_add_spares(spa_t *spa, nvlist_t *config) 3197 { 3198 nvlist_t **spares; 3199 uint_t i, nspares; 3200 nvlist_t *nvroot; 3201 uint64_t guid; 3202 vdev_stat_t *vs; 3203 uint_t vsc; 3204 uint64_t pool; 3205 3206 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3207 3208 if (spa->spa_spares.sav_count == 0) 3209 return; 3210 3211 VERIFY(nvlist_lookup_nvlist(config, 3212 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3213 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3214 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3215 if (nspares != 0) { 3216 VERIFY(nvlist_add_nvlist_array(nvroot, 3217 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3218 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3219 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3220 3221 /* 3222 * Go through and find any spares which have since been 3223 * repurposed as an active spare. If this is the case, update 3224 * their status appropriately. 3225 */ 3226 for (i = 0; i < nspares; i++) { 3227 VERIFY(nvlist_lookup_uint64(spares[i], 3228 ZPOOL_CONFIG_GUID, &guid) == 0); 3229 if (spa_spare_exists(guid, &pool, NULL) && 3230 pool != 0ULL) { 3231 VERIFY(nvlist_lookup_uint64_array( 3232 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3233 (uint64_t **)&vs, &vsc) == 0); 3234 vs->vs_state = VDEV_STATE_CANT_OPEN; 3235 vs->vs_aux = VDEV_AUX_SPARED; 3236 } 3237 } 3238 } 3239 } 3240 3241 /* 3242 * Add l2cache device information to the nvlist, including vdev stats. 3243 */ 3244 static void 3245 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3246 { 3247 nvlist_t **l2cache; 3248 uint_t i, j, nl2cache; 3249 nvlist_t *nvroot; 3250 uint64_t guid; 3251 vdev_t *vd; 3252 vdev_stat_t *vs; 3253 uint_t vsc; 3254 3255 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3256 3257 if (spa->spa_l2cache.sav_count == 0) 3258 return; 3259 3260 VERIFY(nvlist_lookup_nvlist(config, 3261 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3262 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3263 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3264 if (nl2cache != 0) { 3265 VERIFY(nvlist_add_nvlist_array(nvroot, 3266 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3267 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3268 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3269 3270 /* 3271 * Update level 2 cache device stats. 3272 */ 3273 3274 for (i = 0; i < nl2cache; i++) { 3275 VERIFY(nvlist_lookup_uint64(l2cache[i], 3276 ZPOOL_CONFIG_GUID, &guid) == 0); 3277 3278 vd = NULL; 3279 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3280 if (guid == 3281 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3282 vd = spa->spa_l2cache.sav_vdevs[j]; 3283 break; 3284 } 3285 } 3286 ASSERT(vd != NULL); 3287 3288 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3289 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3290 == 0); 3291 vdev_get_stats(vd, vs); 3292 } 3293 } 3294 } 3295 3296 static void 3297 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3298 { 3299 nvlist_t *features; 3300 zap_cursor_t zc; 3301 zap_attribute_t za; 3302 3303 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3304 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3305 3306 if (spa->spa_feat_for_read_obj != 0) { 3307 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3308 spa->spa_feat_for_read_obj); 3309 zap_cursor_retrieve(&zc, &za) == 0; 3310 zap_cursor_advance(&zc)) { 3311 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3312 za.za_num_integers == 1); 3313 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3314 za.za_first_integer)); 3315 } 3316 zap_cursor_fini(&zc); 3317 } 3318 3319 if (spa->spa_feat_for_write_obj != 0) { 3320 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3321 spa->spa_feat_for_write_obj); 3322 zap_cursor_retrieve(&zc, &za) == 0; 3323 zap_cursor_advance(&zc)) { 3324 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3325 za.za_num_integers == 1); 3326 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3327 za.za_first_integer)); 3328 } 3329 zap_cursor_fini(&zc); 3330 } 3331 3332 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3333 features) == 0); 3334 nvlist_free(features); 3335 } 3336 3337 int 3338 spa_get_stats(const char *name, nvlist_t **config, 3339 char *altroot, size_t buflen) 3340 { 3341 int error; 3342 spa_t *spa; 3343 3344 *config = NULL; 3345 error = spa_open_common(name, &spa, FTAG, NULL, config); 3346 3347 if (spa != NULL) { 3348 /* 3349 * This still leaves a window of inconsistency where the spares 3350 * or l2cache devices could change and the config would be 3351 * self-inconsistent. 3352 */ 3353 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3354 3355 if (*config != NULL) { 3356 uint64_t loadtimes[2]; 3357 3358 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3359 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3360 VERIFY(nvlist_add_uint64_array(*config, 3361 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3362 3363 VERIFY(nvlist_add_uint64(*config, 3364 ZPOOL_CONFIG_ERRCOUNT, 3365 spa_get_errlog_size(spa)) == 0); 3366 3367 if (spa_suspended(spa)) 3368 VERIFY(nvlist_add_uint64(*config, 3369 ZPOOL_CONFIG_SUSPENDED, 3370 spa->spa_failmode) == 0); 3371 3372 spa_add_spares(spa, *config); 3373 spa_add_l2cache(spa, *config); 3374 spa_add_feature_stats(spa, *config); 3375 } 3376 } 3377 3378 /* 3379 * We want to get the alternate root even for faulted pools, so we cheat 3380 * and call spa_lookup() directly. 3381 */ 3382 if (altroot) { 3383 if (spa == NULL) { 3384 mutex_enter(&spa_namespace_lock); 3385 spa = spa_lookup(name); 3386 if (spa) 3387 spa_altroot(spa, altroot, buflen); 3388 else 3389 altroot[0] = '\0'; 3390 spa = NULL; 3391 mutex_exit(&spa_namespace_lock); 3392 } else { 3393 spa_altroot(spa, altroot, buflen); 3394 } 3395 } 3396 3397 if (spa != NULL) { 3398 spa_config_exit(spa, SCL_CONFIG, FTAG); 3399 spa_close(spa, FTAG); 3400 } 3401 3402 return (error); 3403 } 3404 3405 /* 3406 * Validate that the auxiliary device array is well formed. We must have an 3407 * array of nvlists, each which describes a valid leaf vdev. If this is an 3408 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3409 * specified, as long as they are well-formed. 3410 */ 3411 static int 3412 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3413 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3414 vdev_labeltype_t label) 3415 { 3416 nvlist_t **dev; 3417 uint_t i, ndev; 3418 vdev_t *vd; 3419 int error; 3420 3421 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3422 3423 /* 3424 * It's acceptable to have no devs specified. 3425 */ 3426 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3427 return (0); 3428 3429 if (ndev == 0) 3430 return (SET_ERROR(EINVAL)); 3431 3432 /* 3433 * Make sure the pool is formatted with a version that supports this 3434 * device type. 3435 */ 3436 if (spa_version(spa) < version) 3437 return (SET_ERROR(ENOTSUP)); 3438 3439 /* 3440 * Set the pending device list so we correctly handle device in-use 3441 * checking. 3442 */ 3443 sav->sav_pending = dev; 3444 sav->sav_npending = ndev; 3445 3446 for (i = 0; i < ndev; i++) { 3447 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3448 mode)) != 0) 3449 goto out; 3450 3451 if (!vd->vdev_ops->vdev_op_leaf) { 3452 vdev_free(vd); 3453 error = SET_ERROR(EINVAL); 3454 goto out; 3455 } 3456 3457 /* 3458 * The L2ARC currently only supports disk devices in 3459 * kernel context. For user-level testing, we allow it. 3460 */ 3461 #ifdef _KERNEL 3462 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3463 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3464 error = SET_ERROR(ENOTBLK); 3465 vdev_free(vd); 3466 goto out; 3467 } 3468 #endif 3469 vd->vdev_top = vd; 3470 3471 if ((error = vdev_open(vd)) == 0 && 3472 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3473 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3474 vd->vdev_guid) == 0); 3475 } 3476 3477 vdev_free(vd); 3478 3479 if (error && 3480 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3481 goto out; 3482 else 3483 error = 0; 3484 } 3485 3486 out: 3487 sav->sav_pending = NULL; 3488 sav->sav_npending = 0; 3489 return (error); 3490 } 3491 3492 static int 3493 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3494 { 3495 int error; 3496 3497 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3498 3499 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3500 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3501 VDEV_LABEL_SPARE)) != 0) { 3502 return (error); 3503 } 3504 3505 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3506 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3507 VDEV_LABEL_L2CACHE)); 3508 } 3509 3510 static void 3511 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3512 const char *config) 3513 { 3514 int i; 3515 3516 if (sav->sav_config != NULL) { 3517 nvlist_t **olddevs; 3518 uint_t oldndevs; 3519 nvlist_t **newdevs; 3520 3521 /* 3522 * Generate new dev list by concatentating with the 3523 * current dev list. 3524 */ 3525 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3526 &olddevs, &oldndevs) == 0); 3527 3528 newdevs = kmem_alloc(sizeof (void *) * 3529 (ndevs + oldndevs), KM_SLEEP); 3530 for (i = 0; i < oldndevs; i++) 3531 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3532 KM_SLEEP) == 0); 3533 for (i = 0; i < ndevs; i++) 3534 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3535 KM_SLEEP) == 0); 3536 3537 VERIFY(nvlist_remove(sav->sav_config, config, 3538 DATA_TYPE_NVLIST_ARRAY) == 0); 3539 3540 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3541 config, newdevs, ndevs + oldndevs) == 0); 3542 for (i = 0; i < oldndevs + ndevs; i++) 3543 nvlist_free(newdevs[i]); 3544 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3545 } else { 3546 /* 3547 * Generate a new dev list. 3548 */ 3549 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3550 KM_SLEEP) == 0); 3551 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3552 devs, ndevs) == 0); 3553 } 3554 } 3555 3556 /* 3557 * Stop and drop level 2 ARC devices 3558 */ 3559 void 3560 spa_l2cache_drop(spa_t *spa) 3561 { 3562 vdev_t *vd; 3563 int i; 3564 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3565 3566 for (i = 0; i < sav->sav_count; i++) { 3567 uint64_t pool; 3568 3569 vd = sav->sav_vdevs[i]; 3570 ASSERT(vd != NULL); 3571 3572 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3573 pool != 0ULL && l2arc_vdev_present(vd)) 3574 l2arc_remove_vdev(vd); 3575 } 3576 } 3577 3578 /* 3579 * Pool Creation 3580 */ 3581 int 3582 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3583 nvlist_t *zplprops) 3584 { 3585 spa_t *spa; 3586 char *altroot = NULL; 3587 vdev_t *rvd; 3588 dsl_pool_t *dp; 3589 dmu_tx_t *tx; 3590 int error = 0; 3591 uint64_t txg = TXG_INITIAL; 3592 nvlist_t **spares, **l2cache; 3593 uint_t nspares, nl2cache; 3594 uint64_t version, obj; 3595 boolean_t has_features; 3596 3597 /* 3598 * If this pool already exists, return failure. 3599 */ 3600 mutex_enter(&spa_namespace_lock); 3601 if (spa_lookup(pool) != NULL) { 3602 mutex_exit(&spa_namespace_lock); 3603 return (SET_ERROR(EEXIST)); 3604 } 3605 3606 /* 3607 * Allocate a new spa_t structure. 3608 */ 3609 (void) nvlist_lookup_string(props, 3610 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3611 spa = spa_add(pool, NULL, altroot); 3612 spa_activate(spa, spa_mode_global); 3613 3614 if (props && (error = spa_prop_validate(spa, props))) { 3615 spa_deactivate(spa); 3616 spa_remove(spa); 3617 mutex_exit(&spa_namespace_lock); 3618 return (error); 3619 } 3620 3621 has_features = B_FALSE; 3622 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3623 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3624 if (zpool_prop_feature(nvpair_name(elem))) 3625 has_features = B_TRUE; 3626 } 3627 3628 if (has_features || nvlist_lookup_uint64(props, 3629 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3630 version = SPA_VERSION; 3631 } 3632 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3633 3634 spa->spa_first_txg = txg; 3635 spa->spa_uberblock.ub_txg = txg - 1; 3636 spa->spa_uberblock.ub_version = version; 3637 spa->spa_ubsync = spa->spa_uberblock; 3638 spa->spa_load_state = SPA_LOAD_CREATE; 3639 3640 /* 3641 * Create "The Godfather" zio to hold all async IOs 3642 */ 3643 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3644 KM_SLEEP); 3645 for (int i = 0; i < max_ncpus; i++) { 3646 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3647 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3648 ZIO_FLAG_GODFATHER); 3649 } 3650 3651 /* 3652 * Create the root vdev. 3653 */ 3654 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3655 3656 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3657 3658 ASSERT(error != 0 || rvd != NULL); 3659 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3660 3661 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3662 error = SET_ERROR(EINVAL); 3663 3664 if (error == 0 && 3665 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3666 (error = spa_validate_aux(spa, nvroot, txg, 3667 VDEV_ALLOC_ADD)) == 0) { 3668 for (int c = 0; c < rvd->vdev_children; c++) { 3669 vdev_metaslab_set_size(rvd->vdev_child[c]); 3670 vdev_expand(rvd->vdev_child[c], txg); 3671 } 3672 } 3673 3674 spa_config_exit(spa, SCL_ALL, FTAG); 3675 3676 if (error != 0) { 3677 spa_unload(spa); 3678 spa_deactivate(spa); 3679 spa_remove(spa); 3680 mutex_exit(&spa_namespace_lock); 3681 return (error); 3682 } 3683 3684 /* 3685 * Get the list of spares, if specified. 3686 */ 3687 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3688 &spares, &nspares) == 0) { 3689 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3690 KM_SLEEP) == 0); 3691 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3692 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3693 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3694 spa_load_spares(spa); 3695 spa_config_exit(spa, SCL_ALL, FTAG); 3696 spa->spa_spares.sav_sync = B_TRUE; 3697 } 3698 3699 /* 3700 * Get the list of level 2 cache devices, if specified. 3701 */ 3702 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3703 &l2cache, &nl2cache) == 0) { 3704 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3705 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3706 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3707 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3708 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3709 spa_load_l2cache(spa); 3710 spa_config_exit(spa, SCL_ALL, FTAG); 3711 spa->spa_l2cache.sav_sync = B_TRUE; 3712 } 3713 3714 spa->spa_is_initializing = B_TRUE; 3715 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3716 spa->spa_meta_objset = dp->dp_meta_objset; 3717 spa->spa_is_initializing = B_FALSE; 3718 3719 /* 3720 * Create DDTs (dedup tables). 3721 */ 3722 ddt_create(spa); 3723 3724 spa_update_dspace(spa); 3725 3726 tx = dmu_tx_create_assigned(dp, txg); 3727 3728 /* 3729 * Create the pool config object. 3730 */ 3731 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3732 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3733 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3734 3735 if (zap_add(spa->spa_meta_objset, 3736 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3737 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3738 cmn_err(CE_PANIC, "failed to add pool config"); 3739 } 3740 3741 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3742 spa_feature_create_zap_objects(spa, tx); 3743 3744 if (zap_add(spa->spa_meta_objset, 3745 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3746 sizeof (uint64_t), 1, &version, tx) != 0) { 3747 cmn_err(CE_PANIC, "failed to add pool version"); 3748 } 3749 3750 /* Newly created pools with the right version are always deflated. */ 3751 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3752 spa->spa_deflate = TRUE; 3753 if (zap_add(spa->spa_meta_objset, 3754 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3755 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3756 cmn_err(CE_PANIC, "failed to add deflate"); 3757 } 3758 } 3759 3760 /* 3761 * Create the deferred-free bpobj. Turn off compression 3762 * because sync-to-convergence takes longer if the blocksize 3763 * keeps changing. 3764 */ 3765 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3766 dmu_object_set_compress(spa->spa_meta_objset, obj, 3767 ZIO_COMPRESS_OFF, tx); 3768 if (zap_add(spa->spa_meta_objset, 3769 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3770 sizeof (uint64_t), 1, &obj, tx) != 0) { 3771 cmn_err(CE_PANIC, "failed to add bpobj"); 3772 } 3773 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3774 spa->spa_meta_objset, obj)); 3775 3776 /* 3777 * Create the pool's history object. 3778 */ 3779 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3780 spa_history_create_obj(spa, tx); 3781 3782 /* 3783 * Generate some random noise for salted checksums to operate on. 3784 */ 3785 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3786 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3787 3788 /* 3789 * Set pool properties. 3790 */ 3791 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3792 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3793 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3794 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3795 3796 if (props != NULL) { 3797 spa_configfile_set(spa, props, B_FALSE); 3798 spa_sync_props(props, tx); 3799 } 3800 3801 dmu_tx_commit(tx); 3802 3803 spa->spa_sync_on = B_TRUE; 3804 txg_sync_start(spa->spa_dsl_pool); 3805 3806 /* 3807 * We explicitly wait for the first transaction to complete so that our 3808 * bean counters are appropriately updated. 3809 */ 3810 txg_wait_synced(spa->spa_dsl_pool, txg); 3811 3812 spa_config_sync(spa, B_FALSE, B_TRUE); 3813 spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE); 3814 3815 spa_history_log_version(spa, "create"); 3816 3817 /* 3818 * Don't count references from objsets that are already closed 3819 * and are making their way through the eviction process. 3820 */ 3821 spa_evicting_os_wait(spa); 3822 spa->spa_minref = refcount_count(&spa->spa_refcount); 3823 spa->spa_load_state = SPA_LOAD_NONE; 3824 3825 mutex_exit(&spa_namespace_lock); 3826 3827 return (0); 3828 } 3829 3830 #ifdef _KERNEL 3831 /* 3832 * Get the root pool information from the root disk, then import the root pool 3833 * during the system boot up time. 3834 */ 3835 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3836 3837 static nvlist_t * 3838 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3839 { 3840 nvlist_t *config; 3841 nvlist_t *nvtop, *nvroot; 3842 uint64_t pgid; 3843 3844 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3845 return (NULL); 3846 3847 /* 3848 * Add this top-level vdev to the child array. 3849 */ 3850 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3851 &nvtop) == 0); 3852 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3853 &pgid) == 0); 3854 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3855 3856 /* 3857 * Put this pool's top-level vdevs into a root vdev. 3858 */ 3859 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3860 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3861 VDEV_TYPE_ROOT) == 0); 3862 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3863 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3864 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3865 &nvtop, 1) == 0); 3866 3867 /* 3868 * Replace the existing vdev_tree with the new root vdev in 3869 * this pool's configuration (remove the old, add the new). 3870 */ 3871 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3872 nvlist_free(nvroot); 3873 return (config); 3874 } 3875 3876 /* 3877 * Walk the vdev tree and see if we can find a device with "better" 3878 * configuration. A configuration is "better" if the label on that 3879 * device has a more recent txg. 3880 */ 3881 static void 3882 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3883 { 3884 for (int c = 0; c < vd->vdev_children; c++) 3885 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3886 3887 if (vd->vdev_ops->vdev_op_leaf) { 3888 nvlist_t *label; 3889 uint64_t label_txg; 3890 3891 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3892 &label) != 0) 3893 return; 3894 3895 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3896 &label_txg) == 0); 3897 3898 /* 3899 * Do we have a better boot device? 3900 */ 3901 if (label_txg > *txg) { 3902 *txg = label_txg; 3903 *avd = vd; 3904 } 3905 nvlist_free(label); 3906 } 3907 } 3908 3909 /* 3910 * Import a root pool. 3911 * 3912 * For x86. devpath_list will consist of devid and/or physpath name of 3913 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3914 * The GRUB "findroot" command will return the vdev we should boot. 3915 * 3916 * For Sparc, devpath_list consists the physpath name of the booting device 3917 * no matter the rootpool is a single device pool or a mirrored pool. 3918 * e.g. 3919 * "/pci@1f,0/ide@d/disk@0,0:a" 3920 */ 3921 int 3922 spa_import_rootpool(char *devpath, char *devid) 3923 { 3924 spa_t *spa; 3925 vdev_t *rvd, *bvd, *avd = NULL; 3926 nvlist_t *config, *nvtop; 3927 uint64_t guid, txg; 3928 char *pname; 3929 int error; 3930 3931 /* 3932 * Read the label from the boot device and generate a configuration. 3933 */ 3934 config = spa_generate_rootconf(devpath, devid, &guid); 3935 #if defined(_OBP) && defined(_KERNEL) 3936 if (config == NULL) { 3937 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3938 /* iscsi boot */ 3939 get_iscsi_bootpath_phy(devpath); 3940 config = spa_generate_rootconf(devpath, devid, &guid); 3941 } 3942 } 3943 #endif 3944 if (config == NULL) { 3945 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3946 devpath); 3947 return (SET_ERROR(EIO)); 3948 } 3949 3950 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3951 &pname) == 0); 3952 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3953 3954 mutex_enter(&spa_namespace_lock); 3955 if ((spa = spa_lookup(pname)) != NULL) { 3956 /* 3957 * Remove the existing root pool from the namespace so that we 3958 * can replace it with the correct config we just read in. 3959 */ 3960 spa_remove(spa); 3961 } 3962 3963 spa = spa_add(pname, config, NULL); 3964 spa->spa_is_root = B_TRUE; 3965 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3966 3967 /* 3968 * Build up a vdev tree based on the boot device's label config. 3969 */ 3970 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3971 &nvtop) == 0); 3972 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3973 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3974 VDEV_ALLOC_ROOTPOOL); 3975 spa_config_exit(spa, SCL_ALL, FTAG); 3976 if (error) { 3977 mutex_exit(&spa_namespace_lock); 3978 nvlist_free(config); 3979 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3980 pname); 3981 return (error); 3982 } 3983 3984 /* 3985 * Get the boot vdev. 3986 */ 3987 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3988 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3989 (u_longlong_t)guid); 3990 error = SET_ERROR(ENOENT); 3991 goto out; 3992 } 3993 3994 /* 3995 * Determine if there is a better boot device. 3996 */ 3997 avd = bvd; 3998 spa_alt_rootvdev(rvd, &avd, &txg); 3999 if (avd != bvd) { 4000 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 4001 "try booting from '%s'", avd->vdev_path); 4002 error = SET_ERROR(EINVAL); 4003 goto out; 4004 } 4005 4006 /* 4007 * If the boot device is part of a spare vdev then ensure that 4008 * we're booting off the active spare. 4009 */ 4010 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 4011 !bvd->vdev_isspare) { 4012 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 4013 "try booting from '%s'", 4014 bvd->vdev_parent-> 4015 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 4016 error = SET_ERROR(EINVAL); 4017 goto out; 4018 } 4019 4020 error = 0; 4021 out: 4022 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4023 vdev_free(rvd); 4024 spa_config_exit(spa, SCL_ALL, FTAG); 4025 mutex_exit(&spa_namespace_lock); 4026 4027 nvlist_free(config); 4028 return (error); 4029 } 4030 4031 #endif 4032 4033 /* 4034 * Import a non-root pool into the system. 4035 */ 4036 int 4037 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 4038 { 4039 spa_t *spa; 4040 char *altroot = NULL; 4041 spa_load_state_t state = SPA_LOAD_IMPORT; 4042 zpool_rewind_policy_t policy; 4043 uint64_t mode = spa_mode_global; 4044 uint64_t readonly = B_FALSE; 4045 int error; 4046 nvlist_t *nvroot; 4047 nvlist_t **spares, **l2cache; 4048 uint_t nspares, nl2cache; 4049 4050 /* 4051 * If a pool with this name exists, return failure. 4052 */ 4053 mutex_enter(&spa_namespace_lock); 4054 if (spa_lookup(pool) != NULL) { 4055 mutex_exit(&spa_namespace_lock); 4056 return (SET_ERROR(EEXIST)); 4057 } 4058 4059 /* 4060 * Create and initialize the spa structure. 4061 */ 4062 (void) nvlist_lookup_string(props, 4063 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4064 (void) nvlist_lookup_uint64(props, 4065 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 4066 if (readonly) 4067 mode = FREAD; 4068 spa = spa_add(pool, config, altroot); 4069 spa->spa_import_flags = flags; 4070 4071 /* 4072 * Verbatim import - Take a pool and insert it into the namespace 4073 * as if it had been loaded at boot. 4074 */ 4075 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 4076 if (props != NULL) 4077 spa_configfile_set(spa, props, B_FALSE); 4078 4079 spa_config_sync(spa, B_FALSE, B_TRUE); 4080 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 4081 4082 mutex_exit(&spa_namespace_lock); 4083 return (0); 4084 } 4085 4086 spa_activate(spa, mode); 4087 4088 /* 4089 * Don't start async tasks until we know everything is healthy. 4090 */ 4091 spa_async_suspend(spa); 4092 4093 zpool_get_rewind_policy(config, &policy); 4094 if (policy.zrp_request & ZPOOL_DO_REWIND) 4095 state = SPA_LOAD_RECOVER; 4096 4097 /* 4098 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 4099 * because the user-supplied config is actually the one to trust when 4100 * doing an import. 4101 */ 4102 if (state != SPA_LOAD_RECOVER) 4103 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4104 4105 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 4106 policy.zrp_request); 4107 4108 /* 4109 * Propagate anything learned while loading the pool and pass it 4110 * back to caller (i.e. rewind info, missing devices, etc). 4111 */ 4112 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4113 spa->spa_load_info) == 0); 4114 4115 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4116 /* 4117 * Toss any existing sparelist, as it doesn't have any validity 4118 * anymore, and conflicts with spa_has_spare(). 4119 */ 4120 if (spa->spa_spares.sav_config) { 4121 nvlist_free(spa->spa_spares.sav_config); 4122 spa->spa_spares.sav_config = NULL; 4123 spa_load_spares(spa); 4124 } 4125 if (spa->spa_l2cache.sav_config) { 4126 nvlist_free(spa->spa_l2cache.sav_config); 4127 spa->spa_l2cache.sav_config = NULL; 4128 spa_load_l2cache(spa); 4129 } 4130 4131 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4132 &nvroot) == 0); 4133 if (error == 0) 4134 error = spa_validate_aux(spa, nvroot, -1ULL, 4135 VDEV_ALLOC_SPARE); 4136 if (error == 0) 4137 error = spa_validate_aux(spa, nvroot, -1ULL, 4138 VDEV_ALLOC_L2CACHE); 4139 spa_config_exit(spa, SCL_ALL, FTAG); 4140 4141 if (props != NULL) 4142 spa_configfile_set(spa, props, B_FALSE); 4143 4144 if (error != 0 || (props && spa_writeable(spa) && 4145 (error = spa_prop_set(spa, props)))) { 4146 spa_unload(spa); 4147 spa_deactivate(spa); 4148 spa_remove(spa); 4149 mutex_exit(&spa_namespace_lock); 4150 return (error); 4151 } 4152 4153 spa_async_resume(spa); 4154 4155 /* 4156 * Override any spares and level 2 cache devices as specified by 4157 * the user, as these may have correct device names/devids, etc. 4158 */ 4159 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4160 &spares, &nspares) == 0) { 4161 if (spa->spa_spares.sav_config) 4162 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4163 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4164 else 4165 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4166 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4167 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4168 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4169 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4170 spa_load_spares(spa); 4171 spa_config_exit(spa, SCL_ALL, FTAG); 4172 spa->spa_spares.sav_sync = B_TRUE; 4173 } 4174 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4175 &l2cache, &nl2cache) == 0) { 4176 if (spa->spa_l2cache.sav_config) 4177 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4178 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4179 else 4180 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4181 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4182 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4183 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4184 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4185 spa_load_l2cache(spa); 4186 spa_config_exit(spa, SCL_ALL, FTAG); 4187 spa->spa_l2cache.sav_sync = B_TRUE; 4188 } 4189 4190 /* 4191 * Check for any removed devices. 4192 */ 4193 if (spa->spa_autoreplace) { 4194 spa_aux_check_removed(&spa->spa_spares); 4195 spa_aux_check_removed(&spa->spa_l2cache); 4196 } 4197 4198 if (spa_writeable(spa)) { 4199 /* 4200 * Update the config cache to include the newly-imported pool. 4201 */ 4202 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4203 } 4204 4205 /* 4206 * It's possible that the pool was expanded while it was exported. 4207 * We kick off an async task to handle this for us. 4208 */ 4209 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4210 4211 spa_history_log_version(spa, "import"); 4212 4213 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 4214 4215 mutex_exit(&spa_namespace_lock); 4216 4217 return (0); 4218 } 4219 4220 nvlist_t * 4221 spa_tryimport(nvlist_t *tryconfig) 4222 { 4223 nvlist_t *config = NULL; 4224 char *poolname; 4225 spa_t *spa; 4226 uint64_t state; 4227 int error; 4228 4229 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4230 return (NULL); 4231 4232 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4233 return (NULL); 4234 4235 /* 4236 * Create and initialize the spa structure. 4237 */ 4238 mutex_enter(&spa_namespace_lock); 4239 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4240 spa_activate(spa, FREAD); 4241 4242 /* 4243 * Pass off the heavy lifting to spa_load(). 4244 * Pass TRUE for mosconfig because the user-supplied config 4245 * is actually the one to trust when doing an import. 4246 */ 4247 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4248 4249 /* 4250 * If 'tryconfig' was at least parsable, return the current config. 4251 */ 4252 if (spa->spa_root_vdev != NULL) { 4253 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4254 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4255 poolname) == 0); 4256 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4257 state) == 0); 4258 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4259 spa->spa_uberblock.ub_timestamp) == 0); 4260 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4261 spa->spa_load_info) == 0); 4262 4263 /* 4264 * If the bootfs property exists on this pool then we 4265 * copy it out so that external consumers can tell which 4266 * pools are bootable. 4267 */ 4268 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4269 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4270 4271 /* 4272 * We have to play games with the name since the 4273 * pool was opened as TRYIMPORT_NAME. 4274 */ 4275 if (dsl_dsobj_to_dsname(spa_name(spa), 4276 spa->spa_bootfs, tmpname) == 0) { 4277 char *cp; 4278 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4279 4280 cp = strchr(tmpname, '/'); 4281 if (cp == NULL) { 4282 (void) strlcpy(dsname, tmpname, 4283 MAXPATHLEN); 4284 } else { 4285 (void) snprintf(dsname, MAXPATHLEN, 4286 "%s/%s", poolname, ++cp); 4287 } 4288 VERIFY(nvlist_add_string(config, 4289 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4290 kmem_free(dsname, MAXPATHLEN); 4291 } 4292 kmem_free(tmpname, MAXPATHLEN); 4293 } 4294 4295 /* 4296 * Add the list of hot spares and level 2 cache devices. 4297 */ 4298 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4299 spa_add_spares(spa, config); 4300 spa_add_l2cache(spa, config); 4301 spa_config_exit(spa, SCL_CONFIG, FTAG); 4302 } 4303 4304 spa_unload(spa); 4305 spa_deactivate(spa); 4306 spa_remove(spa); 4307 mutex_exit(&spa_namespace_lock); 4308 4309 return (config); 4310 } 4311 4312 /* 4313 * Pool export/destroy 4314 * 4315 * The act of destroying or exporting a pool is very simple. We make sure there 4316 * is no more pending I/O and any references to the pool are gone. Then, we 4317 * update the pool state and sync all the labels to disk, removing the 4318 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4319 * we don't sync the labels or remove the configuration cache. 4320 */ 4321 static int 4322 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4323 boolean_t force, boolean_t hardforce) 4324 { 4325 spa_t *spa; 4326 4327 if (oldconfig) 4328 *oldconfig = NULL; 4329 4330 if (!(spa_mode_global & FWRITE)) 4331 return (SET_ERROR(EROFS)); 4332 4333 mutex_enter(&spa_namespace_lock); 4334 if ((spa = spa_lookup(pool)) == NULL) { 4335 mutex_exit(&spa_namespace_lock); 4336 return (SET_ERROR(ENOENT)); 4337 } 4338 4339 /* 4340 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4341 * reacquire the namespace lock, and see if we can export. 4342 */ 4343 spa_open_ref(spa, FTAG); 4344 mutex_exit(&spa_namespace_lock); 4345 spa_async_suspend(spa); 4346 mutex_enter(&spa_namespace_lock); 4347 spa_close(spa, FTAG); 4348 4349 /* 4350 * The pool will be in core if it's openable, 4351 * in which case we can modify its state. 4352 */ 4353 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4354 /* 4355 * Objsets may be open only because they're dirty, so we 4356 * have to force it to sync before checking spa_refcnt. 4357 */ 4358 txg_wait_synced(spa->spa_dsl_pool, 0); 4359 spa_evicting_os_wait(spa); 4360 4361 /* 4362 * A pool cannot be exported or destroyed if there are active 4363 * references. If we are resetting a pool, allow references by 4364 * fault injection handlers. 4365 */ 4366 if (!spa_refcount_zero(spa) || 4367 (spa->spa_inject_ref != 0 && 4368 new_state != POOL_STATE_UNINITIALIZED)) { 4369 spa_async_resume(spa); 4370 mutex_exit(&spa_namespace_lock); 4371 return (SET_ERROR(EBUSY)); 4372 } 4373 4374 /* 4375 * A pool cannot be exported if it has an active shared spare. 4376 * This is to prevent other pools stealing the active spare 4377 * from an exported pool. At user's own will, such pool can 4378 * be forcedly exported. 4379 */ 4380 if (!force && new_state == POOL_STATE_EXPORTED && 4381 spa_has_active_shared_spare(spa)) { 4382 spa_async_resume(spa); 4383 mutex_exit(&spa_namespace_lock); 4384 return (SET_ERROR(EXDEV)); 4385 } 4386 4387 /* 4388 * We want this to be reflected on every label, 4389 * so mark them all dirty. spa_unload() will do the 4390 * final sync that pushes these changes out. 4391 */ 4392 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4393 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4394 spa->spa_state = new_state; 4395 spa->spa_final_txg = spa_last_synced_txg(spa) + 4396 TXG_DEFER_SIZE + 1; 4397 vdev_config_dirty(spa->spa_root_vdev); 4398 spa_config_exit(spa, SCL_ALL, FTAG); 4399 } 4400 } 4401 4402 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4403 4404 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4405 spa_unload(spa); 4406 spa_deactivate(spa); 4407 } 4408 4409 if (oldconfig && spa->spa_config) 4410 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4411 4412 if (new_state != POOL_STATE_UNINITIALIZED) { 4413 if (!hardforce) 4414 spa_config_sync(spa, B_TRUE, B_TRUE); 4415 spa_remove(spa); 4416 } 4417 mutex_exit(&spa_namespace_lock); 4418 4419 return (0); 4420 } 4421 4422 /* 4423 * Destroy a storage pool. 4424 */ 4425 int 4426 spa_destroy(char *pool) 4427 { 4428 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4429 B_FALSE, B_FALSE)); 4430 } 4431 4432 /* 4433 * Export a storage pool. 4434 */ 4435 int 4436 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4437 boolean_t hardforce) 4438 { 4439 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4440 force, hardforce)); 4441 } 4442 4443 /* 4444 * Similar to spa_export(), this unloads the spa_t without actually removing it 4445 * from the namespace in any way. 4446 */ 4447 int 4448 spa_reset(char *pool) 4449 { 4450 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4451 B_FALSE, B_FALSE)); 4452 } 4453 4454 /* 4455 * ========================================================================== 4456 * Device manipulation 4457 * ========================================================================== 4458 */ 4459 4460 /* 4461 * Add a device to a storage pool. 4462 */ 4463 int 4464 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4465 { 4466 uint64_t txg, id; 4467 int error; 4468 vdev_t *rvd = spa->spa_root_vdev; 4469 vdev_t *vd, *tvd; 4470 nvlist_t **spares, **l2cache; 4471 uint_t nspares, nl2cache; 4472 4473 ASSERT(spa_writeable(spa)); 4474 4475 txg = spa_vdev_enter(spa); 4476 4477 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4478 VDEV_ALLOC_ADD)) != 0) 4479 return (spa_vdev_exit(spa, NULL, txg, error)); 4480 4481 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4482 4483 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4484 &nspares) != 0) 4485 nspares = 0; 4486 4487 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4488 &nl2cache) != 0) 4489 nl2cache = 0; 4490 4491 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4492 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4493 4494 if (vd->vdev_children != 0 && 4495 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4496 return (spa_vdev_exit(spa, vd, txg, error)); 4497 4498 /* 4499 * We must validate the spares and l2cache devices after checking the 4500 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4501 */ 4502 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4503 return (spa_vdev_exit(spa, vd, txg, error)); 4504 4505 /* 4506 * Transfer each new top-level vdev from vd to rvd. 4507 */ 4508 for (int c = 0; c < vd->vdev_children; c++) { 4509 4510 /* 4511 * Set the vdev id to the first hole, if one exists. 4512 */ 4513 for (id = 0; id < rvd->vdev_children; id++) { 4514 if (rvd->vdev_child[id]->vdev_ishole) { 4515 vdev_free(rvd->vdev_child[id]); 4516 break; 4517 } 4518 } 4519 tvd = vd->vdev_child[c]; 4520 vdev_remove_child(vd, tvd); 4521 tvd->vdev_id = id; 4522 vdev_add_child(rvd, tvd); 4523 vdev_config_dirty(tvd); 4524 } 4525 4526 if (nspares != 0) { 4527 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4528 ZPOOL_CONFIG_SPARES); 4529 spa_load_spares(spa); 4530 spa->spa_spares.sav_sync = B_TRUE; 4531 } 4532 4533 if (nl2cache != 0) { 4534 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4535 ZPOOL_CONFIG_L2CACHE); 4536 spa_load_l2cache(spa); 4537 spa->spa_l2cache.sav_sync = B_TRUE; 4538 } 4539 4540 /* 4541 * We have to be careful when adding new vdevs to an existing pool. 4542 * If other threads start allocating from these vdevs before we 4543 * sync the config cache, and we lose power, then upon reboot we may 4544 * fail to open the pool because there are DVAs that the config cache 4545 * can't translate. Therefore, we first add the vdevs without 4546 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4547 * and then let spa_config_update() initialize the new metaslabs. 4548 * 4549 * spa_load() checks for added-but-not-initialized vdevs, so that 4550 * if we lose power at any point in this sequence, the remaining 4551 * steps will be completed the next time we load the pool. 4552 */ 4553 (void) spa_vdev_exit(spa, vd, txg, 0); 4554 4555 mutex_enter(&spa_namespace_lock); 4556 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4557 spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD); 4558 mutex_exit(&spa_namespace_lock); 4559 4560 return (0); 4561 } 4562 4563 /* 4564 * Attach a device to a mirror. The arguments are the path to any device 4565 * in the mirror, and the nvroot for the new device. If the path specifies 4566 * a device that is not mirrored, we automatically insert the mirror vdev. 4567 * 4568 * If 'replacing' is specified, the new device is intended to replace the 4569 * existing device; in this case the two devices are made into their own 4570 * mirror using the 'replacing' vdev, which is functionally identical to 4571 * the mirror vdev (it actually reuses all the same ops) but has a few 4572 * extra rules: you can't attach to it after it's been created, and upon 4573 * completion of resilvering, the first disk (the one being replaced) 4574 * is automatically detached. 4575 */ 4576 int 4577 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4578 { 4579 uint64_t txg, dtl_max_txg; 4580 vdev_t *rvd = spa->spa_root_vdev; 4581 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4582 vdev_ops_t *pvops; 4583 char *oldvdpath, *newvdpath; 4584 int newvd_isspare; 4585 int error; 4586 4587 ASSERT(spa_writeable(spa)); 4588 4589 txg = spa_vdev_enter(spa); 4590 4591 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4592 4593 if (oldvd == NULL) 4594 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4595 4596 if (!oldvd->vdev_ops->vdev_op_leaf) 4597 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4598 4599 pvd = oldvd->vdev_parent; 4600 4601 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4602 VDEV_ALLOC_ATTACH)) != 0) 4603 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4604 4605 if (newrootvd->vdev_children != 1) 4606 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4607 4608 newvd = newrootvd->vdev_child[0]; 4609 4610 if (!newvd->vdev_ops->vdev_op_leaf) 4611 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4612 4613 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4614 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4615 4616 /* 4617 * Spares can't replace logs 4618 */ 4619 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4620 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4621 4622 if (!replacing) { 4623 /* 4624 * For attach, the only allowable parent is a mirror or the root 4625 * vdev. 4626 */ 4627 if (pvd->vdev_ops != &vdev_mirror_ops && 4628 pvd->vdev_ops != &vdev_root_ops) 4629 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4630 4631 pvops = &vdev_mirror_ops; 4632 } else { 4633 /* 4634 * Active hot spares can only be replaced by inactive hot 4635 * spares. 4636 */ 4637 if (pvd->vdev_ops == &vdev_spare_ops && 4638 oldvd->vdev_isspare && 4639 !spa_has_spare(spa, newvd->vdev_guid)) 4640 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4641 4642 /* 4643 * If the source is a hot spare, and the parent isn't already a 4644 * spare, then we want to create a new hot spare. Otherwise, we 4645 * want to create a replacing vdev. The user is not allowed to 4646 * attach to a spared vdev child unless the 'isspare' state is 4647 * the same (spare replaces spare, non-spare replaces 4648 * non-spare). 4649 */ 4650 if (pvd->vdev_ops == &vdev_replacing_ops && 4651 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4652 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4653 } else if (pvd->vdev_ops == &vdev_spare_ops && 4654 newvd->vdev_isspare != oldvd->vdev_isspare) { 4655 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4656 } 4657 4658 if (newvd->vdev_isspare) 4659 pvops = &vdev_spare_ops; 4660 else 4661 pvops = &vdev_replacing_ops; 4662 } 4663 4664 /* 4665 * Make sure the new device is big enough. 4666 */ 4667 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4668 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4669 4670 /* 4671 * The new device cannot have a higher alignment requirement 4672 * than the top-level vdev. 4673 */ 4674 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4675 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4676 4677 /* 4678 * If this is an in-place replacement, update oldvd's path and devid 4679 * to make it distinguishable from newvd, and unopenable from now on. 4680 */ 4681 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4682 spa_strfree(oldvd->vdev_path); 4683 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4684 KM_SLEEP); 4685 (void) sprintf(oldvd->vdev_path, "%s/%s", 4686 newvd->vdev_path, "old"); 4687 if (oldvd->vdev_devid != NULL) { 4688 spa_strfree(oldvd->vdev_devid); 4689 oldvd->vdev_devid = NULL; 4690 } 4691 } 4692 4693 /* mark the device being resilvered */ 4694 newvd->vdev_resilver_txg = txg; 4695 4696 /* 4697 * If the parent is not a mirror, or if we're replacing, insert the new 4698 * mirror/replacing/spare vdev above oldvd. 4699 */ 4700 if (pvd->vdev_ops != pvops) 4701 pvd = vdev_add_parent(oldvd, pvops); 4702 4703 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4704 ASSERT(pvd->vdev_ops == pvops); 4705 ASSERT(oldvd->vdev_parent == pvd); 4706 4707 /* 4708 * Extract the new device from its root and add it to pvd. 4709 */ 4710 vdev_remove_child(newrootvd, newvd); 4711 newvd->vdev_id = pvd->vdev_children; 4712 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4713 vdev_add_child(pvd, newvd); 4714 4715 tvd = newvd->vdev_top; 4716 ASSERT(pvd->vdev_top == tvd); 4717 ASSERT(tvd->vdev_parent == rvd); 4718 4719 vdev_config_dirty(tvd); 4720 4721 /* 4722 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4723 * for any dmu_sync-ed blocks. It will propagate upward when 4724 * spa_vdev_exit() calls vdev_dtl_reassess(). 4725 */ 4726 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4727 4728 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4729 dtl_max_txg - TXG_INITIAL); 4730 4731 if (newvd->vdev_isspare) { 4732 spa_spare_activate(newvd); 4733 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4734 } 4735 4736 oldvdpath = spa_strdup(oldvd->vdev_path); 4737 newvdpath = spa_strdup(newvd->vdev_path); 4738 newvd_isspare = newvd->vdev_isspare; 4739 4740 /* 4741 * Mark newvd's DTL dirty in this txg. 4742 */ 4743 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4744 4745 /* 4746 * Schedule the resilver to restart in the future. We do this to 4747 * ensure that dmu_sync-ed blocks have been stitched into the 4748 * respective datasets. 4749 */ 4750 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4751 4752 if (spa->spa_bootfs) 4753 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4754 4755 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH); 4756 4757 /* 4758 * Commit the config 4759 */ 4760 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4761 4762 spa_history_log_internal(spa, "vdev attach", NULL, 4763 "%s vdev=%s %s vdev=%s", 4764 replacing && newvd_isspare ? "spare in" : 4765 replacing ? "replace" : "attach", newvdpath, 4766 replacing ? "for" : "to", oldvdpath); 4767 4768 spa_strfree(oldvdpath); 4769 spa_strfree(newvdpath); 4770 4771 return (0); 4772 } 4773 4774 /* 4775 * Detach a device from a mirror or replacing vdev. 4776 * 4777 * If 'replace_done' is specified, only detach if the parent 4778 * is a replacing vdev. 4779 */ 4780 int 4781 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4782 { 4783 uint64_t txg; 4784 int error; 4785 vdev_t *rvd = spa->spa_root_vdev; 4786 vdev_t *vd, *pvd, *cvd, *tvd; 4787 boolean_t unspare = B_FALSE; 4788 uint64_t unspare_guid = 0; 4789 char *vdpath; 4790 4791 ASSERT(spa_writeable(spa)); 4792 4793 txg = spa_vdev_enter(spa); 4794 4795 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4796 4797 if (vd == NULL) 4798 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4799 4800 if (!vd->vdev_ops->vdev_op_leaf) 4801 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4802 4803 pvd = vd->vdev_parent; 4804 4805 /* 4806 * If the parent/child relationship is not as expected, don't do it. 4807 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4808 * vdev that's replacing B with C. The user's intent in replacing 4809 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4810 * the replace by detaching C, the expected behavior is to end up 4811 * M(A,B). But suppose that right after deciding to detach C, 4812 * the replacement of B completes. We would have M(A,C), and then 4813 * ask to detach C, which would leave us with just A -- not what 4814 * the user wanted. To prevent this, we make sure that the 4815 * parent/child relationship hasn't changed -- in this example, 4816 * that C's parent is still the replacing vdev R. 4817 */ 4818 if (pvd->vdev_guid != pguid && pguid != 0) 4819 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4820 4821 /* 4822 * Only 'replacing' or 'spare' vdevs can be replaced. 4823 */ 4824 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4825 pvd->vdev_ops != &vdev_spare_ops) 4826 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4827 4828 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4829 spa_version(spa) >= SPA_VERSION_SPARES); 4830 4831 /* 4832 * Only mirror, replacing, and spare vdevs support detach. 4833 */ 4834 if (pvd->vdev_ops != &vdev_replacing_ops && 4835 pvd->vdev_ops != &vdev_mirror_ops && 4836 pvd->vdev_ops != &vdev_spare_ops) 4837 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4838 4839 /* 4840 * If this device has the only valid copy of some data, 4841 * we cannot safely detach it. 4842 */ 4843 if (vdev_dtl_required(vd)) 4844 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4845 4846 ASSERT(pvd->vdev_children >= 2); 4847 4848 /* 4849 * If we are detaching the second disk from a replacing vdev, then 4850 * check to see if we changed the original vdev's path to have "/old" 4851 * at the end in spa_vdev_attach(). If so, undo that change now. 4852 */ 4853 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4854 vd->vdev_path != NULL) { 4855 size_t len = strlen(vd->vdev_path); 4856 4857 for (int c = 0; c < pvd->vdev_children; c++) { 4858 cvd = pvd->vdev_child[c]; 4859 4860 if (cvd == vd || cvd->vdev_path == NULL) 4861 continue; 4862 4863 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4864 strcmp(cvd->vdev_path + len, "/old") == 0) { 4865 spa_strfree(cvd->vdev_path); 4866 cvd->vdev_path = spa_strdup(vd->vdev_path); 4867 break; 4868 } 4869 } 4870 } 4871 4872 /* 4873 * If we are detaching the original disk from a spare, then it implies 4874 * that the spare should become a real disk, and be removed from the 4875 * active spare list for the pool. 4876 */ 4877 if (pvd->vdev_ops == &vdev_spare_ops && 4878 vd->vdev_id == 0 && 4879 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4880 unspare = B_TRUE; 4881 4882 /* 4883 * Erase the disk labels so the disk can be used for other things. 4884 * This must be done after all other error cases are handled, 4885 * but before we disembowel vd (so we can still do I/O to it). 4886 * But if we can't do it, don't treat the error as fatal -- 4887 * it may be that the unwritability of the disk is the reason 4888 * it's being detached! 4889 */ 4890 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4891 4892 /* 4893 * Remove vd from its parent and compact the parent's children. 4894 */ 4895 vdev_remove_child(pvd, vd); 4896 vdev_compact_children(pvd); 4897 4898 /* 4899 * Remember one of the remaining children so we can get tvd below. 4900 */ 4901 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4902 4903 /* 4904 * If we need to remove the remaining child from the list of hot spares, 4905 * do it now, marking the vdev as no longer a spare in the process. 4906 * We must do this before vdev_remove_parent(), because that can 4907 * change the GUID if it creates a new toplevel GUID. For a similar 4908 * reason, we must remove the spare now, in the same txg as the detach; 4909 * otherwise someone could attach a new sibling, change the GUID, and 4910 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4911 */ 4912 if (unspare) { 4913 ASSERT(cvd->vdev_isspare); 4914 spa_spare_remove(cvd); 4915 unspare_guid = cvd->vdev_guid; 4916 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4917 cvd->vdev_unspare = B_TRUE; 4918 } 4919 4920 /* 4921 * If the parent mirror/replacing vdev only has one child, 4922 * the parent is no longer needed. Remove it from the tree. 4923 */ 4924 if (pvd->vdev_children == 1) { 4925 if (pvd->vdev_ops == &vdev_spare_ops) 4926 cvd->vdev_unspare = B_FALSE; 4927 vdev_remove_parent(cvd); 4928 } 4929 4930 4931 /* 4932 * We don't set tvd until now because the parent we just removed 4933 * may have been the previous top-level vdev. 4934 */ 4935 tvd = cvd->vdev_top; 4936 ASSERT(tvd->vdev_parent == rvd); 4937 4938 /* 4939 * Reevaluate the parent vdev state. 4940 */ 4941 vdev_propagate_state(cvd); 4942 4943 /* 4944 * If the 'autoexpand' property is set on the pool then automatically 4945 * try to expand the size of the pool. For example if the device we 4946 * just detached was smaller than the others, it may be possible to 4947 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4948 * first so that we can obtain the updated sizes of the leaf vdevs. 4949 */ 4950 if (spa->spa_autoexpand) { 4951 vdev_reopen(tvd); 4952 vdev_expand(tvd, txg); 4953 } 4954 4955 vdev_config_dirty(tvd); 4956 4957 /* 4958 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4959 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4960 * But first make sure we're not on any *other* txg's DTL list, to 4961 * prevent vd from being accessed after it's freed. 4962 */ 4963 vdpath = spa_strdup(vd->vdev_path); 4964 for (int t = 0; t < TXG_SIZE; t++) 4965 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4966 vd->vdev_detached = B_TRUE; 4967 vdev_dirty(tvd, VDD_DTL, vd, txg); 4968 4969 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4970 4971 /* hang on to the spa before we release the lock */ 4972 spa_open_ref(spa, FTAG); 4973 4974 error = spa_vdev_exit(spa, vd, txg, 0); 4975 4976 spa_history_log_internal(spa, "detach", NULL, 4977 "vdev=%s", vdpath); 4978 spa_strfree(vdpath); 4979 4980 /* 4981 * If this was the removal of the original device in a hot spare vdev, 4982 * then we want to go through and remove the device from the hot spare 4983 * list of every other pool. 4984 */ 4985 if (unspare) { 4986 spa_t *altspa = NULL; 4987 4988 mutex_enter(&spa_namespace_lock); 4989 while ((altspa = spa_next(altspa)) != NULL) { 4990 if (altspa->spa_state != POOL_STATE_ACTIVE || 4991 altspa == spa) 4992 continue; 4993 4994 spa_open_ref(altspa, FTAG); 4995 mutex_exit(&spa_namespace_lock); 4996 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4997 mutex_enter(&spa_namespace_lock); 4998 spa_close(altspa, FTAG); 4999 } 5000 mutex_exit(&spa_namespace_lock); 5001 5002 /* search the rest of the vdevs for spares to remove */ 5003 spa_vdev_resilver_done(spa); 5004 } 5005 5006 /* all done with the spa; OK to release */ 5007 mutex_enter(&spa_namespace_lock); 5008 spa_close(spa, FTAG); 5009 mutex_exit(&spa_namespace_lock); 5010 5011 return (error); 5012 } 5013 5014 /* 5015 * Split a set of devices from their mirrors, and create a new pool from them. 5016 */ 5017 int 5018 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 5019 nvlist_t *props, boolean_t exp) 5020 { 5021 int error = 0; 5022 uint64_t txg, *glist; 5023 spa_t *newspa; 5024 uint_t c, children, lastlog; 5025 nvlist_t **child, *nvl, *tmp; 5026 dmu_tx_t *tx; 5027 char *altroot = NULL; 5028 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 5029 boolean_t activate_slog; 5030 5031 ASSERT(spa_writeable(spa)); 5032 5033 txg = spa_vdev_enter(spa); 5034 5035 /* clear the log and flush everything up to now */ 5036 activate_slog = spa_passivate_log(spa); 5037 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5038 error = spa_offline_log(spa); 5039 txg = spa_vdev_config_enter(spa); 5040 5041 if (activate_slog) 5042 spa_activate_log(spa); 5043 5044 if (error != 0) 5045 return (spa_vdev_exit(spa, NULL, txg, error)); 5046 5047 /* check new spa name before going any further */ 5048 if (spa_lookup(newname) != NULL) 5049 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 5050 5051 /* 5052 * scan through all the children to ensure they're all mirrors 5053 */ 5054 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 5055 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 5056 &children) != 0) 5057 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5058 5059 /* first, check to ensure we've got the right child count */ 5060 rvd = spa->spa_root_vdev; 5061 lastlog = 0; 5062 for (c = 0; c < rvd->vdev_children; c++) { 5063 vdev_t *vd = rvd->vdev_child[c]; 5064 5065 /* don't count the holes & logs as children */ 5066 if (vd->vdev_islog || vd->vdev_ishole) { 5067 if (lastlog == 0) 5068 lastlog = c; 5069 continue; 5070 } 5071 5072 lastlog = 0; 5073 } 5074 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 5075 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5076 5077 /* next, ensure no spare or cache devices are part of the split */ 5078 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 5079 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 5080 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5081 5082 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 5083 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 5084 5085 /* then, loop over each vdev and validate it */ 5086 for (c = 0; c < children; c++) { 5087 uint64_t is_hole = 0; 5088 5089 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 5090 &is_hole); 5091 5092 if (is_hole != 0) { 5093 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 5094 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 5095 continue; 5096 } else { 5097 error = SET_ERROR(EINVAL); 5098 break; 5099 } 5100 } 5101 5102 /* which disk is going to be split? */ 5103 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 5104 &glist[c]) != 0) { 5105 error = SET_ERROR(EINVAL); 5106 break; 5107 } 5108 5109 /* look it up in the spa */ 5110 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 5111 if (vml[c] == NULL) { 5112 error = SET_ERROR(ENODEV); 5113 break; 5114 } 5115 5116 /* make sure there's nothing stopping the split */ 5117 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 5118 vml[c]->vdev_islog || 5119 vml[c]->vdev_ishole || 5120 vml[c]->vdev_isspare || 5121 vml[c]->vdev_isl2cache || 5122 !vdev_writeable(vml[c]) || 5123 vml[c]->vdev_children != 0 || 5124 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 5125 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 5126 error = SET_ERROR(EINVAL); 5127 break; 5128 } 5129 5130 if (vdev_dtl_required(vml[c])) { 5131 error = SET_ERROR(EBUSY); 5132 break; 5133 } 5134 5135 /* we need certain info from the top level */ 5136 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5137 vml[c]->vdev_top->vdev_ms_array) == 0); 5138 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5139 vml[c]->vdev_top->vdev_ms_shift) == 0); 5140 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5141 vml[c]->vdev_top->vdev_asize) == 0); 5142 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5143 vml[c]->vdev_top->vdev_ashift) == 0); 5144 5145 /* transfer per-vdev ZAPs */ 5146 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 5147 VERIFY0(nvlist_add_uint64(child[c], 5148 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 5149 5150 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 5151 VERIFY0(nvlist_add_uint64(child[c], 5152 ZPOOL_CONFIG_VDEV_TOP_ZAP, 5153 vml[c]->vdev_parent->vdev_top_zap)); 5154 } 5155 5156 if (error != 0) { 5157 kmem_free(vml, children * sizeof (vdev_t *)); 5158 kmem_free(glist, children * sizeof (uint64_t)); 5159 return (spa_vdev_exit(spa, NULL, txg, error)); 5160 } 5161 5162 /* stop writers from using the disks */ 5163 for (c = 0; c < children; c++) { 5164 if (vml[c] != NULL) 5165 vml[c]->vdev_offline = B_TRUE; 5166 } 5167 vdev_reopen(spa->spa_root_vdev); 5168 5169 /* 5170 * Temporarily record the splitting vdevs in the spa config. This 5171 * will disappear once the config is regenerated. 5172 */ 5173 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5174 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5175 glist, children) == 0); 5176 kmem_free(glist, children * sizeof (uint64_t)); 5177 5178 mutex_enter(&spa->spa_props_lock); 5179 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5180 nvl) == 0); 5181 mutex_exit(&spa->spa_props_lock); 5182 spa->spa_config_splitting = nvl; 5183 vdev_config_dirty(spa->spa_root_vdev); 5184 5185 /* configure and create the new pool */ 5186 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5187 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5188 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5189 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5190 spa_version(spa)) == 0); 5191 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5192 spa->spa_config_txg) == 0); 5193 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5194 spa_generate_guid(NULL)) == 0); 5195 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 5196 (void) nvlist_lookup_string(props, 5197 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5198 5199 /* add the new pool to the namespace */ 5200 newspa = spa_add(newname, config, altroot); 5201 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 5202 newspa->spa_config_txg = spa->spa_config_txg; 5203 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5204 5205 /* release the spa config lock, retaining the namespace lock */ 5206 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5207 5208 if (zio_injection_enabled) 5209 zio_handle_panic_injection(spa, FTAG, 1); 5210 5211 spa_activate(newspa, spa_mode_global); 5212 spa_async_suspend(newspa); 5213 5214 /* create the new pool from the disks of the original pool */ 5215 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5216 if (error) 5217 goto out; 5218 5219 /* if that worked, generate a real config for the new pool */ 5220 if (newspa->spa_root_vdev != NULL) { 5221 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5222 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5223 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5224 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5225 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5226 B_TRUE)); 5227 } 5228 5229 /* set the props */ 5230 if (props != NULL) { 5231 spa_configfile_set(newspa, props, B_FALSE); 5232 error = spa_prop_set(newspa, props); 5233 if (error) 5234 goto out; 5235 } 5236 5237 /* flush everything */ 5238 txg = spa_vdev_config_enter(newspa); 5239 vdev_config_dirty(newspa->spa_root_vdev); 5240 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5241 5242 if (zio_injection_enabled) 5243 zio_handle_panic_injection(spa, FTAG, 2); 5244 5245 spa_async_resume(newspa); 5246 5247 /* finally, update the original pool's config */ 5248 txg = spa_vdev_config_enter(spa); 5249 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5250 error = dmu_tx_assign(tx, TXG_WAIT); 5251 if (error != 0) 5252 dmu_tx_abort(tx); 5253 for (c = 0; c < children; c++) { 5254 if (vml[c] != NULL) { 5255 vdev_split(vml[c]); 5256 if (error == 0) 5257 spa_history_log_internal(spa, "detach", tx, 5258 "vdev=%s", vml[c]->vdev_path); 5259 5260 vdev_free(vml[c]); 5261 } 5262 } 5263 spa->spa_avz_action = AVZ_ACTION_REBUILD; 5264 vdev_config_dirty(spa->spa_root_vdev); 5265 spa->spa_config_splitting = NULL; 5266 nvlist_free(nvl); 5267 if (error == 0) 5268 dmu_tx_commit(tx); 5269 (void) spa_vdev_exit(spa, NULL, txg, 0); 5270 5271 if (zio_injection_enabled) 5272 zio_handle_panic_injection(spa, FTAG, 3); 5273 5274 /* split is complete; log a history record */ 5275 spa_history_log_internal(newspa, "split", NULL, 5276 "from pool %s", spa_name(spa)); 5277 5278 kmem_free(vml, children * sizeof (vdev_t *)); 5279 5280 /* if we're not going to mount the filesystems in userland, export */ 5281 if (exp) 5282 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5283 B_FALSE, B_FALSE); 5284 5285 return (error); 5286 5287 out: 5288 spa_unload(newspa); 5289 spa_deactivate(newspa); 5290 spa_remove(newspa); 5291 5292 txg = spa_vdev_config_enter(spa); 5293 5294 /* re-online all offlined disks */ 5295 for (c = 0; c < children; c++) { 5296 if (vml[c] != NULL) 5297 vml[c]->vdev_offline = B_FALSE; 5298 } 5299 vdev_reopen(spa->spa_root_vdev); 5300 5301 nvlist_free(spa->spa_config_splitting); 5302 spa->spa_config_splitting = NULL; 5303 (void) spa_vdev_exit(spa, NULL, txg, error); 5304 5305 kmem_free(vml, children * sizeof (vdev_t *)); 5306 return (error); 5307 } 5308 5309 static nvlist_t * 5310 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5311 { 5312 for (int i = 0; i < count; i++) { 5313 uint64_t guid; 5314 5315 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5316 &guid) == 0); 5317 5318 if (guid == target_guid) 5319 return (nvpp[i]); 5320 } 5321 5322 return (NULL); 5323 } 5324 5325 static void 5326 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5327 nvlist_t *dev_to_remove) 5328 { 5329 nvlist_t **newdev = NULL; 5330 5331 if (count > 1) 5332 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5333 5334 for (int i = 0, j = 0; i < count; i++) { 5335 if (dev[i] == dev_to_remove) 5336 continue; 5337 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5338 } 5339 5340 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5341 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5342 5343 for (int i = 0; i < count - 1; i++) 5344 nvlist_free(newdev[i]); 5345 5346 if (count > 1) 5347 kmem_free(newdev, (count - 1) * sizeof (void *)); 5348 } 5349 5350 /* 5351 * Evacuate the device. 5352 */ 5353 static int 5354 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5355 { 5356 uint64_t txg; 5357 int error = 0; 5358 5359 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5360 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5361 ASSERT(vd == vd->vdev_top); 5362 5363 /* 5364 * Evacuate the device. We don't hold the config lock as writer 5365 * since we need to do I/O but we do keep the 5366 * spa_namespace_lock held. Once this completes the device 5367 * should no longer have any blocks allocated on it. 5368 */ 5369 if (vd->vdev_islog) { 5370 if (vd->vdev_stat.vs_alloc != 0) 5371 error = spa_offline_log(spa); 5372 } else { 5373 error = SET_ERROR(ENOTSUP); 5374 } 5375 5376 if (error) 5377 return (error); 5378 5379 /* 5380 * The evacuation succeeded. Remove any remaining MOS metadata 5381 * associated with this vdev, and wait for these changes to sync. 5382 */ 5383 ASSERT0(vd->vdev_stat.vs_alloc); 5384 txg = spa_vdev_config_enter(spa); 5385 vd->vdev_removing = B_TRUE; 5386 vdev_dirty_leaves(vd, VDD_DTL, txg); 5387 vdev_config_dirty(vd); 5388 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5389 5390 return (0); 5391 } 5392 5393 /* 5394 * Complete the removal by cleaning up the namespace. 5395 */ 5396 static void 5397 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5398 { 5399 vdev_t *rvd = spa->spa_root_vdev; 5400 uint64_t id = vd->vdev_id; 5401 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5402 5403 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5404 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5405 ASSERT(vd == vd->vdev_top); 5406 5407 /* 5408 * Only remove any devices which are empty. 5409 */ 5410 if (vd->vdev_stat.vs_alloc != 0) 5411 return; 5412 5413 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5414 5415 if (list_link_active(&vd->vdev_state_dirty_node)) 5416 vdev_state_clean(vd); 5417 if (list_link_active(&vd->vdev_config_dirty_node)) 5418 vdev_config_clean(vd); 5419 5420 vdev_free(vd); 5421 5422 if (last_vdev) { 5423 vdev_compact_children(rvd); 5424 } else { 5425 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5426 vdev_add_child(rvd, vd); 5427 } 5428 vdev_config_dirty(rvd); 5429 5430 /* 5431 * Reassess the health of our root vdev. 5432 */ 5433 vdev_reopen(rvd); 5434 } 5435 5436 /* 5437 * Remove a device from the pool - 5438 * 5439 * Removing a device from the vdev namespace requires several steps 5440 * and can take a significant amount of time. As a result we use 5441 * the spa_vdev_config_[enter/exit] functions which allow us to 5442 * grab and release the spa_config_lock while still holding the namespace 5443 * lock. During each step the configuration is synced out. 5444 * 5445 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5446 * devices. 5447 */ 5448 int 5449 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5450 { 5451 vdev_t *vd; 5452 sysevent_t *ev = NULL; 5453 metaslab_group_t *mg; 5454 nvlist_t **spares, **l2cache, *nv; 5455 uint64_t txg = 0; 5456 uint_t nspares, nl2cache; 5457 int error = 0; 5458 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5459 5460 ASSERT(spa_writeable(spa)); 5461 5462 if (!locked) 5463 txg = spa_vdev_enter(spa); 5464 5465 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5466 5467 if (spa->spa_spares.sav_vdevs != NULL && 5468 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5469 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5470 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5471 /* 5472 * Only remove the hot spare if it's not currently in use 5473 * in this pool. 5474 */ 5475 if (vd == NULL || unspare) { 5476 if (vd == NULL) 5477 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 5478 ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX); 5479 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5480 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5481 spa_load_spares(spa); 5482 spa->spa_spares.sav_sync = B_TRUE; 5483 } else { 5484 error = SET_ERROR(EBUSY); 5485 } 5486 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5487 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5488 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5489 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5490 /* 5491 * Cache devices can always be removed. 5492 */ 5493 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 5494 ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX); 5495 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5496 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5497 spa_load_l2cache(spa); 5498 spa->spa_l2cache.sav_sync = B_TRUE; 5499 } else if (vd != NULL && vd->vdev_islog) { 5500 ASSERT(!locked); 5501 ASSERT(vd == vd->vdev_top); 5502 5503 mg = vd->vdev_mg; 5504 5505 /* 5506 * Stop allocating from this vdev. 5507 */ 5508 metaslab_group_passivate(mg); 5509 5510 /* 5511 * Wait for the youngest allocations and frees to sync, 5512 * and then wait for the deferral of those frees to finish. 5513 */ 5514 spa_vdev_config_exit(spa, NULL, 5515 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5516 5517 /* 5518 * Attempt to evacuate the vdev. 5519 */ 5520 error = spa_vdev_remove_evacuate(spa, vd); 5521 5522 txg = spa_vdev_config_enter(spa); 5523 5524 /* 5525 * If we couldn't evacuate the vdev, unwind. 5526 */ 5527 if (error) { 5528 metaslab_group_activate(mg); 5529 return (spa_vdev_exit(spa, NULL, txg, error)); 5530 } 5531 5532 /* 5533 * Clean up the vdev namespace. 5534 */ 5535 ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV); 5536 spa_vdev_remove_from_namespace(spa, vd); 5537 5538 } else if (vd != NULL) { 5539 /* 5540 * Normal vdevs cannot be removed (yet). 5541 */ 5542 error = SET_ERROR(ENOTSUP); 5543 } else { 5544 /* 5545 * There is no vdev of any kind with the specified guid. 5546 */ 5547 error = SET_ERROR(ENOENT); 5548 } 5549 5550 if (!locked) 5551 error = spa_vdev_exit(spa, NULL, txg, error); 5552 5553 if (ev) 5554 spa_event_post(ev); 5555 5556 return (error); 5557 } 5558 5559 /* 5560 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5561 * currently spared, so we can detach it. 5562 */ 5563 static vdev_t * 5564 spa_vdev_resilver_done_hunt(vdev_t *vd) 5565 { 5566 vdev_t *newvd, *oldvd; 5567 5568 for (int c = 0; c < vd->vdev_children; c++) { 5569 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5570 if (oldvd != NULL) 5571 return (oldvd); 5572 } 5573 5574 /* 5575 * Check for a completed replacement. We always consider the first 5576 * vdev in the list to be the oldest vdev, and the last one to be 5577 * the newest (see spa_vdev_attach() for how that works). In 5578 * the case where the newest vdev is faulted, we will not automatically 5579 * remove it after a resilver completes. This is OK as it will require 5580 * user intervention to determine which disk the admin wishes to keep. 5581 */ 5582 if (vd->vdev_ops == &vdev_replacing_ops) { 5583 ASSERT(vd->vdev_children > 1); 5584 5585 newvd = vd->vdev_child[vd->vdev_children - 1]; 5586 oldvd = vd->vdev_child[0]; 5587 5588 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5589 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5590 !vdev_dtl_required(oldvd)) 5591 return (oldvd); 5592 } 5593 5594 /* 5595 * Check for a completed resilver with the 'unspare' flag set. 5596 */ 5597 if (vd->vdev_ops == &vdev_spare_ops) { 5598 vdev_t *first = vd->vdev_child[0]; 5599 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5600 5601 if (last->vdev_unspare) { 5602 oldvd = first; 5603 newvd = last; 5604 } else if (first->vdev_unspare) { 5605 oldvd = last; 5606 newvd = first; 5607 } else { 5608 oldvd = NULL; 5609 } 5610 5611 if (oldvd != NULL && 5612 vdev_dtl_empty(newvd, DTL_MISSING) && 5613 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5614 !vdev_dtl_required(oldvd)) 5615 return (oldvd); 5616 5617 /* 5618 * If there are more than two spares attached to a disk, 5619 * and those spares are not required, then we want to 5620 * attempt to free them up now so that they can be used 5621 * by other pools. Once we're back down to a single 5622 * disk+spare, we stop removing them. 5623 */ 5624 if (vd->vdev_children > 2) { 5625 newvd = vd->vdev_child[1]; 5626 5627 if (newvd->vdev_isspare && last->vdev_isspare && 5628 vdev_dtl_empty(last, DTL_MISSING) && 5629 vdev_dtl_empty(last, DTL_OUTAGE) && 5630 !vdev_dtl_required(newvd)) 5631 return (newvd); 5632 } 5633 } 5634 5635 return (NULL); 5636 } 5637 5638 static void 5639 spa_vdev_resilver_done(spa_t *spa) 5640 { 5641 vdev_t *vd, *pvd, *ppvd; 5642 uint64_t guid, sguid, pguid, ppguid; 5643 5644 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5645 5646 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5647 pvd = vd->vdev_parent; 5648 ppvd = pvd->vdev_parent; 5649 guid = vd->vdev_guid; 5650 pguid = pvd->vdev_guid; 5651 ppguid = ppvd->vdev_guid; 5652 sguid = 0; 5653 /* 5654 * If we have just finished replacing a hot spared device, then 5655 * we need to detach the parent's first child (the original hot 5656 * spare) as well. 5657 */ 5658 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5659 ppvd->vdev_children == 2) { 5660 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5661 sguid = ppvd->vdev_child[1]->vdev_guid; 5662 } 5663 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5664 5665 spa_config_exit(spa, SCL_ALL, FTAG); 5666 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5667 return; 5668 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5669 return; 5670 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5671 } 5672 5673 spa_config_exit(spa, SCL_ALL, FTAG); 5674 } 5675 5676 /* 5677 * Update the stored path or FRU for this vdev. 5678 */ 5679 int 5680 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5681 boolean_t ispath) 5682 { 5683 vdev_t *vd; 5684 boolean_t sync = B_FALSE; 5685 5686 ASSERT(spa_writeable(spa)); 5687 5688 spa_vdev_state_enter(spa, SCL_ALL); 5689 5690 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5691 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5692 5693 if (!vd->vdev_ops->vdev_op_leaf) 5694 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5695 5696 if (ispath) { 5697 if (strcmp(value, vd->vdev_path) != 0) { 5698 spa_strfree(vd->vdev_path); 5699 vd->vdev_path = spa_strdup(value); 5700 sync = B_TRUE; 5701 } 5702 } else { 5703 if (vd->vdev_fru == NULL) { 5704 vd->vdev_fru = spa_strdup(value); 5705 sync = B_TRUE; 5706 } else if (strcmp(value, vd->vdev_fru) != 0) { 5707 spa_strfree(vd->vdev_fru); 5708 vd->vdev_fru = spa_strdup(value); 5709 sync = B_TRUE; 5710 } 5711 } 5712 5713 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5714 } 5715 5716 int 5717 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5718 { 5719 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5720 } 5721 5722 int 5723 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5724 { 5725 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5726 } 5727 5728 /* 5729 * ========================================================================== 5730 * SPA Scanning 5731 * ========================================================================== 5732 */ 5733 5734 int 5735 spa_scan_stop(spa_t *spa) 5736 { 5737 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5738 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5739 return (SET_ERROR(EBUSY)); 5740 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5741 } 5742 5743 int 5744 spa_scan(spa_t *spa, pool_scan_func_t func) 5745 { 5746 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5747 5748 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5749 return (SET_ERROR(ENOTSUP)); 5750 5751 /* 5752 * If a resilver was requested, but there is no DTL on a 5753 * writeable leaf device, we have nothing to do. 5754 */ 5755 if (func == POOL_SCAN_RESILVER && 5756 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5757 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5758 return (0); 5759 } 5760 5761 return (dsl_scan(spa->spa_dsl_pool, func)); 5762 } 5763 5764 /* 5765 * ========================================================================== 5766 * SPA async task processing 5767 * ========================================================================== 5768 */ 5769 5770 static void 5771 spa_async_remove(spa_t *spa, vdev_t *vd) 5772 { 5773 if (vd->vdev_remove_wanted) { 5774 vd->vdev_remove_wanted = B_FALSE; 5775 vd->vdev_delayed_close = B_FALSE; 5776 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5777 5778 /* 5779 * We want to clear the stats, but we don't want to do a full 5780 * vdev_clear() as that will cause us to throw away 5781 * degraded/faulted state as well as attempt to reopen the 5782 * device, all of which is a waste. 5783 */ 5784 vd->vdev_stat.vs_read_errors = 0; 5785 vd->vdev_stat.vs_write_errors = 0; 5786 vd->vdev_stat.vs_checksum_errors = 0; 5787 5788 vdev_state_dirty(vd->vdev_top); 5789 } 5790 5791 for (int c = 0; c < vd->vdev_children; c++) 5792 spa_async_remove(spa, vd->vdev_child[c]); 5793 } 5794 5795 static void 5796 spa_async_probe(spa_t *spa, vdev_t *vd) 5797 { 5798 if (vd->vdev_probe_wanted) { 5799 vd->vdev_probe_wanted = B_FALSE; 5800 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5801 } 5802 5803 for (int c = 0; c < vd->vdev_children; c++) 5804 spa_async_probe(spa, vd->vdev_child[c]); 5805 } 5806 5807 static void 5808 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5809 { 5810 sysevent_id_t eid; 5811 nvlist_t *attr; 5812 char *physpath; 5813 5814 if (!spa->spa_autoexpand) 5815 return; 5816 5817 for (int c = 0; c < vd->vdev_children; c++) { 5818 vdev_t *cvd = vd->vdev_child[c]; 5819 spa_async_autoexpand(spa, cvd); 5820 } 5821 5822 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5823 return; 5824 5825 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5826 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5827 5828 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5829 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5830 5831 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5832 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5833 5834 nvlist_free(attr); 5835 kmem_free(physpath, MAXPATHLEN); 5836 } 5837 5838 static void 5839 spa_async_thread(spa_t *spa) 5840 { 5841 int tasks; 5842 5843 ASSERT(spa->spa_sync_on); 5844 5845 mutex_enter(&spa->spa_async_lock); 5846 tasks = spa->spa_async_tasks; 5847 spa->spa_async_tasks = 0; 5848 mutex_exit(&spa->spa_async_lock); 5849 5850 /* 5851 * See if the config needs to be updated. 5852 */ 5853 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5854 uint64_t old_space, new_space; 5855 5856 mutex_enter(&spa_namespace_lock); 5857 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5858 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5859 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5860 mutex_exit(&spa_namespace_lock); 5861 5862 /* 5863 * If the pool grew as a result of the config update, 5864 * then log an internal history event. 5865 */ 5866 if (new_space != old_space) { 5867 spa_history_log_internal(spa, "vdev online", NULL, 5868 "pool '%s' size: %llu(+%llu)", 5869 spa_name(spa), new_space, new_space - old_space); 5870 } 5871 } 5872 5873 /* 5874 * See if any devices need to be marked REMOVED. 5875 */ 5876 if (tasks & SPA_ASYNC_REMOVE) { 5877 spa_vdev_state_enter(spa, SCL_NONE); 5878 spa_async_remove(spa, spa->spa_root_vdev); 5879 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5880 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5881 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5882 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5883 (void) spa_vdev_state_exit(spa, NULL, 0); 5884 } 5885 5886 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5887 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5888 spa_async_autoexpand(spa, spa->spa_root_vdev); 5889 spa_config_exit(spa, SCL_CONFIG, FTAG); 5890 } 5891 5892 /* 5893 * See if any devices need to be probed. 5894 */ 5895 if (tasks & SPA_ASYNC_PROBE) { 5896 spa_vdev_state_enter(spa, SCL_NONE); 5897 spa_async_probe(spa, spa->spa_root_vdev); 5898 (void) spa_vdev_state_exit(spa, NULL, 0); 5899 } 5900 5901 /* 5902 * If any devices are done replacing, detach them. 5903 */ 5904 if (tasks & SPA_ASYNC_RESILVER_DONE) 5905 spa_vdev_resilver_done(spa); 5906 5907 /* 5908 * Kick off a resilver. 5909 */ 5910 if (tasks & SPA_ASYNC_RESILVER) 5911 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5912 5913 /* 5914 * Let the world know that we're done. 5915 */ 5916 mutex_enter(&spa->spa_async_lock); 5917 spa->spa_async_thread = NULL; 5918 cv_broadcast(&spa->spa_async_cv); 5919 mutex_exit(&spa->spa_async_lock); 5920 thread_exit(); 5921 } 5922 5923 void 5924 spa_async_suspend(spa_t *spa) 5925 { 5926 mutex_enter(&spa->spa_async_lock); 5927 spa->spa_async_suspended++; 5928 while (spa->spa_async_thread != NULL) 5929 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5930 mutex_exit(&spa->spa_async_lock); 5931 } 5932 5933 void 5934 spa_async_resume(spa_t *spa) 5935 { 5936 mutex_enter(&spa->spa_async_lock); 5937 ASSERT(spa->spa_async_suspended != 0); 5938 spa->spa_async_suspended--; 5939 mutex_exit(&spa->spa_async_lock); 5940 } 5941 5942 static boolean_t 5943 spa_async_tasks_pending(spa_t *spa) 5944 { 5945 uint_t non_config_tasks; 5946 uint_t config_task; 5947 boolean_t config_task_suspended; 5948 5949 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5950 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5951 if (spa->spa_ccw_fail_time == 0) { 5952 config_task_suspended = B_FALSE; 5953 } else { 5954 config_task_suspended = 5955 (gethrtime() - spa->spa_ccw_fail_time) < 5956 (zfs_ccw_retry_interval * NANOSEC); 5957 } 5958 5959 return (non_config_tasks || (config_task && !config_task_suspended)); 5960 } 5961 5962 static void 5963 spa_async_dispatch(spa_t *spa) 5964 { 5965 mutex_enter(&spa->spa_async_lock); 5966 if (spa_async_tasks_pending(spa) && 5967 !spa->spa_async_suspended && 5968 spa->spa_async_thread == NULL && 5969 rootdir != NULL) 5970 spa->spa_async_thread = thread_create(NULL, 0, 5971 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5972 mutex_exit(&spa->spa_async_lock); 5973 } 5974 5975 void 5976 spa_async_request(spa_t *spa, int task) 5977 { 5978 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5979 mutex_enter(&spa->spa_async_lock); 5980 spa->spa_async_tasks |= task; 5981 mutex_exit(&spa->spa_async_lock); 5982 } 5983 5984 /* 5985 * ========================================================================== 5986 * SPA syncing routines 5987 * ========================================================================== 5988 */ 5989 5990 static int 5991 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5992 { 5993 bpobj_t *bpo = arg; 5994 bpobj_enqueue(bpo, bp, tx); 5995 return (0); 5996 } 5997 5998 static int 5999 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6000 { 6001 zio_t *zio = arg; 6002 6003 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 6004 zio->io_flags)); 6005 return (0); 6006 } 6007 6008 /* 6009 * Note: this simple function is not inlined to make it easier to dtrace the 6010 * amount of time spent syncing frees. 6011 */ 6012 static void 6013 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 6014 { 6015 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6016 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 6017 VERIFY(zio_wait(zio) == 0); 6018 } 6019 6020 /* 6021 * Note: this simple function is not inlined to make it easier to dtrace the 6022 * amount of time spent syncing deferred frees. 6023 */ 6024 static void 6025 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 6026 { 6027 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6028 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 6029 spa_free_sync_cb, zio, tx), ==, 0); 6030 VERIFY0(zio_wait(zio)); 6031 } 6032 6033 6034 static void 6035 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 6036 { 6037 char *packed = NULL; 6038 size_t bufsize; 6039 size_t nvsize = 0; 6040 dmu_buf_t *db; 6041 6042 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 6043 6044 /* 6045 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 6046 * information. This avoids the dmu_buf_will_dirty() path and 6047 * saves us a pre-read to get data we don't actually care about. 6048 */ 6049 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 6050 packed = kmem_alloc(bufsize, KM_SLEEP); 6051 6052 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 6053 KM_SLEEP) == 0); 6054 bzero(packed + nvsize, bufsize - nvsize); 6055 6056 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 6057 6058 kmem_free(packed, bufsize); 6059 6060 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 6061 dmu_buf_will_dirty(db, tx); 6062 *(uint64_t *)db->db_data = nvsize; 6063 dmu_buf_rele(db, FTAG); 6064 } 6065 6066 static void 6067 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 6068 const char *config, const char *entry) 6069 { 6070 nvlist_t *nvroot; 6071 nvlist_t **list; 6072 int i; 6073 6074 if (!sav->sav_sync) 6075 return; 6076 6077 /* 6078 * Update the MOS nvlist describing the list of available devices. 6079 * spa_validate_aux() will have already made sure this nvlist is 6080 * valid and the vdevs are labeled appropriately. 6081 */ 6082 if (sav->sav_object == 0) { 6083 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 6084 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 6085 sizeof (uint64_t), tx); 6086 VERIFY(zap_update(spa->spa_meta_objset, 6087 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 6088 &sav->sav_object, tx) == 0); 6089 } 6090 6091 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6092 if (sav->sav_count == 0) { 6093 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 6094 } else { 6095 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 6096 for (i = 0; i < sav->sav_count; i++) 6097 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 6098 B_FALSE, VDEV_CONFIG_L2CACHE); 6099 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 6100 sav->sav_count) == 0); 6101 for (i = 0; i < sav->sav_count; i++) 6102 nvlist_free(list[i]); 6103 kmem_free(list, sav->sav_count * sizeof (void *)); 6104 } 6105 6106 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 6107 nvlist_free(nvroot); 6108 6109 sav->sav_sync = B_FALSE; 6110 } 6111 6112 /* 6113 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 6114 * The all-vdev ZAP must be empty. 6115 */ 6116 static void 6117 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 6118 { 6119 spa_t *spa = vd->vdev_spa; 6120 if (vd->vdev_top_zap != 0) { 6121 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6122 vd->vdev_top_zap, tx)); 6123 } 6124 if (vd->vdev_leaf_zap != 0) { 6125 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6126 vd->vdev_leaf_zap, tx)); 6127 } 6128 for (uint64_t i = 0; i < vd->vdev_children; i++) { 6129 spa_avz_build(vd->vdev_child[i], avz, tx); 6130 } 6131 } 6132 6133 static void 6134 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 6135 { 6136 nvlist_t *config; 6137 6138 /* 6139 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 6140 * its config may not be dirty but we still need to build per-vdev ZAPs. 6141 * Similarly, if the pool is being assembled (e.g. after a split), we 6142 * need to rebuild the AVZ although the config may not be dirty. 6143 */ 6144 if (list_is_empty(&spa->spa_config_dirty_list) && 6145 spa->spa_avz_action == AVZ_ACTION_NONE) 6146 return; 6147 6148 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6149 6150 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 6151 spa->spa_all_vdev_zaps != 0); 6152 6153 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 6154 /* Make and build the new AVZ */ 6155 uint64_t new_avz = zap_create(spa->spa_meta_objset, 6156 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 6157 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 6158 6159 /* Diff old AVZ with new one */ 6160 zap_cursor_t zc; 6161 zap_attribute_t za; 6162 6163 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6164 spa->spa_all_vdev_zaps); 6165 zap_cursor_retrieve(&zc, &za) == 0; 6166 zap_cursor_advance(&zc)) { 6167 uint64_t vdzap = za.za_first_integer; 6168 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 6169 vdzap) == ENOENT) { 6170 /* 6171 * ZAP is listed in old AVZ but not in new one; 6172 * destroy it 6173 */ 6174 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 6175 tx)); 6176 } 6177 } 6178 6179 zap_cursor_fini(&zc); 6180 6181 /* Destroy the old AVZ */ 6182 VERIFY0(zap_destroy(spa->spa_meta_objset, 6183 spa->spa_all_vdev_zaps, tx)); 6184 6185 /* Replace the old AVZ in the dir obj with the new one */ 6186 VERIFY0(zap_update(spa->spa_meta_objset, 6187 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 6188 sizeof (new_avz), 1, &new_avz, tx)); 6189 6190 spa->spa_all_vdev_zaps = new_avz; 6191 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 6192 zap_cursor_t zc; 6193 zap_attribute_t za; 6194 6195 /* Walk through the AVZ and destroy all listed ZAPs */ 6196 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6197 spa->spa_all_vdev_zaps); 6198 zap_cursor_retrieve(&zc, &za) == 0; 6199 zap_cursor_advance(&zc)) { 6200 uint64_t zap = za.za_first_integer; 6201 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 6202 } 6203 6204 zap_cursor_fini(&zc); 6205 6206 /* Destroy and unlink the AVZ itself */ 6207 VERIFY0(zap_destroy(spa->spa_meta_objset, 6208 spa->spa_all_vdev_zaps, tx)); 6209 VERIFY0(zap_remove(spa->spa_meta_objset, 6210 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 6211 spa->spa_all_vdev_zaps = 0; 6212 } 6213 6214 if (spa->spa_all_vdev_zaps == 0) { 6215 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 6216 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 6217 DMU_POOL_VDEV_ZAP_MAP, tx); 6218 } 6219 spa->spa_avz_action = AVZ_ACTION_NONE; 6220 6221 /* Create ZAPs for vdevs that don't have them. */ 6222 vdev_construct_zaps(spa->spa_root_vdev, tx); 6223 6224 config = spa_config_generate(spa, spa->spa_root_vdev, 6225 dmu_tx_get_txg(tx), B_FALSE); 6226 6227 /* 6228 * If we're upgrading the spa version then make sure that 6229 * the config object gets updated with the correct version. 6230 */ 6231 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 6232 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 6233 spa->spa_uberblock.ub_version); 6234 6235 spa_config_exit(spa, SCL_STATE, FTAG); 6236 6237 nvlist_free(spa->spa_config_syncing); 6238 spa->spa_config_syncing = config; 6239 6240 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 6241 } 6242 6243 static void 6244 spa_sync_version(void *arg, dmu_tx_t *tx) 6245 { 6246 uint64_t *versionp = arg; 6247 uint64_t version = *versionp; 6248 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6249 6250 /* 6251 * Setting the version is special cased when first creating the pool. 6252 */ 6253 ASSERT(tx->tx_txg != TXG_INITIAL); 6254 6255 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6256 ASSERT(version >= spa_version(spa)); 6257 6258 spa->spa_uberblock.ub_version = version; 6259 vdev_config_dirty(spa->spa_root_vdev); 6260 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6261 } 6262 6263 /* 6264 * Set zpool properties. 6265 */ 6266 static void 6267 spa_sync_props(void *arg, dmu_tx_t *tx) 6268 { 6269 nvlist_t *nvp = arg; 6270 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6271 objset_t *mos = spa->spa_meta_objset; 6272 nvpair_t *elem = NULL; 6273 6274 mutex_enter(&spa->spa_props_lock); 6275 6276 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6277 uint64_t intval; 6278 char *strval, *fname; 6279 zpool_prop_t prop; 6280 const char *propname; 6281 zprop_type_t proptype; 6282 spa_feature_t fid; 6283 6284 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6285 case ZPROP_INVAL: 6286 /* 6287 * We checked this earlier in spa_prop_validate(). 6288 */ 6289 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6290 6291 fname = strchr(nvpair_name(elem), '@') + 1; 6292 VERIFY0(zfeature_lookup_name(fname, &fid)); 6293 6294 spa_feature_enable(spa, fid, tx); 6295 spa_history_log_internal(spa, "set", tx, 6296 "%s=enabled", nvpair_name(elem)); 6297 break; 6298 6299 case ZPOOL_PROP_VERSION: 6300 intval = fnvpair_value_uint64(elem); 6301 /* 6302 * The version is synced seperatly before other 6303 * properties and should be correct by now. 6304 */ 6305 ASSERT3U(spa_version(spa), >=, intval); 6306 break; 6307 6308 case ZPOOL_PROP_ALTROOT: 6309 /* 6310 * 'altroot' is a non-persistent property. It should 6311 * have been set temporarily at creation or import time. 6312 */ 6313 ASSERT(spa->spa_root != NULL); 6314 break; 6315 6316 case ZPOOL_PROP_READONLY: 6317 case ZPOOL_PROP_CACHEFILE: 6318 /* 6319 * 'readonly' and 'cachefile' are also non-persisitent 6320 * properties. 6321 */ 6322 break; 6323 case ZPOOL_PROP_COMMENT: 6324 strval = fnvpair_value_string(elem); 6325 if (spa->spa_comment != NULL) 6326 spa_strfree(spa->spa_comment); 6327 spa->spa_comment = spa_strdup(strval); 6328 /* 6329 * We need to dirty the configuration on all the vdevs 6330 * so that their labels get updated. It's unnecessary 6331 * to do this for pool creation since the vdev's 6332 * configuratoin has already been dirtied. 6333 */ 6334 if (tx->tx_txg != TXG_INITIAL) 6335 vdev_config_dirty(spa->spa_root_vdev); 6336 spa_history_log_internal(spa, "set", tx, 6337 "%s=%s", nvpair_name(elem), strval); 6338 break; 6339 default: 6340 /* 6341 * Set pool property values in the poolprops mos object. 6342 */ 6343 if (spa->spa_pool_props_object == 0) { 6344 spa->spa_pool_props_object = 6345 zap_create_link(mos, DMU_OT_POOL_PROPS, 6346 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6347 tx); 6348 } 6349 6350 /* normalize the property name */ 6351 propname = zpool_prop_to_name(prop); 6352 proptype = zpool_prop_get_type(prop); 6353 6354 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6355 ASSERT(proptype == PROP_TYPE_STRING); 6356 strval = fnvpair_value_string(elem); 6357 VERIFY0(zap_update(mos, 6358 spa->spa_pool_props_object, propname, 6359 1, strlen(strval) + 1, strval, tx)); 6360 spa_history_log_internal(spa, "set", tx, 6361 "%s=%s", nvpair_name(elem), strval); 6362 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6363 intval = fnvpair_value_uint64(elem); 6364 6365 if (proptype == PROP_TYPE_INDEX) { 6366 const char *unused; 6367 VERIFY0(zpool_prop_index_to_string( 6368 prop, intval, &unused)); 6369 } 6370 VERIFY0(zap_update(mos, 6371 spa->spa_pool_props_object, propname, 6372 8, 1, &intval, tx)); 6373 spa_history_log_internal(spa, "set", tx, 6374 "%s=%lld", nvpair_name(elem), intval); 6375 } else { 6376 ASSERT(0); /* not allowed */ 6377 } 6378 6379 switch (prop) { 6380 case ZPOOL_PROP_DELEGATION: 6381 spa->spa_delegation = intval; 6382 break; 6383 case ZPOOL_PROP_BOOTFS: 6384 spa->spa_bootfs = intval; 6385 break; 6386 case ZPOOL_PROP_FAILUREMODE: 6387 spa->spa_failmode = intval; 6388 break; 6389 case ZPOOL_PROP_AUTOEXPAND: 6390 spa->spa_autoexpand = intval; 6391 if (tx->tx_txg != TXG_INITIAL) 6392 spa_async_request(spa, 6393 SPA_ASYNC_AUTOEXPAND); 6394 break; 6395 case ZPOOL_PROP_DEDUPDITTO: 6396 spa->spa_dedup_ditto = intval; 6397 break; 6398 default: 6399 break; 6400 } 6401 } 6402 6403 } 6404 6405 mutex_exit(&spa->spa_props_lock); 6406 } 6407 6408 /* 6409 * Perform one-time upgrade on-disk changes. spa_version() does not 6410 * reflect the new version this txg, so there must be no changes this 6411 * txg to anything that the upgrade code depends on after it executes. 6412 * Therefore this must be called after dsl_pool_sync() does the sync 6413 * tasks. 6414 */ 6415 static void 6416 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6417 { 6418 dsl_pool_t *dp = spa->spa_dsl_pool; 6419 6420 ASSERT(spa->spa_sync_pass == 1); 6421 6422 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6423 6424 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6425 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6426 dsl_pool_create_origin(dp, tx); 6427 6428 /* Keeping the origin open increases spa_minref */ 6429 spa->spa_minref += 3; 6430 } 6431 6432 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6433 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6434 dsl_pool_upgrade_clones(dp, tx); 6435 } 6436 6437 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6438 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6439 dsl_pool_upgrade_dir_clones(dp, tx); 6440 6441 /* Keeping the freedir open increases spa_minref */ 6442 spa->spa_minref += 3; 6443 } 6444 6445 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6446 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6447 spa_feature_create_zap_objects(spa, tx); 6448 } 6449 6450 /* 6451 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6452 * when possibility to use lz4 compression for metadata was added 6453 * Old pools that have this feature enabled must be upgraded to have 6454 * this feature active 6455 */ 6456 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6457 boolean_t lz4_en = spa_feature_is_enabled(spa, 6458 SPA_FEATURE_LZ4_COMPRESS); 6459 boolean_t lz4_ac = spa_feature_is_active(spa, 6460 SPA_FEATURE_LZ4_COMPRESS); 6461 6462 if (lz4_en && !lz4_ac) 6463 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6464 } 6465 6466 /* 6467 * If we haven't written the salt, do so now. Note that the 6468 * feature may not be activated yet, but that's fine since 6469 * the presence of this ZAP entry is backwards compatible. 6470 */ 6471 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 6472 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 6473 VERIFY0(zap_add(spa->spa_meta_objset, 6474 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 6475 sizeof (spa->spa_cksum_salt.zcs_bytes), 6476 spa->spa_cksum_salt.zcs_bytes, tx)); 6477 } 6478 6479 rrw_exit(&dp->dp_config_rwlock, FTAG); 6480 } 6481 6482 /* 6483 * Sync the specified transaction group. New blocks may be dirtied as 6484 * part of the process, so we iterate until it converges. 6485 */ 6486 void 6487 spa_sync(spa_t *spa, uint64_t txg) 6488 { 6489 dsl_pool_t *dp = spa->spa_dsl_pool; 6490 objset_t *mos = spa->spa_meta_objset; 6491 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6492 vdev_t *rvd = spa->spa_root_vdev; 6493 vdev_t *vd; 6494 dmu_tx_t *tx; 6495 int error; 6496 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 6497 zfs_vdev_queue_depth_pct / 100; 6498 6499 VERIFY(spa_writeable(spa)); 6500 6501 /* 6502 * Lock out configuration changes. 6503 */ 6504 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6505 6506 spa->spa_syncing_txg = txg; 6507 spa->spa_sync_pass = 0; 6508 6509 mutex_enter(&spa->spa_alloc_lock); 6510 VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); 6511 mutex_exit(&spa->spa_alloc_lock); 6512 6513 /* 6514 * If there are any pending vdev state changes, convert them 6515 * into config changes that go out with this transaction group. 6516 */ 6517 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6518 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6519 /* 6520 * We need the write lock here because, for aux vdevs, 6521 * calling vdev_config_dirty() modifies sav_config. 6522 * This is ugly and will become unnecessary when we 6523 * eliminate the aux vdev wart by integrating all vdevs 6524 * into the root vdev tree. 6525 */ 6526 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6527 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6528 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6529 vdev_state_clean(vd); 6530 vdev_config_dirty(vd); 6531 } 6532 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6533 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6534 } 6535 spa_config_exit(spa, SCL_STATE, FTAG); 6536 6537 tx = dmu_tx_create_assigned(dp, txg); 6538 6539 spa->spa_sync_starttime = gethrtime(); 6540 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6541 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6542 6543 /* 6544 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6545 * set spa_deflate if we have no raid-z vdevs. 6546 */ 6547 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6548 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6549 int i; 6550 6551 for (i = 0; i < rvd->vdev_children; i++) { 6552 vd = rvd->vdev_child[i]; 6553 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6554 break; 6555 } 6556 if (i == rvd->vdev_children) { 6557 spa->spa_deflate = TRUE; 6558 VERIFY(0 == zap_add(spa->spa_meta_objset, 6559 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6560 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6561 } 6562 } 6563 6564 /* 6565 * Set the top-level vdev's max queue depth. Evaluate each 6566 * top-level's async write queue depth in case it changed. 6567 * The max queue depth will not change in the middle of syncing 6568 * out this txg. 6569 */ 6570 uint64_t queue_depth_total = 0; 6571 for (int c = 0; c < rvd->vdev_children; c++) { 6572 vdev_t *tvd = rvd->vdev_child[c]; 6573 metaslab_group_t *mg = tvd->vdev_mg; 6574 6575 if (mg == NULL || mg->mg_class != spa_normal_class(spa) || 6576 !metaslab_group_initialized(mg)) 6577 continue; 6578 6579 /* 6580 * It is safe to do a lock-free check here because only async 6581 * allocations look at mg_max_alloc_queue_depth, and async 6582 * allocations all happen from spa_sync(). 6583 */ 6584 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth)); 6585 mg->mg_max_alloc_queue_depth = max_queue_depth; 6586 queue_depth_total += mg->mg_max_alloc_queue_depth; 6587 } 6588 metaslab_class_t *mc = spa_normal_class(spa); 6589 ASSERT0(refcount_count(&mc->mc_alloc_slots)); 6590 mc->mc_alloc_max_slots = queue_depth_total; 6591 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 6592 6593 ASSERT3U(mc->mc_alloc_max_slots, <=, 6594 max_queue_depth * rvd->vdev_children); 6595 6596 /* 6597 * Iterate to convergence. 6598 */ 6599 do { 6600 int pass = ++spa->spa_sync_pass; 6601 6602 spa_sync_config_object(spa, tx); 6603 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6604 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6605 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6606 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6607 spa_errlog_sync(spa, txg); 6608 dsl_pool_sync(dp, txg); 6609 6610 if (pass < zfs_sync_pass_deferred_free) { 6611 spa_sync_frees(spa, free_bpl, tx); 6612 } else { 6613 /* 6614 * We can not defer frees in pass 1, because 6615 * we sync the deferred frees later in pass 1. 6616 */ 6617 ASSERT3U(pass, >, 1); 6618 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6619 &spa->spa_deferred_bpobj, tx); 6620 } 6621 6622 ddt_sync(spa, txg); 6623 dsl_scan_sync(dp, tx); 6624 6625 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6626 vdev_sync(vd, txg); 6627 6628 if (pass == 1) { 6629 spa_sync_upgrades(spa, tx); 6630 ASSERT3U(txg, >=, 6631 spa->spa_uberblock.ub_rootbp.blk_birth); 6632 /* 6633 * Note: We need to check if the MOS is dirty 6634 * because we could have marked the MOS dirty 6635 * without updating the uberblock (e.g. if we 6636 * have sync tasks but no dirty user data). We 6637 * need to check the uberblock's rootbp because 6638 * it is updated if we have synced out dirty 6639 * data (though in this case the MOS will most 6640 * likely also be dirty due to second order 6641 * effects, we don't want to rely on that here). 6642 */ 6643 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 6644 !dmu_objset_is_dirty(mos, txg)) { 6645 /* 6646 * Nothing changed on the first pass, 6647 * therefore this TXG is a no-op. Avoid 6648 * syncing deferred frees, so that we 6649 * can keep this TXG as a no-op. 6650 */ 6651 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 6652 txg)); 6653 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6654 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 6655 break; 6656 } 6657 spa_sync_deferred_frees(spa, tx); 6658 } 6659 6660 } while (dmu_objset_is_dirty(mos, txg)); 6661 6662 if (!list_is_empty(&spa->spa_config_dirty_list)) { 6663 /* 6664 * Make sure that the number of ZAPs for all the vdevs matches 6665 * the number of ZAPs in the per-vdev ZAP list. This only gets 6666 * called if the config is dirty; otherwise there may be 6667 * outstanding AVZ operations that weren't completed in 6668 * spa_sync_config_object. 6669 */ 6670 uint64_t all_vdev_zap_entry_count; 6671 ASSERT0(zap_count(spa->spa_meta_objset, 6672 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 6673 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 6674 all_vdev_zap_entry_count); 6675 } 6676 6677 /* 6678 * Rewrite the vdev configuration (which includes the uberblock) 6679 * to commit the transaction group. 6680 * 6681 * If there are no dirty vdevs, we sync the uberblock to a few 6682 * random top-level vdevs that are known to be visible in the 6683 * config cache (see spa_vdev_add() for a complete description). 6684 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6685 */ 6686 for (;;) { 6687 /* 6688 * We hold SCL_STATE to prevent vdev open/close/etc. 6689 * while we're attempting to write the vdev labels. 6690 */ 6691 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6692 6693 if (list_is_empty(&spa->spa_config_dirty_list)) { 6694 vdev_t *svd[SPA_DVAS_PER_BP]; 6695 int svdcount = 0; 6696 int children = rvd->vdev_children; 6697 int c0 = spa_get_random(children); 6698 6699 for (int c = 0; c < children; c++) { 6700 vd = rvd->vdev_child[(c0 + c) % children]; 6701 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6702 continue; 6703 svd[svdcount++] = vd; 6704 if (svdcount == SPA_DVAS_PER_BP) 6705 break; 6706 } 6707 error = vdev_config_sync(svd, svdcount, txg); 6708 } else { 6709 error = vdev_config_sync(rvd->vdev_child, 6710 rvd->vdev_children, txg); 6711 } 6712 6713 if (error == 0) 6714 spa->spa_last_synced_guid = rvd->vdev_guid; 6715 6716 spa_config_exit(spa, SCL_STATE, FTAG); 6717 6718 if (error == 0) 6719 break; 6720 zio_suspend(spa, NULL); 6721 zio_resume_wait(spa); 6722 } 6723 dmu_tx_commit(tx); 6724 6725 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6726 6727 /* 6728 * Clear the dirty config list. 6729 */ 6730 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6731 vdev_config_clean(vd); 6732 6733 /* 6734 * Now that the new config has synced transactionally, 6735 * let it become visible to the config cache. 6736 */ 6737 if (spa->spa_config_syncing != NULL) { 6738 spa_config_set(spa, spa->spa_config_syncing); 6739 spa->spa_config_txg = txg; 6740 spa->spa_config_syncing = NULL; 6741 } 6742 6743 spa->spa_ubsync = spa->spa_uberblock; 6744 6745 dsl_pool_sync_done(dp, txg); 6746 6747 mutex_enter(&spa->spa_alloc_lock); 6748 VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); 6749 mutex_exit(&spa->spa_alloc_lock); 6750 6751 /* 6752 * Update usable space statistics. 6753 */ 6754 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6755 vdev_sync_done(vd, txg); 6756 6757 spa_update_dspace(spa); 6758 6759 /* 6760 * It had better be the case that we didn't dirty anything 6761 * since vdev_config_sync(). 6762 */ 6763 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6764 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6765 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6766 6767 spa->spa_sync_pass = 0; 6768 6769 spa_config_exit(spa, SCL_CONFIG, FTAG); 6770 6771 spa_handle_ignored_writes(spa); 6772 6773 /* 6774 * If any async tasks have been requested, kick them off. 6775 */ 6776 spa_async_dispatch(spa); 6777 } 6778 6779 /* 6780 * Sync all pools. We don't want to hold the namespace lock across these 6781 * operations, so we take a reference on the spa_t and drop the lock during the 6782 * sync. 6783 */ 6784 void 6785 spa_sync_allpools(void) 6786 { 6787 spa_t *spa = NULL; 6788 mutex_enter(&spa_namespace_lock); 6789 while ((spa = spa_next(spa)) != NULL) { 6790 if (spa_state(spa) != POOL_STATE_ACTIVE || 6791 !spa_writeable(spa) || spa_suspended(spa)) 6792 continue; 6793 spa_open_ref(spa, FTAG); 6794 mutex_exit(&spa_namespace_lock); 6795 txg_wait_synced(spa_get_dsl(spa), 0); 6796 mutex_enter(&spa_namespace_lock); 6797 spa_close(spa, FTAG); 6798 } 6799 mutex_exit(&spa_namespace_lock); 6800 } 6801 6802 /* 6803 * ========================================================================== 6804 * Miscellaneous routines 6805 * ========================================================================== 6806 */ 6807 6808 /* 6809 * Remove all pools in the system. 6810 */ 6811 void 6812 spa_evict_all(void) 6813 { 6814 spa_t *spa; 6815 6816 /* 6817 * Remove all cached state. All pools should be closed now, 6818 * so every spa in the AVL tree should be unreferenced. 6819 */ 6820 mutex_enter(&spa_namespace_lock); 6821 while ((spa = spa_next(NULL)) != NULL) { 6822 /* 6823 * Stop async tasks. The async thread may need to detach 6824 * a device that's been replaced, which requires grabbing 6825 * spa_namespace_lock, so we must drop it here. 6826 */ 6827 spa_open_ref(spa, FTAG); 6828 mutex_exit(&spa_namespace_lock); 6829 spa_async_suspend(spa); 6830 mutex_enter(&spa_namespace_lock); 6831 spa_close(spa, FTAG); 6832 6833 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6834 spa_unload(spa); 6835 spa_deactivate(spa); 6836 } 6837 spa_remove(spa); 6838 } 6839 mutex_exit(&spa_namespace_lock); 6840 } 6841 6842 vdev_t * 6843 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6844 { 6845 vdev_t *vd; 6846 int i; 6847 6848 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6849 return (vd); 6850 6851 if (aux) { 6852 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6853 vd = spa->spa_l2cache.sav_vdevs[i]; 6854 if (vd->vdev_guid == guid) 6855 return (vd); 6856 } 6857 6858 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6859 vd = spa->spa_spares.sav_vdevs[i]; 6860 if (vd->vdev_guid == guid) 6861 return (vd); 6862 } 6863 } 6864 6865 return (NULL); 6866 } 6867 6868 void 6869 spa_upgrade(spa_t *spa, uint64_t version) 6870 { 6871 ASSERT(spa_writeable(spa)); 6872 6873 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6874 6875 /* 6876 * This should only be called for a non-faulted pool, and since a 6877 * future version would result in an unopenable pool, this shouldn't be 6878 * possible. 6879 */ 6880 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6881 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6882 6883 spa->spa_uberblock.ub_version = version; 6884 vdev_config_dirty(spa->spa_root_vdev); 6885 6886 spa_config_exit(spa, SCL_ALL, FTAG); 6887 6888 txg_wait_synced(spa_get_dsl(spa), 0); 6889 } 6890 6891 boolean_t 6892 spa_has_spare(spa_t *spa, uint64_t guid) 6893 { 6894 int i; 6895 uint64_t spareguid; 6896 spa_aux_vdev_t *sav = &spa->spa_spares; 6897 6898 for (i = 0; i < sav->sav_count; i++) 6899 if (sav->sav_vdevs[i]->vdev_guid == guid) 6900 return (B_TRUE); 6901 6902 for (i = 0; i < sav->sav_npending; i++) { 6903 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6904 &spareguid) == 0 && spareguid == guid) 6905 return (B_TRUE); 6906 } 6907 6908 return (B_FALSE); 6909 } 6910 6911 /* 6912 * Check if a pool has an active shared spare device. 6913 * Note: reference count of an active spare is 2, as a spare and as a replace 6914 */ 6915 static boolean_t 6916 spa_has_active_shared_spare(spa_t *spa) 6917 { 6918 int i, refcnt; 6919 uint64_t pool; 6920 spa_aux_vdev_t *sav = &spa->spa_spares; 6921 6922 for (i = 0; i < sav->sav_count; i++) { 6923 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6924 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6925 refcnt > 2) 6926 return (B_TRUE); 6927 } 6928 6929 return (B_FALSE); 6930 } 6931 6932 static sysevent_t * 6933 spa_event_create(spa_t *spa, vdev_t *vd, const char *name) 6934 { 6935 sysevent_t *ev = NULL; 6936 #ifdef _KERNEL 6937 sysevent_attr_list_t *attr = NULL; 6938 sysevent_value_t value; 6939 6940 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6941 SE_SLEEP); 6942 ASSERT(ev != NULL); 6943 6944 value.value_type = SE_DATA_TYPE_STRING; 6945 value.value.sv_string = spa_name(spa); 6946 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6947 goto done; 6948 6949 value.value_type = SE_DATA_TYPE_UINT64; 6950 value.value.sv_uint64 = spa_guid(spa); 6951 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6952 goto done; 6953 6954 if (vd) { 6955 value.value_type = SE_DATA_TYPE_UINT64; 6956 value.value.sv_uint64 = vd->vdev_guid; 6957 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6958 SE_SLEEP) != 0) 6959 goto done; 6960 6961 if (vd->vdev_path) { 6962 value.value_type = SE_DATA_TYPE_STRING; 6963 value.value.sv_string = vd->vdev_path; 6964 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6965 &value, SE_SLEEP) != 0) 6966 goto done; 6967 } 6968 } 6969 6970 if (sysevent_attach_attributes(ev, attr) != 0) 6971 goto done; 6972 attr = NULL; 6973 6974 done: 6975 if (attr) 6976 sysevent_free_attr(attr); 6977 6978 #endif 6979 return (ev); 6980 } 6981 6982 static void 6983 spa_event_post(sysevent_t *ev) 6984 { 6985 #ifdef _KERNEL 6986 sysevent_id_t eid; 6987 6988 (void) log_sysevent(ev, SE_SLEEP, &eid); 6989 sysevent_free(ev); 6990 #endif 6991 } 6992 6993 /* 6994 * Post a sysevent corresponding to the given event. The 'name' must be one of 6995 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6996 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6997 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6998 * or zdb as real changes. 6999 */ 7000 void 7001 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 7002 { 7003 spa_event_post(spa_event_create(spa, vd, name)); 7004 } 7005